WO2015014139A1 - 一种评价裸眼立体显示串扰的方法及装置 - Google Patents

一种评价裸眼立体显示串扰的方法及装置 Download PDF

Info

Publication number
WO2015014139A1
WO2015014139A1 PCT/CN2014/076270 CN2014076270W WO2015014139A1 WO 2015014139 A1 WO2015014139 A1 WO 2015014139A1 CN 2014076270 W CN2014076270 W CN 2014076270W WO 2015014139 A1 WO2015014139 A1 WO 2015014139A1
Authority
WO
WIPO (PCT)
Prior art keywords
brightness
value
light
test
test angle
Prior art date
Application number
PCT/CN2014/076270
Other languages
English (en)
French (fr)
Inventor
朱劲野
胡望
武延兵
魏伟
顿胜堡
邸贺亮
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/405,313 priority Critical patent/US9961341B2/en
Publication of WO2015014139A1 publication Critical patent/WO2015014139A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/004Diagnosis, testing or measuring for television systems or their details for digital television systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/315Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being time-variant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/327Calibration thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/354Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying sequentially

Definitions

  • the present invention relates to the field of image display technologies, and in particular, to a method and apparatus for evaluating naked eye stereoscopic display crosstalk.
  • the display device includes at least a display panel 200 and a grating 100 located on the light-emitting side of the display panel 200.
  • the grating 100 can converge the light emitted by the display panel 200 at its focus to enable display.
  • the light emitted by the left-eye pixel of the panel 200 is directed to the left eye of the viewer, and the light emitted by the right-limit pixel is directed to the right limit of the viewer to achieve the effect of 3D display.
  • the viewing zone on the light exiting side of the display device is a left eye viewing zone and a right viewing zone arranged at intervals.
  • the human limit is located in the adjacent two left eye viewing zones and the right warm viewing zone, a stereoscopic image can be seen.
  • the bare 3D display image contains the influence of 2D (two-dimensional) stray light, which causes a certain crosstalk problem in the bare warm 3D display, which seriously affects the naked eye image. display effect.
  • the naked eye type 3D display crosstalk is evaluated by human warm perception, and the bare stereoscopic display crosstalk cannot be accurately evaluated.
  • the bare-light 3D display crosstalk value objectively and accurately evaluate the problem of naked-eye 3D display crosstalk, and no effective solution has yet been proposed.
  • Embodiments of the present invention provide a method and apparatus for evaluating naked eye stereoscopic display crosstalk, which are used to evaluate the accuracy of naked eye stereoscopic display crosstalk.
  • the method for evaluating a naked eye stereoscopic display crosstalk includes the following steps: Controlling the display panel to sequentially display N viewpoint images;
  • each sub-pixel for displaying the current viewpoint image displays a white image
  • displays a black image for each sub-pixel of the other viewpoint image, and sequentially acquires respective tests corresponding to the current viewpoint image on the light-emitting side of the display panel.
  • a first brightness value of the angle of light and determining a brightness peak in all of the acquired first brightness values
  • the first brightness value of the light of each test angle corresponding to the current view image is sequentially acquired on the light exiting side of the display panel, specifically:
  • the center of the display panel is centered on the arc of the same horizontal plane with the set distance as the radius, and the first light of each sub-pixel for displaying the current viewpoint image is obtained at each test angle. Brightness value.
  • the first brightness value and the second brightness value of the light of each test angle are obtained, specifically: establishing a first brightness curve according to the first brightness value of each light of each test angle according to the acquired each viewpoint image ;
  • a second brightness curve is created based on the second brightness values of the rays respectively acquired at the respective test angles.
  • the crosstalk value of the light at the test angle is determined according to the first brightness value and the second brightness value at any test angle corresponding to the N view images, specifically:
  • the crosstalk value of the light at the test angle according to the following formula: Wherein, is the crosstalk value of the light at the i-th test angle on the display panel, A represents the brightness peak value in the first brightness value corresponding to each view image at the first test angle, and M represents the second point at the i-th test angle Luminance value; indicates the first brightness of the Jth viewpoint image at the ith test angle
  • the method further includes:
  • the embodiment of the present invention provides an apparatus for evaluating a stereoscopic display crosstalk of a naked eye, and the apparatus includes: a brightness acquiring unit, configured to sequentially acquire a current image on the light emitting side of the display panel when the display panel sequentially displays each of the N viewpoint images a first brightness value of the light of each test angle corresponding to the viewpoint image; and when the display panel displays the black image, the second brightness value of the light of each test angle is sequentially obtained by the light output of the display panel; wherein N is not less than 2 Positive integer
  • a brightness peak determining unit ffi is configured to determine a brightness peak value among all the acquired first brightness values
  • a crosstalk value determining unit configured to: according to the first brightness value at any one of the test angles corresponding to the N viewpoint images, The second brightness value determines the crosstalk value of the light at the test angle.
  • the brightness acquiring unit is configured to: display, on the light-emitting side of the display panel, a center of the display panel as a center, and set the distance as a radius and on an arc of the same horizontal plane, and acquire the image of the current viewpoint image.
  • the method further includes:
  • a curve establishing unit configured to establish a first brightness curve according to the first brightness value of the light of each test angle according to each of the obtained viewpoint images; and establish a second brightness value according to the light rays respectively acquired at each test angle Second brightness graph.
  • the crosstalk value determining unit is specifically configured to determine a crosstalk value of the light at the i-th test angle according to the following formula:
  • PCT PCT; ⁇ 100%; where, is the crosstalk value of the ray at the i-th test angle on the display panel, A represents the luminance peak value in the first luminance value corresponding to each viewpoint image at the first test angle, and M represents the ith
  • the second brightness value at the test angle represents the first brightness value of the j-th view image at the first test angle; N represents the total number of view images.
  • the E3 ⁇ 4 line establishing unit is further configured to: after determining a crosstalk value of the light at a test angle corresponding to any brightness peak, according to a crosstalk value of the light at a test angle corresponding to each brightness peak value, Establish a graph of the crosstalk value as a function of the test angle.
  • the method and apparatus for evaluating bare-war stereoscopic display crosstalk provided by the embodiment of the present invention accurately measure the naked-eye 3D display crosstalk value by determining the first luminance value of the all-white image and the second luminance value of the all-black image, and can be objectively and accurately Evaluate the degree of crosstalk in bare warm 3D display.
  • 1 is a schematic structural view of a conventional 3D naked eye display device
  • FIG. 2 is a schematic diagram of a sub-pixel arrangement on a display panel according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a first set of sub-pixels corresponding to a first view image according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a second set of sub-pixels corresponding to a second view image according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a third group of sub-pixels corresponding to a third view image according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a fourth group of sub-pixels corresponding to a fourth viewpoint image according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of relative positions between a luminance meter and a display panel according to an embodiment of the present invention
  • FIG. 8 is a first brightness curve diagram of light rays at different test angles when displaying four viewpoint images respectively according to an embodiment of the present invention
  • FIG. 9 is a graph showing a second brightness and a test angle at different test angles when displaying a full black image according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a crosstalk value between different test angles according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an apparatus for evaluating a naked eye stereoscopic display crosstalk according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a method and apparatus for evaluating naked eye stereoscopic display crosstalk, which are used to improve the accuracy of evaluating naked eye stereoscopic display crosstalk.
  • the present invention sequentially displays a plurality of viewpoint images by controlling the display panel, and displays a full black image. Specifically, the first brightness value of the light at the plurality of test angles is sequentially acquired in each of the view images i ⁇ , The second brightness value of the light at the plurality of test angles is sequentially acquired when the display panel displays the all black image. A luminance peak value of the first luminance value corresponding to each viewpoint image is determined, and a crosstalk value of the light at a test angle at which each luminance peak is located is determined. The method determines that the naked eye type 3D display crosstalk value has high accuracy, and can objectively and accurately evaluate the naked eye type 3D display crosstalk degree.
  • Each brightness peak corresponds to an optimum viewing angle of the light-emitting side of the display panel, that is, each brightness peak value is a brightness value obtained at an optimum viewing angle on the light-emitting side.
  • the best different viewing angles of the present invention correspond to different viewing zones on the light exit side of the display panel.
  • the method for evaluating the bare stereo display crosstalk generally includes the following steps: Step: The control panel sequentially displays N viewpoint images, and sequentially displays the light of each test angle corresponding to the current viewpoint image on the light exit side of the display panel. a brightness value, and a peak brightness;
  • each sub-pixel displaying the current viewpoint image displays a white image
  • each sub-pixel for displaying other viewpoint images displays a black image, and sequentially acquires a current viewpoint image on the light-emitting side of the display panel.
  • Step S102 Control the display panel to display a full black image, and sequentially obtain the second brightness value of the light of each test angle in the light output of the display panel;
  • Step S103 Determine a crosstalk value of the light at the test angle corresponding to the brightness peak according to any one of the first brightness values and a second brightness value corresponding to the brightness peak at the same test angle.
  • N is a positive integer not less than 2.
  • sequence of steps S101 and S102 is not limited in the embodiment of the present invention, that is, the sequence of steps S101 and S102 may be interchanged.
  • each of the viewpoint images corresponds to a partial sub-pixel on the display panel
  • each viewpoint image corresponds to all sub-pixels on the display panel.
  • each sub-pixel corresponding to the current viewpoint image displays a white image
  • each of the other sub-pixels displays a black image.
  • the crosstalk value of the light at the i-th test angle is determined according to the following formula: P x 100%;
  • the crosstalk value of the light at the i-th test angle on the display panel indicates the brightness peak value in the first brightness value corresponding to each view image at the i-th test angle, and M represents the second brightness at the i-th test angle Value; Y ; represents the first brightness value of the jth viewpoint image at the ith test angle; N represents the total number of viewpoint images.
  • the first brightness value of the light at different test angles ct ⁇ 2 , . . . , a m is sequentially measured on the light exit side of the display panel by using an optical test device; specifically, but not limited to, through the brightness The first brightness value of the light at different test angles is obtained.
  • the interval step size can be set to test the first brightness value of the light at the plurality of test angles, for example, the first brightness value of the primary light is tested at intervals of 0.5 radians.
  • the optical brightness test device sequentially measures the second brightness value of the light at each of the test angles when the display panel displays the black image on the light exit side of the display panel.
  • the luminance meter is moved in the same plane to measure the luminance values of the light at different test angles on the same plane.
  • the luminance values of the light beams that are in the same plane to obtain different test angle directions can improve the accuracy of evaluating the naked eye stereoscopic display crosstalk with respect to the fixed display panel.
  • the brightness meter can be placed at a constant value from the ground on the light exit side of the display panel, and the brightness meter can be moved on the same horizontal plane to test the brightness value of each view image at multiple test angles.
  • the brightness meter is centered on the light emitting side of the display panel with the center of the display panel, and the set distance of the viewed image is a radius—the arc of the same horizontal plane.
  • the brightness values of each viewpoint image at a plurality of test angles are tested.
  • the brightness values of the light at different positions in the same test angle direction will have a certain deviation. Specifically, the farther away from the light source, the smaller the brightness value of the light; the closer the light is to the position, the greater the brightness value of the light. Ben The invention of the brightness meter measures the brightness value of the light without measuring the angular direction from the center of the display screen, which can improve the accuracy of evaluating the stereoscopic display crosstalk.
  • different brightness angles may be measured at different positions of the arc corresponding to different test angles. For example, based on the measurement position 0° corresponding to the center of the display panel, the luminance meter is moved counterclockwise within the stereoscopic angle range, and the corresponding angles are measured at positions corresponding to arc angles of 5°, 10°, 15°, 20°, etc. The brightness value of the light, and then the brightness measurement is moved clockwise with the corresponding measurement position of the center of the display panel as 0°, and the corresponding angles are 5°, -10°, -15°, -20°, etc. The brightness value of the emitted light is measured.
  • the measurement of the luminance value at intervals of 5° is an indication, and the embodiment of the present invention does not limit this, and a person skilled in the art can flexibly set the interval angle according to actual needs.
  • the luminance value may be measured at a smaller arc value, for example, in a step size of 0.5 or 1 degree.
  • the luminance values of the different test angles acquired in step S101 and step S102 are saved in the luminance meter.
  • the distribution graph is superimposed (that is, the luminance distribution graph corresponding to each viewpoint image is placed in the same rectangular coordinate system), and a plurality of luminance values corresponding to the respective viewpoint images are acquired in the superposed luminance distribution curve, and the luminance values are present in the plurality of luminance values.
  • a brightness peak, wherein each brightness peak corresponds to a viewing zone at the light exit side of the display panel.
  • the display panel includes a plurality of sub-pixels distributed in a matrix, and a four-view image display panel is taken as an example. 2 is included to correspond to four sets of sub-pixels for displaying four viewpoint images: a first group of sub-pixels 1, a second group of sub-pixels 2, a third group of sub-pixels 3, and a fourth group of sub-pixels 4. It should be noted that the arrangement of the sub-pixels is not limited to the arrangement shown in Fig. 2.
  • Each of the viewpoint images is displayed on the control display panel.
  • the sub-pixel corresponding to the viewpoint image displays a white image
  • each sub-pixel corresponding to the other viewpoint image displays a black image.
  • the first viewpoint image when the first viewpoint image is displayed, the first group of sub-pixels i of the control display panel displays a white image, and the other sub-pixels display a black image;
  • the second viewpoint image when the second viewpoint image is displayed, the second group of sub-pixels 2 of the control display panel display a white image, and the other sub-pixels display a black image;
  • the third group of sub-pixels 3 of the control display panel display a white image, and the other sub-pixels display a black image;
  • the fourth group of sub-pixels 4 of the control display panel display a white image
  • the other sub-pixels display a black image
  • the luminance meter 10 is located at a different position on an arc of a circle whose center (or also referred to as the center) 0 of the display panel 20 is the center and the optimum viewing distance R of the viewer is viewed as a radius to move the brightness of the measurement light.
  • one brightness value can be tested at intervals of 5° arc angle in the range of 30° to 30°, for each view image in 13 test angles (-30°, -25., -20., -15 , 10, -5,, 0°, 5,, 10, 15, 20, 25, 30.) Test 13 brightness values.
  • Step Slh acquires a first brightness value of the light of the first viewpoint image at different test angles.
  • the first brightness value at different test angles corresponding to the first viewpoint image shown in Fig. 3 is sequentially tested by the luminance meter in the range of 30° to - 30° at intervals of 5° arc angle! ⁇ , 1, 2, 3, ..., 13.
  • the lens of the luminance meter is facing the 0 point in the center of the screen of the display panel, and for the image shown in FIG. 3, a brightness is tested every 5° arc angle from the range of -30° to 30° shown in FIG.
  • the value is tested 13 times in total, and the obtained brightness values are sequentially recorded in the order of increasing test angles, ⁇ ...... ...., Yiu; the first test for displaying the first viewpoint image
  • the brightness value of the light at the i test angle, the brightness value is the first brightness value, and the first brightness value at each test angle of the test and the corresponding relationship between the first brightness value and the test angle are saved.
  • Step S12 Acquire a first brightness value of the light of the second viewpoint image at different test angles.
  • the brightness meter is tested in the range of 30° to ⁇ 30° at intervals of 5° arc angle, and the first brightness value at the different test angles corresponding to the ::::: viewpoint image shown in FIG. 4 is sequentially tested], 1 , 2, 3, ..., 13.
  • the lens of the luminance meter is tested for a brightness value at a point of 0° in the center of the screen of the display panel, and at a range of 5° arc angle in the range of -30° to 30° as shown in the cluster diagram, and is tested 13 times in total.
  • the brightness value is sequentially recorded as [ ⁇ , ⁇ 2 , i3 , the brightness value in the order in which the test angle is increased.
  • the first brightness value at each test angle of the test and the corresponding relationship between the first brightness value and the test angle are saved.
  • Step S13 Acquire a first brightness value of the light of the third view image at different test angles.
  • the first brightness value, F, 2, 3 at different test angles corresponding to the third viewpoint image shown in FIG. 5 is sequentially tested by the luminance meter in a range of 30° to -30° at intervals of 5° arc angle. ..., 13.
  • the lens of the luminance meter is opposite to the 0 point in the center of the screen of the display panel, and a brightness value is tested from the range of 30° to 30° in the range of 30° to 30° shown in FIG. 7 for a total of 13 times, and the obtained brightness is obtained.
  • the values are sequentially recorded as 3 ⁇ 4 , 3 ⁇ 4 , ..., ..., 3 in the order in which the test angle is increased.
  • the brightness value is the first brightness value. And storing a first brightness value at each test angle of the test and a correspondence between the first brightness value and the test angle.
  • Step S14 Acquire a first brightness value of the light of the fourth viewpoint image at different test angles.
  • the first brightness value at different test angles corresponding to the fourth viewpoint image shown in FIG. 6 is sequentially tested by the luminance meter in a range of 30° to -30° at intervals of 5° radians; F4i, 1, 2, 3,...,13.
  • the lens of the luminance meter is opposite to the 0 point in the center of the screen of the display panel, and a brightness value is tested from the range of 30° to 30° in the range of 30° to 30° shown in FIG. 7 for a total of 13 times, and the obtained brightness is obtained.
  • the values are sequentially recorded as ⁇ , 7 42 , ..., , ..., 7 413 in the order in which the test angle is increased, and the brightness value is the first brightness value. And storing a first brightness value at each test angle of the test and a correspondence between the first brightness value and a test angle.
  • Step S15 Acquire a second brightness value of the light of the all black image at different test angles.
  • the brightness meter is used to test the second brightness value of the light of the black image at different test angles at intervals of 5° arc angle in the range of 30° to -30°, 1 , 2, 3, ..., 13
  • the second brightness values obtained are, in order, _ ⁇ 2 , ⁇ 3 , ⁇ 4 , 13 ;
  • Step S16 Generate a brightness graph in which the first brightness value changes with different test angles. For example, as shown in FIG. 8, the first brightness value obtained according to the step S11 to the step S14
  • the second viewpoint image as shown in FIG. 8 is generated at different test angles.
  • the fourth viewpoint image as shown in FIG. 8 is generated at different test angles.
  • White light brightness distribution curve
  • Step S17 Generate a brightness graph in which the second brightness value changes with different test angles. For example, as shown in FIG. 9, the second brightness values ⁇ (>], 2, 3, 4, .., 13) obtained in the step S15 and the correspondence between the second brightness values M and the test angle are generated. A profile of the second brightness value as a function of the test angle.
  • Step S18 determining a luminance peak in the first luminance value. For example, in the white light luminance distribution curve corresponding to each viewpoint image shown in FIG. 8 , the luminance peaks of the respective viewpoint images at different test angles are determined, that is, the plurality of viewpoint images are determined at a plurality of optimal viewing angles on the light exit side of the display panel. Multiple brightness peaks, such as from -30° to 30°, each of the first brightness peaks corresponding to the ordinate, £ 2 , 3, L 4 , L 5 , L 6 , ..., L 12 , L 13 .
  • Step S19 determining a second luminance peak at each of the first luminance value points. For example, determining a second brightness value at each of the first brightness peaks, the second brightness value ⁇ , ⁇ 2 , ⁇ 3 , ⁇ , ⁇ 5 , ⁇ 6 , ..., ⁇ 12 , ⁇ 1 3 ⁇
  • Step S2C determines the crosstalk value of the light at the test angle corresponding to the luminance peak.
  • L i --M i _M ; )_ - ( - _1 ⁇ 2 ; ) indicates a viewpoint map corresponding to the first luminance peak value'
  • the first luminance value Y 47 of the fourth viewpoint image at 0 ⁇ 0 is the luminance peak value 7 at cH), that is, 7 , ⁇ -4 ⁇ .
  • a distribution curve diagram of each crosstalk value as shown in FIG. 10 is generated according to the test angle, according to FIG.
  • the graph shown can determine the crosstalk of the light on the display as a whole.
  • an embodiment of the present invention further provides an apparatus for evaluating a bare warm stereoscopic display crosstalk, including:
  • the brightness acquiring unit is configured to: when the display panel sequentially displays each of the viewpoint images of the plurality of viewpoint images, sequentially acquire the first brightness values of the light of the respective test angles corresponding to the current viewpoint image on the light emitting side of the display panel; When the panel displays a full black image, the second brightness value of the light of each test angle is sequentially obtained in the display panel; wherein ⁇ is a positive integer not less than 2;
  • the brightness peak determining unit 12, ffi is determined to determine the brightness peak value among all the acquired first brightness values
  • the crosstalk value determining unit 13, ffi determines the crosstalk value of the light at the test angle based on the first brightness value and the second brightness value at any one of the test angles corresponding to the N viewpoint images.
  • the brightness obtaining unit 11 is configured to: on the light-emitting side of the display panel, center the display panel as a center, and set an arc on the same horizontal plane with a radius of a distance to obtain an image for displaying the current viewpoint image.
  • the method further includes: a curve establishing unit 14 configured to divide, according to the acquired viewpoint image points
  • the crosstalk value of the light at the i-th test angle on the display panel indicates the brightness peak value in the first brightness value corresponding to each view image at the i-th test angle, and M represents the i-th test two brightness value;
  • the curve establishing unit 14 is further configured to: after determining the crosstalk value of the light at the test angle corresponding to any brightness peak, establish a crosstalk value according to the crosstalk value of the light at the test angle corresponding to each brightness peak value. The curve of the angle of change.
  • An embodiment of the present invention provides a method for evaluating a stereoscopic display crosstalk of a naked eye, including: displaying, when displaying each view image, a white image displayed by each sub-pixel displaying the current view image, for displaying each of the other view images
  • the pixel displays a black image, and sequentially acquires the first brightness value of the light of each test angle corresponding to the current viewpoint image on the light exit side of the display panel; the control display panel displays the all black image, and sequentially obtains the light of each test angle in the light output of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种评价裸眼立体显示串扰的方法及装置,用以提高评价裸眼立体显示串扰的准确性。所述方法包括:控制显示面板依次显示N个视点图像;在显示每一个视点图像时,用于显示当前视点图像的各亚像素显示白色图像,用于显示其它视点图像的各亚像素显示黑色图像,在显示面板出光侧依次获取当前视点图像对应的各个测试角度的光线的第一亮度值;控制显示面板显示全黑图像,在显示面板出光测依次获取各个测试角度的光线的第二亮度值;根据所述第一亮度值中任一亮度峰值以及与该亮度峰值对应同一测试角度处的第二亮度值,确定所述亮度峰值对应的测试角度处光线的串扰值,其中N为不小于2的正整数。

Description

本申请主张在 2013 年 07 月 31 日在中国提交的中国专利申请号 No. 201310329433.7的优先权, 其全部内容通过引用包含于此。
本发明涉及图像显示技术领域, 尤其涉及一种评价裸眼立体显示串扰的 方法及装置。
目前, 三维立体 (3D) 显示技术中的裸眼式 3D显示备受关注。
裸眼 3D显示的实现原理如图 1 所示, 显示装置至少包括显示面板 200 和位于显示面板 200出光侧的光栅 100; 其中, 光栅 100可以将显示面板 200 发出的光线汇聚在其焦点上, 使显示面板 200的左眼像素发出的光射向观看 者的左眼, 右限像素发出的光射向观看者的右限, 实现 3D显示的效果。
对于裸眼 3D 显示, 人们最关心的是立体显示效果。 显示装置出光侧的 视区为间隔排列的左眼视区和右限视区, 当人限位于相邻两个左眼视区和右 暖视区内, 能够看到立体图像。 但是由于光栅与测试角度对位无法做到绝对 严谨, 导致裸限 3D显示图像包含了 2D (二维) 杂散光的影响, 从而引起裸 暖式 3D显示存在一定串扰问题, 严重影响裸眼式图像的显示效果。
一般地, 通过人暖感知评价裸眼式 3D显示串扰, 无法准确地评价裸限 立体显示串扰。 对于准确测量裸暖式 3D 显示串扰值, 以客观准确评价裸眼 式 3D显示串扰的问题, 目前还尚未提出有效的解决方案。
本发明实施例提供一种评价裸眼立体显示串扰的方法及装置, 用以提髙 评价裸眼立体显示串扰的准确性。
为实现上述目的, 所述评价裸眼立体显示串扰的方法, 包括以下步骤: 控制显示面板依次显示 N个视点图像;
在显示每一个视点图像时, 用于显示当前视点图像的各亚像素显示白色 图像, ^于显示其它视点图像的各亚像素显示黑色图像, 在显示面板出光侧 依次获取当前视点图像对应的各个测试角度的光线的第一亮度值, 并且确定 所述获取的所有第一亮度值中的亮度峰值;
控制显示面板显示全黑图像, 在显示面板出光测依次获取各个测试角度 的光线的第二亮度值;
根据所述第一亮度值中任一亮度峰值以及与该亮度峰值对应同一测试角 度处的第二亮度值, 确定所述亮度峰值对应的测试角度处光线的串扰值; 其中 N为不小于 2的正整数。
较佳地, 在显示面板出光侧依次获取当前视点图像对应的各个测试角度 的光线的第一亮度值, 具体为:
在显示面板出光侧以显示面板的中心为圆心, 以设定距离为半径且位于 同一水平面上的圆弧上, 获取用于显示当前视点图像的各亚像素发出的光线 在各个测试角度的第一亮度值。
较佳地,获取各个测试角度的光线的第一亮度值和第二亮度值,具体为: 根据所述获取的各视点图像分别在各个测试角度的光线的第一亮度值建 立第一亮度曲线图;
根据所述分别在各个测试角度获取的光线的第二亮度值建立第二亮度曲 线图。
较佳地, 根据 N个视点图像对应的任一测试角度处所述第一亮度值和所 述第二亮度值, 确定该测试角度处光线的串扰值, 具体为:
根据如下公式 i个测试角度处光线的串扰值:
Figure imgf000004_0001
其中, 为显示面板上第 i个测试角度处光线的串扰值, A表示第 1个 测试角度处各视点图像对应的第一亮度值中的亮度峰值, M表示第 i个测试 角度处的第二亮度值; 表示第 J个视点图像在第 i个测试角度处的第一亮 较佳地, 在确定任一亮度峰值对应的测试角度处光线的串扰值之后, 还包 括:
根据所述各亮度峰值对应的测试角度处光线的串扰值,建立串扰值随测试 角度的变化曲线图。
本发明实施例提供一种评价裸眼立体显示串扰的装置, 所述装置包括: 亮度获取单元, 用于在显示面板依次显示 N个视点图像的每一个视点图 像时, 在显示面板出光侧依次获取当前视点图像对应的各个测试角度的光线 的第一亮度值; 以及在显示面板显示全黑图像时, 在显示面板出光测依次获 取各个测试角度的光线的第二亮度值; 其中 N为不小于 2的正整数;
亮度峰值确定单元, ffi于确定所述获取的所有第一亮度值中的亮度峰值; 串扰值确定单元, 用于根据 N个视点图像对应的任一测试角度处所述第 一亮度值和所述第二亮度值, 确定该测试角度处光线的串扰值。
较佳地, 所述亮度获取单元具体用于, 在显示面板出光侧以显示面板的 中心为圆心, 以设定距离为半径且位于同一水平面上的圆弧上, 获取 于显 示当前视点图像的各亚像素发出的光线在各个测试角度的第一亮度值。
较佳地, 还包括:
曲线建立单元, 用于根据所述获取的各视点图像分别在各个测试角度的 光线的第一亮度值建立第一亮度曲线图; 根据所述分别在各个测试角度获取 的光线的第二亮度值建立第二亮度曲线图。
较佳地, 所述串扰值确定单元具体用于, 根据如下公式确定第 i个测试 角度处光线的串扰值:
β -L -- (Ν--ϊ)Μί
PCT; χ 100%; 其中, 为显示面板上第 i个测试角度处光线的串扰值, A表示第 1个 测试角度处各视点图像对应的第一亮度值中的亮度峰值, M表示第 i个测试 角度处的第二亮度值; 表示第 j个视点图像在第 1个测试角度处的第一亮 度值; N表示视点图像的总个数。
较佳地, 所述 E¾线建立单元还 )¾于, 在确定任一亮度峰值对应的测试角度 处光线的串扰值之后,根据所述各亮度峰值对应的测试角度处光线的串扰值, 建立串扰值随测试角度的变化曲线图。
本发明实施例提供的评价裸暖立体显示串扰的方法及装置通过确定全白 图像的第一亮度值和全黑图像的第二亮度值, 准确地测量裸眼式 3D 显示串 扰值, 能够客观准确地评价裸暖式 3D显示串扰程度。
图 1为现有的 3D裸眼显示装置的结构示意图;
图 2为本发明实施例提供的显示面板上的亚像素排列示意图;
图 3 为本发明实施例提供的显示第一视点图像时对应的第一组亚像素排 列示意图;
图 4 为本发明实施例提供的显示第二视点图像时对应的第二组亚像素排 列示意图;
图 5 为本发明实施例提供的显示第三视点图像时对应的第三组亚像素排 列示意图;
图 6 为本发明实施例提供的显示第四视点图像时对应的第四组亚像素排 列示意图;
图 7为本发明实施例提供的亮度计与显示面板之间的相对位置示意图; 图 8 为本发明实施例提供的分别显示四个视点图像时在不同测试角度处 的光线的第一亮度曲线图;
图 9 为本发明实施例提供的显示全黑图像时在不同测试角度处的第二亮 度与测试角度之间的曲线图;
图 10为本发明实施例提供的反映不同测试角度处串扰值之间的曲线图; 图 Π为本发明实施例提供的评价裸眼立体显示串扰装置结构示意图。 具体实施方式
本发明实施例提供一种评价裸眼立体显示串扰的方法及装置, 用以提高 评价裸眼立体显示串扰的准确性。
本发明通过控制显示面板依次显示多个视点图像, 以及显示全黑图像。 具体地,在显示每一视点图像 i吋依次获取多个测试角度处光线的第一亮度值, 在显示面板显示全黑图像时依次获取多个测试角度处光线的第二亮度值。 确 定各视点图像对应的第一亮度值的亮度峰值, 确定每一亮度峰值所在测试角 度处的光线的串扰值。 该方法确定裸眼式 3D 显示串扰值的准确度较高, 能 够客观准确评价裸眼式 3D显示串扰程度。
每一亮度峰值对应显示面板出光侧的最佳观看角度, 即每一亮度峰值为 在出光侧最佳观看角度处获得的亮度值。 本发明所述最佳不同观看角度与显 示面板出光侧的不同视区 对应。
以下结合 i†图具体说明本发明实施例提供的技术方案。
本发明实施例提供的评价裸跟立体显示串扰的方法总体包括以下步骤: 步骤 控制显示面板依次显示 N个视点图像, 在显示面板出光侧依 次获取显示当前视点图像对应的各个测试角度的光线的第一亮度值, 且确亮 度峰值;
具体地, 在显示每一个视点图像时, )¾于显示当前视点图像的各亚像素 显示白色图像, 用于显示其它视点图像的各亚像素显示黑色图像, 在显示面 板出光侧依次获取当前视点图像对应的各个测试角度的光线的第一亮度值; 确定所有第一亮度值中的亮度峰值;
步骤 S102: 控制显示面板显示全黑图像, 在显示面板出光测依次获取各 个测试角度的光线的第二亮度值;
步骤 S103 : 根据所述第一亮度值中任一亮度峰值以及与该亮度峰值对应 同一测试角度处的第二亮度值, 确定所述亮度峰值对应的测试角度处光线的 串扰值。
其中 N为不小于 2的正整数。
其中本发明实施例对于步骤 S101和步骤 S102的先后顺序不用限定,即, 步骤 S101和步骤 S102的先后顺序可以互换。
需要说明的是, 所述每一个视点图像与显示面板上的部分亚像素对应, 各视点图像与显示面板上的所有亚像素对应。 当控制显示面板显示某一视点 图像时, 与当前视点图像对应的各亚像素显示白色图像, 其他各亚像素显示 黑色图像。
较佳地, 根据如下公式确定第 i个测试角度处光线的串扰值: P x 100%;
Figure imgf000008_0001
其中, 为显示面板上第 i个测试角度处光线的串扰值, 表示第 i个 测试角度处各视点图像对应的第一亮度值中的亮度峰值, M表示第 i个测试 角度处的第二亮度值; Y ;表示第 j个视点图像在第 i个测试角度处的第一亮 度值; N表示视点图像的总个数。
以下将具体说明步骤 S101和步骤 S102分别获取第一亮度值和第二亮度值 的方法:
在具体实施过程中针对各视点图像, 采用光学测试设备在显示面板的出 光侧依次测量不同测试角度 ct α2, ..., am处光线的第一亮度值; 具体可以 但不限于通过亮度计获取不同测试角度处光线的第一亮度值。 可以设定间隔 步长以测试多个测试角度处光线的第一亮度值, 例如每间隔 0.5 弧度角测试 一次光线的第一亮度值。
同理, 采用光学测试设备在显示面板的出光侧依次测量显示面板显示全 黑图像时, 在所述各测试角度处光线的第二亮度值。
较佳地, 为了提高评价裸眼立体显示串扰的准确性, 将所述亮度计在同 一平面内移动, 以测量位于同一平面上不同测试角度处光线的亮度值。
具体地, 由于人的左右眼位于同一水平线上, 因此相对于固定不动的显 示面板, 亮度计位于同一平面获取不同测试角度方向的光线的亮度值可以提 高评估裸眼立体显示串扰的准确性。 在具体实施过程中, 可以将亮度计置于 显示面板出光侧距地面为一恒定值的位置,亮度计可以在同一水平面上移动, 测试每一视点图像在多个测试角度处的亮度值。
较佳地, 为了进一步提高评估裸眼立体显示串扰的准确性, 亮度计在显 示面板出光侧以显示面板的中心为圆心, 以观看图像的设定距离为半径—巨.位 于同一水平面上的圆弧上的多个测试角度处, 测试每一视点图像在多个测试 角度处的亮度值。
理论上, 由于光线在传播的过程中会有一定损耗, 因此在同一测试角度 方向上的不同位置的光线的亮度值会有一定的偏差。 具体地, 距离光源越远 的位置, 光线的亮度值越小; 距离光线越近的位置, 光线的亮度值越大。 本 发明亮度计在不 测试角度方向距离显示屏中心等距的位置测量光线的亮度 值, 可以提高评估裸跟立体显示串扰的准确性。
为了进一步提高评估裸眼立体显示串扰的准确性, 在所述圆弧的不同位 置对应不同测试角度, 可以间隔相同的角度来测量光线的亮度值。 例如, 以 显示面板的中央对应的测量位置 0°为基准, 在立体视角范围内, 逆时针移动 亮度计, 在弧度角分别为 5°, 10°, 15°, 20°等对应的位置测量出射光线的亮 度值, 然后以显示面板的中央对应的测量位置为 0°为基准, 顺时针移动亮度 计, 在弧度角分别为 5°, -10°, -15°, -20°等对应的位置测量出射光线的亮度 值。 所述每间隔 5°测量一次亮度值汉是一种示意, 而本发明实施例对此并不 做限定, 并且本领域技术人员可以根据实际需要灵活设定间隔角度。 在具体 实施过程中, 可以间隔更小的弧度值测量一次亮度值, 例如以 0.5或 1度为 步长进行亮度值的测量。
将步骤 S101和步骤 S102获取的不同测试角度的亮度值保存在亮度计中。 较佳地, 为了更便捷地获取各视点对应的第一亮度值中的亮度峰值, 分 别获取每一视点图像对应的第一亮度值随测试角度的亮度分布曲线图; 将各 视点图像对应的亮度分布曲线图叠加 (即, 将各视点图像对应的亮度分布曲 线图置于同一直角坐标系),在叠加后的亮度分布曲线中获取各视点图像对应 的多个亮度值, 该亮度值中存在多个亮度峰值, 其中每一亮度峰值对应显示 面板出光侧处的一个视区。
以下具体说明本发明实施例提供的评价裸限立体显示串扰的具体实现方 式。
参见图 2, 显示面板包括多个呈矩阵分布的亚像素, 以四视点图像显示 面板为例说明。设图 2中包括对应分别用于显示四个视点图像的四组亚像素: 第一组亚像素 1、 第二组亚像素 2、 第三组亚像素 3和第四组亚像素 4。 需要 说明的是, 各亚像素的排列方式不限于为图 2所示的排列方式。
控制显示面板分别显示各视点图像, 其中当显示某一视点图像时, 该视 点图像对应的亚像素显示白色图像, 其他视点图像对应的各亚像素显示黑色 图像。 例如: 参见图 3, 当显示第一视点图像时, 控制显示面板的第一组亚 像素 i显示白色图像, 其他亚像素显示黑色图像; 参见图 4, 当显示第二视点图像时, 控制显示面板的第二组亚像素 2显 示白色图像, 其他亚像素显示黑色图像;
参见图 5, 当显示第三视点图像时, 控制显示面板的第三组亚像素 3显 示白色图像, 其他亚像素显示黑色图像;
参见图 6, 当显示第四视点图像时, 控制显示面板的第四组亚像素 4显 示白色图像, 其他亚像素显示黑色图像。
参见图 7, 示出了测量第一亮度值和第二亮度值时亮度计 10与显示面板 20之间的相对位置。 亮度计 10位于以显示面板 20的中心 (或者也称中央) 0为圆心、 以观看者观看图像的最佳观看距离 R为半径的圆弧上的不同位置 来移动测量光线的亮度。例如, 可以依次在 30°至 30°的范围内每间隔 5°弧度 角测试一个亮度值, 针对每一视点图像依次在 13个测试角度 (-30°, -25。, -20。, -15。, 10。, -5。, 0°, 5。, 10。, 15。, 20。, 25。, 30。) 测试 13 个亮度 值。
本发明实施例提供的评价裸眼立体显示串扰的方法具体包括以下步骤: 步骤 Slh 获取第一视点图像在不同测试角度处光线的第一亮度值。 例 如,将亮度计在 30°至- 30°的范围内每间隔 5°弧度角依次测试如图 3所示的第 一视点图像对应的不同测试角度处的第一亮度值!^, 1,2,3,...,13。
具体地, 将亮度计的镜头正对显示面板屏幕中央的 0点, 针对图 3所示 的图像, 从图 8所示的 -30°至 30°的范围内每间隔 5°弧度角测试一个亮度值, 共测试 13 次, 得到的亮度值按照测试角度增大的顺序依次记为 】 , Υνι^ ...... ...... , Yiu; 为显示第一视点图像时测试的第 i个测试角度处 光线的亮度值, 该亮度值为第一亮度值, 保存所述测试的各测试角度处的第 一亮度值以及第一亮度值与测试角度的对应关系。
步骤 S12: 获取第二视点图像在不同测试角度处光线的第一亮度值。 例 如,将亮度计在 30°至- 30°的范围内每间隔 5°弧度角依次测试图 4所示的第::::: 视点图像对应的不同测试角度处的第一亮度值】 , 1,2,3,...,13。
具体地,亮度计的镜头正对显示面板屏幕中央的 0点,丛图 7所示的 -30° 至 30°的范围内每间隔 5°弧度角测试一个亮度值, 共测试 13次, 得到的亮度 值按照测试角度增大的顺序依次记为 ] ^, γ2, i3, 该亮度值 为第一亮度值, 保存所述测试的各测试角度处的第一亮度值以及第一亮度值 与测试角度的对应关系。
步骤 S13 : 获取第三视点图像在不同测试角度处光线的第一亮度值。 例 如,将亮度计在 30°至 -30°的范围内每间隔 5°弧度角依次测试图 5所示的第三 视点图像对应的不同测试角度处的第一亮度值 , F ,2,3,...,13。
具体地,亮度计的镜头正对显示面板屏幕中央的 0点,从图 7所示的 30° 至 30°的范围内每间隔 5°弧度角测试一个亮度值, 共测试 13次, 得到的亮度 值按照测试角度增大的顺序依次记为 ¾, ¾, ...... , ......, 3, 该亮度值 为第一亮度值。 保存所述测试的各测试角度处的第一亮度值以及第一亮度值 与测试角度的对应关系。
步骤 S14: 获取第四视点图像在不同测试角度处光线的第一亮度值。 例 如,将亮度计在 30°至 -30°的范围内每间隔 5°弧度角依次测试图 6所示的第四 视点图像对应的不同测试角度处的第一亮度值; F4i, 1,2,3,...,13。
具体地,亮度计的镜头正对显示面板屏幕中央的 0点,从图 7所示的 30° 至 30°的范围内每间隔 5°弧度角测试一个亮度值, 共测试 13次, 得到的亮度 值按照测试角度增大的顺序依次记为 Κπ , 742, ...... , , ...... , 7413, 该亮度 值为第一亮度值。 保存所述测试的各测试角度处的第一亮度值以及所述第一 亮度值与测试角度的对应关系。
步骤 S15 : 获取全黑图像在不同测试角度处光线的第二亮度值。 例如, 将亮度计在 30°至- 30°的范围内每间隔 5°弧度角测试全黑图像在不同测试角 度处的光线的第二亮度值 ½, 1 ,2,3,...,13, 得到的第二亮度值依次为 、 _Μ2、 Μ3、 Μ4, 13;
步骤 S16: 生成第一亮度值随不同测试角度变化的亮度曲线图。 例如, 如图 8 所示, 根据所述步骤 S11 至步骤 S14 获取的第一亮度值
(j-l ,2,3,4;i-l,2,3,.,13 ) 以及各第一亮度值 与测试角度的对应关系, 生成 第一亮度随测试角度变化的分布曲线图。
具体地,根据亮度计获取的第一视点图像对应的第一亮度值 和测试角 度 αι, α2, α3, 。....。, α13的对应关系, 生成如图 8所示的第一视点图像在不 同测试角度处的白光亮度分布曲线; 根据亮度计获取的第二视点图像对应的第一亮度值 和测试角度 , 2, (¾, ...ot13的对应关系, 生成如图 8所示的第二视点图像在不同测试角度处的 白光亮度分布曲线;
根据亮度什获取的第三视点图像对应的亮度值 和测试角度 ^, α2, , ......, (χ13的对应关系, 生成如图 8所示的第三视点图像在不同测试角度 处的白光亮度分布曲线;
根据亮度计获取的第四视点图像对应的亮度 和测试角度 ^, α2 , , ......, α13的对应关系, 生成如图 8所示的第四视点图像在不同测试角度 处的白光亮度分布曲线;
步骤 S17: 生成第二亮度值随不同测试角度变化的亮度曲线图。 例如, 如图 9所示, 根据所述步骤 S15获取的第二亮度值 Μ (>】,2,3,4,..,13 ) 以及 各第二亮度值 M与测试角度的对应关系, 生成第二亮度值随测试角度变化的 分布曲线图。
步骤 S18: 确定第一亮度值中的亮度峰值。 例如, 在图 8所示的各视点 图像对应的白光亮度分布曲线中确定各视点图像在不同测试角度处的亮度峰 值, 即确定各视点图像在显示面板出光侧的多个最佳观看角度处的多个亮度 峰值,如从- 30°至 30°的范围内,各第一亮度峰值分别对应纵坐标上的 ,£2, 3, L4, L5, L6, ..., L12, L13
步骤 S19: 确定在各第一亮度值点处的第二亮度峰值。 例如, 确定在各 第一亮度峰值处的第二亮度值,所述第二亮度值 Αίι, Μ2, Μ3, Μ,, Μ5, Μ6, ..., Μ12, Μ1 3 ο
步骤 S2C 确定亮度峰值对应的测试角度处光线的串扰值。 根据所述各 视点图像在第 i个测试角度处的第一亮度值 (j=l,2,3,4;i l,2,3,..,13 ), 以及 所述第二亮度值 M, 确定每一最佳观看角度处光线的串扰值
N
PCT - -^ χ ΐοο% , 该公式经变形后为如下公式:
Li ~Mi
Figure imgf000012_0001
PCT xl00%
Li --Mi _M;)_ - ( - _½;)表示除第一亮度峰值对应的视点图'
Figure imgf000013_0001
图像在第 i个测试角度处的第一亮度值与第 i个测试角度处的第二亮度值的差 值之和。
设第七个测试角度为其中一个最佳观看角度。 以下将以确定第七个测试 角度 (CF )) 处光线的串扰值 PCJ为例说明。
具体地, 如图 8所示, 第四视点图像在 0^0处的第一亮度值 Y47为 cH) 处的亮度峰值 7, 即 7, Ν-4ο
Υ - ί—'Ί -(Ν-\)ΜΊ
100% - (Y -8
17 ·- J27 ++7½ ++Y47j )~L ~3M χ100%
L7 -- ΜΊ L -- ,
(-^17卞 ¾7 + ^37 + ).47)― ¾7 '― '" '^7 κ100%- .ϋ」.ϋ . χ 100%
1Ί -- Μ Υ„—·ΜΊ 进一步地, 根据计算得到的所述各测试角度处的串扰值, 生成如图 10所 示的各串扰值随测试角度变化的分布曲线图, 根据图 10所示的曲线图, 可以 整体上确定显示屏上光线的串扰情况。
参见图 11, 本发明实施例还提供一种评价裸暖立体显示串扰的装置, 包 括:
亮度获取单元】1,用于在显示面板依次显示 Ν个视点图像的每一个视点 图像时, 在显示面板出光侧依次获取当前视点图像对应的各个测试角度的光 线的第一亮度值; 以及在显示面板显示全黑图像时, 在显示面板出光测依次 获取各个测试角度的光线的第二亮度值; 其中 Ν为不小于 2的正整数;
亮度峰值确定单元 12, ffi于确定所述获取的所有第一亮度值中的亮度峰 值;
串扰值确定单元 13, ffi于根据 N个视点图像对应的任一测试角度处所述 第一亮度值和所述第二亮度值, 确定该测试角度处光线的串扰值。
较佳地, 亮度获取单元 11具体用于, 在显示面板出光侧以显示面板的中 心为圆心, 以设定距离为半径旦位于同一水平面上的圆弧上, 获取用于显示 当前视点图像的各亚像素发出的光线在各个测试角度的第一亮度值。
较佳地, 还包括: 曲线建立单元 14, 用于根据所述获取的各视点图像分
其中, 为显示面板上第 i个测试角度处光线的串扰值, 表示第 i个 测试角度处各视点图像对应的第一亮度值中的亮度峰值, M表示第 i个测试 二亮度值; 表示第 j个视点图像在第 i个测试角度处的第一亮
Figure imgf000014_0001
较佳地, 曲线建立单元 14还 ffi于, 在确定任一亮度峰值对应的测试角度 处光线的串扰值之后,根据所述各亮度峰值对应的测试角度处光线的串扰值, 建立串扰值随测试角度的变化曲线图。
本发明实施例提供了一种评价裸眼立体显示串扰的方法, 包括: 在显示 每一个视点图像时, )¾于显示当前视点图像的各亚像素显示白色图像, 用于 显示其它视点图像的各亚像素显示黑色图像, 在显示面板出光侧依次获取当 前视点图像对应的各个测试角度的光线的第一亮度值; 控制显示面板显示全 黑图像, 在显示面板出光测依次获取各个测试角度的光线的第二亮度值; 根 据所述第一亮度值中任一亮度峰值以及与该亮度峰值对应同一测试角度处的 第二亮度值, 确定所述亮度峰值对应的测试角度处光线的串扰值, 其中 N为 不小于 2的正整数。 通过确定全白图像的第一亮度值和全黑图像的第二亮度 值,准确测量裸眼式 3D显示串扰值,客观准确评价裸限式 3D显示串扰程度。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

1 . 一种评价裸眼立体显示串扰的方法, 其中, 所述方法包括以下步骤:
Figure imgf000015_0001
在显示每一个视点图像时, 用于显示当前视点图像的各亚像素显示白色 图像, ffi于显示其它视点图像的各亚像素显示黑色图像, 在显示面板出光侧 依次获取显示当前视点图像时对应的各个测试角度处光线的第一亮度值, 并 且确定所述获取的所有第一亮度值中的亮度峰值;
控制显示面板显示全黑图像, 在显示面板出光测依次获取显示全黑图像 时对应的各个测试角度处光线的第二亮度值;
根据所述第一亮度值中任一亮度峰值以及与该亮度峰值对应同一测试角 度处的第二亮度值, 确定所述亮度峰值对应的测试角度处光线的串扰值; 其中 N为不小于 2的正整数。
2. 根据权利要求 1所述的方法, 其中,
在显示面板出光侧依次获取显示当前视点图像时对应的各个测试角度处 光线的第一亮度值, 具体为:
在显示面板出光侧以显示面板的中心为圆心、 以设定距离为半径且位于 同一水平面上的圆弧上, 获取用于显示当前视点图像的各亚像素发出的光线 在各个测试角度处光线的第一亮度值。
3.根据权利要求 1所述的方法, 其中, 获取各个测试角度处光线的第一 亮度值和第二亮度值, 具体为:
根据显示面板显示各视点图像时分别在各个测试角度处获取的光线的第 一亮度值建立第一亮度曲线图;
根据显示面板显示全黑图像时在各个测试角度处获取的光线的第二亮度 值建立第二亮度曲线图。
4.根据权利要求 2所述的方法, 其中, 根据所述第一亮度值中任一亮度 峰值以及与该亮度峰值对应同一测试角度处的第二亮度值, 确定所述亮度峰 值对应的测试角度处光线的串扰值, 具体为:
根据如下公式确定第 1个测试角度处光线的串扰值: N
J Y,. - I, ~ V "1) ;
PCT - x 100%; 其中, 为显示面板上第 i个测试角度处光线的串扰值, ^表示第 i 个测试角度处各视点图像对应的第一亮度值中的亮度峰值, 表示第 3个测 试角度处的第二亮度值; η;表示第 j个视点图像在第 i个测试角度处的第一 亮度值; N表示视点图像的总个数。
5.根据权利要求 1或 4所述的方法, 其中, 在确定任一亮度峰值对应的 测试角度处光线的串扰值之后, 还包括:
根据所述各亮度峰值对应的测试角度处光线的串扰值, 建立串扰值随测 试角度的变化曲线图。
6.根据权利要求 2所述的方法, 其中, 以设定的间隔弧度值在所述圆弧 上获取所述各个测试角度处光线的第一亮度值和第二亮度值。
7.—种评价裸眼立体显示串扰的装置, 其中, 所述装置包括;
亮度获取单元, 用于在显示面板依次显示 N个视点图像的每一个视点图 像时, 在显示面板出光侧依次获取显示当前视点图像时对应的各个测试角度 的光线的第一亮度值; 以及在显示面板显示全黑图像时, 在显示面板出光测 依次获取显示全黑图像时对应的各个测试角度处光线的第二亮度值, 其中 N 为不小于 2的正整数;
亮度峰值确定单元,)¾于确定所述获取的所有第一亮度值中的亮度峰值; 串扰值确定单元, 用于根据所述第一亮度值中任一亮度峰值以及与该亮 度峰值对应同一测试角度处的第二亮度值, 确定所述亮度峰值对应的测试角 度处光线的串扰值。
8.根据权利要求 7所述的装置, 其中, 所述亮度获取单元具体用于, 在 显示面板出光侧以显示面板的中心为圆心、 以设定距离为半径且位于同一水 平面上的圆弧上, 获取用于显示当前视点图像的各亚像素发出的光线在各个 测试角度处的第一亮度值。
9.根据权利要求 7所述的装置, 其中, 还包括:
E¾线建立单元, 用于根据显示面板显示各视点图像 i吋分别在各个测试角 度处获取的光线的第一亮度值建立第一亮度曲线图; 根据显示面板显示全黑 图像时在各个测试角度处获取的光线的第二亮度值建立第二亮度曲线图。
10.根据权利要求 8所述的装置, 其中, 所述串扰值确定单元具体用于 根据如下公式确定 i个测试角度处光线的串扰值:
Figure imgf000017_0001
其中, 为显示面板上第 i个测试角度处光线的串扰值, 表示第 i 个测试角度处各视点图像对应的第一亮度值中的亮度峰值, M表示第 i个测 试角度处的第二亮度值; Y;;表示第 j个视点图像在第 i个测试角度处的第一 亮度值; N表示视点图像的总个数。
11.根据权利要求 7或 10所述的装置,其中,所述曲线建立单元还用于, 在确定任一亮度峰值对应的测试角度处光线的串扰值之后, 根据所述各亮度 峰值对应的测试角度处光线的串扰值,建立串扰值随测试角度的变化曲线图。
12.根据权利要求 8所述的方法, 其中, 所述亮度获取单元以设定的间隔 弧度值在所述圆弧上获取所述各个测试角度处光线的第一亮度值和第二亮度 值。
PCT/CN2014/076270 2013-07-31 2014-04-25 一种评价裸眼立体显示串扰的方法及装置 WO2015014139A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/405,313 US9961341B2 (en) 2013-07-31 2014-04-25 Method and device for evaluating crosstalk in naked-eye stereoscopic display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310329433.7A CN103414912B (zh) 2013-07-31 2013-07-31 一种评价裸眼立体显示串扰的方法及装置
CN201310329433.7 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015014139A1 true WO2015014139A1 (zh) 2015-02-05

Family

ID=49607894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076270 WO2015014139A1 (zh) 2013-07-31 2014-04-25 一种评价裸眼立体显示串扰的方法及装置

Country Status (3)

Country Link
US (1) US9961341B2 (zh)
CN (1) CN103414912B (zh)
WO (1) WO2015014139A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414912B (zh) 2013-07-31 2016-03-02 京东方科技集团股份有限公司 一种评价裸眼立体显示串扰的方法及装置
CN103686150A (zh) * 2013-12-06 2014-03-26 京东方科技集团股份有限公司 裸眼3d显示效果测试方法及装置
CN103645036B (zh) * 2013-12-30 2017-07-18 京东方科技集团股份有限公司 摩尔纹测评方法及测评装置
CN105812787A (zh) * 2016-03-15 2016-07-27 重庆卓美华视光电有限公司 一种裸眼3d显示设备的测试方法及装置
CN105915894A (zh) * 2016-05-10 2016-08-31 康佳集团股份有限公司 一种裸眼立体电视的3d串扰值测量方法
CN106254851B (zh) * 2016-08-30 2018-04-03 南京巨鲨显示科技有限公司 一种降低多视点裸眼3d显示器串扰的方法
CN106454326A (zh) * 2016-10-13 2017-02-22 张家港康得新光电材料有限公司 串扰值的测试装置
CN106657981B (zh) * 2016-11-17 2018-07-24 宁波视睿迪光电有限公司 视差式裸眼3d显示串扰的检测方法、装置及系统
CN108696743B (zh) * 2017-03-08 2023-10-24 深圳市易快来科技股份有限公司 一种裸眼3d显示模组检测的方法、装置及系统
CN108156448A (zh) * 2017-11-23 2018-06-12 张家港康得新光电材料有限公司 串扰值的检测系统和检测方法、存储介质以及处理器
CN108287419B (zh) * 2018-01-31 2021-04-23 武汉华星光电技术有限公司 显示面板画面串扰测试方法
CN109640073B (zh) * 2018-12-12 2021-02-19 张家港康得新光电材料有限公司 一种裸眼3d显示装置的检测方法及装置
CN109729349B (zh) * 2019-03-11 2021-04-09 苏州科技大学 一种裸眼屏测试系统及其测试方法
CN110475115B (zh) * 2019-08-15 2020-09-22 昆山国显光电有限公司 屏体画面串扰测试方法和装置、存储介质
CN112929635A (zh) * 2019-12-05 2021-06-08 北京芯海视界三维科技有限公司 裸眼3d显示屏的显示控制方法、多视点裸眼3d显示器
JPWO2023139988A1 (zh) * 2022-01-18 2023-07-27

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263985A (zh) * 2011-07-25 2011-11-30 深圳展景世纪科技有限公司 一种立体投影设备的质量评价方法、装置及系统
CN103024436A (zh) * 2012-12-21 2013-04-03 北京牡丹视源电子有限责任公司 一种评价与测量立体显示装置串扰的方法
CN103051919A (zh) * 2011-10-12 2013-04-17 北京牡丹视源电子有限责任公司 产生测量左右眼串扰值信号的方法及测量串扰值的方法
CN103414912A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 一种评价裸眼立体显示串扰的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289656B1 (ko) * 2010-08-24 2013-07-25 엘지디스플레이 주식회사 입체 영상 표시장치의 크로스토크 평가 시스템과 그 방법
CN102122075A (zh) * 2010-11-30 2011-07-13 上海大学 基于投影立体可视区域中图像间相互串扰的评价系统和方法
CN102724545B (zh) * 2012-06-18 2014-04-16 西安电子科技大学 裸眼3d显示设备的性能指标测试方法及测试系统
JP6308513B2 (ja) * 2012-07-31 2018-04-11 Tianma Japan株式会社 立体画像表示装置、画像処理装置及び立体画像処理方法
WO2014181567A1 (ja) * 2013-05-09 2014-11-13 シャープ株式会社 立体表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263985A (zh) * 2011-07-25 2011-11-30 深圳展景世纪科技有限公司 一种立体投影设备的质量评价方法、装置及系统
CN103051919A (zh) * 2011-10-12 2013-04-17 北京牡丹视源电子有限责任公司 产生测量左右眼串扰值信号的方法及测量串扰值的方法
CN103024436A (zh) * 2012-12-21 2013-04-03 北京牡丹视源电子有限责任公司 一种评价与测量立体显示装置串扰的方法
CN103414912A (zh) * 2013-07-31 2013-11-27 京东方科技集团股份有限公司 一种评价裸眼立体显示串扰的方法及装置

Also Published As

Publication number Publication date
US9961341B2 (en) 2018-05-01
CN103414912B (zh) 2016-03-02
CN103414912A (zh) 2013-11-27
US20160277731A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
WO2015014139A1 (zh) 一种评价裸眼立体显示串扰的方法及装置
EP2451180B1 (en) Display apparatus and method
JP6706904B2 (ja) 3次元ディスプレイ装置のための補正係数決定方法及びその方法を用いた3次元ディスプレイ装置
EP2786583B1 (en) Image processing apparatus and method for subpixel rendering
JP6449428B2 (ja) 曲面状多視点映像ディスプレイ装置及びその制御方法
JP5296872B2 (ja) 3次元ディスプレイの光学特性評価装置および3次元ディスプレイの光学特性評価方法
JP4937424B1 (ja) 立体画像表示装置および方法
WO2015014154A1 (zh) 裸眼立体显示装置亮度均匀性的评价方法及装置
US20120062556A1 (en) Three-dimensional image display apparatus, three-dimensional image processor, three-dimensional image display method, and computer program product
TW201342881A (zh) 影像處理裝置、裸眼可視立體影像顯示裝置、影像處理方法及電腦程式產品
EP3972245A1 (en) Method and apparatus for calibrating parameter of three-dimensional (3d) display apparatus
KR20160018022A (ko) 다시점 영상 디스플레이 장치 및 그 제어 방법
JP2013190713A (ja) 表示装置および方法、情報処理装置および方法、並びにプログラム
US9812068B2 (en) Method, device and system of detecting uniformity of thickness of a display screen
KR101975246B1 (ko) 다시점 영상 디스플레이 장치 및 그 제어 방법
JP2014103585A (ja) 立体画像表示装置
Sykora et al. Optical characterization of autostereoscopic 3D displays
US10997455B2 (en) Apparatus and method of correcting 3D image distortion
KR101746719B1 (ko) 디스플레이패널과 개별 렌즈간의 거리를 각각 달리하는 렌즈어레이를 이용한 3차원 영상 출력 방법
KR20130025004A (ko) 3차원 크로스토크 측정 장치 및 측정 방법
JP5422684B2 (ja) 立体画像決定装置、立体画像決定方法、および立体画像表示装置
KR101836180B1 (ko) 입체영상 표시장치의 광학 특성 평가 시스템 및 그 방법
KR20110013922A (ko) 입체 영상의 휘도측정방법
KR20160044918A (ko) 동공 간격에 기반하여 입체 영상의 깊이를 설정하는 방법 및 장치
US10551687B2 (en) Liquid crystal grating, display device and display method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14405313

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM F1205A DATED 22.06.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14831988

Country of ref document: EP

Kind code of ref document: A1