WO2015015825A1 - Nickel-metal hydride storage battery - Google Patents

Nickel-metal hydride storage battery Download PDF

Info

Publication number
WO2015015825A1
WO2015015825A1 PCT/JP2014/056202 JP2014056202W WO2015015825A1 WO 2015015825 A1 WO2015015825 A1 WO 2015015825A1 JP 2014056202 W JP2014056202 W JP 2014056202W WO 2015015825 A1 WO2015015825 A1 WO 2015015825A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
metal hydride
storage battery
battery
hydride storage
Prior art date
Application number
PCT/JP2014/056202
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 前原
和城 中野
坂本 弘之
Original Assignee
プライムアースEvエナジー 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プライムアースEvエナジー 株式会社 filed Critical プライムアースEvエナジー 株式会社
Publication of WO2015015825A1 publication Critical patent/WO2015015825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel metal hydride storage battery.
  • the nickel-metal hydride storage battery As is well known, various alkaline storage batteries (secondary batteries) are used as power sources for portable electronic devices and as power sources for electric vehicles and hybrid vehicles. Of these alkaline storage batteries, the nickel-metal hydride storage battery has a high energy density and is excellent in reliability.
  • This nickel-metal hydride storage battery includes, for example, an electrode plate group in which a plurality of positive electrodes mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy are laminated via a separator, and an alkali composed of potassium hydroxide or the like. It is configured to be stored in a storage container together with the electrolytic solution.
  • Patent Document 1 discloses an example of such a nickel metal hydride storage battery.
  • a hydride secondary battery (nickel metal hydride storage battery) described in Patent Document 1 is composed of a positive electrode containing nickel oxide or nickel hydroxide, a negative electrode containing a hydrogen storage alloy, an electrolytic solution made of an alkaline aqueous solution, and a nonwoven fabric. And a separator.
  • the hydride secondary battery contains at least one metal ion selected from the group consisting of molybdenum ions, tungsten ions, and chromium ions in the electrolytic solution.
  • the content of metal ions in the electrolyte is 0.1 to 5% by weight as the metal amount of metal ions.
  • An object of the present invention is to provide a nickel-metal hydride storage battery that maintains good battery performance while maintaining good performance even under expanded use environments.
  • the nickel metal hydride storage battery according to the present invention is a nickel metal hydride storage battery mounted on a vehicle, and includes an electrode group, an electrolytic solution, and a storage container that encloses the electrode group and the electrolytic solution.
  • the electrode group includes a positive electrode plate including an active material mainly composed of nickel hydroxide, a negative electrode plate including a hydrogen storage alloy, and a separator disposed between the positive electrode plate and the negative electrode plate.
  • the electrolytic solution contains a tungsten element, a sodium element, and a potassium element, and the relationship of the weight percent of each element based on the weight of the electrolytic solution is 0.007 ⁇ (wt% of tungsten element + weight of sodium element). %) / (Weight% of potassium element) ⁇ 0.20.
  • the graph which shows the relationship between the characteristic of a nickel hydride battery, and the composition of electrolyte solution about one Embodiment with which the nickel hydride storage battery was actualized.
  • Sectional drawing which shows a nickel metal hydride storage battery.
  • Sectional drawing which shows the electrode group of the nickel hydride storage battery of FIG.
  • the nickel-metal hydride storage battery 1 of this embodiment is a sealed battery used as a power source for an electric vehicle or a hybrid vehicle.
  • this nickel metal hydride storage battery 1 includes an electrode group 10 including a positive electrode plate 11, a negative electrode plate 12, and a separator 13, and the electrode group 10 includes, for example, a plurality of hydrogen storage alloys.
  • Negative electrode plates 12 and a plurality of positive electrode plates 11 containing nickel hydroxide (Ni (OH) 2 ) are alternately stacked via separators 13 made of a non-woven fabric of alkali-resistant resin.
  • the electrode group 10 shown in FIG. 3 includes ten positive plates 11 and eleven negative plates 12.
  • the electrode group according to another aspect includes 12 positive plates and 13 negative plates.
  • the negative electrode plate is manufactured by applying hydrogen storage alloy powder to a substrate made of a porous metal such as punching metal.
  • the positive electrode plate is manufactured by filling a substrate made of a metal porous body such as a foamed nickel substrate with an active material containing nickel hydroxide particles.
  • the positive electrode plate 11 is connected to a positive current collector plate 21, and the negative electrode plate 12 is connected to a negative current collector plate 22.
  • the electrode group 10 is housed in a sealed resin storage container 20, together with an electrolyte, in a so-called battery case.
  • the electrolytic solution contains pure water and potassium element (K).
  • the electrolytic solution is held in the separator 13 by being accommodated together with the electrode group 10 in the battery case 20. Further, the electrolytic solution is supplied to the positive electrode plate 11 and the negative electrode plate 12 through the separator 13, thereby conducting ions between the positive electrode plate 11 and the negative electrode plate 12.
  • the potassium compound that supplies potassium element (K) to the electrolytic solution is often potassium hydroxide (KOH), but in addition, K 2 C 2 , KCl, KF, KH, KN 3 , K 3 N, KO 2, KO 3, K 2 O, K 2 O 2, K 3 P, K 2 S, KAlF 4, KBF 4, KBH 4, KCH 3, KCN, KHCOO, KHF 2, KHS, KNH 2, KPF 6 , etc. Is mentioned.
  • KOH potassium hydroxide
  • the electrolytic solution further contains a tungsten element (W) and a sodium element (Na).
  • the tungsten compound for supplying elemental tungsten (W) is the electrolyte, WO 2, WO 3, WO 3 ⁇ H 2 O, W 2 O 5, W 2 O 5 ⁇ H 2 O, ZrW 2 O 8, Al 2 (WO 4 ) 3 , WC, CaWO 4 , FeWO 4 , MnWO 4 , WCl 6 , WBr 6 , WCl 2 F 4 and the like.
  • the electrolytic solution contains at least tungsten element, sodium element, potassium element and pure water.
  • the electrolyte solution may contain an additive other than the tungsten compound, the sodium compound, and the potassium compound, for example, LiOH, as another additive of pure water.
  • tungsten element, sodium element and The composition of potassium element was adjusted. More specifically, the composition of each element contained in the electrolytic solution is obtained so that a nickel-metal hydride storage battery having battery characteristics in which two characteristics of excellent high-temperature capacity (battery capacity at high temperature) and low battery resistance are compatible is obtained. It was adjusted. In addition, when the high-temperature capacity is excellent, the high-temperature utilization rate of the nickel-metal hydride storage battery increases.
  • the inventors conducted sincere research on the relationship between the tungsten element, the sodium element, and the potassium element that can achieve two battery characteristics of excellent high-temperature capacity and low battery resistance.
  • the inventors have found that the relationship between the weight% of tungsten element, sodium element and potassium element in the electrolyte is evaluated based on the index value calculated from the following evaluation formula (1).
  • the electrolytic solution in which the weight% of each element in the electrolytic solution is adjusted so as to satisfy the formula (2) achieves both battery characteristics of excellent high-temperature capacity and low battery resistance in a nickel-metal hydride storage battery. It became clear that it was possible.
  • the weight percentage of the tungsten element based on the weight of the electrolytic solution is in the range of 0.22 wt% to 3.40 wt%. This is because the tungsten element and the sodium element have the effect of suppressing the electrolysis of water, which is a side reaction during charge and discharge, so the added amount per weight in the electrolyte (weight% based on the weight of the electrolyte) ) Must be specified.
  • the addition amount of the tungsten element and the sodium element is within a range that does not become an excessive addition amount that causes the electrical resistance to be excessively high. Need to be specified.
  • High-temperature utilization rate [%] discharge capacity [Ah] / charge capacity [Ah] ⁇ 100 (4)
  • SOC State Of Charge
  • the “discharge capacity” in the formula (4) is a capacity obtained by charging a nickel-metal hydride storage battery with a predetermined charge capacity under an environmental temperature of 60 ° C., and then discharging a discharge current of 2 A from the storage battery. [Ah]. At this time, the “discharge capacity” is indicated by the product of the measured discharge current and the time from the measured discharge start to the discharge end voltage (1 V). In general, it is judged that the storage battery is more excellent as the “discharge capacity” (high temperature capacity) is larger. That is, if the “charge capacity” is constant, the battery characteristics are more excellent as the “discharge capacity” is larger, that is, as the “high temperature utilization rate” is higher.
  • battery resistance is measured as follows. First, the storage battery is charged at room temperature until the amount of stored electricity (SOC) reaches 60%. Thereafter, for example, the direct current internal resistance (DC-IR) of the nickel-metal hydride storage battery is calculated from “ ⁇ V / 10A” from the voltage drop ( ⁇ V) when discharged at 10 A for 10 seconds.
  • SOC stored electricity
  • DC-IR direct current internal resistance
  • index value [Relationship between index value, high temperature utilization rate and battery resistance]
  • an electrolyte solution having an index value calculated from the evaluation formula (1) in the range of “0.000” to “0.239” is used for a nickel metal hydride storage battery.
  • High temperature utilization and battery resistance were obtained.
  • the index value is “0.000”
  • the weight% of the tungsten element and the sodium element in the electrolytic solution are both “0”.
  • the value of a corresponding high temperature utilization factor and the value of battery resistance are described for every index value calculated from the evaluation formula (1).
  • the value of the high temperature utilization rate is described as “utilization value”
  • the value of the battery resistance is described as “resistance value”.
  • the high temperature utilization rate tends to be low (bad) when the index value is small and high (good) when the index value is large. More specifically, the high temperature utilization rate is relatively large in the range A1 of the index value from “0.000” to “0.007”, while the index value ranges from “0.007” to “0.007”. In the range A2 to A4 up to 0.239 ", it became clear that the increase in the value tends to be relatively small. In other words, the high-temperature utilization rate is the range after the value has greatly increased. The index value is in the range A2 to A4 in which the index value is “0.007” or more and the index value is in the range A1 in which the index value is less than “0.007”.
  • the increase rate of the high-temperature utilization rate tends to decrease as the index value increases. That is, the range of increase in the high-temperature utilization rate is smaller in the ranges A3 and A4 where the index value is “0.110” or more than in the range A2 where the index value is less than “0.110”. In the range A4 of “0.200” or more, it becomes even smaller. The value of the high temperature utilization rate hardly increases in the range A4.
  • the resistance values R01 to R13 are shown in the graph LR when the index value is between “0.000” and “0.250” (range A1 to A4).
  • the battery resistance tends to be low (good) when the index value is small and high (bad) when the index value is large.
  • the value of the battery resistance increases with a substantially constant increase in accordance with the increase of the index value in the range A1 to A4 where the index value ranges from “0.000” to “0.250”.
  • a nickel-metal hydride storage battery mounted on a vehicle needs to pass a large current, so that its battery resistance needs to be kept low regardless of the usage environment.
  • the battery resistance value is small.
  • the value of the battery resistance of the nickel-metal hydride storage battery mounted on the vehicle is not preferably more than 3.0 [m ⁇ ] because of the energy loss. That is, it is not preferable that the index value is in a range A4 that is larger than the vicinity of “0.200”, in which the battery resistance value may exceed 3.0 [m ⁇ ].
  • the increase range of the high temperature utilization rate decreases as the index value increases, while the increase range of the battery resistance value increases the index value. Along with this, it rises with a substantially constant width. For this reason, as the index value increases, the increase in the high-temperature utilization rate slows while the battery resistance increases constantly.
  • the value of the battery resistance increases as compared to the improvement in battery characteristics obtained by increasing the value of the high-temperature utilization rate (improving the high-temperature utilization rate). The deterioration of the battery characteristics due to the deterioration becomes relatively large.
  • ranges A2 and A3 of about “0.200” or less in which the value of the high temperature utilization factor hardly increases as an index value that can maintain suitable battery characteristics. Is preferred. More preferably, the range A2 of about “0.110” or less where the increase in the value of the high-temperature utilization rate is small is preferable.
  • the lower limit of the index value for maintaining preferable battery characteristics is preferably before the high-temperature utilization rate rapidly decreases, that is, about “0.007”.
  • the upper limit of the index value for maintaining preferable battery characteristics is preferably about “0.200” or less at which the high-temperature utilization rate hardly increases, and more preferably, “0. 110 "is preferred. That is, as shown in FIG. 1, an electrolyte solution that achieves two battery characteristics of a nickel-metal hydride storage battery with excellent high-temperature capacity and low battery resistance, that is, maintains preferable battery characteristics, has an index value of “0.007”. It is preferable that it is the range A2, A3 from 1 to "0.200".
  • the electrolyte solution that maintains the preferable battery characteristics described above preferably has an index value in the range A2 from “0.007” to “0.110”.
  • the electrolytic solution capable of obtaining battery characteristics in which two characteristics of excellent high-temperature capacity and low battery resistance are compatible has an index value of “0.007” or more and “0” as shown in Equation (2). .200 "or less in the range A2, A3 was found to be preferable.
  • the electrolytic solution capable of obtaining more preferable battery characteristics preferably has an index value in the range A2 of “0.007” or more and “0.110” or less. It was revealed.
  • the characteristics of the electrolytic solution that is, the characteristics of the nickel-metal hydride storage battery can be changed by changing the additive to the electrolytic solution.
  • the usage environment of hybrid vehicles has expanded to various environments, the usage environment of nickel metal hydride batteries mounted in hybrid vehicles and the like has also expanded.
  • the nickel metal hydride storage battery mounted in a vehicle needs to flow a large current, it is necessary to keep the value of the battery resistance small irrespective of the use environment.
  • the evaluation formula (1) regarding the addition amount of tungsten element, sodium element, and potassium element and the appropriate range of the index value calculated from the evaluation formula (1) are defined.
  • an electrolytic solution for obtaining a nickel-metal hydride storage battery having good battery characteristics even when used in a high temperature environment in an extremely hot region can be obtained. Specifically, an excellent battery capacity at a high temperature is maintained, and a low battery resistance is maintained, so that energy loss during use is kept low.
  • nickel-metal hydride storage batteries potassium element in the electrolytic solution lowers battery resistance but deteriorates high-temperature capacity, and tungsten and sodium elements in the electrolytic solution maintain good high-temperature capacity. To raise. According to this embodiment, as a nickel metal hydride storage battery, a storage battery in which two characteristics of maintaining excellent high-temperature capacity and low battery resistance are compatible is obtained. As a result, a nickel-metal hydride storage battery is provided that maintains good performance even in an expanding usage environment, particularly in a high-temperature environment in an extremely hot region.
  • the performance is suitably maintained even in a storage battery mounted on a vehicle that may be used under severe conditions such as a high-temperature environment in an extremely hot region because the usage environment is various.
  • the weight% of the said embodiment may be the mass%.
  • the resin storage container 20 is illustrated, but the material of the storage container is not limited to this.
  • the storage container may be made of a material other than a resin such as a metal as long as it can be used as a battery case. Thereby, expansion of the design freedom of a nickel metal hydride storage battery is achieved.
  • the electrode group 10 is illustrated in which a plurality of negative plates and a plurality of positive plates are alternately stacked via separators.
  • the present invention is not limited thereto, and the number of negative electrode plates may be less than 13 or more than 13 as long as the electrode group is appropriately configured. Further, the number of positive electrode plates may be less than 12, or more than 12. Thereby, the expansion of the application range of a nickel metal hydride storage battery is achieved.
  • the negative electrode plate 12 manufactured by applying a hydrogen storage alloy powder to a substrate made of a porous metal such as punching metal is illustrated.
  • the present invention is not limited to this, and the negative electrode plate may be manufactured in any way as long as it functions as a negative electrode plate. Thereby, expansion of the design freedom of a nickel metal hydride storage battery is achieved.
  • the positive electrode plate 11 manufactured by filling a substrate made of a metal porous body such as a foamed nickel substrate with an active material containing nickel hydroxide particles is illustrated.
  • the present invention is not limited to this, and the positive electrode plate may be manufactured in any way as long as it functions as a positive electrode plate.
  • a positive electrode plate may be manufactured by filling a substrate made of a metal porous body such as a sintered substrate with a chemical reaction using an active material. Thereby, expansion of the design freedom of a nickel metal hydride storage battery is achieved.
  • the separator 13 which is a non-woven fabric of alkali resistant resin is illustrated.
  • the present invention is not limited to this, and the separator only needs to be formed of a material that is compatible with a nickel metal hydride storage battery. Thereby, expansion of the design freedom of a nickel metal hydride storage battery is achieved.
  • the nickel hydride storage battery 1 used as a power source for an electric vehicle or a hybrid vehicle is illustrated.
  • the nickel metal hydride storage battery may be used as a power source other than an automobile that requires a power source.
  • power sources other than automobiles include moving bodies such as railways, ships, airplanes, and robots, and power supplies for electrical products such as information processing apparatuses. Thereby, the expansion of the application range of a nickel metal hydride storage battery is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

This nickel-metal hydride storage battery to be mounted on a vehicle comprises an electrode group, an electrolyte solution, and a container in which the electrode group and the electrolyte solution are hermetically contained. The electrode group is provided with: a positive electrode plate which contains an active material that is mainly composed of nickel hydroxide; a negative electrode plate which contains a hydrogen storage alloy; and a separator which is arranged between the positive electrode plate and the negative electrode plate. The electrolyte solution contains elemental tungsten, elemental sodium and elemental potassium, and the relationship among the percentages by weight of the elements based on the weight of the electrolyte solution satisfies 0.007 ≤ (percentage by weight of elemental tungsten + percentage by weight of elemental sodium)/(percentage by weight of elemental potassium) ≤ 0.20.

Description

ニッケル水素蓄電池Nickel metal hydride storage battery
 本発明は、ニッケル水素蓄電池に関する。 The present invention relates to a nickel metal hydride storage battery.
 周知のように、携帯用の電子機器の電源として、また、電気自動車やハイブリッド自動車などの電源として、様々なアルカリ蓄電池(二次電池)が用いられている。そして、こうしたアルカリ蓄電池のうちニッケル水素蓄電池は、エネルギー密度が高く、信頼性に優れた蓄電池である。このニッケル水素蓄電池は、例えば、水酸化ニッケルを主成分とした正極と水素吸蔵合金を主成分とした負極とがセパレータを介して複数枚積層された極板群を、水酸化カリウムなどからなるアルカリ電解液とともに収納容器に収納して構成されている。特許文献1は、このようなニッケル水素蓄電池の一例を開示している。 As is well known, various alkaline storage batteries (secondary batteries) are used as power sources for portable electronic devices and as power sources for electric vehicles and hybrid vehicles. Of these alkaline storage batteries, the nickel-metal hydride storage battery has a high energy density and is excellent in reliability. This nickel-metal hydride storage battery includes, for example, an electrode plate group in which a plurality of positive electrodes mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy are laminated via a separator, and an alkali composed of potassium hydroxide or the like. It is configured to be stored in a storage container together with the electrolytic solution. Patent Document 1 discloses an example of such a nickel metal hydride storage battery.
 特許文献1に記載の水素化物二次電池(ニッケル水素蓄電池)は、ニッケル酸化物またはニッケル水酸化物を含む正極と、水素吸蔵合金を含む負極と、アルカリ水溶液からなる電解液と、不織布からなるセパレータとを有する。そしてこの水素化物二次電池には、電解液中にモリブデンイオン、タングステンイオンおよびクロムイオンよりなる群から選ばれる少なくとも1種の金属イオンが含有される。金属イオンの電解液中での含有量は、金属イオンの金属量として0.1~5重量%である。 A hydride secondary battery (nickel metal hydride storage battery) described in Patent Document 1 is composed of a positive electrode containing nickel oxide or nickel hydroxide, a negative electrode containing a hydrogen storage alloy, an electrolytic solution made of an alkaline aqueous solution, and a nonwoven fabric. And a separator. The hydride secondary battery contains at least one metal ion selected from the group consisting of molybdenum ions, tungsten ions, and chromium ions in the electrolytic solution. The content of metal ions in the electrolyte is 0.1 to 5% by weight as the metal amount of metal ions.
特開平8-88020号公報JP-A-8-88020
 上述の特許文献1に記載のニッケル水素蓄電池によれば、高温環境における高温貯蔵特性が優れたニッケル水素蓄電池が得られる。 According to the nickel metal hydride storage battery described in Patent Document 1 described above, a nickel metal hydride storage battery having excellent high temperature storage characteristics in a high temperature environment can be obtained.
 近年、電気自動車やハイブリッド自動車の利用環境が様々な環境に拡大していくことに伴って、それら電気自動車やハイブリッド自動車に搭載されるニッケル水素蓄電池の使用環境が拡大している。これにより、酷暑地域における高温環境下でのニッケル水素蓄電池の使用などが避けられなくなってきている。また、車両に搭載される蓄電池は、大電流を流す必要があるので、その使用環境にかかわらず、その電池抵抗の値を小さく維持する必要がある。そのため、電池抵抗を低く維持しつつ、拡大される使用環境下にあってもその性能が良好に維持されるニッケル水素蓄電池の研究及び開発が進められている。 In recent years, as the usage environment of electric vehicles and hybrid vehicles has expanded to various environments, the usage environment of nickel-metal hydride storage batteries mounted on these electric vehicles and hybrid vehicles has expanded. As a result, the use of nickel metal hydride storage batteries in a high temperature environment in extremely hot regions has become unavoidable. Moreover, since the storage battery mounted in a vehicle needs to flow a large current, it is necessary to keep the value of the battery resistance small irrespective of the use environment. For this reason, research and development of nickel-metal hydride storage batteries that maintain good performance even under expanded usage environments while maintaining low battery resistance are underway.
 本発明の目的は、電池抵抗を低く維持しつつ、拡大される使用環境下にあっても良好な性能が維持されるニッケル水素蓄電池を提供することにある。 An object of the present invention is to provide a nickel-metal hydride storage battery that maintains good battery performance while maintaining good performance even under expanded use environments.
 本発明におけるニッケル水素蓄電池の一態様は、車両に搭載されるニッケル水素蓄電池であって、電極群と、電解液と、前記電極群と前記電解液とを封入する収納容器と、を有する。前記電極群は、水酸化ニッケルを主成分とする活物質を含む正極板と、水素吸蔵合金を含む負極板と、前記正極板と前記負極板との間に配置されるセパレータとを備える。前記電解液は、タングステン元素、ナトリウム元素及びカリウム元素を含み、前記電解液の重量を基準とした前記各元素の重量%の関係が、0.007≦(タングステン元素の重量%+ナトリウム元素の重量%)/(カリウム元素の重量%)≦0.20である。 One aspect of the nickel metal hydride storage battery according to the present invention is a nickel metal hydride storage battery mounted on a vehicle, and includes an electrode group, an electrolytic solution, and a storage container that encloses the electrode group and the electrolytic solution. The electrode group includes a positive electrode plate including an active material mainly composed of nickel hydroxide, a negative electrode plate including a hydrogen storage alloy, and a separator disposed between the positive electrode plate and the negative electrode plate. The electrolytic solution contains a tungsten element, a sodium element, and a potassium element, and the relationship of the weight percent of each element based on the weight of the electrolytic solution is 0.007 ≦ (wt% of tungsten element + weight of sodium element). %) / (Weight% of potassium element) ≦ 0.20.
ニッケル水素蓄電池が具体化された一実施形態について、ニッケル水素電池の特性と電解液の組成との関係を示すグラフ。The graph which shows the relationship between the characteristic of a nickel hydride battery, and the composition of electrolyte solution about one Embodiment with which the nickel hydride storage battery was actualized. ニッケル水素蓄電池を示す断面図。Sectional drawing which shows a nickel metal hydride storage battery. 図2のニッケル水素蓄電池の電極群を示す断面図。Sectional drawing which shows the electrode group of the nickel hydride storage battery of FIG.
 ニッケル水素蓄電池を具体化した一実施形態について説明する。 An embodiment embodying a nickel metal hydride storage battery will be described.
 本実施形態のニッケル水素蓄電池1は、電気自動車やハイブリッド自動車の電源として用いられる密閉型の電池である。図2及び図3に示すように、このニッケル水素蓄電池1は、正極板11と負極板12とセパレータ13とを備えた電極群10を含み、電極群10では、例えば、水素吸蔵合金を含む複数の負極板12と、水酸化ニッケル(Ni(OH))を含む複数の正極板11とが、耐アルカリ性樹脂の不織布から構成されるセパレータ13を介して交互に積層されている。例えば、図3に示される電極群10は、10枚の正極板11と、11枚の負極板12とを備えている。他の態様の電極群は、12枚の正極板と、13枚の負極板とを備えている。負極板は、パンチングメタルなどの金属多孔体からなる基板に水素吸蔵合金粉末を塗布して製作される。正極板は、発泡ニッケル基板などの金属多孔体からなる基板に水酸化ニッケル粒子を含む活物質を充填して製作される。 The nickel-metal hydride storage battery 1 of this embodiment is a sealed battery used as a power source for an electric vehicle or a hybrid vehicle. As shown in FIGS. 2 and 3, this nickel metal hydride storage battery 1 includes an electrode group 10 including a positive electrode plate 11, a negative electrode plate 12, and a separator 13, and the electrode group 10 includes, for example, a plurality of hydrogen storage alloys. Negative electrode plates 12 and a plurality of positive electrode plates 11 containing nickel hydroxide (Ni (OH) 2 ) are alternately stacked via separators 13 made of a non-woven fabric of alkali-resistant resin. For example, the electrode group 10 shown in FIG. 3 includes ten positive plates 11 and eleven negative plates 12. The electrode group according to another aspect includes 12 positive plates and 13 negative plates. The negative electrode plate is manufactured by applying hydrogen storage alloy powder to a substrate made of a porous metal such as punching metal. The positive electrode plate is manufactured by filling a substrate made of a metal porous body such as a foamed nickel substrate with an active material containing nickel hydroxide particles.
 正極板11は正極側の集電板21に接続され、負極板12は負極側の集電板22に接続されている。電極群10は電解液とともに密閉型の樹脂製の収納容器20内、いわゆる電槽内に収容されている。 The positive electrode plate 11 is connected to a positive current collector plate 21, and the negative electrode plate 12 is connected to a negative current collector plate 22. The electrode group 10 is housed in a sealed resin storage container 20, together with an electrolyte, in a so-called battery case.
 電解液は、純水とカリウム元素(K)とを含んでいる。電解液は、電槽20内に電極群10とともに収容されることで、セパレータ13の中に保持される。また電解液は、セパレータ13を介して正極板11や負極板12に供給されることで、正極板11と負極板12との間にイオンを伝導させる。なお、電解液にカリウム元素(K)を供給するカリウム化合物は、水酸化カリウム(KOH)であることが多いものの、その他、K、KCl、KF、KH、KN、KN、KO、KO、KO、K、KP、KS、KAlF、KBF、KBH、KCH、KCN、KHCOO、KHF、KHS、KNH、KPFなどが挙げられる。 The electrolytic solution contains pure water and potassium element (K). The electrolytic solution is held in the separator 13 by being accommodated together with the electrode group 10 in the battery case 20. Further, the electrolytic solution is supplied to the positive electrode plate 11 and the negative electrode plate 12 through the separator 13, thereby conducting ions between the positive electrode plate 11 and the negative electrode plate 12. The potassium compound that supplies potassium element (K) to the electrolytic solution is often potassium hydroxide (KOH), but in addition, K 2 C 2 , KCl, KF, KH, KN 3 , K 3 N, KO 2, KO 3, K 2 O, K 2 O 2, K 3 P, K 2 S, KAlF 4, KBF 4, KBH 4, KCH 3, KCN, KHCOO, KHF 2, KHS, KNH 2, KPF 6 , etc. Is mentioned.
 また、本実施形態では、電解液はさらに、タングステン元素(W)とナトリウム元素(Na)とを含んでいる。 In the present embodiment, the electrolytic solution further contains a tungsten element (W) and a sodium element (Na).
 電解液にタングステン元素(W)を供給するタングステン化合物としては、WO、WO、WO・HO、W、W・HO、ZrW、Al(WO、WC、CaWO、FeWO、MnWO、WCl、WBr、WClなどが挙げられる。また、同タングステン化合物としては、W(CO)、WOCl、LiWO、HWO、KWO、NaWO、LiWO・2HO、HWO・2HO、KWO・2HO、NaWO・2HO、(NHPO・12WO・3HO、Na(PO・12WO)・xHO、WF、WFなどが挙げられる。 The tungsten compound for supplying elemental tungsten (W) is the electrolyte, WO 2, WO 3, WO 3 · H 2 O, W 2 O 5, W 2 O 5 · H 2 O, ZrW 2 O 8, Al 2 (WO 4 ) 3 , WC, CaWO 4 , FeWO 4 , MnWO 4 , WCl 6 , WBr 6 , WCl 2 F 4 and the like. Moreover, as the tungsten compound, W (CO) 6 , WO 2 Cl 2 , Li 2 WO 2 , H 2 WO 4 , K 2 WO 4 , Na 2 WO 4 , Li 2 WO 4 .2H 2 O, H 2 WO 4 · 2H 2 O, K 2 WO 4 · 2H 2 O, Na 2 WO 4 · 2H 2 O, (NH 4 ) 3 PO 4 · 12WO 3 · 3H 2 O, Na 3 (PO 4 · 12WO 3 ) · xH 2 O, such as WF 5, WF 6, and the like.
 また、電解液にナトリウム元素(Na)を供給するナトリウム化合物としては、Na、NaCl、NaF、NaH、NaN、NaN、NaO、NaO、Na、NaO、NaP、NaSなどが挙げられる。また、同ナトリウム化合物としては、NaAlF、NaAlH、NaBF、NaBH、Na、NaCH、Na、NaCN、NaCN、NaHF、NaHS、NaHSe、NaNH、NaOH、NaPFなどが挙げられる。 As the sodium compound supplying elemental sodium (Na) in the electrolytic solution, Na 2 C 2, NaCl, NaF, NaH, NaN 3, Na 3 N, NaO 2, NaO 3, Na 2 O 2, Na 2 O , Na 3 P, Na 2 S and the like. Moreover, as the sodium compound, Na 3 AlF 6 , NaAlH 4 , Na 3 BF 4 , NaBH 4 , Na 2 B 4 O 7 , NaCH 3 , Na 2 C 2 O 4 , NaCN, Na 2 CN 2 , NaHF 2 , NaHS, NaHSe, NaNH 2 , NaOH, NaPF 6 and the like.
 つまり電解液は、少なくとも、タングステン元素、ナトリウム元素、カリウム元素及び純水を含んでいる。なお、電解液には、純水の他の添加物として、タングステン化合物、ナトリウム化合物及びカリウム化合物以外の添加物、例えばLiOHなどが含まれていてもよい。 That is, the electrolytic solution contains at least tungsten element, sodium element, potassium element and pure water. In addition, the electrolyte solution may contain an additive other than the tungsten compound, the sodium compound, and the potassium compound, for example, LiOH, as another additive of pure water.
 本実施形態では、電池抵抗を低く維持しつつ、特に、酷暑地域の高温環境下での使用に良好な特性を有するニッケル水素蓄電池が得られるように、電解液に含まれるタングステン元素、ナトリウム元素及びカリウム元素の組成を調整した。詳述すると、優れた高温容量(高温での電池容量)と低い電池抵抗との2つの特性が両立する電池特性を有するニッケル水素蓄電池が得られるように、電解液に含まれる各元素の組成を調整した。なお、高温容量が優れていると、ニッケル水素蓄電池の高温利用率が上昇する。 In this embodiment, while maintaining the battery resistance low, in order to obtain a nickel-metal hydride storage battery having good characteristics particularly in use in a high temperature environment in an extremely hot region, tungsten element, sodium element and The composition of potassium element was adjusted. More specifically, the composition of each element contained in the electrolytic solution is obtained so that a nickel-metal hydride storage battery having battery characteristics in which two characteristics of excellent high-temperature capacity (battery capacity at high temperature) and low battery resistance are compatible is obtained. It was adjusted. In addition, when the high-temperature capacity is excellent, the high-temperature utilization rate of the nickel-metal hydride storage battery increases.
 通常、タングステン元素やナトリウム元素が電解液に添加されると、高温容量が増加する(良くなる)ものの、電池抵抗が高くなる(悪化する)。一方、カリウム元素が電解液に添加されると、高温容量が減少する(悪化する)ものの、電池抵抗は低くなる(良くなる)。このように、タングステン元素やナトリウム元素が生じさせる効果と、カリウム元素が生じさせる効果とが相反する関係にあるので、優れた高温容量と低い電池抵抗との2つの電池特性を両立させようとすると、タングステン元素、ナトリウム元素及びカリウム元素の関係に基づいて電解液の組成を調整する必要が生じる。 Usually, when tungsten element or sodium element is added to the electrolyte, the high-temperature capacity increases (improves), but the battery resistance increases (deteriorates). On the other hand, when potassium element is added to the electrolytic solution, the high-temperature capacity decreases (deteriorates), but the battery resistance decreases (improves). As described above, since the effect caused by the tungsten element and the sodium element and the effect caused by the potassium element are in a contradictory relationship, an attempt is made to reconcile the two battery characteristics of excellent high temperature capacity and low battery resistance. Therefore, it is necessary to adjust the composition of the electrolytic solution based on the relationship between tungsten element, sodium element and potassium element.
 そこで、発明者らは、優れた高温容量と低い電池抵抗との2つの電池特性を両立させることのできる、タングステン元素、ナトリウム元素及びカリウム元素の関係について誠意研究を行った。そして、発明者らは、タングステン元素、ナトリウム元素及びカリウム元素の電解液中での重量%の関係を、次の評価式(1)より算出される指標値に基づき評価することを見出した。 Therefore, the inventors conducted sincere research on the relationship between the tungsten element, the sodium element, and the potassium element that can achieve two battery characteristics of excellent high-temperature capacity and low battery resistance. The inventors have found that the relationship between the weight% of tungsten element, sodium element and potassium element in the electrolyte is evaluated based on the index value calculated from the following evaluation formula (1).
 (タングステン元素の重量%+ナトリウム元素の重量%)/(カリウム元素の重量%)・・・(1)
つまり、優れた高温容量と低い電池抵抗とのニッケル水素蓄電池の2つの電池特性を両立させることのできる電解液であるか否かを上記指標値に基づき判断可能であることが明らかになった。
(Wt% of tungsten element + wt% of sodium element) / (wt% of potassium element) (1)
That is, it has been clarified that it is possible to determine whether or not the electrolyte solution can achieve both of the two battery characteristics of the nickel-metal hydride storage battery having excellent high-temperature capacity and low battery resistance based on the index value.
 詳述すると、評価式(1)より算出される指標値が、次式(2)に示す範囲を満足するように電解液中での各元素の重量%を調整することにより、ニッケル水素蓄電池の特性を良好にする電解液が得られることが明らかになった。 More specifically, by adjusting the weight percent of each element in the electrolyte so that the index value calculated from the evaluation formula (1) satisfies the range shown in the following formula (2), It was found that an electrolyte solution with good characteristics can be obtained.
 0.007≦(タングステン元素の重量%+ナトリウム元素の重量%)/(カリウム元素の重量%)≦0.20・・・(2)
 つまり、式(2)を満足するように電解液中の各元素の重量%が調整された電解液は、ニッケル水素蓄電池において、優れた高温容量と低い電池抵抗との2つの電池特性を両立させることができることが明らかになった。
0.007 ≦ (wt% of tungsten element + wt% of sodium element) / (wt% of potassium element) ≦ 0.20 (2)
In other words, the electrolytic solution in which the weight% of each element in the electrolytic solution is adjusted so as to satisfy the formula (2) achieves both battery characteristics of excellent high-temperature capacity and low battery resistance in a nickel-metal hydride storage battery. It became clear that it was possible.
 また、評価式(1)より算出される指標値が、次式(3)を満足するときに、ニッケル水素蓄電池の特性をより良好にする電解液が得られることが明らかになった。 It has also been clarified that when the index value calculated from the evaluation formula (1) satisfies the following formula (3), an electrolytic solution that improves the characteristics of the nickel-metal hydride storage battery can be obtained.
 0.007≦(タングステン元素の重量%+ナトリウム元素の重量%)/(カリウム元素の重量%)≦0.11・・・(3)
 なお、本実施形態では、電解液の重量を基準としたタングステン元素の重量%が0.22重量%~3.40重量%の範囲である。これは、タングステン元素とナトリウム元素は、充放電時の副反応である水の電気分解を抑制する効果があるので、電解液中の重量あたりの添加量(電解液の重量を基準とした重量%)を規定する必要があるからである。なお、上述の通り、タングステン元素とナトリウム元素の添加量が増加すると電池抵抗が高くなるので、電気抵抗が過度に高くなるような過剰な添加量とはならない範囲でタングステン元素とナトリウム元素の添加量が規定される必要もある。
0.007 ≦ (wt% of tungsten element + wt% of sodium element) / (wt% of potassium element) ≦ 0.11 (3)
In the present embodiment, the weight percentage of the tungsten element based on the weight of the electrolytic solution is in the range of 0.22 wt% to 3.40 wt%. This is because the tungsten element and the sodium element have the effect of suppressing the electrolysis of water, which is a side reaction during charge and discharge, so the added amount per weight in the electrolyte (weight% based on the weight of the electrolyte) ) Must be specified. As described above, since the battery resistance increases as the addition amount of the tungsten element and the sodium element increases, the addition amount of the tungsten element and the sodium element is within a range that does not become an excessive addition amount that causes the electrical resistance to be excessively high. Need to be specified.
 次に、図1を参照して、電解液の組成に基づいて上記評価式(1)に従って算出される指標値と、ニッケル水素蓄電池の高温利用率との関係、及び電池抵抗との関係について説明する。 Next, with reference to FIG. 1, the relationship between the index value calculated according to the evaluation formula (1) based on the composition of the electrolytic solution, the high-temperature utilization rate of the nickel metal hydride storage battery, and the relationship with the battery resistance will be described. To do.
 [高温利用率]
 本実施形態の「高温利用率」は、環境温度が「60℃」の下で、所定の充電容量分(6.3Ah(SOC=90%))だけ充電されたニッケル水素蓄電池から放電された容量の、充電容量に対する割合であり、次式(4)より算出される。
[High temperature utilization rate]
The “high temperature utilization rate” of the present embodiment is a capacity discharged from a nickel metal hydride storage battery charged by a predetermined charge capacity (6.3 Ah (SOC = 90%)) under an environmental temperature of “60 ° C.”. Is the ratio to the charging capacity, and is calculated from the following equation (4).
 高温利用率[%]=放電容量[Ah]/充電容量[Ah]×100・・・(4)
 ここで、SOC(エスオーシー:State Of Charge)は、蓄電池の残存容量を示すものであり、完全に充電された蓄電池から放電された電気量を除いた割合を示す。
High-temperature utilization rate [%] = discharge capacity [Ah] / charge capacity [Ah] × 100 (4)
Here, SOC (State Of Charge) indicates the remaining capacity of the storage battery, and indicates a ratio excluding the amount of electricity discharged from the fully charged storage battery.
 また式(4)中の「放電容量」は、環境温度が60℃の下、ニッケル水素蓄電池に所定の充電容量分を充電した後、該蓄電池から2Aの放電電流を放電することにより得られる容量[Ah]である。このとき「放電容量」は、測定された放電電流と、計測された放電開始から放電終止電圧(1V)までの時間との積により示される。なお一般に、蓄電池は「放電容量」(高温容量)が大きいほど優れていると判断される。すなわち、「充電容量」が一定であれば、「放電容量」が大きいほど、つまり「高温利用率」が高いほど、電池特性が優れた電池である。 The “discharge capacity” in the formula (4) is a capacity obtained by charging a nickel-metal hydride storage battery with a predetermined charge capacity under an environmental temperature of 60 ° C., and then discharging a discharge current of 2 A from the storage battery. [Ah]. At this time, the “discharge capacity” is indicated by the product of the measured discharge current and the time from the measured discharge start to the discharge end voltage (1 V). In general, it is judged that the storage battery is more excellent as the “discharge capacity” (high temperature capacity) is larger. That is, if the “charge capacity” is constant, the battery characteristics are more excellent as the “discharge capacity” is larger, that is, as the “high temperature utilization rate” is higher.
 [電池抵抗]
 本実施形態の「電池抵抗」(DC-IR)は、環境温度が「25℃」の下で、ニッケル水素蓄電池に所定の充電容量分(SOC=60%)だけ充電した後、該蓄電池に対して短時間の充放電を繰り返し、充放電の際に印加した電流と測定された電圧との関係から算出される。なお一般に、蓄電池は、その内部抵抗(IR)が低いほど優れていると判断される。
[Battery resistance]
The “battery resistance” (DC-IR) of the present embodiment is obtained by charging a nickel-metal hydride storage battery for a predetermined charging capacity (SOC = 60%) under an environmental temperature of “25 ° C.” Thus, charging / discharging for a short time is repeated, and it is calculated from the relationship between the current applied during charging / discharging and the measured voltage. In general, a storage battery is judged to be better as its internal resistance (IR) is lower.
 具体的には、以下のように「電池抵抗」が測定される。まず、常温の下で蓄電池に、その蓄電量(SOC)が60%になるまで充電する。その後、例えば、10Aで10秒間放電した際の電圧降下(ΔV)から、ニッケル水素蓄電池の直流の内部抵抗(DC-IR)を「ΔV/10A」により算出する。 Specifically, “battery resistance” is measured as follows. First, the storage battery is charged at room temperature until the amount of stored electricity (SOC) reaches 60%. Thereafter, for example, the direct current internal resistance (DC-IR) of the nickel-metal hydride storage battery is calculated from “ΔV / 10A” from the voltage drop (ΔV) when discharged at 10 A for 10 seconds.
 [指標値と高温利用率及び電池抵抗の関係]
 図1に示すように、評価式(1)から算出される指標値が「0.000」~「0.239」の範囲である電解液をニッケル水素蓄電池に利用した場合について、指標値ごとに高温利用率及び電池抵抗を得た。但し、指標値が「0.000」のとき、タングステン元素及びナトリウム元素の電解液中での重量%はいずれも「0」としている。以下に、評価式(1)から算出される指標値ごとに、対応する高温利用率の値、及び電池抵抗の値を記載する。なお、説明の便宜上、高温利用率の値を「利用率値」、電池抵抗の値を「抵抗値」と記載する。
・指標値「0.000」:利用率値U01「69.0」、抵抗値R01「2.73」
・指標値「0.007」:利用率値U02「86.0」、抵抗値R02「2.78」
・指標値「0.032」:利用率値U03「89.1」、抵抗値R03「2.78」
・指標値「0.060」:利用率値U04「90.0」、抵抗値R04「2.83」
・指標値「0.069」:利用率値U05「94.8」、抵抗値R05「2.90」
・指標値「0.092」:利用率値U06「87.3」、抵抗値R06「2.88」
・指標値「0.098」:利用率値U07「95.4」、抵抗値R07「2.90」
・指標値「0.110」:利用率値U08「97.2」、抵抗値R08「2.88」
・指標値「0.129」:利用率値U09「95.7」、抵抗値R09「2.94」
・指標値「0.138」:利用率値U10「96.3」、抵抗値R10「2.96」
・指標値「0.165」:利用率値U11「96.6」、抵抗値R11「2.95」
・指標値「0.202」:利用率値U12「97.1」、抵抗値R12「2.97」
・指標値「0.239」:利用率値U13「97.4」、抵抗値R13「3.05」
 こうして得られた高温利用率によれば、利用率値U01~U13は、指標値が「0.000」から「0.250」までの間(範囲A1~A4)において、グラフLUのように変化する。つまり、高温利用率は、指標値が小さければ低く(悪く)なり、指標値が大きければ高く(良く)なる傾向を有している。詳述すると、高温利用率は、指標値が「0.000」から「0.007」までの範囲A1では、その値の上昇幅が比較的大きい一方、指標値が「0.007」から「0.239」までの範囲A2~A4では、その値の上昇幅が比較的小さい傾向を有していることが明らかになった。つまり、高温利用率は、その値が大きく上昇した後の範囲となる、指標値が「0.007」以上の範囲A2~A4で、指標値が「0.007」未満の範囲A1のときの値に比べて、相対的に良好な値となる。また、指標値が「0.007」以上の範囲A2~A4であっても、高温利用率の値の上昇幅は、指標値が大きくなるにつれて小さくなる傾向にある。つまり高温利用率の値の上昇幅は、指標値が「0.110」未満の範囲A2に比較して、指標値が「0.110」以上の範囲A3,A4において小さくなり、指標値が「0.200」以上の範囲A4ではより一層小さくなる。高温利用率の値は、範囲A4においてほとんど上昇しない。
[Relationship between index value, high temperature utilization rate and battery resistance]
As shown in FIG. 1, for each index value, an electrolyte solution having an index value calculated from the evaluation formula (1) in the range of “0.000” to “0.239” is used for a nickel metal hydride storage battery. High temperature utilization and battery resistance were obtained. However, when the index value is “0.000”, the weight% of the tungsten element and the sodium element in the electrolytic solution are both “0”. Below, the value of a corresponding high temperature utilization factor and the value of battery resistance are described for every index value calculated from the evaluation formula (1). For convenience of explanation, the value of the high temperature utilization rate is described as “utilization value”, and the value of the battery resistance is described as “resistance value”.
Index value “0.000”: utilization value U01 “69.0”, resistance value R01 “2.73”
Index value “0.007”: utilization rate value U02 “86.0”, resistance value R02 “2.78”
Index value “0.032”: utilization value U03 “89.1”, resistance value R03 “2.78”
Index value “0.060”: utilization rate value U04 “90.0”, resistance value R04 “2.83”
Index value “0.069”: utilization value U05 “94.8”, resistance value R05 “2.90”
Index value “0.092”: Utilization value U06 “87.3”, resistance value R06 “2.88”
Index value “0.098”: Utilization value U07 “95.4”, resistance value R07 “2.90”
Index value “0.110”: utilization value U08 “97.2”, resistance value R08 “2.88”
Index value “0.129”: utilization value U09 “95.7”, resistance value R09 “2.94”
Index value “0.138”: utilization value U10 “96.3”, resistance value R10 “2.96”
Index value “0.165”: utilization value U11 “96.6”, resistance value R11 “2.95”
Index value “0.202”: utilization value U12 “97.1”, resistance value R12 “2.97”
Index value “0.239”: utilization value U13 “97.4”, resistance value R13 “3.05”
According to the high temperature utilization rate thus obtained, the utilization rate values U01 to U13 change like the graph LU when the index value is between “0.000” and “0.250” (range A1 to A4). To do. That is, the high temperature utilization rate tends to be low (bad) when the index value is small and high (good) when the index value is large. More specifically, the high temperature utilization rate is relatively large in the range A1 of the index value from “0.000” to “0.007”, while the index value ranges from “0.007” to “0.007”. In the range A2 to A4 up to 0.239 ", it became clear that the increase in the value tends to be relatively small. In other words, the high-temperature utilization rate is the range after the value has greatly increased. The index value is in the range A2 to A4 in which the index value is “0.007” or more and the index value is in the range A1 in which the index value is less than “0.007”. It is a relatively good value compared to the value. Even if the index value is in the range A2 to A4 of “0.007” or more, the increase rate of the high-temperature utilization rate tends to decrease as the index value increases. That is, the range of increase in the high-temperature utilization rate is smaller in the ranges A3 and A4 where the index value is “0.110” or more than in the range A2 where the index value is less than “0.110”. In the range A4 of “0.200” or more, it becomes even smaller. The value of the high temperature utilization rate hardly increases in the range A4.
 また、上述した算出によって得られた電池抵抗によれば、抵抗値R01~R13は、指標値が「0.000」から「0.250」までの間(範囲A1~A4)において、グラフLRのように変化する。つまり、電池抵抗は、指標値が小さければ低く(良く)なり、指標値が大きければ高く(悪く)なる傾向を有している。詳述すると、電池抵抗の値は、指標値が「0.000」から「0.250」までの範囲A1~A4では、指標値が大きくなることに応じて、略一定の上昇幅で大きくなる傾向を有している。一般に、車両に搭載されるニッケル水素蓄電池は、大電流を流す必要があるので、その使用環境にかかわらず、その電池抵抗を低く維持する必要がある。つまり、電池抵抗の値は、小さい方が好ましい。特に、車載されるニッケル水素蓄電池の電池抵抗の値としては、エネルギーロスの関係から3.0[mΩ]を超えることは好ましくない。つまり、電池抵抗の値が3.0[mΩ]を超えるおそれが生じる、指標値が「0.200」付近よりも大きい範囲A4となることは好ましくない。 Further, according to the battery resistance obtained by the above calculation, the resistance values R01 to R13 are shown in the graph LR when the index value is between “0.000” and “0.250” (range A1 to A4). To change. That is, the battery resistance tends to be low (good) when the index value is small and high (bad) when the index value is large. More specifically, the value of the battery resistance increases with a substantially constant increase in accordance with the increase of the index value in the range A1 to A4 where the index value ranges from “0.000” to “0.250”. Has a trend. In general, a nickel-metal hydride storage battery mounted on a vehicle needs to pass a large current, so that its battery resistance needs to be kept low regardless of the usage environment. That is, it is preferable that the battery resistance value is small. Particularly, the value of the battery resistance of the nickel-metal hydride storage battery mounted on the vehicle is not preferably more than 3.0 [mΩ] because of the energy loss. That is, it is not preferable that the index value is in a range A4 that is larger than the vicinity of “0.200”, in which the battery resistance value may exceed 3.0 [mΩ].
 また、高温利用率と電池抵抗との関係によれば、高温利用率の値の上昇幅は指標値が増加することに伴って小さくなる一方、電池抵抗の値の上昇幅は指標値が増加することに伴って略一定の幅で上昇する。このため、指標値が大きくなるにつれて、高温利用率の値は上昇が鈍化する一方、電池抵抗は定常的に上昇する。このことから、指標値が大きくなるにつれて、高温利用率の値が上昇する(高温利用率が良くなる)ことにより得られる電池特性の向上に比べて、電池抵抗の値が増加する(電池抵抗が悪くなる)ことによる電池特性の劣化が相対的に大きくなる。つまり高温利用率と電池抵抗との関係によれば、好適な電池特性を維持することのできる指標値として、高温利用率の値がほとんど上昇しなくなる「0.200」程度以下の範囲A2,A3が好ましい。またより好ましくは、高温利用率の値の増加が小さくなる「0.110」程度以下の範囲A2が好ましい。 Further, according to the relationship between the high temperature utilization factor and the battery resistance, the increase range of the high temperature utilization rate decreases as the index value increases, while the increase range of the battery resistance value increases the index value. Along with this, it rises with a substantially constant width. For this reason, as the index value increases, the increase in the high-temperature utilization rate slows while the battery resistance increases constantly. Thus, as the index value increases, the value of the battery resistance increases as compared to the improvement in battery characteristics obtained by increasing the value of the high-temperature utilization rate (improving the high-temperature utilization rate). The deterioration of the battery characteristics due to the deterioration becomes relatively large. That is, according to the relationship between the high temperature utilization factor and the battery resistance, ranges A2 and A3 of about “0.200” or less in which the value of the high temperature utilization factor hardly increases as an index value that can maintain suitable battery characteristics. Is preferred. More preferably, the range A2 of about “0.110” or less where the increase in the value of the high-temperature utilization rate is small is preferable.
 これらのことから、好ましい電池特性を維持する指標値の下限は、高温利用率が急激に低下する前、つまり「0.007」程度が好ましい。また、好ましい電池特性を維持する指標値の上限としては、高温利用率がほとんど上昇しなくなる「0.200」程度以下が好ましく、より好ましくは、高温利用率の値の増加が少なくなる「0.110」が好ましい。つまり、図1に示すように、ニッケル水素蓄電池に優れた高温容量と低い電池抵抗との2つの電池特性を両立させる、つまり好ましい電池特性を維持させる電解液は、指標値が「0.007」から「0.200」までの範囲A2,A3であることが好ましい。また、上述の好ましい電池特性を維持する電解液は、指標値が「0.007」から「0.110」までの範囲A2であることがより好ましい。 For these reasons, the lower limit of the index value for maintaining preferable battery characteristics is preferably before the high-temperature utilization rate rapidly decreases, that is, about “0.007”. Further, the upper limit of the index value for maintaining preferable battery characteristics is preferably about “0.200” or less at which the high-temperature utilization rate hardly increases, and more preferably, “0. 110 "is preferred. That is, as shown in FIG. 1, an electrolyte solution that achieves two battery characteristics of a nickel-metal hydride storage battery with excellent high-temperature capacity and low battery resistance, that is, maintains preferable battery characteristics, has an index value of “0.007”. It is preferable that it is the range A2, A3 from 1 to "0.200". In addition, the electrolyte solution that maintains the preferable battery characteristics described above preferably has an index value in the range A2 from “0.007” to “0.110”.
 よって、優れた高温容量と低い電池抵抗との2つの特性が両立する電池特性を得られる電解液は、式(2)に示すように、指標値が「0.007」以上、かつ、「0.200」以下の範囲A2,A3であることが好ましいことが明らかになった。また、より好ましい電池特性を得られる電解液は、式(3)に示すように、指標値が「0.007」以上、かつ、「0.110」以下の範囲A2であることが好ましいことが明らかになった。 Therefore, the electrolytic solution capable of obtaining battery characteristics in which two characteristics of excellent high-temperature capacity and low battery resistance are compatible has an index value of “0.007” or more and “0” as shown in Equation (2). .200 "or less in the range A2, A3 was found to be preferable. In addition, as shown in the formula (3), the electrolytic solution capable of obtaining more preferable battery characteristics preferably has an index value in the range A2 of “0.007” or more and “0.110” or less. It was revealed.
 ところで、上述したように、従来から、電解液への添加物を変更することにより、電解液の特性、つまり、ニッケル水素蓄電池の特性を変化させることができることは知られている。近年、ハイブリッド自動車の利用環境が様々な環境に拡大することに伴い、ハイブリッド自動車などに搭載されるニッケル水素電池の使用環境も拡大している。こうした状況において、特に酷暑地域における高温環境下での使用においても性能が良好に維持されるニッケル水素蓄電池を得るのに好適な電解液の構成については明らかではなかった。また、車両に搭載されるニッケル水素蓄電池は、大電流を流す必要があるので、その使用環境にかかわらず、その電池抵抗の値を小さく維持する必要がある。また、一般に、タングステン元素やナトリウム元素を電解液に添加すると、高温容量が増加する(良くなる)一方、電池抵抗が高くなる(悪化する)。他方、カリウム元素を電解液に添加すると、電池抵抗が低くなる(良くなる)一方、高温容量が減少する(悪化する)。そのため、タングステン元素、ナトリウム元素及びカリウム元素の添加量に関する規定が存在しない状況においては、良好な電池性能が維持されるようにこれら添加物を電解液に添加することは困難であった。 Incidentally, as described above, it is conventionally known that the characteristics of the electrolytic solution, that is, the characteristics of the nickel-metal hydride storage battery can be changed by changing the additive to the electrolytic solution. In recent years, as the usage environment of hybrid vehicles has expanded to various environments, the usage environment of nickel metal hydride batteries mounted in hybrid vehicles and the like has also expanded. In such a situation, it was not clear about the composition of the electrolyte suitable for obtaining a nickel-metal hydride storage battery whose performance is maintained well even when used in a high temperature environment, particularly in extremely hot regions. Moreover, since the nickel metal hydride storage battery mounted in a vehicle needs to flow a large current, it is necessary to keep the value of the battery resistance small irrespective of the use environment. In general, when tungsten element or sodium element is added to the electrolyte, the high-temperature capacity is increased (improved), while the battery resistance is increased (deteriorated). On the other hand, when potassium element is added to the electrolytic solution, the battery resistance is lowered (improved), while the high-temperature capacity is reduced (deteriorated). Therefore, in the situation where there are no regulations regarding the addition amounts of tungsten element, sodium element, and potassium element, it has been difficult to add these additives to the electrolyte so that good battery performance is maintained.
 本実施形態では、タングステン元素、ナトリウム元素及びカリウム元素の添加量に関する評価式(1)と、その評価式(1)より算出される指標値の適切な範囲を規定した。 In the present embodiment, the evaluation formula (1) regarding the addition amount of tungsten element, sodium element, and potassium element and the appropriate range of the index value calculated from the evaluation formula (1) are defined.
 本実施形態の作用として、酷暑地域での高温環境下での使用においても良好な電池特性を有するニッケル水素蓄電池を得るための電解液が得られる。具体的には、高温での優れた電池容量が維持されるとともに、低い電池抵抗が維持されて使用時のエネルギーロスが低く抑えられる。 As an action of the present embodiment, an electrolytic solution for obtaining a nickel-metal hydride storage battery having good battery characteristics even when used in a high temperature environment in an extremely hot region can be obtained. Specifically, an excellent battery capacity at a high temperature is maintained, and a low battery resistance is maintained, so that energy loss during use is kept low.
 以上説明したように、本実施形態のニッケル水素蓄電池によれば、以下に列記するような利点が得られる。 As described above, according to the nickel-metal hydride storage battery of this embodiment, the advantages listed below can be obtained.
 (1)ニッケル水素蓄電池では、電解液中のカリウム元素は、電池抵抗を低下させるものの高温容量を悪化させ、同電解液中のタングステン元素やナトリウム元素は、高温容量を良好に維持するものの電池抵抗を上昇させる。この実施形態によれば、ニッケル水素蓄電池として、優れた高温容量の維持と低い電池抵抗との2つの特性が両立する蓄電池が得られる。これにより、拡大される使用環境、特に酷暑地域の高温環境下などにおいても良好な性能の維持されるニッケル水素蓄電池が提供される。 (1) In nickel-metal hydride storage batteries, potassium element in the electrolytic solution lowers battery resistance but deteriorates high-temperature capacity, and tungsten and sodium elements in the electrolytic solution maintain good high-temperature capacity. To raise. According to this embodiment, as a nickel metal hydride storage battery, a storage battery in which two characteristics of maintaining excellent high-temperature capacity and low battery resistance are compatible is obtained. As a result, a nickel-metal hydride storage battery is provided that maintains good performance even in an expanding usage environment, particularly in a high-temperature environment in an extremely hot region.
 (2)電解液中のタングステン元素の含有重量%を適切な割合にすることで、充放電における副反応である水の電気分解が良好に抑制されるとともに、過剰な添加により生じる電池抵抗の上昇を抑えることもできる。 (2) By adjusting the content percentage of tungsten element in the electrolyte to an appropriate ratio, the electrolysis of water, which is a side reaction in charge and discharge, is well suppressed, and the battery resistance increases due to excessive addition. Can also be suppressed.
 (3)指標値の範囲を絞り込むことで、高温容量と電池抵抗との2つの特性がより良好に両立するニッケル水素蓄電池が得られる。つまり、ニッケル水素蓄電池の特性として、より優れた高温容量が維持されるとともに、より低い電池抵抗が維持される。 (3) By narrowing down the range of the index value, a nickel-metal hydride storage battery in which the two characteristics of high-temperature capacity and battery resistance are more compatible can be obtained. That is, as a characteristic of the nickel metal hydride storage battery, a higher temperature capacity is maintained and a lower battery resistance is maintained.
 (4)使用環境が様々であり、酷暑地域の高温環境下などの厳しい条件下で使用されるおそれのある車両に搭載された蓄電池においても、その性能が好適に維持される。 (4) The performance is suitably maintained even in a storage battery mounted on a vehicle that may be used under severe conditions such as a high-temperature environment in an extremely hot region because the usage environment is various.
 (その他の実施形態)
 なお上記実施形態は、以下の態様で実施することもできる。
(Other embodiments)
In addition, the said embodiment can also be implemented with the following aspects.
 ・上記実施形態の重量%は、質量%であってもよい。 -The weight% of the said embodiment may be the mass%.
 ・上記実施形態では、樹脂製の収納容器20について例示しているが、収納容器の材料はこれに限られない。収納容器は、電槽として利用できるのであれば、金属製などの樹脂以外の材料から製作されてもよい。これにより、ニッケル水素蓄電池の設計自由度の拡大が図られる。 In the above embodiment, the resin storage container 20 is illustrated, but the material of the storage container is not limited to this. The storage container may be made of a material other than a resin such as a metal as long as it can be used as a battery case. Thereby, expansion of the design freedom of a nickel metal hydride storage battery is achieved.
 ・上記実施形態では、複数の負極板と複数の正極板とがセパレータを介して交互に積層された電極群10について例示している。しかしこれに限らず、電極群が適切に構成されるのであれば、負極板は13枚より少なくてもよいし、13枚より多くてもよい。また、正極板は12枚より少なくてもよいし、12枚より多くてもよい。これにより、ニッケル水素蓄電池の適用範囲の拡大が図られる。 In the above embodiment, the electrode group 10 is illustrated in which a plurality of negative plates and a plurality of positive plates are alternately stacked via separators. However, the present invention is not limited thereto, and the number of negative electrode plates may be less than 13 or more than 13 as long as the electrode group is appropriately configured. Further, the number of positive electrode plates may be less than 12, or more than 12. Thereby, the expansion of the application range of a nickel metal hydride storage battery is achieved.
 ・上記実施形態では、パンチングメタルなどの金属多孔体からなる基板に水素吸蔵合金粉末を塗布して製作された負極板12について例示している。しかしこれに限らず、負極板として機能するのであれば、負極板はどのように製作されてもよい。これにより、ニッケル水素蓄電池の設計自由度の拡大が図られる。 In the above embodiment, the negative electrode plate 12 manufactured by applying a hydrogen storage alloy powder to a substrate made of a porous metal such as punching metal is illustrated. However, the present invention is not limited to this, and the negative electrode plate may be manufactured in any way as long as it functions as a negative electrode plate. Thereby, expansion of the design freedom of a nickel metal hydride storage battery is achieved.
 ・上記実施形態では、発泡ニッケル基板などの金属多孔体からなる基板に水酸化ニッケル粒子を含む活物質を充填して製作された正極板11について例示している。しかしこれに限らず、正極板として機能するのであれば、正極板はどのように製作されてもよい。例えば、焼結基板などの金属多孔体からなる基板に化学反応を用いて活物質を充填して正極板が製作されてもよい。これにより、ニッケル水素蓄電池の設計自由度の拡大が図られる。 In the above embodiment, the positive electrode plate 11 manufactured by filling a substrate made of a metal porous body such as a foamed nickel substrate with an active material containing nickel hydroxide particles is illustrated. However, the present invention is not limited to this, and the positive electrode plate may be manufactured in any way as long as it functions as a positive electrode plate. For example, a positive electrode plate may be manufactured by filling a substrate made of a metal porous body such as a sintered substrate with a chemical reaction using an active material. Thereby, expansion of the design freedom of a nickel metal hydride storage battery is achieved.
 ・上記実施形態では、耐アルカリ性樹脂の不織布であるセパレータ13について例示している。しかしこれに限らず、セパレータは、ニッケル水素蓄電池に適合する素材から形成されていればよい。これにより、ニッケル水素蓄電池の設計自由度の拡大が図られる。 In the above embodiment, the separator 13 which is a non-woven fabric of alkali resistant resin is illustrated. However, the present invention is not limited to this, and the separator only needs to be formed of a material that is compatible with a nickel metal hydride storage battery. Thereby, expansion of the design freedom of a nickel metal hydride storage battery is achieved.
 ・上記実施形態では、電気自動車やハイブリッド自動車の電源として用いられるニッケル水素蓄電池1について例示している。しかしニッケル水素蓄電池は、電源が必要な自動車以外の電源として用いられてもよい。例えば、自動車以外の電源としては、鉄道、船舶、航空機やロボットなどの移動体や、情報処理装置などの電気製品の電源などが挙げられる。これにより、ニッケル水素蓄電池の適用範囲の拡大が図られる。 In the above embodiment, the nickel hydride storage battery 1 used as a power source for an electric vehicle or a hybrid vehicle is illustrated. However, the nickel metal hydride storage battery may be used as a power source other than an automobile that requires a power source. For example, power sources other than automobiles include moving bodies such as railways, ships, airplanes, and robots, and power supplies for electrical products such as information processing apparatuses. Thereby, the expansion of the application range of a nickel metal hydride storage battery is achieved.

Claims (3)

  1.  車両に搭載されるニッケル水素蓄電池であって、
     水酸化ニッケルを主成分とする活物質を含む正極板と、水素吸蔵合金を含む負極板と、前記正極板と前記負極板との間に配置されるセパレータとを備える電極群と、
     タングステン元素、ナトリウム元素及びカリウム元素を含む電解液と、
     前記電極群と前記電解液とを封入する収納容器とを有し、
     前記電解液の重量を基準とした前記各元素の重量%の関係が、
     0.007≦(タングステン元素の重量%+ナトリウム元素の重量%)/(カリウム元素の重量%)≦0.20
     であるニッケル水素蓄電池。
    A nickel metal hydride storage battery mounted on a vehicle,
    An electrode group comprising a positive electrode plate including an active material mainly composed of nickel hydroxide, a negative electrode plate including a hydrogen storage alloy, and a separator disposed between the positive electrode plate and the negative electrode plate;
    An electrolyte containing tungsten element, sodium element and potassium element;
    A storage container enclosing the electrode group and the electrolyte solution;
    The relationship of the weight percent of each element based on the weight of the electrolytic solution,
    0.007 ≦ (wt% of tungsten element + wt% of sodium element) / (wt% of potassium element) ≦ 0.20
    Nickel metal hydride storage battery.
  2.  前記タングステン元素の重量%が、0.22重量%以上、かつ、3.40重量%以下である
     請求項1に記載のニッケル水素蓄電池。
    The nickel metal hydride storage battery according to claim 1, wherein a weight percent of the tungsten element is 0.22 wt% or more and 3.40 wt% or less.
  3.  前記タングステン元素、ナトリウム元素及びカリウム元素のそれぞれの重量%の関係が、
     0.007≦(タングステン元素の重量%+ナトリウム元素の重量%)/(カリウム元素の重量%)≦0.11
     である請求項1又は2に記載のニッケル水素蓄電池。
    The relationship of the respective weight percentages of the tungsten element, the sodium element and the potassium element is as follows:
    0.007 ≦ (wt% of tungsten element + wt% of sodium element) / (wt% of potassium element) ≦ 0.11
    The nickel metal hydride storage battery according to claim 1 or 2.
PCT/JP2014/056202 2013-07-31 2014-03-10 Nickel-metal hydride storage battery WO2015015825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158883 2013-07-31
JP2013158883A JP2015032358A (en) 2013-07-31 2013-07-31 Nickel hydrogen storage battery

Publications (1)

Publication Number Publication Date
WO2015015825A1 true WO2015015825A1 (en) 2015-02-05

Family

ID=52431378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056202 WO2015015825A1 (en) 2013-07-31 2014-03-10 Nickel-metal hydride storage battery

Country Status (2)

Country Link
JP (1) JP2015032358A (en)
WO (1) WO2015015825A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498906B2 (en) 2013-01-18 2019-12-03 Samsung Electronics Co., Ltd. Method and apparatus for adjusting service level in congestion
CN114079058A (en) * 2020-08-21 2022-02-22 朴力美电动车辆活力株式会社 Nickel-hydrogen storage battery and method for manufacturing nickel-hydrogen storage battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219214A (en) * 1996-02-09 1997-08-19 Yuasa Corp Alkaline storage battery
JPH11219702A (en) * 1998-01-30 1999-08-10 Sanyo Electric Co Ltd Non-sintered type nickel positive electrode for alkaline storage battery, electrolyte for alkaline storage battery, and alkaline storage battery using the nickel positive electrode and electrolyte
JP2001217000A (en) * 1999-02-26 2001-08-10 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JP2003077469A (en) * 2001-09-03 2003-03-14 Yuasa Corp Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP2003249222A (en) * 2001-12-12 2003-09-05 Sanyo Electric Co Ltd Nickel/hydrogen storage battery
JP2004127673A (en) * 2002-10-01 2004-04-22 Sanyo Chem Ind Ltd Electrolyte for battery, and battery using the same
JP2004235088A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2004281289A (en) * 2003-03-18 2004-10-07 Sanyo Electric Co Ltd Alkaline storage battery
JP2013114888A (en) * 2011-11-29 2013-06-10 Sanyo Electric Co Ltd Alkali storage battery, and alkali storage battery system with the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219214A (en) * 1996-02-09 1997-08-19 Yuasa Corp Alkaline storage battery
JPH11219702A (en) * 1998-01-30 1999-08-10 Sanyo Electric Co Ltd Non-sintered type nickel positive electrode for alkaline storage battery, electrolyte for alkaline storage battery, and alkaline storage battery using the nickel positive electrode and electrolyte
JP2001217000A (en) * 1999-02-26 2001-08-10 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JP2003077469A (en) * 2001-09-03 2003-03-14 Yuasa Corp Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP2003249222A (en) * 2001-12-12 2003-09-05 Sanyo Electric Co Ltd Nickel/hydrogen storage battery
JP2004127673A (en) * 2002-10-01 2004-04-22 Sanyo Chem Ind Ltd Electrolyte for battery, and battery using the same
JP2004235088A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2004281289A (en) * 2003-03-18 2004-10-07 Sanyo Electric Co Ltd Alkaline storage battery
JP2013114888A (en) * 2011-11-29 2013-06-10 Sanyo Electric Co Ltd Alkali storage battery, and alkali storage battery system with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10498906B2 (en) 2013-01-18 2019-12-03 Samsung Electronics Co., Ltd. Method and apparatus for adjusting service level in congestion
CN114079058A (en) * 2020-08-21 2022-02-22 朴力美电动车辆活力株式会社 Nickel-hydrogen storage battery and method for manufacturing nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JP2015032358A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
US9257698B2 (en) Composition, energy storage device, and related process
KR102044436B1 (en) Lithium Ion Secondary Battery and Method of Manufacturing Same
JP6094902B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2016152063A (en) Manufacturing method of alkali storage battery, and alkali storage battery
US20100248024A1 (en) Alkaline storage battery system
WO2015015825A1 (en) Nickel-metal hydride storage battery
JP2012156101A (en) Hydrogen-storing alloy electrode for alkaline storage battery, and alkaline storage battery comprising the same
WO2014049966A1 (en) Cathode active material for alkaline storage battery, alkaline storage battery and alkaline storage battery cathode containing same, and nickel-hydrogen storage battery
WO2015019647A1 (en) Nickel-metal hydride storage battery
KR102624999B1 (en) Rechargeable lithium-ion battery with improved lifespan characteristics
JP2019096561A (en) Lithium ion secondary battery
WO2021055950A1 (en) Aqueous rechargeable battery based on formation reaction anodes
JP2011014258A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
JP2002279992A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP4443135B2 (en) Alkaline storage battery
JP7343116B1 (en) secondary battery
JP5334498B2 (en) Alkaline storage battery
JP5350110B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
WO2012014895A1 (en) Sintered nickel cathode, method of manufacturing same, and alkaline storage battery employing the sintered nickel cathode
JPH04109556A (en) Closed-type secondary battery
JP4573609B2 (en) Alkaline storage battery
JP3287386B2 (en) Nickel electrode for alkaline storage battery
JP6164647B2 (en) Hydrogen storage alloy and nickel metal hydride battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831618

Country of ref document: EP

Kind code of ref document: A1