WO2015016274A1 - Electrodeless uv radiation lamp and uv processing device - Google Patents

Electrodeless uv radiation lamp and uv processing device Download PDF

Info

Publication number
WO2015016274A1
WO2015016274A1 PCT/JP2014/070100 JP2014070100W WO2015016274A1 WO 2015016274 A1 WO2015016274 A1 WO 2015016274A1 JP 2014070100 W JP2014070100 W JP 2014070100W WO 2015016274 A1 WO2015016274 A1 WO 2015016274A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide fine
ultraviolet radiation
radiation lamp
lamp
Prior art date
Application number
PCT/JP2014/070100
Other languages
French (fr)
Japanese (ja)
Inventor
昭浩 井上
Original Assignee
株式会社日本フォトサイエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本フォトサイエンス filed Critical 株式会社日本フォトサイエンス
Priority to JP2014547584A priority Critical patent/JP6377529B2/en
Publication of WO2015016274A1 publication Critical patent/WO2015016274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/048Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using an excitation coil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor

Definitions

  • the present invention uses a so-called electrodeless ultraviolet radiation lamp that does not include an electrode in an airtight container in which a discharge gas is sealed, such as an ultraviolet radiation lamp that excites a discharge gas by a high-frequency electromagnetic field and emits ultraviolet light, and the lamp.
  • the present invention relates to an ultraviolet treatment apparatus that irradiates an object to be treated with ultraviolet rays and performs sterilization, chemical reaction and the like.
  • a discharge lamp in order to start discharge, it is necessary that electrons that cause discharge are present in the discharge space.
  • the initial electrons are accelerated by the electric field, and gas atoms in the discharge space are ionized to start discharge. If this initial electron does not exist, such as when the discharge lamp is placed in the dark, it is necessary to wait until radiation from cosmic rays or the earth ionizes the gas atoms in the discharge space and generates an initial electron source. If it is long, the discharge may not start for several tens of seconds to several minutes. For this reason, depending on the ballast, it may be determined that there is no load, and the power supply may be automatically stopped, causing problems such as the discharge lamp not lighting at all.
  • the electrodeless ultraviolet radiation lamp refers to an ultraviolet radiation lamp that does not include an electrode in an airtight container in which a discharge gas is sealed, and includes an excitation coil outside the airtight container in which the discharge gas is sealed.
  • a container is formed by applying a high-frequency voltage between two electrodes provided on an outer wall of an airtight container in which discharge gas is excited by exciting a discharge gas by a high-frequency electromagnetic field from an excitation coil and in which a discharge gas is sealed.
  • Patent Document 1 a hollow portion is provided in an airtight container formed in a substantially bulb shape and filled with discharge gas, an excitation coil is inserted into the hollow portion, and a high-frequency current is applied to the excitation coil.
  • a conductive film is provided on the inner side surface of the hollow portion on the gas sealing side. Since this conductive film is provided in the vicinity of the excitation coil, a strong electric field is generated between both ends of the excitation coil and the conductive film, initial electrons are likely to increase, and discharge can be easily started.
  • the electrodeless discharge lamp having the same configuration as the electrodeless discharge lamp described in Patent Document 1 is provided with a starting light source for emitting initial electrons when starting the lamp.
  • the starting light source is configured by a closed loop composed of a light emitting element and a conductor, and this closed loop is arranged so as to interlink with the magnetic field generated by the excitation coil. An induced current is generated in the closed loop by the magnetic field generated by the coil to cause the light emitting element to emit light, thereby easily releasing initial electrons.
  • an ⁇ -alumina coating having an average particle size of 0.05 to 1 ⁇ m is formed on the inner wall surface of an airtight container filled with a discharge gas, and a phosphor layer is formed thereon, or the above-mentioned A phosphor layer mixed with ⁇ -alumina is formed.
  • Such an ⁇ -alumina coating layer (or a phosphor layer mixed with ⁇ -alumina) always emits electrons into the hermetic container even in the dark at room temperature, so that electrons that trigger discharge are always supplied. As a result, even when the lamp is dark and there is no external light or the environment is shielded from cosmic rays, the lamp can be lit quickly.
  • Japanese Patent Laying-Open No. 2005-183316 page 4, FIG. 1
  • Japanese Patent Laying-Open No. 2005-56803 pages 3 to 5, FIG. 1, FIG. 2, FIG. 4
  • JP-A-6-163002 page 3, FIG. 1
  • an ⁇ -alumina-containing layer is formed on the inner wall surface of an airtight container filled with a discharge gas.
  • This discharge lamp is an electrode-type discharge lamp, and such an ⁇ - It is difficult to efficiently supply an initial electron source by applying a technique for forming an alumina-containing layer on the inner wall surface of an airtight container to an electrodeless ultraviolet radiation lamp.
  • the present invention does not cause blackening or the like, and therefore has no short life, and does not increase power consumption, has a simple configuration, and effectively supplies an initial electron source. It is an object of the present invention to provide an electrodeless ultraviolet radiation lamp improved so that it can be reliably started in a short time even when placed in the dark, and to provide an ultraviolet treatment apparatus using the lamp. And
  • the present invention provides an electrodeless ultraviolet radiation comprising: an airtight container filled with a discharge gas; and a discharge generating means provided outside the airtight container and generating a discharge in the airtight container.
  • an electrodeless ultraviolet radiation lamp having an insulating metal oxide fine particle film formed on at least a part of an inner wall surface of the hermetic container.
  • the insulating metal oxide fine particle film is made of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, yttrium, zirconium, niobium.
  • at least one kind of metal oxide fine particles or a mixture of a plurality of types of metal oxide fine particles can be used.
  • the insulating metal oxide fine particle film may be formed of metal oxide fine particles having a modest appearance particle size of 0.05 ⁇ m or less in a slurry state before coating.
  • the insulating metal oxide fine particle film is formed of metal oxide fine particles having a modest appearance particle size of 0.05 ⁇ m or less and 0.01 ⁇ m or more in a slurry state before the application. Also good.
  • the insulating metal oxide fine particle film may be formed in a region corresponding to the discharge generating means on the inner wall surface of the hermetic container.
  • the insulating metal oxide fine particle film may be formed over the entire inner wall surface of the hermetic container.
  • the electrodeless ultraviolet radiation lamp having an insulating metal oxide particle film formed on the inner wall surface of the hermetic container, and the ultraviolet rays from the lamp are irradiated on the object to be treated.
  • the ultraviolet ray processing apparatus can also be configured from the object container in which the lamp is disposed.
  • the electrodeless ultraviolet radiation lamp comprising: an airtight container filled with a discharge gas; and a discharge generating means that is provided outside the airtight container and generates a discharge in the airtight container.
  • An insulating metal oxide fine particle film is formed on at least a part of the inner wall surface, and since electrons are effectively emitted from this insulating metal oxide fine particle film, an initial electron source can be formed efficiently. become. Since this insulating metal oxide fine particle film absorbs vacuum ultraviolet rays, it is possible to prevent the deterioration of the constituent material of the hermetic container such as quartz glass and the material forming the excitation coil due to the irradiation with vacuum ultraviolet rays, thereby extending the life.
  • an electrodeless ultraviolet radiation lamp that can supply an initial electron source effectively, can be started reliably in a short time even when the lamp is placed in the dark, has a long life, low power consumption, and a simple configuration is provided. can do.
  • FIG. 1 is a side view showing a part of one embodiment of an electrodeless ultraviolet radiation lamp according to the present invention. It is a perspective view which shows schematically the other Example of the electrodeless ultraviolet radiation lamp concerning this invention.
  • FIG. 6 is a perspective view schematically showing still another embodiment of the electrodeless ultraviolet radiation lamp according to the present invention.
  • 1 is a perspective view schematically showing an embodiment of an ultraviolet processing apparatus according to the present invention. It is the schematic front view which looked at the Example of the ultraviolet-ray processing apparatus from the front. It is a perspective view which shows schematically the other Example of the ultraviolet-ray processing apparatus concerning this invention.
  • FIG. 1 shows an electrodeless ultraviolet radiation lamp according to an embodiment of the present invention.
  • the electrodeless ultraviolet radiation lamp 10 has an airtight container 11 in which a discharge gas is enclosed.
  • the hermetic container 11 is formed of quartz glass in a substantially cylindrical shape, and is provided with a recessed portion 12 that is recessed inwardly (upward in the figure) from one end (lower end in the figure).
  • a rod-shaped ferrite core 14 is disposed in the recessed portion 12 so as to be inserted from the lower side to the upper side.
  • An excitation coil 15 is wound around the rod-shaped ferrite core 14, and a heat radiating fin 16 for radiating the heat of the ferrite core 14 is attached to the base (lower end).
  • a mixed rare gas such as argon and neon and mercury amalgam are enclosed in an airtight container 11 as a discharge gas.
  • An insulating metal oxide fine particle film 14 made of zirconium oxide fine particles is formed over the entire inner wall surface of the hermetic container 11.
  • the insulating metal oxide fine particle film 14 is formed by applying a slurry of zirconium oxide having a small particle diameter.
  • the slurry is a liquid material in which fine particles are uniformly dispersed in water or an organic solvent.
  • the particle size distribution of the zirconium oxide fine particles in the slurry state before coating is between 0.005 ⁇ m and 0.1 ⁇ m, and the most frequently occurring particle size (maximum distribution particle size) is from 0.01 ⁇ m to 0.00 ⁇ m.
  • a slurry present between 05 ⁇ m is used.
  • Such materials are available, for example, as “NanoTek” (registered trademark) ultrafine particle material manufactured by CI Kasei Co., Ltd., manufactured by the Physical Vapor Synthesis method.
  • a film of only fine particles can be formed on the inner wall surface by baking and oxidizing the solvent while blowing oxygen.
  • this electrodeless ultraviolet radiation lamp 10 when a high frequency current is passed through the excitation coil 15 to excite the discharge gas in the hermetic vessel 11 and discharge is started, ultraviolet rays are emitted. Since the excitation coil 15 and the ferrite core 14 generate a discharge in the hermetic container 11 as described above, the excitation coil 15 and the ferrite core 14 correspond to a discharge generation unit.
  • charged particles from the plasma formed by the previous discharge adhere to the fine particle surface of the insulating metal oxide fine particle film 13 on the inner wall surface of the hermetic vessel 11, charge the fine particles, and are applied at the next start-up. It is also considered that electrons are emitted by a magnetic field.
  • the ability to damage the fine crystal structure of the film 13 to form a strain or to hold electrons on the fine particles increases as the amount of absorbed ultraviolet rays increases.
  • the ability to absorb ultraviolet rays is determined by the work function of the material constituting the fine particles, but the surface length of the fine metal particles constituting the film 13 is another factor that influences the blocking ability. If the surface length of the fine particles is around the wavelength of vacuum ultraviolet rays, the ultraviolet rays are effectively trapped by the metal oxide fine particles and the blocking effect is enhanced or scattered.
  • the diameter of the fine particles forming the film 13 is about 60 nm ( ⁇ 185 nm / ⁇ ), that is, about 0.06 ⁇ m.
  • the fine particle diameter should be slightly smaller than that. From such a viewpoint, the most frequently appearing particle diameter or average particle diameter of the metal fine particles constituting the film 13 is desirably 0.05 ⁇ m or less.
  • the insulating metal oxide fine particle film 13 also plays a role of protecting the hermetic container 11 made of quartz glass.
  • quartz glass is irradiated with vacuum ultraviolet light with a wavelength of 185 nm emitted from mercury or vacuum ultraviolet light with a wavelength of 172 nm from a dielectric barrier discharge using a xenon gas called an excimer lamp, the silicon oxide bond constituting the quartz is cut. Fine cracks occur, and finally a phenomenon that leads to breakage of the glass occurs. Therefore, in these excimer lamps and ultraviolet radiation lamps, it is desirable to remove these vacuum ultraviolet rays in order to protect the airtight container made of quartz glass. As described above, the insulating metal oxide fine particle film 13 effectively blocks vacuum ultraviolet rays, so that the hermetic container 11 made of quartz glass can be protected.
  • the metal particle diameter of the film 13 for enhancing the protective effect is desirably such that the most frequently appearing particle diameter is 0.05 ⁇ m or less and 0.01 ⁇ m or more in the slurry state before coating.
  • the shielding effect is enhanced when the surface length of the metal fine particles is about the wavelength of vacuum ultraviolet rays to be cut off, but since the actual fine particles have irregularities and are not perfectly spherical, the diameter of the fine particles is the above wavelength. As described above, it should be slightly smaller than the value corresponding to the above. From this point of view, the most frequently appearing particle size is 0.05 ⁇ m or less and 0.01 ⁇ m or more.
  • the quartz glass forming the hermetic vessel 11 is made of vacuum ultraviolet rays. It is possible to effectively prevent deterioration and generation of fine cracks and eventually destruction.
  • the insulating metal oxide fine particle film 13 is formed on the entire inner wall surface of the hermetic container 11 in this way, the life of the hermetic container 11 made of quartz glass can be extended, but only as an initial electron source. Of course, when used, it may be formed only on a part of the inner wall surface of the airtight container 11.
  • the film 13 is formed on a part of the inner wall surface of the hermetic container 11, if the film 13 is provided on a portion corresponding to the excitation coil 15, the material constituting the excitation coil 15 can be prevented from being deteriorated by vacuum ultraviolet rays. Life can be extended.
  • the insulating metal oxide fine particle film 13 is formed by applying fine particles of zirconium oxide, but the present invention is not limited to this.
  • the metal constituting the insulating metal oxide fine particles is, in the periodic table, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium or It can be selected from yttrium, zirconium and niobium existing in the vicinity thereof. Alternatively, a mixture thereof may be used.
  • the present invention can be applied not only to the electrodeless ultraviolet radiation lamp 10 shown in FIG. 1 but also to electrodeless ultraviolet radiation lamps having other configurations. Some examples are shown in FIGS.
  • FIG. 2 shows a concentric cylindrical electrodeless ultraviolet radiation lamp 20.
  • an airtight container 21 made of quartz glass in which discharge gas is sealed is formed in a cylindrical shape.
  • a cylindrical through portion 22 is formed so as to be concentric with the airtight container 21.
  • a cylindrical ferrite core 23 around which the excitation coil 24 is wound in a spiral shape is inserted concentrically around the through portion 22.
  • an insulating metal oxide fine particle film (in the drawing, on the entire or a part of the inner wall surface of the cylindrical airtight container 21 having the cylindrical through-hole 22). (Omitted) is formed.
  • FIG. 3 shows a concentric cylindrical electrodeless ultraviolet radiation lamp 30 similar to that shown in FIG.
  • an airtight container 31 made of quartz glass in which a discharge gas is sealed is formed in a cylindrical shape, and is cylindrical so as to be concentric with the cylindrical airtight container 31.
  • the cylindrical ferrite core 33 is inserted concentrically so as to penetrate the through part 32, and these are the same as the concentric cylindrical electrodeless ultraviolet radiation lamp 20 of FIG.
  • the excitation coil 34 is different in that it is spirally wound around the outer periphery of the cylindrical airtight container 31, not around the columnar ferrite core 33.
  • an insulating metal oxide fine particle film (not shown) is formed on the whole or a part of the inner wall surface of a cylindrical airtight container 31 having a cylindrical through-hole 32.
  • An ultraviolet treatment apparatus can be configured using each electrodeless ultraviolet radiation lamp formed in this way.
  • This ultraviolet ray processing apparatus irradiates an object to be treated with ultraviolet rays emitted from an electrodeless ultraviolet radiation lamp to perform processing such as sterilization of the object to be treated or other chemical reaction.
  • an ultraviolet treatment apparatus using an electrodeless ultraviolet radiation lamp as described above, the time from when the lamp is turned on until the object is irradiated with ultraviolet rays can be shortened. -The time efficiency of processing can be improved in applications that are repeatedly turned off.
  • the power consumption for ultraviolet irradiation can be reduced, and the electrodeless ultraviolet radiation lamp has a long life, so that the frequency of lamp replacement can be reduced.
  • the ring-shaped electrodeless ultraviolet radiation lamp 40 has a ring-like form not described above.
  • the ring-shaped electrodeless ultraviolet radiation lamp 40 includes an airtight container 41 formed in a ring shape from quartz glass and a ring-shaped ferrite core 42 attached so as to surround the ring-shaped airtight container 41. Is done.
  • a mixed rare gas such as argon and neon and a discharge gas made of mercury amalgam are enclosed in the hermetic container 41.
  • an insulating metal oxide fine particle film made of fine particles such as zirconium oxide is formed on the whole or a part of the inner wall surface of the hermetic container 41 as in FIG. .
  • An excitation coil (not shown) is wound around the ring-shaped ferrite core 42, and a high-frequency magnetic field is formed in the ring-shaped hermetic container 41 by flowing a high-frequency current through the excitation coil.
  • the induced electromotive force excites the discharge gas in the hermetic container 41 and emits ultraviolet rays.
  • the plurality of ring-shaped electrodeless ultraviolet radiation lamps 40 are attached so as to surround a cylindrical water flow pipe 51 through which the fluid to be treated is circulated in the left-right direction in FIG.
  • a protective container 52 is provided so as to surround the water flow pipe 51 and the plurality of ring-shaped electrodeless ultraviolet radiation lamps 40, and the water flow pipe 51 and the lamp 40 are covered and protected by the protective container 52.
  • a ring-shaped lamp 40 is provided so as to surround the water flow pipe 51 and the ultraviolet light is irradiated to the inside of the water flow pipe 51. Is efficiently irradiated, and processing such as sterilization of the fluid to be processed is performed.
  • the concentric electrodeless ultraviolet radiation lamp 20 shown in FIG. 2 is used.
  • this ultraviolet irradiation device 60 two concentric electrodeless ultraviolet radiation lamps 20 are arranged in a cylindrical object container 61, and both ends of this cylindrical object container 61 are closed in a watertight manner.
  • an inflow port 62 and an outflow port 63 for a fluid-like object to be processed are provided.
  • the concentric electrodeless ultraviolet radiation lamp 20 shown in FIG. 2 is used, it is needless to say that the concentric electrodeless ultraviolet radiation lamp 30 shown in FIG. 3 can be used.
  • a fluid-like object to be processed flows into the object-to-be-processed container 61 from the inlet 62, and flows through the cylindrical object-to-be-processed container 61 in its length direction, in the right direction in the figure. It flows out from the outlet 63.
  • An elongated ultraviolet radiation lamp 20 is arranged in the flowing direction, and ultraviolet light is radiated from the periphery of the lamp 20, so that the fluid object to be processed flowing through the object container 61 is uniformly irradiated with ultraviolet light. Can increase the processing efficiency.
  • the electrodeless ultraviolet discharge lamp is not limited to the above-mentioned several shapes, and the gas sealed as the discharge gas is not limited to the above, and in the case of an electrodeless ultraviolet discharge lamp using mercury, neon
  • a rare gas such as argon, krypton, or xenon, or a mixed gas thereof may be used, and the mercury carrier may be mercury alone or an amalgam that is an alloy of mercury and another metal.
  • the present invention can also be applied to an electrodeless ultraviolet radiation lamp called an excimer lamp or the like.
  • an electrodeless ultraviolet radiation lamp called an excimer lamp or the like a high-frequency voltage is applied to the inside of a container via a dielectric that forms a container by applying a high-frequency voltage between two electrodes provided on the outer wall of an airtight container filled with a discharge gas. Since an electric field is generated and a discharge (dielectric barrier discharge) is generated in the discharge gas to emit ultraviolet rays, the two electrodes provided on the outer wall of the hermetic container correspond to the discharge generating means.
  • a discharge gas only a rare gas such as xenon or krypton or a mixed gas of a halogen gas and a rare gas may be sealed in an airtight container.

Abstract

Provided is an electrodeless UV radiation lamp having long life-span, low consumption of electric power and simple constitution, improved so as to be capable of effectively supplying an initial electron source and ensure starting within a short time. An electrodeless UV radiation lamp (10) provided with an airtight container (11) having sealed therein a discharge gas, and discharge generation means (14,15) provided outside the airtight container (11) for generating a discharge inside the airtight container (11), wherein an insulating metal oxide microparticle film (13) is formed on at least a portion of the inner wall surface of the airtight container (11).

Description

無電極紫外線放射ランプおよび紫外線処理装置Electrodeless UV radiation lamp and UV treatment equipment
 この発明は、高周波電磁界により放電ガスを励起し紫外線を放射させる紫外線放射ランプなどの、放電ガスが封入された気密容器内に電極を備えないいわゆる無電極型の紫外線放射ランプおよびそのランプを用いて被処理物に紫外線を照射し、殺菌、化学反応などの処理を行う紫外線処理装置に関する。 The present invention uses a so-called electrodeless ultraviolet radiation lamp that does not include an electrode in an airtight container in which a discharge gas is sealed, such as an ultraviolet radiation lamp that excites a discharge gas by a high-frequency electromagnetic field and emits ultraviolet light, and the lamp. The present invention relates to an ultraviolet treatment apparatus that irradiates an object to be treated with ultraviolet rays and performs sterilization, chemical reaction and the like.
 一般に放電ランプでは、放電を開始するために、放電空間内に放電のきっかけとなる電子が存在する必要がある。この初期電子が電界で加速され、放電空間内のガス原子を電離して放電が開始する。放電ランプが暗黒中に置かれるなど、この初期電子が存在しない場合には、宇宙線や大地からの放射線が放電空間内のガス原子を電離して、初期電子源として発生してくるまで待つ必要があり、長い場合には数十秒から数分の間、放電が開始しないこともある。そのため、安定器によっては無負荷と判断して電力供給を自動停止することもあり、放電ランプがまったく点灯しないなどの不具合が生じる。 Generally, in a discharge lamp, in order to start discharge, it is necessary that electrons that cause discharge are present in the discharge space. The initial electrons are accelerated by the electric field, and gas atoms in the discharge space are ionized to start discharge. If this initial electron does not exist, such as when the discharge lamp is placed in the dark, it is necessary to wait until radiation from cosmic rays or the earth ionizes the gas atoms in the discharge space and generates an initial electron source. If it is long, the discharge may not start for several tens of seconds to several minutes. For this reason, depending on the ballast, it may be determined that there is no load, and the power supply may be automatically stopped, causing problems such as the discharge lamp not lighting at all.
 放電ガスが封入された気密容器内にフィラメントなどの電極を有する放電ランプの場合は、この始動時の問題を解決することは比較的容易である。電極を構成する材料である「エミッター」と呼ばれる仕事関数の低い材料を電極に塗布することが従来より行われている。極微量の光があれば仕事関数の低い材料の塗布層から光電子の放出が行われ、あるいはフィラメント式電極では予熱によって熱電子が放出され、これらにより電子が供給され、その電子が放電のきっかけとなる初期電子として働き、電源供給後速やかに放電が開始し、それが持続される。 In the case of a discharge lamp having an electrode such as a filament in an airtight container filled with a discharge gas, it is relatively easy to solve the problem at the start. Conventionally, a material having a low work function called “emitter” which is a material constituting the electrode is applied to the electrode. If there is a trace amount of light, photoelectrons are emitted from the coating layer of the material with a low work function, or the filament type electrode emits thermionic electrons by preheating, and these electrons are supplied, and the electrons are triggered by the discharge. It acts as an initial electron, and discharge starts immediately after power is supplied, and it is sustained.
 これに対して、いわゆる無電極型の放電ランプでは、電磁界誘導によって放電ガスを励起することから、電極を有することがないため、初期電子を供給する「エミッター」を導入することはできず、宇宙線や大地からの放射線によって初期電子が形成されてくるまで待たなければならないという始動時の問題を解決することは困難な課題となっている。 On the other hand, in a so-called electrodeless discharge lamp, since the discharge gas is excited by electromagnetic field induction, it does not have an electrode, so it is not possible to introduce an “emitter” that supplies initial electrons, Solving the startup problem of having to wait until initial electrons are formed by radiation from cosmic rays and the earth has become a difficult task.
 なお、ここで、無電極紫外線放射ランプは、放電ガスが封入された気密容器内に電極を備えない紫外線放射ランプを指すものとし、放電ガスが封入された気密容器外部に励起コイルを備え、この励起コイルからの高周波電磁界により放電ガスを励起し紫外線を放射させる紫外線放射ランプや、放電ガスが封入された気密容器外壁に設けた2枚の電極間に高周波電圧を印加して容器を形成する誘電体を介して容器内部に高周波電界を生起し放電ガス中で放電(誘電体バリア放電)を発生させて紫外線を放射させる、エキシマランプなどと呼ばれる紫外線放射ランプ等を含むものとする。 Here, the electrodeless ultraviolet radiation lamp refers to an ultraviolet radiation lamp that does not include an electrode in an airtight container in which a discharge gas is sealed, and includes an excitation coil outside the airtight container in which the discharge gas is sealed. A container is formed by applying a high-frequency voltage between two electrodes provided on an outer wall of an airtight container in which discharge gas is excited by exciting a discharge gas by a high-frequency electromagnetic field from an excitation coil and in which a discharge gas is sealed. It includes an ultraviolet radiation lamp called an excimer lamp or the like that emits ultraviolet rays by generating a high-frequency electric field inside the container through a dielectric and generating discharge (dielectric barrier discharge) in a discharge gas.
 この困難な課題に対処するべく、初期電子を供給する技術が従来よりいくつか提案されている。たとえば、下記特許文献1によれば、略電球形状に形成され内部に放電ガスが封入された気密容器にくぼみ部を設けて、このくぼみ部に励起コイルを挿入し、この励起コイルに高周波電流を流し、それによって生じる電界により放電ガスを励起する無電極放射ランプにおいて、上記のくぼみ部のガス封入側の内側面に導電膜を設けている。この導電膜は励起コイルの近傍に設けられているため、励起コイルの両端と導電膜との間に強電界が生じ、初期電子が増加しやすくなって、放電の開始が容易になる。 In order to cope with this difficult problem, several techniques for supplying initial electrons have been proposed. For example, according to Patent Document 1 below, a hollow portion is provided in an airtight container formed in a substantially bulb shape and filled with discharge gas, an excitation coil is inserted into the hollow portion, and a high-frequency current is applied to the excitation coil. In the electrodeless radiation lamp that excites the discharge gas by the electric field generated by the flow, a conductive film is provided on the inner side surface of the hollow portion on the gas sealing side. Since this conductive film is provided in the vicinity of the excitation coil, a strong electric field is generated between both ends of the excitation coil and the conductive film, initial electrons are likely to increase, and discharge can be easily started.
 また、下記特許文献2では、上記特許文献1に記載された無電極放電ランプと同様の構成の無電極放電ランプにおいて、ランプの点灯始動時の初期電子を放出するための始動用光源を備えるようにしている。そして、この始動用光源の構成を簡単にするため、始動用光源を、発光素子と導体とによる閉ループで構成し、この閉ループを、励起コイルが発生する磁界と鎖交するよう配置して、励起コイルが発生する磁界によって閉ループに誘導電流を生じさせて発光素子を発光せしめ、初期電子を放出しやすくしている。 Further, in the following Patent Document 2, the electrodeless discharge lamp having the same configuration as the electrodeless discharge lamp described in Patent Document 1 is provided with a starting light source for emitting initial electrons when starting the lamp. I have to. In order to simplify the configuration of the starting light source, the starting light source is configured by a closed loop composed of a light emitting element and a conductor, and this closed loop is arranged so as to interlink with the magnetic field generated by the excitation coil. An induced current is generated in the closed loop by the magnetic field generated by the coil to cause the light emitting element to emit light, thereby easily releasing initial electrons.
 下記特許文献3では、放電ガスが封入された気密容器内壁面に、平均粒径が0.05~1μmのα-アルミナ被層を形成しその上に蛍光体層を形成するか、あるいは上記のα-アルミナを混合した蛍光体層を形成するようにしている。このようなα-アルミナ被層(あるいはα-アルミナを混合した蛍光体層)は、常温で暗黒中でも常時、気密容器内に電子を放出しているので、放電のきっかけとなる電子が常に供給されることになって、このランプが暗黒中にあって外部光がなかったり、周囲が宇宙線から遮断された環境下であっても、速やかに点灯させることができる。 In the following Patent Document 3, an α-alumina coating having an average particle size of 0.05 to 1 μm is formed on the inner wall surface of an airtight container filled with a discharge gas, and a phosphor layer is formed thereon, or the above-mentioned A phosphor layer mixed with α-alumina is formed. Such an α-alumina coating layer (or a phosphor layer mixed with α-alumina) always emits electrons into the hermetic container even in the dark at room temperature, so that electrons that trigger discharge are always supplied. As a result, even when the lamp is dark and there is no external light or the environment is shielded from cosmic rays, the lamp can be lit quickly.
特開2005-183316号公報(第4頁、図1)Japanese Patent Laying-Open No. 2005-183316 (page 4, FIG. 1) 特開2005-56803号公報(第3~5頁、図1、図2、図4)Japanese Patent Laying-Open No. 2005-56803 (pages 3 to 5, FIG. 1, FIG. 2, FIG. 4) 特開平6-163002号公報(第3頁、図1)JP-A-6-163002 (page 3, FIG. 1)
 しかしながら、上記特許文献1のように、ランプの気密容器内側面に導電膜を設ける場合には、この導電膜に水銀が付着して早期に黒化し、出力低下や水銀消耗によるランプ寿命の短縮化などの問題が生じる。また、導電膜によって多少なりとも消費電力が増大し、効率が低下する。 However, when a conductive film is provided on the inner surface of the lamp hermetic container as in Patent Document 1, mercury adheres to the conductive film and blackens early, shortening the lamp life due to reduced output and mercury consumption. Problems arise. In addition, the conductive film increases power consumption to some extent and decreases efficiency.
 上記特許文献2のように、発光素子と導体とによって構成された閉ループを配置する場合には、そのような閉ループを設けなければならないこと自体、構成が複雑化することを意味する。さらに発光素子での電力消費により効率が低下することも無視できない。 As in the above-mentioned Patent Document 2, when a closed loop composed of a light emitting element and a conductor is arranged, it is necessary to provide such a closed loop, which means that the configuration is complicated. Furthermore, it is not negligible that the efficiency decreases due to power consumption in the light emitting element.
 さらに、上記特許文献3では、放電ガスが封入された気密容器内壁面にα-アルミナ含有層を形成しているが、この放電ランプは有電極型の放電ランプであって、このようなα-アルミナ含有層を気密容器内壁面に形成する技術を無電極型の紫外線放射ランプに適用して効率良好に初期電子源を供給することは難しい。 Further, in Patent Document 3, an α-alumina-containing layer is formed on the inner wall surface of an airtight container filled with a discharge gas. This discharge lamp is an electrode-type discharge lamp, and such an α- It is difficult to efficiently supply an initial electron source by applying a technique for forming an alumina-containing layer on the inner wall surface of an airtight container to an electrodeless ultraviolet radiation lamp.
 この発明は、上記に鑑み、黒化などが生じることがなく、したがってそれによる短寿命化とも無縁で、しかも消費電力が増大することがなく、構成簡単で、効果的に初期電子源を供給することにより、暗黒中に配置された場合でも短時間で確実に始動することができるように改善した、無電極紫外線放射ランプを提供するとともに、そのランプを用いた紫外線処理装置を提供することを目的とする。 In view of the above, the present invention does not cause blackening or the like, and therefore has no short life, and does not increase power consumption, has a simple configuration, and effectively supplies an initial electron source. It is an object of the present invention to provide an electrodeless ultraviolet radiation lamp improved so that it can be reliably started in a short time even when placed in the dark, and to provide an ultraviolet treatment apparatus using the lamp. And
 上記目的を達成するために、本発明は、放電ガスが封入された気密容器と、該気密容器の外部に設けられて該気密容器中に放電を発生させる放電発生手段とを備える無電極紫外線放射ランプにおいて、上記気密容器の内壁面の少なくとも一部に形成された絶縁性の酸化金属微粒子膜を有することを特徴とする無電極紫外線放射ランプを提供する。 In order to achieve the above object, the present invention provides an electrodeless ultraviolet radiation comprising: an airtight container filled with a discharge gas; and a discharge generating means provided outside the airtight container and generating a discharge in the airtight container. In the lamp, there is provided an electrodeless ultraviolet radiation lamp having an insulating metal oxide fine particle film formed on at least a part of an inner wall surface of the hermetic container.
 一実施例において、上記の絶縁性酸化金属微粒子膜は、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテリビウム、ルテチウム、イットリウム、ジルコニウム、ニオビウムのうちの少なくとも一種の金属の酸化物微粒子、あるいは複数種の金属の酸化物微粒子の混合物で構成することができる。 In one embodiment, the insulating metal oxide fine particle film is made of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, yttrium, zirconium, niobium. Of these, at least one kind of metal oxide fine particles or a mixture of a plurality of types of metal oxide fine particles can be used.
 一実施例において、上記の絶縁性酸化金属微粒子膜は、その塗布前のスラリー状態において、最頻出現粒径が0.05μm以下である酸化金属微粒子により、形成するようにしてもよい。 In one embodiment, the insulating metal oxide fine particle film may be formed of metal oxide fine particles having a modest appearance particle size of 0.05 μm or less in a slurry state before coating.
 一実施例において、上記の絶縁性酸化金属微粒子膜は、その塗布前のスラリー状態において、最頻出現粒径が0.05μm以下かつ0.01μm以上である酸化金属微粒子により、形成するようにしてもよい。 In one embodiment, the insulating metal oxide fine particle film is formed of metal oxide fine particles having a modest appearance particle size of 0.05 μm or less and 0.01 μm or more in a slurry state before the application. Also good.
 一実施例において、上記の絶縁性酸化金属微粒子膜は、気密容器内壁面の、放電発生手段に対応する領域に形成するようにしてもよい。 In one embodiment, the insulating metal oxide fine particle film may be formed in a region corresponding to the discharge generating means on the inner wall surface of the hermetic container.
 一実施例において、上記の絶縁性酸化金属微粒子膜は、気密容器内壁面の全体にわたって形成するようにしてもよい。 In one embodiment, the insulating metal oxide fine particle film may be formed over the entire inner wall surface of the hermetic container.
 さらに、一実施例において、上記気密容器内壁面に形成された絶縁性の酸化金属粒子膜を有する上記無電極紫外線放射ランプと、該ランプからの紫外線がその内部の被処理物に照射されるよう上記のランプが配置された被処理物容器とから紫外線処理装置を構成することもできる。 Further, in one embodiment, the electrodeless ultraviolet radiation lamp having an insulating metal oxide particle film formed on the inner wall surface of the hermetic container, and the ultraviolet rays from the lamp are irradiated on the object to be treated. The ultraviolet ray processing apparatus can also be configured from the object container in which the lamp is disposed.
 この発明によれば、放電ガスが封入された気密容器と、該気密容器の外部に設けられて該気密容器中に放電を発生させる放電発生手段とを備える無電極紫外線放射ランプにおいて、上記気密容器内壁面の少なくとも一部に絶縁性の酸化金属微粒子膜を形成しており、この絶縁性酸化金属微粒子膜からは、効果的に電子が放出されるので、効率よく初期電子源が形成されることになる。この絶縁性酸化金属微粒子膜は真空紫外線を吸収するため、石英ガラス等の気密容器の構成材料や励起コイルを形成する材料の真空紫外線照射による劣化を防止して長寿命とすることができる。そして、構成が簡単であり、消費電力を増大させる要素はない。このように効果的に初期電子源を供給でき、ランプを暗黒中に配置しても短時間で確実に始動することができる、長寿命かつ低消費電力しかも構成簡単な無電極紫外線放射ランプを提供することができる。 According to the present invention, in the electrodeless ultraviolet radiation lamp comprising: an airtight container filled with a discharge gas; and a discharge generating means that is provided outside the airtight container and generates a discharge in the airtight container. An insulating metal oxide fine particle film is formed on at least a part of the inner wall surface, and since electrons are effectively emitted from this insulating metal oxide fine particle film, an initial electron source can be formed efficiently. become. Since this insulating metal oxide fine particle film absorbs vacuum ultraviolet rays, it is possible to prevent the deterioration of the constituent material of the hermetic container such as quartz glass and the material forming the excitation coil due to the irradiation with vacuum ultraviolet rays, thereby extending the life. And the structure is simple and there is no element which increases power consumption. In this way, an electrodeless ultraviolet radiation lamp that can supply an initial electron source effectively, can be started reliably in a short time even when the lamp is placed in the dark, has a long life, low power consumption, and a simple configuration is provided. can do.
この発明にかかる無電極紫外線放射ランプの一実施例の一部を断面して示す側面図である。1 is a side view showing a part of one embodiment of an electrodeless ultraviolet radiation lamp according to the present invention. この発明にかかる無電極紫外線放射ランプの他の実施例を概略的に示す斜視図である。It is a perspective view which shows schematically the other Example of the electrodeless ultraviolet radiation lamp concerning this invention. この発明にかかる無電極紫外線放射ランプのさらに別の実施例を概略的に示す斜視図である。FIG. 6 is a perspective view schematically showing still another embodiment of the electrodeless ultraviolet radiation lamp according to the present invention. この発明にかかる紫外線処理装置の一実施例を概略的に示す斜視図である。1 is a perspective view schematically showing an embodiment of an ultraviolet processing apparatus according to the present invention. 紫外線処理装置の同実施例を正面から見た概略的な正面図である。It is the schematic front view which looked at the Example of the ultraviolet-ray processing apparatus from the front. この発明にかかる紫外線処理装置の他の実施例を概略的に示す斜視図である。It is a perspective view which shows schematically the other Example of the ultraviolet-ray processing apparatus concerning this invention.
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1はこの発明の一実施例にかかる無電極紫外線放射ランプを示すものである。無電極紫外線放射ランプ10は、図1に示すように、放電ガスを封入した気密容器11を有する。この気密容器11は、石英ガラスにより略円筒状に形成されているが、その一端(図では下端)から内方(図では上方)にくぼんでいるくぼみ部12が設けられている。このくぼみ部12に、下方から上方へと挿入するよう棒状フェライトコア14が配置される。この棒状フェライトコア14には、励起コイル15が巻回されており、その基部(下端部)にフェライトコア14の熱を放散するための放熱フィン16が取り付けられている。 FIG. 1 shows an electrodeless ultraviolet radiation lamp according to an embodiment of the present invention. As shown in FIG. 1, the electrodeless ultraviolet radiation lamp 10 has an airtight container 11 in which a discharge gas is enclosed. The hermetic container 11 is formed of quartz glass in a substantially cylindrical shape, and is provided with a recessed portion 12 that is recessed inwardly (upward in the figure) from one end (lower end in the figure). A rod-shaped ferrite core 14 is disposed in the recessed portion 12 so as to be inserted from the lower side to the upper side. An excitation coil 15 is wound around the rod-shaped ferrite core 14, and a heat radiating fin 16 for radiating the heat of the ferrite core 14 is attached to the base (lower end).
 この実施例では、放電ガスとして、気密容器11内にアルゴン、ネオンなどの混合希ガスと水銀アマルガムが封入されている。そして、気密容器11の内壁面全面にわたって酸化ジルコニウムの微粒子よりなる絶縁性酸化金属微粒子膜14が形成されている。 In this embodiment, a mixed rare gas such as argon and neon and mercury amalgam are enclosed in an airtight container 11 as a discharge gas. An insulating metal oxide fine particle film 14 made of zirconium oxide fine particles is formed over the entire inner wall surface of the hermetic container 11.
 この絶縁性酸化金属微粒子膜14は、粒径の小さな酸化ジルコニウムのスラリーを塗布して形成される。なお、スラリーとは微粒子を水もしくは有機溶媒中に均一分散させた液体状の材料である。ここでは、塗布前のスラリー状態における酸化ジルコニウム微粒子の粒径分布が0.005μmから0.1μmの間にあり、粒径の最頻出現粒径(最大分布粒径)は0.01μmから0.05μmの間に存在するスラリーを用いる。このような材料は、たとえば、Physical Vapor Synthesis法で作られる、シーアイ化成株式会社の“ナノテック(NanoTek)”(登録商標)超微粒子マテリアルとして入手可能である。この酸化ジルコニウムのスラリーを気密容器11の内壁面に塗布した後、酸素を吹き込みながら、溶媒を焼成して酸化させることで、微粒子のみの膜を内壁面に形成することができる。 The insulating metal oxide fine particle film 14 is formed by applying a slurry of zirconium oxide having a small particle diameter. The slurry is a liquid material in which fine particles are uniformly dispersed in water or an organic solvent. Here, the particle size distribution of the zirconium oxide fine particles in the slurry state before coating is between 0.005 μm and 0.1 μm, and the most frequently occurring particle size (maximum distribution particle size) is from 0.01 μm to 0.00 μm. A slurry present between 05 μm is used. Such materials are available, for example, as “NanoTek” (registered trademark) ultrafine particle material manufactured by CI Kasei Co., Ltd., manufactured by the Physical Vapor Synthesis method. After this zirconium oxide slurry is applied to the inner wall surface of the hermetic container 11, a film of only fine particles can be formed on the inner wall surface by baking and oxidizing the solvent while blowing oxygen.
 この無電極紫外線放射ランプ10において、励起コイル15に高周波電流を流して気密容器11内の放電ガスを励起し放電を開始させると紫外線が放射されることになる。このように励起コイル15とフェライトコア14とにより気密容器11内に放電を発生させるため、これら励起コイル15とフェライトコア14とが放電発生手段に相当する。 In this electrodeless ultraviolet radiation lamp 10, when a high frequency current is passed through the excitation coil 15 to excite the discharge gas in the hermetic vessel 11 and discharge is started, ultraviolet rays are emitted. Since the excitation coil 15 and the ferrite core 14 generate a discharge in the hermetic container 11 as described above, the excitation coil 15 and the ferrite core 14 correspond to a discharge generation unit.
 その放電開始時に、気密容器11の内壁面全面に形成された絶縁性酸化金属微粒子膜13より電子が放出され、この放出電子が放電のきっかけとなり、速やかに放電が開始する。この絶縁性酸化金属微粒子膜13から電子が放出されるメカニズムはかならずしも明確ではないが、その微粒子を構成する結晶構造が、前回の放電時に機械的なダメージを受け、結晶構造中に歪などが形成され、そのダメージや歪が消失し結晶構造が回復するときにexo電子(エキソ電子)と呼ばれる電子を放出するというものであると考えられる。あるいは、前回の放電により形成されたプラズマからの帯電粒子が気密容器11の内壁面上の絶縁性酸化金属微粒子膜13の微粒子表面に付着し、その微粒子を帯電させ、つぎの始動時に印加される磁界により電子が放出される、とも考えられる。 At the start of the discharge, electrons are emitted from the insulating metal oxide fine particle film 13 formed on the entire inner wall surface of the hermetic vessel 11, and the emitted electrons trigger the discharge, so that the discharge starts quickly. The mechanism by which electrons are emitted from the insulating metal oxide fine particle film 13 is not always clear, but the crystal structure constituting the fine particle is mechanically damaged during the previous discharge, and distortion is formed in the crystal structure. It is considered that electrons called exo electrons (exo electrons) are emitted when the damage and distortion disappear and the crystal structure recovers. Alternatively, charged particles from the plasma formed by the previous discharge adhere to the fine particle surface of the insulating metal oxide fine particle film 13 on the inner wall surface of the hermetic vessel 11, charge the fine particles, and are applied at the next start-up. It is also considered that electrons are emitted by a magnetic field.
 いずれにしても、このような現象は、気密容器11の内壁面上の金属微粒子膜13が導電性である場合には、電子が流動して消失するため、発生することが難しくなり、初期電子源として有効に機能することができない。また、この電子放出現象では、微粒子の径が小さいほど膜13を形成する層の表面積が大きくなるため、初期電子源を蓄え放出する能力は高くなる。そのため、微粒子径は小さければ小さいほどよい、と一応いえる。 In any case, such a phenomenon is difficult to occur when the metal fine particle film 13 on the inner wall surface of the hermetic container 11 is conductive, and therefore, it becomes difficult to occur. It cannot function effectively as a source. Further, in this electron emission phenomenon, the smaller the particle diameter, the larger the surface area of the layer forming the film 13, and thus the ability to store and emit the initial electron source is increased. Therefore, it can be said that the smaller the particle size, the better.
 一方、膜13の微粒子結晶構造にダメージを与え歪を形成したり電子を微粒子上に保持したりする能力は、吸収される紫外線量が多いほど高まることは容易に推測できる。紫外線を吸収する能力は、微粒子を構成する材料の仕事関数で決まるが、その他にこの遮断能力を左右するものとして膜13を構成する金属微粒子の表面長さがある。この微粒子の表面長さが真空紫外線の波長前後であれば、その紫外線が効果的に酸化金属微粒子に捕捉されて遮断効果を高めたり、散乱したりする。そのため、たとえば波長185nmの望ましくない真空紫外線によってダメージ等が与えられるものとすると、膜13を形成する微粒子の直径は約60nm(≒185nm/π)つまり0.06μm程度となる。しかし、実際の酸化金属微粒子は完全な球形ではなく、凹凸を有する場合が多いので、微粒子径はそれよりもやや小さいほうがよい。このような観点から、膜13を構成する金属微粒子の最頻出現粒径あるいは平均粒径は0.05μm以下が望ましいことになる。 On the other hand, it can be easily estimated that the ability to damage the fine crystal structure of the film 13 to form a strain or to hold electrons on the fine particles increases as the amount of absorbed ultraviolet rays increases. The ability to absorb ultraviolet rays is determined by the work function of the material constituting the fine particles, but the surface length of the fine metal particles constituting the film 13 is another factor that influences the blocking ability. If the surface length of the fine particles is around the wavelength of vacuum ultraviolet rays, the ultraviolet rays are effectively trapped by the metal oxide fine particles and the blocking effect is enhanced or scattered. Therefore, for example, if damage or the like is caused by an undesirable vacuum ultraviolet ray having a wavelength of 185 nm, the diameter of the fine particles forming the film 13 is about 60 nm (≈185 nm / π), that is, about 0.06 μm. However, since the actual metal oxide fine particles are not completely spherical and often have irregularities, the fine particle diameter should be slightly smaller than that. From such a viewpoint, the most frequently appearing particle diameter or average particle diameter of the metal fine particles constituting the film 13 is desirably 0.05 μm or less.
 このように求められる金属微粒子の粒径は、金属微粒子膜13を気密容器11の内壁面に形成した後で確認することが難しいことから、塗布前のスラリー状態での最頻出現粒径(最大分布粒径)で規定するものとする。 Since it is difficult to confirm the particle size of the metal fine particles thus obtained after the metal fine particle film 13 is formed on the inner wall surface of the airtight container 11, the most frequently appearing particle size (maximum in the slurry state before coating) Distribution particle size).
 さらに、この絶縁性酸化金属微粒子膜13は、石英ガラスにより形成される気密容器11を保護する役割も担う。水銀が放射する波長185nmの真空紫外線や、エキシマランプと呼ばれるキセノンガスを用いた誘電体バリア放電からの波長172nmの真空紫外線が石英ガラスに照射されると、石英を構成する酸化シリコン結合が切断され、微細クラックが生じて、ついにはガラスの破壊に至る現象が生じる。そのため、これらエキシマランプや紫外線放射ランプでは石英ガラスよりなる気密容器を保護するためにこれらの真空紫外線を除去することが望ましいことになる。上記のとおり、この絶縁性酸化金属微粒子膜13は、真空紫外線を効果的に遮断するので、石英ガラスよりなる気密容器11を保護することができる。 Furthermore, the insulating metal oxide fine particle film 13 also plays a role of protecting the hermetic container 11 made of quartz glass. When quartz glass is irradiated with vacuum ultraviolet light with a wavelength of 185 nm emitted from mercury or vacuum ultraviolet light with a wavelength of 172 nm from a dielectric barrier discharge using a xenon gas called an excimer lamp, the silicon oxide bond constituting the quartz is cut. Fine cracks occur, and finally a phenomenon that leads to breakage of the glass occurs. Therefore, in these excimer lamps and ultraviolet radiation lamps, it is desirable to remove these vacuum ultraviolet rays in order to protect the airtight container made of quartz glass. As described above, the insulating metal oxide fine particle film 13 effectively blocks vacuum ultraviolet rays, so that the hermetic container 11 made of quartz glass can be protected.
 この保護効果を高めるための膜13の金属粒子粒径は、塗布前のスラリー状態において、最頻出現粒径が0.05μm以下でかつ0.01μm以上であることが望ましい。金属微粒子の表面長さが遮断すべき真空紫外線の波長程度である場合にその遮断効果が高められるが、実際の微粒子は凹凸を有していて完全な球形でないためその微粒子の直径は上記の波長に応じた値よりやや小さいものとすべきであることは前述したとおりであって、その観点から上記のように最頻出現粒径が0.05μm以下でかつ0.01μm以上としている。 The metal particle diameter of the film 13 for enhancing the protective effect is desirably such that the most frequently appearing particle diameter is 0.05 μm or less and 0.01 μm or more in the slurry state before coating. The shielding effect is enhanced when the surface length of the metal fine particles is about the wavelength of vacuum ultraviolet rays to be cut off, but since the actual fine particles have irregularities and are not perfectly spherical, the diameter of the fine particles is the above wavelength. As described above, it should be slightly smaller than the value corresponding to the above. From this point of view, the most frequently appearing particle size is 0.05 μm or less and 0.01 μm or more.
 このような微粒子径とされた、真空紫外線の吸収機能のある絶縁性酸化金属微粒子膜13を気密容器11の内壁面の全面に形成したことにより、気密容器11を形成する石英ガラスが真空紫外線で劣化し、微細クラックを生じてついには破壊に至ることを効果的に防止できる。 By forming the insulating metal oxide fine particle film 13 having such a fine particle diameter and having a function of absorbing vacuum ultraviolet rays on the entire inner wall surface of the hermetic vessel 11, the quartz glass forming the hermetic vessel 11 is made of vacuum ultraviolet rays. It is possible to effectively prevent deterioration and generation of fine cracks and eventually destruction.
 なお、このように絶縁性酸化金属微粒子膜13を気密容器11の内壁面の全面に形成すれば、石英ガラスよりなる気密容器11の長寿命化を図ることができるが、単に初期電子源としてのみ用いる場合には気密容器11の内壁面の一部にのみ形成してもよいことはもちろんである。膜13を気密容器11の内壁面の一部に形成する場合、励起コイル15に対応する部分に設ければ、励起コイル15を構成する材料の真空紫外線による劣化を防止でき、励起コイル15の長寿命化を図ることができる。 In addition, if the insulating metal oxide fine particle film 13 is formed on the entire inner wall surface of the hermetic container 11 in this way, the life of the hermetic container 11 made of quartz glass can be extended, but only as an initial electron source. Of course, when used, it may be formed only on a part of the inner wall surface of the airtight container 11. When the film 13 is formed on a part of the inner wall surface of the hermetic container 11, if the film 13 is provided on a portion corresponding to the excitation coil 15, the material constituting the excitation coil 15 can be prevented from being deteriorated by vacuum ultraviolet rays. Life can be extended.
 この実施例では酸化ジルコニウムの微粒子を塗布することによって絶縁性酸化金属微粒子膜13を形成したが、これに限定されるものではない。絶縁性酸化金属微粒子を構成する金属は、周期律表において、希土類金属であるランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテリビウム、ルテチウムあるいはその近傍に存在する、イットリウム、ジルコニウム、ニオビウム、から選ぶことができる。あるいはこれらの混合物でもよい。 In this embodiment, the insulating metal oxide fine particle film 13 is formed by applying fine particles of zirconium oxide, but the present invention is not limited to this. The metal constituting the insulating metal oxide fine particles is, in the periodic table, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium or It can be selected from yttrium, zirconium and niobium existing in the vicinity thereof. Alternatively, a mixture thereof may be used.
 また、本発明は、図1に示した無電極紫外線放射ランプ10だけでなく、他の構成の無電極紫外線放射ランプにも適用可能である。そのいくつかの例を図2、図3に示す。 Further, the present invention can be applied not only to the electrodeless ultraviolet radiation lamp 10 shown in FIG. 1 but also to electrodeless ultraviolet radiation lamps having other configurations. Some examples are shown in FIGS.
 図2には、同心円筒状無電極紫外線放射ランプ20が示されており、この図2において、放電ガスが封入される石英ガラスからなる気密容器21は円筒状に形成されていて、この円筒状気密容器21と同心となるよう円筒状の貫通部22が形成されている。この貫通部22を貫通するよう、その周囲に励起コイル24がスパイラル状に巻回された円柱状フェライトコア23が同心状に挿入されている。このように構成される同心円筒状無電極紫外線放射ランプ20において、円筒状の貫通部22を有する円筒状気密容器21の内壁面の全面または一部の面に絶縁性酸化金属微粒子膜(図では省略)が形成される。 FIG. 2 shows a concentric cylindrical electrodeless ultraviolet radiation lamp 20. In FIG. 2, an airtight container 21 made of quartz glass in which discharge gas is sealed is formed in a cylindrical shape. A cylindrical through portion 22 is formed so as to be concentric with the airtight container 21. A cylindrical ferrite core 23 around which the excitation coil 24 is wound in a spiral shape is inserted concentrically around the through portion 22. In the concentric cylindrical electrodeless ultraviolet radiation lamp 20 configured as described above, an insulating metal oxide fine particle film (in the drawing, on the entire or a part of the inner wall surface of the cylindrical airtight container 21 having the cylindrical through-hole 22). (Omitted) is formed.
 図3には、図2に示したものと同様の同心円筒状無電極紫外線放射ランプ30が示されている。この図3に示した同心円筒状無電極紫外線放射ランプ30では、放電ガスが封入される石英ガラスからなる気密容器31が円筒状に形成され、この円筒状気密容器31と同心となるよう円筒状の貫通部32が設けられ、この貫通部32を貫通するように円柱状フェライトコア33が同心状に挿入されており、これらについては図2の同心円筒状無電極紫外線放射ランプ20と変わりがないが、励起コイル34が、円柱状フェライトコア33の周囲ではなく、円筒状の気密容器31の外周囲に、スパイラル状に巻回されている点が異なっている。この同心円筒状無電極紫外線放射ランプ30において、円筒状の貫通部32を有する円筒状気密容器31の内壁面の全面または一部の面に絶縁性酸化金属微粒子膜(図では省略)が形成される。 FIG. 3 shows a concentric cylindrical electrodeless ultraviolet radiation lamp 30 similar to that shown in FIG. In the concentric cylindrical electrodeless ultraviolet radiation lamp 30 shown in FIG. 3, an airtight container 31 made of quartz glass in which a discharge gas is sealed is formed in a cylindrical shape, and is cylindrical so as to be concentric with the cylindrical airtight container 31. The cylindrical ferrite core 33 is inserted concentrically so as to penetrate the through part 32, and these are the same as the concentric cylindrical electrodeless ultraviolet radiation lamp 20 of FIG. However, the excitation coil 34 is different in that it is spirally wound around the outer periphery of the cylindrical airtight container 31, not around the columnar ferrite core 33. In this concentric cylindrical electrodeless ultraviolet radiation lamp 30, an insulating metal oxide fine particle film (not shown) is formed on the whole or a part of the inner wall surface of a cylindrical airtight container 31 having a cylindrical through-hole 32. The
 このようにして形成される各無電極紫外線放射ランプを用いて紫外線処理装置を構成することができる。この紫外線処理装置は、無電極紫外線放射ランプから放射される紫外線を被処理物に照射し、被処理物の殺菌あるいは他の化学反応等の処理を行うものである。上記のような無電極紫外線放射ランプを用いて紫外線処理装置を構成することにより、ランプをオンしてから被処理物に紫外線照射するまでの時間を短縮することができるため、とくに紫外線照射のオン・オフを繰り返す用途では処理の時間効率を向上させることができる。また、紫外線照射のための消費電力を低減することができるとともに、上記の無電極紫外線放射ランプは長寿命であるため、ランプ交換頻度を少なくすることもできる。 An ultraviolet treatment apparatus can be configured using each electrodeless ultraviolet radiation lamp formed in this way. This ultraviolet ray processing apparatus irradiates an object to be treated with ultraviolet rays emitted from an electrodeless ultraviolet radiation lamp to perform processing such as sterilization of the object to be treated or other chemical reaction. By constructing an ultraviolet treatment apparatus using an electrodeless ultraviolet radiation lamp as described above, the time from when the lamp is turned on until the object is irradiated with ultraviolet rays can be shortened. -The time efficiency of processing can be improved in applications that are repeatedly turned off. In addition, the power consumption for ultraviolet irradiation can be reduced, and the electrodeless ultraviolet radiation lamp has a long life, so that the frequency of lamp replacement can be reduced.
 つぎに、上記のような無電極紫外線放射ランプを用いた紫外線処理装置の実施例について説明する。図4、図5に示される紫外線処理装置50では、複数個のリング状無電極紫外線放射ランプ40が用いられている。このリング状無電極紫外線放射ランプ40は、上では述べていないリング状の形態をとっている。このリング状無電極紫外線放射ランプ40は、石英ガラスによりリング状に形成された気密容器41と、このリング状気密容器41を取り囲むように取り付けられたリング状のフェライトコア42とを有して構成される。気密容器41内には、図1の無電極紫外線放射ランプ10と同様に、たとえば、アルゴン、ネオンなどの混合希ガスと水銀アマルガムよりなる放電ガスが封入されている。そして、図では省略しているが、気密容器41の内壁面の全面または一部の面に酸化ジルコニウム等の微粒子よりなる絶縁性酸化金属微粒子膜が形成されていることも図1と同様である。 Next, an embodiment of an ultraviolet treatment apparatus using the electrodeless ultraviolet radiation lamp as described above will be described. In the ultraviolet processing apparatus 50 shown in FIGS. 4 and 5, a plurality of ring-shaped electrodeless ultraviolet radiation lamps 40 are used. The ring-shaped electrodeless ultraviolet radiation lamp 40 has a ring-like form not described above. The ring-shaped electrodeless ultraviolet radiation lamp 40 includes an airtight container 41 formed in a ring shape from quartz glass and a ring-shaped ferrite core 42 attached so as to surround the ring-shaped airtight container 41. Is done. As in the electrodeless ultraviolet radiation lamp 10 of FIG. 1, for example, a mixed rare gas such as argon and neon and a discharge gas made of mercury amalgam are enclosed in the hermetic container 41. Although not shown in the figure, an insulating metal oxide fine particle film made of fine particles such as zirconium oxide is formed on the whole or a part of the inner wall surface of the hermetic container 41 as in FIG. .
 リング状のフェライトコア42には、励起コイル(図示を省略)が巻回されており、この励起コイルに高周波電流を流すことにより、リング状気密容器41内に高周波磁界が形成されて、それによって誘導される起電力によって、気密容器41内の放電ガスが励起され、紫外線が放射される。 An excitation coil (not shown) is wound around the ring-shaped ferrite core 42, and a high-frequency magnetic field is formed in the ring-shaped hermetic container 41 by flowing a high-frequency current through the excitation coil. The induced electromotive force excites the discharge gas in the hermetic container 41 and emits ultraviolet rays.
 この複数個のリング状無電極紫外線放射ランプ40は、被処理流体が図4では左右方向に流通させられる円筒状の水流管51を取り囲むように取り付けられている。この水流管51および複数個のリング状無電極紫外線放射ランプ40を囲むように保護容器52が設けられており、この保護容器52により水流管51およびランプ40が覆われて保護されている。 The plurality of ring-shaped electrodeless ultraviolet radiation lamps 40 are attached so as to surround a cylindrical water flow pipe 51 through which the fluid to be treated is circulated in the left-right direction in FIG. A protective container 52 is provided so as to surround the water flow pipe 51 and the plurality of ring-shaped electrodeless ultraviolet radiation lamps 40, and the water flow pipe 51 and the lamp 40 are covered and protected by the protective container 52.
 こうして構成される紫外線処理装置50において、水流管51を囲むようにリング状のランプ40が設けられて水流管51の内部に紫外線が照射されるので、水流管51中を流れる被処理流体に紫外線が効率よく照射され、被処理流体の殺菌等の処理が行われる。 In the ultraviolet treatment apparatus 50 configured in this manner, a ring-shaped lamp 40 is provided so as to surround the water flow pipe 51 and the ultraviolet light is irradiated to the inside of the water flow pipe 51. Is efficiently irradiated, and processing such as sterilization of the fluid to be processed is performed.
 図6に示す紫外線照射装置60では、図2で示した同心円状無電極紫外線放射ランプ20が用いられる。この紫外線照射装置60では、円筒状の被処理物容器61内に2本の同心円状無電極紫外線放射ランプ20が配置されており、この円筒状の被処理物容器61は両端が水密に閉鎖され、流体状の被処理物の流入口62と流出口63とが設けられている。
なお、ここでは図2で示した同心円状無電極紫外線放射ランプ20を用いているが、図3で示した同心円状無電極紫外線放射ランプ30を用いることができることはもちろんである。
In the ultraviolet irradiation device 60 shown in FIG. 6, the concentric electrodeless ultraviolet radiation lamp 20 shown in FIG. 2 is used. In this ultraviolet irradiation device 60, two concentric electrodeless ultraviolet radiation lamps 20 are arranged in a cylindrical object container 61, and both ends of this cylindrical object container 61 are closed in a watertight manner. In addition, an inflow port 62 and an outflow port 63 for a fluid-like object to be processed are provided.
Here, although the concentric electrodeless ultraviolet radiation lamp 20 shown in FIG. 2 is used, it is needless to say that the concentric electrodeless ultraviolet radiation lamp 30 shown in FIG. 3 can be used.
 この紫外線処理装置60において、流体状の被処理物は流入口62から被処理物容器61中に流入し、円筒状の被処理物容器61をその長さ方向に、図では右方向に流れて流出口63から流出していく。その流れる方向に細長い紫外線放射ランプ20が配置されて、ランプ20の周囲より紫外線が放射されるため、被処理物容器61中を流れていく流体状の被処理物に対して満遍なく紫外線を照射することができ、処理効率を高めることができる。 In the ultraviolet ray processing apparatus 60, a fluid-like object to be processed flows into the object-to-be-processed container 61 from the inlet 62, and flows through the cylindrical object-to-be-processed container 61 in its length direction, in the right direction in the figure. It flows out from the outlet 63. An elongated ultraviolet radiation lamp 20 is arranged in the flowing direction, and ultraviolet light is radiated from the periphery of the lamp 20, so that the fluid object to be processed flowing through the object container 61 is uniformly irradiated with ultraviolet light. Can increase the processing efficiency.
 以上、無電極紫外線放射ランプおよびそれを用いた紫外線処理装置の実施例について説明してきたが、本発明はこれらの実施例に限定されることがないことはもちろんである。無電極紫外線放電ランプとしては上記のいくつかの形状のものだけに限らないし、放電ガスとして封入するガスは、上記のものに限らず、水銀を用いた無電極紫外線放電ランプの場合には、ネオン、アルゴン、クリプトン、キセノンなどの希ガス単体、もしくはこれらの混合ガスでもよく、また水銀担持体としては、水銀単体、あるいは水銀と他の金属との合金であるアマルガムでもよい。 As mentioned above, although the Example of the electrodeless ultraviolet radiation lamp and the ultraviolet-ray processing apparatus using the same has been described, it is needless to say that the present invention is not limited to these Examples. The electrodeless ultraviolet discharge lamp is not limited to the above-mentioned several shapes, and the gas sealed as the discharge gas is not limited to the above, and in the case of an electrodeless ultraviolet discharge lamp using mercury, neon In addition, a rare gas such as argon, krypton, or xenon, or a mixed gas thereof may be used, and the mercury carrier may be mercury alone or an amalgam that is an alloy of mercury and another metal.
 他にエキシマランプ等と呼ばれる無電極紫外線放射ランプなどにも本発明を適用することができる。このエキシマランプ等と呼ばれる無電極紫外線放射ランプでは、放電ガスが封入された気密容器外壁に設けた2枚の電極間に高周波電圧を印加して容器を形成する誘電体を介して容器内部に高周波電界を生起し放電ガス中で放電(誘電体バリア放電)を発生させて紫外線を放射させるので、これら気密容器外壁に設けた2枚の電極が放電発生手段に相当することになる。このエキシマランプ等では、放電ガスとして、気密容器内にキセノンやクリプトンなどの希ガスのみ封入し、あるいはハロゲンガスと希ガスの混合ガスを封入してもよい。 The present invention can also be applied to an electrodeless ultraviolet radiation lamp called an excimer lamp or the like. In an electrodeless ultraviolet radiation lamp called an excimer lamp or the like, a high-frequency voltage is applied to the inside of a container via a dielectric that forms a container by applying a high-frequency voltage between two electrodes provided on the outer wall of an airtight container filled with a discharge gas. Since an electric field is generated and a discharge (dielectric barrier discharge) is generated in the discharge gas to emit ultraviolet rays, the two electrodes provided on the outer wall of the hermetic container correspond to the discharge generating means. In this excimer lamp or the like, as a discharge gas, only a rare gas such as xenon or krypton or a mixed gas of a halogen gas and a rare gas may be sealed in an airtight container.
 これら無電極紫外線放射ランプを用いた紫外線処理装置としては、上記図4ないし図6に示した構成のものだけでなく、本発明の趣旨を逸脱しない範囲で他の構成を採用することができる。 As the ultraviolet ray processing apparatus using these electrodeless ultraviolet radiation lamps, other configurations can be adopted in addition to the configurations shown in FIGS. 4 to 6 without departing from the gist of the present invention.

Claims (7)

  1.  放電ガスが封入された気密容器と、該気密容器の外部に設けられて該気密容器中に放電を発生させる放電発生手段とを備える無電極紫外線放射ランプにおいて、
     上記気密容器の内壁面の少なくとも一部に形成された絶縁性の酸化金属微粒子膜を有することを特徴とする無電極紫外線放射ランプ。
    In an electrodeless ultraviolet radiation lamp comprising an airtight container filled with a discharge gas, and a discharge generating means provided outside the airtight container and generating a discharge in the airtight container,
    An electrodeless ultraviolet radiation lamp comprising an insulating metal oxide fine particle film formed on at least a part of an inner wall surface of the hermetic container.
  2.  上記の絶縁性酸化金属微粒子膜は、ランタン、セリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテリビウム、ルテチウム、イットリウム、ジルコニウム、ニオビウムのうちの少なくとも一種の金属の酸化物微粒子、あるいは複数種の金属の酸化物微粒子の混合物で構成されていることを特徴とする請求項1記載の無電極紫外線放射ランプ。 The insulating metal oxide fine particle film is at least one of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, yttrium, zirconium, and niobium. 2. The electrodeless ultraviolet radiation lamp according to claim 1, wherein the electrode-less ultraviolet radiation lamp is composed of a metal oxide fine particle or a mixture of a plurality of kinds of metal oxide fine particles.
  3.  上記の絶縁性酸化金属微粒子膜は、その塗布前のスラリー状態において、最頻出現粒径が0.05μm以下である酸化金属微粒子により形成されたことを特徴とする請求項1または2記載の無電極紫外線放射ランプ。 3. The insulating metal oxide fine particle film according to claim 1, wherein the insulating metal oxide fine particle film is formed of metal oxide fine particles having a modest appearance particle size of 0.05 μm or less in a slurry state before coating. Electrode ultraviolet radiation lamp.
  4.  上記の絶縁性酸化金属微粒子膜は、その塗布前のスラリー状態において、最頻出現粒径が0.01μm以上である酸化金属微粒子により形成されたことを特徴とする請求項3記載の無電極紫外線放射ランプ。 4. The electrodeless ultraviolet ray according to claim 3, wherein the insulating metal oxide fine particle film is formed of metal oxide fine particles having a modest appearance particle size of 0.01 μm or more in a slurry state before coating. Radiant lamp.
  5.  上記の絶縁性酸化金属微粒子膜は、気密容器内壁面の、放電発生手段に対応する領域に形成されたことを特徴とする請求項1ないし4のいずれかに記載の無電極紫外線放射ランプ。 The electrodeless ultraviolet radiation lamp according to any one of claims 1 to 4, wherein the insulating metal oxide fine particle film is formed in a region corresponding to the discharge generating means on the inner wall surface of the hermetic vessel.
  6.  上記の絶縁性酸化金属微粒子膜は、気密容器内壁面の全体にわたって形成されたことを特徴とする請求項1ないし4のいずれかに記載の無電極紫外線放射ランプ。 The electrodeless ultraviolet radiation lamp according to any one of claims 1 to 4, wherein the insulating metal oxide fine particle film is formed over the entire inner wall surface of the hermetic container.
  7.  請求項1ないし6のいずれかに記載の無電極紫外線放射ランプと、該ランプからの紫外線がその内部の被処理物に照射されるよう上記のランプが配置された被処理物容器とからなる紫外線処理装置。 7. An ultraviolet ray comprising the electrodeless ultraviolet radiation lamp according to claim 1 and a workpiece container in which the lamp is disposed so that ultraviolet rays from the lamp are irradiated to the workpiece. Processing equipment.
PCT/JP2014/070100 2013-08-02 2014-07-30 Electrodeless uv radiation lamp and uv processing device WO2015016274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014547584A JP6377529B2 (en) 2013-08-02 2014-07-30 Electrodeless UV radiation lamp and UV treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013161437 2013-08-02
JP2013-161437 2013-08-02

Publications (1)

Publication Number Publication Date
WO2015016274A1 true WO2015016274A1 (en) 2015-02-05

Family

ID=52431804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070100 WO2015016274A1 (en) 2013-08-02 2014-07-30 Electrodeless uv radiation lamp and uv processing device

Country Status (2)

Country Link
JP (1) JP6377529B2 (en)
WO (1) WO2015016274A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043972A (en) * 2020-10-10 2020-12-08 罗璐 Double-layered tubulose excimer lamp of wall and beauty instrument
CN112043970A (en) * 2020-10-10 2020-12-08 罗璐 Quasi-molecule vacuum ultraviolet beauty instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284348A (en) * 1991-03-13 1992-10-08 Toshiba Lighting & Technol Corp Electrode-less type low pressure discharge lamp
JP2005347025A (en) * 2004-06-01 2005-12-15 Japan Storage Battery Co Ltd Dielectric barrier discharge lamp
JP2007275825A (en) * 2006-04-10 2007-10-25 Photoscience Japan Corp Ultraviolet irradiation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354079A (en) * 1998-06-10 1999-12-24 Ushio Inc Discharge lamp
JP3929265B2 (en) * 2001-07-31 2007-06-13 富士通株式会社 Method for forming electron emission film in gas discharge tube
JP4258433B2 (en) * 2003-09-25 2009-04-30 パナソニック電工株式会社 Discharge lamp
JP4109314B2 (en) * 2005-05-31 2008-07-02 松下電器産業株式会社 External electrode type fluorescent lamp, backlight unit and liquid crystal television

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284348A (en) * 1991-03-13 1992-10-08 Toshiba Lighting & Technol Corp Electrode-less type low pressure discharge lamp
JP2005347025A (en) * 2004-06-01 2005-12-15 Japan Storage Battery Co Ltd Dielectric barrier discharge lamp
JP2007275825A (en) * 2006-04-10 2007-10-25 Photoscience Japan Corp Ultraviolet irradiation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043972A (en) * 2020-10-10 2020-12-08 罗璐 Double-layered tubulose excimer lamp of wall and beauty instrument
CN112043970A (en) * 2020-10-10 2020-12-08 罗璐 Quasi-molecule vacuum ultraviolet beauty instrument

Also Published As

Publication number Publication date
JPWO2015016274A1 (en) 2017-03-02
JP6377529B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
US9159545B2 (en) Excimer lamp
WO2014148325A1 (en) Fluorescent excimer lamp and fluid treatment apparatus
WO2001029877A1 (en) Device for driving electrodeless discharge lamp
JP6377529B2 (en) Electrodeless UV radiation lamp and UV treatment equipment
JPH04303549A (en) High frequency lighting type discharge lamp
JP4872224B2 (en) Luminaire equipped with the same electrodeless discharge lamp
JPS61208743A (en) Ultraviolet treatment device
JP2007080705A (en) Microwave discharge lamp and microwave discharge light source device equipped with the microwave discharge lamp
JP2013118072A (en) Ultraviolet discharge lamp
JP2006210249A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, and illumination apparatus
TW201422538A (en) Liquid processing apparatus using electrodeless-discharge ultraviolet ray irradiation apparatus
JPWO2009019978A1 (en) Discharge lamp
JP2008140758A (en) Ultraviolet ray discharge lamp
KR20160037056A (en) Ultraviolet lamp
JP4203651B2 (en) Electrodeless discharge lamp and electrodeless discharge lamp light source device
JP6086253B2 (en) Long arc type discharge lamp
JPH0582102A (en) Ultraviolet radiation discharge lamp
JP4924868B2 (en) Discharge tube and discharge tube device
WO2014208505A1 (en) Liquid treatment apparatus and method
JP7106945B2 (en) Excimer lamp, light irradiation device, and ozone generator
JP2009289530A (en) Electrodeless lamp and electrodeless lamp device
JP3424460B2 (en) Electrodeless discharge lamp
JP2007329094A (en) Discharge lamp lighting device and lighting fixture
JP4258368B2 (en) Electrodeless discharge lamp
KR20240006992A (en) Eximer lamp assembly with trigger for plasma formation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014547584

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832698

Country of ref document: EP

Kind code of ref document: A1