WO2015013852A1 - 双向流换热流体机械装置 - Google Patents

双向流换热流体机械装置 Download PDF

Info

Publication number
WO2015013852A1
WO2015013852A1 PCT/CN2013/080283 CN2013080283W WO2015013852A1 WO 2015013852 A1 WO2015013852 A1 WO 2015013852A1 CN 2013080283 W CN2013080283 W CN 2013080283W WO 2015013852 A1 WO2015013852 A1 WO 2015013852A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
axial
inner cylinder
fluid
heat exchange
Prior art date
Application number
PCT/CN2013/080283
Other languages
English (en)
French (fr)
Inventor
沈沉
臧宝华
张志平
周华
陶泽平
江俊聪
Original Assignee
Shen Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shen Chen filed Critical Shen Chen
Priority to PCT/CN2013/080283 priority Critical patent/WO2015013852A1/zh
Publication of WO2015013852A1 publication Critical patent/WO2015013852A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D11/00Heat-exchange apparatus employing moving conduits
    • F28D11/02Heat-exchange apparatus employing moving conduits the movement being rotary, e.g. performed by a drum or roller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • F28F13/125Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation by stirring

Definitions

  • the invention relates to a heat exchanger. Background technique
  • the Lossnay heat exchanger (stationary full heat exchanger) includes an outer casing and a heat exchange core disposed within the outer casing.
  • the heat exchange core body comprises a flat paper and a fin paper, wherein the fin paper and the flat paper, the vertical air flow passage, the structure can separate the sucked air and the discharged air in the respective air flow passages, Mixing occurs while ensuring efficient heat exchange and introduction of fresh air into the indoor environment.
  • the hot and cold air flows alternately through and complete the heat exchange.
  • the heat exchange core cuts the intake and exhaust gases into a number of flow paths, increasing the effective heat exchange area per unit volume, thereby allowing the gas flow to complete heat transfer over a short path.
  • paper material can only be used for building energy-saving gas heat exchange when the indoor and outdoor temperature difference is large.
  • a heat exchanger of the aforementioned type is disclosed in Chinese Patent Application No. "CN101769696A”.
  • the inventors of the present invention have proposed a hollow blade reverse heat exchange fan in the invention patent publication No. CN101929812A, which is mainly composed of a rotating shaft, a heat exchange rotor, a shaft seal, an outer casing, a gas output passage, and a filter. .
  • the heat exchange rotor is formed by a body and an axial fan blade; the body is an annular barrel structure, and is divided into a plurality of annular regions by a plurality of longitudinal partitions, and the plurality of regions are electrically connected to each other, and the plurality of hollow portions are hollow
  • the blades are respectively spaced apart in the radial direction between the inner cylinder, the plurality of longitudinal partitions, and the inner wall of the outer cylinder. Since the hollow blade passes through a plurality of annular regions of the barrel body to form a plurality of curved air flow passages, the gas in the hollow blade and the gas outside the hollow blade can perform multiple blade heat transfer and realize reverse stroke change. heat.
  • the purpose is to achieve heat transfer efficiency, however, in the course of further research by the inventors, it was found that the solution deserves further improvement. Summary of the invention It is an object of the present invention to provide a bidirectional flow heat exchange fluid machine.
  • a bidirectional flow heat exchange fluid mechanical device comprising: a heat exchange rotor, an outer casing, a first port and a second port, the heat exchange rotor comprising an inner cylinder, an outer cylinder, and an inner cylinder and an outer cylinder
  • An axial flow fan blade disposed between the bodies, the first port and the second port are connected at both axial ends of the outer casing, and the heat exchange rotor is disposed in a space defined by the outer casing, the first port and the second port
  • Each axial fan blade is composed of a set of hollow blades that can generate axial power. There is an axial gap between adjacent axial fans, and adjacent fluid flows in the hollow blade to the same axial fan blade.
  • three sets of axial fan blades are arranged between the outer cylinder body and the inner cylinder body, the outer cylinder body is sleeved outside the inner cylinder body, the cylinder wall of the outer cylinder body is a hollow structure, and the inner cylinder body is composed of an annular partition plate. Divided into two cylinder chambers that are not directly connected, the wall chamber of the cylinder wall of the outer cylinder body and the cylinder chamber of the inner cylinder body are communicated by hollow vanes, thereby forming a continuous foldback and axial direction between the outer cylinder body and the inner cylinder body.
  • a first fluid passage extending in a spiral that is, the first The body passage reaches the wall cavity of the outer cylinder through the first group of axial fan blades through the first group of axial fan blades, and reaches the second cylinder cavity of the inner cylinder through the second group of axial fan blades, and then passes through the third cylinder.
  • the set of axial fan blades reaches the fluid outlet provided by the outer cylinder until the fluid outlet provided by the outer casing; a second fluid passage is formed between the outer cylinder outer side, the outer cylinder inner side and the outer side of each fan blade; the second port setting An inlet of the second fluid passage opening the axial fan blade outwardly, the first port being disposed as an inlet of the first fluid passage to enable the first fluid to enter the first fluid passage from the first port, after passing through the first fluid passage From a first outlet to the exterior of the outer casing, and enabling the second fluid to enter the second fluid passage from the second port, and from the second outlet to the exterior of the outer casing via the second fluid passage; the rotor and the outer casing, A non-contact shaft seal is respectively used between the first port and the second port; the hollow blade has a flat shape.
  • the bidirectional flow heat exchange fluid mechanical device is further characterized in that the inner wall of the outer cylinder body is open without interruption in the axial direction.
  • the bidirectional flow heat exchange fluid mechanical device is further characterized in that the inner wall of the outer cylinder has a partition in the axial direction so as to be divided into two wall cavities, and the first fluid passage is from the inner cylinder
  • the first cylinder chamber reaches the first cavity of the outer cylinder through the first group of axial fan blades, and reaches the second cylinder of the inner cylinder through the second group of axial fan blades, and then passes through the third group of axial fans.
  • the leaf reaches the second wall of the outer cylinder and reaches the fluid outlet provided by the outer cylinder via the fluid outlet provided outside the second wall.
  • the bidirectional flow heat exchange fluid mechanical device is further characterized in that the first port has a flared axial section, the inner peripheral side is connected to the inner cylinder by a shaft seal, and the outer peripheral side is connected to the outer casing.
  • the bidirectional flow heat exchange fluid mechanical device is further characterized in that the inner cylinder is supported by the annular partition on a rotating shaft penetrating the inner cylinder.
  • the bidirectional flow heat exchange fluid mechanical device is further characterized in that the rotating shaft is an outer rotor Motivation.
  • the bidirectional flow heat exchange fluid mechanical device is further characterized in that the rotating shaft is connected to a fan at least one end of the outer space defined by the outer casing, the first port and the second port.
  • the invention also provides a heat exchange rotor of a bidirectional flow heat exchange fluid mechanical device, which is characterized in that it comprises an inner cylinder body, an outer cylinder body and axial flow fan blades arranged between the inner cylinder body and the outer cylinder body, each The axial fan blade is composed of a set of hollow blades that can generate axial power. There is an axial gap between adjacent axial fans, and adjacent fluid flows in the hollow blade to the same axial fan blade. Three sets of axial fan blades are disposed between the outer cylinder and the inner cylinder, and the outer cylinder sleeve is disposed outside the inner cylinder body, and the cylinder wall of the outer cylinder body is a hollow structure, and the inner cylinder body is separated by an annular partition plate.
  • the two-stage cylinder that is not directly connected, the wall cavity of the cylinder wall of the outer cylinder and the cylinder cavity of the inner cylinder are connected by hollow vanes, thereby forming a continuous foldback and axial spiral extension between the outer cylinder and the inner cylinder.
  • the first fluid passage that is, the first fluid passage from the first cylinder of the inner cylinder reaches the wall cavity of the outer cylinder via the first set of axial fan blades, and reaches the inner cylinder via the second set of axial fan blades
  • FIG. 1 is a schematic front cross-sectional view showing a mechanism of a bidirectional flow heat exchange fluid in an embodiment of the present invention.
  • Figure 2 is a schematic isometric view of a heat exchange rotor of a bidirectional flow heat exchange fluid mechanical device in accordance with an embodiment of the present invention.
  • Fig. 3 is a schematic view showing the assembly of the axial flow fan blade on the inner cylinder body in the embodiment of the present invention.
  • the bidirectional flow heat exchange fluid mechanical device includes a rotating shaft 3, a heat exchange rotor, an outer casing 1, a left port 5, and a right port 4.
  • the heat exchange rotor includes an inner cylinder 20, an outer cylinder 21, and a plurality of sets of axial blades 22 between the inner cylinder 20 and the outer cylinder 21.
  • the axial fan blade 22 is a set of hollow blades capable of generating axial power. 220 composition.
  • There is an axial gap between the axial fan blade 22 and the axial fan blade 22, and adjacent fluid flows in the hollow blade to the same axial fan blade are grouped together, as shown in Fig. 1, from left to right. It is divided into three groups 22a, 22b, and 22c.
  • the fluid flows radially outward, and in the blade group 22b, the fluid flows radially inward, and in the blade group 22c, the fluid flows radially outward.
  • a plurality of sets of axial fan blades are provided between the outer cylinder and the inner cylinder, and at least three sets of axial fan blades are provided.
  • the outer cylinder 21 is sleeved on the outer side of the inner cylinder 20, and the radially inner side of the hollow vane 220 of the axial fan blade 22 is connected to the inner cylinder 20 and radially outwardly connected to the outer cylinder 21.
  • the hollow vane 220 has a hollow structure (which may be a thin-walled member) having a radially inner edge provided with a radially inner opening and a radially outer edge provided with a radially outer opening.
  • the wall of the outer cylinder 21 has a hollow structure.
  • the radially inner opening of the hollow blade 220 communicates with the interior of the inner cylinder 20, and the radially outer opening of the hollow blade 220 communicates with the interior of the cylinder wall of the outer cylinder 21.
  • the inner cylinder 20 is internally provided with one or more annular partitions 201.
  • the radially inner side of the annular partition 201 is connected to the rotating shaft 3, and the radially outer side is connected to the inner side of the inner cylinder 20, thereby separating the inner cylinder 20 into no At least two segments that are directly connected.
  • the annular partition 201 serves as a partitioning function and on the other hand serves to support the entire heat exchange rotor. In another embodiment of the invention, the support of the heat exchange rotor can be achieved by separately providing a support bracket.
  • the right end of the inner cylinder 20 is closed, and it can also be closed at the right end.
  • the wall of the cylinder wall of the outer cylinder 21 by 0, 1 or more annular spacers 21 1 to be partitioned into wall chambers which are not directly connected.
  • the spacer ring 21 1 is adjacent to the fluid outlet 212, and can also be understood as the end plate of the wall chamber of the cylinder wall of the outer cylinder 21.
  • the outer casing 21 has an outer casing 1 on the outer side thereof. Between the outer casing 1, the right port 4 and the outer cylinder 21, the left port 5 and the inner cylinder 20 are sealed by a non-contact shaft seal assembly 8, and the two are relatively rotatable.
  • the shaft seal assembly can be a labyrinth shaft seal or other non-contact shaft seal assembly.
  • the left port 5 is connected to the left end of the outer casing 1, and the right port 4 is connected to the right end of the outer casing 1.
  • the entire heat exchange rotor is located in the space defined by the left port 5, the right port 4, and the outer casing 1.
  • the axial section of the left port 5 is substantially in the shape of a horn, and the circumferential inner side and the left end of the inner cylinder 20 pass through the non-contact shaft seal.
  • the connection is connected to the outer casing 1 on the circumferential outer side.
  • the right port 4 is generally annular and opens outwardly from the axial end 220 of the entire hollow blade of the heat exchange rotor.
  • the outer cylinder 21 has a fluid outlet 212 at the axially right end, and correspondingly, the outer casing 1 also provides a rectangular or circular opening 1 1 at the right end.
  • the outer casing 1 also provides a rectangular or circular opening 10 at the left end, and the opening 10 of the outer casing 1 at the left end is further to the left than the hollow blade as a whole.
  • the cavity of the inner cylinder 20 and the wall cavity of the wall of the outer cylinder 21 communicate with each other through the cavity of the hollow blade of the axial fan blade to form a first flow path which is continuously folded back and spirally forward, that is, the first flow path
  • the inlet is the left port 5
  • the outlet is the fluid outlet 212 at the right end of the outer cylinder 21, and the fluid then flows out from the opening 11 of the right end of the outer casing 1.
  • the fluid of the first flow path and the fluid of the second flow path exchange heat at the inner and outer sides of the hollow blade.
  • the rotating shaft 3 drives the entire heat exchange rotor.
  • the second fluid such as hot air generates axial power from the axial fan blades, from the right port 4 It flows in and passes through a plurality of axial fan blades 22 and then flows out from the fluid outlet 10 at the left end.
  • the rotation of the axial fan blade 22 also produces a force that causes the first fluid (e.g., cold air) of the inner cylinder to flow radially, such that fluid flows from the inner cylinder to the axial fan blade at the left end, thereby causing the fluid to continuously flow into the inner cylinder
  • the body and the outer cylinder are folded back and axially to the right, and then flow out from the fluid outlet 1 1 at the right end.
  • the blade structure of the axial fan blade 22 is a flat plate shape or a fan-shaped flat plate.
  • the aforementioned heat exchange rotor or bidirectional flow heat exchange fluid mechanical device may be suitable for air conditioning ventilation recovery heat exchange (air conditioning heating) of a residential, office building, a commercial office, a restaurant, a school, or the like, or heat exhaust heat recovery of a heat engine exhaust.
  • air conditioning ventilation recovery heat exchange air conditioning heating
  • a residential, office building, a commercial office, a restaurant, a school, or the like or heat exhaust heat recovery of a heat engine exhaust.
  • Axial fan blades 22 are made of metal to reduce thermal resistance and improve heat transfer efficiency.
  • the axial fan blade 22 rotates to generate a pressure rise, eliminating the need for an external auxiliary fan, and the hot and cold air volume is automatically balanced, and the energy efficiency ratio is higher.
  • the condensed water is recovered and the latent heat is recovered. There is no problem that the condensed water cannot be discharged well.
  • the maintenance cost is low and convenient, no paper consumables are needed, and the heat transfer is sufficient, so it can also be used.
  • In the field of gas/liquid heat exchange with small temperature difference due to the durability of metal materials, it is also suitable for heat exchange fields with large temperature difference.
  • axial flow channel reentry causes the flow resistance to be too large, and it is difficult to achieve air volume balance, which requires external fans to supplement, so the energy consumption is high and the high energy efficiency ratio cannot be provided.
  • the axial flow portion of the foregoing embodiment does not fold back and also achieves full-range reverse heat transfer, and the structure of the foregoing embodiment is simpler than before, easy to manufacture, low in cost, and higher in cost-effectiveness.
  • the airfoil section uses an airfoil, and the volume is large when stacked in a large amount.
  • the foregoing embodiment is changed to a parallel plate structure, and the volume is small, and the heat exchange efficiency per unit volume is high.
  • the rotating shaft 3 can be driven by an external motor only to support the shaft, or can be an outer rotor motor. In other embodiments of the present invention, the two ends or at least one end of the rotating shaft 3 can also be respectively connected to the fan to change the air volume. Adapt to the needs of different occasions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种双向流换热流体机械装置,其换热转子设置在外壳体(1)、第一端口和第二端口限定的空间中。在外筒体(21)和内筒体(20)之间设置有多组轴流扇叶(22)。外筒体(21)的筒壁为中空结构且分隔成一段或多段壁腔。内筒体(20)内部分隔成多段筒腔。外筒体(21)筒壁的壁腔和内筒体(20)的筒腔之间由空心叶片(220)连通,从而形成在外、内筒体(21、20)之间不断折返并轴向螺旋延伸的第一流体通道,在内筒体(20)外侧和外筒体(21)内侧之间形成第二流体通道。第一流体能自第一端口进入到第一流体通道,经由第一流体通道后通往第一出口。第二流体能自第二端口进入到第二流体通道,经由第二流体通道后通往第二出口。空心叶片(220)的外形为平板状。

Description

双向流换热流体机械装置 技术领域
本发明涉及换热器。 背景技术
Lossnay换热器 (静止型全热换热器) 包括外壳体和设置于外壳体内的换热 芯体。 换热芯体包括平板纸和翅片纸所构成, 其中, 翅片纸和平板纸, 垂直向的 气流通道, 此结构能把吸入的空气和排出的空气隔开在各自的气流通道内, 不发 生混合, 同时能保证热量的有效交换及新鲜空气引入室内环境。 冷热气流交错穿 过并完成换热。 换热芯可以将进气和排气切割成很多流道, 使得单位体积的有效 换热面积增加, 从而使气流在很短的路径上就完成换热。
但是其缺点在于:
1、 需要外接给予风量输入、 输出;
2、 热阻和流动阻力较大;
3、 需要经常更换纸质耗材;
4、 冷凝水无法很好的交换和排出;
5、 纸质材质只能用于室内外温差较大时的建筑节能气体换热。
公开号 "CN101769696A" 的中国专利申请就公布了前述类型的换热器。 为此, 本发明的发明人提出在公开号为 CN101929812A的发明专利申请中提 出空心叶片逆程换热风机, 其主要由转轴、 换热转子、 轴封、 外壳体、 气体输出 通道、 滤网构成。 所述的换热转子由本体和轴流扇叶成; 所述的本体为环形桶形 结构, 被多块纵向隔板分割成多个环形区域, 多个区域之间相互导通, 多片空心 叶片沿径向分别间隔设置在内筒、 多块纵向隔板、 外筒内壁之间。 由于空心叶片 穿过桶形本体的多个环形区域, 形成一个具有多个弯折形的气流流通通道, 空心 叶片内的气体与空心叶片外的气体可进行多次刀刃传热并实现逆程换热。 其目的 在于实现传热效率, 然而, 在本发明人的进一步研究过程中, 发现该方案值得进 一步改进。 发明内容 本发明的目的在于提供一种双向流换热流体机械。
根据本发明的双向流换热流体机械装置, 其特点是, 包括换热转子、 外壳 体、 第一端口和第二端口, 换热转子包括内筒体、 外筒体以及内筒体和外筒体之 间的沿轴向设置的轴流扇叶, 第一端口和第二端口连接在外壳体的轴向两端, 换 热转子设置在外壳体、 第一端口和第二端口限定的空间中; 各轴流扇叶由一组可 以产生轴向动力的空心叶片构成, 相邻轴流扇叶之间有轴向间隙, 相邻且空心叶 片内流体径向流向相同的轴流扇叶归为一组, 在外筒体和内筒体之间设置有三组 轴流扇叶, 外筒体套在内筒体外侧, 外筒体的筒壁为中空结构, 内筒体内部由 1个 环形隔板分隔成不直接连通的两段筒腔, 外筒体的筒壁的壁腔和内筒体的筒腔之 间由空心叶片连通, 从而形成在外筒体和内筒体之间不断折返并轴向螺旋延伸的 第一流体通道, 即该第一流体通道自内筒体的第 1筒腔经由第 1组轴流扇叶达到外 筒体的壁腔, 再经由第 2组轴流扇叶到达内筒体的第 2筒腔, 再经由第 3组轴流扇 叶到达外筒体提供的流体出口, 直到外壳体提供的流体出口; 在内筒体外侧、 外 筒体内侧以及各扇叶的外侧之间形成第二流体通道; 第二端口设置成第二流体通 道的入口, 向外敞开轴流扇叶, 第一端口设置成第一流体通道的入口, 以使第一 流体能自第一端口进入到第一流体通道, 经由第一流体通道后自通往外壳体外部 的第一出口, 且使第二流体能自第二端口进入到第二流体通道, 经由第二流体通 道后自通往外壳体外部的第二出口流出; 转子与外壳、 第一端口、 第二端口之间 分别采用非接触式轴封密封; 所述空心叶片的外形为平板状。
所述的双向流换热流体机械装置, 其进一步的特点是, 外筒体的筒壁内部在 轴向上无隔断而直通。
所述的双向流换热流体机械装置, 其进一步的特点是, 外筒体的筒壁内部在 轴向上有一个隔断, 以至于被分隔为两个壁腔, 第一流体通道自内筒体的第 1筒腔 经由第 1组轴流扇叶达到外筒体的第 1壁腔, 再经由第 2组轴流扇叶到达内筒体的 第 2筒腔, 再经由第 3组轴流扇叶到达外筒体的第 2壁腔, 经由第 2壁腔外侧提供的 流体出口, 到达外筒体提供的流体出口。
所述的双向流换热流体机械装置, 其进一步的特点是, 所述第一端口的轴向 截面为喇叭形, 内周侧通过轴封和内筒体连接, 外周侧和外壳体连接。
所述的双向流换热流体机械装置, 其进一步的特点是, 所述内筒体通过所述 环形隔板支撑在贯穿所述内筒体的转轴上。
所述的双向流换热流体机械装置, 其进一步的特点是, 所述转轴为外转子电 动机。
所述的双向流换热流体机械装置, 其进一步的特点是, 所述转轴在外壳体、 第一端口和第二端口限定的空间的外部于至少一个端部上连接有风扇。
本发明还提供双向流换热流体机械装置的换热转子, 其特点是, 包括内筒 体、 外筒体以及内筒体和外筒体之间的沿轴向设置的轴流扇叶, 各轴流扇叶由一 组可以产生轴向动力的空心叶片构成, 相邻轴流扇叶之间有轴向间隙, 相邻且空 心叶片内流体径向流向相同的轴流扇叶归为一组, 在外筒体和内筒体之间设置有 三组轴流扇叶, 外筒体套在内筒体外侧, 外筒体的筒壁为中空结构, 内筒体内部 由 1个环形隔板分隔成不直接连通的两段筒腔, 外筒体的筒壁的壁腔和内筒体的筒 腔之间由空心叶片连通, 从而形成在外筒体和内筒体之间不断折返并轴向螺旋延 伸的第一流体通道, 即该第一流体通道自内筒体的第 1筒腔经由第 1组轴流扇叶达 到外筒体的壁腔, 再经由第 2组轴流扇叶到达内筒体的第 2筒腔, 再经由第 3组轴 流扇叶到达外筒体提供的流体出口; 在内筒体外侧、 外筒体内侧、 各扇叶的外侧 之间形成第二流体通道; 所述空心叶片的外形为平板状。
本发明人在实践中发现, 以往的设计思路存在偏见, 即折往次数越多, 则换 热效率越高, 实际则不然, 本发明人通过研究发现, 流道无需沿轴向折返 (相对 于 CN101929812A) , 在满足换热效率的情况下反而有利于减少流体阻力, 因此 提出了前述发明。 附图概述
本发明的具体特征、 性能由以下的实施例及其附图进一步给出。
图 1是本发明实施例中双向流换热流体机械装置的示意性主视剖面图。
图 2是本发明实施例中双向流换热流体机械装置的换热转子的示意性轴测视 图。
图 3是本发明实施例中轴流扇叶于内筒体上的装配示意图。 本发明的最佳实施方式
如图 1所示, 双向流换热流体机械装置包括转轴 3、 换热转子、 外壳体 1、 左 端口 5和右端口 4。
换热转子包括内筒体 20、 外筒体 21以及内筒体 20和外筒体 21之间的多组轴流 扇叶 22。 如图 2所示 (在图 2中外壳体、 内筒体 20、 外筒体 21显示为透明的, 以便于观 察内部结构) , 轴流扇叶 22是一组可以产生轴向动力的空心叶片 220构成。 轴流 扇叶 22和轴流扇叶 22之间有轴向间隙, 相邻且空心叶片内流体径向流向相同的轴 流扇叶归为一组, 如图 1所示, 从左至右一共分为 3组 22a、 22b、 22c。 在扇叶组 22a中, 流体径向向外流动, 在扇叶组 22b中, 流体径向向内流动, 在扇叶组 22c 中, 流体径向向外流动。 但在本发明的其他实施例中在外筒体和内筒体之间设置 有多组轴流扇叶, 至少有 3组轴流扇叶。
外筒体 21套在内筒体 20外侧, 轴流扇叶 22的空心叶片 220的径向内侧连接在 内筒体 20上且径向外侧连接在外筒体 21上。 空心叶片 220内部为空心结构 (可以 为一薄壁构件) , 其径向内边缘设置有径向内开口, 径向外边缘设置有径向外开 口。 外筒体 21的筒壁为中空结构。 空心叶片 220的径向内开口和内筒体 20的内部 连通, 空心叶片 220的径向外开口和外筒体 21的筒壁内部连通。 内筒体 20内部设 置有 1个或多个环形隔板 201, 环形隔板 201的径向内侧和转轴 3连接, 径向外侧和 内筒体 20内侧连接, 从而将内筒体 20分隔成不直接连通的至少两段。 环形隔板 201—方面起到隔断作用, 另一方面起到支撑整个换热转子的作用。 在本发明的 另一实施例中, 对换热转子的支撑作用可以另外单独设置支撑支架来实现。 内筒 体 20的右端封闭, 也可以在右端靠内一点再封闭。
在本发明的其实施例中外筒体 21的筒壁的壁腔内由 0个、 1个或多个环形隔环 21 1隔断都是可以的, 分隔成不直接连通的壁腔。 在图 1中, 隔环 21 1靠近流体出 口 212, 也可以理解为外筒体 21的筒壁的壁腔的端板。
外筒体 21的外侧套有外壳体 1。 外壳体 1、 右端口 4和外筒体 21之间, 左端口 5 和内筒体 20之间通过非接触式轴封组件 8实现密封, 并且二者之间可相对转动。 轴封组件可以是迷宫式轴封, 也可以是其他非接触式轴封组件。
左端口 5和外壳体 1的左端连接, 右端口 4和外壳体 1的右端连接。 整个换热转 子位于左端口 5、 右端口 4以及外壳体 1限定的空间中, 左端口 5的轴向截面大致成 喇叭形状, 其周向内侧和内筒体 20的左端通过非接触式轴封连接, 其周向外侧和 外壳体 1连接。 右端口 4大致呈环形, 将换热转子的整个空心叶片的轴向一端 220 向外开放。 外筒体 21在轴向右端具有流体出口 212, 对应地, 外壳体 1在右端也提 供矩形或圆形的开口 1 1。 外壳体 1在左端也提供矩形或圆形的开口 10, 外壳体 1在 左端的开口 10比空心叶片整体还要靠左。
这样, 从左边往右计数, 从左端口 5至内筒体 20的第一筒腔, 再到扇叶组 22a 的各叶片的内腔, 再到外筒体 21的空腔, 再到扇叶组 22b的各叶片的内腔, 再到 内筒体 20的第二筒腔, 再到扇叶组 22c的各叶片的空腔, 出口为外筒体 21右端的 流体出口 212, 流体再从外壳体 1右端的开口 1 1流出, 如前所述外筒体 21的隔环 21 1可以省略, 即便如此流体仍然主要按照前述方式流动。 内筒体 20的筒腔和外 筒体 21的壁体的壁腔之间通过轴流扇叶的空心叶片的空腔连通形成不断折返且螺 旋轴向向前的第一流道, 即第一流道的入口为左端口 5, 而出口为外筒体 21右端 的流体出口 212, 流体再从外壳体 1右端的开口 1 1流出。
相应地, 从右端口 4经由内、 外筒体 20、 21之间的轴流扇叶的外侧, 再到轴 流扇叶组的左端, 再到外壳体 1的左侧开口 10, 形成第二流道。
第一流道的流体和第二流道的流体在空心叶片的内外侧进行换热。
如图 1和图 2所示, 工作时, 转轴 3带动整个换热转子, 按照图 1中右侧的箭头 所示, 第二流体如热风由轴流扇叶产生轴向动力, 从右端口 4流入, 并经过多个轴 流扇叶 22, 然后从左端的流体出口 10流出。
轴流扇叶 22转动还产生使得内筒体的第一流体 (例如冷风) 径向流动的动 力, 以使流体从内筒体流入到左端的轴流扇叶, 借此使得流体不断在内筒体和外 筒体之间折返并轴向向右, 然后从右端的流体出口 1 1流出。
轴流扇叶 22的叶片结构为平板状, 或者扇形的平板。
前述换热转子或者双向流换热流体机械装置可以适合于住宅、 办公楼、 商 场、 餐厅、 学校等的空气调节通风回收换热 (空调采暖) , 或者热机尾气热量回 收换热。
轴流扇叶 22使用金属为材质, 降低热阻, 提高换热效率。 由轴流扇叶 22旋转 产生压升, 无需外界辅助风扇, 冷热风量自动平衡, 能效比更高。 在换热转子旋 转的过程中, 会甩出冷凝水并回收潜热, 不存在冷凝水无法很好的排出的问题, 维护成本低且方便, 无需纸质耗材, 由于换热充分, 因此也可用于温差较小的气 / 液体换热领域, 由于金属材料的耐久性, 也适合于温差较大的换热领域。
在发明人先前的技术中 (例如 CN101929812A) , 轴流流道折返导致流阻过 大, 难以实现风量平衡, 需要外界风扇给予补充, 故能耗较高, 无法提供较高的 能效比。 前述实施例轴流部分不折返也做到了全程逆程换热, 并且前述实施例结 构较之前简单, 容易制造, 成本低, 效费比更高。 在发明人先前的技术中叶片截 面使用翼型, 大量堆叠时体积大, 前述实施例改为平行板的结构, 体积小, 单位 体积换热效率高。 转轴 3可以由外界电机驱动的仅起到支撑作用的轴, 也可以是外转子电机, 在本发明的其他实施例中, 转轴 3的两端或者至少一端还可以分别连接风扇, 以改 变风量, 适应不同场合的需要。

Claims

权利要求
1 . 双向流换热流体机械装置, 其特征在于, 包括换热转子、 外壳体、 第一端 口和第二端口, 换热转子包括内筒体、 外筒体以及内筒体和外筒体之间的沿轴向 设置的轴流扇叶, 第一端口和第二端口连接在外壳体的轴向两端, 换热转子设置 在外壳体、 第一端口和第二端口限定的空间中; 各轴流扇叶由一组可以产生轴向 动力的空心叶片构成, 相邻轴流扇叶之间有轴向间隙, 相邻且空心叶片内流体径 向流向相同的轴流扇叶归为一组, 在外筒体和内筒体之间设置有三组轴流扇叶, 外筒体套在内筒体外侧, 外筒体的筒壁为中空结构, 内筒体内部由 1个环形隔板分 隔成不直接连通的两段筒腔, 外筒体的筒壁的壁腔和内筒体的筒腔之间由空心叶 片连通, 从而形成在外筒体和内筒体之间不断折返并轴向螺旋延伸的第一流体通 道, 即该第一流体通道自内筒体的第 1筒腔经由第 1组轴流扇叶达到外筒体的壁 腔, 再经由第 2组轴流扇叶到达内筒体的第 2筒腔, 再经由第 3组轴流扇叶到达外 筒体提供的流体出口, 直到外壳体提供的流体出口; 在内筒体外侧、 外筒体内侧 以及各扇叶的外侧之间形成第二流体通道; 第二端口设置成第二流体通道的入 口, 向外敞开轴流扇叶, 第一端口设置成第一流体通道的入口, 以使第一流体能 自第一端口进入到第一流体通道, 经由第一流体通道后自通往外壳体外部的第一 出口, 且使第二流体能自第二端口进入到第二流体通道, 经由第二流体通道后自 通往外壳体外部的第二出口流出; 转子与外壳、 第一端口、 第二端口之间分别采 用非接触式轴封密封; 所述空心叶片的外形为平板状。
2. 如权利要求 1所述的双向流换热流体机械装置, 其特征在于, 外筒体的筒 壁内部在轴向上无隔断而直通。
3. 如权利要求 1所述的双向流换热流体机械装置, 其特征在于, 外筒体的筒 壁内部在轴向上有一个隔断, 以至于被分隔为两个壁腔, 第一流体通道自内筒体 的第 1筒腔经由第 1组轴流扇叶达到外筒体的第 1壁腔, 再经由第 2组轴流扇叶到达 内筒体的第 2筒腔, 再经由第 3组轴流扇叶到达外筒体的第 2壁腔, 经由第 2壁腔外 侧提供的流体出口, 到达外筒体提供的流体出口。
4. 如权利要求 1所述的双向流换热流体机械装置, 其特征在于, 所述第一端 口的轴向截面为喇叭形, 内周侧通过轴封和内筒体连接, 外周侧和外壳体连接。
5. 如权利要求 1所述的双向流换热流体机械装置, 其特征在于, 所述内筒体 通过所述环形隔板支撑在贯穿所述内筒体的转轴上。
6. 如权利要求 1所述的双向流换热流体机械装置, 其特征在于, 所述转轴为 外转子电动机。
7. 如权利要求 1所述的双向流换热流体机械装置, 其特征在于, 所述转轴在 外壳体、 第一端口和第二端口限定的空间的外部于至少一个端部上连接有风扇。
8. 双向流换热流体机械装置的换热转子, 其特征在于, 包括内筒体、 外筒体 以及内筒体和外筒体之间的沿轴向设置的轴流扇叶, 各轴流扇叶由一组可以产生 轴向动力的空心叶片构成, 相邻轴流扇叶之间有轴向间隙, 相邻且空心叶片内流 体径向流向相同的轴流扇叶归为一组, 在外筒体和内筒体之间设置有三组轴流扇 叶, 外筒体套在内筒体外侧, 外筒体的筒壁为中空结构, 内筒体内部由 1个环形隔 板分隔成不直接连通的两段筒腔, 外筒体的筒壁的壁腔和内筒体的筒腔之间由空 心叶片连通, 从而形成在外筒体和内筒体之间不断折返并轴向螺旋延伸的第一流 体通道, 即该第一流体通道自内筒体的第 1筒腔经由第 1组轴流扇叶达到外筒体的 壁腔, 再经由第 2组轴流扇叶到达内筒体的第 2筒腔, 再经由第 3组轴流扇叶到达 外筒体提供的流体出口; 在内筒体外侧、 外筒体内侧、 各扇叶的外侧之间形成第 二流体通道; 所述空心叶片的外形为平板状。
9. 如权利要求 8所述的换热转子, 其特征在于, 外筒体的筒壁内部在轴向上 无隔断而直通。
10. 如权利要求 8所述的换热转子, 其特征在于, 外筒体的筒壁内部在轴向 上有一个隔断, 以至于被分隔为两个壁腔, 第一流体通道自内筒体的第 1筒腔经由 第 1组轴流扇叶达到外筒体的第 1壁腔, 再经由第 2组轴流扇叶到达内筒体的第 2筒 腔, 再经由第 3组轴流扇叶到达外筒体的第 2壁腔, 到达第 2壁腔外侧提供的流体 出口。
PCT/CN2013/080283 2013-07-29 2013-07-29 双向流换热流体机械装置 WO2015013852A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080283 WO2015013852A1 (zh) 2013-07-29 2013-07-29 双向流换热流体机械装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080283 WO2015013852A1 (zh) 2013-07-29 2013-07-29 双向流换热流体机械装置

Publications (1)

Publication Number Publication Date
WO2015013852A1 true WO2015013852A1 (zh) 2015-02-05

Family

ID=52430806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080283 WO2015013852A1 (zh) 2013-07-29 2013-07-29 双向流换热流体机械装置

Country Status (1)

Country Link
WO (1) WO2015013852A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1216640A (en) * 1968-06-13 1970-12-23 Edward Elmer Goetz Thermal transfer units
CN1317680A (zh) * 2000-04-10 2001-10-17 臧宝华 气体热交换方法及其装置
CN2884119Y (zh) * 2006-03-31 2007-03-28 乐逸涛 旋转式热回收器
CN101929812A (zh) * 2010-08-19 2010-12-29 臧宝华 空心叶片逆程换热风机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1216640A (en) * 1968-06-13 1970-12-23 Edward Elmer Goetz Thermal transfer units
CN1317680A (zh) * 2000-04-10 2001-10-17 臧宝华 气体热交换方法及其装置
CN2884119Y (zh) * 2006-03-31 2007-03-28 乐逸涛 旋转式热回收器
CN101929812A (zh) * 2010-08-19 2010-12-29 臧宝华 空心叶片逆程换热风机

Similar Documents

Publication Publication Date Title
CN101929812B (zh) 空心叶片逆程换热风机
GB2439557A (en) A heat exchanger and heat exchanger assembly
WO2010017700A1 (zh) 叶片泵/马达
CN103574766B (zh) 立式空调器
WO2014157452A1 (ja) スクロール式流体機械
EP3467420A1 (en) Arc-shaped plate heat exchanger
WO2015013852A1 (zh) 双向流换热流体机械装置
RU2711903C2 (ru) Комплексная система вентилятора и теплообменника
CN2546826Y (zh) 桨叶式粉体换热器叶片
CN105526815A (zh) 与粮食干燥机配套的气相旋转换热器
CN115264712B (zh) 新风机
CN207990904U (zh) 一种逆流式新风换热器全热交换芯
EP2391853B1 (en) Heat exchanger module
WO2012003635A1 (zh) 中空叶片热交换风机
KR100787227B1 (ko) 다방향 유체 유도팬과 이를 이용한 유체 순환방법 및 열교환방법
CN208910154U (zh) 洗碗机的热风装置和洗碗机
RU2013104221A (ru) Приточно-вытяжное вентиляционное устройство
RU61392U1 (ru) Регенеративный вращающийся воздухоподогреватель
CN104567493A (zh) 一种换热器
FI129583B (fi) Puhallin
CN216845111U (zh) 用于新风设备的换热装置及新风设备
CN215521311U (zh) 一种耐高温离心风机
GB719660A (en) Improvements in rotary heat exchange apparatus
CN108730204A (zh) 一种新型多级离心式压缩机
CN106595345A (zh) 一种换热器组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890461

Country of ref document: EP

Kind code of ref document: A1