JP4924868B2 - Discharge tube and discharge tube device - Google Patents

Discharge tube and discharge tube device Download PDF

Info

Publication number
JP4924868B2
JP4924868B2 JP2006135094A JP2006135094A JP4924868B2 JP 4924868 B2 JP4924868 B2 JP 4924868B2 JP 2006135094 A JP2006135094 A JP 2006135094A JP 2006135094 A JP2006135094 A JP 2006135094A JP 4924868 B2 JP4924868 B2 JP 4924868B2
Authority
JP
Japan
Prior art keywords
discharge tube
mercury
frequency
glass tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006135094A
Other languages
Japanese (ja)
Other versions
JP2007305518A (en
Inventor
淳一 鈴木
Original Assignee
株式会社東通研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東通研 filed Critical 株式会社東通研
Priority to JP2006135094A priority Critical patent/JP4924868B2/en
Publication of JP2007305518A publication Critical patent/JP2007305518A/en
Application granted granted Critical
Publication of JP4924868B2 publication Critical patent/JP4924868B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特に内部に不活性ガス、水銀、金属ハロゲン化物などを封入したガラス管を用いて紫外線を放射させる放電管および放電管装置に関する。   The present invention particularly relates to a discharge tube and a discharge tube device that emit ultraviolet rays using a glass tube in which an inert gas, mercury, metal halide, or the like is enclosed.

強い光化学反応力を有する紫外線を人工的に発生させて利用する紫外線照射技術がある。紫外線は数nm〜約400nmまでの波長域を有し、紫外線照射技術によって生成した紫外線は、前記波長域の種々の異なる波長ごとに殺菌、有機物分解、樹脂などの表面改質、塗料やインクの硬化などに工業上幅広く利用されている。   There is an ultraviolet irradiation technique in which ultraviolet rays having a strong photochemical reaction force are artificially generated and used. Ultraviolet rays have a wavelength range from several nm to about 400 nm, and the ultraviolet rays generated by the ultraviolet irradiation technique are sterilized, decomposed by organic substances, surface modification of resins, etc. Widely used in industry for curing.

この紫外線を発生させる装置の一例として、例えば特許文献1に示すような水銀放電管がある。水銀放電管は石英などの直管型のガラス管内部に希ガス、水銀を封入し、ガラス管内部の両端に形成した一対の電極に交流電圧をかける。そうすると電極から放出された電子が反対側の極へ向かって移動する途中で水銀原子と衝突して水銀原子が発光する。   As an example of an apparatus for generating this ultraviolet ray, there is a mercury discharge tube as shown in Patent Document 1, for example. The mercury discharge tube encloses a rare gas and mercury inside a straight tube type glass tube such as quartz, and applies an alternating voltage to a pair of electrodes formed at both ends inside the glass tube. As a result, the electrons emitted from the electrodes collide with the mercury atoms while moving toward the opposite pole, and the mercury atoms emit light.

水銀放電管は、放電管内部の放電時の水銀蒸気圧によって低圧水銀放電管と高圧水銀放電管が主に用いられている。図4は低圧水銀放電管の波長のグラフである。なお同グラフの横軸は波長(nm)、縦軸は発光強度をそれぞれ示している。図示のように低圧水銀放電管を用いた場合、主に185nm、254nmの発光スペクトルが2.66×10〜6.66×10Pa(20〜50mmHg)程度の内部圧力安定時に発光する。このうち波長254nmは殺菌線と呼ばれ強い殺菌効果を示し空気清浄機、貯水槽の殺菌などに利用されている。 As the mercury discharge tube, a low-pressure mercury discharge tube and a high-pressure mercury discharge tube are mainly used depending on the mercury vapor pressure during discharge inside the discharge tube. FIG. 4 is a graph of the wavelength of the low-pressure mercury discharge tube. In the graph, the horizontal axis represents wavelength (nm) and the vertical axis represents emission intensity. When a low-pressure mercury discharge tube is used as shown in the drawing, an emission spectrum mainly at 185 nm and 254 nm emits light when the internal pressure is stabilized at about 2.66 × 10 3 to 6.66 × 10 3 Pa (20 to 50 mmHg). Of these, the wavelength of 254 nm is called a sterilization line and exhibits a strong sterilization effect and is used for sterilization of air cleaners and water tanks.

一方、高圧水銀放電管は放電管内部の水銀蒸気圧が1気圧程度あり、放電させると水銀の波長特性が変化して、例えば254nmのほか、365nm、313nmなどの波長が放射される。高圧水銀放電管は、主として紫外線硬化などの光化学反応に広く利用されている。
特開2003−197147号公報
On the other hand, the high-pressure mercury discharge tube has a mercury vapor pressure of about 1 atm in the discharge tube, and when discharged, the wavelength characteristics of mercury change, and for example, wavelengths of 254 nm, 365 nm, 313 nm, etc. are emitted. High-pressure mercury discharge tubes are widely used mainly for photochemical reactions such as ultraviolet curing.
JP 2003-197147 A

しかしながら従来の水銀放電管はガラス管内部に希ガス、水銀を封入し密閉させているため、放電管の内部圧力を変化させることができない。前述のように紫外線照射技術において、紫外線の波長は、水銀の蒸気圧力、すなわち放電管の内部圧力によって変化する。したがって用途に応じて異なる波長の紫外線を照射させるためには、紫外線の波長ごとに内部圧力の異なる放電管を用いなければならないという問題があった。   However, since the conventional mercury discharge tube is sealed with a rare gas or mercury sealed inside the glass tube, the internal pressure of the discharge tube cannot be changed. As described above, in the ultraviolet irradiation technique, the wavelength of the ultraviolet ray changes depending on the vapor pressure of mercury, that is, the internal pressure of the discharge tube. Therefore, in order to irradiate ultraviolet rays having different wavelengths depending on the application, there has been a problem in that discharge tubes having different internal pressures must be used for the respective ultraviolet wavelengths.

また水銀放電管は放電管内部に一対の電極を形成している。このため放電を連続的に発生させると放電管内部の発熱によって電極が劣化してしまう。この放電管内部の電極は、荷電粒子の衝突によって金属が疲労し、電極が劣化してしまう。また放電管内部に封入した水銀蒸気が電極に付着することによって電極が劣化してしまう。このような電極の劣化は放電の発生効率が低下して、放電管の短寿命化の原因となっていた。   The mercury discharge tube has a pair of electrodes formed inside the discharge tube. For this reason, when discharge is continuously generated, the electrode deteriorates due to heat generated in the discharge tube. In the electrode inside the discharge tube, the metal is fatigued by collision of charged particles, and the electrode is deteriorated. Further, the mercury vapor sealed inside the discharge tube adheres to the electrode, thereby deteriorating the electrode. Such deterioration of the electrode reduces the generation efficiency of the discharge and causes the life of the discharge tube to be shortened.

そこで上記従来技術の問題を改善するため、本発明は紫外線の発光スペクトルを変えられることを目的としている。
また本発明は放電管の長寿命化を図ることを目的としている。
Therefore, in order to improve the above-mentioned problems of the prior art, an object of the present invention is to change the emission spectrum of ultraviolet rays.
Another object of the present invention is to extend the life of the discharge tube.

発明者らは水銀放電管について長年にわたって鋭意研究し、種々検討、実験を行ったところ、放電管を楕円環状に形成して水銀を励起する周波数を変えると、放電管内の圧力が変化し、放電管から放射される光の波長が変化することを見出した。本発明はこのような知見に基づいて成されたものである。   The inventors have conducted intensive research on mercury discharge tubes for many years and conducted various examinations and experiments. When the discharge tube was formed into an elliptical ring and the frequency at which mercury was excited was changed, the pressure in the discharge tube changed, and the discharge We have found that the wavelength of light emitted from the tube changes. The present invention has been made based on such findings.

すなわち上記目的を達成するために、本発明の放電管は、内部に不活性ガスと水銀と金属ハロゲン化物とを封入した楕円環状のガラス管と、前記ガラス管を覆う環状の焼結コイルであって前記ガラス管内に磁界を発生させる励起部と、を備え、前記磁界の誘導電界によって前記不活性ガスを励起して、前記放電管内で電離した荷電粒子を加速させることを特徴としている。 That is, in order to achieve the above object, the discharge tube of the present invention includes an elliptical annular glass tube enclosing therein an inert gas, mercury, and a metal halide, and an annular sintered coil that covers the glass tube. And an excitation unit that generates a magnetic field in the glass tube, and the inert gas is excited by an induced electric field of the magnetic field to accelerate charged particles ionized in the discharge tube .

この場合において、前記励起部は、楕円環の径方向両側に設けてあることを特徴としている。また前記励起部は、前記楕円環の短径と対応した位置に設けてあることを特徴としている。前記ガラス管は、内面に蛍光体被膜を形成してあるとよい。   In this case, the excitation part is provided on both sides in the radial direction of the elliptical ring. In addition, the excitation part is provided at a position corresponding to the minor axis of the elliptical ring. The glass tube may have a phosphor film formed on the inner surface.

本発明の放電管装置は、内部に不活性ガスと水銀と金属ハロゲン化物とを封入した楕円環状のガラス管と、前記ガラス管を覆う環状の焼結コイルであって前記ガラス管内に磁界を発生させる励起部と、を備え、前記励起部を楕円環の径方向両側に一対形成した放電管と、前記励起部に電力を供給する電源と、前記励起部から磁界を発生させて、前記荷電粒子を加速するように電流の周波数を変化させる周波数制御部と、を備え、前記周波数を数キロヘルツから数ギガヘルツまで上げて、前記磁界の誘導電界によって前記不活性ガスを励起して、前記放電管内で電離した荷電粒子を加速させて、前記荷電粒子により励起した水銀原子から紫外線を発生させることを特徴としている。 The discharge tube device of the present invention is an elliptical annular glass tube enclosing an inert gas, mercury and a metal halide inside, and an annular sintered coil covering the glass tube, and generates a magnetic field in the glass tube. A discharge tube having a pair of excitation portions formed on both sides of the elliptical ring in the radial direction , a power source for supplying power to the excitation portion, and generating a magnetic field from the excitation portion to generate the charged particles. A frequency control unit that changes the frequency of the current so as to accelerate, and raises the frequency from several kilohertz to several gigahertz to excite the inert gas by the induced electric field of the magnetic field, in the discharge tube The ionized charged particles are accelerated to generate ultraviolet rays from mercury atoms excited by the charged particles.

上記のごとくなっている本発明は、高周波電源の周波数を変えることにより放電管の内部圧力を変化させている。このため輝線スペクトルから輝線の領域が広がった広範囲の輝線、すなわち連続した帯スペクトルへ波長域をシフトさせることができる。あるいは連続した帯スペクトルから輝線スペクトルへシフトさせることができる。紫外線を広範囲の波長域で発光させることによって、必要な紫外線の波長強度を強くして照射効率を高めることができる。また周波数を変えることにより、紫外線の波長域を任意に設定変更することも可能となる。   In the present invention as described above, the internal pressure of the discharge tube is changed by changing the frequency of the high-frequency power source. For this reason, the wavelength region can be shifted from a bright line spectrum to a wide range of bright lines in which the bright line region has spread, that is, a continuous band spectrum. Alternatively, it can be shifted from a continuous band spectrum to a bright line spectrum. By emitting the ultraviolet light in a wide wavelength range, the required wavelength intensity of the ultraviolet light can be increased to increase the irradiation efficiency. It is also possible to arbitrarily change the wavelength range of ultraviolet rays by changing the frequency.

さらに放電管の内部に直に電極を形成していないため放電寿命を決定する主な要因となっている電極劣化が起こらない。このため放射する放電管の寿命は、硬質石英ガラスの純度劣化のみに依存するため、従来の放電管に比べ、寿命を大幅に延ばすことができる。また放電中に電極の金属疲労から生じる不純物の影響がなく、純度の高いガス中において放電を行うことができる。   Furthermore, since the electrode is not formed directly inside the discharge tube, electrode deterioration which is a main factor for determining the discharge life does not occur. For this reason, since the lifetime of the discharge tube which radiates | emits depends only on the purity degradation of hard quartz glass, compared with the conventional discharge tube, a lifetime can be extended significantly. Moreover, there is no influence of impurities caused by metal fatigue of the electrode during discharge, and discharge can be performed in a high purity gas.

放電管の内面には蛍光体被膜を形成してある。このため、放電管内において発生した紫外線は蛍光体被膜により可視光に変換されて外部に放出される。これにより、放電管装置の紫外線を広範囲の波長域で発光させることによって、照明の明るさを任意に設定変更できる蛍光ランプとして用いることができる。   A phosphor film is formed on the inner surface of the discharge tube. For this reason, the ultraviolet rays generated in the discharge tube are converted into visible light by the phosphor coating and emitted to the outside. Thereby, it can use as a fluorescent lamp which can change the brightness of illumination arbitrarily by making the ultraviolet-ray of a discharge tube apparatus light-emit in a wide wavelength range.

本発明の放電管および放電管装置の実施形態を添付の図面を参照しながら以下詳細に説明する。図1は実施形態に係る放電管装置の構成概略を示す図である。   Embodiments of a discharge tube and a discharge tube device of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of a discharge tube apparatus according to an embodiment.

図示のように放電管装置10は放電管11を備えている。放電管11は、ガラス管12を楕円環状に形成している。このガラス管12には開口部がなく密閉されており、断面は円あるいは楕円状に形成してある。また放電管11は材質に、例えば一般に用いられている硬質石英ガラスを利用することができる。またガラス管12の内壁には、蛍光体の被膜(図示せず)を形成してある。   As illustrated, the discharge tube device 10 includes a discharge tube 11. The discharge tube 11 has a glass tube 12 formed in an elliptical ring shape. The glass tube 12 is hermetically sealed without an opening and has a circular or elliptical cross section. The discharge tube 11 may be made of, for example, commonly used hard quartz glass. A fluorescent film (not shown) is formed on the inner wall of the glass tube 12.

ガラス管12の内部には、不活性ガスと水銀と金属ハロゲン化物とを封入している。不活性ガスはアルゴンのほか、例えばキセノン、ネオンなどの希ガスを用い、これらを混合させている。この混合ガスは、一例としてアルゴン:ネオンを7:3の比率で混合し、微量のキセノンを添加した混合ガス、例えばアルゴン及びネオンの混合物に対し、クリプトン(Kr)及びキセノン(Xe)の混合物数%からなる混合比として用いることができる。   An inert gas, mercury, and metal halide are sealed inside the glass tube 12. As the inert gas, a rare gas such as xenon or neon is used in addition to argon, and these are mixed. As an example, the mixed gas is a mixture of argon: neon at a ratio of 7: 3, and a small amount of xenon is added, for example, a mixture of krypton (Kr) and xenon (Xe) with respect to a mixture of argon and neon. % As a mixing ratio.

金属ハロゲン化物は、例えばセシウム(Cs)、コバルト(Co)などの金属化合物を用い、これらをハロゲン化してガラス管内部で蒸気し易いようにしている。   As the metal halide, for example, a metal compound such as cesium (Cs) or cobalt (Co) is used, and these are halogenated so as to be easily vaporized inside the glass tube.

前記ガラス管12は励起部となる一対の外部電極14a、14bを保持している。図2は外部電極の説明図である。同図(1)は図1の外部電極のA−A断面を示す図であり、同図(2)は(1)のB−B断面を示し外部電極の効果を表す模式図である。図示のように一対の外部電極14は、マグネシウム、ニッケル等の金属粉を混合焼結させて形成した環状の焼結コイルであってガラス管12を覆うように構成したものである。外部電極14はガラス管12の楕円環の径方向両側に設けてある。外部電極14は楕円環の短径と対応した位置に配置してあり、後述する電源によって外部電極に電流を流すと図2(2)に示すように、ガラス管12を中心に左右の外部電極14a,14bがN極とS極を形成するようになり、ガラス管12内に磁界を発生させ易くしている。   The glass tube 12 holds a pair of external electrodes 14a and 14b serving as excitation portions. FIG. 2 is an explanatory diagram of external electrodes. FIG. 1A is a diagram showing an AA cross section of the external electrode of FIG. 1, and FIG. 2B is a schematic diagram showing an effect of the external electrode showing a BB cross section of FIG. As shown in the figure, the pair of external electrodes 14 are annular sintered coils formed by mixing and sintering metal powders such as magnesium and nickel, and are configured to cover the glass tube 12. The external electrodes 14 are provided on both sides in the radial direction of the elliptical ring of the glass tube 12. The external electrode 14 is disposed at a position corresponding to the minor axis of the elliptical ring, and when a current is passed through the external electrode by a power source described later, the left and right external electrodes are centered on the glass tube 12 as shown in FIG. 14a and 14b form an N pole and an S pole, making it easy to generate a magnetic field in the glass tube 12.

また本発明の放電管装置10は、一対の外部電極14a,14b間をケーブル15a,15bで接続し、さらに外部電極14aにはケーブル15cを介して周波数変換部16が接続してある。周波数変換部16は例えばインバータなどを用い、交流電源22からの交流電流を任意の周波数に変換して出力できるようになっている。   In the discharge tube device 10 of the present invention, a pair of external electrodes 14a and 14b are connected by cables 15a and 15b, and a frequency converter 16 is connected to the external electrode 14a through a cable 15c. The frequency conversion unit 16 uses, for example, an inverter, and can convert an alternating current from the alternating current power source 22 into an arbitrary frequency and output it.

また周波数変換部16には周波数制御部20が接続してあり、周波数制御部20によって出力周波数が制御される。すなわち周波数制御部20は、所望の周波数(数キロヘルツから数ギガヘルツ)が設定され、周波数変換部16を制御して設定された周波数の電流を出力させ、外部電極14に供給できるようになっている。   A frequency control unit 20 is connected to the frequency conversion unit 16, and the output frequency is controlled by the frequency control unit 20. That is, the frequency control unit 20 is set to a desired frequency (several kilohertz to several gigahertz), and can control the frequency conversion unit 16 to output a current having the set frequency and supply the current to the external electrode 14. .

上記構成による放電管装置10は以下のように作用する。
不活性ガスとして、例えばアルゴン:ネオンを7:3の比率で混合し、さらに微量のキセノンを添加した、アルゴン及びネオンの混合物に対し、クリプトン(Kr)及びキセノン(Xe)の混合物数%からなる混合比の混合ガス、と、水銀と金属ハロゲン化物を楕円環状のガラス管12に封入する。ガラス管12に一対の外部電極14a、14bを楕円環の径方向両側に対向するように配置する。一対の外部電極14a,14bはケーブル15a,15bで接続し、さらに外部電極14aには周波数変換部16が接続している。そして周波数制御部20によって外部電極14に数キロヘルツの電流を供給すると外部電極14に磁界が発生するとともに、放電管11内部に封入したガスが磁界により生ずる誘導電界によって励起され、電離して初期放電が発生する。このとき放電管11内部の圧力はおよそ3.3×10Pa(250Torr)となる。
The discharge tube device 10 configured as described above operates as follows.
As an inert gas, for example, argon: neon is mixed at a ratio of 7: 3, and a small amount of xenon is added, and the mixture of krypton (Kr) and xenon (Xe) is composed of several percent of the mixture of argon and neon. A mixed gas having a mixing ratio, mercury and metal halide are enclosed in an elliptical glass tube 12. A pair of external electrodes 14a and 14b are arranged on the glass tube 12 so as to face both sides of the elliptical ring in the radial direction. The pair of external electrodes 14a and 14b are connected by cables 15a and 15b, and the frequency converter 16 is connected to the external electrode 14a. When a current of several kilohertz is supplied to the external electrode 14 by the frequency controller 20, a magnetic field is generated in the external electrode 14, and the gas enclosed in the discharge tube 11 is excited by an induced electric field generated by the magnetic field, and is ionized to cause initial discharge. Will occur. At this time, the pressure inside the discharge tube 11 is approximately 3.3 × 10 4 Pa (250 Torr).

電離した荷電粒子(イオン)は、外部電極14の発生した磁界によって、図1に示すように外部電極14aの一側において外部電極14aに引き寄せられる力を受け、外部電極14aを通過すると、外部電極14aの他側より遠ざけられる力を受けて加速される。そしてガラス管12の反対側に配置した外部電極14bの一側において外部電極14bに引き寄せられる力を受け、外部電極14bを通過すると、外部電極14bの他側から遠ざけられる力を受けて加速される。このように荷電粒子18は楕円環状の放電管内部に沿って図1の矢印に示すように加速され、楕円環状のガラス管12内部を繰り返し周回する。加速されたイオンが水銀原子に衝突して、水銀原子が励起され紫外線を発生させる。   The ionized charged particles (ions) receive a force attracted to the external electrode 14a on one side of the external electrode 14a as shown in FIG. 1 by the magnetic field generated by the external electrode 14, and pass through the external electrode 14a. It is accelerated by receiving a force away from the other side of 14a. Then, a force attracted to the external electrode 14b is received on one side of the external electrode 14b arranged on the opposite side of the glass tube 12, and when passing through the external electrode 14b, a force away from the other side of the external electrode 14b is received and accelerated. . As described above, the charged particles 18 are accelerated along the inside of the elliptical annular discharge tube as shown by the arrow in FIG. 1 and repeatedly circulate around the inside of the elliptical glass tube 12. The accelerated ions collide with mercury atoms, and the mercury atoms are excited to generate ultraviolet rays.

荷電粒子の速度は、外部電極14の供給する電流の周波数を変化させることによって任意に変えることができる。本発明者は外部電極14に供給する電流の周波数を大きくすると、荷電粒子18が加速されるとともに、放電管内の圧力も上昇して、水銀の主な発光スペクトルがシフトするという知見を得た。すなわち粒子のサイクロトン加速数は電流の周波数に依存し、例えば周波数をキロヘルツからメガヘルツに変化させると、放電管内部の水銀蒸気圧が低圧から高圧に変化して発光する波長は長波長側であって広範囲にシフトさせることができる。   The speed of the charged particles can be arbitrarily changed by changing the frequency of the current supplied from the external electrode 14. The present inventor has found that when the frequency of the current supplied to the external electrode 14 is increased, the charged particles 18 are accelerated and the pressure in the discharge tube is increased to shift the main emission spectrum of mercury. That is, the cyclone acceleration number of particles depends on the frequency of the current.For example, when the frequency is changed from kilohertz to megahertz, the mercury vapor pressure inside the discharge tube changes from low pressure to high pressure, and the emission wavelength is on the long wavelength side. Can be shifted over a wide range.

次に本発明の放電管装置の一実施例について説明する。図3は放電管11の発光スペクトルのグラフである。同グラフの横軸は波長(nm)、縦軸はスペクトルの発光強度をそれぞれ示している。なお実施形態に係る放電管11は楕円環の長径約350mm、短径約150mmである。供給した電流の周波数は数GHzのときの発光スペクトルを示す。   Next, an embodiment of the discharge tube device of the present invention will be described. FIG. 3 is a graph of the emission spectrum of the discharge tube 11. In the graph, the horizontal axis indicates the wavelength (nm), and the vertical axis indicates the emission intensity of the spectrum. The discharge tube 11 according to the embodiment has an elliptical ring having a major axis of about 350 mm and a minor axis of about 150 mm. The frequency of the supplied current shows an emission spectrum when it is several GHz.

図示のように発生する紫外線の波長は、400nm以下の紫外線領域において、主に370nm、392nmのスペクトルが発生しているのが確認できる。また400nm以上の可視光域においても、主に425nm、480nmのスペクトルが発生している。このように実施形態の水銀放電管11は、外部電極14に供給する電流の周波数を数GHzにすると、発光スペクトルが主に波長300nm以上の連続スペクトルとなる。   As shown in the figure, it can be confirmed that the wavelengths of ultraviolet rays generated are mainly 370 nm and 392 nm in the ultraviolet region of 400 nm or less. In addition, a spectrum of 425 nm and 480 nm is mainly generated in a visible light region of 400 nm or more. As described above, in the mercury discharge tube 11 of the embodiment, when the frequency of the current supplied to the external electrode 14 is set to several GHz, the emission spectrum is mainly a continuous spectrum having a wavelength of 300 nm or more.

なお不要な領域の波長、例えば約400nm以上の可視光はカットフィルターを用いて吸収することにより、必要な波長の紫外線のみを取り出すようにするとよい。   In addition, it is good to take out only the ultraviolet-ray of a required wavelength by absorbing the wavelength of an unnecessary area | region, for example, visible light more than about 400 nm using a cut filter.

またガラス管の内壁に蛍光体の被膜を形成してある場合、放電管内において発生した紫外線が内壁の蛍光体の被膜に照射すると、可視光に変換され外部に放出される。ガラス管内において発生する紫外線は、周波数の制御によって波長域を任意に設定できる。このため、外部に放出される可視光の照射量を用途に応じて変えることができる蛍光ランプとして利用することができる。   Further, when a fluorescent film is formed on the inner wall of the glass tube, when the ultraviolet light generated in the discharge tube is irradiated onto the fluorescent film on the inner wall, it is converted into visible light and emitted to the outside. The wavelength range of the ultraviolet rays generated in the glass tube can be arbitrarily set by controlling the frequency. For this reason, it can utilize as a fluorescent lamp which can change the irradiation amount of the visible light discharge | released outside according to a use.

このような放電管装置は、外部電極に供給する電流の周波数を変えて荷電粒子の加速度を変化させることによって一つの放電管で内部圧力を変えることができ、水銀特有の発光する波長を輝線スペクトル(線スペクトル)または広範囲の幅を持った帯スペクトルとすることができる。また線スペクトルから連続スペクトルに変換できるとともに、連続スペクトルから線スペクトルに変換することもできる。広範囲の幅を持ったスペクトルを用いた場合、紫外線の照射効率を高めたり、発熱量を多くしたりすることもできる。   Such a discharge tube device can change the internal pressure in one discharge tube by changing the acceleration of charged particles by changing the frequency of the current supplied to the external electrode, and the emission wavelength peculiar to mercury (Line spectrum) or a band spectrum with a wide range. In addition to conversion from a line spectrum to a continuous spectrum, it is also possible to convert from a continuous spectrum to a line spectrum. When a spectrum having a wide range is used, it is possible to increase the irradiation efficiency of ultraviolet rays and increase the heat generation amount.

また放電管の内部に電極を直に形成していない、すなわちガラス管と電極とをそれぞれ独立させた構成としているため、放電寿命を決定する主要因子となる電極由来の劣化が発生しない。このため放電管を構成する硬質石英ガラスの純度劣化、すなわち透過率劣化のみ依存する。水銀放電管はこの場合例えば約10万時間以上の連続使用が可能となり、従来の電極劣化に比べ発光の長寿命化を図ることができる。   In addition, since the electrodes are not formed directly inside the discharge tube, that is, the glass tube and the electrode are made independent from each other, deterioration derived from the electrode, which is a main factor for determining the discharge life, does not occur. For this reason, it depends only on the purity deterioration of the hard quartz glass constituting the discharge tube, that is, the transmittance deterioration. In this case, the mercury discharge tube can be used continuously for, for example, about 100,000 hours or more, and the life of light emission can be extended compared to conventional electrode deterioration.

実施形態に係る放電管装置の構成概略を示す図である。It is a figure which shows the structure outline of the discharge tube apparatus which concerns on embodiment. 外部電極の説明図である。It is explanatory drawing of an external electrode. 実施形態に係る放電管装置の波長を示すグラフである。It is a graph which shows the wavelength of the discharge tube apparatus which concerns on embodiment. 従来の低圧水銀ランプの波長を示すグラフである。It is a graph which shows the wavelength of the conventional low pressure mercury lamp.

符号の説明Explanation of symbols

10………放電管装置、11………放電管、12………ガラス管、14………外部電極、15………ケーブル、16………周波数変換部、18………荷電粒子(イオン)、20………周波数制御部、22………交流電源。 DESCRIPTION OF SYMBOLS 10 ......... Discharge tube apparatus, 11 ......... Discharge tube, 12 ......... Glass tube, 14 ......... External electrode, 15 ......... Cable, 16 ......... Frequency conversion part, 18 ...... Charged particle ( Ion), 20... Frequency control unit, 22.

Claims (1)

内部に不活性ガスと水銀と金属ハロゲン化物とを封入した楕円環状のガラス管と、前記ガラス管を覆う環状の焼結コイルであって前記ガラス管内に磁界を発生させる励起部と、を備え、前記励起部を楕円環の径方向両側に一対形成した放電管と、
前記励起部に電力を供給する電源と、
前記励起部から磁界を発生させて、前記荷電粒子を加速するように電流の周波数を変化させる周波数制御部と、
を備え、
前記周波数を数キロヘルツから数ギガヘルツまで上げて、前記磁界の誘導電界によって前記不活性ガスを励起して、前記放電管内で電離した荷電粒子を加速させて、前記荷電粒子により励起した水銀原子から紫外線を発生させることを特徴とする放電管装置。
An elliptical annular glass tube enclosing an inert gas, mercury, and metal halide inside, and an excitation unit that is an annular sintered coil that covers the glass tube and generates a magnetic field in the glass tube, A discharge tube in which the excitation part is formed as a pair on both sides in the radial direction of the elliptical ring ;
A power supply for supplying power to the excitation unit;
A frequency control unit that generates a magnetic field from the excitation unit and changes a frequency of a current so as to accelerate the charged particles;
With
The frequency is increased from several kilohertz to several gigahertz, the inert gas is excited by an induced electric field of the magnetic field, the charged particles ionized in the discharge tube are accelerated, and the mercury atoms excited by the charged particles are irradiated with ultraviolet rays. A discharge tube device characterized by generating
JP2006135094A 2006-05-15 2006-05-15 Discharge tube and discharge tube device Active JP4924868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006135094A JP4924868B2 (en) 2006-05-15 2006-05-15 Discharge tube and discharge tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006135094A JP4924868B2 (en) 2006-05-15 2006-05-15 Discharge tube and discharge tube device

Publications (2)

Publication Number Publication Date
JP2007305518A JP2007305518A (en) 2007-11-22
JP4924868B2 true JP4924868B2 (en) 2012-04-25

Family

ID=38839262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135094A Active JP4924868B2 (en) 2006-05-15 2006-05-15 Discharge tube and discharge tube device

Country Status (1)

Country Link
JP (1) JP4924868B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196534B2 (en) * 1994-11-17 2001-08-06 松下電器産業株式会社 Microwave discharge light source device
BR9906932A (en) * 1998-01-13 2000-10-10 Fusion Lighting Inc High frequency inductive lamp and power oscillator
US6107752A (en) * 1998-03-03 2000-08-22 Osram Sylvania Inc. Coaxial applicators for electrodeless high intensity discharge lamps
NL1010101C2 (en) * 1998-09-16 2000-03-17 Koninkl Philips Electronics Nv A method of adjusting the spectrum of the light from a gas discharge lamp, a gas discharge lamp, and a luminaire therefor.
JP2003017006A (en) * 2001-06-26 2003-01-17 Matsushita Electric Works Ltd Electrodeless discharge lamp lighting device
JP2003168588A (en) * 2001-11-29 2003-06-13 Matsushita Electric Works Ltd High pressure discharge lamp lighting device
JP2004335234A (en) * 2003-05-07 2004-11-25 Matsushita Electric Works Ltd Electrodeless discharge lamp lighting device and illumination device

Also Published As

Publication number Publication date
JP2007305518A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
US8946993B2 (en) Fluorescent excimer lamps
JP2007535103A (en) Light source by electron cyclotron resonance
KR100687946B1 (en) A flash discharge lamp and a light energy irradiation apparatus
JP4924868B2 (en) Discharge tube and discharge tube device
JP2008516379A (en) Mercury-free composition and radiation source incorporating it
JP2006210249A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, and illumination apparatus
HU219701B (en) Electrodeless high intensity discharge lamp having a phosphorus fill
WO2007132368A2 (en) Low-pressure gas discharge lamp having improved efficiency
JP6377529B2 (en) Electrodeless UV radiation lamp and UV treatment equipment
US9334177B1 (en) Coreless transformer UV light source system
JPH0750151A (en) Excimer discharge lamp
US7733027B2 (en) High-pressure mercury vapor lamp incorporating a predetermined germanium to oxygen molar ratio within its discharge fill
JP2005538526A (en) Low pressure gas discharge lamp with a gas filler containing tin
JPH1021880A (en) Discharge lamp, irradiation device, sterilizing device, and water treatment equipment
JP2008500691A (en) Low pressure discharge lamp with metal halide
JP2008500690A (en) Low pressure discharge lamp with discharge sustaining compound
JPWO2010084771A1 (en) Metal halide lamp
JP2007507843A (en) Low pressure gas discharge lamp with a filling gas containing gallium
JP2011134510A (en) Method of manufacturing electrodeless fluorescent lamp
JP4281701B2 (en) Excimer light irradiation equipment
JP2012064382A (en) External electrode-type lamp and irradiation device using the same
JP4258368B2 (en) Electrodeless discharge lamp
JP2979591B2 (en) Low pressure discharge lamp
JPH05225960A (en) Electrodeless low pressure rare gas type fluorescent lamp
JP2010192259A (en) Electrodeless discharge lamp

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060801

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4924868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250