WO2015014243A1 - 通道校正方法、通道互校正方法、装置及系统 - Google Patents

通道校正方法、通道互校正方法、装置及系统 Download PDF

Info

Publication number
WO2015014243A1
WO2015014243A1 PCT/CN2014/082990 CN2014082990W WO2015014243A1 WO 2015014243 A1 WO2015014243 A1 WO 2015014243A1 CN 2014082990 W CN2014082990 W CN 2014082990W WO 2015014243 A1 WO2015014243 A1 WO 2015014243A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
channel
rru
base station
sequence
Prior art date
Application number
PCT/CN2014/082990
Other languages
English (en)
French (fr)
Inventor
胡召宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015014243A1 publication Critical patent/WO2015014243A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the base station side may include a baseband unit (BBU), and each BBU may be connected to a plurality of remote radio units (RRUs), and one RRU corresponds to one cell.
  • RRUs remote radio units
  • the BBU can control multiple RRUs to send downlink signals to the same user equipment through inter-cell cooperation to improve the signal reception quality of the UE.
  • Each RRU corresponds to a group of antenna arrays, and has a transmission and reception channel in the RRU that is consistent with the number of antennas in the antenna array. For example, if an antenna array of an RRU includes two antennas, correspondingly, two R transceiver channels are disposed in the RRU. Each transceiver channel includes a transmit channel and a receive channel.
  • the RRU's transceiver channel correction usually uses an analog correction method, that is, the RRU advanced line self-correction, and then performs mutual correction.
  • Self-correction phase The RRU does not calibrate its own transceiver channels.
  • Mutual correction phase The RRU transmits its own channel information to another RRU paired with the RRU through air interface or other means. The paired RRUs respectively perform the paired RRU according to the channel information of the other party and the channel information of the other party. All channels are identical.
  • the RRU In the mutual correction phase, the RRU exchanges its own and the other party's channel letter through air interface or other means. Interest, it will inevitably introduce the noise of the connection or air interface, and due to the time-varying of the analog channel, phase noise will also be introduced, which will affect the result of channel joint correction.
  • the two RRUs in the interaction are in a non-co-located state (ie, the two RRUs that interact are the RRUs of the two base stations, respectively)
  • the various noises on the interactive channel will increase significantly, and the channel correction band will be given. More uncertainty factors are added, resulting in a significantly lower accuracy of channel joint correction results.
  • aspects of the present invention provide a channel correction method, a channel mutual correction method, apparatus, and system for improving channel correction accuracy.
  • a first aspect of the present invention provides a channel correction method, including: transmitting a downlink digitized sequence to a baseband unit BBU, so that the BBU is based on the downlink sequenced sequence, based on a preset transmission channel.
  • the reference sequence calculates a correction coefficient corresponding to all the transmission channels of the RRU;
  • the processed sequence calculates a correction coefficient corresponding to all the receiving channels of the RRU based on the preset receiving channel reference sequence.
  • the correcting sequence received from the RRU is downlink digitized, specifically:
  • the analog sequence received from the RRU is sequentially subjected to analog-to-digital conversion, IQ modulation, equal interval extraction, and digital filtering.
  • the calibration sequence received from the BBU is subjected to uplink digitization processing, specifically:
  • a first processing module configured to perform downlink processing on a calibration sequence received from a remote radio unit RRU Digital processing
  • a first sending module configured to send the downlink digitized sequence to the baseband unit BBU, so that the BBU calculates a correction coefficient corresponding to all the transmission channels of the RRU according to the downlink digitized sequence;
  • a second processing module configured to perform uplink digital processing on the correction sequence received from the BBU
  • a second sending module configured to send the uplink digitized sequence to the RRU, and calculate, by the BBU, the correction corresponding to all the receiving channels of the RRU according to the uplink digitized sequence returned by the RRU coefficient.
  • the first processing module is specifically configured to perform analog-to-digital conversion, IQ modulation, and equal interval sampling on a calibration sequence received from the RRU. And digital filtering processing.
  • the second processing module is configured to perform equal interval interpolation, digital filtering, IP modulation, and the like, in sequence, from the correction sequence of the BBU. Digital to analog conversion processing.
  • a third aspect of the present invention provides a base station, including a BBU, an RRU, and a channel correction apparatus, where the channel correction apparatus is configured to perform downlink digitization processing on a correction sequence received from a remote radio unit RRU;
  • the sequence is sent to the baseband unit BBU, so that the BBU calculates a correction coefficient corresponding to all the transmission channels of the RRU based on the preset transmission channel reference sequence according to the downlink digitized sequence;
  • the calibration sequence is subjected to the uplink digitization process; the uplink digitized sequence is sent to the RRU, and the BBU calculates the uplink sequence based on the preset received channel reference sequence according to the uplink digitized sequence returned by the RRU.
  • the correction factor corresponding to all the receiving channels of the RRU.
  • a fourth aspect of the present invention provides a method for inter-base station inter-channel correction using different channel correction modes, where the two base stations include a first base station and a second base station, wherein the first base station uses the present invention
  • the correction message is broadcasted, so that the cell of the second base station that receives the correction message corrects its channel to and according to the correction information.
  • the channels of the cells of the first base station are consistent;
  • the correction message carries the channel characteristic information after the channel correction is performed by the first base station.
  • a fifth aspect of the present invention provides a communication system, including at least a first base station and a second base station, wherein the first base station uses the base station provided by the third aspect of the present invention, After the cell channel is corrected, the correction message is broadcasted, where the correction message carries the channel characteristic information of the channel corrected by the cell of the first base station; the second base station is a base station that uses the analog correction mode to correct the channel. And, when receiving the correction message, correcting its own channel to be consistent with a channel of the cell of the first base station according to the correction information.
  • the embodiment of the present invention performs downlink digitization processing on the correction sequence received from the RRU, and performs uplink digitization processing on the correction sequence received from the BBU, so that the BBU can more accurately according to the digitized sequence.
  • Correcting all the transceiver channels of the RRU since the correction sequence received by the BBU is digitized, the BBU can perform absolute correction on the RRU transceiver channel. That is, the BBU can calculate the RRU based on the reference sequence of the preset transmission channel. The correction coefficient of all the transmission channels is calculated based on the reference sequence of the preset receiving channel to calculate the correction coefficient corresponding to all the receiving channels of the RRU.
  • FIG. 1 is a channel calibration method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a calibration circuit implemented by a base station to perform correction on all transmission channels of an RRU according to Embodiment 3 of the present invention
  • 3 is a schematic diagram of a correction circuit for a base station to perform correction on all receiving channels of an RRU according to Embodiment 3 of the present invention
  • FIG. 4 is a schematic structural diagram of a channel calibration apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 6 is another schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of still another base station according to Embodiment 3 of the present invention. a schematic flowchart of a calibration method
  • FIG. 9 is a schematic diagram showing an example of a hybrid deployment of a new and old characteristic base station according to the present invention.
  • FIG. 10 is another example diagram of a hybrid deployment of a new and old characteristic base station according to the present invention.
  • the channel correction method provided in Embodiment 1 of the present invention may be a channel correcting device.
  • the method described in this embodiment may include:
  • the BBU generates a corresponding number of correction sequences according to the number of transmission channels of the RRU, and sends the correction sequence to the RRU through the CPRI interface of the RRU. All of the transmit channels of the RRU transmit the received correction sequence to the antenna coupling disk, which is coupled by the antenna.
  • the channel correction device performs downlink digitization processing on the received correction sequence.
  • the downlink digitization processing may include: analog to digital conversion, IQ modulation, equal interval extraction, and digital filtering processing.
  • one possible implementation of this step is: sequentially performing analog-to-digital conversion, IQ modulation, equal-interval extraction, and digital filtering on the correction sequence received from the RRU.
  • this hair Style is: sequentially performing analog-to-digital conversion, IQ modulation, equal-interval extraction, and digital filtering on the correction sequence received from the RRU.
  • the channel reference sequence includes characteristic parameters such as amplitude and phase.
  • the BBU calculates, according to the downlink digitized sequence, a correction coefficient corresponding to all the transmission channels of the RRU based on the preset transmission channel reference sequence, according to the downlink digitization.
  • the processed sequence calculates the channel characteristic parameters of all the transmission channels of the RRU, and then calculates a correction coefficient corresponding to all the transmission channels of the RRU by using a preset algorithm based on the preset transmission channel reference sequence.
  • Step 103 Perform uplink digitization processing on the correction sequence received from the BBU.
  • Step 104 Send the uplink digitized sequence to the RRU, so that the RRU calculates all the RRUs based on the preset received channel reference sequence according to the uplink digitized sequence returned by the RRU.
  • the correction factor corresponding to the channel is the correction factor corresponding to the channel.
  • the channel correcting device sends the uplink digitized sequence to the antenna coupling disk, and the antenna coupling disk performs power allocation on the uplink digitized sequence according to the number of receiving channels of the RRU. And sent to the RRU.
  • the uplink digitized sequence is returned to the BBU via the transmission of the RRU's receive channel.
  • the BBU may calculate a correction coefficient corresponding to all the receiving channels of the RRU according to the preset received channel reference sequence according to the uplink digitized sequence returned by the RRU.
  • the channel reference sequence includes characteristic parameters such as amplitude and phase.
  • the BBU calculates a correction coefficient corresponding to all the receiving channels of the RRU based on the preset received channel reference sequence according to the uplink digitized sequence returned by the RRU. And: calculating a channel characteristic parameter of all the receiving channels of the RRU according to the sequence of the uplink digitized processing, and then calculating, according to the preset receiving channel reference sequence, a correction corresponding to all the receiving channels of the RRU by using a preset algorithm. coefficient.
  • the channel correcting device may perform steps 101 and 102 to implement correction of all the transmission channels of the RRU, and may perform 103 and 104 to implement correction of all the receiving channels of the RRU.
  • FIG. 4 is a schematic structural diagram of a channel calibration apparatus according to Embodiment 2 of the present invention.
  • the channel correction apparatus includes: a first processing module 1, a first transmitting module 2, a second processing module 3, and a second transmitting module 4.
  • the first processing module 1 is configured to perform downlink digitization processing on the correction sequence received from the remote radio unit RRU.
  • the first sending module 2 is configured to send the downlink digitized sequence to the baseband unit BBU, so that the BBU calculates the RRU based on the downlink sequenced sequence according to the preset transmit channel reference sequence.
  • the correction factor corresponding to all the transmission channels.
  • the second processing module 3 is configured to perform uplink digitization processing on the correction sequence received from the BBU.
  • the second sending module 4 is configured to send the uplink digitized sequence to the RRU, so that the RRU returns the received uplink digitized sequence to the BBU, and the BBU is configured by the BBU.
  • the uplink digitized sequence returned by the RRU calculates a correction coefficient corresponding to all the receiving channels of the RRU based on a preset receiving channel reference sequence.
  • the channel correcting apparatus in this embodiment performs downlink digitization processing on the correction sequence received from the RRU, and performs uplink digitization processing on the correction sequence received from the BBU, so that the BBU can more accurately compare the RRU according to the digitized sequence.
  • All transceiver channels for calibration Positive at the same time, since the correction sequence received by the BBU is digitized, the BBU can perform absolute correction on the RRU transceiver channel, that is, the BBU can calculate the correction coefficients of all the transmission channels of the RRU based on the preset reference sequence of the transmission channel. And calculating a correction coefficient corresponding to all the receiving channels of the RRU based on the reference sequence of the preset receiving channel.
  • the first processing module described in the foregoing embodiment is specifically configured to perform analog-to-digital conversion, IQ modulation, equal interval extraction, and digital filtering on the correction sequence received from the RRU.
  • the second processing module is specifically configured to perform equal interval interpolation, digital filtering, IP modulation, and digital-to-analog conversion processing in sequence from the correction sequence of the BBU.
  • a base station provided in Embodiment 3 of the present invention is as shown in FIG. 2 or 3.
  • the base station described in this embodiment includes: a BBU, an RRU, and a channel correction device.
  • the channel correction device sends the processed sequence to the baseband unit BBU, so that the BBU calculates all the RRUs based on the preset transmission channel reference sequence according to the downlink digitized sequence.
  • the BBU calculates a correction coefficient corresponding to all the receiving channels of the RRU based on the preset received channel reference sequence according to the uplink digitized sequence returned by the RRU.
  • the channel calibration device may be separately set (as shown in FIG. 2 or FIG. 3), or may be disposed on the RRU (as shown in FIG. 5), or may be disposed on the antenna coupling disk (as shown in FIG. 6)), can also be set on the BBU (as shown in Figure 7).
  • the channel correction device is disposed on the antenna coupling plate, so that the external interface is mainly a digital signal line, and therefore, the anti-interference ability is strong. If the channel calibration device is set on the BBU, only the BBU board needs to be upgraded, and the external environment does not need to be changed, which is simpler to implement.
  • channel information interaction between cells in the prior art can be cancelled.
  • the channel correction time is shortened, and the time is reduced. Etc., in turn, improves the accuracy of channel correction.
  • the base station provided by the embodiment of the present invention can implement absolute correction of the RRU transceiver channel, and the RRU does not need to perform cross-correction with other paired RRUs.
  • the base stations currently deployed are base stations that use the analog correction method for channel correction (hereinafter referred to as the old feature base stations). If the base station provided in the foregoing embodiment 3 is deployed in an existing network, and the old characteristic base station exists around the new characteristic base station, the old characteristic base station cannot perform channel information interaction with the new characteristic base station. , causing it to fail to complete the channel correction.
  • the fourth embodiment of the present invention provides a method for mutually correcting inter-base station channels using different channel correction modes, so that the new characteristic base stations are deployed in the existing network, and the channel correction of other old characteristic base stations is not affected. , which in turn contributes to the promotion of new feature base stations.
  • the fourth embodiment of the present invention provides a schematic flowchart of a method for mutually correcting inter-base station channels using different channel correction modes. As shown in FIG. 8, the method described in the fourth embodiment includes:
  • Step 201 The cell of the first base station performs channel correction.
  • the first base station performs channel correction on the channel of the cell by using the channel correction method in the first embodiment.
  • the channel correction method in the first embodiment refer to the content in the first embodiment, and details are not described herein again.
  • the first base station is the above-mentioned new characteristic base station.
  • Step 202 After the cell channel correction of the first base station is completed, broadcast a correction message, so that the cell of the second base station that receives the correction message corrects its channel to the first according to the correction information.
  • the channels of the cells of the base station are consistent.
  • the correction message carries the channel characteristic information after the channel is corrected by the new characteristic base station.
  • the channel characteristic information includes amplitude and phase information of the receiving channel, and amplitude and phase information of the transmitting channel.
  • the cell of the second base station uses the existing analog correction method to perform channel correction, that is, the second base station is the old characteristic base station.
  • an example of a hybrid configuration of a new and old characteristic base station if the new characteristic base station 10 is deployed in the old characteristic base station 20, that is, the base stations adjacent to the new characteristic base station are old characteristic base stations, Then, the old characteristic base station can implement channel mutual correction by using the method described in Embodiment 4 above. As shown in FIG. 10, if the new characteristic base station is deployed outside the edge of the area under the jurisdiction of the plurality of old characteristic base stations, the old characteristic base station adjacent to the new characteristic base station can implement the channel mutual channel by using the method described in the second embodiment. Correction, and the other old characteristic base stations further correct the channel by using the existing analog correction method, or the old characteristic base station adjacent to the new characteristic base station is used as the reference base station. In the nearest way, the other old characteristic base stations in the surrounding area are corrected, and the method is pushed forward in this way, and the joint channel correction of all the old characteristic base stations is finally completed.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a hardware plus software functional unit.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk or an optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种通道校正方法、通道互校正方法、装置及系统。所述通道校正方法包括:对接收自RRU的校正序列进行下行数字化处理;将下行数字化处理后的序列发送至BBU,以使所述BBU根据所述下行数字化处理后的序列,基于预设的发通道参考序列计算所述RRU的所有发通道对应的校正系数;对接收自所述BBU的校正序列进行上行数字化处理;将上行数字化处理后的序列发送至所述RRU,以使所述RRU将接收到的所述上行数字化处理后的序列返回至所述BBU,由所述BBU根据所述RRU返回的所述上行数字化处理后的序列,基于预设的收通道参考序列计算所述RRU的所有收通道对应的校正系数。本发明实施例通道校正准确度高。

Description

通道校正方法、 通道互校正方法、 装置及系统 本申请要求 2013 年 07 月 29 日提交中国专利局、 申请号为 201310323876.5, 发明名称为 《通道校正方法、 通道互校正方法、 装置及系 统》 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术, 尤其涉及一种通道校正方法、 通道互校正方法、 装置及系统。
背景技术 在长期演进 ( Long Term Evolution,简称 LTE ) 中引入了协作多点 ( Coordinative Multiple Point, 简称 COMP )技术, 通过基站协同传输提高 吞吐量, 尤其是在小区边缘的用户, 进而改善小区边缘覆盖、 提升用户体 验。在运用 COMP技术的通信系统中,基站侧可以包括基带单元( Base Band Unit,简称 BBU ),每个 BBU可以连接多个远程射频单元( Remote Radio Unit, 简称 RRU ), —个 RRU对应一个小区。 当 COMP通信系统实现联合发送 ( Joint Transmission, 简称 JT )性能时, BBU可以控制多个 RRU通过小区 间协作向同一个用户设备发送下行信号, 以提高 UE的信号接收质量。每个 RRU对应一组天线阵,在 RRU内具有与天线阵内的天线数量一致的收发通 道, 例如, 某个 RRU的天线阵包含 2个天线, 则相应地该 RRU内设置有 两个收发通道, 每个收发通道包括一个发通道和一个收通道。
现有技术中, RRU的收发通道校正通常釆用模拟校正方法, 即 RRU先进 行自校正, 然后再进行互校正。 自校正阶段: RRU别将自身的各收发通道 校正一致。互校正阶段: RRU将自身的通道信息通过空口或其它方式传递 到与 RRU配对的另一个 RRU,配对的两个 RRU分别才艮据对方的通道信息和 自身通道信息, 完成配对的两个 RRU的所有通道都一致。
在互校正阶段中, RRU通过空口或其它方式交互自身和对方的通道信 息, 必然会引入连线或空口的噪声, 并且由于模拟信道的时变性, 还将引 入相位噪声, 这些都将影响到通道联合校正的结果。 特别是, 当交互的两 个 RRU处于非共站状态 (即交互的两个 RRU分别是两个基站的 RRU ), 交互通道上的各种噪声都将会有明显地增加, 会给通道校正带来更多的不 确定性因数, 致使通道联合校正的结果准确性显著降低。
发明内容 本发明的多个方面提供一种通道校正方法、 通道互校正方法、 装置及 系统, 用以提高通道校正的准确度。
本发明第一个方面提供了一种通道校正方法, 包括: 将下行数字化处理后的序列发送至基带单元 BBU,以使所述 BBU根据 所述下行数字化处理后的序列, 基于预设的发通道参考序列计算所述 RRU 的所有发通道对应的校正系数;
对接收自所述 BBU的校正序列进行上行数字化处理;
将上行数字化处理后的序列发送至所述 RRU,以使所述 RRU将接收到 的所述上行数字化处理后的序列返回至所述 BBU, 由所述 BBU根据所述 RRU返回的所述上行数字化处理后的序列, 基于预设的收通道参考序列计 算所述 RRU的所有收通道对应的校正系数。
结合通道校正方法的第一个方面, 在第一种可能实现方式中, 所述对 接收自 RRU的校正序列进行下行数字化处理, 具体为:
对接收自 RRU的校正序列依次进行模数转换, IQ调制、等间隔抽值和 数字滤波处理。
结合通道校正方法的第一个方面, 在第二种可能实现方式中, 所述接 收自所述 BBU的校正序列进行上行数字化处理, 具体为:
对接收自所述 BBU的校正序列依次进行等间隔插值、数字滤波、 IP调 制和数模转换处理。
本发明第二个方面提供了一种通道校正装置, 包括:
第一处理模块, 用于对接收自远程射频单元 RRU的校正序列进行下行 数字化处理;
第一发送模块,用于将下行数字化处理后的序列发送至基带单元 BBU, 以使所述 BBU根据所述下行数字化处理后的序列, 计算所述 RRU的所有 发通道对应的校正系数;
第二处理模块, 用于对接收自所述 BBU的校正序列进行上行数字化处 理;
第二发送模块, 用于将上行数字化处理后的序列发送至所述 RRU, 以 所述 BBU根据所述 RRU返回的所述上行数字化处理后的序列, 计算所述 RRU的所有收通道对应的校正系数。
结合通道校正装置的第二个方面, 在第一种可能的实现方式中, 所述 第一处理模块, 具体用于对接收自 RRU的校正序列依次进行模数转换, IQ 调制、 等间隔抽值和数字滤波处理。
结合通道校正装置的第二个方面, 在第二种可能的实现方式中, 所述 第二处理模块,具体用于接收自所述 BBU的校正序列依次进行等间隔插值、 数字滤波、 IP调制和数模转换处理。
本发明第三个方面提供了一种基站, 包括 BBU、 RRU以及通道校正装 置, 所述通道校正装置, 用于对接收自远程射频单元 RRU的校正序列进行 下行数字化处理; 将下行数字化处理后的序列发送至基带单元 BBU, 以使 所述 BBU根据所述下行数字化处理后的序列,基于预设的发通道参考序列 计算所述 RRU的所有发通道对应的校正系数; 对接收自所述 BBU的校正 序列进行上行数字化处理; 将上行数字化处理后的序列发送至所述 RRU, 由所述 BBU根据所述 RRU返回的所述上行数字化处理后的序列, 基于预 设的收通道参考序列计算所述 RRU的所有收通道对应的校正系数。
本发明第四个方面提供了一种釆用不同通道校正方式的两基站间通道 互校正方法, 所述两基站包括第一基站和第二基站, 其中, 所述第一基站 釆用本发明第三个方面提供的所述基站, 所述第二基站为釆用模拟校正方 式校正通道的基站, 所述方法包括:
所述第一基站的小区通道校正完成后, 广播校正消息, 以使接收到所 述校正消息的第二基站的小区根据所述校正信息, 将自身的通道校正为与 所述第一基站的小区的通道一致;
其中, 所述校正消息中携带有所述第一基站完成通道校正后的通道特 性信息。
本发明第五个方面提供了一种通信系统, 至少包括相邻的第一基站和 第二基站, 其中, 所述第一基站釆用本发明第三个方面提供的所述基站, 用于在小区通道校正完成后, 广播校正消息, 其中, 所述校正消息中携带 有所述第一基站的小区完成通道校正后的通道特性信息; 所述第二基站为 釆用模拟校正方式校正通道的基站, 用于当接收到所述校正消息时, 根据 所述校正信息, 将自身的通道校正为与所述第一基站的小区的通道一致。
由上述技术方案可知, 本发明实施例通过对接收自 RRU的校正序列进 行下行数字化处理, 以及对接收自所述 BBU的校正序列进行上行数字化处 理, 使得 BBU能根据数字化处理后的序列更精准地对 RRU的所有收发通 道进行校正, 同时, 由于 BBU接收到的校正序列都经过数字化处理, 使得 BBU可以实现对 RRU的收发通道的绝对校正, 即 BBU可基于预设的发通 道的参考序列计算 RRU的所有发通道的校正系数,基于预设的收通道的参 考序列计算 RRU的所有收通道对应的校正系数。 因此, 釆用本发明实施例 提供的技术方案, 可取消现有技术中小区间的通道信息交互。 本发明实施 例由于不需要通道信息的交互, 缩短了通道校正的时间, 减少了由于数据 而提高了通道校正的准确性。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的通道校正方法;
图 2为本发明实施例三提供的基站实现对 RRU的所有发通道进行校正 的校正回路示意图; 图 3为本发明实施例三提供的基站实现对 RRU的所有收通道进行校正 的校正回路示意图;
图 4为本发明实施例二提供的通道校正装置的结构示意图;
图 5为本发明实施例三提供的基站的一种结构示意图;
图 6为本发明实施例三提供的基站的另一种结构示意图;
图 7为本发明实施例三提供的基站的又一种结构示意图; 校正方法的流程示意图;
图 9为本发明提供的新旧特性基站混合部署的一个实例示图; 图 10为本发明提供的新旧特性基站混合部署的另一个实例示图。
具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 1所示, 本发明实施例一提供的通道校正方法。 如图 1所示, 本 实施例一中的执行主体可以是通道校正装置。 本实施例所述的方法可以包 括:
步骤 101、 对接收自 RRU的校正序列进行下行数字化处理。
具体地, 如图 2所示, BBU根据 RRU的发通道的数量, 产生相应数量 的校正序列, 并将所述校正序列通过 RRU的 CPRI接口发送到 RRU。 所述 RRU的所有发通道将接收到的校正序列传输到天线耦合盘, 由所述天线耦 装置。 所述通道校正装置对接收到的校正序列进行下行数字化处理。 其中, 所述下行数字化处理可以包括: 模数转换, IQ调制、 等间隔抽值和数字滤 波处理。 相应地, 本步骤的一种可能实现方式是: 对接收自 RRU的校正序 列依次进行模数转换, IQ调制、 等间隔抽值和数字滤波处理。 当然, 本发 式。
步骤 102、 将下行数字化处理后的序列发送至 BBU, 以使所述 BBU根 据所述下行数字化处理后的序列, 基于预设的发通道参考序列计算所述 RRU的所有发通道对应的校正系数。
其中, 所述通道参考序列包括幅度和相位等特性参数。 相应地, 所述 BBU根据所述下行数字化处理后的序列, 基于预设的发通道参考序列计算 所述 RRU的所有发通道对应的校正系数, 的一种可能实现方式为: 根据所 述下行数字化处理后的序列, 计算 RRU的所有发通道的通道特性参数, 然 后基于预设的发通道参考序列, 釆用预设的算法计算所述 RRU的所有发通 道对应的校正系数。
步骤 103、 对接收自所述 BBU的校正序列进行上行数字化处理。
其中, BBU产生校正序列, 并将该校正序列发送至通道校正装置。 其 中, 所述上行数字化处理可以包括: 等间隔插值、 数字滤波、 IP调制和数 模转换处理。 相应地, 本步骤的一种可能实现方式是: 对接收自所述 BBU 的校正序列依次进行等间隔插值、 数字滤波、 IP调制和数模转换处理。 当 的处理方式。
步骤 104、将上行数字化处理后的序列发送至所述 RRU,以使所述 RRU 据所述 RRU返回的所述上行数字化处理后的序列,基于预设的收通道参考 序列计算所述 RRU的所有收通道对应的校正系数。
具体地, 如图 3 所示, 通道校正装置将上行数字化处理后的序列发送 至天线耦合盘, 所述天线耦合盘根据 RRU的收通道的数量, 将所述上行数 字化处理后的序列进行功率分配, 并发送至 RRU。 该上行数字化处理后的 序列经所述 RRU的收通道的传输返回至所述 BBU。 此时, 所述 BBU即可 根据所述 RRU返回的所述上行数字化处理后的序列,基于预设的收通道参 考序列计算所述 RRU的所有收通道对应的校正系数。
其中, 所述通道参考序列包括幅度和相位等特性参数。 相应地, BBU 根据所述 RRU返回的所述上行数字化处理后的序列,基于预设的收通道参 考序列计算所述 RRU的所有收通道对应的校正系数, 的一种可能实现方式 为: 根据所述上行数字化处理后的序列, 计算 RRU的所有收通道的通道特 性参数, 然后基于预设的收通道参考序列, 釆用预设的算法计算所述 RRU 的所有收通道对应的校正系数。
需要说明的是: 上述步骤 101和 102, 与 103和 104并没有严格的先后 顺序限制。 也就是说, 通道校正装置可先执行步骤 101和 102实现 RRU的 所有发通道的校正,可以先执行 103和 104实现 RRU的所有收通道的校正。
本实施例通过对接收自 RRU的校正序列进行下行数字化处理, 以及对 接收自所述 BBU的校正序列进行上行数字化处理, 使得 BBU能根据数字 化处理后的序列更精准地对 RRU 的所有收发通道进行校正, 同时, 由于 BBU接收到的校正序列都经过数字化处理, 使得 BBU可以实现对 RRU的 收发通道的绝对校正, 即 BBU可基于预设的发通道的参考序列计算 RRU 的所有发通道的校正系数,基于预设的收通道的参考序列计算 RRU的所有 收通道对应的校正系数。 因此, 釆用本实施例提供的技术方案, 可取消现 有技术中小区间的通道信息交互。 本实施例由于不需要通道信息的交互, 缩短了通道校正的时间, 减少了由于数据交互带来的干扰以及现有技术中 因校正时间过长而带来的相位噪声等, 进而提高了通道校正的准确性。
如图 4所示, 本发明实施例二提供的通道校正装置的结构示意图。 如 图 4所示, 所述通道校正装置包括: 第一处理模块 1、 第一发送模块 2、 第 二处理模块 3和第二发送模块 4。 其中, 所述第一处理模块 1用于对接收自 远程射频单元 RRU的校正序列进行下行数字化处理。 所述第一发送模块 2 用于将下行数字化处理后的序列发送至基带单元 BBU,以使所述 BBU根据 所述下行数字化处理后的序列, 基于预设的发通道参考序列计算所述 RRU 的所有发通道对应的校正系数。 所述第二处理模块 3 用于对接收自所述 BBU的校正序列进行上行数字化处理。 所述第二发送模块 4用于将上行数 字化处理后的序列发送至所述 RRU,以使所述 RRU将接收到的所述上行数 字化处理后的序列返回至所述 BBU, 由所述 BBU根据所述 RRU返回的所 述上行数字化处理后的序列,基于预设的收通道参考序列计算所述 RRU的 所有收通道对应的校正系数。
本实施例所述通道校正装置通过对接收自 RRU的校正序列进行下行数 字化处理, 以及对接收自所述 BBU的校正序列进行上行数字化处理, 使得 BBU能根据数字化处理后的序列更精准地对 RRU的所有收发通道进行校 正, 同时, 由于 BBU接收到的校正序列都经过数字化处理, 使得 BBU可 以实现对 RRU的收发通道的绝对校正, 即 BBU可基于预设的发通道的参 考序列计算 RRU的所有发通道的校正系数,基于预设的收通道的参考序列 计算 RRU的所有收通道对应的校正系数。 因此, 釆用本实施例提供的技术 方案, 可取消现有技术中小区间的通道信息交互。 本实施例由于不需要通 道信息的交互, 缩短了通道校正的时间, 减少了由于数据交互带来的干扰 以及现有技术中因校正时间过长而带来的相位噪声等, 进而提高了通道校 正的准确性。
具体地, 上述实施例中所述的第一处理模块具体用于对接收自 RRU的 校正序列依次进行模数转换, IQ调制、 等间隔抽值和数字滤波处理。 所述 第二处理模块,具体用于接收自所述 BBU的校正序列依次进行等间隔插值、 数字滤波、 IP调制和数模转换处理。
本发明实施例三提供的一种基站, 如图 2或 3所示。 本实施例所述的 基站包括: BBU、 RRU以及通道校正装置。 其中, 所述通道校正装置用于 化处理后的序列发送至基带单元 BBU,以使所述 BBU根据所述下行数字化 处理后的序列,基于预设的发通道参考序列计算所述 RRU的所有发通道对 应的校正系数; 对接收自所述 BBU的校正序列进行上行数字化处理; 将上 行数字化处理后的序列发送至所述 RRU,以使所述 RRU将接收到的所述上 行数字化处理后的序列返回至所述 BBU, 由所述 BBU根据所述 RRU返回 的所述上行数字化处理后的序列, 基于预设的收通道参考序列计算所述 RRU的所有收通道对应的校正系数。
具体地, 所述的通道校正装置可以单独设置 (如图 2或图 3所示) , 也可设置在 RRU上(如图 5所示) , 也可以设置在所述天线耦合盘上(如 图 6所示) , 还可以设置在所述 BBU上(如图 7所示) 。 其中, 将通道校 正装置设置在所述天线耦合盘上, 使得外部接口主要数字信号线, 因此, 抗干扰能力强。 若将所述通道校正装置设置在所述 BBU上, 只需要升级 BBU板, 外部环境不需要改变, 实现更加简单。
釆用本实施例提供的基站, 可取消现有技术中小区间的通道信息交互。 本实施例由于不需要通道信息的交互, 缩短了通道校正的时间, 减少了由 等, 进而提高了通道校正的准确性。
本发明实施例提供的基站可以实现 RRU收发通道的绝对校正, RRU不 再需要与其他配对的 RRU进行交互校正。 而实际应用中, 现有部署的基站 都是釆用模拟校正方法进行通道校正的基站(以下简称为旧特性基站)。 若 性基站), 即上述实施例三提供的基站, 部署到现有的网络中, 且该新特性 基站的周围存在有旧特性基站, 则旧特性基站因不能与新特性基站进行通 道信息的交互, 致使自身不能正常完成通道校正。 由此, 本发明实施例四 提供了一种釆用不同通道校正方式的两基站间通道互校正方法, 以使新特 性基站被部署在现有网络中, 也不影响其他旧特性基站的通道校正, 进而 有助于新特性基站的推广。 如图 8所示, 本发明实施例四提供釆用不同通 道校正方式的两基站间通道互校正方法的流程示意图。 如图 8 所示, 本实 施例四所述方法包括:
步骤 201、 第一基站的小区进行通道校正。
其中, 所述第一基站釆用上述实施例一所述的通道校正方法对小区的 通道进行通道校正。 上述实施例一所述的通道校正方法参见上述实施例一 中的内容, 此处不再赘述。 该第一基站即为上述的新特性基站。
步骤 202、 所述第一基站的小区通道校正完成后, 广播校正消息, 以使 接收到所述校正消息的第二基站的小区根据所述校正信息, 将自身的通道 校正为与所述第一基站的小区的通道一致。
其中, 所述校正消息中携带有所述新特性基站完成通道校正后的通道 特性信息。 其中, 所述通道特性信息包括收通道的幅度和相位信息, 以及 发通道的幅度和相位信息。 第二基站的小区釆用现有模拟校正方法进行通 道校正的小区, 即第二基站为旧特性基站。
具体地, 如图 9 所示的新旧特性基站混合部署的实例图, 若所述新特 性基站 10被部署在旧特性基站 20之中, 即与新特性基站相邻的基站均为 旧特性基站, 则所述旧特性基站可釆用上述实施例四所述的方法实现通道 互校正。 如图 10所示, 若新特性基站部署在多个旧特性基站所管辖区域的 边缘外, 则与所述新特性基站相邻的旧特性基站可釆用上述实施例二所述 的方法实现通道互校正, 而其他旧特性基站还釆用现有模拟校正方法进行 通道的校正, 或者该与所述新特性基站相邻的旧特性基站作为参考基站, 以就近的方式, 校正周边的其他旧特性基站, 依此方法向外推进, 最终完 成所有旧特性基站的联合通道校正。
本实施例五提供一种通信系统, 如图 9或图 10所示。 本实施例所述的 通信系统包括: 至少包括相邻的第一基站(即新特性基站 10 )和第二基站 (即旧特性基站 20 ) 。 其中, 所述第一基站的小区与所述第二基站的小区 相邻。 所述第一基站, 用于在釆用本发明实施例一提供的所述的通道校正 方法对小区的通道进行通道校正后, 广播校正消息, 其中, 所述校正消息 中携带有所述第一基站的小区完成通道校正后的通道特性信息。 所述第二 基站, 用于当接收到所述校正消息时, 根据所述校正信息, 将自身小区的 通道校正为与所述第一基站的小区的通道一致。
需要说明的是: 对于前述的各方法实施例, 为了简单描述, 故将其都 表述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受 所描述的动作顺序的限制, 因为依据本发明, 某些步骤可以釆用其他顺序 或者同时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实 施例均属于优选实施例, 所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没 有详述的部分, 可以参见其他实施例的相关描述。
可以理解的是, 上述方法及设备中的相关特征可以相互参考。 另外, 上述实施例中的"第一"、 "第二 "等是用于区分各实施例, 而并不代表各实施 例的优劣。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述 描述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例中的 对应过程, 在此不再赘述。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置 和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅 是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成 到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论 的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单 元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用硬 件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算 机可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若 干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络 设备等)或处理器( processor )执行本发明各个实施例所述方法的部分步骤。 而前述的存储介质包括: U盘、移动硬盘、只读存储器(Read-Only Memory, 简称 ROM )、 随机存取存储器 ( Random Access Memory, 简称 RAM )、 磁 碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种通道校正方法, 其特征在于, 包括: 将下行数字化处理后的序列发送至基带单元 BBU,以使所述 BBU根据 所述下行数字化处理后的序列, 基于预设的发通道参考序列计算所述 RRU 的所有发通道对应的校正系数;
对接收自所述 BBU的校正序列进行上行数字化处理;
将上行数字化处理后的序列发送至所述 RRU,以使所述 RRU将接收到 的所述上行数字化处理后的序列返回至所述 BBU, 由所述 BBU根据所述 RRU返回的所述上行数字化处理后的序列, 基于预设的收通道参考序列计 算所述 RRU的所有收通道对应的校正系数。
2、 根据权利要求 1所述的通道校正方法, 其特征在于, 所述对接收自 RRU的校正序列进行下行数字化处理, 具体为:
对接收自 RRU的校正序列依次进行模数转换, IQ调制、等间隔抽值和 数字滤波处理。
3、 根据权利要求 1所述的通道校正方法, 其特征在于, 所述接收自所 述 BBU的校正序列进行上行数字化处理, 具体为:
对接收自所述 BBU的校正序列依次进行等间隔插值、数字滤波、 IP调 制和数模转换处理。
4、 一种通道校正装置, 其特征在于, 包括:
第一处理模块, 用于对接收自远程射频单元 RRU的校正序列进行下行 数字化处理;
第一发送模块,用于将下行数字化处理后的序列发送至基带单元 BBU, 以使所述 BBU根据所述下行数字化处理后的序列, 计算所述 RRU的所有 发通道对应的校正系数;
第二处理模块, 用于对接收自所述 BBU的校正序列进行上行数字化处 理;
第二发送模块, 用于将上行数字化处理后的序列发送至所述 RRU, 以 所述 BBU根据所述 RRU返回的所述上行数字化处理后的序列 , 计算所述 RRU的所有收通道对应的校正系数。
5、 根据权利要求 4所述的通道校正装置, 其特征在于, 所述第一处理 模块, 具体用于对接收自 RRU的校正序列依次进行模数转换, IQ调制、 等 间隔抽值和数字滤波处理。
6、 根据权利要求 4所述的通道校正装置, 其特征在于, 所述第二处理 模块, 具体用于接收自所述 BBU的校正序列依次进行等间隔插值、 数字滤 波、 IP调制和数模转换处理。
7、 一种基站, 其特征在于, 包括 BBU、 RRU 以及上述权利要求 4~6 中任意所述的通道校正装置。
8、 一种釆用不同通道校正方式的两基站间通道互校正方法, 其特征在 于, 所述两基站包括第一基站和第二基站, 其中, 所述第一基站釆用上述 权利要求 7 所述的基站, 所述第二基站为釆用模拟校正方式校正通道的基 站, 所述方法包括:
所述第一基站的小区通道校正完成后, 广播校正消息, 以使接收到所 述校正消息的第二基站的小区根据所述校正信息, 将自身的通道校正为与 所述第一基站的小区的通道一致;
其中, 所述校正消息中携带有所述第一基站完成通道校正后的通道特 性信息。
9、 一种通信系统, 其特征在于, 至少包括相邻的第一基站和第二基站, 其中,
所述第一基站釆用上述权利要求 7 所述的基站, 用于在小区通道校正 完成后, 广播校正消息, 其中, 所述校正消息中携带有所述第一基站的小 区完成通道校正后的通道特性信息;
所述第二基站为釆用模拟校正方式校正通道的基站, 用于当接收到所 述校正消息时, 根据所述校正信息, 将自身的通道校正为与所述第一基站 的小区的通道一致。
PCT/CN2014/082990 2013-07-29 2014-07-25 通道校正方法、通道互校正方法、装置及系统 WO2015014243A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310323876.5 2013-07-29
CN201310323876.5A CN104348769B (zh) 2013-07-29 2013-07-29 通道校正方法、通道互校正方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2015014243A1 true WO2015014243A1 (zh) 2015-02-05

Family

ID=52430987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082990 WO2015014243A1 (zh) 2013-07-29 2014-07-25 通道校正方法、通道互校正方法、装置及系统

Country Status (2)

Country Link
CN (1) CN104348769B (zh)
WO (1) WO2015014243A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107395533B (zh) * 2017-06-20 2020-06-16 上海华为技术有限公司 一种通道校正方法以及校正装置
CN114650105A (zh) * 2020-12-21 2022-06-21 中兴通讯股份有限公司 小区天线的校正方法、电子设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572576A (zh) * 2008-04-30 2009-11-04 京信通信系统(中国)有限公司 一种多通道td-rru的通道校正方法
CN102315868A (zh) * 2010-07-08 2012-01-11 中兴通讯股份有限公司 一种分布式基站的天线校正方法及系统
CN103457651A (zh) * 2012-05-31 2013-12-18 华为技术有限公司 联合通道校正方法、联合通道校正单元及基站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080122687A1 (en) * 2006-09-21 2008-05-29 Nelson Fredrick W System and method for providing authorization to use corrections provided by an RTK base station
CN102457458B (zh) * 2010-10-14 2015-08-12 大唐移动通信设备有限公司 一种基站数字预失真的实现方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572576A (zh) * 2008-04-30 2009-11-04 京信通信系统(中国)有限公司 一种多通道td-rru的通道校正方法
CN102315868A (zh) * 2010-07-08 2012-01-11 中兴通讯股份有限公司 一种分布式基站的天线校正方法及系统
CN103457651A (zh) * 2012-05-31 2013-12-18 华为技术有限公司 联合通道校正方法、联合通道校正单元及基站

Also Published As

Publication number Publication date
CN104348769A (zh) 2015-02-11
CN104348769B (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
US20220069867A1 (en) Communication method, communications apparatus, network device, and terminal
EP3560109B1 (en) Bandwidth reduction with beamforming and data compression
CN108092698B (zh) 一种波束训练方法及装置
WO2021000680A1 (zh) 一种协作传输方法及通信装置
US10389560B2 (en) Baseband processing unit, radio remote unit, and communication method
JP2015532056A (ja) 送受信チャネル応答を補正するための方法、装置、及びシステム、並びにbbu
US8903330B2 (en) Communication signal transmission method, device and system
US10178012B2 (en) Systems and methods for a sounding frame in an IEEE 802.11ax compliant network
CN106685508B (zh) 一种数据传输方法及装置
KR102183646B1 (ko) 방법, 시스템 및 장치
US10917895B2 (en) Power control method and apparatus
CN114731264A (zh) 通信方法和设备
US9924374B2 (en) Method and apparatus for transmitting data
WO2015014243A1 (zh) 通道校正方法、通道互校正方法、装置及系统
EP2999253B1 (en) Data transmission method and apparatus
US11962376B2 (en) Multi-channel beamforming method and apparatus, and storage medium
CN117062229A (zh) 一种信息指示方法和装置
CN110839278B (zh) 一种室内基站及定位方法
KR102060735B1 (ko) 다수의 안테나를 가진 통신 시스템에서의 페이징 장치 및 방법
EP3496287B1 (en) Receiving timing configuration method and communication device
WO2014166388A1 (zh) 协作发射集的确定方法和基站
WO2014101217A1 (zh) 共用bcch频点的组网系统和网络设备
WO2023185974A1 (zh) 通信方法以及相关装置
US20230362828A1 (en) Communication control method, control station, and communication control program
CN109076636A (zh) 分布式基站中的信号处理方法和分布式控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832626

Country of ref document: EP

Kind code of ref document: A1