WO2015013923A1 - 数据帧的发送、接收方法和装置 - Google Patents
数据帧的发送、接收方法和装置 Download PDFInfo
- Publication number
- WO2015013923A1 WO2015013923A1 PCT/CN2013/080539 CN2013080539W WO2015013923A1 WO 2015013923 A1 WO2015013923 A1 WO 2015013923A1 CN 2013080539 W CN2013080539 W CN 2013080539W WO 2015013923 A1 WO2015013923 A1 WO 2015013923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- access point
- station
- power
- site
- scheduled
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000011664 signaling Effects 0.000 claims abstract description 206
- 230000005540 biological transmission Effects 0.000 claims abstract description 137
- 230000004044 response Effects 0.000 claims abstract description 91
- 238000004891 communication Methods 0.000 claims description 100
- 230000009467 reduction Effects 0.000 claims description 27
- 238000005259 measurement Methods 0.000 claims description 20
- 230000007423 decrease Effects 0.000 claims description 17
- 238000011156 evaluation Methods 0.000 claims description 12
- 238000012544 monitoring process Methods 0.000 claims 3
- 238000001228 spectrum Methods 0.000 abstract description 14
- 101150081243 STA1 gene Proteins 0.000 description 41
- 101100161473 Arabidopsis thaliana ABCB25 gene Proteins 0.000 description 40
- 101100096893 Mus musculus Sult2a1 gene Proteins 0.000 description 40
- 239000008186 active pharmaceutical agent Substances 0.000 description 39
- 101000752249 Homo sapiens Rho guanine nucleotide exchange factor 3 Proteins 0.000 description 32
- 102100021689 Rho guanine nucleotide exchange factor 3 Human genes 0.000 description 32
- 238000010586 diagram Methods 0.000 description 26
- OVGWMUWIRHGGJP-WVDJAODQSA-N (z)-7-[(1s,3r,4r,5s)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@H](O)CCCCC)C[C@@H]2S[C@H]1C2 OVGWMUWIRHGGJP-WVDJAODQSA-N 0.000 description 20
- 101000988961 Escherichia coli Heat-stable enterotoxin A2 Proteins 0.000 description 20
- 230000003993 interaction Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 230000006399 behavior Effects 0.000 description 6
- 101100041595 Arabidopsis thaliana IREG3 gene Proteins 0.000 description 5
- 101100255674 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RTS3 gene Proteins 0.000 description 5
- 239000007787 solid Substances 0.000 description 4
- 101100395869 Escherichia coli sta3 gene Proteins 0.000 description 3
- 244000299461 Theobroma cacao Species 0.000 description 3
- 235000009470 Theobroma cacao Nutrition 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 102100027617 DNA/RNA-binding protein KIN17 Human genes 0.000 description 2
- 101001008941 Homo sapiens DNA/RNA-binding protein KIN17 Proteins 0.000 description 2
- 208000024609 Rothmund-Thomson syndrome type 2 Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- -1 that is Proteins 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- 101000692648 Avena sativa Phytochrome A type 3 Proteins 0.000 description 1
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 1
- VYLDEYYOISNGST-UHFFFAOYSA-N bissulfosuccinimidyl suberate Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)C(S(O)(=O)=O)CC1=O VYLDEYYOISNGST-UHFFFAOYSA-N 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/50—TPC being performed in particular situations at the moment of starting communication in a multiple access environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/143—Downlink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
Definitions
- the present invention relates to communication technologies, and in particular, to a method and an apparatus for transmitting and receiving data frames. Background technique
- Neighbor interference management in wireless communication networks is a key means to improve network throughput, and is now widely concerned in the industry.
- Inter Cell Interference Coordination (ICIC) algorithm in Long Term Evolution (LTE) Rel-8/9 to reduce neighbors.
- LTE Long Term Evolution
- ICIC Inter Cell Interference Coordination
- SFR Soft Frequency Reuse
- band allocation in SFR is a static process that requires determining the frequency and bandwidth used by cell edge users during network deployment.
- static spectrum partitioning cannot adapt to transient traffic and user distribution changes, which will result in waste of spectrum resources.
- the present invention provides a method and apparatus for transmitting and receiving data frames to improve the utilization of network spectrum resources.
- a first aspect of the present invention provides a method for transmitting a data frame, including:
- the first access point receives the first interference power parameter that is fed back by the associated site of the first access point; the first access point overlaps with the coverage area of the second access point; the first interference The power parameter is used to indicate that the second access point does not affect the transmit power or the transmit power drop value if the first access point communicates with the associated site of the first access point; Receiving, by the first access point, the second interference power parameter sent by the second access point, where the second interference power parameter is that the associated site of the second access point feeds back to the second access point The second interference power parameter is used to indicate that the first access point does not affect the transmit power or transmit power of the second access point and the second access point of the associated site. Falling value
- the first access point determines that the channel working by the first access point is currently occupied by the second access point, the first access point is configured according to the first interference power parameter, And determining, by the second access power parameter and the transmit power of the second access point that currently occupies the channel, the transmit power of the to-be-scheduled station of the first access point and the first access point to the to-be-scheduled station;
- the first access point sends the scheduling indication signaling to the to-be-scheduled station, and receives the scheduling indication response message sent by the scheduled station in the to-be-scheduled station to the first access point. And transmitting, by the transmit power corresponding to the schedulable station, the data frame to the schedulable station in the determined transmit power.
- the first interference power parameter includes an upper limit of a harmless transmit power of the second access point, and the second access point is absent
- the upper limit of the transmit power is the maximum transmit power allowed by the second access point without affecting the communication between the first access point and the associated site of the first access point;
- the second interference power parameter includes an upper limit of the harmless transmission power of the first access point, and the upper limit of the harmless transmission power of the first access point is that the first access point does not affect the second The maximum transmit power allowed in the case where the access point communicates with the associated site of the second access point.
- the determining, by the first access point, that the channel that the first access point works is currently occupied by the second access point includes: The first access point receives the scheduling indication signaling by listening to the channel working by the first access point, and the first access point determines that the sending address carried in the received scheduling indication signaling is the The address of the second access point, the first access point determines that the channel is currently occupied by the second access point; or, if the first access point monitors the first access point The working channel receives the scheduling indication response signaling, and the first access point determines that the receiving address carried in the received scheduling indication response signaling is an address of the second access point, The first access point determines that the channel is currently occupied by the second access point.
- the second access point is currently occupying the first a second access point of the channel on which the access point works;
- the associated station of the second access point is the second access in the associated station that currently occupies the second access point of the channel and currently occupies the channel Point to the site that is communicating;
- the transmit power of the station and the first access point to the to-be-scheduled station includes:
- the first access point selects the to-be-scheduled station from the associated sites of the first access point, where the required transmit power of the to-be-scheduled station is smaller than the second interference power parameter, and The transmit power of the second access point is less than the third interference power parameter; the third interference power parameter is at least one of the first interference power parameters, and is used to indicate that the second access point does not affect the Transmit power in a case where the first access point communicates with the to-be-scheduled station; the first access point determines that the transmit power of the first access point to the to-be-scheduled station is the to-be-scheduled site Required transmit power.
- the first interference power parameter includes the harmless power of the second access point a falling value
- the harmless power drop value of the second access point is used to indicate that the maximum transmit power of the second access point does not affect the association between the first access point and the first access point a value that is required to decrease in the case of communication of the station
- the second interference power parameter includes a harmless power drop value of the first access point
- the harmless power drop value of the first access point is used to indicate a value required for the maximum transmit power of the first access point to decrease if the communication between the second access point and the associated site of the second access point is not affected
- the second access point is a second access point that currently occupies a channel working by the first access point;
- the associated site of the second access point is a second access point that currently occupies the channel.
- a station in the associated site that is communicating with a second access point currently occupying the channel;
- the transmit power of the station and the first access point to the to-be-scheduled station includes: Determining, by the first access point, a difference between a maximum transmit power of the second access point and the first interference power parameter as an innocent transmit power upper limit of the second access point, and a difference between a maximum transmit power of an access point and the second interference power parameter, as an upper limit of a harmless transmit power of the first access point; an upper limit of a harmless transmit power of the second access point is The maximum transmit power allowed by the second access point without affecting the communication between the first access point and the associated site of the first access point; the harmless transmit power upper limit of the first access point The maximum transmit power allowed for the first access point to not affect the communication between the second access point and the associated site of the second access point;
- the first access point selects the to-be-scheduled site from the associated sites of the first access point, where the required transmit power of the to-be-scheduled site is smaller than the first access point to the first The upper limit of the harmless transmission power of the associated site of the second access point, and the transmit power of the second access point is less than the upper limit of the harmless transmit power of the second access point to the to-be-scheduled site;
- the first access point determines that the transmit power of the first access point to the to-be-scheduled station is the transmit power required by the to-be-scheduled station.
- the first access point sequentially sends scheduling indication signaling to each of the at least two sites, or the first access point simultaneously
- the at least two stations send scheduling indication signaling.
- the scheduling indication signaling and the scheduling indication response signaling includes at least one of a frame control field, a receive address field, a send address field, and a transmit power field;
- the value of the frame control field identifies that the frame having the frame structure is scheduling indication signaling or scheduling indication response signaling; and the value of the transmit power field is the determined transmit function.
- a second aspect of the present invention provides a data frame receiving method, including:
- the station measures a first interference power parameter, where the first interference power parameter is used to indicate that the second access point does not affect the transmission power or the transmit power of the first access point to communicate with the station. a rate of decrease; the first access point is an associated access point of the station, and the first access point overlaps with a coverage area of the second access point;
- the station feeds back the first interference power parameter to the first access point, so that when the first access point determines that a channel working by the first access point is currently used by the second access point
- the first access point is determined according to the first interference power parameter, the second interference power parameter sent by the second access point, and the transmit power of the second access point currently occupying the channel.
- the station is the to-be-scheduled station of the first access point and the transmit power of the first access point to the station;
- the second interference power parameter is used to indicate that the first access point is not Transmitting power or transmit power falling value in a case of affecting communication between the second access point and the associated site of the second access point;
- the station After the station receives the scheduling indication signaling sent by the first access point to determine the transmit power, if the station determines that the station can be scheduled by the first access point, then to the first The access point sends a scheduling indication response signaling;
- the station receives a data frame sent by the first access point with the determined transmit power.
- the first interference power parameter includes an upper limit of a harmless transmit power of the second access point, and the second access point is absent
- the upper limit of the transmit power is the maximum transmit power allowed by the second access point without affecting the communication between the station and the first access point.
- the determining, by the station, the first interference power parameter includes:
- the station measures received energy of a signal transmitted by the station to the second access point using full power
- the maximum transmit power of the second access point is a value that is required to fall without affecting communication between the station and the first access point;
- the station uses the difference between the maximum transmit power of the second access point and the harmless power drop value as the harmless transmit power upper limit of the second access point.
- the first interference power parameter includes a harmless power drop value of the second access point, and the second access point is absent
- the degraded power reduction value is used to indicate that the maximum transmit power of the second access point is a value that needs to be dropped without affecting communication between the station and the first access point.
- the determining, by the station, the first interference power parameter of the second access point to the station includes:
- the station measures received energy of a signal transmitted by the station to the second access point using full power
- the station determines a harmless power drop value of the second access point based on the received energy and an idle channel assessment threshold of the station.
- a third aspect of the present invention provides a device for transmitting a data frame, where the sending device of the data frame is disposed in a first access point, and the sending device of the data frame includes:
- a receiving module configured to receive a first interference power parameter that is sent by the associated site of the first access point, and receive a second interference power parameter that is sent by the second access point, where the second interference power parameter is The associated site of the second access point is fed back to the second access point; the first access point overlaps with the coverage area of the second access point; the first interference power parameter is used And indicating, by the second access point, a transmit power or a transmit power drop value in a case that the first access point does not affect the associated site of the first access point; the second interference power parameter is used by Transmitting a transmit power or a transmit power decrease value in a case where the first access point is instructed to communicate without affecting an associated site of the second access point and the second access point;
- a determining module configured to determine that a channel working by the first access point is currently occupied by the second access point, and according to the first interference power parameter, the second interference power parameter, and currently occupying the channel The transmit power of the second access point, determining the transmit power of the to-be-scheduled station of the first access point and the first access point to the to-be-scheduled station;
- a sending module configured to send, by using the transmit power determined by the determining module, scheduling indication signaling to the to-be-scheduled station; and receiving, by the receiving module, a scheduling indication response message that is sent by the scheduled station in the to-be-scheduled station
- the transmit power corresponding to the schedulable station in the transmit power determined by the determining module is sent to the schedulable station
- the receiving module is further configured to send a schedule in the sending module.
- the scheduling indication response signaling sent by the scheduled station in the to-be-scheduled station is received.
- the receiving module The first interference power parameter received by the block includes an upper limit of the harmless transmission power of the second access point, and the upper limit of the harmless transmission power of the second access point is that the second access point does not affect the The maximum transmit power allowed in the case where an access point communicates with the associated site of the first access point -
- the second interference power parameter received by the receiving module includes an upper limit of the harmless transmission power of the first access point, and the upper limit of the harmless transmission power of the first access point is that the first access point does not affect The maximum transmit power allowed in the case where the second access point communicates with the associated site of the second access point.
- the determining, determining, by the determining module, that the channel that the first access point works is currently occupied by the second access point includes: The determining module is configured to receive the scheduling indication signaling when the channel working by the first access point is received, and determine that the sending address carried in the received scheduling indication signaling is an address of the second access point. Determining that the channel is currently occupied by the second access point; or, receiving a scheduling indication response signaling when listening to a channel working by the first access point, and determining the received scheduling indication response signaling When the receiving address carried in the address is the address of the second access point, it is determined that the channel is currently occupied by the second access point.
- the second access point is currently occupying the channel a second access point;
- the associated site of the second access point is a station in the associated site of the second access point that currently occupies the channel and is in communication with the second access point currently occupying the channel;
- the determining module is configured to determine, according to the first interference power parameter, the second interference power parameter, and a transmit power of a second access point that currently occupies the channel, the to-be-scheduled site of the first access point. And transmitting power of the first access point to the to-be-scheduled station includes:
- the determining module is specifically configured to select the to-be-scheduled site from the associated sites of the first access point, where the required transmit power of the to-be-scheduled site is smaller than the second interference power parameter, and The transmit power of the second access point is smaller than the third interference power parameter; and determining that the transmit power of the first access point to the to-be-scheduled station is the transmit power required by the to-be-scheduled station;
- the interference power parameter is at least one of the first interference power parameters, and is used to indicate that the second access point does not affect the first access point and the to-be-scheduled site Transmit power in the case of communication.
- the first interference power parameter received by the receiving module includes the second access point
- the harmless power drop value of the second access point is used to indicate that the maximum transmit power of the second access point does not affect the first access point and the first connection a value that is required to be reduced in the case of communication of the in-point associated site
- the second interference power parameter received by the receiving module includes a harmless power drop value of the first access point, the first access point
- the harmless power drop value is used to indicate that the maximum transmit power of the first access point is required to decrease in the case of not affecting communication between the second access point and the associated site of the second access point.
- the second access point is a second access point that currently occupies a channel working by the first access point;
- the associated site of the second access point is a second access point that currently occupies the channel Associated site with current occupancy a station that is in communication with the second access point;
- the determining module is configured to use, according to the first interference power parameter, the second interference power parameter, and a transmit power of a second access point that currently occupies the channel Determining, by the to-be-scheduled station of the first access point, and the transmit power of the first access point to the to-be-scheduled station, including:
- the determining module is specifically configured to use a difference between a maximum transmit power of the second access point and the first interference power parameter as an innocent transmit power upper limit of the second access point, and a difference between a maximum transmit power of the first access point and the second interference power parameter as an innocent transmit power upper limit of the first access point; and selecting from an associated site of the first access point Determining a scheduling station, where a transmit power required by the to-be-scheduled site is smaller than an upper limit of a harmless transmit power of the first access point to an associated site of the second access point, and the second access The transmit power of the point is smaller than the upper limit of the harmless transmit power of the second access point to the to-be-scheduled station; and determining that the transmit power of the first access point to the to-be-scheduled site is the to-be-scheduled site Required transmit power.
- the sending module is configured to send a scheduling to the to-be-scheduled station Indication signaling includes:
- the sending module is specifically configured to: when the to-be-scheduled site includes at least two sites, send scheduling indication signaling to each of the at least two sites, or simultaneously send to the at least two sites Scheduling indication signaling.
- a fourth aspect of the present invention provides a receiving apparatus for a data frame, where the receiving apparatus of the data frame is disposed in a station, and the receiving apparatus of the data frame includes:
- a measurement module configured to measure a first interference power parameter, where the first interference power parameter is used to indicate that the second access point decreases in transmit power or transmit power without affecting communication between the first access point and the station
- the first access point is an associated access point of the station, and the first access point overlaps with the coverage area of the second access point;
- a sending module configured to feed back, by the first module, the first interference power parameter measured by the measurement module, to the first access point, when the first access point determines that the channel working by the first access point is currently When the second access point is occupied, the first access point is configured according to the first interference power parameter, a second interference power parameter sent by the second access point, and a second access currently occupying the channel. Determining the transmit power of the point, determining that the station is the to-be-scheduled station of the first access point and the transmit power of the first access point to the station; the second interference power parameter is used to indicate the a transmit power or transmit power decrease value of an access point without affecting communication between the second access point and an associated site of the second access point;
- a receiving module configured to receive scheduling indication signaling that is sent by the first access point by using the determined transmit power
- a determining module configured to determine, after the receiving module receives the scheduling indication signaling, that the station is scheduled by the first access point
- the sending module is further configured to: after the determining module determines that the station is scheduled by the first access point, send scheduling indication response signaling to the first access point;
- the receiving module is further configured to: after the sending module sends the scheduling indication response signaling, receive the data frame that is sent by the first access point by using the determined transmit power.
- the first interference power parameter measured by the measurement module includes an upper limit of a harmless transmit power of the second access point, where the second connection
- the innocent transmission power upper limit of the ingress is the maximum transmit power allowed by the second access point without affecting the communication of the station with the first access point.
- the measuring module is specifically configured to measure that the station uses full power to the second access point.
- the difference between the maximum transmit power of the point and the harmless power drop value is the upper limit of the harmless transmit power of the second access point.
- the first interference power parameter measured by the measurement module includes a harmless power drop value of the second access point, where the second interface
- the harmless power drop value of the ingress point is used to indicate a value of the maximum transmit power of the second access point that is required to fall without affecting communication between the station and the first access point.
- the measuring module is specifically configured to measure that the station uses full power to the second access point. A received energy of the transmitted signal, and determining a harmless power drop value of the second access point based on the received energy and an idle channel evaluation threshold of the station.
- a fifth aspect of the present invention provides a first access point, including: a transmitter, a receiver, a memory, and a processor respectively connected to the transmitter, the receiver, and the memory; Receiving a first interference power parameter that is fed back by the associated site of the first access point; and receiving a second interference power parameter sent by the second access point, where the second interference power parameter is the second interface
- the associated site of the ingress is fed back to the second access point; the first access point overlaps with the coverage area of the second access point; the first interference power parameter is used to indicate the a transmit power or a transmit power drop value of the second access point without affecting the communication between the first access point and the associated site of the first access point; the second interference power parameter is used to indicate the a transmit power or transmit power decrease value of the first access point without affecting communication between the second access point and the associated site of the second access point;
- the memory is configured to store a set of program codes
- the processor is configured to invoke a program code stored in the memory, determine that a channel working by the first access point is currently occupied by the second access point, and according to the first interference power parameter, Determining, by the second interference power parameter and the transmit power of the second access point currently occupying the channel, determining the to-be-scheduled station of the first access point and the first access point to transmit to the to-be-scheduled station Power
- the transmitter configured to send, by using the transmit power determined by the processor, scheduling indication signaling to the to-be-scheduled station; and receiving, at the receiver, a scheduling indication that is sent by the scheduled station in the to-be-scheduled station After the response signaling, the data frame is sent to the schedulable station by the transmit power corresponding to the schedulable station among the transmit powers determined by the processor;
- the receiver is further configured to: after the transmitter sends the scheduling indication signaling, receive scheduling indication response signaling sent by the scheduled station in the to-be-scheduled station.
- the first interference power parameter received by the receiver includes an upper limit of a harmless transmit power of the second access point, where the second The minimum transmit power limit of the ingress is the maximum transmit power allowed by the second access point without affecting the communication between the first access point and the associated site of the first access point;
- the second interference power parameter received by the receiver includes an upper limit of the harmless transmission power of the first access point, and the upper limit of the harmless transmission power of the first access point is that the first access point does not affect the The maximum transmit power allowed in the case where the second access point communicates with the associated site of the second access point.
- the determining, by the processor, that the channel that the first access point works is currently occupied by the second access point includes: Specifically, when receiving the scheduling indication signaling by listening to the channel working by the first access point, and determining that the sending address carried in the received scheduling indication signaling is the address of the second access point, Determining that the channel is currently occupied by the second access point; or, when receiving the scheduling indication response signaling by listening to the channel working by the first access point, and determining the received scheduling indication response signaling When the carried address is the address of the second access point, it is determined that the channel is currently occupied by the second access point.
- the second access point is currently occupying the a second access point of a channel working by the access point;
- the associated station of the second access point is a second connection between the associated station of the second access point currently occupying the channel and the current occupied channel Incoming site where communication is in progress;
- the processor is configured to determine, according to the first interference power parameter, the second interference power parameter, and a transmit power of a second access point that currently occupies the channel, a station to be scheduled of the first access point, and
- the transmit power of the first access point to the to-be-scheduled station includes:
- the processor is specifically configured to select the to-be-scheduled site from the associated sites of the first access point, where the required transmit power of the to-be-scheduled site is smaller than the second interference power parameter, and The second access power parameter is less than the third interference power parameter; the third interference power parameter is at least one of the first interference power parameters, and is used to indicate the second connection
- the in-point does not affect the transmit power of the first access point in communication with the to-be-scheduled station; and determines that the transmit power of the first access point to the to-be-scheduled site is the to-be-scheduled site The required transmit power.
- the first interference power parameter includes the harmless power of the second access point a falling value
- the harmless power drop value of the second access point is used to indicate that the maximum transmit power of the second access point does not affect the association between the first access point and the first access point a value that is required to decrease in the case of communication of the station
- the second interference power parameter includes a harmless power drop value of the first access point
- the harmless power drop value of the first access point is used to indicate a value required for the maximum transmit power of the first access point to decrease if the communication between the second access point and the associated site of the second access point is not affected
- the second access point is a second access point that currently occupies a channel working by the first access point;
- the associated site of the second access point is a second access point that currently occupies the channel.
- a station in the associated site that is communicating with a second access point currently occupying the channel;
- the processor is configured to determine, according to the first interference power parameter, the second interference power parameter, and a transmit power of a second access point that currently occupies the channel, a station to be scheduled of the first access point, and
- the transmit power of the first access point to the to-be-scheduled station includes:
- the processor is specifically configured to use a difference between a maximum transmit power of the second access point and the first interference power parameter as an upper limit of a harmless transmit power of the second access point, and a difference between a maximum transmit power of the first access point and the second interference power parameter as an innocent transmit power upper limit of the first access point; and selecting from an associated site of the first access point Determining a scheduling station, where a transmit power required by the to-be-scheduled site is smaller than an upper limit of a harmless transmit power of the first access point to an associated site of the second access point, and the second access The transmit power of the point is smaller than the upper limit of the harmless transmit power of the second access point to the to-be-scheduled station; and determining that the transmit power of the first access point to the to-be-scheduled site is the to-be-scheduled site Required transmit power.
- the transmitter is configured to send to the to-be-scheduled station
- the scheduling indication signaling includes:
- the transmitter is specifically configured to: when the to-be-scheduled site includes at least two sites, in turn Sending scheduling indication signaling to each of the at least two stations, or simultaneously transmitting scheduling indication signaling to the at least two stations.
- a sixth aspect of the present invention provides a station, including: a transmitter, a receiver, a memory, and a processor respectively connected to the transmitter, the receiver, and the memory;
- the memory is configured to store a set of program codes
- the processor is configured to invoke the program code stored in the memory to measure a first interference power parameter, where the first interference power parameter is used to indicate that the second access point does not affect the first access point and the site a transmission power or a transmission power reduction value in the case of communication; the first access point is an associated access point of the station, and the first access point overlaps with a coverage area of the second access point ;
- the receiver is configured to receive scheduling indication signaling that is sent by the first access point to determine a transmit power
- the processor is further configured to: after the receiver receives the scheduling indication signaling, determine that the station is scheduled by the first access point;
- the transmitter is further configured to: after the processor determines that the station is scheduled by the first access point, send scheduling indication response signaling to the first access point;
- the receiver is further configured to: after the transmitter sends the scheduling indication response signaling, receive the data frame that is sent by the first access point by using the determined transmit power.
- the first interference power parameter measured by the processor includes an upper limit of a harmless transmit power of the second access point, where the second connection The innocent transmission power upper limit of the ingress is the maximum transmit power allowed by the second access point without affecting the communication of the station with the first access point.
- the processor is specifically configured to measure that the station uses full power to the second access point.
- Receiving energy of the transmitted signal determining a harmless power drop value of the second access point according to the received energy and an idle channel evaluation threshold of the station, and maximizing a transmit power of the second access point
- the difference between the harmless power reduction values is the upper limit of the harmless transmission power of the second access point.
- the first interference power parameter measured by the processor includes a harmless power drop value of the second access point, where the second connection The harmless power drop value of the ingress point is used to indicate a value of the maximum transmit power of the second access point that is required to fall without affecting communication between the station and the first access point.
- the processor is configured to measure that the station uses full power to the second access point. A received energy of the transmitted signal, and determining a harmless power drop value of the second access point based on the received energy and an idle channel evaluation threshold of the station.
- the technical effect of the present invention is: determining, by the first access point, the to-be-scheduled site of the first access point according to the first interference power parameter, the second interference power parameter, and the transmit power of the second access point currently occupying the channel;
- the transmit power of the first access point to be scheduled to be used may improve the utilization of network spectrum resources.
- FIG. 1 is a flowchart of an embodiment of a method for transmitting a data frame according to the present invention
- FIG. 2 is a flowchart of an embodiment of a method for receiving a data frame according to the present invention
- FIG. 3 is a schematic diagram of an embodiment of an AP deployment scenario according to the present invention.
- FIG. 4 is a schematic diagram of an embodiment of interference information measurement feedback and interaction when three OBSS APs work simultaneously;
- FIG. 5 is a schematic diagram of an embodiment of two AP cooperation according to the present invention.
- FIG. 6 is a schematic diagram of an embodiment of a signaling interaction process when 2AP cooperation is performed according to the present invention
- FIG. 7 is a schematic diagram of an embodiment of a frame structure of scheduling indication signaling and scheduling indication response signaling according to the present invention
- FIG. 8 is a schematic diagram of an embodiment of signal coverage when 3AP cooperation is performed according to the present invention.
- FIG. 9 is a schematic diagram of an embodiment of signaling interaction when 3AP cooperation is performed according to the present invention.
- FIG. 10 is a schematic diagram of an embodiment of a scenario for linear BSS deployment according to the present invention.
- FIG. 11 is a schematic diagram of an embodiment of a signaling interaction of a 3AP cooperative hidden node according to the present invention
- FIG. 12 is a schematic structural diagram of an embodiment of a data frame sending apparatus according to the present invention
- FIG. 13 is a schematic structural diagram of an embodiment of a data frame receiving apparatus according to the present invention.
- FIG. 14 is a schematic structural diagram of an embodiment of a first access point according to the present invention.
- Figure 15 is a schematic structural view of an embodiment of a station of the present invention. detailed description
- the method for sending a data frame may include:
- Step 101 The first access point receives a first interference power parameter that is fed back by the associated site of the first access point.
- the first access point overlaps with the coverage area of the second access point, the second access point is a neighboring cooperative access point of the first access point, and the first access point is the second access point. Proximity to collaborative access points.
- the first interference power parameter is used to indicate that the second access point does not affect the transmit power or the transmit power drop value if the first access point communicates with the associated site of the first access point.
- the associated site of the first access point may be at least one, and the second access point includes all the access points that overlap with the coverage area of the first access point, and the number of the second access points may be at least one.
- Each associated site of the first access point feeds back a different first interference power parameter for the second access point that can be measured by the first access point, and therefore the first interference power parameter fed back by the associated site of the first access point At least one first interference power parameter can be included.
- the first access point may further send the foregoing first interference power parameter to the second access point.
- Step 102 The first access point receives a second interference power parameter sent by the second access point.
- the second interference power parameter is that the associated site of the second access point feeds back to the second access point.
- the second interference power parameter is used to indicate that the first access point does not affect the transmit power or the transmit power down value if the second access point communicates with the associated site of the second access point.
- the associated site of the second access point may be at least one, and the first access point includes all access points that overlap with the coverage area of the second access point, and the number of the first access points may be at least one.
- Each of the associated sites of the second access point feeds back different second interference power parameters for the first access point that can be measured by the second access point, and therefore the second interference power parameter fed back by the associated site of the second access point At least one second interference power parameter can be included.
- Step 103 If the first access point determines that the channel working by the first access point is currently occupied by the second access point, the first access point is configured according to the first interference power parameter, the second interference power parameter, and the current The transmit power of the second access point occupying the foregoing channel is determined, and the transmit power of the to-be-scheduled station of the first access point and the first access point to the to-be-scheduled station is determined.
- the second access point currently occupying the foregoing channel may be at least one of all second access points that overlap with the coverage area of the first access point.
- Step 104 The first access point sends scheduling indication signaling to the to-be-scheduled station by using the foregoing determined transmit power, and receives scheduling indication response signaling sent by the scheduled station in the to-be-scheduled station.
- the foregoing scheduling indication signaling and the scheduling indication response signaling all carry the determined transmit power.
- Step 105 The first access point sends a data frame to the schedulable station by using the transmit power corresponding to the foregoing configurable station among the determined transmit powers.
- the first access point determines that the channel working by the first access point is currently occupied by the second access point, and may be: if the first access point works by listening to the first access point. Receiving the scheduling indication signaling, and the first access point determines that the sending address carried in the received scheduling indication signaling is an address of the second access point, and the first access point determines the current channel. Or being occupied by the second access point; or, if the first access point receives the scheduling indication response signaling by listening to the channel working by the first access point, and the first access point determines the received scheduling indication response The receiving address carried in the signaling is the address of the second access point, and the first access point determines that the channel is currently occupied by the second access point.
- the first access point may receive at least one scheduling indication message by listening to the channel working by the first access point. Let or at least one schedule indicate response signaling.
- the first interference power parameter includes an upper limit of the harmless transmission power of the second access point, and the upper limit of the harmless transmission power of the second access point is that the second access point is not A maximum transmit power allowed in a case where the first access point communicates with the associated site of the first access point;
- the second interference power parameter includes an upper limit of the harmless transmit power of the first access point,
- the upper limit of the harmless transmission power of an access point is the maximum transmit power allowed by the first access point without affecting the communication between the second access point and the associated site of the second access point.
- the harmless transmit power of the second access point is the transmit power allowed by the second access point without affecting the communication between the first access point and the associated site of the first access point;
- the innocent transmit power of the ingress is the transmit power allowed by the first access point without affecting the communication of the second access point with the associated site of the second access point.
- the second access point is the second access point that currently occupies the channel working by the first access point;
- the associated site of the second access point is the associated site of the second access point that currently occupies the channel.
- the first access point determines that the transmit power of the first access point to the to-be-scheduled station is the transmit power required by the to-be-scheduled station.
- the number of the second access points that are currently occupying the foregoing channel may be at least one, and the number of stations that are currently communicating with the second access point that currently occupies the channel may also be at least one;
- the station to be scheduled selected by the access point may be at least one, and therefore, the third interference power parameter may be at least one of the first interference power parameters.
- the first interference power parameter includes a harmless power drop value of the second access point, and the harmless power drop value of the second access point is used to indicate a second access
- the maximum transmit power of the point is required to decrease in the case of not affecting the communication between the first access point and the associated site of the first access point; the second interference power parameter includes none of the first access point
- the power-down value of the first access point is used to indicate that the maximum transmit power of the first access point does not affect the communication between the second access point and the associated site of the second access point.
- the second access point is the second access point that currently occupies the channel working by the first access point; the associated site of the second access point is the second that currently occupies the above channel.
- the transmit power of the second access point that occupies the foregoing channel is determined, and the transmit power of the to-be-scheduled site of the first access point and the first access point to the to-be-scheduled site may be: a difference between a maximum transmit power of the second access point and the first interference power parameter, as an upper limit of the harmless transmit power of the second access point, and a maximum transmit power and a second interference power of the first access point.
- the difference between the parameters as the upper limit of the harmless transmission power of the first access point; the upper limit of the harmless transmission power of the second access point is that the second access point does not affect the first access point and the first access point Maximum transmit power allowed in the case of associated site communication; the upper limit of the harmless transmit power of the first access point is that the first access point does not affect the associated site of the
- the first access point selects a to-be-scheduled station from the associated sites of the first access point, where the required transmit power of the to-be-scheduled site is smaller than that of the first access point to the associated site of the second access point.
- the upper limit of the harmless transmission power, and the transmission power of the second access point is smaller than the upper limit of the harmless transmission power of the second access point to the to-be-scheduled station; and the first access point determines the first
- the transmit power of the access point to the scheduled station is the transmit power required by the above-mentioned station to be scheduled.
- the number of the second access points currently occupying the foregoing channel may be at least one, and the number of sites that are currently communicating with the second access point that currently occupies the channel may also be at least one.
- the sending and dispatching scheduling degree indication signaling indication to the station to be scheduled to be dispatched may be considered as:
- the scheduling station site point package includes at least two or two station station point times, and the first one access point can be sequentially oriented to at least two station stations.
- Each of the stations in the station sends a transmission scheduling degree to indicate a signaling signaling order, or the first one of the first access points can be at least simultaneously
- Two or two stations station point transmission and transmission scheduling degree refers to the indication signaling order. .
- the above-mentioned scheduling degree refers to a frame signaling structure indicating that the signaling signaling order and the scheduling degree are instructed to respond to the signaling response to at least a packet.
- 1100 includes at least one of a frame frame control control word field segment, a receiving and receiving address address word field segment, a sending and sending address address word field segment, and a transmit transmit power power rate word field segment One or less;; among them, the above-mentioned frame controllable control word field segment is different from the same value value tag identification tag having the frame frame having the above-mentioned frame frame structure
- the indication signalling order or the scheduling degree refers to the indication response response signalling order;; the value of the above-mentioned transmitting transmit power rate word field is ⁇ In 110033, the fixed transmit power rate is determined. .
- the first first access point is connected to receive the first first access point, and the first associated access point is reversed.
- 1 1155 dry interference interference power rate parameter parameter number and connected to receive the second second access point point sent and sent the second two interference interference power rate parameter parameter;; If the first access point is determined to be determined, the first channel access point work channel is used by the second second access point. Then, the first first access point is based on the first first interference interference power rate parameter parameter number, the second second interference interference power rate parameter parameter number, and the current pre-occupied occupancy Using the transmit power power rate of the second and second access points of the above-mentioned channel channel, it is determined that the first one access point is to be adjusted.
- the first access point is sent to send the dispatching degree to the station station 2200 to be scheduled to be dispatched at the determined transmit power rate.
- the dispatching degree indication sent by the station of the dispatched station is sent.
- the first first access point is determined by the above determination
- the transmit power power rate of the transmitter and the transmit power power rate corresponding to the point pair of the cocoa being dispatched to the station are sent to the cocoa dispatched station station to send and send the data frame frame. . . From this, it is possible to realize the multiple access points in the regional area of the mutual influence zone and the simultaneous transmission and transmission at the same time.
- the indication response signal response signaling carries the power transmission rate of the transmitting power determined by the above-mentioned determination, and no additional signaling is required to open the overhead pin, and at the same time guarantee It proves the real-time and temporal nature of the power rate control system.
- the embodiment of the present embodiment is based on the self-owned main distribution pattern of the access point, and there is no need for the central central scheduling dispatcher. .
- FIG. 22 is a flow chart showing an example of a method for receiving and receiving data according to a frame data frame according to the present invention, as shown in FIG. 22, And the method for receiving the data according to the frame frame may include:
- the first interference power parameter is used to indicate that the second access point does not affect the transmit power or the transmit power drop value when the first access point communicates with the foregoing station; the first access point is the association of the foregoing site.
- the access point, the first access point overlaps with the coverage area of the second access point; the second access point is a neighboring cooperative access point of the first access point, and the first access point is the second access point Proximity to collaborative access points.
- Step 202 The station feeds back the first interference power parameter to the first access point, so that when the first access point determines that the channel working by the first access point is currently occupied by the second access point, the first The access point determines, according to the first interference power parameter, the second interference power parameter sent by the second access point, and the transmit power of the second access point that currently occupies the channel, that the site is the first access point. The transmit power of the station to be scheduled and the first access point to the station.
- the second interference power parameter is used to indicate that the first access point does not affect the transmission power or the transmit power drop value of the second access point and the second access point.
- Step 203 After the station receives the scheduling indication signaling sent by the first access point by using the determined transmit power, if the station determines that the station can be scheduled by the first access point, sending a schedule to the first access point. Indicates response signaling.
- the foregoing scheduling indication signaling and the scheduling indication response signaling all carry the determined transmit power.
- the foregoing station determines that the station can be scheduled: the foregoing station determines that the network allocation vector of the station is not set, that is, the network allocation vector of the station is not set, and the network allocation vector of the station is The value of the null vector or the network allocation vector for the site is zero.
- Step 204 The station receives a data frame sent by the first access point by using the determined transmit power.
- the interference power parameter includes an upper limit of the harmless transmission power of the second access point, and the upper limit of the harmless transmission power of the second access point is that the second access point does not affect the foregoing
- the harmless power drop value of the second access point is used to indicate that the maximum transmit power of the second access point needs to decrease in the case of not affecting the communication between the site and the first access point;
- the station uses the difference between the maximum transmit power of the second access point and the aforementioned harmless power drop value as the harmless transmission of the second access point Power cap.
- the interference power parameter includes a harmless power drop value of the second access point, and the harmless power drop value of the second access point is used to indicate a maximum of the second access point.
- the transmit power does not affect the value of the drop in the case of the communication between the site and the first access point.
- the step 201 may be: the station measures that the site sends the full access power to the second access point. The received energy of the signal; then, the station determines the harmless power drop value of the second access point according to the received energy and the idle channel estimation threshold of the station.
- the station after the station measures the first interference power parameter, the station feeds back the first interference power parameter to the first access point, so that when the first access point determines that the channel working by the first access point is currently When the two access points are occupied, the first access point is determined according to the first interference power parameter, the second interference power parameter sent by the second access point, and the transmit power of the second access point currently occupying the channel.
- the foregoing station is a to-be-scheduled station of the first access point and a transmit power of the first access point to the station.
- the station After the station receives the scheduling indication signaling sent by the first access point with the determined transmit power, if the station determines that the station can be scheduled by the first access point, the station sends a schedule to the first access point. Instructing the response signaling, finally, the station receives the data frame transmitted by the first access point at the above determined transmit power. Therefore, the access points in the mutual-affected area can be simultaneously transmitted in the downlink, and the utilization of the network spectrum resources is improved.
- the determined transmission power is carried by the air interface scheduling indication signaling and the scheduling indication response signaling. No additional signaling overhead is required, and the real-time performance of power control is guaranteed.
- this embodiment is based on the autonomous distributed behavior of the access point without the need for a central scheduler.
- the present invention can be applied to a densely deployed distributed autonomous WLAN scenario, that is, an AP that schedules an associated site (Station; hereinafter referred to as STA) of the AP, and a scenario in which there is no time and frequency requirement between the APs, by allowing multiple locations.
- STA site
- the APs in the mutually influential area perform concurrent communication to improve the downlink capacity of the WLAN network. It also satisfies the conditions of coexistence with the legacy (Legacy) system.
- the present invention dynamically controls the transmit power of the AP, so that the APs in the mutual influence area can satisfy the Carrier Sensing Multiple Access/Collision Avoidance (CSMA/CA) mechanism with collision avoidance. Under the conditions, concurrent communication.
- CSMA/CA Carrier Sensing Multiple Access/Collision Avoidance
- the present invention is mainly directed to a WLAN scenario that is planned and deployed by an enterprise network or an operator.
- each base station subsystem Base Station Subsystem; hereinafter referred to as BSS
- BSS Base Station Subsystem
- OBSS Overlapped Basic Service Set
- the APs need to determine their maximum transmit power through static configuration so that the APs do not interfere with each other.
- the foregoing scenario is only a preferred deployment scenario of the present invention.
- the present invention is not limited to the applicable scenario of the method provided by the embodiment shown in FIG. 1 and FIG. 2, for example, the method provided by the embodiment shown in FIG. 1 and FIG. 2 of the present invention is also Can be applied to scenarios where APs can listen to each other.
- FIG. 3 is a schematic diagram of an embodiment of an AP deployment scenario according to the present invention.
- PWR MAX AP1 and PWR—MAX—AP2 represent the maximum transmit power of the API and AP2, where the dotted ellipse indicates the coverage area of AP-2, the dotted line ellipse indicates the coverage area of AP-1, and the solid ellipse indicates STA.
- — 1 coverage area, PWR is an abbreviation for Power.
- the coverage area of the AP_X is an area that can receive the signals of the AP-X and the associated STA of the AP-X when the AP-X communicates with the associated STA of the AP-X, where the area is composed of the AP and the associated STA of the AP.
- the transmit power is determined jointly.
- the union of the dotted line ellipse and the solid ellipse is the area affected by the communication between AP-1 and STA-1.
- the STA feeds back to the STA's associated AP the interference received by the STA from the neighboring cooperative AP, and estimates the harmless transmit power upper limit of the neighboring cooperative AP (the neighboring cooperative AP does not generate the target STA when transmitting with this power). Interference).
- the AP interacts with the neighboring cooperative AP that is received by the associated STA that is fed back by the associated STA of the AP, and the neighboring cooperative AP interacts with the backhaul or the distributed system (hereinafter referred to as DS) to confirm the AP.
- DS distributed system
- the embodiment of the present invention is not limited to this, and the AP may also interact with the neighboring cooperative AP by the interference of the neighboring cooperative AP that is received by the associated STA fed back by the associated STA of the AP through the signaling of the air interface, and the present invention interacts with the neighboring cooperative AP.
- the manner in which the neighboring cooperative AP interacts with the associated STA of the AP is not limited.
- the AP occupying the channel and the target STA will interact through the air interface management frame, and transmit the transmit power of the downlink communication to the current communication affected area.
- All APs of the OBSS will use all APs and STAs that occupy the channel as the primary user for the current channel.
- Each AP will use the transmission power according to the requirements of all the STAs in the BSS, and the channel is mainly used.
- the interference situation of the person determines the STA that is scheduled by himself.
- STA in OBSS The scheduling request sent by the associated AP of the STA is determined according to the channel occupancy situation detected by itself.
- FIG. 4 is a schematic diagram of an embodiment of interference information measurement feedback and interaction when three OBSS APs work simultaneously.
- STA1 is associated with the API, and STA1 is subject to downlink interference from AP2 and AP3.
- STA1 measures the received energy of the signal transmitted by STA1 to AP2 and AP3 using full power, for example: STA1 measures the received energy of the Beacon signal sent by STA1 to AP2 and AP3.
- CCA Clear Channel Assessment
- the harmless power drop values of AP2 and AP3 are determined, that is, how much transmit power needs to be dropped by AP2 and AP3 respectively, so that it does not generate for STA1.
- the harmless power drop value is represented by ⁇ ,
- STA1 can calculate the difference between the received energy and the CCA threshold as ⁇ ⁇ .
- STA1 feeds back the harmless transmit power upper limit PWR XY to the AP1 associated AP1 after measurement.
- the STAs associated with AP2 and AP3 in the OBSS also perform the above measurement and feedback. For example: STA2 associated with AP2 is interfered by AP3, so STA2 will feed back PWR 23 to AP2 after performing the above measurement. STA3 is not interfered by API and AP2, so STA3 does not feed back any value.
- the AP After the AP receives the interference feedback of the associated STA, the AP transmits the upper limit of the harmless transmit power of the neighboring cooperative AP measured by the associated STA to the neighboring cooperative AP through the backhaul or DS. As shown in Figure 4, the API passes PWR 12 to AP2, PWR 13 to AP3, and the corresponding AP2 passes PWR 23 to AP3. Each AP maintains a list of the harmless transmit power limit for all STAs that are interfered with.
- the interference column corresponding to each table in Figure 4 is the corresponding AP.
- the STA may also measure and feed back only the harmless power drop value ⁇ ⁇ , and the associated ⁇ of the STA determines the upper limit of the harmless transmit power.
- FIG. 5 is a schematic diagram of an embodiment of two cooperations of the present invention. As shown in FIG. 5, cooperation between the API and the AP2 can be performed. The range enclosed by the solid ellipse in Figure 5 represents the maximum coverage of the API and AP2. STA1 is associated with the API and is in the overlapping coverage area of API and AP2, so it will be interfered by AP2. STA2, STA3, and STA4 are associated with AP2. If STA1 is served, the API needs to send a data frame to STA1 with the transmit power PWR11. The size of the PWR11 depends on the STA1's demand for the service transmission rate and the state of the wireless channel between the current STA1 and the API.
- the range affected by the API transmit signal at this time is the area indicated by the dotted line ellipse.
- STA2 is scheduled by AP2, AP2 needs to be sent by PWR22.
- STA3 is scheduled by AP2, AP2 needs to be sent by PWR32.
- STA4 is scheduled by AP2, AP2 needs to be sent by PWR42.
- RTS Request To Send
- STA1 is allowed to transmit at this time (that is, the Network Allocation Vector (hereinafter referred to as NAV) of STA1 is not set by other communication)
- STA1 is a specific duration after receiving RTS1, for example: short frame spacing ( Short Inter Frame Space; hereinafter referred to as: SIFS) Internal listening channel.
- SIFS Short Inter Frame Space
- the AP2 learns from the CTS1 that the STA1 feeds back to the API.
- the API transmits the data frame to the STA1 in the PWR11.
- the length of the T can be carried in the RTS1.
- the length of the T can be the frame duration field in the RTS1. Value.
- the associated STA_X of AP2 can be scheduled by AP2 only when the following three conditions are met at the same time.
- the required transmit power of the STA-X to be scheduled is less than PWR12, that is, PWR X2 ⁇ PWR 12 , and both STA2 and STA3 in Figure 5 satisfy the condition;
- the STA_X to be scheduled is not in the range of communication of the API at that time, that is, the STA-X to be scheduled is not in the range indicated by the dotted line ellipse in Fig. 5, that is, PWR pen ⁇ PWR X1 , STA2 in Fig. 5. Both STA3 and STA4 satisfy this condition; (3) STA_X to be scheduled is not in the uplink coverage of STA1, that is, the STA_X to be scheduled is not in the area covered by the dotted ellipse in Fig. 5, and STA2 in Fig. 5 satisfies the condition.
- the AP2 can learn the harmless transmit power upper limit PWR 12 for the STA1 and the harmless transmit power upper limit PWRx! of the AP for the AP associated with the AP2 from the interference information list maintained by the AP2, if the PWR X1 does not exist in the interference information list.
- the related information indicates that the API does not interfere with the STA associated with AP2 even if it is transmitted at full power. Therefore, AP2 can select all the associated STAs that satisfy the conditions (1) and (2) as the STAs to be scheduled. In this example, STA2 and STA3 are APs to be scheduled.
- AP2 cannot know whether STA2 and STA3 are in the uplink affected area of STA1. Therefore, AP2 needs to send scheduling indication signalings RTS2 and RTS3 to STA2 and STA3 in accordance with a certain scheduling policy. In this example, AP2 chooses to send RTS3 to STA3 first. However, STA3 is in the uplink range of STA1, that is, STA3 receives CTS1 sent by STA1, and NAV of STA3 is set. Therefore, STA3 cannot send the scheduling indication response message corresponding to RTS3. Let CTS3.
- AP2 After waiting for a specific duration (for example, SIFS), AP2 still cannot receive the CTS3 sent by STA3, and AP2 will send the scheduling indication signaling RTS2 to STA2.
- STA2 is not affected by STA1 and will feed back CTS2 to AP2 after a certain period of time (for example, SIFS).
- the AP2 does not listen to the channel in which AP2 works within a certain period of time (for example, SIFS) after receiving the CTS2 fed back by STA2, and starts to send a data frame to STA2.
- AP2 can learn whether the STA2 and STA3 satisfy the condition (3) by interacting with the RTS/CTS signaling between STA2 and STA3.
- FIG. 6 is a schematic diagram of an embodiment of a signaling interaction process when the 2AP cooperates in the present invention.
- the blank rectangle in FIG. 6 indicates the data packet transmitted by the transmitting end, and the shaded rectangle indicates the corresponding data packet received at the receiving end.
- the AP and the STA in the BSS use the scheduling indication signaling and the scheduling indication response signaling to occupy channel resources for subsequent downlink data transmission (the same as the RTS/CTS function in the existing standard).
- the neighboring cooperative AP needs to learn the AP and the STA that occupy the channel for downlink communication and the transmit power of the AP through the signaling interaction. Therefore, the scheduling indication signaling used in the present invention can be implemented by adding a transmit power domain after the RTS control frame.
- the frame structure of the conventional CTS has no transmission address (hereinafter referred to as: TA) field, and the value of the TA field is used to transmit the information of the scheduling STA of the local cell to the neighboring cooperative AP, so
- the scheduling indication response may adopt the same frame structure as the scheduling indication, and use different values of the Frame Control field to distinguish whether it is a scheduling indication or a scheduling indication response.
- FIG. 7 is a schematic diagram of an embodiment of a frame structure of scheduling indication signaling and scheduling indication response signaling according to the present invention.
- the frame structure of the scheduling indication signaling and the scheduling indication response signaling may include at least one of a frame control field, a receiving address field, a sending address field, and a transmit power field, and may further include a frame duration (Duration) field and Check Digit.
- the frame structure of the scheduling indication signaling and the scheduling indication response signaling of FIG. 7 includes a frame control field, a frame duration (Duration) field, a reception address field, a transmission address field, a transmission power field, and a parity bit as an example.
- the value of the receiving address field may be a Media Access Control (MAC) address of the receiver
- the value of the sending address field may be a MAC address of the sender, the frame control field, and the frame duration ( The Duration, Receive, and Send Address fields are included in the MAC header of the frame.
- MAC Media Access Control
- the value of the above transmit power field is the transmit power of the AP occupying the channel for downlink communication.
- the value of the frame duration field in the scheduling indication signaling is used to indicate the channel occupation duration of the AP and the STA that occupy the channel for downlink communication, that is, the downlink communication duration of the AP and the STA occupying the channel for downlink communication.
- FIG. 8 is a schematic diagram of an embodiment of signal coverage when 3AP cooperation is performed in the present invention.
- FIG. 8 is a schematic diagram of an embodiment of signal coverage when 3AP cooperation is performed in the present invention.
- the coverage areas of the API, AP2, and AP3 overlap each other.
- the range indicated by the solid ellipse is the coverage area of the API, and the range indicated by the dotted line ellipse is the coverage area of the AP2.
- the range indicated by the double-dotted line ellipse is The coverage area of AP3.
- STA1 is associated with the API
- STA2 is associated with AP2
- STA3 is associated with AP3.
- the API first occupies the channel and performs downlink communication with STA1.
- the AP2 performs downlink communication to the STA2 by using the PWR 22 according to the method provided in the embodiment shown in FIG.
- AP3 receives CTS1 and CTS2 sent by STA1 and STA2 to API and AP2, and learns the transmit power of API and AP2.
- the conditions that AP3 must satisfy if it wants to perform downlink communication at the same time are: (1) The transmit power of AP3 required to be scheduled for STA3 is less than PWR13 and PWR23;
- the STA3 to be scheduled is not in the range of influence of the downlink communication being performed by the API and the AP2, that is, the STA3 is not in the range indicated by the dotted line (. . . . ) ellipse and the double line pinch ( ) ellipse in FIG. 8;
- the STA3 to be scheduled is not in the uplink coverage of STA1 and STA2, that is, STA3 is not in the two short and one long dashed lines in Figure 8 ( ) ellipse and one long and one short dashed line
- STA3 meets the above conditions, so AP3 sends RTS3 to STA3, and STA3 feeds back CTS3 (not shown in Figure 8) to AP3 after a certain length of time (for example, SIFS).
- the AP3 does not listen to the channel in which AP3 works within a certain period of time (for example, SIFS) after receiving the CTS3 fed back by STA3, and starts to send a data frame to STA3.
- FIG. 9 is a schematic diagram of an embodiment of signaling interaction during 3AP cooperation according to the present invention.
- the blank rectangle in FIG. 9 indicates a data packet transmitted by the transmitting end, and the shaded rectangle indicates a corresponding data packet received at the receiving end.
- FIG. 10 is a schematic diagram of an embodiment of a scenario for linear BSS deployment according to the present invention.
- the BSSs served by the API and AP3 at both ends do not overlap each other, so their transmission and reception are independent of each other.
- the BSS served by AP2 is subject to common interference from the API and AP3 and their associated STAs.
- the API first competes to obtain the channel usage right, and sends the scheduling indication signaling RTS1 to STA1 with PWR11. After a certain period of time, STA1 feeds back the scheduling indication response signaling CTS1 to the API at full power, and then performs downlink data transmission.
- AP3 and AP3 associated stations STA3 cannot listen to the transmission of API and STA1, and AP3 and STA3 compete for channels according to the timing of this BSS.
- FIG. 11 is a schematic diagram of an embodiment of signaling interaction of a 3AP cooperative hidden node according to the present invention.
- the RTS1 and the RTS3 sent by the AP3 and the API overlap in time. Since STA1 and STA3, which are associated with each other of API and AP3, are far apart, CTS1 and CTS3 are transmitted according to the inherent timing.
- STA1 and STA3 which are associated with each other of API and AP3 are far apart, CTS1 and CTS3 are transmitted according to the inherent timing.
- the signal powers from STA1 and STA3 are similar and overlap in time, it is only possible to judge that the channel is occupied by energy detection, and the information contained in the CTS cannot be demodulated.
- AP2 should treat the API and AP3 as non-cooperative APs, and maintain the channel listening state until the API or AP3 is sent, or AP2 can demodulate the interaction between the free API or the BSS of the AP3 service.
- RTS Scheduling Indication Signaling
- CTS Scheduling Indication Response Signaling
- the invention can enable multiple APs in the mutual influence area to perform downlink transmission at the same time, thereby improving the utilization of network spectrum resources.
- the present invention only needs to interact with some slow and semi-static power parameters through Backhaul, so the bandwidth and delay requirements of Backhaul are very low, and usually the Internet-based DS can support transmission.
- the present invention carries power control information through the air interface scheduling indication signal and the scheduling indication response signaling, without additional signaling overhead, and ensures the real-time performance of the power control.
- the present invention is based on the autonomous distributed behavior of APs without the need for a central scheduler.
- the aforementioned program can be stored in a computer readable storage medium.
- the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
- FIG. 12 is a schematic structural diagram of an embodiment of a data frame sending apparatus according to the present invention.
- the data frame sending apparatus in this embodiment may be disposed in a first access point to implement the method of the embodiment shown in FIG. 1 of the present invention, such as As shown in FIG. 12, the sending device of the data frame may include: a receiving module 1201, a sending module 1202, and a determining module 1203;
- the receiving module 1201 is configured to receive a first interference power parameter that is sent by the associated site of the first access point, and receive a second interference power parameter that is sent by the second access point, where the second interference power parameter is the second The associated site of the access point is fed back to the second access point; wherein the first access point overlaps with the coverage area of the second access point.
- the first interference power parameter is used to indicate that the second access point does not affect the transmission power or the transmit power drop value of the first access point and the associated site of the first access point; the second interference power parameter And a transmit power or transmit power drop value for indicating that the first access point does not affect the communication between the second access point and the associated site of the second access point.
- the determining module 1203 is configured to determine that the channel working by the first access point is currently occupied by the second access point, and according to the first interference power parameter, the second interference power parameter, and the second access point that currently occupies the channel Transmitting power, determining a to-be-scheduled station of the first access point and a transmit power of the first access point to the to-be-scheduled station;
- the sending module 1202 is further configured to determine the transmit power determined by the module 1203 to the station to be dispatched. Sending the scheduling indication signaling; and after the receiving module 1201 receives the scheduling indication response signaling sent by the scheduled station in the to-be-scheduled station, determining, by the module 1203, the transmission corresponding to the foregoing configurable station
- the receiving module 1201 is further configured to: after the sending module 1202 sends the scheduling indication signaling, receive the scheduling indication response signaling sent by the scheduled station in the to-be-scheduled station; where the foregoing scheduling Both the indication signaling and the foregoing scheduling indication response signaling carry the transmission power determined by the determining module 1203.
- the determining module 1203 is configured to determine that the channel working by the first access point is currently occupied by the second access point, and the determining module 1203 is configured to receive the scheduling by using a channel that monitors the working of the first access point. Instructing the signaling, and determining that the transmission address carried in the received scheduling indication signaling is the address of the second access point, determining that the channel is currently occupied by the second access point; or, by listening to the first access.
- the working channel of the point receives the scheduling indication response signaling, and determines that the received receiving address in the scheduling indication response signaling is the address of the second access point, determining that the channel is currently occupied by the second access point.
- the first interference power parameter received by the receiving module 1201 includes an upper limit of the harmless transmission power of the second access point, and the upper limit of the harmless transmission power of the second access point is the second connection.
- the second interference power parameter received by the receiving module 1201 includes the first access point
- the upper limit of the harmful transmission power, the upper limit of the harmless transmission power of the first access point is the maximum allowed by the first access point without affecting the communication between the second access point and the associated site of the second access point. Transmit power.
- the second access point is a second access point that currently occupies the foregoing channel;
- the associated site of the second access point is an associated site that is currently occupying the second access point of the channel, and currently occupies the above
- the second access point of the channel is in communication with the station; at this time, the determining module 1203 is configured to determine, according to the first interference power parameter, the second interference power parameter, and the transmit power of the second access point currently occupying the channel.
- the to-be-scheduled station of the first access point and the transmit power of the first access point to be scheduled to be scheduled may be: a determining module 1203, configured to select a to-be-scheduled site from the associated sites of the first access point, where The transmit power required by the to-be-scheduled station is smaller than the second interference power parameter, and the transmit power of the second access point is smaller than the third interference power parameter; and determining that the transmit power of the first access point to the to-be-scheduled site is the above
- the third interference power parameter is at least one of the first interference power parameters, and is used to indicate that the second access point does not affect the communication between the first access point and the to-be-scheduled site.
- the number of the second access points currently occupying the foregoing channel may be at least one, and the number of the stations that are communicating with the second access point that currently occupies the channel may also be at least one.
- the first interference power parameter received by the receiving module 1201 includes a harmless power drop value of the second access point, and the harmless power drop value of the second access point is used to indicate the first The maximum transmit power of the two access points does not affect the value of the first access point and the associated site of the first access point, and the second interference power parameter received by the receiving module 1201 includes the foregoing
- the harmless power drop value of the first access point, the harmless power drop value of the first access point is used to indicate that the maximum transmit power of the first access point does not affect the second access point and the second connection
- the second access point is the second access point that currently occupies the channel working by the first access point;
- the associated site of the second access point is a station in the associated station of the second access point that currently occupies the above channel and is in communication with the second access point currently occupying the above channel;
- the determining module 1203 is configured to determine, according to the first interference power parameter, the second interference power parameter, and the transmit power of the second access point that currently occupies the foregoing channel, the to-be-scheduled site of the first access point and the first interface
- the transmit power of the ingress to the to-be-scheduled site may be: a determining module 1203, specifically configured to use the difference between the maximum transmit power of the second access point and the first interference power parameter as the harmless transmit power of the second access point.
- the number of the second access points that occupy the channel may be at least one, and the number of stations that are currently communicating with the second access point that currently occupies the channel may also be at least one.
- the sending module 1202 is configured to send the scheduling indication signaling to the to-be-scheduled station, where the sending module 1202 is specifically configured to: when the to-be-scheduled site includes at least two sites, The scheduling indication signaling is sent to each of the at least two stations, or the scheduling indication signaling is sent to at least two stations at the same time.
- the frame structure of the foregoing scheduling indication signaling and the scheduling indication response signaling may include at least one of a frame control field, a receiving address field, a sending address field, and a transmit power field; wherein, the different frame control fields are taken.
- the value identifier identifies a frame having the above frame structure as scheduling indication signaling or scheduling indication response signaling; and the value of the foregoing transmit power field is the above determined transmit power.
- the frame structure of the foregoing scheduling indication signaling and the scheduling indication response signaling may be as shown in FIG. 7, and details are not described herein again.
- the receiving module 1201 receives the first interference power parameter fed back by the associated site of the first access point, and receives the second interference power parameter sent by the second access point; if the determining module 1203 determines the first interface The channel of the ingress is currently occupied by the second access point, and the first access point is determined according to the first interference power parameter, the second interference power parameter, and the transmit power of the second access point currently occupying the channel.
- the scheduling station and the first access point transmit power of the station to be scheduled; finally, the sending module 1202 determines the transmit power determined by the module 1203 to send scheduling indication signaling to the to-be-scheduled station, and the receiving module 1201 receives the The scheduling indication response signaling sent by the scheduled station; after receiving the scheduling indication response signaling, the sending module 1202 sends the data frame to the configurable station according to the transmit power corresponding to the configurable station in the foregoing determined transmit power. Therefore, the access points in the mutual-affected area can be simultaneously transmitted in the downlink, and the utilization of the network spectrum resources is improved.
- the determined transmission power is carried by the air interface scheduling indication signaling and the scheduling indication response signaling. No additional signaling overhead is required, and the real-time performance of power control is guaranteed.
- this embodiment is based on the autonomous distributed behavior of the access point without the need for a central scheduler.
- FIG. 13 is a schematic structural diagram of an apparatus for receiving a data frame according to the present invention.
- the apparatus for receiving a data frame in this embodiment may be disposed in a site to implement the process of the embodiment shown in FIG. 2 of the present invention, as shown in FIG.
- the receiving device of the data frame may include: a measuring module 1301, a sending module 1302, a receiving module 1303, and a determining module 1304;
- the measurement module 1301 is configured to measure a first interference power parameter, where the first interference power parameter is used to indicate that the second access point does not affect the transmit power or the transmit power of the first access point to communicate with the foregoing site. a falling value; the first access point is an associated access point of the foregoing site, and the first access point overlaps with the coverage area of the second access point;
- the sending module 1302 is configured to feed back the first interference power parameter measured by the measurement module 1301 to the first access point, so that when the first access point determines that the channel working by the first access point is currently used by the second access point, When occupying, the first access point determines, according to the first interference power parameter, the second interference power parameter sent by the second access point, and the transmit power of the second access point currently occupying the channel, that the site is the foregoing
- the receiving module 1303 is configured to receive scheduling indication signaling that is sent by the first access point by using the determined transmit power.
- the determining module 1304 is configured to determine, after the receiving module 1303 receives the foregoing scheduling indication signaling, that the foregoing station is scheduled by the first access point;
- the sending module 1302 is further configured to: after the determining module 1304 determines that the foregoing station is scheduled by the first access point, send the scheduling indication response signaling to the first access point; the foregoing scheduling indication signaling and the scheduling indication response signaling All carrying the above determined transmission power;
- the receiving module 1303 is further configured to: after the sending module 1302 sends the scheduling indication response signaling, receive the data frame that is sent by the first access point by using the determined transmit power.
- the first interference power parameter measured by the measurement module 1301 includes an upper limit of the harmless transmission power of the second access point, and the upper limit of the harmless transmission power of the second access point is the second access point.
- the measuring module 1301 is specifically configured to measure the received energy of the signal sent by the station to the second access point using the full power, and determine the harmless power drop value of the second access point according to the received energy and the idle channel evaluation threshold of the station. And a difference between the maximum transmit power of the second access point and the harmless power drop value as the upper limit of the harmless transmit power of the second access point.
- the first interference power parameter measured by the measurement module 1301 includes a harmless power drop value of the second access point, and the harmless power drop value of the second access point is used to indicate the first
- the maximum transmit power of the two access points is a value that needs to be lowered without affecting the communication between the above-mentioned site and the first access point;
- the measuring module 1301 is specifically configured to: the measuring station sends the full power to the second access point. The received energy of the signal, and determining the harmless power drop value of the second access point based on the received energy and the idle channel evaluation threshold of the station.
- the sending module 1302 feeds back the first interference power parameter to the first access point of the station, so that when the first access point determines the first access When the working channel is currently occupied by the second access point, the first access point is configured according to the first interference power parameter, the second interference power parameter sent by the second access point, and the second interface currently occupying the channel.
- the transmit power of the ingress is determined, and the foregoing station is the to-be-scheduled station of the first access point and the transmit power of the first access point to the station.
- the determining module 1304 determines that the station can be scheduled and sent.
- the module 1302 sends the scheduling indication response signaling to the first access point.
- the receiving module 1303 receives the data frame that is sent by the first access point in the foregoing determined transmit power and the transmit power corresponding to the configurable station. Therefore, the access points in the mutual-affected area can be simultaneously transmitted in the downlink, and the utilization of the network spectrum resources is improved.
- the determined transmission power is carried by the air interface scheduling indication signaling and the scheduling indication response signaling. No additional signaling overhead is required, and the real-time performance of power control is guaranteed.
- this embodiment is based on the autonomous distributed behavior of the access point without the need for a central scheduler.
- FIG. 14 is a schematic structural diagram of an embodiment of a first access point according to the present invention.
- the first access point in this embodiment can implement the process of the embodiment shown in FIG. 1 of the present invention.
- the ingress point may include: a transmitter 1401, a receiver 1402, a memory 1403, and a processor 1404 connected to the transmitter 1401, the receiver 1402, and the memory 1403, respectively; of course, the first access point may further include an antenna and an input/output device.
- the embodiments of the present invention do not impose any limitation here.
- the receiver 1402 is configured to receive a first interference power parameter that is sent by the associated site of the first access point, and receive a second interference power parameter that is sent by the second access point, where the second interference power parameter is the second The associated site of the access point is fed back to the second access point; wherein the first access point overlaps with the coverage area of the second access point; the first interference power parameter is used to indicate the second access point Transmitting power or transmit power falling value without affecting communication between the first access point and the associated site of the first access point; the second interference power parameter is used to indicate that the first access point does not affect the second access In the case where the ingress point communicates with the associated site of the second access point described above Transmit power or transmit power drop value;
- a memory 1403, configured to store a set of program codes
- the processor 1404 is configured to invoke the program code stored in the memory 1403, and determine that the channel working by the first access point is currently occupied by the second access point, and according to the first interference power parameter, the second interference power parameter, and the current occupation.
- the transmit power of the second access point of the foregoing channel determines the transmit power of the to-be-scheduled site of the first access point and the first access point to the to-be-scheduled site;
- the transmitter 1401 is configured to send scheduling indication signaling to the to-be-scheduled station by using the transmit power determined by the processor 1404; and after the receiver 1402 receives the scheduling indication response signaling sent by the scheduled station in the to-be-scheduled station,
- the transmit power determined by the processor 1404 and the transmit power corresponding to the configurable station are sent to the schedulable station to send the data frame;
- the receiver 1402 is further configured to: after the transmitter 1401 sends the scheduling indication signaling, receive the scheduling indication response signaling that is sent by the scheduled station in the to-be-scheduled station; where the scheduling indication signaling and the scheduling indication response signaling are The transmit power determined by the determination module 1203 is carried.
- the processor 1404 is configured to determine that the channel in which the first access point works is currently occupied by the second access point, where the processor 1404 is configured to: receive, by using the channel that monitors the operation of the first access point, the scheduling. Instructing the signaling, and determining that the transmission address carried in the received scheduling indication signaling is the address of the second access point, determining that the channel is currently occupied by the second access point; or, by listening to the first access When the channel that is working on the channel receives the scheduling indication response signaling, and determines that the received address carried in the received scheduling indication response signaling is the address of the second access point, it is determined that the channel is currently occupied by the second access point.
- the first interference power parameter received by the receiver 1402 includes an upper limit of the harmless transmission power of the second access point, and the upper limit of the harmless transmission power of the second access point is the second connection.
- the maximum transmit power allowed by the ingress point does not affect the communication between the first access point and the associated site of the first access point;
- the second interference power parameter received by the receiver 1402 includes the first access point
- the upper limit of the harmless transmission power, the upper limit of the harmless transmission power of the first access point is allowed by the first access point without affecting the communication between the second access point and the associated site of the second access point.
- the second access point is a second access point that currently occupies a channel working by the first access point
- the associated site of the second access point is a second access that currently occupies the foregoing channel.
- the site in the associated site of the point that is communicating with the second access point currently occupying the above channel.
- the processor 1404 is configured to determine, according to the first interference power parameter, the second interference power parameter, and the transmit power of the second access point that currently occupies the foregoing channel, the to-be-scheduled site of the first access point and the first
- the transmit power of the access point to the scheduling station may be:
- the processor 1404 is specifically configured to select a to-be-scheduled station from the associated sites of the first access point, where the required transmit power of the to-be-scheduled station is smaller than the second interference.
- the transmit power of the second access point is less than the third interference power parameter;
- the third interference power parameter is at least one of the first interference power parameters, and is used to indicate that the second access point does not affect the first Transmit power in the case where the access point communicates with the to-be-scheduled station; and determining the transmit power of the first access point to be scheduled to be the transmit power required by the station to be scheduled.
- the number of the second access points currently occupying the foregoing channel may be at least one, and the number of the stations that are communicating with the second access point that currently occupies the channel may also be at least one.
- the first interference power parameter received by the receiver 1402 includes a harmless power drop value of the second access point, and the harmless power drop value of the second access point is used to indicate the first The maximum transmit power of the two access points is required to decrease in the case of not affecting the communication between the first access point and the associated site of the first access point;
- the second interference power parameter received by the receiver 1402 includes the above The harmless power drop value of the first access point, the harmless power drop value of the first access point is used to indicate that the maximum transmit power of the first access point does not affect the second access point and the second The value of the drop in the case of the communication of the associated site of the access point;
- the associated site of the second access point is the second interface of the associated site that currently occupies the second access point that currently occupies the channel The site where the inbound communication is in progress.
- the processor 1404 is configured to determine, according to the first interference power parameter, the second interference power parameter, and the transmit power of the second access point that currently occupies the foregoing channel, the to-be-scheduled site of the first access point and the first interface
- the transmit power of the ingress to the to-be-scheduled site may be:
- the processor 1404 is specifically configured to use the difference between the maximum transmit power of the second access point and the first interference power parameter as the harmless transmit power of the second access point.
- the upper limit of the transmit power is determined; and determining the transmit power of the first access point to be scheduled to be the transmit power required by the to-be-scheduled station.
- the number of the second access points currently occupying the foregoing channel may be at least one, and the number of the stations that are communicating with the second access point that currently occupies the channel may also be at least one.
- the sending, by the transmitter 1401, the scheduling indication signaling to the to-be-scheduled station may be: the transmitter 1401, specifically, when the to-be-scheduled site includes at least two sites, sequentially to each of the at least two sites.
- the station sends scheduling indication signaling, or simultaneously sends scheduling indication signaling to at least two stations.
- the frame structure of the foregoing scheduling indication signaling and the scheduling indication response signaling may include at least one of a frame control field, a receiving address field, a sending address field, and a transmit power field; wherein, the different frame control fields are taken.
- the value identifier identifies a frame having the above frame structure as scheduling indication signaling or scheduling indication response signaling; and the value of the foregoing transmit power field is the determined transmit power-.
- the receiver 1402 receives the first interference power parameter fed back by the associated site of the first access point, and receives the second interference power parameter sent by the second access point; if the processor 1404 determines the first connection The channel of the ingress is currently occupied by the second access point, and the first access point is determined according to the first interference power parameter, the second interference power parameter, and the transmit power of the second access point currently occupying the channel. The scheduling station and the first access point transmit power of the station to be scheduled; finally, the transmitter 1401 sends scheduling indication signaling to the to-be-scheduled station by using the transmit power determined by the processor 1404, and the receiver 1402 receives the available in the to-be-scheduled station.
- the scheduling indication response signaling sent by the scheduled station after receiving the scheduling indication response signaling, the transmitter 1401 sends a data frame to the schedulable station according to the transmission power corresponding to the configurable station among the determined transmission powers. Therefore, the access points in the mutual-affected area can be simultaneously transmitted in the downlink, and the utilization of the network spectrum resources is improved.
- the determined transmission power is carried by the air interface scheduling indication signaling and the scheduling indication response signaling. No additional signaling overhead is required, and the real-time performance of power control is guaranteed.
- this embodiment is based on the self-distributed behavior of the access point without the need for a central scheduler.
- FIG. 15 is a schematic structural diagram of an embodiment of a station according to the present invention.
- the station in this embodiment may implement the process of the embodiment shown in FIG. 2 of the present invention.
- the station may include: a transmitter 1501 and a receiver 1502. , the memory 1503 and the transmitter 1501 and the receiver respectively
- the processor 1504 is connected to the memory 1503.
- the above-mentioned site may also include a common component such as an antenna and an input/output device.
- the embodiment of the present invention does not impose any limitation here.
- the memory 1503 is configured to store a set of program codes
- the processor 1504 is configured to invoke the program code stored in the memory 1503 to measure the first interference power parameter, where the first interference power parameter is used to indicate that the second access point does not affect the communication between the first access point and the foregoing station.
- the first access point is an associated access point of the foregoing site, and the first access point overlaps with the coverage area of the second access point;
- the transmitter 1501 is configured to use the processor 1504
- the measured first interference power parameter is fed back to the first access point, so that when the first access point determines that the channel working by the first access point is currently occupied by the second access point, the first access point is a first interference power parameter, a second interference power parameter sent by the second access point, and a transmit power of a second access point currently occupying the channel, determining that the station is a to-be-scheduled station of the first access point, and the foregoing Transmitting power of the first access point to the foregoing station; the second interference power parameter is
- the receiver 1502 is configured to receive scheduling indication signaling that is sent by the first access point by using the determined transmit power.
- the processor 1504 is further configured to: after the receiver 1502 receives the foregoing scheduling indication signaling, determine that the foregoing station is scheduled by the first access point;
- the transmitter 1501 is further configured to: after the processor 1504 determines that the foregoing station is scheduled by the first access point, send the scheduling indication response signaling to the first access point; the foregoing scheduling indication signaling and the foregoing scheduling indication response signaling All carrying the above determined transmission power;
- the receiver 1502 is further configured to: after the transmitter 1501 sends the scheduling indication response signaling, receive the data frame that is sent by the first access point by using the determined transmit power.
- the first interference power parameter measured by the processor 1504 includes an upper limit of the harmless transmission power of the second access point, and the upper limit of the harmless transmission power of the second access point is the second access The maximum transmit power allowed in the case where the point does not affect the communication between the above site and the first access point;
- the processor 1504 is configured to measure, by the foregoing station, a received energy of a signal sent by the second access point using a full power, and determine, according to the received energy, an idle channel evaluation threshold of the station.
- the harmless power drop value of the second access point and the difference between the maximum transmit power of the second access point and the harmless power drop value are used as the harmless transmit power upper limit of the second access point.
- the first interference power parameter measured by the processor 1504 includes a harmless power drop value of the second access point, and the harmless power drop value of the second access point is used for Indicates a value required to decrease the maximum transmit power of the second access point without affecting the communication between the foregoing site and the first access point;
- the processor 1504 is specifically configured to measure, by the station, the received energy of the signal sent by the second access point using the full power, and determine the harmless power drop of the second access point according to the received energy and the idle channel estimation threshold of the station. value.
- the transmitter 1501 feeds back the first interference power parameter to the first access point, so that when the first access point determines that the first access point works,
- the first access point is configured according to the first interference power parameter, the second interference power parameter sent by the second access point, and the second access point currently occupying the channel.
- Transmit power determining that the foregoing station is the to-be-scheduled station of the first access point and the transmitting power of the first access point to the station.
- the receiver 1502 receives the scheduling indication signaling sent by the first access point with the determined transmit power
- the processor 1504 determines that the station can be scheduled
- the transmitter 1501 sends a scheduling indication response to the first access point.
- the receiver 1502 receives the data frame transmitted by the first access point at the above determined transmit power. Therefore, the access points in the mutual-affected area can be simultaneously transmitted in the downlink, and the utilization of the network spectrum resources is improved.
- the determined transmission power is carried by the air interface scheduling indication signaling and the scheduling indication response signaling. No additional signaling overhead is required, and the real-time performance of power control is guaranteed.
- this embodiment is based on autonomous distributed behavior of access points without the need for a central scheduler.
- modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the embodiment description, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
- the modules of the above embodiments may be combined into one module, or may be split into multiple sub-modules.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明提供一种数据帧的发送、接收方法和装置,该数据帧的发送方法包括:第一接入点接收第一接入点的关联站点反馈的第一干扰功率参数,接收第二接入点发送的第二干扰功率参数;如果确定第一接入点工作的信道当前被第二接入点占用,则确定待调度站点和第一接入点对待调度站点的发射功率,并以确定的发射功率发送调度指示信令,接收可被调度站点发送的调度指示响应信令;以确定的发射功率中与可被调度站点对应的发射功率向可被调度站点发送数据帧。本发明可以实现多个处于相互影响区域中的第一接入点同时进行下行发送,提高网络频谱资源的利用,并且无需额外的信令开销,同时保证了功率控制的实时性。
Description
数据帧的发送、 接收方法和装置 技术领域
本发明涉及通信技术,尤其涉及一种数据帧的发送、接收方法和装置。 背景技术
无线通信网络中的邻区干扰管理是提升网络吞吐量的关键手段,现下 受到业内的广泛关注。
在蜂窝通信系统中, 随着用户对于业务需求增加, 要求网络能够承载 更大的吞吐量。
现有的一种技术方案为在长期演进(Long Term Evolution; 以下简称: LTE)Rel-8/9中,使用小区间干扰协调(Inter Cell Interference Coordination; 以下简称: ICIC ) 的算法, 通过降低邻小区的干扰来提高小区边缘用户的 吞吐量。 具体地, 可以通过软频率复用 (Soft Frequency Reuse; 以下简称: SFR) 来实现 ICIC。 但是, SFR中的频带分配是一个静态的过程, 需要在 网络部署时确定小区边缘用户使用的频点和带宽。然而静态的频谱划分无 法适应瞬时的业务和用户分布变化, 会造成频谱资源浪费。
现有的提升网络容量的技术方案存在无法适应瞬时的业务和用户分 布变化, 导致频谱资源浪费。 发明内容
本发明提供一种数据帧的发送、 接收方法和装置, 以提高网络频谱资 源的利用。
本发明第一方面提供一种数据帧的发送方法, 包括:
第一接入点接收所述第一接入点的关联站点反馈的第一干扰功率参 数; 所述第一接入点与所述第二接入点的覆盖区域有重叠; 所述第一干扰 功率参数用于指示所述第二接入点在不影响所述第一接入点与所述第一 接入点的关联站点通信的情况下的发射功率或发射功率下降值;
所述第一接入点接收所述第二接入点发送的第二干扰功率参数, 所述 第二干扰功率参数是所述第二接入点的关联站点反馈给所述第二接入点 的; 所述第二干扰功率参数用于指示所述第一接入点在不影响所述第二接 入点与所述第二接入点的关联站点通信的情况下的发射功率或发射功率 下降值;
如果所述第一接入点确定所述第一接入点工作的信道当前被所述第 二接入点占用, 则所述第一接入点根据所述第一干扰功率参数、 所述第二 干扰功率参数和当前占用所述信道的第二接入点的发射功率, 确定所述第 一接入点的待调度站点和所述第一接入点对所述待调度站点的发射功率; 所述第一接入点以确定的发射功率向所述待调度站点发送调度指示 信令, 并接收所述待调度站点中的可被调度站点发送的调度指示响应信 所述第一接入点以所述确定的发射功率中与所述可被调度站点对应 的发射功率向所述可被调度站点发送数据帧。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述第一干 扰功率参数包括所述第二接入点的无害发射功率上限, 所述第二接入点的 无害发射功率上限为所述第二接入点在不影响所述第一接入点与所述第 一接入点的关联站点通信的情况下所允许的最大发射功率;
所述第二干扰功率参数包括所述第一接入点的无害发射功率上限, 所 述第一接入点的无害发射功率上限为所述第一接入点在不影响所述第二 接入点与所述第二接入点的关联站点通信的情况下所允许的最大发射功 -。
结合第一方面, 在第一方面的第二种可能的实现方式中, 所述第一接 入点确定所述第一接入点工作的信道当前被所述第二接入点占用包括: 如果所述第一接入点通过监听所述第一接入点工作的信道接收到调 度指示信令, 并且所述第一接入点确定接收到的调度指示信令中携带的发 送地址为所述第二接入点的地址, 则所述第一接入点确定所述信道当前被 所述第二接入点占用; 或者, 如果所述第一接入点通过监听所述第一接入 点工作的信道接收到调度指示响应信令, 并且所述第一接入点确定接收到 的调度指示响应信令中携带的接收地址为所述第二接入点的地址, 则所述
第一接入点确定所述信道当前被所述第二接入点占用。
结合第一方面, 或者第一方面的第一种或第二种可能的实现方式, 在 第一方面的第三种可能的实现方式中, 所述第二接入点为当前占用所述第 一接入点工作的信道的第二接入点; 所述第二接入点的关联站点为当前占 用所述信道的第二接入点的关联站点中与当前占用所述信道的第二接入 点正在进行通信的站点;
所述第一接入点根据所述第一干扰功率参数、 所述第二干扰功率参数 和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的待 调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述第一接入点从所述第一接入点的关联站点中选择所述待调度站 点, 其中, 所述待调度站点所需的发射功率小于所述第二干扰功率参数, 并且所述第二接入点的发射功率小于第三干扰功率参数; 所述第三干扰功 率参数为所述第一干扰功率参数中的至少一个, 用于指示所述第二接入点 在不影响所述第一接入点与所述待调度站点通信的情况下的发射功率; 所述第一接入点确定所述第一接入点对所述待调度站点的发射功率 为所述待调度站点所需的发射功率。
结合第一方面或者第一方面的第二种可能的实现方式, 在第一方面的 第四种可能的实现方式中, 所述第一干扰功率参数包括所述第二接入点的 无害功率下降值, 所述第二接入点的无害功率下降值用于指示所述第二接 入点的最大发射功率在不影响所述第一接入点与所述第一接入点的关联 站点的通信的情况下所需下降的数值; 所述第二干扰功率参数包括所述第 一接入点的无害功率下降值, 所述第一接入点的无害功率下降值用于指示 所述第一接入点的最大发射功率在不影响所述第二接入点与所述第二接 入点的关联站点的通信的情况下所需下降的数值;
所述第二接入点为当前占用所述第一接入点工作的信道的第二接入 点; 所述第二接入点的关联站点为当前占用所述信道的第二接入点的关联 站点中与当前占用所述信道的第二接入点正在进行通信的站点;
所述第一接入点根据所述第一干扰功率参数、 所述第二干扰功率参数 和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的待 调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述第一接入点将所述第二接入点的最大发射功率与所述第一干扰 功率参数之差, 作为所述第二接入点的无害发射功率上限, 以及将所述第 一接入点的最大发射功率与所述第二干扰功率参数之差, 作为所述第一接 入点的无害发射功率上限; 所述第二接入点的无害发射功率上限为所述第 二接入点在不影响所述第一接入点与所述第一接入点的关联站点通信的 情况下所允许的最大发射功率; 所述第一接入点的无害发射功率上限为所 述第一接入点在不影响所述第二接入点与所述第二接入点的关联站点通 信的情况下所允许的最大发射功率;
所述第一接入点从所述第一接入点的关联站点中选择所述待调度站 点, 其中, 所述待调度站点所需的发射功率小于所述第一接入点对所述第 二接入点的关联站点的无害发射功率上限, 并且所述第二接入点的发射功 率小于所述第二接入点对所述待调度站点的无害发射功率上限;
所述第一接入点确定所述第一接入点对所述待调度站点的发射功率 为所述待调度站点所需的发射功率。
结合第一方面, 或者第一方面的第一种或第二种可能的实现方式, 在 第一方面的第五种可能的实现方式中, 所述向所述待调度站点发送调度指 示信令包括:
当所述待调度站点包括至少两个站点时, 所述第一接入点依次向所述 至少两个站点中的每个站点发送调度指示信令, 或者所述第一接入点同时 向所述至少两个站点发送调度指示信令。
结合第一方面, 或者第一方面的第一种或第二种可能的实现方式, 在 第一方面的第六种可能的实现方式中, 所述调度指示信令和所述调度指示 响应信令的帧结构包括帧控制字段、 接收地址字段、 发送地址字段和发射 功率字段中的至少一个;
其中, 所述帧控制字段的不同取值标识具有所述帧结构的帧为调度指 示信令或调度指示响应信令; 所述发射功率字段的值为所述确定的发射功 -。
本发明第二方面提供一种数据帧的接收方法, 包括:
站点测量第一干扰功率参数; 所述第一干扰功率参数用于指示第二接 入点在不影响第一接入点与所述站点通信的情况下的发射功率或发射功
率下降值; 所述第一接入点为所述站点的关联接入点, 所述第一接入点与 所述第二接入点的覆盖区域有重叠;
所述站点将所述第一干扰功率参数反馈给所述第一接入点, 以便当所 述第一接入点确定所述第一接入点工作的信道当前被所述第二接入点占 用时, 所述第一接入点根据所述第一干扰功率参数、 所述第二接入点发送 的第二干扰功率参数和当前占用所述信道的第二接入点的发射功率, 确定 所述站点为所述第一接入点的待调度站点和所述第一接入点对所述站点 的发射功率; 所述第二干扰功率参数用于指示所述第一接入点在不影响所 述第二接入点与所述第二接入点的关联站点通信的情况下的发射功率或 发射功率下降值;
所述站点接收到所述第一接入点以确定的发射功率发送的调度指示 信令之后, 如果所述站点确定所述站点可被所述第一接入点调度, 则向所 述第一接入点发送调度指示响应信令;
所述站点接收所述第一接入点以所述确定的发射功率发送的数据帧。 结合第二方面, 在第二方面的第一种可能的实现方式中, 所述第一干 扰功率参数包括所述第二接入点的无害发射功率上限, 所述第二接入点的 无害发射功率上限为所述第二接入点在不影响所述站点与所述第一接入 点通信的情况下所允许的最大发射功率。
结合第二方面的第一种可能的实现方式, 在第二方面的第二种可能的 实现方式中, 所述站点测量第一干扰功率参数包括:
所述站点测量所述站点对所述第二接入点使用满功率发送的信号的 接收能量;
所述站点根据所述接收能量与所述站点的空闲信道评估门限确定所 述第二接入点的无害功率下降值; 所述第二接入点的无害功率下降值用于 指示所述第二接入点的最大发射功率在不影响所述站点与所述第一接入 点的通信的情况下所需下降的数值;
所述站点将所述第二接入点的最大发射功率与所述无害功率下降值 之差, 作为所述第二接入点的无害发射功率上限。
结合第二方面, 在第二方面的第三种可能的实现方式中, 所述第一干 扰功率参数包括所述第二接入点的无害功率下降值, 所述第二接入点的无
害功率下降值用于指示所述第二接入点的最大发射功率在不影响所述站 点与所述第一接入点的通信的情况下所需下降的数值。
结合第二方面的第三种可能的实现方式, 在第二方面的第四种可能的 实现方式中, 所述站点测量第二接入点对所述站点的第一干扰功率参数包 括:
所述站点测量所述站点对所述第二接入点使用满功率发送的信号的 接收能量;
所述站点根据所述接收能量与所述站点的空闲信道评估门限确定所 述第二接入点的无害功率下降值。
本发明第三方面提供一种数据帧的发送装置, 所述数据帧的发送装置 设置在第一接入点中, 所述数据帧的发送装置包括:
接收模块, 用于接收所述第一接入点的关联站点反馈的第一干扰功率 参数; 以及接收所述第二接入点发送的第二干扰功率参数, 所述第二干扰 功率参数是所述第二接入点的关联站点反馈给所述第二接入点的; 所述第 一接入点与所述第二接入点的覆盖区域有重叠; 所述第一干扰功率参数用 于指示所述第二接入点在不影响所述第一接入点与所述第一接入点的关 联站点通信的情况下的发射功率或发射功率下降值; 所述第二干扰功率参 数用于指示所述第一接入点在不影响所述第二接入点与所述第二接入点 的关联站点通信的情况下的发射功率或发射功率下降值;
确定模块, 用于确定所述第一接入点工作的信道当前被所述第二接入 点占用, 以及根据所述第一干扰功率参数、 所述第二干扰功率参数和当前 占用所述信道的第二接入点的发射功率, 确定所述第一接入点的待调度站 点和所述第一接入点对所述待调度站点的发射功率;
发送模块, 用于以所述确定模块确定的发射功率向所述待调度站点发 送调度指示信令; 以及在所述接收模块接收所述待调度站点中的可被调度 站点发送的调度指示响应信令之后, 以所述确定模块确定的发射功率中与 所述可被调度站点对应的发射功率向所述可被调度站点发送数据帧; 所述接收模块, 还用于在所述发送模块发送调度指示信令之后, 接收 所述待调度站点中的可被调度站点发送的调度指示响应信令。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述接收模
块接收的第一干扰功率参数包括所述第二接入点的无害发射功率上限, 所 述第二接入点的无害发射功率上限为所述第二接入点在不影响所述第一 接入点与所述第一接入点的关联站点通信的情况下所允许的最大发射功 -;
所述接收模块接收的第二干扰功率参数包括所述第一接入点的无害 发射功率上限, 所述第一接入点的无害发射功率上限为所述第一接入点在 不影响所述第二接入点与所述第二接入点的关联站点通信的情况下所允 许的最大发射功率。
结合第三方面, 在第三方面的第二种可能的实现方式中, 所述确定模 块用于确定所述第一接入点工作的信道当前被所述第二接入点占用包括: 所述确定模块, 具体用于当通过监听所述第一接入点工作的信道接收 到调度指示信令, 并且确定接收到的调度指示信令中携带的发送地址为所 述第二接入点的地址时,确定所述信道当前被所述第二接入点占用;或者, 当通过监听所述第一接入点工作的信道接收到调度指示响应信令, 并且确 定接收到的调度指示响应信令中携带的接收地址为所述第二接入点的地 址时, 确定所述信道当前被所述第二接入点占用。
结合第三方面, 或者第三方面的第一种或第二种可能的实现方式, 在 第三方面的第三种可能的实现方式中, 所述第二接入点为当前占用所述信 道的第二接入点; 所述第二接入点的关联站点为当前占用所述信道的第二 接入点的关联站点中与当前占用所述信道的第二接入点正在进行通信的 站点;
所述确定模块用于根据所述第一干扰功率参数、 所述第二干扰功率参 数和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的 待调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述确定模块, 具体用于从所述第一接入点的关联站点中选择所述待 调度站点, 其中, 所述待调度站点所需的发射功率小于所述第二干扰功率 参数, 并且所述第二接入点的发射功率小于第三干扰功率参数; 以及确定 所述第一接入点对所述待调度站点的发射功率为所述待调度站点所需的 发射功率; 所述第三干扰功率参数为所述第一干扰功率参数中的至少一 个, 用于指示所述第二接入点在不影响所述第一接入点与所述待调度站点
通信的情况下的发射功率。
结合第三方面或者第三方面的第二种可能的实现方式, 在第三方面的 第四种可能的实现方式中, 所述接收模块接收的第一干扰功率参数包括所 述第二接入点的无害功率下降值, 所述第二接入点的无害功率下降值用于 指示所述第二接入点的最大发射功率在不影响所述第一接入点与所述第 一接入点的关联站点的通信的情况下所需下降的数值; 所述接收模块接收 的第二干扰功率参数包括所述第一接入点的无害功率下降值, 所述第一接 入点的无害功率下降值用于指示所述第一接入点的最大发射功率在不影 响所述第二接入点与所述第二接入点的关联站点的通信的情况下所需下 降的数值; 所述第二接入点为当前占用所述第一接入点工作的信道的第二 接入点; 所述第二接入点的关联站点为当前占用所述信道的第二接入点的 关联站点中与当前占用所述信道的第二接入点正在进行通信的站点; 所述确定模块用于根据所述第一干扰功率参数、 所述第二干扰功率参 数和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的 待调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述确定模块, 具体用于将所述第二接入点的最大发射功率与所述第 一干扰功率参数之差, 作为所述第二接入点的无害发射功率上限, 以及将 所述第一接入点的最大发射功率与所述第二干扰功率参数之差, 作为所述 第一接入点的无害发射功率上限; 以及从所述第一接入点的关联站点中选 择所述待调度站点, 其中, 所述待调度站点所需的发射功率小于所述第一 接入点对所述第二接入点的关联站点的无害发射功率上限, 并且所述第二 接入点的发射功率小于所述第二接入点对所述待调度站点的无害发射功 率上限; 以及确定所述第一接入点对所述待调度站点的发射功率为所述待 调度站点所需的发射功率。
结合第三方面, 或者第三方面的第一种或第二种可能的实现方式, 在 第三方面的第五种可能的实现方式中, 所述发送模块用于向所述待调度站 点发送调度指示信令包括:
所述发送模块, 具体用于当所述待调度站点包括至少两个站点时, 依 次向所述至少两个站点中的每个站点发送调度指示信令, 或者同时向所述 至少两个站点发送调度指示信令。
本发明第四方面提供一种数据帧的接收装置, 所述数据帧的接收装置 设置在站点中, 所述数据帧的接收装置包括:
测量模块, 用于测量第一干扰功率参数; 所述第一干扰功率参数用于 指示第二接入点在不影响第一接入点与所述站点通信的情况下的发射功 率或发射功率下降值; 所述第一接入点为所述站点的关联接入点, 所述第 一接入点与所述第二接入点的覆盖区域有重叠;
发送模块, 用于将所述测量模块测量的第一干扰功率参数反馈给所述 第一接入点, 以便当所述第一接入点确定所述第一接入点工作的信道当前 被所述第二接入点占用时, 所述第一接入点根据所述第一干扰功率参数、 所述第二接入点发送的第二干扰功率参数和当前占用所述信道的第二接 入点的发射功率, 确定所述站点为所述第一接入点的待调度站点和所述第 一接入点对所述站点的发射功率; 所述第二干扰功率参数用于指示所述第 一接入点在不影响所述第二接入点与所述第二接入点的关联站点通信的 情况下的发射功率或发射功率下降值;
接收模块, 用于接收所述第一接入点以所述确定的发射功率发送的调 度指示信令;
确定模块, 用于在所述接收模块接收到所述调度指示信令之后, 确定 所述站点可被所述第一接入点调度;
所述发送模块, 还用于在所述确定模块确定所述站点可被所述第一接 入点调度之后, 向所述第一接入点发送调度指示响应信令;
所述接收模块, 还用于在所述发送模块发送调度指示响应信令之后, 接收所述第一接入点以所述确定的发射功率发送的数据帧。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述测量模 块测量的第一干扰功率参数包括所述第二接入点的无害发射功率上限, 所 述第二接入点的无害发射功率上限为所述第二接入点在不影响所述站点 与所述第一接入点通信的情况下所允许的最大发射功率。
结合第四方面的第一种可能的实现方式, 在第四方面的第二种可能的 实现方式中, 所述测量模块, 具体用于测量所述站点对所述第二接入点使 用满功率发送的信号的接收能量, 根据所述接收能量与所述站点的空闲信 道评估门限确定所述第二接入点的无害功率下降值, 以及将所述第二接入
点的最大发射功率与所述无害功率下降值之差, 作为所述第二接入点的无 害发射功率上限。
结合第四方面, 在第四方面的第三种可能的实现方式中, 所述测量模 块测量的第一干扰功率参数包括所述第二接入点的无害功率下降值, 所述 第二接入点的无害功率下降值用于指示所述第二接入点的最大发射功率 在不影响所述站点与所述第一接入点的通信的情况下所需下降的数值。
结合第四方面的第三种可能的实现方式, 在第四方面的第四种可能的 实现方式中, 所述测量模块, 具体用于测量所述站点对所述第二接入点使 用满功率发送的信号的接收能量, 并根据所述接收能量与所述站点的空闲 信道评估门限确定所述第二接入点的无害功率下降值。
本发明第五方面提供一种第一接入点, 包括: 发射机、 接收机、 存储 器以及分别与所述发射机、 所述接收机和所述存储器连接的处理器; 所述接收机, 用于接收所述第一接入点的关联站点反馈的第一干扰功 率参数; 以及接收所述第二接入点发送的第二干扰功率参数, 所述第二干 扰功率参数是所述第二接入点的关联站点反馈给所述第二接入点的; 所述 第一接入点与所述第二接入点的覆盖区域有重叠; 所述第一干扰功率参数 用于指示所述第二接入点在不影响所述第一接入点与所述第一接入点的 关联站点通信的情况下的发射功率或发射功率下降值; 所述第二干扰功率 参数用于指示所述第一接入点在不影响所述第二接入点与所述第二接入 点的关联站点通信的情况下的发射功率或发射功率下降值;
所述存储器, 用于存储一组程序代码;
所述处理器, 用于调用所述存储器中存储的程序代码, 确定所述第一 接入点工作的信道当前被所述第二接入点占用, 以及根据所述第一干扰功 率参数、 所述第二干扰功率参数和当前占用所述信道的第二接入点的发射 功率, 确定所述第一接入点的待调度站点和所述第一接入点对所述待调度 站点的发射功率;
所述发射机, 用于以所述处理器确定的发射功率向所述待调度站点发 送调度指示信令; 以及在所述接收机接收所述待调度站点中的可被调度站 点发送的调度指示响应信令之后, 以所述处理器确定的发射功率中与所述 可被调度站点对应的发射功率向所述可被调度站点发送数据帧;
所述接收机, 还用于在所述发射机发送调度指示信令之后, 接收所述 待调度站点中的可被调度站点发送的调度指示响应信令。
结合第五方面, 在第五方面的第一种可能的实现方式中, 所述接收机 接收的第一干扰功率参数包括所述第二接入点的无害发射功率上限, 所述 第二接入点的无害发射功率上限为所述第二接入点在不影响所述第一接 入点与所述第一接入点的关联站点通信的情况下所允许的最大发射功率; 所述接收机接收的第二干扰功率参数包括所述第一接入点的无害发 射功率上限, 所述第一接入点的无害发射功率上限为所述第一接入点在不 影响所述第二接入点与所述第二接入点的关联站点通信的情况下所允许 的最大发射功率。
结合第五方面, 在第五方面的第二种可能的实现方式中, 所述处理器 用于确定所述第一接入点工作的信道当前被所述第二接入点占用包括: 所述处理器, 具体用于当通过监听所述第一接入点工作的信道接收到 调度指示信令, 并且确定接收到的调度指示信令中携带的发送地址为所述 第二接入点的地址时, 确定所述信道当前被所述第二接入点占用; 或者, 当通过监听所述第一接入点工作的信道接收到调度指示响应信令, 并且确 定接收到的调度指示响应信令中携带的接收地址为所述第二接入点的地 址时, 确定所述信道当前被所述第二接入点占用。
结合第五方面, 或者第五方面的第一种或第二种可能的实现方式中, 在第五方面的第三种可能的实现方式中, 所述第二接入点为当前占用所述 第一接入点工作的信道的第二接入点; 所述第二接入点的关联站点为当前 占用所述信道的第二接入点的关联站点中与当前占用所述信道的第二接 入点正在进行通信的站点;
所述处理器用于根据所述第一干扰功率参数、 所述第二干扰功率参数 和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的待 调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述处理器, 具体用于从所述第一接入点的关联站点中选择所述待调 度站点, 其中, 所述待调度站点所需的发射功率小于所述第二干扰功率参 数, 并且所述第二接入点的发射功率小于第三干扰功率参数; 所述第三干 扰功率参数为所述第一干扰功率参数中的至少一个, 用于指示所述第二接
入点在不影响所述第一接入点与所述待调度站点通信的情况下的发射功 率; 以及确定所述第一接入点对所述待调度站点的发射功率为所述待调度 站点所需的发射功率。
结合第五方面或者第五方面的第二种可能的实现方式, 在第五方面的 第四种可能的实现方式中, 所述第一干扰功率参数包括所述第二接入点的 无害功率下降值, 所述第二接入点的无害功率下降值用于指示所述第二接 入点的最大发射功率在不影响所述第一接入点与所述第一接入点的关联 站点的通信的情况下所需下降的数值; 所述第二干扰功率参数包括所述第 一接入点的无害功率下降值, 所述第一接入点的无害功率下降值用于指示 所述第一接入点的最大发射功率在不影响所述第二接入点与所述第二接 入点的关联站点的通信的情况下所需下降的数值;
所述第二接入点为当前占用所述第一接入点工作的信道的第二接入 点; 所述第二接入点的关联站点为当前占用所述信道的第二接入点的关联 站点中与当前占用所述信道的第二接入点正在进行通信的站点;
所述处理器用于根据所述第一干扰功率参数、 所述第二干扰功率参数 和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的待 调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述处理器, 具体用于将所述第二接入点的最大发射功率与所述第一 干扰功率参数之差, 作为所述第二接入点的无害发射功率上限, 以及将所 述第一接入点的最大发射功率与所述第二干扰功率参数之差, 作为所述第 一接入点的无害发射功率上限; 以及从所述第一接入点的关联站点中选择 所述待调度站点, 其中, 所述待调度站点所需的发射功率小于所述第一接 入点对所述第二接入点的关联站点的无害发射功率上限, 并且所述第二接 入点的发射功率小于所述第二接入点对所述待调度站点的无害发射功率 上限; 以及确定所述第一接入点对所述待调度站点的发射功率为所述待调 度站点所需的发射功率。
结合第五方面, 或者第五方面的第一种或第二种可能的实现方式中, 在第五方面的第五种可能的实现方式中, 所述发射机用于向所述待调度站 点发送调度指示信令包括:
所述发射机, 具体用于当所述待调度站点包括至少两个站点时, 依次
向所述至少两个站点中的每个站点发送调度指示信令, 或者同时向所述至 少两个站点发送调度指示信令。
本发明第六方面提供一种站点, 包括: 发射机、 接收机、 存储器以及 分别与所述发射机、 所述接收机和所述存储器连接的处理器;
所述存储器, 用于存储一组程序代码;
所述处理器, 用于调用所述存储器存储的程序代码, 测量第一干扰功 率参数; 所述第一干扰功率参数用于指示第二接入点在不影响第一接入点 与所述站点通信的情况下的发射功率或发射功率下降值; 所述第一接入点 为所述站点的关联接入点, 所述第一接入点与所述第二接入点的覆盖区域 有重叠;
所述发射机, 用于将所述处理器测量的第一干扰功率参数反馈给所述 第一接入点, 以便当所述第一接入点确定所述第一接入点工作的信道当前 被所述第二接入点占用时, 所述第一接入点根据所述第一干扰功率参数、 所述第二接入点发送的第二干扰功率参数和当前占用所述信道的第二接 入点的发射功率, 确定所述站点为所述第一接入点的待调度站点和所述第 一接入点对所述站点的发射功率; 所述第二干扰功率参数用于指示所述第 一接入点在不影响所述第二接入点与所述第二接入点的关联站点通信的 情况下的发射功率或发射功率下降值;
所述接收机, 用于接收所述第一接入点以确定的发射功率发送的调度 指示信令;
所述处理器, 还用于在所述接收机接收所述调度指示信令之后, 确定 所述站点可被所述第一接入点调度;
所述发射机, 还用于在所述处理器确定所述站点可被所述第一接入点 调度之后, 向所述第一接入点发送调度指示响应信令;
所述接收机, 还用于在所述发射机发送调度指示响应信令之后, 接收 所述第一接入点以所述确定的发射功率发送的数据帧。
结合第六方面, 在第六方面的第一种可能的实现方式中, 所述处理器 测量的第一干扰功率参数包括所述第二接入点的无害发射功率上限, 所述 第二接入点的无害发射功率上限为所述第二接入点在不影响所述站点与 所述第一接入点通信的情况下所允许的最大发射功率。
结合第六方面的第一种可能的实现方式, 在第六方面的第二种可能的 实现方式中, 所述处理器, 具体用于测量所述站点对所述第二接入点使用 满功率发送的信号的接收能量, 根据所述接收能量与所述站点的空闲信道 评估门限确定所述第二接入点的无害功率下降值, 以及将所述第二接入点 的最大发射功率与所述无害功率下降值之差, 作为所述第二接入点的无害 发射功率上限。
结合第六方面, 在第六方面的第三种可能的实现方式中, 所述处理器 测量的第一干扰功率参数包括所述第二接入点的无害功率下降值, 所述第 二接入点的无害功率下降值用于指示所述第二接入点的最大发射功率在 不影响所述站点与所述第一接入点的通信的情况下所需下降的数值。
结合第六方面的第三种可能的实现方式, 在第六方面的第四种可能的 实现方式中, 所述处理器, 具体用于测量所述站点对所述第二接入点使用 满功率发送的信号的接收能量, 并根据所述接收能量与所述站点的空闲信 道评估门限确定所述第二接入点的无害功率下降值。
本发明的技术效果是: 第一接入点根据第一干扰功率参数、 第二干扰 功率参数和当前占用上述信道的第二接入点的发射功率, 确定第一接入点 的待调度站点和上述第一接入点对待调度站点的发射功率, 可以提高网络 频谱资源的利用。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明数据帧的发送方法一个实施例的流程图;
图 2为本发明数据帧的接收方法一个实施例的流程图;
图 3为本发明 AP部署的场景一个实施例的示意图;
图 4为本发明 3个 OBSS AP同时工作时的干扰信息测量反馈和交互一个 实施例的示意图;
图 5为本发明 2个 AP协作一个实施例的示意图;
图 6为本发明 2AP协作时的信令交互过程一个实施例的示意图; 图 7为本发明调度指示信令和调度指示响应信令的帧结构一个实施例的 示意图;
图 8为本发明 3AP协作时的信号覆盖一个实施例的示意图;
图 9为本发明 3AP协作时信令交互一个实施例的示意图;
图 10为本发明线性 BSS部署的场景一个实施例的示意图;
图 11为本发明 3AP协作隐藏节点的信令交互一个实施例的示意图; 图 12为本发明数据帧的发送装置一个实施例的结构示意图;
图 13为本发明数据帧的接收装置一个实施例的结构示意图;
图 14为本发明第一接入点一个实施例的结构示意图;
图 15为本发明站点一个实施例的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明数据帧的发送方法一个实施例的流程图, 如图 1所示, 该数据帧的发送方法可以包括:
歩骤 101, 第一接入点接收该第一接入点的关联站点反馈的第一干扰 功率参数。
其中, 上述第一接入点与上述第二接入点的覆盖区域有重叠, 第二接 入点为第一接入点的邻近协作接入点, 第一接入点为第二接入点的邻近协 作接入点。上述第一干扰功率参数用于指示第二接入点在不影响第一接入 点与上述第一接入点的关联站点通信的情况下的发射功率或发射功率下 降值。
上述第一接入点的关联站点可以为至少一个, 第二接入点包括与第一 接入点的覆盖区域有重叠的所有接入点, 第二接入点的个数可以为至少一
个; 第一接入点的每个关联站点均会针对自己能够测量到的第二接入点反 馈不同的第一干扰功率参数, 因此第一接入点的关联站点反馈的第一干扰 功率参数可以包括至少一个第一干扰功率参数。
另外, 第一接入点还可以将上述第一干扰功率参数发送给第二接入 点。
歩骤 102, 第一接入点接收第二接入点发送的第二干扰功率参数。 其中, 该第二干扰功率参数是第二接入点的关联站点反馈给上述第二 接入点的。上述第二干扰功率参数用于指示第一接入点在不影响第二接入 点与上述第二接入点的关联站点通信的情况下的发射功率或发射功率下 降值。
同样, 上述第二接入点的关联站点可以为至少一个, 第一接入点包括 与第二接入点的覆盖区域有重叠的所有接入点, 第一接入点的个数可以为 至少一个; 第二接入点的每个关联站点均会针对自己能够测量到的第一接 入点反馈不同的第二干扰功率参数, 因此第二接入点的关联站点反馈的第 二干扰功率参数可以包括至少一个第二干扰功率参数。
歩骤 103, 如果上述第一接入点确定该第一接入点工作的信道当前被 第二接入点占用, 则第一接入点根据第一干扰功率参数、 第二干扰功率参 数和当前占用上述信道的第二接入点的发射功率, 确定上述第一接入点的 待调度站点和上述第一接入点对该待调度站点的发射功率。
其中, 当前占用上述信道的第二接入点可以是与第一接入点的覆盖区 域有重叠的所有第二接入点中的至少一个。
歩骤 104, 第一接入点以上述确定的发射功率向待调度站点发送调度 指示信令, 并接收上述待调度站点中的可被调度站点发送的调度指示响应 信令。
其中, 上述调度指示信令和上述调度指示响应信令中均携带上述确定 的发射功率。
歩骤 105, 第一接入点以上述确定的发射功率中与上述可被调度站点 对应的发射功率向可被调度站点发送数据帧。
其中, 歩骤 103中, 第一接入点确定该第一接入点工作的信道当前被 第二接入点占用可以为: 如果上述第一接入点通过监听该第一接入点工作
的信道接收到调度指示信令, 并且上述第一接入点确定接收到的调度指示 信令中携带的发送地址为上述第二接入点的地址, 则上述第一接入点确定 上述信道当前被第二接入点占用; 或者, 如果上述第一接入点通过监听该 第一接入点工作的信道接收到调度指示响应信令, 并且上述第一接入点确 定接收到的调度指示响应信令中携带的接收地址为上述第二接入点的地 址, 则上述第一接入点确定上述信道当前被第二接入点占用。
需要说明的是, 如果第一接入点工作的信道当前被至少一个第二接入 点占用, 则第一接入点通过监听该第一接入点工作的信道可以接收到至少 一个调度指示信令或至少一个调度指示响应信令。
本实施例的一种实现方式中, 上述第一干扰功率参数包括第二接入点 的无害发射功率上限, 上述第二接入点的无害发射功率上限为上述第二接 入点在不影响上述第一接入点与该第一接入点的关联站点通信的情况下 所允许的最大发射功率; 上述第二干扰功率参数包括上述第一接入点的无 害发射功率上限, 上述第一接入点的无害发射功率上限为上述第一接入点 在不影响第二接入点与上述第二接入点的关联站点通信的情况下所允许 的最大发射功率。
其中, 上述第二接入点的无害发射功率为第二接入点在不影响第一接 入点与第一接入点的关联站点通信的情况下所允许的发射功率; 上述第一 接入点的无害发射功率为第一接入点在不影响第二接入点与上述第二接 入点的关联站点通信的情况下所允许的发射功率。
这时, 第二接入点为当前占用上述第一接入点工作的信道的第二接入 点; 上述第二接入点的关联站点为当前占用上述信道的第二接入点的关联 站点中与当前占用上述信道的第二接入点正在进行通信的站点; 歩骤 103 中, 第一接入点根据第一干扰功率参数、 第二干扰功率参数和当前占用上 述信道的第二接入点的发射功率, 确定上述第一接入点的待调度站点和上 述第一接入点对该待调度站点的发射功率可以为: 第一接入点从该第一接 入点的关联站点中选择上述待调度站点, 其中, 上述待调度站点所需的发 射功率小于上述第二干扰功率参数, 并且第二接入点的发射功率小于第三 干扰功率参数; 上述第三干扰功率参数为第一干扰功率参数中的至少一 个, 用于指示第二接入点在不影响第一接入点与上述待调度站点通信的情
况下的发射功率; 并且, 第一接入点确定该第一接入点对上述待调度站点 的发射功率为上述待调度站点所需的发射功率。 其中, 当前占用上述信道 的第二接入点的个数可以为至少一个, 同样与当前占用上述信道的第二接 入点正在进行通信的站点的个数也可以为至少一个; 另外, 第一接入点选 择的待调度站点可以为至少一个, 因此, 第三干扰功率参数可以为第一干 扰功率参数中的至少一个。
本实施例的另一种实现方式中, 上述第一干扰功率参数包括上述第二 接入点的无害功率下降值, 上述第二接入点的无害功率下降值用于指示第 二接入点的最大发射功率在不影响上述第一接入点与上述第一接入点的 关联站点的通信的情况下所需下降的数值; 上述第二干扰功率参数包括上 述第一接入点的无害功率下降值, 上述第一接入点的无害功率下降值用于 指示上述第一接入点的最大发射功率在不影响第二接入点与该第二接入 点的关联站点的通信的情况下所需下降的数值; 第二接入点为当前占用上 述第一接入点工作的信道的第二接入点; 上述第二接入点的关联站点为当 前占用上述信道的第二接入点的关联站点中与当前占用上述信道的第二 接入点正在进行通信的站点; 则歩骤 103中, 第一接入点根据第一干扰功 率参数、 第二干扰功率参数和当前占用上述信道的第二接入点的发射功 率, 确定上述第一接入点的待调度站点和上述第一接入点对该待调度站点 的发射功率可以为: 第一接入点将上述第二接入点的最大发射功率与上述 第一干扰功率参数之差, 作为上述第二接入点的无害发射功率上限, 以及 将上述第一接入点的最大发射功率与第二干扰功率参数之差, 作为上述第 一接入点的无害发射功率上限; 上述第二接入点的无害发射功率上限为第 二接入点在不影响第一接入点与第一接入点的关联站点通信的情况下所 允许的最大发射功率; 第一接入点的无害发射功率上限为第一接入点在不 影响第二接入点与该第二接入点的关联站点通信的情况下所允许的最大 发射功率。
然后, 第一接入点从上述第一接入点的关联站点中选择待调度站点, 其中, 上述待调度站点所需的发射功率小于第一接入点对上述第二接入点 的关联站点的无害发射功率上限, 并且第二接入点的发射功率小于第二接 入点对上述待调度站点的无害发射功率上限; 并且第一接入点确定该第一
接入点对待调度站点的发射功率为上述待调度站点所需的发射功率。 其 中, 当前占用上述信道的第二接入点的个数可以为至少一个, 同样与当前 占用上述信道的第二接入点正在进行通信的站点的个数也可以为至少一
55 本本实实施施例例歩歩骤骤 110044中中,, 向向待待调调度度站站点点发发送送调调度度指指示示信信令令可可以以为为:: 当当上上 述述待待调调度度站站点点包包括括至至少少两两个个站站点点时时,, 第第一一接接入入点点可可以以依依次次向向至至少少两两个个站站点点 中中的的每每个个站站点点发发送送调调度度指指示示信信令令,, 或或者者上上述述第第一一接接入入点点可可以以同同时时向向至至少少两两 个个站站点点发发送送调调度度指指示示信信令令。。
本本实实施施例例中中,, 上上述述调调度度指指示示信信令令和和调调度度指指示示响响应应信信令令的的帧帧结结构构至至少少包包 1100 括括帧帧控控制制字字段段、、 接接收收地地址址字字段段、、 发发送送地地址址字字段段和和发发射射功功率率字字段段中中的的至至少少一一 个个;; 其其中中,, 上上述述帧帧控控制制字字段段的的不不同同取取值值标标识识具具有有上上述述帧帧结结构构的的帧帧为为调调度度指指 示示信信令令或或调调度度指指示示响响应应信信令令;; 上上述述发发射射功功率率字字段段的的值值为为歩歩骤骤 110033中中确确定定的的 发发射射功功率率。。
上上述述实实施施例例中中,, 第第一一接接入入点点接接收收该该第第一一接接入入点点的的关关联联站站点点反反馈馈的的第第一一 1155 干干扰扰功功率率参参数数,, 并并接接收收第第二二接接入入点点发发送送的的第第二二干干扰扰功功率率参参数数;; 如如果果第第一一接接 入入点点确确定定该该第第一一接接入入点点工工作作的的信信道道当当前前被被第第二二接接入入点点占占用用,, 则则第第一一接接入入点点 根根据据第第一一干干扰扰功功率率参参数数、、第第二二干干扰扰功功率率参参数数和和当当前前占占用用上上述述信信道道的的第第二二接接 入入点点的的发发射射功功率率,, 确确定定第第一一接接入入点点的的待待调调度度站站点点和和上上述述第第一一接接入入点点对对待待调调 度度站站点点的的发发射射功功率率;; 最最后后,, 第第一一接接入入点点以以该该确确定定的的发发射射功功率率向向待待调调度度站站点点 2200 发发送送调调度度指指示示信信令令,, 并并接接收收上上述述待待调调度度站站点点中中的的可可被被调调度度站站点点发发送送的的调调度度 指指示示响响应应信信令令;; 接接收收到到调调度度指指示示响响应应信信令令之之后后,, 该该第第一一接接入入点点以以上上述述确确定定 的的发发射射功功率率中中与与可可被被调调度度站站点点对对应应的的发发射射功功率率向向可可被被调调度度站站点点发发送送数数据据 帧帧。。 从从而而可可以以实实现现多多个个处处于于相相互互影影响响区区域域中中的的接接入入点点同同时时进进行行下下行行发发送送,, 提提高高网网络络频频谱谱资资源源的的利利用用,, 并并且且本本实实施施例例通通过过空空口口的的调调度度指指示示信信令令和和调调度度 2255 指指示示响响应应信信令令携携带带上上述述确确定定的的发发射射功功率率,, 无无需需额额外外的的信信令令开开销销,, 同同时时保保证证 了了功功率率控控制制的的实实时时性性。。 另另外外,, 本本实实施施例例是是基基于于接接入入点点的的自自主主分分布布式式行行为为,, 无无需需中中央央调调度度器器。。
图图 22为为本本发发明明数数据据帧帧的的接接收收方方法法一一个个实实施施例例的的流流程程图图,, 如如图图 22所所示示,, 该该数数据据帧帧的的接接收收方方法法可可以以包包括括::
其中, 第一干扰功率参数用于指示第二接入点在不影响第一接入点与 上述站点通信的情况下的发射功率或发射功率下降值; 上述第一接入点为 上述站点的关联接入点, 第一接入点与第二接入点的覆盖区域有重叠; 第 二接入点为第一接入点的邻近协作接入点, 第一接入点为第二接入点的邻 近协作接入点。
歩骤 202, 站点将上述第一干扰功率参数反馈给第一接入点, 以便当 第一接入点确定该第一接入点工作的信道当前被第二接入点占用时, 该第 一接入点根据上述第一干扰功率参数、 该第二接入点发送的第二干扰功率 参数和当前占用上述信道的第二接入点的发射功率, 确定上述站点为上述 第一接入点的待调度站点和上述第一接入点对该站点的发射功率。
其中, 上述第二干扰功率参数用于指示第一接入点在不影响第二接入 点与第二接入点的关联站点通信的情况下的发射功率或发射功率下降值。
歩骤 203, 站点接收到第一接入点以上述确定的发射功率发送的调度 指示信令之后, 如果上述站点确定该站点可被第一接入点调度, 则向第一 接入点发送调度指示响应信令。
其中, 上述调度指示信令和上述调度指示响应信令中均携带上述确定 的发射功率。
具体地, 上述站点确定该站点可被调度可以为: 上述站点确定该站点 的网络分配向量未被置起, 即该站点的网络分配向量未被置位, 可以理解 为该站点的网络分配向量为空向量或该站点的网络分配向量的值为 0。
歩骤 204,站点接收第一接入点以上述确定的发射功率发送的数据帧。 本实施例的一种实现方式中, 上述干扰功率参数包括第二接入点的无 害发射功率上限, 该第二接入点的无害发射功率上限为该第二接入点在不 影响上述站点与上述第一接入点通信的情况下所允许的最大发射功率; 这 时, 歩骤 201可以为: 站点测量该站点对上述第二接入点使用满功率发送 的信号的接收能量; 然后站点根据上述接收能量与该站点的空闲信道评估 门限确定上述第二接入点的无害功率下降值。 其中, 上述第二接入点的无 害功率下降值用于指示第二接入点的最大发射功率在不影响上述站点与 第一接入点的通信的情况下所需下降的数值; 最后, 站点将第二接入点的 最大发射功率与上述无害功率下降值之差, 作为该第二接入点的无害发射
功率上限。
本实施例的另一种实现方式中, 上述干扰功率参数包括第二接入点的 无害功率下降值, 上述第二接入点的无害功率下降值用于指示第二接入点 的最大发射功率在不影响上述站点与上述第一接入点的通信的情况下所 需下降的数值; 这时, 歩骤 201可以为: 站点测量该站点对上述第二接入 点使用满功率发送的信号的接收能量; 然后, 站点根据上述接收能量与该 站点的空闲信道评估门限确定上述第二接入点的无害功率下降值。
上述实施例中, 站点测量第一干扰功率参数之后, 站点将上述第一干 扰功率参数反馈给第一接入点, 以便当第一接入点确定该第一接入点工作 的信道当前被第二接入点占用时, 该第一接入点根据上述第一干扰功率参 数、 该第二接入点发送的第二干扰功率参数和当前占用上述信道的第二接 入点的发射功率, 确定上述站点为上述第一接入点的待调度站点和上述第 一接入点对该站点的发射功率。 然后, 站点接收到第一接入点以上述确定 的发射功率发送的调度指示信令之后, 如果上述站点确定该站点可被第一 接入点调度, 则该站点向第一接入点发送调度指示响应信令, 最后, 站点 接收第一接入点以上述确定的发射功率发送的数据帧。从而可以实现多个 处于相互影响区域中的接入点同时进行下行发送, 提高网络频谱资源的利 用, 并且本实施例通过空口的调度指示信令和调度指示响应信令携带上述 确定的发射功率, 无需额外的信令开销, 同时保证了功率控制的实时性。 另外, 本实施例是基于接入点的自主分布式行为, 无需中央调度器。
例如, 本发明可以应用于密集部署的分布自主式 WLAN场景, 即 AP 调度该 AP的关联站点 (Station; 以下简称: STA) , AP之间无时频同歩 需求的场景, 通过允许多个处在相互影响区域中的 AP进行并发通信, 提 升 WLAN网络的下行容量。 同时满足与传统 (Legacy) 系统共存的条件。
本发明通过动态控制 AP 的发射功率, 使处在相互影响区域中的 AP 可以在满足带碰撞避免的载波侦听多址接入 (Carrier Sensing Multiple Access/Collision Avoidance; 以下简称: CSMA/CA) 机制的条件下, 进行 并发通信。
本发明主要针对企业网或者运营商的经过统一规划部署的 WLAN场 景。在该场景下, 各基站子系统(Base Station Subsystem; 以下简称: BSS )
的覆盖区域有重叠, 形成重叠基本服务集 (Overlapped Basic Service Set; 以下简称: OBSS ) , 以保证对于服务区域的无缝覆盖。 不同 AP之间需要 通过静态配置确定各自的最大发射功率, 以使 AP之间互不干扰。 上述场 景仅是本发明优选的部署场景, 本发明对本发明图 1和图 2所示实施例所 提供方法的适用场景不作限定, 例如, 本发明图 1和图 2所示实施例提供 的方法也可以应用于 AP之间可以相互监听到的场景中。
图 3 为本发明 AP 部署的场景一个实施例的示意图。 图 3 中 PWR MAX AP1和 PWR— MAX— AP2表示 API和 AP2各自的最大发射功 率, 其中虚线椭圆表示 AP— 2的覆盖区域, 点划线椭圆表示 AP— 1 的覆盖 区域, 实线椭圆表示 STA— 1的覆盖区域, PWR为功率 (Power) 的縮写。 AP_X的覆盖区域为在 AP— X与该 AP— X的关联 STA进行通信时能够接收 到 AP— X和该 AP— X的关联 STA的信号的区域, 该区域由 AP和该 AP的 关联 STA的发射功率共同决定。 在图 3 中点划线椭圆和实线椭圆的并集 为受 AP— 1与 STA— 1通信影响的区域。
在本发明中, STA向该 STA的关联 AP反馈该 STA受到的来自邻近 协作 AP的干扰, 并估计邻近协作 AP的无害发射功率上限(邻近协作 AP 以此功率发射时不会对目标 STA产生干扰) 。 AP将该 AP的关联 STA反 馈的该关联 STA受到的来自邻近协作 AP的干扰通过回程线路(backhaul) 或者分布式系统 (Distribution System; 以下简称: DS ) 与邻近协作 AP进 行交互, 从而确认本 AP会干扰到哪些邻近协作 AP的关联 STA, 以及避 免这些干扰的无害发射功率上限。 当然, 本发明实施例并不仅限于此, AP 也可以通过空口的信令将该 AP的关联 STA反馈的该关联 STA受到的来 自邻近协作 AP的干扰与邻近协作 AP进行交互,本发明对 AP与邻近协作 AP交互该 AP的关联 STA所受干扰的方式不作限定。
当 OBSS区域中的某 AP竞争到信道并调度给某 STA进行通信时, 占 用信道的 AP和目标 STA将通过空口管理帧进行交互,将本次下行通信的 发射功率传递给本次通信影响区域中的 AP和 STA。 所有 OBSS的 AP将 把所有先占用信道的 AP和 STA作为对于当前信道的主要使用者(Primary User) , 每个 AP会根据本 BSS中所有备选 STA对于传输功率的需求, 以 及对于信道主要使用者的干扰情况决定自己调度的 STA。 OBSS中的 STA
会根据自身侦听到的信道占用情况确定是否应答该 STA的关联 AP发出的 调度请求。
下面对本发明图 1和图 2所示实施例提供的方法进行详细介绍。
图 4为本发明 3个 OBSS AP同时工作时的干扰信息测量反馈和交互 一个实施例的示意图。 STA1关联到 API , 同时 STA1会受到来自 AP2和 AP3的下行干扰。 STA1测量 STA1对 AP2和 AP3使用满功率发送的信号 的接收能量, 例如: STA1测量 STA1对 AP2和 AP3发送的 Beacon信号 的接收能量。 然后根据上述接收能量与 STA1 的空闲信道评估 (Clear Channel Assessment; 以下简称: CCA) 门限确定 AP2和 AP3的无害功率 下降值,即确定 AP2和 AP3分别需要下降多少发射功率才不会对于 STA1 产生干扰。 该无害功率下降值采用 ΔΡΧΥ表示, 序号第二接入点表示接收 STA 的编号 (此例中第二接入点 =1 ) , Υ表示发射 ΑΡ 的序号 (此例中 Υ=2或者 3 ) 。
具体地, 本实施例中, STA1可以计算接收能量与 CCA门限之差, 作 为 ΔΡΧΥ。
STA1同时可以从 ΑΡ2和 ΑΡ3发射的 Beacon信号中确定 AP2和 AP3 的最大发射功率, 表示为 Ργ (此例中 Y=2, 3)。 STA1通过式 (1 ) 确定 ΑΡ2 和 ΑΡ3的无害发射功率上限。 (此例中 X=l, Υ=2,3 ) 。
PWRXY = PY - ΔΡΧΥ
( 1 )
STA1在测量后将该无害发射功率上限 PWRXY反馈给该 STA1关联的 APl o同样 OBSS中关联到 AP2和 AP3的 STA也进行如上的测量和反馈。 例如: 关联到 AP2的 STA2受到 AP3的干扰,所以 STA2进行如上测量后 将向 AP2反馈 PWR23。 而 STA3不受 API和 AP2的干扰, 所以 STA3不 反馈任何值。
当 AP收到关联 STA的干扰反馈后,该 AP会将关联 STA测量的邻近 协作 AP的无害发射功率上限通过 backhaul或者 DS传输给邻近协作 AP。 如图 4中, API会将 PWR12传递给 AP2, PWR13传递给 AP3 , 相应的 AP2 会将 PWR23传递给 AP3。 每个 AP会维护一张保存所有受其干扰的 STA 的无害发射功率上限列表, 图 4每个表中干扰列对应的即为受相应 AP干
扰的 STA的无害发射功率上限。
另外, 本实施例中, STA也可以仅测量和反馈无害功率下降值 ΔΡΧΥ, 由该 STA的关联 ΑΡ确定无害发射功率上限。
图 5为本发明 2个 ΑΡ协作一个实施例的示意图, 如图 5所示, API 和 AP2之间可以进行协作。图 5中实线椭圆所包围的范围表示 API和 AP2 的最大覆盖范围。 STA1与 API关联, 并处于 API和 AP2重叠覆盖区域, 因此会受到 AP2的干扰。 STA2、 STA3和 STA4与 AP2关联。 若 STA1 被服务, 则 API需要以发射功率 PWR11向 STA1发送数据帧。 该 PWR11 的大小取决于 STA1对于业务传输速率的需求以及当前 STA1和 API之间 无线信道的状态。此时受 API发射信号影响的范围为点划线椭圆所示的区 域。类似的若 STA2被 AP2调度,则 AP2需以 PWR22进行发送;若 STA3 被 AP2调度, 则 AP2需以 PWR32进行发送; 若 STA4被 AP2调度, 则 AP2需以 PWR42进行发送。
假设 API首先侦听到信道未被使用, 则 API以 PWR11向 STA1发送 调度指示信令 (Request To Send; 以下简称: RTS ) 1。 如果此时 STA1被 允许发送 (即该 STA1的网络分配向量 (Network Allocation Vector; 以下 简称: NAV) 未被其他通信置起) , 则 STA1在收到 RTS1之后的特定时 长, 例如: 短帧间距 (Short Inter Frame Space; 以下简称: SIFS ) 内侦听 信道。 当信道未被占用时, 则 STA1以满功率向 API发送调度指示响应信 令 (Clear To Send; 以下简称: CTS ) 1。 图 5 中虚线椭圆所示的区域为 STA1发送响应信号的影响范围。
AP2通过接收 STA1向 API反馈的 CTS1获知,在此后 T时间内 API 会以 PWR11 向 STA1传输数据帧, 其中 T的长短可以携带在 RTS1 中, 具体地, T的长短可以为 RTS1 中帧持续时间字段的值。 只有当以下三个 条件同时满足时, AP2的关联 STA— X可以被 AP2调度。
( 1 )待调度 STA— X所需的发射功率小于 PWR12,即 PWRX2<PWR12, 图 5中 STA2和 STA3均满足该条件;
( 2 ) 待调度 STA— X 不处于 API 当时通信的影响范围, 即待调度 STA—X不处于图 5中点划线椭圆所示的范围, 也就是 PWR„<PWRX1, 图 5中 STA2、 STA3和 STA4均满足该条件;
( 3 )待调度 STA— X不处于 STA1的上行覆盖范围, 即待调度 STA— X 不处于图 5中虚线椭圆覆盖的区域, 图 5中 STA2满足该条件。
AP2可以从 AP2自身维护的干扰信息列表中获知对于 STA1的无害发 射功率上限 PWR12, 以及 API对于 AP2所关联 STA的无害发射功率上限 PWRx! , 如果上述干扰信息列表中不存在 PWRX1的相关信息, 则说明 API 即使满功率发送也不会对 AP2所关联的 STA产生干扰。 因此 AP2可以自 行选择出所有满足条件 (1 ) 和 (2 ) 的关联 STA作为待调度 STA, 本例 中, STA2和 STA3为 AP2的待调度 STA。
此时由于 AP2无法获知 STA2和 STA3是否处于 STA1的上行影响区 域中, 所以 AP2需要按照某种调度策略依次向 STA2和 STA3发送调度指 示信令 RTS2和 RTS3。 本例中 AP2选择先向 STA3发送 RTS3 , 但是由于 STA3处于 STA1上行影响范围之内,即 STA3收到了 STA1发送的 CTS1 , STA3的 NAV被置起, 因此 STA3无法发送与 RTS3对应的调度指示响应 信令 CTS3。 AP2在等待特定时长(例如: SIFS )之后仍然无法收到 STA3 发来的 CTS3 , 则 AP2会转而向 STA2发送调度指示信令 RTS2。 STA2由 于不受 STA1的影响,会在特定时长(例如: SIFS )之后向 AP2反馈 CTS2。 AP2在收到 STA2反馈的 CTS2之后的特定时长 (例如: SIFS ) 内未侦听 到 AP2工作的信道被占用,即开始向 STA2发送数据帧。 AP2通过与 STA2 和 STA3之间的 RTS/CTS信令交互即可获知 STA2和 STA3是否满足条件 ( 3 ) 。
图 6为本发明 2AP协作时的信令交互过程一个实施例的示意图, 图 6 中空白矩形表示发射端发射的数据包, 阴影矩形表示在接收端收到的相应 的数据包。
本发明中, 本 BSS中的 AP和 STA使用调度指示信令和调度指示响 应信令来为后续的下行数据传输占用信道资源 (与现有标准中 RTS/CTS 功能相同) 。 同时邻近协作 AP需要通过该信令交互获知占用信道进行下 行通信的 AP和 STA, 以及该 AP的发射功率。 所以本发明中使用的调度 指示信令可以通过在 RTS控制帧后附加发射功率域实现。 传统 CTS的帧 结构中没有发送地址 (Transmission Address; 以下简称: TA) 字段, 而该 TA字段的值被用来向邻近协作 AP传递本小区的调度 STA的信息, 所以
调度指示响应可以采用与调度指示相同的帧结构, 而使用帧控制 (Frame Control) 字段的不同取值来区分到底是调度指示还是调度指示响应。 图 7 为本发明调度指示信令和调度指示响应信令的帧结构一个实施例的示意 图。
其中, 调度指示信令和调度指示响应信令的帧结构可以包括帧控制字 段、 接收地址字段、 发送地址字段和发射功率字段中的至少一个, 另外, 还可以包括帧持续时间 (Duration) 字段和校验位。
图 7以调度指示信令和调度指示响应信令的帧结构包括帧控制字段、 帧持续时间 (Duration) 字段、 接收地址字段、 发送地址字段、 发射功率 字段和校验位为例示出。
其中,接收地址字段的值可以为接收方的媒体接入控制(Media Access Control; 以下简称: MAC )地址,发送地址字段的值可以为发送方的 MAC 地址, 上述帧控制字段、 帧持续时间 (Duration) 字段、 接收地址字段和 发送地址字段包括在帧的 MAC头中。
上述发射功率字段的值即为占用信道进行下行通信的 AP 的发射功 -。
调度指示信令中的帧持续时间字段的值用于指示占用信道进行下行 通信的 AP和 STA的信道占用持续时间, 即占用信道进行下行通信的 AP 和 STA的下行通信持续时间。
图 8为本发明 3AP协作时的信号覆盖一个实施例的示意图, 图 8中,
API , AP2 和 AP3 的覆盖区域相互重叠, 其中, 实线椭圆所示的范围为 API的覆盖区域, 点划线椭圆所示的范围为 AP2的覆盖区域, 双点划线椭 圆所示的范围为 AP3的覆盖区域。 STA1与 API关联, STA2与 AP2关联, STA3与 AP3关联。 假设 API首先占用信道与 STA1进行下行通信。 同时 AP2按照本发明图 1所示实施例提供的方法, 使用 PWR22向 STA2进行 下行通信。 其中, API 和 AP2进行协作通信的过程可以参照本发明图 5 和图 6所示实施例, 在此不再赘述。
it匕时 AP3先后收到 STA1和 STA2分另 lj向 API和 AP2发送的 CTS1 和 CTS2, 获知 API和 AP2的发射功率。 此时 AP3若要同时进行下行通 信必须满足的条件为:
( 1 ) 待调度 STA3所需 AP3的发射功率小于 PWR13和 PWR23 ;
(2 ) 待调度 STA3不处于 API和 AP2正在进行的下行通信的影响范 围, 即 STA3不处于图 8中点状虚线 (. . . . ) 椭圆和双线夹点 ( ) 椭圆所示的范围;
( 3 ) 待调度 STA3不处于 STA1和 STA2的上行覆盖范围, 即 STA3 不处于图 8 中两短一长虚线 ( ) 椭圆和一长一短虚线
( ) 椭圆覆盖区域的并集。
图 8中, STA3符合上述条件, 因此 AP3向 STA3发送 RTS3, STA3 会在特定时长 (例如: SIFS ) 之后向 AP3反馈 CTS3 (图 8中未示出) 。 AP3在收到 STA3反馈的 CTS3之后的特定时长 (例如: SIFS ) 内未侦听 到 AP3工作的信道被占用, 即开始向 STA3发送数据帧。
图 9为本发明 3AP协作时信令交互一个实施例的示意图,图 9中空白 矩形表示发射端发射的数据包, 阴影矩形表示在接收端收到的相应的数据 包。
图 10为本发明线性 BSS 部署的场景一个实施例的示意图。 在图 10 所示场景下, 位于两端的由 API和 AP3服务的 BSS由于互相不重叠, 因 此其发送和接收相互独立。 由 AP2服务的 BSS受到来自 API和 AP3以及 各自关联 STA 的共同干扰。 假设 API 首先竞争获得信道使用权, 并以 PWR11 向 STA1发送调度指示信令 RTS1。 特定时长后 STA1 以满功率向 API反馈调度指示响应信令 CTS1 , 之后进行下行数据传输。 同时有 AP3 以及 AP3的关联站点 STA3无法侦听 API和 STA1的传输, AP3和 STA3 按照本 BSS的时序进行信道竞争。
这就存在图 11所示的场景,图 11为本发明 3AP协作隐藏节点的信令 交互一个实施例的示意图, AP3和 API发送的 RTS1和 RTS3在时间上重 叠。 由于 API和 AP3各自关联的 STA1和 STA3相隔较远, 所以不受影响 会按照固有的时序发送 CTS1和 CTS3。在 AP2的接收端, 由于来自 STA1 和 STA3的信号功率相近, 同时又在时间上重叠, 所以只能通过能量检测 判断信道被占用, 而无法解调出 CTS 中所包含的信息。 此时, AP2应将 API和 AP3作为非协作 AP对待,而保持信道侦听状态,直到 API或 AP3 发送完毕, 或者 AP2能够解调出来自由 API或 AP3服务的 BSS中交互的
调度指示信令 (RTS ) 和调度指示响应信令 (CTS ) 。
本发明可以使多个处于相互影响区域中的 AP同时进行下行发送, 从 而提高了网络频谱资源的利用。同时本发明只需通过 Backhaul交互一些慢 变半静态的功率参数, 因此对 Backhaul的带宽和时延的要求很低, 通常基 于因特网 (Internet) 的 DS即可支持传输。 本发明通过空口的调度指示信 令和调度指示响应信令捎带功率控制信息, 无需额外的信令开销, 同时保 证了功率控制的实时性。 本发明是基于 AP的自主分布式行为, 无需中央 调度器。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 歩骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的歩 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
图 12为本发明数据帧的发送装置一个实施例的结构示意图, 本实施 例中的数据帧的发送装置可以设置在第一接入点中, 实现本发明图 1所示 实施例的方法, 如图 12所示, 该数据帧的发送装置可以包括: 接收模块 1201、 发送模块 1202和确定模块 1203 ;
其中, 接收模块 1201, 用于接收该第一接入点的关联站点反馈的第一 干扰功率参数; 以及接收第二接入点发送的第二干扰功率参数, 该第二干 扰功率参数是第二接入点的关联站点反馈给上述第二接入点的; 其中, 上 述第一接入点与上述第二接入点的覆盖区域有重叠。 上述第一干扰功率参 数用于指示第二接入点在不影响第一接入点与第一接入点的关联站点通 信的情况下的发射功率或发射功率下降值; 上述第二干扰功率参数用于指 示第一接入点在不影响第二接入点与该第二接入点的关联站点通信的情 况下的发射功率或发射功率下降值。
确定模块 1203,用于确定上述第一接入点工作的信道当前被第二接入 点占用, 以及根据第一干扰功率参数、 第二干扰功率参数和当前占用上述 信道的第二接入点的发射功率, 确定该第一接入点的待调度站点和该第一 接入点对上述待调度站点的发射功率;
发送模块 1202, 还用于以确定模块 1203确定的发射功率向待调度站
点发送调度指示信令; 以及在接收模块 1201 接收上述待调度站点中的可 被调度站点发送的调度指示响应信令之后, 以确定模块 1203 确定的发射 功率中与上述可被调度站点对应的发射功率向可被调度站点发送数据帧; 接收模块 1201, 还用于在发送模块 1202发送调度指示信令之后, 接 收待调度站点中的可被调度站点发送的调度指示响应信令; 其中, 上述调 度指示信令和上述调度指示响应信令中均携带确定模块 1203 确定的发射 功率。
其中, 确定模块 1203 用于确定上述第一接入点工作的信道当前被第 二接入点占用可以为: 确定模块 1203, 具体用于当通过监听上述第一接入 点工作的信道接收到调度指示信令, 并且确定接收到的调度指示信令中携 带的发送地址为第二接入点的地址时, 确定上述信道当前被第二接入点占 用; 或者, 当通过监听上述第一接入点工作的信道接收到调度指示响应信 令, 并且确定接收到的该调度指示响应信令中携带的接收地址为上述第二 接入点的地址时, 确定上述信道当前被第二接入点占用。
本实施例的一种实现方式中, 接收模块 1201 接收的第一干扰功率参 数包括第二接入点的无害发射功率上限, 上述第二接入点的无害发射功率 上限为上述第二接入点在影响上述第一接入点与该第一接入点的关联站 点通信的情况下所允许的最大发射功率; 接收模块 1201 接收的第二干扰 功率参数包括该第一接入点的无害发射功率上限, 上述第一接入点的无害 发射功率上限为上述第一接入点在不影响第二接入点与该第二接入点的 关联站点通信的情况下所允许的最大发射功率。
本实现方式中, 第二接入点为当前占用上述信道的第二接入点; 上述 第二接入点的关联站点为当前占用上述信道的第二接入点的关联站点中 与当前占用上述信道的第二接入点正在进行通信的站点; 这时, 确定模块 1203用于根据第一干扰功率参数、第二干扰功率参数和当前占用上述信道 的第二接入点的发射功率, 确定该第一接入点的待调度站点和上述第一接 入点对待调度站点的发射功率可以为: 确定模块 1203, 具体用于从上述第 一接入点的关联站点中选择待调度站点, 其中, 上述待调度站点所需的发 射功率小于上述第二干扰功率参数, 并且第二接入点的发射功率小于第三 干扰功率参数; 以及确定第一接入点对上述待调度站点的发射功率为上述
待调度站点所需的发射功率; 上述第三干扰功率参数为第一干扰功率参数 中的至少一个, 用于指示第二接入点在不影响第一接入点与上述待调度站 点通信的情况下的发射功率。 其中, 当前占用上述信道的第二接入点的个 数可以为至少一个, 同样与当前占用上述信道的第二接入点正在进行通信 的站点的个数也可以为至少一个。
本实施例的另一种实现方式中, 接收模块 1201 接收的第一干扰功率 参数包括第二接入点的无害功率下降值, 上述第二接入点的无害功率下降 值用于指示第二接入点的最大发射功率在不影响上述第一接入点与上述 第一接入点的关联站点的通信的情况下所需下降的数值; 接收模块 1201 接收的第二干扰功率参数包括上述第一接入点的无害功率下降值, 上述第 一接入点的无害功率下降值用于指示上述第一接入点的最大发射功率在 不影响第二接入点与上述第二接入点的关联站点的通信的情况下所需下 降的数值; 第二接入点为当前占用上述第一接入点工作的信道的第二接入 点; 上述第二接入点的关联站点为当前占用上述信道的第二接入点的关联 站点中与当前占用上述信道的第二接入点正在进行通信的站点;
这时, 确定模块 1203 用于根据第一干扰功率参数、 第二干扰功率参 数和当前占用上述信道的第二接入点的发射功率, 确定第一接入点的待调 度站点和该第一接入点对上述待调度站点的发射功率可以为: 确定模块 1203 , 具体用于将第二接入点的最大发射功率与第一干扰功率参数之差, 作为第二接入点的无害发射功率上限, 以及将该第一接入点的最大发射功 率与第二干扰功率参数之差, 作为上述第一接入点的无害发射功率上限; 以及从上述第一接入点的关联站点中选择待调度站点, 其中, 上述待调度 站点所需的发射功率小于第一接入点对上述第二接入点的关联站点的无 害发射功率上限, 并且第二接入点的发射功率小于第二接入点对上述待调 度站点的无害发射功率上限; 以及确定上述第一接入点对待调度站点的发 射功率为该待调度站点所需的发射功率。 其中, 当前占用上述信道的第二 接入点的个数可以为至少一个, 同样与当前占用上述信道的第二接入点正 在进行通信的站点的个数也可以为至少一个。
本实施例中, 发送模块 1202用于向待调度站点发送调度指示信令可 以为: 发送模块 1202, 具体用于当待调度站点包括至少两个站点时, 依次
向至少两个站点中的每个站点发送调度指示信令, 或者同时向至少两个站 点发送调度指示信令。
本实施例中, 上述调度指示信令和调度指示响应信令的帧结构可以包 括帧控制字段、 接收地址字段、 发送地址字段和发射功率字段中的至少一 个; 其中, 上述帧控制字段的不同取值标识具有上述帧结构的帧为调度指 示信令或调度指示响应信令; 上述发射功率字段的值为上述确定的发射功 率。 上述调度指示信令和调度指示响应信令的帧结构可以如图 7所示, 在 此不再赘述。
上述实施例中, 接收模块 1201 接收该第一接入点的关联站点反馈的 第一干扰功率参数, 以及接收第二接入点发送的第二干扰功率参数; 如果 确定模块 1203 确定该第一接入点工作的信道当前被第二接入点占用, 则 根据第一干扰功率参数、第二干扰功率参数和当前占用上述信道的第二接 入点的发射功率, 确定第一接入点的待调度站点和上述第一接入点对待调 度站点的发射功率; 最后, 发送模块 1202以确定模块 1203确定的发射功 率向待调度站点发送调度指示信令, 接收模块 1201 接收上述待调度站点 中的可被调度站点发送的调度指示响应信令; 接收到调度指示响应信令之 后, 发送模块 1202 以上述确定的发射功率中与上述可被调度站点对应的 发射功率向可被调度站点发送数据帧。从而可以实现多个处于相互影响区 域中的接入点同时进行下行发送, 提高网络频谱资源的利用, 并且本实施 例通过空口的调度指示信令和调度指示响应信令携带上述确定的发射功 率, 无需额外的信令开销, 同时保证了功率控制的实时性。 另外, 本实施 例是基于接入点的自主分布式行为, 无需中央调度器。
图 13 为本发明数据帧的接收装置一个实施例的结构示意图, 本实施 例中的数据帧的接收装置可以设置在站点中, 实现本发明图 2所示实施例 的流程, 如图 13所示, 该数据帧的接收装置可以包括: 测量模块 1301、 发送模块 1302、 接收模块 1303和确定模块 1304;
其中, 测量模块 1301, 用于测量第一干扰功率参数; 上述第一干扰功 率参数用于指示第二接入点在不影响第一接入点与上述站点通信的情况 下的发射功率或发射功率下降值; 第一接入点为上述站点的关联接入点, 第一接入点与第二接入点的覆盖区域有重叠;
发送模块 1302, 用于将测量模块 1301测量的第一干扰功率参数反馈 给第一接入点, 以便当上述第一接入点确定该第一接入点工作的信道当前 被第二接入点占用时, 该第一接入点根据第一干扰功率参数、 上述第二接 入点发送的第二干扰功率参数和当前占用上述信道的第二接入点的发射 功率, 确定上述站点为上述第一接入点的待调度站点和上述第一接入点对 上述站点的发射功率; 上述第二干扰功率参数用于指示第一接入点在不影 响第二接入点与第二接入点的关联站点通信的情况下的发射功率或发射 功率下降值;
接收模块 1303,用于接收上述第一接入点以上述确定的发射功率发送 的调度指示信令;
确定模块 1304,用于在接收模块 1303接收到上述调度指示信令之后, 确定上述站点可被第一接入点调度;
发送模块 1302, 还用于在确定模块 1304确定上述站点可被第一接入 点调度之后, 向第一接入点发送调度指示响应信令; 上述调度指示信令和 上述调度指示响应信令中均携带上述确定的发射功率;
接收模块 1303,还用于在发送模块 1302发送调度指示响应信令之后, 接收第一接入点以上述确定的发射功率发送的数据帧。
本实施例的一种实现方式中, 测量模块 1301 测量的第一干扰功率参 数包括第二接入点的无害发射功率上限, 第二接入点的无害发射功率上限 为第二接入点在不影响上述站点与上述第一接入点通信的情况下所允许 的最大发射功率;
测量模块 1301,具体用于测量上述站点对第二接入点使用满功率发送 的信号的接收能量, 根据上述接收能量与上述站点的空闲信道评估门限确 定第二接入点的无害功率下降值, 以及将第二接入点的最大发射功率与上 述无害功率下降值之差, 作为上述第二接入点的无害发射功率上限。
本实施例的另一种实现方式中, 测量模块 1301 测量的第一干扰功率 参数包括第二接入点的无害功率下降值, 上述第二接入点的无害功率下降 值用于指示第二接入点的最大发射功率在不影响上述站点与上述第一接 入点的通信的情况下所需下降的数值;
测量模块 1301,具体用于测量站点对上述第二接入点使用满功率发送
的信号的接收能量, 并根据上述接收能量与上述站点的空闲信道评估门限 确定第二接入点的无害功率下降值。
上述实施例中, 测量模块 1301 测量第一干扰功率参数之后, 发送模 块 1302将上述第一干扰功率参数反馈给该站点的第一接入点, 以便当第 一接入点确定该第一接入点工作的信道当前被第二接入点占用时, 该第一 接入点根据上述第一干扰功率参数、 该第二接入点发送的第二干扰功率参 数和当前占用上述信道的第二接入点的发射功率, 确定上述站点为上述第 一接入点的待调度站点和上述第一接入点对该站点的发射功率。 然后, 接 收模块 1303 接收到第一接入点以上述确定的发射功率发送的调度指示信 令之后, 如果上述站点的网络分配向量未被置起, 则确定模块 1304确定 该站点可被调度, 发送模块 1302 向第一接入点发送调度指示响应信令, 最后, 接收模块 1303 接收第一接入点以上述确定的发射功率中与上述可 被调度站点对应的发射功率发送的数据帧。从而可以实现多个处于相互影 响区域中的接入点同时进行下行发送, 提高网络频谱资源的利用, 并且本 实施例通过空口的调度指示信令和调度指示响应信令携带上述确定的发 射功率, 无需额外的信令开销, 同时保证了功率控制的实时性。 另外, 本 实施例是基于接入点的自主分布式行为, 无需中央调度器。
图 14为本发明第一接入点一个实施例的结构示意图, 本实施例中的 第一接入点可以实现本发明图 1所示实施例的流程, 如图 14所示, 该第 —接入点可以包括: 发射机 1401、 接收机 1402、 存储器 1403以及分别与 发射机 1401、 接收机 1402和存储器 1403连接的处理器 1404; 当然, 上 述第一接入点还可以包括天线和输入输出装置等通用部件, 本发明实施例 在此不做任何限制。
其中, 接收机 1402, 用于接收该第一接入点的关联站点反馈的第一干 扰功率参数; 以及接收第二接入点发送的第二干扰功率参数, 该第二干扰 功率参数是第二接入点的关联站点反馈给上述第二接入点的; 其中, 上述 第一接入点与上述第二接入点的覆盖区域有重叠; 第一干扰功率参数用于 指示第二接入点在不影响第一接入点与该第一接入点的关联站点通信的 情况下的发射功率或发射功率下降值; 第二干扰功率参数用于指示第一接 入点在不影响第二接入点与上述第二接入点的关联站点通信的情况下的
发射功率或发射功率下降值;
存储器 1403, 用于存储一组程序代码;
处理器 1404, 用于调用存储器 1403中存储的程序代码, 确定上述第 一接入点工作的信道当前被第二接入点占用, 以及根据第一干扰功率参 数、 第二干扰功率参数和当前占用上述信道的第二接入点的发射功率, 确 定该第一接入点的待调度站点和该第一接入点对上述待调度站点的发射 功率;
发射机 1401, 用于以处理器 1404确定的发射功率向待调度站点发送 调度指示信令; 以及在接收机 1402接收上述待调度站点中的可被调度站 点发送的调度指示响应信令之后, 以处理器 1404确定的发射功率中与可 被调度站点对应的发射功率向可被调度站点发送数据帧;
接收机 1402, 还用于在发射机 1401发送调度指示信令之后, 接收待 调度站点中的可被调度站点发送的调度指示响应信令; 上述调度指示信令 和上述调度指示响应信令中均携带确定模块 1203确定的发射功率。
其中, 处理器 1404用于确定上述第一接入点工作的信道当前被第二 接入点占用可以为: 处理器 1404, 具体用于当通过监听上述第一接入点工 作的信道接收到调度指示信令, 并且确定接收到的调度指示信令中携带的 发送地址为第二接入点的地址时, 确定上述信道当前被第二接入点占用; 或者, 当通过监听上述第一接入点工作的信道接收到调度指示响应信令, 并且确定接收到的调度指示响应信令中携带的接收地址为上述第二接入 点的地址时, 确定上述信道当前被第二接入点占用。
本实施例的一种实现方式中, 接收机 1402接收的第一干扰功率参数 包括第二接入点的无害发射功率上限, 上述第二接入点的无害发射功率上 限为上述第二接入点在不影响上述第一接入点与该第一接入点的关联站 点通信的情况下所允许的最大发射功率; 接收机 1402接收的第二干扰功 率参数包括该第一接入点的无害发射功率上限, 上述第一接入点的无害发 射功率上限为上述第一接入点在不影响第二接入点与该第二接入点的关 联站点通信的情况下所允许的最大发射功率。
本实现方式中, 第二接入点为当前占用上述第一接入点工作的信道的 第二接入点; 上述第二接入点的关联站点为当前占用上述信道的第二接入
点的关联站点中与当前占用上述信道的第二接入点正在进行通信的站点。 这时, 处理器 1404用于根据第一干扰功率参数、 第二干扰功率参数 和当前占用上述信道的第二接入点的发射功率, 确定该第一接入点的待调 度站点和上述第一接入点对待调度站点的发射功率可以为: 处理器 1404, 具体用于从上述第一接入点的关联站点中选择待调度站点, 其中, 上述待 调度站点所需的发射功率小于第二干扰功率参数, 并且上述第二接入点的 发射功率小于第三干扰功率参数; 上述第三干扰功率参数为第一干扰功率 参数中的至少一个, 用于指示第二接入点在不影响第一接入点与上述待调 度站点通信的情况下的发射功率; 以及确定上述第一接入点对待调度站点 的发射功率为待调度站点所需的发射功率。 其中, 当前占用上述信道的第 二接入点的个数可以为至少一个, 同样与当前占用上述信道的第二接入点 正在进行通信的站点的个数也可以为至少一个。
本实施例的另一种实现方式中, 接收机 1402接收的第一干扰功率参 数包括第二接入点的无害功率下降值, 上述第二接入点的无害功率下降值 用于指示第二接入点的最大发射功率在不影响上述第一接入点与上述第 一接入点的关联站点的通信的情况下所需下降的数值; 接收机 1402接收 的第二干扰功率参数包括上述第一接入点的无害功率下降值, 上述第一接 入点的无害功率下降值用于指示上述第一接入点的最大发射功率在不影 响上述第二接入点与上述第二接入点的关联站点的通信的情况下所需下 降的数值; 上述第二接入点的关联站点为当前占用上述信道的第二接入点 的关联站点中与当前占用上述信道的第二接入点正在进行通信的站点。
这时, 处理器 1404用于根据第一干扰功率参数、 第二干扰功率参数 和当前占用上述信道的第二接入点的发射功率, 确定第一接入点的待调度 站点和该第一接入点对上述待调度站点的发射功率可以为: 处理器 1404, 具体用于将第二接入点的最大发射功率与第一干扰功率参数之差, 作为第 二接入点的无害发射功率上限, 以及将该第一接入点的最大发射功率与第 二干扰功率参数之差, 作为上述第一接入点的无害发射功率上限; 以及从 上述第一接入点的关联站点中选择待调度站点, 其中, 上述待调度站点所 需的发射功率小于第一接入点对第二接入点的关联站点的无害发射功率 上限, 并且第二接入点的发射功率小于上述第二接入点对待调度站点的无
害发射功率上限; 以及确定上述第一接入点对待调度站点的发射功率为该 待调度站点所需的发射功率。 其中, 当前占用上述信道的第二接入点的个 数可以为至少一个, 同样与当前占用上述信道的第二接入点正在进行通信 的站点的个数也可以为至少一个。
本实施例中, 发射机 1401 用于向待调度站点发送调度指示信令可以 为: 发射机 1401, 具体用于当待调度站点包括至少两个站点时, 依次向至 少两个站点中的每个站点发送调度指示信令, 或者同时向至少两个站点发 送调度指示信令。
本实施例中, 上述调度指示信令和调度指示响应信令的帧结构可以包 括帧控制字段、 接收地址字段、 发送地址字段和发射功率字段中的至少一 个; 其中, 上述帧控制字段的不同取值标识具有上述帧结构的帧为调度指 示信令或调度指示响应信令; 上述发射功率字段的值为上述确定的发射功 -。
上述实施例中, 接收机 1402接收该第一接入点的关联站点反馈的第 一干扰功率参数, 以及接收第二接入点发送的第二干扰功率参数; 如果处 理器 1404确定该第一接入点工作的信道当前被第二接入点占用, 则根据 第一干扰功率参数、第二干扰功率参数和当前占用上述信道的第二接入点 的发射功率, 确定第一接入点的待调度站点和上述第一接入点对待调度站 点的发射功率; 最后, 发射机 1401以处理器 1404确定的发射功率向待调 度站点发送调度指示信令, 接收机 1402接收上述待调度站点中的可被调 度站点发送的调度指示响应信令; 接收到调度指示响应信令之后, 发射机 1401 以上述确定的发射功率中与可被调度站点对应的发射功率向可被调 度站点发送数据帧。从而可以实现多个处于相互影响区域中的接入点同时 进行下行发送, 提高网络频谱资源的利用, 并且本实施例通过空口的调度 指示信令和调度指示响应信令携带上述确定的发射功率, 无需额外的信令 开销, 同时保证了功率控制的实时性。 另外, 本实施例是基于接入点的自 主分布式行为, 无需中央调度器。
图 15 为本发明站点一个实施例的结构示意图, 本实施例中的站点可 以实现本发明图 2所示实施例的流程, 如图 15所示, 该站点可以包括: 发射机 1501、 接收机 1502、 存储器 1503以及分别与发射机 1501、 接收机
1502和存储器 1503连接的处理器 1504; 当然, 上述站点还可以包括天线 和输入输出装置等通用部件, 本发明实施例在此不做任何限制。
其中, 存储器 1503, 用于存储一组程序代码;
处理器 1504, 用于调用存储器 1503存储的程序代码, 测量第一干扰 功率参数; 上述第一干扰功率参数用于指示第二接入点在不影响第一接入 点与上述站点通信的情况下的发射功率或发射功率下降值; 第一接入点为 上述站点的关联接入点, 第一接入点与第二接入点的覆盖区域有重叠; 发射机 1501, 用于将处理器 1504测量的第一干扰功率参数反馈给第 一接入点, 以便当上述第一接入点确定该第一接入点工作的信道当前被第 二接入点占用时, 该第一接入点根据第一干扰功率参数、 上述第二接入点 发送的第二干扰功率参数和当前占用上述信道的第二接入点的发射功率, 确定上述站点为上述第一接入点的待调度站点和上述第一接入点对上述 站点的发射功率; 上述第二干扰功率参数用于指示第一接入点在不影响第 二接入点与上述第二接入点的关联站点通信的情况下的发射功率或发射 功率下降值;
接收机 1502,用于接收上述第一接入点以上述确定的发射功率发送的 调度指示信令;
处理器 1504, 还用于在接收机 1502接收上述调度指示信令之后, 确 定上述站点可被第一接入点调度;
发射机 1501, 还用于在处理器 1504确定上述站点可被第一接入点调 度之后, 向第一接入点发送调度指示响应信令; 上述调度指示信令和上述 调度指示响应信令中均携带上述确定的发射功率;
接收机 1502, 还用于在发射机 1501发送调度指示响应信令之后, 接 收第一接入点以上述确定的发射功率发送的数据帧。
本实施例的一种实现方式中, 处理器 1504测量的第一干扰功率参数 包括第二接入点的无害发射功率上限, 上述第二接入点的无害发射功率上 限为第二接入点在不影响上述站点与上述第一接入点通信的情况下所允 许的最大发射功率;
处理器 1504,具体用于测量上述站点对第二接入点使用满功率发送的 信号的接收能量, 根据上述接收能量与上述站点的空闲信道评估门限确定
第二接入点的无害功率下降值, 以及将第二接入点的最大发射功率与上述 无害功率下降值之差, 作为第二接入点的无害发射功率上限。
本实施例的另一种实现方式中, 处理器 1504测量的第一干扰功率参 数包括所述第二接入点的无害功率下降值, 上述第二接入点的无害功率下 降值用于指示第二接入点的最大发射功率在不影响上述站点与上述第一 接入点的通信的情况下所需下降的数值;
处理器 1504,具体用于测量站点对上述第二接入点使用满功率发送的 信号的接收能量, 并根据上述接收能量与上述站点的空闲信道评估门限确 定第二接入点的无害功率下降值。
上述实施例中,处理器 1504测量第一干扰功率参数之后,发射机 1501 将上述第一干扰功率参数反馈给第一接入点, 以便当第一接入点确定该第 一接入点工作的信道当前被第二接入点占用时, 该第一接入点根据上述第 一干扰功率参数、 该第二接入点发送的第二干扰功率参数和当前占用上述 信道的第二接入点的发射功率, 确定上述站点为上述第一接入点的待调度 站点和上述第一接入点对该站点的发射功率。 然后, 接收机 1502接收到 第一接入点以上述确定的发射功率发送的调度指示信令之后, 如果处理器 1504确定该站点可被调度, 发射机 1501 向第一接入点发送调度指示响应 信令, 最后, 接收机 1502接收第一接入点以上述确定的发射功率发送的 数据帧。 从而可以实现多个处于相互影响区域中的接入点同时进行下行发 送, 提高网络频谱资源的利用, 并且本实施例通过空口的调度指示信令和 调度指示响应信令携带上述确定的发射功率, 无需额外的信令开销, 同时 保证了功率控制的实时性。 另外, 本实施例是基于接入点的自主分布式行 为, 无需中央调度器。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中 的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例 描述进行分布于实施例的装置中, 也可以进行相应变化位于不同于本实施 例的一个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以 进一歩拆分成多个子模块。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非
对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范
Claims
1、 一种数据帧的发送方法, 其特征在于, 包括:
第一接入点接收所述第一接入点的关联站点反馈的第一干扰功率参 数; 所述第一接入点与所述第二接入点的覆盖区域有重叠; 所述第一干扰 功率参数用于指示所述第二接入点在不影响所述第一接入点与所述第一 接入点的关联站点通信的情况下的发射功率或发射功率下降值;
所述第一接入点接收所述第二接入点发送的第二干扰功率参数, 所述 第二干扰功率参数是所述第二接入点的关联站点反馈给所述第二接入点 的; 所述第二干扰功率参数用于指示所述第一接入点在不影响所述第二接 入点与所述第二接入点的关联站点通信的情况下的发射功率或发射功率 下降值;
如果所述第一接入点确定所述第一接入点工作的信道当前被所述第 二接入点占用, 则所述第一接入点根据所述第一干扰功率参数、 所述第二 干扰功率参数和当前占用所述信道的第二接入点的发射功率, 确定所述第 一接入点的待调度站点和所述第一接入点对所述待调度站点的发射功率; 所述第一接入点以确定的发射功率向所述待调度站点发送调度指示 信令, 并接收所述待调度站点中的可被调度站点发送的调度指示响应信 所述第一接入点以所述确定的发射功率中与所述可被调度站点对应 的发射功率向所述可被调度站点发送数据帧。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述第一干扰功率参 数包括所述第二接入点的无害发射功率上限, 所述第二接入点的无害发射 功率上限为所述第二接入点在不影响所述第一接入点与所述第一接入点 的关联站点通信的情况下所允许的最大发射功率;
所述第二干扰功率参数包括所述第一接入点的无害发射功率上限, 所 述第一接入点的无害发射功率上限为所述第一接入点在不影响所述第二 接入点与所述第二接入点的关联站点通信的情况下所允许的最大发射功 -。
3、 根据权利要求 1 所述的方法, 其特征在于, 所述第一接入点确定 所述第一接入点工作的信道当前被所述第二接入点占用包括:
如果所述第一接入点通过监听所述第一接入点工作的信道接收到调 度指示信令, 并且所述第一接入点确定接收到的调度指示信令中携带的发 送地址为所述第二接入点的地址, 则所述第一接入点确定所述信道当前被 所述第二接入点占用; 或者, 如果所述第一接入点通过监听所述第一接入 点工作的信道接收到调度指示响应信令, 并且所述第一接入点确定接收到 的调度指示响应信令中携带的接收地址为所述第二接入点的地址, 则所述 第一接入点确定所述信道当前被所述第二接入点占用。
4、 根据权利要求 1-3任意一项所述的方法, 其特征在于, 所述第二接 入点为当前占用所述第一接入点工作的信道的第二接入点; 所述第二接入 点的关联站点为当前占用所述信道的第二接入点的关联站点中与当前占 用所述信道的第二接入点正在进行通信的站点;
所述第一接入点根据所述第一干扰功率参数、 所述第二干扰功率参数 和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的待 调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述第一接入点从所述第一接入点的关联站点中选择所述待调度站 点, 其中, 所述待调度站点所需的发射功率小于所述第二干扰功率参数, 并且所述第二接入点的发射功率小于第三干扰功率参数; 所述第三干扰功 率参数为所述第一干扰功率参数中的至少一个, 用于指示所述第二接入点 在不影响所述第一接入点与所述待调度站点通信的情况下的发射功率; 所述第一接入点确定所述第一接入点对所述待调度站点的发射功率 为所述待调度站点所需的发射功率。
5、 根据权利要求 1或 3所述的方法, 其特征在于, 所述第一干扰功 率参数包括所述第二接入点的无害功率下降值, 所述第二接入点的无害功 率下降值用于指示所述第二接入点的最大发射功率在不影响所述第一接 入点与所述第一接入点的关联站点的通信的情况下所需下降的数值; 所述 第二干扰功率参数包括所述第一接入点的无害功率下降值, 所述第一接入 点的无害功率下降值用于指示所述第一接入点的最大发射功率在不影响 所述第二接入点与所述第二接入点的关联站点的通信的情况下所需下降 的数值;
所述第二接入点为当前占用所述第一接入点工作的信道的第二接入
点; 所述第二接入点的关联站点为当前占用所述信道的第二接入点的关联 站点中与当前占用所述信道的第二接入点正在进行通信的站点;
所述第一接入点根据所述第一干扰功率参数、 所述第二干扰功率参数 和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的待 调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述第一接入点将所述第二接入点的最大发射功率与所述第一干扰 功率参数之差, 作为所述第二接入点的无害发射功率上限, 以及将所述第 一接入点的最大发射功率与所述第二干扰功率参数之差, 作为所述第一接 入点的无害发射功率上限; 所述第二接入点的无害发射功率上限为所述第 二接入点在不影响所述第一接入点与所述第一接入点的关联站点通信的 情况下所允许的最大发射功率; 所述第一接入点的无害发射功率上限为所 述第一接入点在不影响所述第二接入点与所述第二接入点的关联站点通 信的情况下所允许的最大发射功率;
所述第一接入点从所述第一接入点的关联站点中选择所述待调度站 点, 其中, 所述待调度站点所需的发射功率小于所述第一接入点对所述第 二接入点的关联站点的无害发射功率上限, 并且所述第二接入点的发射功 率小于所述第二接入点对所述待调度站点的无害发射功率上限;
所述第一接入点确定所述第一接入点对所述待调度站点的发射功率 为所述待调度站点所需的发射功率。
6、 根据权利要求 1-3任意一项所述的方法, 其特征在于, 所述向所述 待调度站点发送调度指示信令包括:
当所述待调度站点包括至少两个站点时, 所述第一接入点依次向所述 至少两个站点中的每个站点发送调度指示信令, 或者所述第一接入点同时 向所述至少两个站点发送调度指示信令。
7、 根据权利要求 1-3任意一项所述的方法, 其特征在于, 所述调度指 示信令和所述调度指示响应信令的帧结构包括帧控制字段、 接收地址字 段、 发送地址字段和发射功率字段中的至少一个;
其中, 所述帧控制字段的不同取值标识具有所述帧结构的帧为调度指 示信令或调度指示响应信令; 所述发射功率字段的值为所述确定的发射功 率。
8、 一种数据帧的接收方法, 其特征在于, 包括:
站点测量第一干扰功率参数; 所述第一干扰功率参数用于指示第二接 入点在不影响第一接入点与所述站点通信的情况下的发射功率或发射功 率下降值; 所述第一接入点为所述站点的关联接入点, 所述第一接入点与 所述第二接入点的覆盖区域有重叠;
所述站点将所述第一干扰功率参数反馈给所述第一接入点, 以便当所 述第一接入点确定所述第一接入点工作的信道当前被所述第二接入点占 用时, 所述第一接入点根据所述第一干扰功率参数、 所述第二接入点发送 的第二干扰功率参数和当前占用所述信道的第二接入点的发射功率, 确定 所述站点为所述第一接入点的待调度站点和所述第一接入点对所述站点 的发射功率; 所述第二干扰功率参数用于指示所述第一接入点在不影响所 述第二接入点与所述第二接入点的关联站点通信的情况下的发射功率或 发射功率下降值;
所述站点接收到所述第一接入点以确定的发射功率发送的调度指示 信令之后, 如果所述站点确定所述站点可被所述第一接入点调度, 则向所 述第一接入点发送调度指示响应信令;
所述站点接收所述第一接入点以所述确定的发射功率发送的数据帧。
9、 根据权利要求 8所述的方法, 其特征在于, 所述第一干扰功率参 数包括所述第二接入点的无害发射功率上限, 所述第二接入点的无害发射 功率上限为所述第二接入点在不影响所述站点与所述第一接入点通信的 情况下所允许的最大发射功率。
10、 根据权利要求 9所述的方法, 其特征在于, 所述站点测量第一干 扰功率参数包括:
所述站点测量所述站点对所述第二接入点使用满功率发送的信号的 接收能量;
所述站点根据所述接收能量与所述站点的空闲信道评估门限确定所 述第二接入点的无害功率下降值; 所述第二接入点的无害功率下降值用于 指示所述第二接入点的最大发射功率在不影响所述站点与所述第一接入 点的通信的情况下所需下降的数值;
所述站点将所述第二接入点的最大发射功率与所述无害功率下降值
之差, 作为所述第二接入点的无害发射功率上限。
1 1、 根据权利要求 8所述的方法, 其特征在于, 所述第一干扰功率参 数包括所述第二接入点的无害功率下降值, 所述第二接入点的无害功率下 降值用于指示所述第二接入点的最大发射功率在不影响所述站点与所述 第一接入点的通信的情况下所需下降的数值。
12、 根据权利要求 1 1 所述的方法, 其特征在于, 所述站点测量第二 接入点对所述站点的第一干扰功率参数包括:
所述站点测量所述站点对所述第二接入点使用满功率发送的信号的 接收能量;
所述站点根据所述接收能量与所述站点的空闲信道评估门限确定所 述第二接入点的无害功率下降值。
13、 一种数据帧的发送装置, 其特征在于, 所述数据帧的发送装置设 置在第一接入点中, 所述数据帧的发送装置包括:
接收模块, 用于接收所述第一接入点的关联站点反馈的第一干扰功率 参数; 以及接收所述第二接入点发送的第二干扰功率参数, 所述第二干扰 功率参数是所述第二接入点的关联站点反馈给所述第二接入点的; 所述第 一接入点与所述第二接入点的覆盖区域有重叠; 所述第一干扰功率参数用 于指示所述第二接入点在不影响所述第一接入点与所述第一接入点的关 联站点通信的情况下的发射功率或发射功率下降值; 所述第二干扰功率参 数用于指示所述第一接入点在不影响所述第二接入点与所述第二接入点 的关联站点通信的情况下的发射功率或发射功率下降值;
确定模块, 用于确定所述第一接入点工作的信道当前被所述第二接入 点占用, 以及根据所述第一干扰功率参数、 所述第二干扰功率参数和当前 占用所述信道的第二接入点的发射功率, 确定所述第一接入点的待调度站 点和所述第一接入点对所述待调度站点的发射功率;
发送模块, 用于以所述确定模块确定的发射功率向所述待调度站点发 送调度指示信令; 以及在所述接收模块接收所述待调度站点中的可被调度 站点发送的调度指示响应信令之后, 以所述确定模块确定的发射功率中与 所述可被调度站点对应的发射功率向所述可被调度站点发送数据帧; 所述接收模块, 还用于在所述发送模块发送调度指示信令之后, 接收
所述待调度站点中的可被调度站点发送的调度指示响应信令。
14、 根据权利要求 13 所述的装置, 其特征在于, 所述接收模块接收 的第一干扰功率参数包括所述第二接入点的无害发射功率上限, 所述第二 接入点的无害发射功率上限为所述第二接入点在不影响所述第一接入点 与所述第一接入点的关联站点通信的情况下所允许的最大发射功率;
所述接收模块接收的第二干扰功率参数包括所述第一接入点的无害 发射功率上限, 所述第一接入点的无害发射功率上限为所述第一接入点在 不影响所述第二接入点与所述第二接入点的关联站点通信的情况下所允 许的最大发射功率。
15、 根据权利要求 13 所述的装置, 其特征在于, 所述确定模块用于 确定所述第一接入点工作的信道当前被所述第二接入点占用包括:
所述确定模块, 具体用于当通过监听所述第一接入点工作的信道接收 到调度指示信令, 并且确定接收到的调度指示信令中携带的发送地址为所 述第二接入点的地址时,确定所述信道当前被所述第二接入点占用;或者, 当通过监听所述第一接入点工作的信道接收到调度指示响应信令, 并且确 定接收到的调度指示响应信令中携带的接收地址为所述第二接入点的地 址时, 确定所述信道当前被所述第二接入点占用。
16、 根据权利要求 13- 15任意一项所述的装置, 其特征在于, 所述第 二接入点为当前占用所述信道的第二接入点; 所述第二接入点的关联站点 为当前占用所述信道的第二接入点的关联站点中与当前占用所述信道的 第二接入点正在进行通信的站点;
所述确定模块用于根据所述第一干扰功率参数、 所述第二干扰功率参 数和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的 待调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述确定模块, 具体用于从所述第一接入点的关联站点中选择所述待 调度站点, 其中, 所述待调度站点所需的发射功率小于所述第二干扰功率 参数, 并且所述第二接入点的发射功率小于第三干扰功率参数; 以及确定 所述第一接入点对所述待调度站点的发射功率为所述待调度站点所需的 发射功率; 所述第三干扰功率参数为所述第一干扰功率参数中的至少一 个, 用于指示所述第二接入点在不影响所述第一接入点与所述待调度站点
通信的情况下的发射功率。
17、 根据权利要求 13或 15所述的装置, 其特征在于, 所述接收模块 接收的第一干扰功率参数包括所述第二接入点的无害功率下降值, 所述第 二接入点的无害功率下降值用于指示所述第二接入点的最大发射功率在 不影响所述第一接入点与所述第一接入点的关联站点的通信的情况下所 需下降的数值; 所述接收模块接收的第二干扰功率参数包括所述第一接入 点的无害功率下降值, 所述第一接入点的无害功率下降值用于指示所述第 一接入点的最大发射功率在不影响所述第二接入点与所述第二接入点的 关联站点的通信的情况下所需下降的数值; 所述第二接入点为当前占用所 述第一接入点工作的信道的第二接入点; 所述第二接入点的关联站点为当 前占用所述信道的第二接入点的关联站点中与当前占用所述信道的第二 接入点正在进行通信的站点;
所述确定模块用于根据所述第一干扰功率参数、 所述第二干扰功率参 数和当前占用所述信道的第二接入点的发射功率, 确定所述第一接入点的 待调度站点和所述第一接入点对所述待调度站点的发射功率包括:
所述确定模块, 具体用于将所述第二接入点的最大发射功率与所述第 一干扰功率参数之差, 作为所述第二接入点的无害发射功率上限, 以及将 所述第一接入点的最大发射功率与所述第二干扰功率参数之差, 作为所述 第一接入点的无害发射功率上限; 以及从所述第一接入点的关联站点中选 择所述待调度站点, 其中, 所述待调度站点所需的发射功率小于所述第一 接入点对所述第二接入点的关联站点的无害发射功率上限, 并且所述第二 接入点的发射功率小于所述第二接入点对所述待调度站点的无害发射功 率上限; 以及确定所述第一接入点对所述待调度站点的发射功率为所述待 调度站点所需的发射功率。
18、 根据权利要求 13- 15任意一项所述的装置, 其特征在于, 所述发 送模块用于向所述待调度站点发送调度指示信令包括:
所述发送模块, 具体用于当所述待调度站点包括至少两个站点时, 依 次向所述至少两个站点中的每个站点发送调度指示信令, 或者同时向所述 至少两个站点发送调度指示信令。
19、 一种数据帧的接收装置, 其特征在于, 所述数据帧的接收装置设
置在站点中, 所述数据帧的接收装置包括:
测量模块, 用于测量第一干扰功率参数; 所述第一干扰功率参数用于 指示第二接入点在不影响第一接入点与所述站点通信的情况下的发射功 率或发射功率下降值; 所述第一接入点为所述站点的关联接入点, 所述第 一接入点与所述第二接入点的覆盖区域有重叠;
发送模块, 用于将所述测量模块测量的第一干扰功率参数反馈给所述 第一接入点, 以便当所述第一接入点确定所述第一接入点工作的信道当前 被所述第二接入点占用时, 所述第一接入点根据所述第一干扰功率参数、 所述第二接入点发送的第二干扰功率参数和当前占用所述信道的第二接 入点的发射功率, 确定所述站点为所述第一接入点的待调度站点和所述第 一接入点对所述站点的发射功率; 所述第二干扰功率参数用于指示所述第 一接入点在不影响所述第二接入点与所述第二接入点的关联站点通信的 情况下的发射功率或发射功率下降值;
接收模块, 用于接收所述第一接入点以所述确定的发射功率发送的调 度指示信令;
确定模块, 用于在所述接收模块接收到所述调度指示信令之后, 确定 所述站点可被所述第一接入点调度;
所述发送模块, 还用于在所述确定模块确定所述站点可被所述第一接 入点调度之后, 向所述第一接入点发送调度指示响应信令;
所述接收模块, 还用于在所述发送模块发送调度指示响应信令之后, 接收所述第一接入点以所述确定的发射功率发送的数据帧。
20、 根据权利要求 19所述的装置, 其特征在于, 所述测量模块测量 的第一干扰功率参数包括所述第二接入点的无害发射功率上限, 所述第二 接入点的无害发射功率上限为所述第二接入点在不影响所述站点与所述 第一接入点通信的情况下所允许的最大发射功率。
21、 根据权利要求 20所述的装置, 其特征在于,
所述测量模块, 具体用于测量所述站点对所述第二接入点使用满功率 发送的信号的接收能量, 根据所述接收能量与所述站点的空闲信道评估门 限确定所述第二接入点的无害功率下降值, 以及将所述第二接入点的最大 发射功率与所述无害功率下降值之差, 作为所述第二接入点的无害发射功
率上限。
22、 根据权利要求 19所述的装置, 其特征在于, 所述测量模块测量 的第一干扰功率参数包括所述第二接入点的无害功率下降值, 所述第二接 入点的无害功率下降值用于指示所述第二接入点的最大发射功率在不影 响所述站点与所述第一接入点的通信的情况下所需下降的数值。
23、 根据权利要求 22所述的装置, 其特征在于,
所述测量模块, 具体用于测量所述站点对所述第二接入点使用满功率 发送的信号的接收能量, 并根据所述接收能量与所述站点的空闲信道评估 门限确定所述第二接入点的无害功率下降值。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/080539 WO2015013923A1 (zh) | 2013-07-31 | 2013-07-31 | 数据帧的发送、接收方法和装置 |
EP13890676.3A EP3007493B1 (en) | 2013-07-31 | 2013-07-31 | Method and device for sending and receiving data frame |
CN201380078047.3A CN105532044B (zh) | 2013-07-31 | 2013-07-31 | 数据帧的发送、接收方法和装置 |
US15/011,011 US9807698B2 (en) | 2013-07-31 | 2016-01-29 | Data frame sending method and apparatus, and data frame receiving method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2013/080539 WO2015013923A1 (zh) | 2013-07-31 | 2013-07-31 | 数据帧的发送、接收方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/011,011 Continuation US9807698B2 (en) | 2013-07-31 | 2016-01-29 | Data frame sending method and apparatus, and data frame receiving method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015013923A1 true WO2015013923A1 (zh) | 2015-02-05 |
Family
ID=52430861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/080539 WO2015013923A1 (zh) | 2013-07-31 | 2013-07-31 | 数据帧的发送、接收方法和装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9807698B2 (zh) |
EP (1) | EP3007493B1 (zh) |
CN (1) | CN105532044B (zh) |
WO (1) | WO2015013923A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107251470A (zh) * | 2015-03-04 | 2017-10-13 | 英特尔Ip公司 | 用于无线网络中的正交频分多址的感测和延迟 |
CN107969170A (zh) * | 2016-01-11 | 2018-04-27 | 华为技术有限公司 | 无线通信的方法、装置和系统 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8750269B2 (en) * | 2009-10-23 | 2014-06-10 | Electronics And Telecommunications Research Institute | Method and apparatus for controlling transmission power in WLAN system |
US10172019B2 (en) * | 2013-09-11 | 2019-01-01 | Lg Electronics Inc. | Method and device for transmitting data in wireless LAN |
EP3107340B1 (en) * | 2014-02-10 | 2019-06-05 | LG Electronics Inc. | Method and apparatus for transmitting frame in wireless local area network |
US9769746B2 (en) * | 2014-06-10 | 2017-09-19 | Newracom, Inc. | Operation method of station in wireless local area network |
KR102297167B1 (ko) * | 2015-03-18 | 2021-09-01 | 에스케이플래닛 주식회사 | 위치 측정이 이루어지는 단말 및 그 동작 방법 |
EP3402257A4 (en) | 2016-01-07 | 2018-11-21 | Panasonic Intellectual Property Management Co., Ltd. | Communication device and communication method |
CN110139353A (zh) * | 2018-02-08 | 2019-08-16 | 华为技术有限公司 | 一种多接入点ap协调传输的方法以及相关装置 |
US10736051B2 (en) * | 2018-09-17 | 2020-08-04 | Charter Communications Operating, Llc | Variable power control in a wireless network |
JP7299030B2 (ja) * | 2019-01-30 | 2023-06-27 | 株式会社国際電気通信基礎技術研究所 | 無線基地局および無線通信方法 |
CN112822766A (zh) * | 2020-12-31 | 2021-05-18 | 乐鑫信息科技(上海)股份有限公司 | 一种发送应答帧的方法、装置、站点及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101741420A (zh) * | 2008-11-12 | 2010-06-16 | 华为技术有限公司 | 信道估计方法、装置及系统 |
CN101803429A (zh) * | 2007-09-21 | 2010-08-11 | 高通股份有限公司 | 使用功率控制的干扰管理 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7489943B2 (en) * | 2004-12-29 | 2009-02-10 | Alcatel-Lucent Usa Inc. | Scheduling calls in downlink transmissions |
US20060252449A1 (en) * | 2005-04-26 | 2006-11-09 | Sridhar Ramesh | Methods and apparatus to provide adaptive power save delivery modes in wireless local area networks (LANs) |
CN101018082B (zh) | 2007-03-12 | 2010-05-26 | 杭州华三通信技术有限公司 | 接入点的功率控制方法及设备 |
US8824979B2 (en) * | 2007-09-21 | 2014-09-02 | Qualcomm Incorporated | Interference management employing fractional frequency reuse |
WO2009039477A1 (en) | 2007-09-21 | 2009-03-26 | Parker-Hannifin Corporation | Compact static mixer and related mixing method |
US9801188B2 (en) * | 2008-02-01 | 2017-10-24 | Qualcomm Incorporated | Backhaul signaling for interference avoidance |
EP2945451B1 (en) * | 2008-04-04 | 2016-06-08 | Telefonaktiebolaget LM Ericsson (publ) | Interference reduction in a communication network by scheduling and link adaptation |
CN101841903A (zh) * | 2009-03-20 | 2010-09-22 | 松下电器产业株式会社 | 无线通信系统中减小基站间干扰的装置和方法 |
US8750269B2 (en) | 2009-10-23 | 2014-06-10 | Electronics And Telecommunications Research Institute | Method and apparatus for controlling transmission power in WLAN system |
CN102687565B (zh) * | 2010-02-12 | 2015-06-10 | 上海贝尔股份有限公司 | 一种用于对微蜂窝基站进行功率控制的方法及其装置 |
EP2550830B1 (en) * | 2010-03-24 | 2018-02-28 | Telefonaktiebolaget LM Ericsson (publ) | Method and arrangement for controlling uplink transmit power |
JP4960489B2 (ja) * | 2010-11-12 | 2012-06-27 | 株式会社エヌ・ティ・ティ・ドコモ | 移動通信方法及び無線基地局 |
CN102833760B (zh) * | 2011-06-15 | 2015-08-12 | 电信科学技术研究院 | 异系统间频谱共享情况下的干扰抑制方法和设备 |
KR101612641B1 (ko) * | 2011-11-23 | 2016-04-26 | 엘지전자 주식회사 | 무선랜 시스템에서 서비스 구간 스케쥴링 기반 데이터 송수신 방법 및 이를 지원하는 장치 |
CN102858004B (zh) * | 2012-09-04 | 2018-03-27 | 中兴通讯股份有限公司 | 一种基站、终端及其功率控制方法 |
JP5693555B2 (ja) * | 2012-12-26 | 2015-04-01 | 京セラ株式会社 | 基地局装置および送信電力調整方法 |
CN103052164B (zh) * | 2012-12-27 | 2016-02-24 | 北京邮电大学 | 蜂窝与d2d混合网络中终端直通通信的干扰控制协调方法 |
CN104185296B (zh) * | 2013-05-20 | 2018-02-06 | 华为技术有限公司 | 信道接入方法及接入点 |
-
2013
- 2013-07-31 EP EP13890676.3A patent/EP3007493B1/en active Active
- 2013-07-31 WO PCT/CN2013/080539 patent/WO2015013923A1/zh active Application Filing
- 2013-07-31 CN CN201380078047.3A patent/CN105532044B/zh active Active
-
2016
- 2016-01-29 US US15/011,011 patent/US9807698B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101803429A (zh) * | 2007-09-21 | 2010-08-11 | 高通股份有限公司 | 使用功率控制的干扰管理 |
CN101741420A (zh) * | 2008-11-12 | 2010-06-16 | 华为技术有限公司 | 信道估计方法、装置及系统 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107251470A (zh) * | 2015-03-04 | 2017-10-13 | 英特尔Ip公司 | 用于无线网络中的正交频分多址的感测和延迟 |
CN107251470B (zh) * | 2015-03-04 | 2021-08-27 | 英特尔公司 | 用于无线网络中的正交频分多址的感测和延迟 |
CN107969170A (zh) * | 2016-01-11 | 2018-04-27 | 华为技术有限公司 | 无线通信的方法、装置和系统 |
EP3393163A4 (en) * | 2016-01-11 | 2018-10-31 | Huawei Technologies Co., Ltd. | Wireless communication method, apparatus and system |
US10798717B2 (en) | 2016-01-11 | 2020-10-06 | Huawei Technologies Co., Ltd. | Wireless communication method and apparatus |
US11452109B2 (en) | 2016-01-11 | 2022-09-20 | Huawei Technologies Co., Ltd. | Wireless communication method and apparatus |
EP4152794A1 (en) * | 2016-01-11 | 2023-03-22 | Huawei Technologies Co., Ltd. | Wireless communication methods and apparatuses |
US12028885B2 (en) | 2016-01-11 | 2024-07-02 | Huawei Technologies Co., Ltd. | Wireless communication method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN105532044B (zh) | 2019-05-28 |
CN105532044A (zh) | 2016-04-27 |
EP3007493A1 (en) | 2016-04-13 |
US20160165549A1 (en) | 2016-06-09 |
US9807698B2 (en) | 2017-10-31 |
EP3007493A4 (en) | 2016-06-22 |
EP3007493B1 (en) | 2017-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11910210B2 (en) | Methods and devices for sub-channelized transmission schemes in WLANS | |
US10841924B2 (en) | Basic bandwidth device on secondary channel | |
WO2015013923A1 (zh) | 数据帧的发送、接收方法和装置 | |
US10194468B2 (en) | Wireless channel reservation | |
US10548157B2 (en) | Unlicensed spectrum scheduling method and device, and user equipment UE | |
US10542557B2 (en) | System and method for digital communications with interference avoidance | |
EP2992724B1 (en) | Systems and methods for fractional carrier sense multiple access with collision avoidance (csma/ca) for wlans | |
US10051661B2 (en) | Method and apparatus for communicating using unlicensed bands in mobile communication system | |
JP6356253B2 (ja) | 無線lanにおけるフレームを送信する方法及び装置 | |
WO2017121301A1 (zh) | 传输数据的方法和装置 | |
CN104185188B (zh) | 干扰处理方法及设备 | |
US11013001B2 (en) | Wireless communication system | |
EP3915310B1 (en) | Cooperative inter-network channel selection | |
WO2015146340A1 (ja) | 装置及び方法 | |
KR20180033521A (ko) | 무선 통신 시스템 및 무선 통신 방법 | |
WO2016191967A1 (zh) | 一种信道接入方法及站点 | |
Kim et al. | MASTaR: MAC protocol for access points in simultaneous transmit and receive mode | |
JP2017069873A (ja) | 無線通信装置及び方法 | |
WO2024092736A1 (en) | Multi-primary channel access |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380078047.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13890676 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013890676 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013890676 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |