WO2015012371A1 - Method for manufacturing copolymer latex, and copolymer latex - Google Patents

Method for manufacturing copolymer latex, and copolymer latex Download PDF

Info

Publication number
WO2015012371A1
WO2015012371A1 PCT/JP2014/069609 JP2014069609W WO2015012371A1 WO 2015012371 A1 WO2015012371 A1 WO 2015012371A1 JP 2014069609 W JP2014069609 W JP 2014069609W WO 2015012371 A1 WO2015012371 A1 WO 2015012371A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copolymer latex
monomer
time
carboxylic acid
Prior art date
Application number
PCT/JP2014/069609
Other languages
French (fr)
Japanese (ja)
Inventor
望 杉田
文敏 武田
皇雄 三崎
Original Assignee
日本エイアンドエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013269967A external-priority patent/JP5632954B1/en
Priority claimed from JP2013269965A external-priority patent/JP5632953B1/en
Priority claimed from JP2013269971A external-priority patent/JP5632955B1/en
Application filed by 日本エイアンドエル株式会社 filed Critical 日本エイアンドエル株式会社
Priority to CN201480025652.9A priority Critical patent/CN105189567B/en
Priority to KR1020157033061A priority patent/KR101639547B1/en
Publication of WO2015012371A1 publication Critical patent/WO2015012371A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene

Definitions

  • the present invention relates to a method for producing a copolymer latex and a copolymer latex.
  • copolymer latex has been used for various applications such as coated paper and battery electrode materials.
  • Copolymer latex has excellent operability in each application, is easy to use, and has been improved to give a high balance of physical properties to the final product. Longed for.
  • coated paper is used for a large number of printed materials because of its high printing effect. Even in periodicals such as quarterly and monthly papers, the use of coated paper on all pages has increased considerably. In particular, most direct mails and product catalogs in the mail order business use coated paper for all pages.
  • a composition for paper coating is composed of a pigment dispersion in which a white pigment such as clay or calcium carbonate is dispersed in water, a binder for adhering and fixing the pigments to each other, and the pigment and the base paper, and other additives. It is a water-based paint.
  • a synthetic emulsion binder represented by styrene-butadiene copolymer latex, or a natural binder represented by starch or casein is used.
  • styrene-butadiene copolymer latex obtained by emulsion polymerization has a large degree of freedom in quality design and is widely used as the most suitable binder for paper coating compositions. It is known that it affects the performance of the composition for coating, the operability at the time of producing coated paper, or the quality of the final coated paper product, such as surface strength and printing gloss (see, for example, Patent Documents 1 to 4 below) reference).
  • the response to higher performance tends to increase the viscosity of the copolymer latex, and generally there is a trade-off relationship between higher performance and lower viscosity of the copolymer latex.
  • workability will decrease with increasing viscosity.
  • the copolymer latex has a sufficiently high solid content, but if the solid content increases, the viscosity of the copolymer latex increases and transportability is increased. The handling workability such as filterability is inferior.
  • the copolymer latex is also used as a material for battery electrodes, and it is desired that the copolymer latex is excellent in covering property to the electrode active material at the time of electrode preparation.
  • One of the objects of the present invention is to provide a copolymer latex capable of exhibiting sufficient adhesive strength and having good coverage to an electrode active material with a sufficient solid concentration and low viscosity. It is to provide a manufacturing method.
  • One of the objects of the present invention is to provide a copolymer latex that can exhibit sufficient adhesive strength, can achieve low viscosity, and is excellent in freeze stability.
  • Copolymer latex is also used as a material for battery electrodes, and it is desired that the electrode latex is excellent in coverage with an electrode active material when the electrode is produced, and that there is little generation of aggregates in the battery electrode composition. It is rare.
  • One of the objects of the present invention is that sufficient strength can be expressed, the solidified material is difficult to adhere, and the covering property to the electrode active material is good, and the generation of aggregates in the battery electrode composition is small. It is to provide a copolymer latex.
  • the invention according to the first aspect of the present invention is a method for producing a copolymer latex obtained by emulsion polymerization, wherein the copolymer comprises 15 to 60% by mass of an aliphatic conjugated diene monomer, ethylenically unsaturated Monomer component comprising 5 to 35% by weight of a carboxylic acid monomer, 0.5 to 30% by weight of a vinyl cyanide monomer, and 0 to 79.5% by weight of a monomer copolymerizable therewith.
  • the reaction system at the start of charging the polymerization initiator contains 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer.
  • a copolymer latex that can exhibit sufficient adhesive strength and has good coverage to an electrode active material has a sufficient solid concentration and low viscosity.
  • the copolymer latex obtained by the method for producing a copolymer latex of the present invention can be characterized in that aggregates hardly occur and filterability is excellent.
  • the cycle characteristic of the battery at the time of repeating charging / discharging can be improved because the covering property to the electrode active material of copolymer latex is favorable.
  • the ethylenically unsaturated carboxylic acid monomer preferably contains more than 30% by mass of a monocarboxylic acid monomer.
  • the effect of reducing the viscosity in the neutral pH range can be further enhanced as compared with the case where the proportion of the monocarboxylic acid monomer in the ethylenically unsaturated carboxylic acid monomer is 30% by mass or less.
  • the emulsion polymerization is carried out by charging 80% by mass or more of the total amount of the vinyl cyanide monomer by 60% of the time from the arrival to the end.
  • the viscosity during the polymerization of the reaction system can be further reduced, whereby the generation of aggregates can be highly suppressed, and a copolymer latex having further excellent filterability can be obtained.
  • the invention according to the second aspect of the present invention is a copolymer latex obtained by emulsion polymerization, wherein the copolymer comprises 15 to 60% by mass of an aliphatic conjugated diene monomer, an ethylenically unsaturated carboxylic acid monomer. It is composed of a monomer component consisting of 5 to 35% by mass of a monomer, 0.5 to 30% by mass of a vinyl cyanide monomer, and 0 to 79.5% by mass of a monomer copolymerizable therewith.
  • the reaction system at the start of charging the polymerization initiator contains 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer, and the polymer conversion rate of the reaction system is 1.
  • the total amount of acidic groups A (milliequivalent) per 100 g of the solid content of the copolymer latex measured by neutralization titration is carried out by adding 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer.
  • a copolymer latex is provided.
  • the copolymer latex of the present invention according to the second embodiment can exhibit sufficient strength and can hardly adhere to a coagulum.
  • the copolymer latex having A / B of 0.8 or less means that the acidic groups that are not detected by neutralization titration exceed 20%, and there are many acidic groups present in the copolymer latex. Conceivable.
  • the presence of such an internal acid sufficiently suppresses the generation and adhesion of coagulum even when the ratio of the ethylenically unsaturated carboxylic acid monomer is within the above range and the strength of the copolymer latex is increased. The present inventors speculate that this is one of the possible factors.
  • the copolymer latex of this invention can improve the cycling characteristics of the battery at the time of repeating charging / discharging by the coating
  • the ethylenically unsaturated carboxylic acid monomer preferably contains more than 30% by mass of a monocarboxylic acid monomer.
  • the effect of reducing the viscosity in the neutral pH range can be further enhanced as compared with the case where the proportion of the monocarboxylic acid monomer in the ethylenically unsaturated carboxylic acid monomer is 30% by mass or less.
  • the emulsion polymerization is carried out by adding 80% by mass or more of the total amount of the vinyl cyanide monomer by 60% of the time from the arrival to the end.
  • the viscosity of the copolymer latex can be further reduced, whereby the adhesion of the coagulated product can be suppressed to a high degree, and a copolymer latex having further excellent handling properties can be obtained.
  • the invention according to the third aspect of the present invention is a copolymer latex obtained by emulsion polymerization, the copolymer comprising 15 to 60% by mass of an aliphatic conjugated diene monomer, an ethylenically unsaturated carboxylic acid monomer. It comprises a monomer component consisting of 5 to 35% by weight of a monomer, 0.5 to 30% by weight of a vinyl cyanide monomer, and 0 to 79.5% by weight of a monomer copolymerizable therewith.
  • the reaction system at the start of charging the polymerization initiator contains 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer, and the polymer conversion rate of the reaction system is 1. Starting from the time of 5% of the time from reaching the time when it reached 0% to the end when the entire amount of monomer components was charged, the charging of the remainder of the ethylenically unsaturated carboxylic acid monomer was started, By 80% of the time from the time of arrival to the end of time, The copolymer latex was cooled to ⁇ 25 ° C.
  • a copolymer latex in which the heat of fusion ⁇ H (mJ / mg) from ⁇ 20 ° C. to 0 ° C. calculated from the DSC curve obtained when heated satisfies the following formula (2).
  • the copolymer latex of the present invention according to the third aspect can exhibit a sufficient adhesive strength, can realize a low viscosity, and can be a latex having excellent freezing stability.
  • the present inventors consider the reason why the copolymer latex of the present invention is excellent in freezing stability as follows.
  • the left side of the formula (2) indicates the ratio of the heat of fusion detected from ⁇ 20 ° C. to 0 ° C. with respect to the total heat of fusion of water contained in the copolymer latex. When this value is 0.8 or less on the right side of the formula (2), it is considered that the amount of water not detected from ⁇ 20 ° C. to 0 ° C. is present in the latex by 20% by mass or more.
  • the peaks detected from ⁇ 20 ° C. to 0 ° C. are bound water and free water, and the water not detected is presumed to be antifreeze water.
  • antifreeze water can be sufficiently present in the latex by the above specific emulsion polymerization, and as a result, it has become possible to improve freezing stability while achieving both adhesive strength and low viscosity. Conceivable.
  • the copolymer latex of the present invention according to the third aspect can improve the cycle characteristics of the battery when charging and discharging are repeated due to its good coverage to the electrode active material. Furthermore, the composition for battery electrodes which mix
  • the ethylenically unsaturated carboxylic acid monomer preferably contains more than 30% by mass of a monocarboxylic acid monomer.
  • the effect of reducing the viscosity in the neutral pH range can be further enhanced as compared with the case where the proportion of the monocarboxylic acid monomer in the ethylenically unsaturated carboxylic acid monomer is 30% by mass or less.
  • the emulsion polymerization is performed according to the Fedors method for monomer components other than the ethylenically unsaturated carboxylic acid monomer introduced into the reaction system by the end of the introduction of the entire amount of the ethylenically unsaturated carboxylic acid monomer.
  • the monomer component is added to the reaction system so that the difference between SP 1 and SP 2 is 1.50 or less in absolute value when the solubility parameter is SP 2. . In this case, a copolymer latex having further excellent freezing stability can be obtained.
  • a copolymer latex capable of exhibiting sufficient adhesive strength and having good coverage to the electrode active material can be obtained with sufficient solid content concentration and low viscosity.
  • a method for producing a polymer latex can be provided.
  • the solidified product is difficult to adhere, and the covering property to the electrode active material is good and the aggregate in the battery electrode composition. It is possible to provide a copolymer latex in which the occurrence of the above is small.
  • Example III-1 shows a DSC chart of the copolymer latex obtained in Example III-1.
  • Example III-3 shows a DSC chart of the copolymer latex obtained in Comparative Example III-1.
  • the method for producing a copolymer latex according to the first embodiment of the present invention is a method for producing a copolymer latex obtained by emulsion polymerization, and the copolymer is an aliphatic conjugated diene monomer 15-60.
  • % By weight, 5 to 35% by weight of ethylenically unsaturated carboxylic acid monomer, 0.5 to 30% by weight of vinyl cyanide monomer, and 0 to 79.5% by weight of monomer copolymerizable therewith
  • the above emulsion polymerization is added to the total amount of the ethylenically unsaturated carboxylic acid monomer in an amount of more than 0% by weight to 40% by weight. From the time point of 5% from the time when the polymer conversion rate of the reaction system reaches 1.0% to the time when the entire amount of the monomer component has been charged, the ethylenic unsaturation is contained.
  • aliphatic conjugated diene monomer examples include 1,3-butadiene, 2-methyl-1,3-butadiene, and 2,3-dimethyl-1,3-butadiene. , 2-chloro-1,3-butadiene, substituted linear conjugated pentadienes, and monomers such as substituted and side chain conjugated hexadienes. These can be used alone or in combination of two or more. In the present embodiment, it is preferable to use 1,3-butadiene from the viewpoint of easy production industrially and availability and cost.
  • component (b) examples include monocarboxylic acid monomers such as acrylic acid, methacrylic acid and crotonic acid, maleic acid, fumaric acid and itaconic acid These dicarboxylic acid monomers and their anhydrides are mentioned. These monomers can be used alone or in combination of two or more.
  • component (c) examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile and the like. These can be used alone or in combination of two or more. In the first embodiment, it is preferable to use acrylonitrile or methacrylonitrile from the viewpoint of easy production industrially and availability and cost.
  • Monomers copolymerizable with the above components (a) to (c) include alkenyl aromatic monomers, unsaturated carboxylic acid alkyl ester monomers, Monomers such as unsaturated monomers and unsaturated carboxylic acid amide monomers containing a hydroxyalkyl group may be mentioned.
  • alkenyl aromatic monomer examples include styrene, ⁇ -methylstyrene, methyl- ⁇ -methylstyrene, vinyl toluene, and divinylbenzene. These can be used alone or in combination of two or more. In the first embodiment, it is preferable to use styrene from the viewpoint of easy production industrially and availability and cost.
  • unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate, Examples thereof include monomethyl fumarate, monoethyl fumarate, and 2-ethylhexyl acrylate. These can be used alone or in combination of two or more. In the first embodiment, it is preferable to use methyl methacrylate from the viewpoint of easy production industrially and availability and cost.
  • Examples of unsaturated monomers containing a hydroxyalkyl group include ⁇ -hydroxyethyl acrylate, ⁇ -hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl Examples include methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate and 2-hydroxyethyl methyl fumarate. These can be used alone or in combination of two or more.
  • unsaturated carboxylic acid amide monomers include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide and N, N-dimethylacrylamide. These can be used alone or in combination of two or more.
  • monomers used in ordinary emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride can be used.
  • the content of the component (a) is 15 to 60% by mass, preferably 17 to 56% by mass, and preferably 20 to 52% by mass with respect to the total amount of the monomer components constituting the copolymer. Is more preferable.
  • the content of the component (a) is 25 to 60% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 27 to 56% by mass, more preferably 30 to 55% by mass, and particularly preferably 30 to 52% by mass.
  • the content of the component (b) is 5 to 35% by mass, preferably 5.5 to 33% by mass, and preferably 6 to 28% by mass with respect to the total amount of monomer components constituting the copolymer. More preferably.
  • the component (b) preferably contains an ethylenically unsaturated monocarboxylic acid monomer in an amount exceeding 30% by mass, more preferably 37% by mass or more, and 45% by mass or more. More preferably, it is particularly preferably 55% by mass or more.
  • the content of the component (c) is 0.5 to 30% by mass, preferably 1 to 28% by mass, and preferably 3 to 25% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably. By setting the content of the component (c) in the above range, a copolymer latex having good solvent resistance can be obtained.
  • the content of the component (d) is 0 to 79.5% by mass, preferably 2 to 75% by mass, and preferably 5 to 70% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably.
  • the content of the component (d) is 0 to 69.5% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 2 to 65% by mass, more preferably 5 to 60% by mass.
  • emulsion polymerization is carried out by adding more than 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer in the reaction system at the start of addition of the polymerization initiator.
  • the above arrival time means the time when the polymer conversion rate of the monomer added to the reaction system reaches 1.0%.
  • the time point when the polymer conversion rate reaches 1.0% is calculated from actual measurement 30 minutes after the time point (0 point) when the monomer component, the initiator and water coexist. If the polymer conversion rate measured after 30 minutes does not exceed 1%, it is measured after another 30 minutes, and is measured every 30 minutes until the polymer conversion rate exceeds 1%.
  • the time when the polymer conversion rate reaches 1.0% by connecting the data exceeding 1% and 0 point is defined as “at the time of arrival”.
  • the polymer conversion rate can be calculated from the following equation by weighing the reaction solution collected from the reaction vessel, drying at 150 ° C. for 1 hour, weighing again, and measuring the solid content C.
  • Polymer conversion (%) [Solid content C (g) ⁇ Solid content other than monomer contained in reaction solution (g)] / Amount of monomer component added to reaction system (g) ⁇ 100
  • “at the time of arrival” can be set based on data obtained in advance. For example, a reaction system similar to the emulsion polymerization to be performed can be prepared, and the arrival time can be obtained in advance based on the transition of the polymer conversion rate of this reaction system.
  • the reaction system at the start of charging the polymerization initiator Into the reaction system at the start of charging the polymerization initiator, more than 0% by mass and 40% by mass or less, more preferably 0.1% by mass to 30% by mass of the total amount of the ethylenically unsaturated carboxylic acid monomer, Starting from the time of 5% of the time from the time of arrival to the end of time, the charging of the remainder of the ethylenically unsaturated carboxylic acid monomer is started, and the time from the time of arrival to the time of completion is 80% % Of the total amount of the above-mentioned ethylenically unsaturated carboxylic acid monomer is added to carry out the emulsion polymerization to give a copolymer latex capable of expressing sufficient adhesive strength at a sufficient solid content concentration. In addition, it can be obtained with a low viscosity. The copolymer latex thus obtained does not easily generate aggregates and can be excellent in filterability.
  • the ethylenically unsaturated carboxylic acid monomer is used after 10% of the time from the arrival time to the end time, more preferably after 15%. It is preferable to start charging the remainder of the ethylenically unsaturated carboxylic acid monomer. Further, the introduction of the remainder of the ethylenically unsaturated carboxylic acid monomer is preferably started by 50% of the time from the arrival to the end, and by 45%. More preferably, it is even more preferred to start by 40%. Further, it is preferable to add 95% by mass or more of the total amount by 70% of the time from the arrival time to the end time. More preferably, it is preferable to add the total amount up to 60% of the time from the arrival time to the end time.
  • an emulsifier surfactant
  • a polymerization initiator emulsifier
  • a chain transfer agent emulsifier
  • a reducing agent emulsifier
  • the emulsifier examples include sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietic acid salts, formalin condensates of naphthalene sulfonic acid, Anionic surfactants such as sulfate ester salts of ionic surfactants, and nonionic surfactants such as alkyl ester type, alkyl phenyl ether type, and alkyl ether type of polyethylene glycol. These can be used alone or in combination of two or more. The blending amount of the emulsifier can be appropriately adjusted in consideration of a combination of other additives.
  • polymerization initiator examples include water-soluble polymerization initiators such as lithium persulfate, potassium persulfate, sodium persulfate, and ammonium persulfate, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, Examples thereof include oil-soluble polymerization initiators such as diisopropylbenzene hydroperoxide and 1,1,3,3-tetramethylbutyl hydroperoxide. These can be used alone or in combination of two or more. Of these, potassium persulfate, sodium persulfate, cumene hydroperoxide, or t-butyl hydroperoxide is preferably used.
  • the blending amount of the polymerization initiator is appropriately adjusted in consideration of the combination of the monomer composition, the pH of the polymerization reaction system, and other additives.
  • chain transfer agent examples include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan; dimethylxanthogen disulfide, diisopropylxanthogendi Xanthogen compounds such as sulfide; thiuram compounds such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide; phenolic compounds such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol; Allyl compounds such as allyl alcohol; halogenated hydrocarbon compounds such as dichloromethane, dibromomethane, carbon tetra
  • the reducing agent examples include sulfite, bisulfite, pyrosulfite, nitrite, nithionate, thiosulfate, formaldehyde sulfonate, benzaldehyde sulfonate; L-ascorbic acid, erythorbic acid, tartaric acid And carboxylic acids such as citric acid and salts thereof; reducing sugars such as dextrose and saccharose; and amines such as dimethylaniline and triethanolamine. These can be used alone or in combination of two or more. Of these, L-ascorbic acid and erythorbic acid are preferred.
  • the blending amount of the reducing agent can be appropriately adjusted in consideration of a combination of other additives.
  • the reaction system according to the first embodiment includes saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane; pentene, hexene, heptene for the purpose of controlling the molecular weight and the crosslinked structure of the copolymer.
  • saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane
  • pentene, hexene, heptene for the purpose of controlling the molecular weight and the crosslinked structure of the copolymer.
  • hydrocarbon compounds such as benzene, toluene, xylene and other aromatic hydrocarbons
  • an oxygen scavenger a chelating agent, a dispersant, an antifoaming agent, an anti-aging agent, an antiseptic, an antibacterial agent, a flame retardant, an ultraviolet absorber, etc.
  • a dispersant an antifoaming agent, an anti-aging agent, an antiseptic, an antibacterial agent, a flame retardant, an ultraviolet absorber, etc.
  • additives can be used in appropriate amounts in both types and amounts.
  • a part of (a) component, part of (b) component, part of (c) component, part of (d) component, emulsifier It is preferable to contain a reducing agent and a chain transfer agent.
  • the component (a) When a part of the component (a) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 25% by mass of the total amount of the component (a), and 3 to 20% by mass is contained. Is more preferable.
  • the content of the component (c) is preferably 3 to 55% by mass, and preferably 5 to 50% by mass. Is more preferable.
  • the component (d) When a part of the component (d) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 45% by mass of the total amount of the component (d), and 2 to 30% by mass is contained. Is more preferable.
  • the total amount of the emulsifier and the polymerization initiator is preferably contained in the reaction system at the start of charging the polymerization initiator.
  • the reaction system at the start of charging of the polymerization initiator is, for example, a pressure-resistant polymerization reaction vessel, pure water, the components (a) to (d) described above, an emulsifier, a polymerization initiator, a chain transfer agent, a reducing agent, and the like.
  • the reaction temperature is preferably set in the range of 30 to 100 ° C., and preferably set in the range of 40 to 85 ° C., from the viewpoint of safety in the tank and productivity in consideration of safety. More preferred.
  • a polymerization initiator having an initiation temperature in the above reaction temperature range is used.
  • the temperature of the reaction system can be increased by, for example, 0.25 to 1.0 ° C./min by external heating.
  • a method of adding the components (a) to (d) to the reaction system after reaching the above time for example, a batch addition method, a divided addition method, a continuous addition method, or a power feed method can be employed. From the viewpoint of improving the safety by suppressing the monomer in the reaction system to a certain concentration or less, it is preferable to employ a continuous addition method (hereinafter sometimes referred to as continuous addition). Further, the attachment may be performed a plurality of times.
  • the first embodiment 80% by mass or more of the total amount of the component (c) by the time 60% of the time from the arrival to the end of charging the total amount of the components (a) to (d), It is preferable to carry out emulsion polymerization by adding 85% by mass or more to the reaction system. Thereby, the viscosity during the polymerization of the reaction system can be further reduced, whereby the generation of aggregates can be highly suppressed, and a copolymer latex having further excellent filterability can be obtained.
  • the time from the above arrival to the end of the total addition of the components (a) to (d) is preferably 1 to 15 hours. More preferably, it is time.
  • the emulsion polymerization is preferably carried out until the polymer conversion rate of the components (a) to (d) reaches 95% or more, and more preferably 97% or more.
  • the polymer conversion rate can be calculated from the solid content or from the amount of heat obtained by cooling the polymerization tank. In this way, a copolymer latex is obtained.
  • the copolymer latex is preferably adjusted to a pH of 5 to 8.5 with ammonia, potassium hydroxide, sodium hydroxide or the like, and adjusted to 5.5 to 7.5. More preferably.
  • the copolymer latex is preferably freed of unreacted monomers and other low-boiling compounds by a method such as heating under reduced pressure.
  • a low viscosity copolymer latex can be obtained at a sufficient solid content concentration.
  • the solid content concentration of the copolymer latex is preferably 35 to 65% by mass, more preferably 40 to 60% by mass, from the viewpoints of cost during transportation and tank capacity during storage.
  • the copolymer latex may be concentrated by a method such as an evaporation method so that the solid content concentration is 45 to 69% by mass.
  • the copolymer latex obtained by the method according to the first embodiment can have a sufficiently low viscosity even when concentrated.
  • the viscosity of the copolymer latex is preferably 50 to 1000 mPa ⁇ s at 25 ° C., and more preferably 70 to 700 mPa ⁇ s.
  • the viscosity is a B type (BL type) viscometer (TOKI SANGYO LTD made by VISCOMETER (model BM) according to the measurement method of JIS K7117-1, in the case of a viscosity of 0 to 100 mPa ⁇ s, No. 1 rotor, 100. ⁇ 500 mPa ⁇ s: No. 2 rotor, 500 to 2000 mPa ⁇ s: No. 3 rotor, 2000 mPa ⁇ s or more: No. 4 rotor, rotation speed is 60 rpm) .
  • the copolymer latex may contain functional additives such as preservatives, anti-aging agents, dispersants, printability improvers, surface sizing agents, lubricants, and surfactants. These additives can be used in appropriate amounts in both types and amounts.
  • the copolymer latex obtained by the method according to the first embodiment can have a sufficiently low viscosity even when concentrated. Thereby, the burden on the pump for transferring the copolymer latex can be reduced, and energy saving can be achieved. Further, according to the method according to the embodiment, it is possible to obtain a copolymer latex excellent in filterability, so it is possible to shorten the time required for filtration of the copolymer latex and to reduce loss due to filtration. Thus, it is possible to obtain a copolymer latex excellent in adhesive strength and covering property to the electrode active material with high productivity.
  • the copolymer latex according to the first embodiment is used for paper coating, fiber bonding such as nonwoven fabric, carpet backing, batteries (for example, electrodes, separators, heat-resistant protective layers, etc.), paints, and adhesives.
  • binder Useful as a binder.
  • Examples of the paper coating composition include a copolymer latex according to the first embodiment and, if necessary, a pigment, another binder, an auxiliary agent, and the like.
  • inorganic pigments such as kaolin clay, calcium carbonate, talc, barium sulfate, titanium oxide, aluminum hydroxide, zinc oxide, and satin white, and organic pigments such as polystyrene latex can be used. These can be used alone or in combination of two or more.
  • binders include starch, oxidized starch, modified starch such as esterified starch, natural binders such as soybean protein and casein, water-soluble synthetic binders such as polyvinyl alcohol and carboxymethyl cellulose, polyvinyl acetate latex, acrylic latex, etc. Examples include synthetic latex. These can be used alone or in combination of two or more.
  • Auxiliaries include dispersants (sodium pyrophosphate, sodium polyacrylate, sodium hexametaphosphate, etc.), antifoaming agents (polyglycol, fatty acid ester, phosphate ester, silicone oil, etc.), leveling agents (funnel oil, dicyandiamide, Urea, etc.), preservatives, mold release agents (calcium stearate, paraffin emulsion, etc.), fluorescent dyes, color water retention agents (sodium alginate, etc.) and the like.
  • the content of the copolymer latex in the paper coating composition is preferably 1 to 20 parts by mass and more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the pigment. preferable.
  • Examples of the battery electrode composition include those containing the copolymer latex and the active material according to the embodiment, and, if necessary, an auxiliary agent.
  • the positive electrode active material is not particularly limited, if the non-aqueous electrolyte secondary battery, for example, such as MnO 2, MoO 3, V 2 O 5, V 6 O 13, Fe 2 O 3, Fe 3 O 4 Transition metal oxides, LiCoO 2 , LiMnO 2 , LiNiO 2 , Li X Co Y Sn Z O 2 -containing complex oxides, LiFePO 4 and other complex metal oxides, TiS 2 , TiS 3 , MoS 3, transition metal sulfides such as FeS 2, and metal fluorides such as CuF 2, NiF 2. These can be used alone or in combination of two or more.
  • MnO 2, MoO 3, V 2 O 5, V 6 O 13, Fe 2 O 3, Fe 3 O 4 Transition metal oxides LiCoO 2 , LiMnO 2 , LiNiO 2 , Li X Co Y Sn Z O 2 -containing complex oxides, LiFePO 4 and other complex metal oxides, TiS 2 , TiS 3 , MoS 3, transition metal
  • the negative electrode active material is not particularly limited, but in the case of a non-aqueous electrolyte secondary battery, for example, carbon fluoride, graphite, carbon fiber, resin-fired carbon, linear graphite hybrid, coke, pyrolysis gas growth carbon , Furfuryl alcohol resin calcined carbon, mesocarbon microbeads, mesophase pitch carbon, graphite whiskers, pseudo-isotropic carbon, calcined natural materials, and pulverized conductive carbonaceous materials such as polyacene organic semiconductors And a conductive polymer such as polyacetylene and poly-p-phenylene, and a single metal such as silicon and tin, or a composite material containing a metal oxide or an alloy of the metal. These can be used alone or in combination of two or more.
  • Assistants include water-soluble thickeners, dispersants, stabilizers, conductive agents and the like.
  • water-soluble thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein.
  • dispersant include Examples thereof include sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate, and sodium polyacrylate.
  • stabilizer include nonionic and anionic surfactants.
  • the conductive agent include acetylene. Examples include black and carbon nanofibers. These can be used alone or in combination of two or more.
  • the content of the copolymer latex in the battery electrode composition is preferably 0.1 to 10 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the active material, 0.5 to More preferably, it is 7 parts by mass.
  • the content of the copolymer latex is 0.1 parts by mass or more, it is preferable from the viewpoint of obtaining a good adhesive force with respect to the active material or the current collector, and when it is 10 parts by mass or less, a secondary battery is assembled. It is preferable from the viewpoint of sometimes preventing the overvoltage from significantly increasing and degrading the battery characteristics.
  • the battery electrode composition is applied to a current collector and dried to form an electrode coating layer on the current collector to obtain an electrode sheet.
  • an electrode sheet is used as, for example, a positive electrode plate or a negative electrode plate of a non-aqueous electrolyte secondary battery.
  • a method of applying the battery electrode composition to the current collector for example, a known method such as a reverse roll method, a comma bar method, a gravure method, or an air knife method can be used.
  • a dryer, a warm air dryer, an infrared heater, a far infrared heater, or the like is used.
  • the battery electrode composition using the copolymer latex according to the first embodiment is suitable for an electrode of a secondary battery such as a non-aqueous electrolyte secondary battery, a nickel hydrogen battery, or a nickel cadmium battery.
  • a secondary battery such as a non-aqueous electrolyte secondary battery, a nickel hydrogen battery, or a nickel cadmium battery.
  • the copolymer latex according to the second embodiment of the present invention is a copolymer latex obtained by emulsion polymerization, and the copolymer comprises 15 to 60% by mass of an aliphatic conjugated diene monomer, an ethylene-based nonpolymer.
  • a monomer comprising 5 to 35% by weight of a saturated carboxylic acid monomer, 0.5 to 30% by weight of a vinyl cyanide monomer, and 0 to 79.5% by weight of a monomer copolymerizable therewith.
  • the above-mentioned emulsion polymerization is carried out by allowing the reaction system at the start of charging the polymerization initiator to contain more than 0% by mass and 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer.
  • the above-mentioned ethylenically unsaturated carboxylic acid monomer From the time of 5% from the time when the polymer conversion rate of the system reached 1.0% to the time when the monomer component was completely charged, the above-mentioned ethylenically unsaturated carboxylic acid monomer From the start of the remaining part until the end of the above 100 g of copolymer latex measured by a neutralization titration method by adding 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer up to 80% of time.
  • Total acidic group amount per 100 g of solid content of the copolymer latex calculated based on the total acidic group amount A (milli equivalent / 100 g) (hereinafter also referred to as detected acid amount A) and the blending amount of the acid component
  • the ratio A / B to B (milli equivalent / 100 g) (hereinafter also referred to as the theoretical acid amount B) is 0.8 or less.
  • the content of the component (a) is 15 to 60% by mass, preferably 17 to 56% by mass, and preferably 20 to 52% by mass with respect to the total amount of the monomer components constituting the copolymer. Is more preferable.
  • the content of the component (a) is 25 to 60% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 27 to 56% by mass, more preferably 30 to 55% by mass, and even more preferably 30 to 52% by mass.
  • the content of the component (b) is 5 to 35% by mass, preferably 5.5 to 33% by mass, and preferably 6 to 28% by mass with respect to the total amount of monomer components constituting the copolymer. More preferably.
  • the component (b) preferably contains more than 30% by mass of the ethylenically unsaturated monocarboxylic acid monomer, more preferably contains 37% by mass or more, and contains 45% by mass or more. More preferably, it is particularly preferable to contain 55% by mass or more.
  • the content of the ethylenically unsaturated monocarboxylic acid monomer is more preferably 50% by mass or more, and still more preferably 60% by mass or more.
  • the content of the component (c) is 0.5 to 30% by mass, preferably 1 to 28% by mass, and preferably 3 to 25% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably. By setting the content of the component (c) in the above range, a copolymer latex having good solvent resistance can be obtained.
  • the content of the component (d) is 0 to 79.5% by mass, preferably 2 to 75% by mass, and preferably 5 to 70% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably.
  • the content of the component (d) is 0 to 69.5% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 2 to 65% by mass, more preferably 5 to 60% by mass.
  • styrene is used as the component (d) with respect to the total amount of monomer components constituting the copolymer. It is preferably contained in an amount of 5% by mass. When the copolymer latex is used in a paper coating composition, it is preferably contained in an amount of 1 to 69.5% by mass.
  • the emulsion polymerization is carried out by adding more than 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer in the reaction system at the start of charging the polymerization initiator.
  • the arrival time and the polymer conversion rate are synonymous with those described in the first embodiment.
  • the detected acid amount A can be adjusted by, for example, appropriately selecting an ethylenically unsaturated carboxylic acid monomer from the above-mentioned compounds and combining them.
  • the reaction system at the start of charging the polymerization initiator contains 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer, more preferably 0.1% by mass to 30% by mass. And starting addition of the remainder of the ethylenically unsaturated carboxylic acid monomer from the time point of 5% of the time from the arrival time to the end time, from the arrival time to the end time.
  • Emulsion polymerization is carried out while suppressing the viscosity of the reaction system by introducing 92% by mass or more of the total amount of the above-mentioned ethylenically unsaturated carboxylic acid monomer by 80% of the time.
  • a copolymer latex having a ratio A / B between the detected acid amount A and the theoretical acid amount B of 0.8 or less can be obtained.
  • the ethylenically unsaturated carboxylic acid monomer is used after 10% of the time from the arrival time to the end time, more preferably after 15%. It is preferable to start charging the remainder of the ethylenically unsaturated carboxylic acid monomer. Further, the introduction of the remainder of the ethylenically unsaturated carboxylic acid monomer is preferably started by 50% of the time from the arrival to the end, and by 45%. More preferably, it is even more preferred to start by 40%. Moreover, it is preferable to add 95% or more of the total amount by the time point of 70% of the time from the arrival time to the end time. More preferably, it is preferable to add the total amount up to 60% of the time from the arrival time to the end time.
  • an emulsifier surfactant
  • a polymerization initiator emulsifier
  • a chain transfer agent emulsifier
  • a reducing agent emulsifier
  • the emulsifier surfactant
  • the polymerization initiator the chain transfer agent, the reducing agent, etc.
  • the same compounds as those exemplified in the first embodiment described above can be used.
  • the reaction system according to the second embodiment includes saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane; pentene, hexene, heptene, for the purpose of controlling the molecular weight and cross-linked structure of the copolymer. , Cyclopentene, cyclohexene, cycloheptene, 4-methylcyclohexene, 1-methylcyclohexene and other unsaturated hydrocarbons; and hydrocarbon compounds such as benzene, toluene, xylene and other aromatic hydrocarbons. These can be used alone or in combination of two or more. Of these, cyclohexene and toluene are preferably used.
  • reaction system includes an electrolyte, an oxygen scavenger, a chelating agent, a dispersant, an antifoaming agent, an anti-aging agent, an antiseptic, an antibacterial agent, a flame retardant, and an ultraviolet absorber as necessary. You may mix
  • a part of (a) component, part of (b) component, part of (c) component, part of (d) component, emulsifier It is preferable to contain a reducing agent and a chain transfer agent.
  • the component (a) When a part of the component (a) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 25% by mass of the total amount of the component (a), and 3 to 20% by mass is contained. Is more preferable.
  • the content of the component (c) is preferably 3 to 55% by mass, and preferably 5 to 50% by mass. Is more preferable.
  • the component (d) When a part of the component (d) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 45% by mass of the total amount of the component (d), and 2 to 30% by mass is contained. Is more preferable.
  • the total amount of the emulsifier and the polymerization initiator is preferably contained in the reaction system at the start of charging the polymerization initiator.
  • the reaction system at the start of charging of the polymerization initiator is, for example, a pressure-resistant polymerization reaction vessel, pure water, the components (a) to (d) described above, an emulsifier, a polymerization initiator, a chain transfer agent, a reducing agent, and the like.
  • the reaction temperature is preferably set in a range of 30 to 100 ° C., and preferably set in a range of 40 to 85 ° C., from the viewpoint of safety in the tank and productivity in consideration of safety. More preferred.
  • a polymerization initiator having an initiation temperature in the above reaction temperature range is used.
  • the temperature of the reaction system can be increased by, for example, 0.25 to 1.0 ° C./min by external heating.
  • a method of adding the components (a) to (d) to the reaction system after reaching the above time for example, a batch addition method, a divided addition method, a continuous addition method, or a power feed method can be employed. From the viewpoint of improving the safety by suppressing the monomer in the reaction system to a certain concentration or less, it is preferable to employ a continuous addition method (hereinafter sometimes referred to as continuous addition). Further, the attachment may be performed a plurality of times.
  • the second embodiment 80% by mass or more of the total amount of the component (c) by 60% of the time from the arrival to the end of charging the total amount of the components (a) to (d), It is preferable to carry out emulsion polymerization by adding 85% by mass or more to the reaction system. Thereby, the viscosity during the polymerization of the reaction system can be further reduced.
  • the time from the above arrival to the end of the total addition of the components (a) to (d) is preferably 1 to 15 hours. More preferably, it is time.
  • the emulsion polymerization is preferably carried out until the polymer conversion rate of the components (a) to (d) reaches 95% or more, and more preferably 97% or more.
  • the polymer conversion rate can be calculated from the solid content or from the amount of heat obtained by cooling the polymerization tank. In this way, a copolymer latex is obtained.
  • the copolymer latex is preferably adjusted to a pH of 5 to 8.5 with ammonia, potassium hydroxide, sodium hydroxide or the like, and adjusted to 5.5 to 7.5. More preferably.
  • the copolymer latex is preferably freed of unreacted monomers and other low-boiling compounds by a method such as heating under reduced pressure.
  • a low viscosity copolymer latex can be obtained at a sufficient solid content concentration.
  • the solid content concentration of the copolymer latex is preferably 35 to 65% by mass, more preferably 40 to 60% by mass, from the viewpoints of cost during transportation and tank capacity during storage.
  • the copolymer latex may be concentrated by a method such as an evaporation method so that the solid content concentration is 45 to 69% by mass.
  • the copolymer latex obtained by the method according to the second embodiment can have a sufficiently low viscosity even when concentrated.
  • the viscosity of the copolymer latex is preferably 50 to 1000 mPa ⁇ s at 25 ° C., and more preferably 70 to 700 mPa ⁇ s.
  • the viscosity is a B type (BL type) viscometer (TOKI SANGYO LTD made by VISCOMETER (model BM) according to the measurement method of JIS K7117-1, in the case of a viscosity of 0 to 100 mPa ⁇ s, No. 1 rotor, 100. ⁇ 500 mPa ⁇ s: No. 2 rotor, 500 to 2000 mPa ⁇ s: No. 3 rotor, 2000 mPa ⁇ s or more: No. 4 rotor, rotation speed is 60 rpm) .
  • the copolymer latex may contain functional additives such as preservatives, anti-aging agents, dispersants, printability improvers, surface sizing agents, lubricants, and surfactants. These additives can be used in appropriate amounts in both types and amounts.
  • the copolymer latex according to the second embodiment can exhibit a sufficient strength and can hardly adhere to a coagulated product.
  • the copolymer latex according to the second embodiment has good coverage to the electrode active material and can be less likely to generate aggregates in the battery electrode composition.
  • a copolymer latex having a detected acid amount A / theoretical acid amount B of 0.8 or less means that acidic groups not detected by neutralization titration exceed 20%, and is present inside the copolymer latex. It is thought that there are many acidic groups to do.
  • the total acidic group amount A (milli equivalent / 100 g) (detected acid amount A) per 100 g of the solid content of the copolymer latex measured by the neutralization titration method can be determined by the following method.
  • the copolymer latex is diluted to about 1% by mass (solid content concentration) with ion-exchanged water, and an excess amount of about 0.1N hydrochloric acid is added, followed by back titration with a 0.1N sodium hydroxide aqueous solution and conducting titration. Get a curve. From the obtained conductivity titration curve, the detected acid amount A (milli equivalent / 100 g) per 100 g of the solid content of the copolymer latex can be calculated based on the following formula.
  • Detected acid amount A 0.1 ⁇ T ⁇ 100 / (W ⁇ M / 100)
  • T titration of sodium hydroxide aqueous solution
  • W Sampling amount of copolymer latex
  • M solid content concentration of copolymer latex (%)
  • the total acidic group amount B (milli equivalent / 100 g) (theoretical acid amount B) per 100 g of the solid content of the copolymer latex calculated based on the blending amount of the acid component can be obtained by the following method.
  • X (mass%) is the mass% of the ethylenically unsaturated carboxylic acid monomer
  • Y is the molecular weight of the ethylenically unsaturated carboxylic acid monomer
  • Y is the ethylenically unsaturated carboxylic acid monomer.
  • the maximum dissociation frequency of the acid monomer is Z, and the theoretical acid amount derived from the ethylenically unsaturated carboxylic acid monomer is calculated from the following formula (1).
  • Theoretical acid amount (X ⁇ Z ⁇ 1000) / Y (1)
  • the theoretical acid amount is calculated in the same manner, and these are summed to obtain the theoretical acid amount B (milli equivalent / 100 g per 100 g of the solid content of the copolymer latex). )
  • the copolymer latex according to the second embodiment is used for paper coating, fiber bonding such as nonwoven fabric, carpet backing, batteries (for example, electrodes, separators, heat-resistant protective layers, etc.), paints, and adhesives.
  • binder Useful as a binder.
  • Examples of the paper coating composition include a copolymer latex according to the second embodiment and, if necessary, a pigment, another binder, an auxiliary agent, and the like.
  • pigments other binders, auxiliaries and the like, the same compounds as those exemplified in the first embodiment described above can be used.
  • the content of the copolymer latex in the paper coating composition is preferably 1 to 20 parts by mass and more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the pigment. preferable.
  • Examples of the battery electrode composition include those containing the copolymer latex and the active material according to the second embodiment, and, if necessary, an auxiliary agent.
  • the positive electrode active material As the positive electrode active material, the negative electrode active material, the auxiliary agent, etc., the same compounds as those exemplified in the first embodiment described above can be used.
  • the content of the copolymer latex in the battery electrode composition is preferably 0.1 to 10 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the active material, 0.5 to More preferably, it is 7 parts by mass.
  • the content of the copolymer latex is 0.1 parts by mass or more, it is preferable from the viewpoint of obtaining a good adhesive force with respect to the active material or the current collector, and when it is 10 parts by mass or less, a secondary battery is assembled. It is preferable from the viewpoint of sometimes preventing the overvoltage from significantly increasing and degrading the battery characteristics.
  • the battery electrode composition is applied to a current collector and dried to form an electrode coating layer on the current collector to obtain an electrode sheet.
  • an electrode sheet is used as, for example, a positive electrode plate or a negative electrode plate of a non-aqueous electrolyte secondary battery.
  • a method of applying the battery electrode composition to the current collector for example, a known method such as a reverse roll method, a comma bar method, a gravure method, or an air knife method can be used.
  • a dryer, a warm air dryer, an infrared heater, a far infrared heater, or the like is used.
  • the battery electrode composition using the copolymer latex according to the second embodiment is suitable for an electrode of a secondary battery such as a non-aqueous electrolyte secondary battery, a nickel hydrogen battery, or a nickel cadmium battery.
  • a secondary battery such as a non-aqueous electrolyte secondary battery, a nickel hydrogen battery, or a nickel cadmium battery.
  • the copolymer latex according to the third embodiment of the present invention is a copolymer latex obtained by emulsion polymerization, and the copolymer is an aliphatic conjugated diene monomer of 15 to 60% by mass, an ethylene-based latex.
  • a monomer comprising 5 to 35% by weight of an unsaturated carboxylic acid monomer, 0.5 to 30% by weight of a vinyl cyanide monomer, and 0 to 79.5% by weight of a monomer copolymerizable therewith.
  • the emulsion polymerization is caused to contain more than 0% by mass and 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer in the reaction system at the start of charging the polymerization initiator,
  • the ethylenically unsaturated carboxylic acid monomer from the time point after 5% from the time when the polymer conversion rate of the reaction system reaches 1.0% to the time when the entire amount of the monomer components are charged is finished. From the time of arrival to the end of At a time point of 80% of the total amount of the ethylenically unsaturated carboxylic acid monomer up to a point of 80%, and the co-polymer was cooled to ⁇ 25 ° C.
  • C S represents the solid content of the sample of the copolymer latex (weight%)
  • [Delta] H W is the heat of fusion when the distilled water was measured under the same conditions (mJ / mg) Show.
  • the measurement sample of the copolymer latex can be adjusted to pH 7.
  • ammonia, potassium hydroxide, sodium hydroxide, or the like can be used.
  • C S may be set to 10 to 50 mass% is preferably set to 40 mass%.
  • distilled water, ion-exchanged water, or purified water can be used.
  • Water for calculating the [Delta] H W may be used distilled water (manufactured by Wako Pure Chemical Industries).
  • the content of the component (a) is 15 to 60% by mass, preferably 17 to 56% by mass, and preferably 20 to 52% by mass with respect to the total amount of the monomer components constituting the copolymer. Is more preferable.
  • the content of the component (a) is 25 to 60% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 27 to 56% by mass, more preferably 30 to 55% by mass, and even more preferably 30 to 52% by mass.
  • the content of the component (b) is 5 to 35% by mass, preferably 5.5 to 33% by mass, and preferably 6 to 28% by mass with respect to the total amount of monomer components constituting the copolymer. More preferably.
  • the component (b) preferably contains more than 30% by mass of the ethylenically unsaturated monocarboxylic acid monomer, more preferably contains 37% by mass or more, and contains 45% by mass or more. More preferably, it is particularly preferable to contain 55% by mass or more.
  • the content of the component (c) is 0.5 to 30% by mass, preferably 1 to 28% by mass, and preferably 3 to 25% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably. By setting the content of the component (c) in the above range, a copolymer latex having good solvent resistance can be obtained.
  • the content of the component (d) is 0 to 79.5% by mass, preferably 2 to 75% by mass, and preferably 5 to 70% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably.
  • the content of the component (d) is 0 to 69.5% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 2 to 65% by mass, more preferably 5 to 60% by mass.
  • styrene is used as component (d) with respect to the total amount of monomer components constituting the copolymer. It is preferably contained in an amount of 5% by mass. When the copolymer latex is used in a paper coating composition, it is preferably contained in an amount of 1 to 69.5% by mass.
  • the emulsion polymerization includes a reaction system at the start of addition of a polymerization initiator containing more than 0% by mass and 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer.
  • the arrival time and the polymer conversion rate are synonymous with those described in the first embodiment.
  • the ethylenically unsaturated carboxylic acid monomer is used after 10% of the time from the arrival time to the end time, more preferably after 15%. It is preferable to start charging the remainder of the ethylenically unsaturated carboxylic acid monomer. Further, the introduction of the remainder of the ethylenically unsaturated carboxylic acid monomer is preferably started by 50% of the time from the arrival to the end, and by 45%. More preferably, it is even more preferred to start by 40%. Further, it is preferable to add 95% by mass or more of the total amount by 70% of the time from the arrival time to the end time. More preferably, it is preferable to add the total amount up to 60% of the time from the arrival time to the end time.
  • an emulsifier surfactant
  • a polymerization initiator emulsifier
  • a chain transfer agent emulsifier
  • a reducing agent emulsifier
  • the emulsifier surfactant
  • the polymerization initiator the chain transfer agent, the reducing agent, etc.
  • the same compounds as those exemplified in the first embodiment described above can be used.
  • the reaction system according to the third embodiment includes saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane; pentene, hexene, heptene for the purpose of controlling the molecular weight and the crosslinked structure of the copolymer.
  • saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane
  • pentene, hexene, heptene for the purpose of controlling the molecular weight and the crosslinked structure of the copolymer.
  • hydrocarbon compounds such as benzene, toluene, xylene and other aromatic hydrocarbons
  • an electrolyte if necessary, an oxygen scavenger, a chelating agent, a dispersant, an antifoaming agent, an anti-aging agent, an antiseptic, an antibacterial agent, a flame retardant, and an ultraviolet absorber.
  • an electrolyte if necessary, an oxygen scavenger, a chelating agent, a dispersant, an antifoaming agent, an anti-aging agent, an antiseptic, an antibacterial agent, a flame retardant, and an ultraviolet absorber.
  • blend additives such as.
  • a part of the component (a), a part of the component (b), a part of the component (c), a part of the component (d), an emulsifier It is preferable to contain a reducing agent and a chain transfer agent.
  • the component (a) When a part of the component (a) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 25% by mass of the total amount of the component (a), and 3 to 20% by mass is contained. Is more preferable.
  • the content of the component (c) is preferably 3 to 55% by mass, and preferably 5 to 50% by mass. Is more preferable.
  • the component (d) When a part of the component (d) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 45% by mass of the total amount of the component (d), and 2 to 30% by mass is contained. Is more preferable.
  • the total amount of the emulsifier and the polymerization initiator is preferably contained in the reaction system at the start of charging the polymerization initiator.
  • the reaction system at the start of charging of the polymerization initiator is, for example, a pressure-resistant polymerization reaction vessel, pure water, the components (a) to (d) described above, an emulsifier, a polymerization initiator, a chain transfer agent, a reducing agent, and the like.
  • the reaction temperature is preferably set in the range of 30 to 100 ° C., and preferably set in the range of 40 to 85 ° C., from the viewpoint of safety in the tank and productivity in consideration of safety. More preferred.
  • a polymerization initiator having an initiation temperature in the above reaction temperature range is used.
  • the temperature of the reaction system can be increased by, for example, 0.25 to 1.0 ° C./min by external heating.
  • a method of adding the components (a) to (d) to the reaction system after reaching the above time for example, a batch addition method, a divided addition method, a continuous addition method, or a power feed method can be employed. From the viewpoint of improving the safety by suppressing the monomer in the reaction system to a certain concentration or less, it is preferable to employ a continuous addition method (hereinafter sometimes referred to as continuous addition). Further, the attachment may be performed a plurality of times.
  • the solubility parameter of SP 1 is taken as SP 2 by 1.50 or less in the difference absolute value between the SP 1 and SP 2, more preferably 1.45 or less, more preferably 0.97 or less, even more preferably 0.
  • the reaction is preferably carried out by adding the monomer component to the reaction system so as to be 92 or less. In this case, a copolymer latex having further excellent freezing stability can be obtained.
  • ⁇ in the copolymer is ⁇ Ecoh in the above formula (3) is the sum of the values of ⁇ Ecoh of each monomer component multiplied by the molar ratio of that component, and ⁇ V in the above formula (3) is The total value is calculated by multiplying the value of ⁇ V of each monomer component by the molar ratio of the component.
  • Example III-1 As an example of Example III-1, which will be described later with respect to the calculation method of SP 1 and SP 2 , first, the ethylenic unsaturation charged into the reaction system by the end of the total amount of the ethylenically unsaturated carboxylic acid monomer.
  • the monomer components other than the carboxylic acid monomer are 18 parts by mass of butadiene, 14 parts by mass of styrene, and 8 parts by mass of acrylonitrile, and are charged into the reaction system after the completion of the total amount of the ethylenically unsaturated carboxylic acid monomer.
  • the monomer components other than the ethylenically unsaturated carboxylic acid monomer are 24 parts by mass of butadiene, 19 parts by mass of styrene, and 11 parts by mass of acrylonitrile.
  • the difference between SP 1 and SP 2 is 0.02 in absolute value.
  • the time from the above arrival to the end of the total addition of the components (a) to (d) is preferably 1 to 15 hours. More preferably, it is time.
  • the emulsion polymerization is preferably carried out until the polymer conversion rate of the components (a) to (d) reaches 95% or more, and more preferably 97% or more.
  • the polymer conversion rate can be calculated from the solid content or from the amount of heat obtained by cooling the polymerization tank. In this way, a copolymer latex is obtained.
  • the copolymer latex is preferably adjusted to a pH of 5 to 8.5 with ammonia, potassium hydroxide, sodium hydroxide or the like, and adjusted to 5.5 to 7.5. More preferably.
  • the copolymer latex is preferably freed of unreacted monomers and other low-boiling compounds by a method such as heating under reduced pressure.
  • a low viscosity copolymer latex can be obtained at a sufficient solid content concentration.
  • the solid content concentration of the copolymer latex is preferably 35 to 65% by mass, more preferably 40 to 60% by mass, from the viewpoints of cost during transportation and tank capacity during storage.
  • the copolymer latex may be concentrated by a method such as an evaporation method so that the solid content concentration is 45 to 69% by mass.
  • the copolymer latex obtained by the method according to the third embodiment can have a sufficiently low viscosity even when concentrated.
  • the viscosity of the copolymer latex is preferably 50 to 1000 mPa ⁇ s at 25 ° C., and more preferably 70 to 700 mPa ⁇ s.
  • the viscosity is a B type (BL type) viscometer (TOKI SANGYO LTD made by VISCOMETER (model BM) according to the measurement method of JIS K7117-1, in the case of a viscosity of 0 to 100 mPa ⁇ s, No. 1 rotor, 100. ⁇ 500 mPa ⁇ s: No. 2 rotor, 500 to 2000 mPa ⁇ s: No. 3 rotor, 2000 mPa ⁇ s or more: No. 4 rotor, rotation speed is 60 rpm) .
  • the copolymer latex may contain functional additives such as preservatives, anti-aging agents, dispersants, printability improvers, surface sizing agents, lubricants, and surfactants. These additives can be used in appropriate amounts in both types and amounts.
  • the copolymer latex according to the third embodiment can be a latex that can exhibit sufficient adhesive strength and covering property to the electrode active material, can achieve low viscosity, and is excellent in freeze stability.
  • blended the copolymer latex which concerns on 3rd embodiment can form the coating layer which has the outstanding binding force with respect to metals, such as a collector.
  • the present inventors consider the reason why the copolymer latex of the third embodiment is excellent in freezing stability as follows.
  • the left side of the formula (2) indicates the ratio of the heat of fusion detected from ⁇ 20 ° C. to 0 ° C. with respect to the total heat of fusion of water contained in the copolymer latex.
  • this value is 0.8 or less on the right side of the formula (2), it is considered that the amount of water not detected from ⁇ 20 ° C. to 0 ° C. is present in the latex by 20% by mass or more.
  • the peaks detected from ⁇ 20 ° C. to 0 ° C. are bound water and free water, and the water not detected is presumed to be antifreeze water.
  • Such antifreeze water can be sufficiently present in the latex by the above specific emulsion polymerization, and as a result, it has become possible to improve freezing stability while achieving both adhesive strength and low viscosity. Conceivable.
  • the proportion of the antifreeze water obtained by differential scanning calorimetry is preferably 20% by mass or more with respect to the total water content, and is 25% by mass or more. More preferably.
  • the amount of antifreeze water (% by mass) relative to the total amount of water can be determined by the following procedure.
  • the copolymer latex is adjusted to a solid content C S (mass%) and pH 7 to prepare a measurement sample.
  • concentration and pH pure water and sodium hydroxide can be used, respectively.
  • the prepared measurement sample is packed in an aluminum pan and set in a differential scanning calorimeter (DSC6200: manufactured by Seiko Instruments Inc.). After setting the temperature to ⁇ 25 ° C., the temperature is raised to 30 ° C. at a rate of temperature rise of 1 ° C./min to obtain a DSC curve. The heat of fusion ⁇ H (mJ / mg) from ⁇ 20 ° C. to 0 ° C. is calculated from the obtained DSC curve.
  • Formula (A): Total amount of bound water and free water (mg) [ ⁇ H (mJ / mg) ⁇ mass of measurement sample (mg)] / ⁇ H W (mJ / mg)
  • Formula (B): Total water content in measurement sample (mg) mass of measurement sample (mg) ⁇ (100 ⁇ C S ) / 100
  • Formula (C): Amount of antifreeze water (mg) total water amount in measurement sample (mg) ⁇ total amount of combined water and free water (mg)
  • Formula (D): Ratio of antifreeze water amount to total water amount (mass%) antifreeze water amount (mg) ⁇ 100 / total water amount in measurement sample (mg)
  • the copolymer latex according to the third embodiment is used for paper coating, fiber bonding such as nonwoven fabric, carpet backing, batteries (for example, electrodes, separators, heat-resistant protective layers, etc.), paints, and adhesives.
  • a binder Useful as a binder.
  • Examples of the paper coating composition include a copolymer latex according to the third embodiment and, if necessary, a pigment, another binder, an auxiliary agent, and the like.
  • pigments other binders, auxiliaries and the like, the same compounds as those exemplified in the first embodiment described above can be used.
  • the content of the copolymer latex in the paper coating composition is preferably 1 to 20 parts by mass and more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the pigment. preferable.
  • Examples of the battery electrode composition include those containing the copolymer latex and the active material according to the third embodiment, and, if necessary, an auxiliary agent.
  • the positive electrode active material As the positive electrode active material, the negative electrode active material, the auxiliary agent, etc., the same compounds as those exemplified in the first embodiment described above can be used.
  • the content of the copolymer latex in the battery electrode composition is preferably 0.1 to 10 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the active material, 0.5 to More preferably, it is 7 parts by mass.
  • the content of the copolymer latex is 0.1 parts by mass or more, it is preferable from the viewpoint of obtaining a good adhesive force with respect to the active material or the current collector, and when it is 10 parts by mass or less, a secondary battery is assembled. It is preferable from the viewpoint of sometimes preventing the overvoltage from significantly increasing and degrading the battery characteristics.
  • the battery electrode composition is applied to a current collector and dried to form an electrode coating layer on the current collector to obtain an electrode sheet.
  • an electrode sheet is used as, for example, a positive electrode plate or a negative electrode plate of a non-aqueous electrolyte secondary battery.
  • a method of applying the battery electrode composition to the current collector for example, a known method such as a reverse roll method, a comma bar method, a gravure method, or an air knife method can be used.
  • a dryer, a warm air dryer, an infrared heater, a far infrared heater, or the like is used.
  • the battery electrode composition using the copolymer latex according to the third embodiment is suitable for an electrode of a secondary battery such as a nonaqueous electrolyte secondary battery, a nickel hydrogen battery, or a nickel cadmium battery.
  • a secondary battery such as a nonaqueous electrolyte secondary battery, a nickel hydrogen battery, or a nickel cadmium battery.
  • Example I-1 In a pressure-resistant polymerization reaction vessel, 10 parts by mass of cyclohexene and each monomer component and other compounds in the blending amounts (parts by mass) shown in the first stage of Table 2 are added and stirred sufficiently to obtain a reaction solution. It was.
  • each monomer component and other compounds in the blending amounts (parts by mass) shown in the third row of Table 2 are added to the continuous addition time zone shown in the third row of Table 2 (after 290 minutes on the basis of arrival time). Until 470 minutes).
  • the temperature in the polymerization tank was raised to 85 ° C. and maintained at 85 ° C.
  • the fact that the polymer conversion rate exceeded 97% was confirmed from the amount of heat by which the polymerization tank was cooled, the polymerization was terminated, and a reaction product was obtained.
  • the pH of the reaction product was adjusted to 6.5 using sodium hydroxide.
  • the reaction product was subjected to heating under reduced pressure to obtain a copolymer latex IA.
  • Examples I-2 to I-11, I-12, I-13 Copolymer latex in the same manner as in Example I-1, except that the blending amount of each monomer component and other compounds, the addition time zone, and the reaction temperature were changed to the conditions shown in Table 2, 3 or 5.
  • IB to IK, IL, and IM were obtained.
  • copolymer latex obtained above was evaluated for the amount of aggregate, the latex viscosity after concentration, and the filterability according to the following method.
  • the copolymer latex is diluted to about 0.05% by mass with a 1% by mass saline solution, and the diluted solution is filtered through a 300 mesh wire mesh, and then the particle size is 2 to 10 ⁇ m using Multisizer 3 (manufactured by Beckman Coulter). The number of particles was measured. From the measurement results, the total mass of particles having a particle diameter of 2 to 10 ⁇ m was calculated, and the ratio (mass%) of particles having a particle diameter of 2 to 10 ⁇ m to the solid content of the copolymer latex was calculated.
  • B-type viscosity is 3500 mPa ⁇ s or less
  • the copolymer latex was concentrated by an evaporation method, and the copolymer latex adjusted to pH 6 with a solid content of 47% by mass using sodium hydroxide was filtered through a metal mesh of about 20 cm in height to 300 mesh. Filtration was performed by folding a 12.5 cm square wire mesh into four and feeding the latex latex with a copolymer latex at 50 to 80% at all times. The filtration rate ⁇ (mL / second) per unit time was calculated from the time taken when 50 ml of copolymer latex was filtered, and the filterability was evaluated according to the following criteria.
  • a paper coating composition was prepared by the following method to prepare a coated paper.
  • a paper coating composition was prepared according to the formulation shown below.
  • the paper coating composition was adjusted to pH 9.5 with sodium hydroxide, and the solid content concentration was adjusted to 67% by mass by adding a necessary amount of pure water.
  • Kaolin product name: DB Glaze, manufactured by Imerizu Minerals Japan Co., Ltd.
  • heavy calcium carbonate product name: Carbital 90, manufactured by Imeris Minerals Japan Co., Ltd.
  • modified starch Japanese food
  • a battery electrode composition was prepared by the following method to prepare an electrode.
  • composition for positive electrode 100 parts by mass of LiCoO 2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive agent, and 1 part by mass of an aqueous carboxymethyl cellulose as a thickener, As a binder, 2 parts by mass of the copolymer latex of each Example and each Comparative Example was kneaded by adding an appropriate amount of pure water so that the total solid content was 65% by mass, and the composition for the positive electrode A product was prepared.
  • (1-2) Production of Negative Electrode The negative electrode composition obtained as described above was applied to a 20 ⁇ m thick copper foil serving as a current collector, dried at 130 ° C. for 5 minutes, and then roll pressed at room temperature. A negative electrode having a coating layer thickness of 100 ⁇ m was obtained. In addition, when evaluating the coverage of an electrode active material, the thing before the rolling by roll press was used.
  • each negative electrode sheet obtained by the above method Since the cycle characteristics upon repeated charge / discharge are improved by coating the surface of the active material more with the copolymer latex, in each negative electrode sheet obtained by the above method, copolymerization is performed by the following method. The coverage of the combined latex on the active material was evaluated. That is, each negative electrode sheet (before rolling) obtained above was cut into a 1 cm square, dyed in an osmium tetroxide atmosphere, and then used with a scanning electron microscope (trade name: JSM-6510LA, manufactured by JEOL Ltd.). And observed at 5000 times.
  • copolymer latex obtained in Examples I-1 to I-10 has a sufficiently low viscosity even after concentration, hardly generates aggregates, and has excellent filterability.
  • the reason why copolymer latexes IA to IK, IL, and IM are excellent in filterability is considered to be a synergistic effect of low viscosity and less aggregate formation due to shear. It is done. Further, as is apparent from the results shown in Table 7, the copolymer latexes obtained in Examples I-1 to I-11, I-12, and I-13 were evaluated in battery electrodes. It was confirmed that it had good electrode active material coverage.
  • a copolymer latex having a sufficiently low viscosity can be obtained even after concentration, so that the burden on the pump for transferring the copolymer latex can be reduced. This can save energy. Further, according to the invention according to the first embodiment, a copolymer latex excellent in filterability can be obtained, so that the time required for filtration of the copolymer latex is shortened and loss due to filtration is reduced. Thus, it is possible to obtain a copolymer latex excellent in adhesive strength and active material coverage with high productivity.
  • viscosity at transfer For the copolymer latex obtained in Examples I-12 and I-13, the viscosity at transfer (hereinafter sometimes referred to as “viscosity at transfer”) was measured.
  • the viscosity of the copolymer latex after adjustment was measured according to the measurement method of JIS K7117-1 using a B-type (BL type) viscometer after 1 minute from the start of rotation at a rotation speed of 60 rpm. was the viscosity at the time of transfer.
  • the viscosity of the copolymer latex obtained in Examples I-12 and I-13 was 400 mPa ⁇ s and 420 mPa ⁇ s, respectively.
  • Example II-1 To the pressure-resistant polymerization reaction vessel, 10 parts by mass of cyclohexene and each monomer component and other compounds in the blending amounts (parts by mass) shown in the first stage of Table 8 were added and stirred sufficiently to obtain a reaction solution. .
  • the temperature in the polymerization tank was increased, and the time when the polymer conversion rate of the reaction system reached 1.0% was regarded as reaching time, and after 90 minutes from this reaching time as a reference (0 minutes),
  • Each monomer component and other compounds in the compounding amount (parts by mass) shown in the second stage are added to the continuous time zone shown in the second stage of Table 8 (from 90 minutes to 285 minutes after reaching the time, However, the component (b) was added to the reaction solution from 90 minutes to 180 minutes later.
  • the reaction temperature of the polymerization system was 67 ° C.
  • the temperature in the polymerization tank was raised to 85 ° C. and maintained at 85 ° C.
  • the fact that the polymer conversion rate exceeded 97% was confirmed from the amount of heat by which the polymerization tank was cooled, the polymerization was terminated, and a reaction product was obtained.
  • the pH of the reaction product was adjusted to 6.5 using sodium hydroxide. Subsequently, in order to remove unreacted monomers and other low-boiling compounds, the reaction product was subjected to heating under reduced pressure to obtain a copolymer latex II-A.
  • Example II-2 to II-11 Copolymer latex II- in the same manner as in Example II-1, except that the amount of each monomer component and other compounds, addition time zone, and reaction temperature were changed to the conditions shown in Table 8 or 9. B to II-K were obtained respectively.
  • Detected acid amount A 0.1 ⁇ T ⁇ 100 / (W ⁇ M / 100)
  • T titration amount of aqueous sodium hydroxide solution (mL)
  • W Sampling amount of copolymer latex
  • M solid content concentration of copolymer latex (%)
  • Theoretical acid amount B The blending ratio of the ethylenically unsaturated carboxylic acid monomer to the total amount of the monomer components constituting the copolymer is X (mass%), the molecular weight of the ethylenically unsaturated carboxylic acid monomer is Y, and the ethylenically unsaturated carboxylic acid The maximum dissociation frequency of the acid monomer was Z, and the theoretical acid amount derived from the ethylenically unsaturated carboxylic acid monomer was calculated from the following formula (1).
  • Theoretical acid amount (X ⁇ Z ⁇ 1000) / Y (1)
  • the theoretical acid amount is calculated in the same manner, and these are summed to obtain the theoretical acid amount B (milli equivalent / 100 g per 100 g of the solid content of the copolymer latex). )
  • the coagulum was adhered to the inner wall of the pressure-resistant polymerization container after discharge (SUS-made vessel 100L) was visually observed, calculates the ratio S / S 0 of the clot adhesion area S with respect to the inner wall of the reactor area S 0 And evaluated according to the following criteria.
  • a latex film having a thickness of 0.3 to 0.5 mm was prepared by the following procedure.
  • the copolymer latex was adjusted to pH 10 with sodium hydroxide, and sodium polyacrylate (made by Daiichi Kogyo Seiyaku Co., Ltd., trade name: IX-1177, weight average molecular weight: 7 to 8 million) as a thickener.
  • sodium polyacrylate made by Daiichi Kogyo Seiyaku Co., Ltd., trade name: IX-1177, weight average molecular weight: 7 to 8 million
  • the amount of sodium polyacrylate added was adjusted as appropriate so that the viscosity of the coating solution was such that a latex film having a thickness of 0.3 to 0.5 mm could be produced within a range not exceeding the above upper limit. .
  • the obtained coating solution was thinned with a film applicator and allowed to dry for 48 hours under conditions of 23 ° C. and 50% RH.
  • the temperature is 20 ° C. higher than the minimum film-forming temperature of the latex measured according to the method of JIS K6828-2, and the condition is 50% RH for 48 hours. Allowed to dry. Further, the dried thin film was subjected to heat treatment in an oven set at 130 ° C.
  • the obtained latex film was punched into the shape and dimensions of a dumbbell-shaped No. 3 described in JIS K-6251 except for the thickness to obtain a test piece. After leaving this test piece for 24 hours in a desiccator, using a tensile compression tester (trade name: TechnoGraph TGE-5kN) manufactured by Minebea Co., Ltd., stress and elongation (when tested at a pulling speed of 500 mm / min) Displacement) was measured. From the measurement results, the tensile stress at the time of cutting was determined and shown in Table 12.
  • the test conditions are as follows.
  • a battery electrode composition was prepared by the following method to prepare an electrode.
  • composition for positive electrode 100 parts by mass of LiCoO 2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive agent, and 1 part by mass of an aqueous carboxymethyl cellulose as a thickener, As a binder, 2 parts by mass of the copolymer latex of each Example and each Comparative Example was kneaded by adding an appropriate amount of pure water so that the total solid content was 65% by mass, and the composition for the positive electrode A product was prepared.
  • (1-2) Production of Negative Electrode The negative electrode composition obtained as described above was applied to a 20 ⁇ m thick copper foil serving as a current collector, dried at 130 ° C. for 5 minutes, and then roll pressed at room temperature. A negative electrode having a coating layer thickness of 100 ⁇ m was obtained. In addition, when evaluating the coverage of an electrode active material, the thing before the rolling by roll press was used.
  • each negative electrode sheet obtained by the above method Since the cycle characteristics upon repeated charge / discharge are improved by coating the surface of the active material more with the copolymer latex, in each negative electrode sheet obtained by the above method, copolymerization is performed by the following method. The coverage of the combined latex on the active material was evaluated. That is, each negative electrode sheet (before rolling) obtained above was cut into a 1 cm square, dyed in an osmium tetroxide atmosphere, and then used with a scanning electron microscope (trade name: JSM-6510LA, manufactured by JEOL Ltd.). And observed at 5000 times.
  • copolymer latex obtained in Examples II-1 to II-10 showed less adhesion of coagulum and sufficient tensile stress at the time of cutting. Further, as is apparent from the results shown in Table 12, the copolymer latex obtained in Examples II-1 to II-11 was agglomerated of the composition for battery electrodes even in evaluation for battery electrodes. It was confirmed that the material has good electrode active material coverage.
  • Example III-1 Into a pressure-resistant polymerization reaction vessel, 10 parts by mass of cyclohexene and each monomer component and other compounds in the blending amount (parts by mass) shown in the first stage of Table 13 were added and stirred sufficiently to obtain a reaction solution. .
  • each monomer component and other compounds in the blending amounts (parts by mass) shown in the third row of Table 13 were added to the continuous addition time zone shown in the third row of Table 13 (after 220 minutes on the basis of arrival time). (Until 490 minutes later).
  • the temperature in the polymerization tank was raised to 85 ° C. and maintained at 85 ° C. After confirming that the polymer conversion rate exceeded 97% from the amount of heat of cooling the polymerization tank, the polymerization was terminated and a reaction product was obtained.
  • the pH of the reaction product was adjusted to 6.5 using sodium hydroxide. Subsequently, in order to remove unreacted monomers and other low-boiling compounds, the reaction product was subjected to heating under reduced pressure to obtain a copolymer latex III-A.
  • Examples III-2 to III-11 A copolymer latex III- was prepared in the same manner as in Example III-1, except that the amount of each monomer component and other compounds, addition time zone, and reaction temperature were changed to the conditions shown in Table 13 or 14. B to III-K were obtained respectively.
  • the copolymer latex was adjusted to pH 7 and solid content of 40% by mass using pure water and sodium hydroxide to prepare a measurement sample.
  • the prepared measurement sample was packed in an aluminum pan, set in a differential scanning calorimeter (DSC6200: manufactured by Seiko Instruments Inc.), the temperature was set to ⁇ 25 ° C., and the temperature was raised to 30 ° C. at a rate of 1 ° C./min.
  • a DSC curve was obtained.
  • the heat of fusion ⁇ H (mJ / mg) from ⁇ 20 ° C. to 0 ° C. was calculated from the obtained DSC curve.
  • the ratio (mass%) of the amount of antifreeze water to the total amount of water was determined by the following formulas (A), (B), (C) and (D). The results are shown in Table 18, respectively.
  • Formula (A): Total amount of bound water and free water (mg) [ ⁇ H (mJ / mg) ⁇ mass of measurement sample (mg)] / ⁇ H W (mJ / mg)
  • Formula (B): Total water content in measurement sample (mg) mass of measurement sample (mg) ⁇ (100 ⁇ C S ) / 100
  • Formula (C): Amount of antifreeze water (mg) total water amount in measurement sample (mg) ⁇ total amount of combined water and free water (mg)
  • Formula (D): Ratio of antifreeze water amount to total water amount (mass%) antifreeze water amount (mg) ⁇ 100 / total water amount in measurement sample (mg)
  • the viscosity of the copolymer latex after adjustment was measured 1 minute after the start of rotation at a rotation speed of 60 rpm using a B-type (BL type) viscometer according to the measurement method of JIS K7117-1. About the obtained viscosity, it determined as follows. The lower the viscosity, the better. A: 400 mPa ⁇ s or less B: More than 400 1000 mPa ⁇ s or less C: 1000 mPa ⁇ s or less
  • a paper coating composition was prepared by the following method to prepare a coated paper.
  • a paper coating composition was prepared according to the formulation shown below.
  • the paper coating composition was adjusted to pH 9.5 with sodium hydroxide, and the solid content concentration was adjusted to 67% by mass by adding a necessary amount of pure water.
  • Kaolin product name: DB Glaze, manufactured by Imerizu Minerals Japan Co., Ltd.
  • heavy calcium carbonate product name: Carbital 90, manufactured by Imeris Minerals Japan Co., Ltd.
  • modified starch Japanese food
  • the coating base paper (basis weight 55g / m 2), after the coated amount per one surface of the above paper coating composition was coated and dried by using a wire bar such that the 10 g / m 2, line A calender treatment was performed under the conditions of a pressure of 60 kg / cm and a temperature of 50 ° C. to obtain a coated paper. About the obtained coated paper, dry pick strength was evaluated by the following method.
  • monomer components other than the ethylenically unsaturated carboxylic acid monomer charged into the reaction system by the end of the total amount of the ethylenically unsaturated carboxylic acid monomer are butadiene 18 parts by mass, 14 parts by mass of styrene, and 8 parts by mass of acrylonitrile, and a unit other than the ethylenically unsaturated carboxylic acid monomer introduced into the reaction system after the completion of the entire introduction of the ethylenically unsaturated carboxylic acid monomer.
  • the monomer component is 24 parts by mass of butadiene, 19 parts by mass of styrene, and 11 parts by mass of acrylonitrile.
  • the difference between SP 1 and SP 2 is 0.02 in absolute value.
  • a battery electrode composition was prepared by the following method to prepare an electrode.
  • composition for positive electrode 100 parts by mass of LiCoO 2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive agent, and 1 part by mass of an aqueous carboxymethyl cellulose as a thickener, As a binder, 2 parts by mass of the copolymer latex of each Example and each Comparative Example was kneaded by adding an appropriate amount of pure water so that the total solid content was 65% by mass, and the composition for the positive electrode A product was prepared.
  • (1-2) Production of Negative Electrode The negative electrode composition obtained as described above was applied to a 20 ⁇ m thick copper foil serving as a current collector, dried at 130 ° C. for 5 minutes, and then roll pressed at room temperature. A negative electrode having a coating layer thickness of 100 ⁇ m was obtained. In addition, when evaluating the coverage of an electrode active material, the thing before the rolling by roll press was used.
  • each negative electrode sheet obtained by the above method Since the cycle characteristics upon repeated charge / discharge are improved by coating the surface of the active material more with the copolymer latex, in each negative electrode sheet obtained by the above method, copolymerization is performed by the following method. The coverage of the combined latex on the active material was evaluated. That is, each negative electrode sheet (before rolling) obtained above was cut into a 1 cm square, dyed in an osmium tetroxide atmosphere, and then used with a scanning electron microscope (trade name: JSM-6510LA, manufactured by JEOL Ltd.). And observed at 5000 times.
  • copolymer latex obtained in Examples III-1 to III-10 was excellent in dry pick strength, low viscosity, and excellent in freeze stability.
  • the copolymer latex obtained in Examples III-1 to III-11 has good peel strength of the electrode coating layer obtained by applying the composition for battery electrodes and good coverage to the electrode active material. It was confirmed that there was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 The method for manufacturing a copolymer latex according to the present invention is a method for manufacturing copolymer latex obtained by emulsion polymerization, wherein the copolymer is composed of monomer components comprising 15-60 mass% of an aliphatic conjugated diene-based monomer, 5-35 mass% of an ethylene-based unsaturated carboxylic acid monomer, 0.5 to 30 mass% of a vinyl cyanide monomer, and 0-79.5 mass% of a monomer capable of copolymerization therewith, and emulsion polymerization is carried out by containing more than 0 mass% and 40 mass% or less of the entire amount of the ethylene-based unsaturated carboxylic acid monomer in the reaction system at the start of loading the polymerization initiator, starting the loading of the remainder of the ethylene-based unsaturated carboxylic acid monomer at or later than the time point of 5% of the time beginning from the arrival time at which the polymer conversion rate of the reaction system has arrived at 1.0% until the end time at which the loading of the entire amount of the monomer component has ended, and loading 92 mass% of the entire amount of the ethylene-based unsaturated carboxylic acid monomer before the time point of 80% of the time beginning from the arrival time until the end time.

Description

共重合体ラテックスの製造方法、及び共重合体ラテックスMethod for producing copolymer latex, and copolymer latex
 本発明は、共重合体ラテックスの製造方法、及び共重合体ラテックスに関する。 The present invention relates to a method for producing a copolymer latex and a copolymer latex.
 従来より、塗工紙及び電池用電極の材料などの様々な用途に共重合体ラテックスが利用されている。共重合体ラテックスは、各用途における操業性に優れて使いやすく、最終製品に高度な物性バランスを与えるよう改良が重ねられているものの、更に高度な物性バランスを与えることができる共重合体ラテックスが切望されている。 Conventionally, copolymer latex has been used for various applications such as coated paper and battery electrode materials. Copolymer latex has excellent operability in each application, is easy to use, and has been improved to give a high balance of physical properties to the final product. Longed for.
 例えば、塗工紙は、その印刷効果が高い等の理由から、非常に数多くの印刷物に利用されている。季刊、月間紙等の定期刊行物の中にも、全ての頁に塗工紙が使用される場合もかなり増えている。特に、メールオーダービジネスにおけるダイレクトメールや商品カタログ等においては、そのほとんどが全ての頁に塗工紙を使用している。 For example, coated paper is used for a large number of printed materials because of its high printing effect. Even in periodicals such as quarterly and monthly papers, the use of coated paper on all pages has increased considerably. In particular, most direct mails and product catalogs in the mail order business use coated paper for all pages.
 一般に紙塗工用組成物は、クレーや炭酸カルシウムなどの白色顔料を水に分散した顔料分散液と、顔料同士および顔料と原紙とを接着固定するためのバインダーと、その他の添加剤とによって構成される水性塗料である。バインダーとしては、スチレン-ブタジエン系共重合体ラテックスに代表されるような合成エマルションバインダーや、デンプン、カゼインに代表されるような天然バインダーが使用される。その中でも、乳化重合により得られるスチレン-ブタジエン系共重合体ラテックスは、品質設計の自由度が大きく、紙塗工用組成物に最も適したバインダーとして広く使用されており、その特性が紙塗工用組成物の性能や塗工紙作成時の操業性あるいは最終的な塗工紙製品の表面強度、印刷光沢などの品質に影響することが知られている(例えば、下記特許文献1~4を参照)。 Generally, a composition for paper coating is composed of a pigment dispersion in which a white pigment such as clay or calcium carbonate is dispersed in water, a binder for adhering and fixing the pigments to each other, and the pigment and the base paper, and other additives. It is a water-based paint. As the binder, a synthetic emulsion binder represented by styrene-butadiene copolymer latex, or a natural binder represented by starch or casein is used. Among them, styrene-butadiene copolymer latex obtained by emulsion polymerization has a large degree of freedom in quality design and is widely used as the most suitable binder for paper coating compositions. It is known that it affects the performance of the composition for coating, the operability at the time of producing coated paper, or the quality of the final coated paper product, such as surface strength and printing gloss (see, for example, Patent Documents 1 to 4 below) reference).
特許第4125078号公報Japanese Patent No. 4125078 特開平05-301907号公報Japanese Patent Laid-Open No. 05-301907 特開2009-91669号公報JP 2009-91669 A 特開2008-248446号公報JP 2008-248446 A
 最近、紙塗工用組成物などの塗料に対し、顔料コストの高騰から塗料の低コスト化が図られており、高価なカオリンから安価な炭酸カルシウムへの配合比率が増すと共に、塗料コストに占める割合の大きな共重合体ラテックスの配合量を減らす動きがある。そのため、少ない配合量でも十分な接着強度を発現できる共重合体ラテックスが求められている。 In recent years, paints such as compositions for paper coating have been reduced in cost due to soaring pigment costs, and the proportion of expensive kaolin to cheap calcium carbonate has increased, and the paint cost has been increased. There is a move to reduce the amount of copolymer latex with a large proportion. Therefore, there is a demand for a copolymer latex that can exhibit sufficient adhesive strength even with a small amount.
 しかし、高性能化への対応は共重合体ラテックスの粘度を増加させる傾向にあり、一般的には共重合体ラテックスの高性能化と低粘度化とはトレードオフの関係にある。共重合体ラテックスの接着強度の向上を図る場合、粘度の増加に伴う作業性の低下が懸念される。例えば、運搬時にかかるコストや貯蔵時のタンク容量の観点から、共重合体ラテックスの固形分濃度は十分高いことが望ましいが、固形分濃度が高くなると共重合体ラテックスの粘度が増加して移送性やろ過性などの取扱い作業性が劣ることとなる。 However, the response to higher performance tends to increase the viscosity of the copolymer latex, and generally there is a trade-off relationship between higher performance and lower viscosity of the copolymer latex. When attempting to improve the adhesive strength of the copolymer latex, there is a concern that workability will decrease with increasing viscosity. For example, from the viewpoint of transportation costs and storage tank capacity, it is desirable that the copolymer latex has a sufficiently high solid content, but if the solid content increases, the viscosity of the copolymer latex increases and transportability is increased. The handling workability such as filterability is inferior.
 また、共重合体ラテックスは、電池用電極の材料としても利用されており、電極作成時に電極活物質への被覆性に優れることが望まれている。 Further, the copolymer latex is also used as a material for battery electrodes, and it is desired that the copolymer latex is excellent in covering property to the electrode active material at the time of electrode preparation.
 本発明の目的の一つは、十分な接着強度を発現でき、電極活物質への被覆性も良好な共重合体ラテックスを十分な固形分濃度且つ低粘度で得ることができる共重合体ラテックスの製造方法を提供することにある。 One of the objects of the present invention is to provide a copolymer latex capable of exhibiting sufficient adhesive strength and having good coverage to an electrode active material with a sufficient solid concentration and low viscosity. It is to provide a manufacturing method.
 また他方、寒冷地でラテックスを取り扱う際、ラテックスを凍結させないように配管などを全て保温するなどの対策が必要であった。ラテックスが凍結してしまうと解凍しても元通りにならないことが多く、多少の低温状態に曝されても安定性が良好なラテックスが求められていた。 On the other hand, when handling latex in cold regions, it was necessary to take measures such as keeping all pipes warm so as not to freeze the latex. When the latex freezes, it often does not return to its original state even when thawed, and there has been a demand for a latex having good stability even when exposed to some low temperature conditions.
 本発明の目的の一つは、十分な接着強度を発現できるとともに、低粘度化を実現でき、なおかつ凍結安定性に優れた共重合体ラテックスを提供することにある。 One of the objects of the present invention is to provide a copolymer latex that can exhibit sufficient adhesive strength, can achieve low viscosity, and is excellent in freeze stability.
 また最近では、共重合体ラテックスの更なる高性能化が要求されており、例えば木質用接着剤などの凝集破壊が支配的となるような用途における要求特性の一つに、フィルムにしたときの強度がある。しかし、高性能化への対応は共重合体ラテックスの粘度を増加させる傾向にあり、一般的には共重合体ラテックスの高性能化と低粘度化とはトレードオフの関係にある。生産性及び輸送コストの観点から、共重合体ラテックスの固形分濃度は十分高いことが望ましいが、そうした場合に共重合体ラテックスの強度の向上を図ると、粘度の増加に伴い反応器の内壁などの設備に凝固物が付着しやすくなる。 Recently, further improvement in the performance of copolymer latex has been demanded. For example, one of the required properties in applications where cohesive failure such as adhesives for wood is dominant is There is strength. However, the response to higher performance tends to increase the viscosity of the copolymer latex, and generally there is a trade-off relationship between higher performance and lower viscosity of the copolymer latex. From the viewpoint of productivity and transportation cost, it is desirable that the solid concentration of the copolymer latex is sufficiently high. In such a case, if the strength of the copolymer latex is improved, the inner wall of the reactor etc. The coagulum easily adheres to the equipment.
 また、共重合体ラテックスは、電池用電極の材料としても利用されており、電極作成時に電極活物質への被覆性に優れることや、電池電極用組成物において凝集物の発生が少ないことが望まれている。 Copolymer latex is also used as a material for battery electrodes, and it is desired that the electrode latex is excellent in coverage with an electrode active material when the electrode is produced, and that there is little generation of aggregates in the battery electrode composition. It is rare.
 本発明の目的の一つは、十分な強度を発現でき、なおかつ凝固物が付着しにくく、さらには電極活物質への被覆性も良好であるとともに電池電極用組成物において凝集物の発生が少ない共重合体ラテックスを提供することにある。 One of the objects of the present invention is that sufficient strength can be expressed, the solidified material is difficult to adhere, and the covering property to the electrode active material is good, and the generation of aggregates in the battery electrode composition is small. It is to provide a copolymer latex.
 本発明の第一態様に係る発明は、乳化重合により得られる共重合体ラテックスの製造方法であって、共重合体は、脂肪族共役ジエン系単量体15~60質量%、エチレン系不飽和カルボン酸単量体5~35質量%、シアン化ビニル単量体0.5~30質量%、及び、これらと共重合可能な単量体0~79.5質量%、からなる単量体成分で構成されており、乳化重合を、重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、反応系のポリマー転化率が1.0%に到達した到達時から単量体成分の全量投入終了した終了時までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行う共重合体ラテックスの製造方法を提供する。 The invention according to the first aspect of the present invention is a method for producing a copolymer latex obtained by emulsion polymerization, wherein the copolymer comprises 15 to 60% by mass of an aliphatic conjugated diene monomer, ethylenically unsaturated Monomer component comprising 5 to 35% by weight of a carboxylic acid monomer, 0.5 to 30% by weight of a vinyl cyanide monomer, and 0 to 79.5% by weight of a monomer copolymerizable therewith. The reaction system at the start of charging the polymerization initiator contains 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer. From the time point when the conversion rate reaches 1.0% to the end time when all the monomer components are charged, the remaining amount of the ethylenically unsaturated carboxylic acid monomer is charged. 8 from the time of arrival to the end of time % Time until the, to provide a method of manufacturing a copolymer latex performed by introducing more than 92 wt% of the total amount of the ethylenically unsaturated carboxylic acid monomer.
 第一態様に係る本発明の共重合体ラテックスの製造方法によれば、十分な接着強度を発現でき、電極活物質への被覆性も良好な共重合体ラテックスを十分な固形分濃度且つ低粘度で得ることができる。本発明の共重合体ラテックスの製造方法によって得られる共重合体ラテックスは、凝集物が発生しにくく、ろ過性に優れるという特徴を有することができる。また、共重合体ラテックスの電極活物質への被覆性が良好であることにより、充放電を繰り返した際の電池のサイクル特性を向上させることができる。 According to the method for producing a copolymer latex of the present invention according to the first aspect, a copolymer latex that can exhibit sufficient adhesive strength and has good coverage to an electrode active material has a sufficient solid concentration and low viscosity. Can be obtained at The copolymer latex obtained by the method for producing a copolymer latex of the present invention can be characterized in that aggregates hardly occur and filterability is excellent. Moreover, the cycle characteristic of the battery at the time of repeating charging / discharging can be improved because the covering property to the electrode active material of copolymer latex is favorable.
 第一態様に係る本発明の共重合体ラテックスの製造方法において、上記エチレン系不飽和カルボン酸単量体がモノカルボン酸単量体を30質量%超含むことが好ましい。この場合、エチレン系不飽和カルボン酸単量体におけるモノカルボン酸単量体の割合が30質量%以下である場合に比べてpH中性域での粘度低減効果をより高めることができる。 In the method for producing a copolymer latex of the present invention according to the first aspect, the ethylenically unsaturated carboxylic acid monomer preferably contains more than 30% by mass of a monocarboxylic acid monomer. In this case, the effect of reducing the viscosity in the neutral pH range can be further enhanced as compared with the case where the proportion of the monocarboxylic acid monomer in the ethylenically unsaturated carboxylic acid monomer is 30% by mass or less.
 また、上記乳化重合を、上記到達時から上記終了時までの時間、の60%の時点までに、上記シアン化ビニル単量体の全量の80質量%以上を投入して行うことが好ましい。この場合、反応系の重合中の粘度を更に低減することができ、これにより、凝集物の発生を高度に抑制することができ、ろ過性に一層優れた共重合体ラテックスを得ることができる。 Further, it is preferable that the emulsion polymerization is carried out by charging 80% by mass or more of the total amount of the vinyl cyanide monomer by 60% of the time from the arrival to the end. In this case, the viscosity during the polymerization of the reaction system can be further reduced, whereby the generation of aggregates can be highly suppressed, and a copolymer latex having further excellent filterability can be obtained.
 本発明の第二態様に係る発明は、乳化重合により得られる共重合体ラテックスであって、共重合体は、脂肪族共役ジエン系単量体15~60質量%、エチレン系不飽和カルボン酸単量体5~35質量%、シアン化ビニル単量体0.5~30質量%、及びこれらと共重合可能な単量体0~79.5質量%、からなる単量体成分で構成されており、乳化重合が、重合開始剤投入開始時の反応系に、エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、反応系のポリマー転化率が1.0%に到達した到達時から単量体成分の全量投入終了した終了時までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行われ、中和滴定法により測定される共重合体ラテックスの固形分100g当たりの全酸性基量A(ミリ当量/100g)と、酸成分の配合量に基づいて算出される共重合体ラテックスの固形分100g当たりの全酸性基量B(ミリ当量/100g)との比A/Bが、0.8以下である共重合体ラテックスを提供する。 The invention according to the second aspect of the present invention is a copolymer latex obtained by emulsion polymerization, wherein the copolymer comprises 15 to 60% by mass of an aliphatic conjugated diene monomer, an ethylenically unsaturated carboxylic acid monomer. It is composed of a monomer component consisting of 5 to 35% by mass of a monomer, 0.5 to 30% by mass of a vinyl cyanide monomer, and 0 to 79.5% by mass of a monomer copolymerizable therewith. In the emulsion polymerization, the reaction system at the start of charging the polymerization initiator contains 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer, and the polymer conversion rate of the reaction system is 1. Starting from the time of 5% of the time from reaching the time when it reached 0% to the end when the entire amount of monomer components was charged, the charging of the remainder of the ethylenically unsaturated carboxylic acid monomer was started, By 80% of the time from the time of arrival to the end of time The total amount of acidic groups A (milliequivalent) per 100 g of the solid content of the copolymer latex measured by neutralization titration is carried out by adding 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer. / 100g) and the ratio A / B of the total acidic group amount B (milli equivalent / 100g) per 100g of the solid content of the copolymer latex calculated based on the blending amount of the acid component is 0.8 or less. A copolymer latex is provided.
 第二態様に係る本発明の共重合体ラテックスは、十分な強度を発現でき、なおかつ凝固物が付着しにくいものになり得る。なお、A/Bが0.8以下である共重合体ラテックスは、中和滴定により検出されない酸性基が20%を超えることを意味し、共重合体ラテックスの内部に存在する酸性基が多いと考えられる。そして、このような内部酸の存在が、エチレン系不飽和カルボン酸単量体の割合を上記の範囲として共重合体ラテックスの強度を高めた場合であっても凝固物の発生や付着を十分抑制できる要因の一つであると本発明者らは推察する。また、本発明の共重合体ラテックスは、電極活物質への被覆性が良好であることにより、充放電を繰り返した際の電池のサイクル特性を向上させることができる。更に、本発明の共重合体ラテックスは、電池電極用組成物において凝集物の発生が少ないという利点を有する。 The copolymer latex of the present invention according to the second embodiment can exhibit sufficient strength and can hardly adhere to a coagulum. The copolymer latex having A / B of 0.8 or less means that the acidic groups that are not detected by neutralization titration exceed 20%, and there are many acidic groups present in the copolymer latex. Conceivable. The presence of such an internal acid sufficiently suppresses the generation and adhesion of coagulum even when the ratio of the ethylenically unsaturated carboxylic acid monomer is within the above range and the strength of the copolymer latex is increased. The present inventors speculate that this is one of the possible factors. Moreover, the copolymer latex of this invention can improve the cycling characteristics of the battery at the time of repeating charging / discharging by the coating | cover property to an electrode active material being favorable. Furthermore, the copolymer latex of the present invention has an advantage that the generation of aggregates is small in the battery electrode composition.
 第二態様に係る本発明の共重合体ラテックスにおいて、上記エチレン系不飽和カルボン酸単量体がモノカルボン酸単量体を30質量%超含むことが好ましい。この場合、エチレン系不飽和カルボン酸単量体におけるモノカルボン酸単量体の割合が30質量%以下である場合に比べてpH中性域での粘度低減効果をより高めることができる。 In the copolymer latex of the present invention according to the second aspect, the ethylenically unsaturated carboxylic acid monomer preferably contains more than 30% by mass of a monocarboxylic acid monomer. In this case, the effect of reducing the viscosity in the neutral pH range can be further enhanced as compared with the case where the proportion of the monocarboxylic acid monomer in the ethylenically unsaturated carboxylic acid monomer is 30% by mass or less.
 また、上記乳化重合が、上記到達時から上記終了時までの時間、の60%の時点までに、上記シアン化ビニル単量体の全量の80質量%以上を投入して行われることが好ましい。この場合、共重合体ラテックスの粘度を更に低減することができ、これにより、凝固物の付着を高度に抑制することができ、取扱い性に一層優れた共重合体ラテックスを得ることができる。 Further, it is preferable that the emulsion polymerization is carried out by adding 80% by mass or more of the total amount of the vinyl cyanide monomer by 60% of the time from the arrival to the end. In this case, the viscosity of the copolymer latex can be further reduced, whereby the adhesion of the coagulated product can be suppressed to a high degree, and a copolymer latex having further excellent handling properties can be obtained.
 本発明の第三態様に係る発明は、乳化重合により得られる共重合体ラテックスであって、共重合体は、脂肪族共役ジエン系単量体15~60質量%、エチレン系不飽和カルボン酸単量体5~35質量%、シアン化ビニル単量体0.5~30質量%、及びこれらと共重合可能な単量体0~79.5質量%、からなる単量体成分で構成されており、乳化重合が、重合開始剤投入開始時の反応系に、エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、反応系のポリマー転化率が1.0%に到達した到達時から単量体成分の全量投入終了した終了時までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行われ、示差走査熱量測定により、-25℃に冷却した共重合体ラテックスを1℃/分の昇温速度で加熱したときに得られるDSC曲線から算出される-20℃から0℃までの融解熱量ΔH(mJ/mg)が下記式(2)を満たす、共重合体ラテックスを提供する。
[ΔH×(100/100-C)]/ΔH≦0.8   ・・・(2)
[式(2)中、Cは、共重合体ラテックスの測定試料の固形分濃度(質量%)を示し、ΔHは、蒸留水を同条件で測定したときの融解熱量(mJ/mg)を示す。]
The invention according to the third aspect of the present invention is a copolymer latex obtained by emulsion polymerization, the copolymer comprising 15 to 60% by mass of an aliphatic conjugated diene monomer, an ethylenically unsaturated carboxylic acid monomer. It comprises a monomer component consisting of 5 to 35% by weight of a monomer, 0.5 to 30% by weight of a vinyl cyanide monomer, and 0 to 79.5% by weight of a monomer copolymerizable therewith. In the emulsion polymerization, the reaction system at the start of charging the polymerization initiator contains 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer, and the polymer conversion rate of the reaction system is 1. Starting from the time of 5% of the time from reaching the time when it reached 0% to the end when the entire amount of monomer components was charged, the charging of the remainder of the ethylenically unsaturated carboxylic acid monomer was started, By 80% of the time from the time of arrival to the end of time, The copolymer latex was cooled to −25 ° C. at a rate of 1 ° C./minute by conducting differential scanning calorimetry, with 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer being charged. Provided is a copolymer latex in which the heat of fusion ΔH (mJ / mg) from −20 ° C. to 0 ° C. calculated from the DSC curve obtained when heated satisfies the following formula (2).
[ΔH × (100 / 100−C S )] / ΔH W ≦ 0.8 (2)
[In the formula (2), C S indicates the solid content concentration (mass%) of the measurement sample of the copolymer latex, and ΔH W is the heat of fusion (mJ / mg) when distilled water is measured under the same conditions. Indicates. ]
 第三態様に係る本発明の共重合体ラテックスは、十分な接着強度を発現できるとともに、低粘度化を実現でき、なおかつ凍結安定性に優れるラテックスになり得る。なお、本発明の共重合体ラテックスが凍結安定性に優れる理由について本発明者らは以下のとおり考えている。式(2)の左辺は、共重合体ラテックスに含まれる水の全融解熱量に対する、-20℃から0℃までに検出される水の融解熱量の割合を示す。この値が、式(2)の右辺の値0.8以下となる場合、-20℃から0℃までに検出されない水の量がラテックス中に20質量%以上存在すると考えられる。-20℃から0℃までに検出されるピークが結合水及び自由水であり、検出されない水は不凍水であると推察される。このような不凍水を、上記特定の乳化重合によりラテックス中に十分存在させることができた結果、接着強度と低粘度化との両立を図りながら凍結安定性の向上が可能になったものと考えられる。 The copolymer latex of the present invention according to the third aspect can exhibit a sufficient adhesive strength, can realize a low viscosity, and can be a latex having excellent freezing stability. In addition, the present inventors consider the reason why the copolymer latex of the present invention is excellent in freezing stability as follows. The left side of the formula (2) indicates the ratio of the heat of fusion detected from −20 ° C. to 0 ° C. with respect to the total heat of fusion of water contained in the copolymer latex. When this value is 0.8 or less on the right side of the formula (2), it is considered that the amount of water not detected from −20 ° C. to 0 ° C. is present in the latex by 20% by mass or more. The peaks detected from −20 ° C. to 0 ° C. are bound water and free water, and the water not detected is presumed to be antifreeze water. Such antifreeze water can be sufficiently present in the latex by the above specific emulsion polymerization, and as a result, it has become possible to improve freezing stability while achieving both adhesive strength and low viscosity. Conceivable.
 また、第三態様に係る本発明の共重合体ラテックスは、電極活物質への被覆性が良好であることにより、充放電を繰り返した際の電池のサイクル特性を向上させることができる。更に、本発明の共重合体ラテックスを配合した電池電極用組成物は、集電体に対して優れた結着力を有する塗工層を形成することができる。 Also, the copolymer latex of the present invention according to the third aspect can improve the cycle characteristics of the battery when charging and discharging are repeated due to its good coverage to the electrode active material. Furthermore, the composition for battery electrodes which mix | blended the copolymer latex of this invention can form the coating layer which has the outstanding binding force with respect to a collector.
 第三態様に係る本発明の共重合体ラテックスにおいて、上記エチレン系不飽和カルボン酸単量体がモノカルボン酸単量体を30質量%超含むことが好ましい。この場合、エチレン系不飽和カルボン酸単量体におけるモノカルボン酸単量体の割合が30質量%以下である場合に比べてpH中性域での粘度低減効果をより高めることができる。 In the copolymer latex of the present invention according to the third aspect, the ethylenically unsaturated carboxylic acid monomer preferably contains more than 30% by mass of a monocarboxylic acid monomer. In this case, the effect of reducing the viscosity in the neutral pH range can be further enhanced as compared with the case where the proportion of the monocarboxylic acid monomer in the ethylenically unsaturated carboxylic acid monomer is 30% by mass or less.
 また、上記乳化重合が、上記エチレン系不飽和カルボン酸単量体の全量投入終了時までに上記反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分のFedors法による溶解度パラメータをSPとし、上記エチレン系不飽和カルボン酸単量体の全量投入終了時よりも後に上記反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分のFedors法による溶解度パラメータをSPとしたときに、SPとSPとの差が絶対値で1.50以下となるように、上記反応系に上記単量体成分を投入して行われることが好ましい。この場合、凍結安定性に一層優れた共重合体ラテックスを得ることができる。 In addition, the emulsion polymerization is performed according to the Fedors method for monomer components other than the ethylenically unsaturated carboxylic acid monomer introduced into the reaction system by the end of the introduction of the entire amount of the ethylenically unsaturated carboxylic acid monomer. Fedors method for monomer components other than the ethylenically unsaturated carboxylic acid monomer introduced into the reaction system after the end of charging all of the ethylenically unsaturated carboxylic acid monomer, with a solubility parameter of SP 1 It is preferable that the monomer component is added to the reaction system so that the difference between SP 1 and SP 2 is 1.50 or less in absolute value when the solubility parameter is SP 2. . In this case, a copolymer latex having further excellent freezing stability can be obtained.
 本発明の第一態様に係る発明によれば、十分な接着強度を発現でき、電極活物質への被覆性も良好な共重合体ラテックスを十分な固形分濃度且つ低粘度で得ることができる共重合体ラテックスの製造方法を提供することができる。 According to the invention according to the first aspect of the present invention, a copolymer latex capable of exhibiting sufficient adhesive strength and having good coverage to the electrode active material can be obtained with sufficient solid content concentration and low viscosity. A method for producing a polymer latex can be provided.
 本発明の第二態様に係る発明によれば、十分な強度を発現でき、なおかつ凝固物が付着しにくく、さらには電極活物質への被覆性も良好であるとともに電池電極用組成物において凝集物の発生が少ない共重合体ラテックスを提供することができる。 According to the invention of the second aspect of the present invention, sufficient strength can be expressed, the solidified product is difficult to adhere, and the covering property to the electrode active material is good and the aggregate in the battery electrode composition. It is possible to provide a copolymer latex in which the occurrence of the above is small.
 本発明の第三態様に係る発明によれば、十分な接着強度を発現できるとともに、低粘度化を実現でき、なおかつ凍結安定性に優れた共重合体ラテックスを提供することができる。 According to the invention of the third aspect of the present invention, it is possible to provide a copolymer latex that can exhibit sufficient adhesive strength, can achieve a low viscosity, and is excellent in freeze stability.
実施例III-1で得られた共重合体ラテックスのDSCチャートを示す。2 shows a DSC chart of the copolymer latex obtained in Example III-1. 実施例III-3で得られた共重合体ラテックスのDSCチャートを示す。2 shows a DSC chart of the copolymer latex obtained in Example III-3. 比較例III-1で得られた共重合体ラテックスのDSCチャートを示す。2 shows a DSC chart of the copolymer latex obtained in Comparative Example III-1.
<第一態様>
 本発明の第一実施形態に係る共重合体ラテックスの製造方法は、乳化重合により得られる共重合体ラテックスの製造方法であって、共重合体は、脂肪族共役ジエン系単量体15~60質量%、エチレン系不飽和カルボン酸単量体5~35質量%、シアン化ビニル単量体0.5~30質量%、及び、これらと共重合可能な単量体0~79.5質量%、からなる単量体成分で構成されており、上記の乳化重合を、重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、反応系のポリマー転化率が1.0%に到達した到達時から単量体成分の全量投入終了した終了時までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行う。
<First aspect>
The method for producing a copolymer latex according to the first embodiment of the present invention is a method for producing a copolymer latex obtained by emulsion polymerization, and the copolymer is an aliphatic conjugated diene monomer 15-60. % By weight, 5 to 35% by weight of ethylenically unsaturated carboxylic acid monomer, 0.5 to 30% by weight of vinyl cyanide monomer, and 0 to 79.5% by weight of monomer copolymerizable therewith In the reaction system at the start of charging the polymerization initiator, the above emulsion polymerization is added to the total amount of the ethylenically unsaturated carboxylic acid monomer in an amount of more than 0% by weight to 40% by weight. From the time point of 5% from the time when the polymer conversion rate of the reaction system reaches 1.0% to the time when the entire amount of the monomer component has been charged, the ethylenic unsaturation is contained. Starting the introduction of the remainder of the carboxylic acid monomer, reaching the above From to time 80% of the time, until at the completion is carried out by introducing the above 92 wt% of the total amount of the ethylenically unsaturated carboxylic acid monomer.
 まず、上記共重合体を構成する単量体成分について説明する。 First, the monomer component constituting the copolymer will be described.
 脂肪族共役ジエン系単量体(以下、(a)成分という場合もある)としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、並びに、置換および側鎖共役ヘキサジエン類などの単量体が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。本実施形態においては、工業的に容易に製造され、入手の容易性及びコストの観点から、1,3-ブタジエンを用いることが好ましい。 Examples of the aliphatic conjugated diene monomer (hereinafter sometimes referred to as component (a)) include 1,3-butadiene, 2-methyl-1,3-butadiene, and 2,3-dimethyl-1,3-butadiene. , 2-chloro-1,3-butadiene, substituted linear conjugated pentadienes, and monomers such as substituted and side chain conjugated hexadienes. These can be used alone or in combination of two or more. In the present embodiment, it is preferable to use 1,3-butadiene from the viewpoint of easy production industrially and availability and cost.
 エチレン系不飽和カルボン酸単量体(以下、(b)成分という場合もある)としては、アクリル酸、メタクリル酸及びクロトン酸などのモノカルボン酸単量体、マレイン酸、フマル酸及びイタコン酸などのジカルボン酸単量体並びにこれらの無水物が挙げられる。これらの単量体は1種を単独でまたは2種以上を組み合わせて使用することができる。 Examples of the ethylenically unsaturated carboxylic acid monomer (hereinafter sometimes referred to as component (b)) include monocarboxylic acid monomers such as acrylic acid, methacrylic acid and crotonic acid, maleic acid, fumaric acid and itaconic acid These dicarboxylic acid monomers and their anhydrides are mentioned. These monomers can be used alone or in combination of two or more.
 シアン化ビニル単量体(以下、(c)成分という場合もある)としては、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エチルアクリロニトリルなどが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。第一実施形態においては、工業的に容易に製造され、入手の容易性及びコストの観点から、アクリロニトリル又はメタクリロニトリルを用いることが好ましい。 Examples of the vinyl cyanide monomer (hereinafter sometimes referred to as component (c)) include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile and the like. These can be used alone or in combination of two or more. In the first embodiment, it is preferable to use acrylonitrile or methacrylonitrile from the viewpoint of easy production industrially and availability and cost.
 上記(a)成分~(c)成分と共重合可能な単量体(以下、(d)成分という場合もある)としては、アルケニル芳香族単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、不飽和カルボン酸アミド単量体などの単量体が挙げられる。 Monomers copolymerizable with the above components (a) to (c) (hereinafter sometimes referred to as (d) component) include alkenyl aromatic monomers, unsaturated carboxylic acid alkyl ester monomers, Monomers such as unsaturated monomers and unsaturated carboxylic acid amide monomers containing a hydroxyalkyl group may be mentioned.
 アルケニル芳香族単量体としては、スチレン、α-メチルスチレン、メチル-α-メチルスチレン、ビニルトルエン及びジビニルベンゼンなどが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。第一実施形態においては、工業的に容易に製造され、入手の容易性及びコストの観点から、スチレンを用いることが好ましい。 Examples of the alkenyl aromatic monomer include styrene, α-methylstyrene, methyl-α-methylstyrene, vinyl toluene, and divinylbenzene. These can be used alone or in combination of two or more. In the first embodiment, it is preferable to use styrene from the viewpoint of easy production industrially and availability and cost.
 不飽和カルボン酸アルキルエステル単量体としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート及び2-エチルヘキシルアクリレートなどが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。第一実施形態においては、工業的に容易に製造され、入手の容易性及びコストの観点から、メチルメタクリレートを用いることが好ましい。 Examples of unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate, Examples thereof include monomethyl fumarate, monoethyl fumarate, and 2-ethylhexyl acrylate. These can be used alone or in combination of two or more. In the first embodiment, it is preferable to use methyl methacrylate from the viewpoint of easy production industrially and availability and cost.
 ヒドロキシアルキル基を含有する不飽和単量体としては、β-ヒドロキシエチルアクリレート、β-ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、3-クロロ-2-ヒドロキシプロピルメタクリレート、ジ-(エチレングリコール)マレエート、ジ-(エチレングリコール)イタコネート、2-ヒドロキシエチルマレエート、ビス(2-ヒドロキシエチル)マレエート及び2-ヒドロキシエチルメチルフマレートなどが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。 Examples of unsaturated monomers containing a hydroxyalkyl group include β-hydroxyethyl acrylate, β-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl Examples include methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate and 2-hydroxyethyl methyl fumarate. These can be used alone or in combination of two or more.
 不飽和カルボン酸アミド単量体としては、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド及びN,N-ジメチルアクリルアミドなどが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。 Examples of unsaturated carboxylic acid amide monomers include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide and N, N-dimethylacrylamide. These can be used alone or in combination of two or more.
 さらに、上記単量体の他に、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン等、通常の乳化重合において使用される単量体を使用することができる。 Furthermore, in addition to the above monomers, monomers used in ordinary emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride can be used.
 (a)成分の含有量は、共重合体を構成する単量体成分全量に対し、15~60質量%であり、17~56質量%であることが好ましく、20~52質量%であることがより好ましい。なお、共重合体ラテックスを紙塗工用組成物に使用する場合においては、(a)成分の含有量は、共重合体を構成する単量体成分全量に対し、25~60質量%であることが好ましく、27~56質量%であることがより好ましく、30~55質量%であることが更に好ましく、30~52質量%であることが特に好ましい。(a)成分の含有量を上記範囲とすることにより、接着強度と操業性とのバランスに優れた共重合体ラテックスを得ることができる。 The content of the component (a) is 15 to 60% by mass, preferably 17 to 56% by mass, and preferably 20 to 52% by mass with respect to the total amount of the monomer components constituting the copolymer. Is more preferable. When the copolymer latex is used for the paper coating composition, the content of the component (a) is 25 to 60% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 27 to 56% by mass, more preferably 30 to 55% by mass, and particularly preferably 30 to 52% by mass. By making content of (a) component into the said range, the copolymer latex excellent in the balance of adhesive strength and operativity can be obtained.
 (b)成分の含有量は、共重合体を構成する単量体成分全量に対し、5~35質量%であり、5.5~33質量%であることが好ましく、6~28質量%であることがより好ましい。(b)成分の含有量を上記範囲とすることにより、共重合体ラテックスの接着強度及び電極活物質への被覆性を十分に向上させることができる。共重合体ラテックスの電極活物質への被覆性が良好であることにより、充放電を繰り返した際の電池のサイクル特性を向上させることができる。 The content of the component (b) is 5 to 35% by mass, preferably 5.5 to 33% by mass, and preferably 6 to 28% by mass with respect to the total amount of monomer components constituting the copolymer. More preferably. By making content of (b) component into the said range, the adhesive strength of copolymer latex and the covering property to an electrode active material can fully be improved. Since the coating property of the copolymer latex on the electrode active material is good, the cycle characteristics of the battery when charging and discharging are repeated can be improved.
 第一実施形態においては、(b)成分がエチレン系不飽和モノカルボン酸単量体を30質量%超えて含有することが好ましく、37質量%以上含有することがより好ましく、45質量%以上含有することが更に好ましく、55質量%以上であることが特に好ましい。エチレン系不飽和モノカルボン酸単量体の含有量を上記範囲とすることにより、pH中性域での粘度低減効果がより高い共重合体ラテックスを得ることができる。 In the first embodiment, the component (b) preferably contains an ethylenically unsaturated monocarboxylic acid monomer in an amount exceeding 30% by mass, more preferably 37% by mass or more, and 45% by mass or more. More preferably, it is particularly preferably 55% by mass or more. By setting the content of the ethylenically unsaturated monocarboxylic acid monomer in the above range, a copolymer latex having a higher viscosity reducing effect in the neutral pH range can be obtained.
 (c)成分の含有量は、共重合体を構成する単量体成分全量に対し、0.5~30質量%であり、1~28質量%であることが好ましく、3~25質量%であることがより好ましい。(c)成分の含有量を上記範囲とすることにより、耐溶剤性の良好な共重合体ラテックスを得ることができる。 The content of the component (c) is 0.5 to 30% by mass, preferably 1 to 28% by mass, and preferably 3 to 25% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably. By setting the content of the component (c) in the above range, a copolymer latex having good solvent resistance can be obtained.
 (d)成分の含有量は、共重合体を構成する単量体成分全量に対し、0~79.5質量%であり、2~75質量%であることが好ましく、5~70質量%であることがより好ましい。なお、共重合体ラテックスを紙塗工用組成物に使用する場合においては、(d)成分の含有量は、共重合体を構成する単量体成分全量に対し、0~69.5質量%であることが好ましく、2~65質量%であることがより好ましく、5~60質量%であることがより好ましい。 The content of the component (d) is 0 to 79.5% by mass, preferably 2 to 75% by mass, and preferably 5 to 70% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably. When the copolymer latex is used for a paper coating composition, the content of the component (d) is 0 to 69.5% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 2 to 65% by mass, more preferably 5 to 60% by mass.
 次に、第一実施形態に係る乳化重合について説明する。 Next, the emulsion polymerization according to the first embodiment will be described.
 第一実施形態においては、乳化重合を、重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、反応系のポリマー転化率が1.0%に到達した到達時(以下、単に「到達時」という場合もある)から、単量体成分の全量投入終了した終了時(以下、単に「終了時」という場合もある)までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行う。 In the first embodiment, emulsion polymerization is carried out by adding more than 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer in the reaction system at the start of addition of the polymerization initiator. From the time when the polymer conversion rate reaches 1.0% (hereinafter sometimes simply referred to as “when reached”) to the time when the entire amount of the monomer component has been charged (hereinafter referred to simply as “when completed”) From the time point of 5% of the time until (there is)), starting the charging of the remainder of the ethylenically unsaturated carboxylic acid monomer, until the time point of 80% of the time from the arrival time to the end time And 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer is added.
 上記到達時とは、反応系に添加した単量体のポリマー転化率が1.0%に到達した時点をいう。ポリマー転化率が1.0%に到達した時点は、単量体成分、開始剤及び水が共存開始した時点(0点)から30分後に実測することから算出する。30分後に測定したポリマー転化率が1%を超えていなかったら、さらに30分経ってから測定し、ポリマー転化率が1%超えるまで30分毎に測定する。ポリマー転化率が1%を超えたら、1%を超えたデータと0点とを結んでポリマー転化率が1.0%となる時点を「到達時」とする。 The above arrival time means the time when the polymer conversion rate of the monomer added to the reaction system reaches 1.0%. The time point when the polymer conversion rate reaches 1.0% is calculated from actual measurement 30 minutes after the time point (0 point) when the monomer component, the initiator and water coexist. If the polymer conversion rate measured after 30 minutes does not exceed 1%, it is measured after another 30 minutes, and is measured every 30 minutes until the polymer conversion rate exceeds 1%. When the polymer conversion rate exceeds 1%, the time when the polymer conversion rate reaches 1.0% by connecting the data exceeding 1% and 0 point is defined as “at the time of arrival”.
 ポリマー転化率は、反応槽内より採取した反応液を秤量し、150℃で1時間乾燥後、再度秤量して固形分量Cを測定して、次式より算出することができる。
ポリマー転化率(%)=[固形分量C(g)-反応液に含まれる単量体以外の固形分量(g)]/反応系に添加した単量体成分量(g)×100
なお、「到達時」は、予め求められたデータに基づき設定することができる。例えば、実施する乳化重合と同様の反応系を用意し、この反応系のポリマー転化率の推移に基づき予め到達時を求めておくことができる。
The polymer conversion rate can be calculated from the following equation by weighing the reaction solution collected from the reaction vessel, drying at 150 ° C. for 1 hour, weighing again, and measuring the solid content C.
Polymer conversion (%) = [Solid content C (g) −Solid content other than monomer contained in reaction solution (g)] / Amount of monomer component added to reaction system (g) × 100
Note that “at the time of arrival” can be set based on data obtained in advance. For example, a reaction system similar to the emulsion polymerization to be performed can be prepared, and the arrival time can be obtained in advance based on the transition of the polymer conversion rate of this reaction system.
 重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下、より好ましくは0.1質量%以上30質量%以下を含有させ、上記到達時から上記終了時までの時間、の5%の時点以降から上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して乳化重合を行うことにより、十分な接着強度を発現できる共重合体ラテックスを十分な固形分濃度且つ低粘度で得ることができる。こうして得られる共重合体ラテックスは凝集物が発生しにくく、ろ過性に優れたものになり得る。 Into the reaction system at the start of charging the polymerization initiator, more than 0% by mass and 40% by mass or less, more preferably 0.1% by mass to 30% by mass of the total amount of the ethylenically unsaturated carboxylic acid monomer, Starting from the time of 5% of the time from the time of arrival to the end of time, the charging of the remainder of the ethylenically unsaturated carboxylic acid monomer is started, and the time from the time of arrival to the time of completion is 80% % Of the total amount of the above-mentioned ethylenically unsaturated carboxylic acid monomer is added to carry out the emulsion polymerization to give a copolymer latex capable of expressing sufficient adhesive strength at a sufficient solid content concentration. In addition, it can be obtained with a low viscosity. The copolymer latex thus obtained does not easily generate aggregates and can be excellent in filterability.
 上記効果をさらに高めるためには、上記エチレン系不飽和カルボン酸単量体は、上記到達時から上記終了時までの時間、の10%の時点以降から、さらに好ましくは15%の時点以降から上記エチレン系不飽和カルボン酸単量体の残部の投入を開始することが好ましい。また、上記エチレン系不飽和カルボン酸単量体の残部の投入は、上記到達時から上記終了時までの時間、の50%の時点までに開始することが好ましく、45%の時点までに開始することがより好ましく、40%の時点までに開始することがさらに好ましい。また、上記到達時から上記終了時までの時間、の70%の時点までに、全量の95質量%以上添加することが好ましい。さらに好ましくは、上記到達時から上記終了時までの時間、の60%の時点までに、全量添加することが好ましい。 In order to further enhance the above effect, the ethylenically unsaturated carboxylic acid monomer is used after 10% of the time from the arrival time to the end time, more preferably after 15%. It is preferable to start charging the remainder of the ethylenically unsaturated carboxylic acid monomer. Further, the introduction of the remainder of the ethylenically unsaturated carboxylic acid monomer is preferably started by 50% of the time from the arrival to the end, and by 45%. More preferably, it is even more preferred to start by 40%. Further, it is preferable to add 95% by mass or more of the total amount by 70% of the time from the arrival time to the end time. More preferably, it is preferable to add the total amount up to 60% of the time from the arrival time to the end time.
 第一実施形態に係る反応系には、上記(a)~(d)成分以外に、乳化剤(界面活性剤)、重合開始剤、更に必要に応じて、連鎖移動剤、還元剤などを配合することができる。 In the reaction system according to the first embodiment, in addition to the components (a) to (d), an emulsifier (surfactant), a polymerization initiator, and, if necessary, a chain transfer agent, a reducing agent, and the like are blended. be able to.
 乳化剤としては、例えば、高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、デヒドロアビエチン酸塩、ナフタレンスルホン酸のホルマリン縮合物、非イオン性界面活性剤の硫酸エステル塩等のアニオン性界面活性剤、ポリエチレングリコールのアルキルエステル型、アルキルフェニルエーテル型、及びアルキルエーテル型等のノニオン性界面活性剤などが挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。乳化剤の配合量は、他の添加剤などの組み合わせを考慮して適宜調整することができる。 Examples of the emulsifier include sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, dehydroabietic acid salts, formalin condensates of naphthalene sulfonic acid, Anionic surfactants such as sulfate ester salts of ionic surfactants, and nonionic surfactants such as alkyl ester type, alkyl phenyl ether type, and alkyl ether type of polyethylene glycol. These can be used alone or in combination of two or more. The blending amount of the emulsifier can be appropriately adjusted in consideration of a combination of other additives.
 重合開始剤としては、例えば、過硫酸リチウム、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の水溶性重合開始剤、クメンハイドロパーオキサイド、過酸化ベンゾイル、t-ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、及び1,1,3,3-テトラメチルブチルハイドロパーオキサイド等の油溶性重合開始剤が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。これらのうち、過硫酸カリウム、過硫酸ナトリウム、クメンハイドロパーオキサイド、又はt-ブチルハイドロパーオキサイドを用いることが好ましい。重合開始剤の配合量は、単量体組成、重合反応系のpH、他の添加剤などの組み合わせを考慮して適宜調整される。 Examples of the polymerization initiator include water-soluble polymerization initiators such as lithium persulfate, potassium persulfate, sodium persulfate, and ammonium persulfate, cumene hydroperoxide, benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, Examples thereof include oil-soluble polymerization initiators such as diisopropylbenzene hydroperoxide and 1,1,3,3-tetramethylbutyl hydroperoxide. These can be used alone or in combination of two or more. Of these, potassium persulfate, sodium persulfate, cumene hydroperoxide, or t-butyl hydroperoxide is preferably used. The blending amount of the polymerization initiator is appropriately adjusted in consideration of the combination of the monomer composition, the pH of the polymerization reaction system, and other additives.
 連鎖移動剤としては、例えば、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物;アリルアルコール等のアリル化合物;ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物;α-ベンジルオキシスチレン、α-ベンジルオキシアクリロニトリル、α-ベンジルオキシアクリルアミド等のビニルエーテル;トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート、ターピノレン、α-メチルスチレンダイマーなどの連鎖移動剤が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。連鎖移動剤の配合量は、他の添加剤などの組み合わせを考慮して適宜調整することができる。 Examples of the chain transfer agent include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan; dimethylxanthogen disulfide, diisopropylxanthogendi Xanthogen compounds such as sulfide; thiuram compounds such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide; phenolic compounds such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol; Allyl compounds such as allyl alcohol; halogenated hydrocarbon compounds such as dichloromethane, dibromomethane, carbon tetrabromide; α-benzyloxystyrene, α-ben Vinyl ethers such as ziroxyacrylonitrile and α-benzyloxyacrylamide; Chains such as triphenylethane, pentaphenylethane, acrolein, methacrolein, thioglycolic acid, thiomalic acid, 2-ethylhexyl thioglycolate, terpinolene, α-methylstyrene dimer A transfer agent is mentioned. These can be used alone or in combination of two or more. The blending amount of the chain transfer agent can be appropriately adjusted in consideration of combinations of other additives.
 還元剤としては、例えば、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、亜ニチオン酸塩、ニチオン酸塩、チオ硫酸塩、ホルムアルデヒドスルホン酸塩、ベンズアルデヒドスルホン酸塩;L-アスコルビン酸、エリソルビン酸、酒石酸、クエン酸などのカルボン酸類およびその塩;デキストロース、サッカロースなどの還元糖類;ジメチルアニリン、トリエタノールアミンなどのアミン類が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。これらのうち、L-アスコルビン酸、エリソルビン酸が好ましい。還元剤の配合量は、他の添加剤などの組み合わせを考慮して適宜調整することができる。 Examples of the reducing agent include sulfite, bisulfite, pyrosulfite, nitrite, nithionate, thiosulfate, formaldehyde sulfonate, benzaldehyde sulfonate; L-ascorbic acid, erythorbic acid, tartaric acid And carboxylic acids such as citric acid and salts thereof; reducing sugars such as dextrose and saccharose; and amines such as dimethylaniline and triethanolamine. These can be used alone or in combination of two or more. Of these, L-ascorbic acid and erythorbic acid are preferred. The blending amount of the reducing agent can be appropriately adjusted in consideration of a combination of other additives.
 また、第一実施形態に係る反応系には、共重合体の分子量及び架橋構造を制御する目的で、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロヘプタン等の飽和炭化水素;ペンテン、ヘキセン、ヘプテン、シクロペンテン、シクロヘキセン、シクロヘプテン、4-メチルシクロヘキセン、1-メチルシクロヘキセン等の不飽和炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などの炭化水素化合物を配合することができる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。これらのうち、シクロヘキセン、トルエンを用いることが好ましい。 In addition, the reaction system according to the first embodiment includes saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane; pentene, hexene, heptene for the purpose of controlling the molecular weight and the crosslinked structure of the copolymer. , Cyclopentene, cyclohexene, cycloheptene, 4-methylcyclohexene, 1-methylcyclohexene and other unsaturated hydrocarbons; and hydrocarbon compounds such as benzene, toluene, xylene and other aromatic hydrocarbons. These can be used alone or in combination of two or more. Of these, cyclohexene and toluene are preferably used.
 更に、第一実施形態に係る反応系には、必要に応じて、酸素補足剤、キレート剤、分散剤、消泡剤、老化防止剤、防腐剤、抗菌剤、難燃剤、紫外線吸収剤等の添加剤を配合してもよい。これらの添加剤は、種類及び使用量ともに適宜適量使用することができる。 Furthermore, in the reaction system according to the first embodiment, an oxygen scavenger, a chelating agent, a dispersant, an antifoaming agent, an anti-aging agent, an antiseptic, an antibacterial agent, a flame retardant, an ultraviolet absorber, etc., are included as necessary. You may mix | blend an additive. These additives can be used in appropriate amounts in both types and amounts.
 第一実施形態においては、重合開始剤投入開始時の反応系に(a)成分の一部、(b)成分の一部、(c)成分の一部、(d)成分の一部、乳化剤、還元剤、連鎖移動剤を含有させることが好ましい。 In the first embodiment, a part of (a) component, part of (b) component, part of (c) component, part of (d) component, emulsifier It is preferable to contain a reducing agent and a chain transfer agent.
 重合開始剤投入開始時の反応系に(a)成分の一部を含有させる場合、(a)成分の全量の1~25質量%を含有させることが好ましく、3~20質量%を含有させることがより好ましい。 When a part of the component (a) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 25% by mass of the total amount of the component (a), and 3 to 20% by mass is contained. Is more preferable.
 重合開始剤投入開始時の反応系に(c)成分の一部を含有させる場合、(c)成分の全量の3~55質量%を含有させることが好ましく、5~50質量%を含有させることがより好ましい。 When a part of the component (c) is contained in the reaction system at the start of charging the polymerization initiator, the content of the component (c) is preferably 3 to 55% by mass, and preferably 5 to 50% by mass. Is more preferable.
 重合開始剤投入開始時の反応系に(d)成分の一部を含有させる場合、(d)成分の全量の1~45質量%を含有させることが好ましく、2~30質量%を含有させることがより好ましい。 When a part of the component (d) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 45% by mass of the total amount of the component (d), and 2 to 30% by mass is contained. Is more preferable.
 乳化剤及び重合開始剤は全量を重合開始剤投入開始時の反応系に含有させることが好ましい。 The total amount of the emulsifier and the polymerization initiator is preferably contained in the reaction system at the start of charging the polymerization initiator.
 重合開始剤投入開始時の反応系は、例えば、耐圧性の重合反応容器に、純水、上述した各(a)~(d)成分、乳化剤、重合開始剤、連鎖移動剤、還元剤、その他の成分を所定量加え、例えば、傾斜翼、タービン翼、マックスブレンド翼などにより撹拌することにより調製できる。 The reaction system at the start of charging of the polymerization initiator is, for example, a pressure-resistant polymerization reaction vessel, pure water, the components (a) to (d) described above, an emulsifier, a polymerization initiator, a chain transfer agent, a reducing agent, and the like. Can be prepared by adding a predetermined amount of the above components and stirring them with, for example, an inclined blade, a turbine blade, a Max blend blade, or the like.
 第一実施形態においては、安全性に配慮した槽内圧力および生産性の観点から、上記反応温度を30~100℃の範囲に設定することが好ましく、40~85℃の範囲に設定することがより好ましい。この場合、上記の反応温度の範囲に開始温度を有する重合開始剤が用いられる。 In the first embodiment, the reaction temperature is preferably set in the range of 30 to 100 ° C., and preferably set in the range of 40 to 85 ° C., from the viewpoint of safety in the tank and productivity in consideration of safety. More preferred. In this case, a polymerization initiator having an initiation temperature in the above reaction temperature range is used.
 反応系の温度は、例えば、外部加熱により、0.25~1.0℃/分で昇温することができる。 The temperature of the reaction system can be increased by, for example, 0.25 to 1.0 ° C./min by external heating.
 上記到達時以降の反応系に(a)~(d)成分を添加する方法としては、例えば、一括添加方法、分割添加方法、連続添加方法、パワーフィード方法を採用することができる。反応系内の単量体をある一定濃度以下に抑制して安全性を向上する観点からは、連続添加方法(以下、連添という場合もある)を採用することが好ましい。更に、連添を複数回行ってもよい。 As a method of adding the components (a) to (d) to the reaction system after reaching the above time, for example, a batch addition method, a divided addition method, a continuous addition method, or a power feed method can be employed. From the viewpoint of improving the safety by suppressing the monomer in the reaction system to a certain concentration or less, it is preferable to employ a continuous addition method (hereinafter sometimes referred to as continuous addition). Further, the attachment may be performed a plurality of times.
 第一実施形態においては、上記到達時から(a)~(d)成分の全量投入終了時までの時間、の60%の時点までに、上記(c)成分の全量の80質量%以上、より好ましくは85質量%以上を反応系に投入して乳化重合を行うことが好ましい。これにより、反応系の重合中の粘度を更に低減することができ、これにより、凝集物の発生を高度に抑制することができ、ろ過性に一層優れた共重合体ラテックスを得ることができる。 In the first embodiment, 80% by mass or more of the total amount of the component (c) by the time 60% of the time from the arrival to the end of charging the total amount of the components (a) to (d), It is preferable to carry out emulsion polymerization by adding 85% by mass or more to the reaction system. Thereby, the viscosity during the polymerization of the reaction system can be further reduced, whereby the generation of aggregates can be highly suppressed, and a copolymer latex having further excellent filterability can be obtained.
 乳化重合の反応時間については、例えば、生産性の観点から、上記到達時から(a)~(d)成分の全量投入終了時までの時間を1~15時間とすることが好ましく、2~10時間とすることがより好ましい。また、乳化重合は、(a)~(d)成分のポリマー転化率が95%以上となるまで行うことが好ましく、97%以上となるまで行うことがより好ましい。 With respect to the reaction time of the emulsion polymerization, for example, from the viewpoint of productivity, the time from the above arrival to the end of the total addition of the components (a) to (d) is preferably 1 to 15 hours. More preferably, it is time. The emulsion polymerization is preferably carried out until the polymer conversion rate of the components (a) to (d) reaches 95% or more, and more preferably 97% or more.
 また、第一実施形態においては、ポリマー転化率が95%を超えたことを確認して反応を終了させることが好ましい。ポリマー転化率は、固形分量から算出、又は重合槽を冷却した熱量から算出できる。こうして、共重体ラテックスが得られる。 Moreover, in the first embodiment, it is preferable to terminate the reaction after confirming that the polymer conversion rate exceeds 95%. The polymer conversion rate can be calculated from the solid content or from the amount of heat obtained by cooling the polymerization tank. In this way, a copolymer latex is obtained.
 共重合体ラテックスは、分散安定性の観点から、アンモニア、水酸化カリウム、水酸化ナトリウムなどにより、pHが5~8.5に調整されていることが好ましく、5.5~7.5に調整されていることがより好ましい。 From the viewpoint of dispersion stability, the copolymer latex is preferably adjusted to a pH of 5 to 8.5 with ammonia, potassium hydroxide, sodium hydroxide or the like, and adjusted to 5.5 to 7.5. More preferably.
 また、共重合体ラテックスは、加熱減圧蒸留などの方法により、未反応単量体及び他の低沸点化合物が除去されていることが好ましい。 The copolymer latex is preferably freed of unreacted monomers and other low-boiling compounds by a method such as heating under reduced pressure.
 第一実施形態に係る方法によれば、低粘度の共重合体ラテックスを十分な固形分濃度で得ることができる。共重合体ラテックスの固形分濃度は、運搬時にかかるコストや貯蔵時のタンク容量の観点から、35~65質量%が好ましく、40~60質量%がより好ましい。 According to the method according to the first embodiment, a low viscosity copolymer latex can be obtained at a sufficient solid content concentration. The solid content concentration of the copolymer latex is preferably 35 to 65% by mass, more preferably 40 to 60% by mass, from the viewpoints of cost during transportation and tank capacity during storage.
 また、共重合体ラテックスは、蒸発法などの方法により、固形分濃度が45~69質量%となるように濃縮されていてもよい。第一実施形態に係る方法により得られる共重合体ラテックスは、濃縮した場合であっても十分に低い粘度を有することができる。 The copolymer latex may be concentrated by a method such as an evaporation method so that the solid content concentration is 45 to 69% by mass. The copolymer latex obtained by the method according to the first embodiment can have a sufficiently low viscosity even when concentrated.
 共重合体ラテックスの粘度は、25℃において、50~1000mPa・sであることが好ましく、70~700mPa・sであることがより好ましい。なお、粘度は、JIS K7117-1の測定方法に準じて、B型(BL型)粘度計(TOKI SANGYO LTD製 VISCOMETER(モデルBM)、粘度0~100mPa・sの場合、No.1ローター、100~500mPa・sの場合:No.2ローター、500~2000mPa・sの場合:No.3ローター、2000mPa・s以上の場合:No.4ローターを用い、回転数は60rpm)を用いて測定される。 The viscosity of the copolymer latex is preferably 50 to 1000 mPa · s at 25 ° C., and more preferably 70 to 700 mPa · s. The viscosity is a B type (BL type) viscometer (TOKI SANGYO LTD made by VISCOMETER (model BM) according to the measurement method of JIS K7117-1, in the case of a viscosity of 0 to 100 mPa · s, No. 1 rotor, 100. ˜500 mPa · s: No. 2 rotor, 500 to 2000 mPa · s: No. 3 rotor, 2000 mPa · s or more: No. 4 rotor, rotation speed is 60 rpm) .
 共重合体ラテックスには、必要に応じて、防腐剤、老化防止剤、分散剤、印刷適性向上剤、表面サイズ剤、潤滑剤、界面活性剤などの機能性添加剤を配合してもよい。これらの添加剤は、種類及び使用量ともに適宜適量使用することができる。 If necessary, the copolymer latex may contain functional additives such as preservatives, anti-aging agents, dispersants, printability improvers, surface sizing agents, lubricants, and surfactants. These additives can be used in appropriate amounts in both types and amounts.
 第一実施形態に係る方法により得られる共重合体ラテックスは、濃縮した場合であっても十分に低い粘度を有することができる。これにより、共重合体ラテックスを移送するためのポンプへの負担を少なくすることができ、省エネルギー化を図ることができる。また、実施形態に係る方法によれば、ろ過性に優れた共重合体ラテックスを得ることができるので、共重合体ラテックスのろ過にかかる時間を短くすること及びろ過によるロスを少なくすることが可能となり、接着強度及び電極活物質への被覆性に優れた共重合体ラテックスを生産性よく得ることができる。 The copolymer latex obtained by the method according to the first embodiment can have a sufficiently low viscosity even when concentrated. Thereby, the burden on the pump for transferring the copolymer latex can be reduced, and energy saving can be achieved. Further, according to the method according to the embodiment, it is possible to obtain a copolymer latex excellent in filterability, so it is possible to shorten the time required for filtration of the copolymer latex and to reduce loss due to filtration. Thus, it is possible to obtain a copolymer latex excellent in adhesive strength and covering property to the electrode active material with high productivity.
 第一実施形態に係る共重合体ラテックスは、紙塗工用、不織布などの繊維結合用、カーペットのバッキング用、電池用(例えば電極、セパレータ、耐熱保護層など)、塗料用、粘接着剤用などのバインダーとして有用である。 The copolymer latex according to the first embodiment is used for paper coating, fiber bonding such as nonwoven fabric, carpet backing, batteries (for example, electrodes, separators, heat-resistant protective layers, etc.), paints, and adhesives. Useful as a binder.
 紙塗工用組成物は、例えば、第一実施形態に係る共重合体ラテックスと、必要に応じて、顔料、他のバインダー、助剤などとを含むものが挙げられる。 Examples of the paper coating composition include a copolymer latex according to the first embodiment and, if necessary, a pigment, another binder, an auxiliary agent, and the like.
 顔料としては、カオリンクレー、炭酸カルシウム、タルク、硫酸バリウム、酸化チタン、水酸化アルミニウム、酸化亜鉛、サチンホワイトなどの無機顔料、ポリスチレンラテックスなどの有機顔料を用いることができる。これらは、1種を単独でまたは2種以上を組み合わせて使用することができる。 As the pigment, inorganic pigments such as kaolin clay, calcium carbonate, talc, barium sulfate, titanium oxide, aluminum hydroxide, zinc oxide, and satin white, and organic pigments such as polystyrene latex can be used. These can be used alone or in combination of two or more.
 他のバインダーとしては、澱粉、酸化澱粉、エステル化澱粉等の変性澱粉、大豆蛋白、カゼインなどの天然バインダー、ポリビニルアルコール、カルボキシメチルセルロースなどの水溶性合成バインダー、ポリ酢酸ビニルラテックス、アクリル系ラテックスなどの合成ラテックスなどが挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて使用することができる。 Other binders include starch, oxidized starch, modified starch such as esterified starch, natural binders such as soybean protein and casein, water-soluble synthetic binders such as polyvinyl alcohol and carboxymethyl cellulose, polyvinyl acetate latex, acrylic latex, etc. Examples include synthetic latex. These can be used alone or in combination of two or more.
 助剤としては、分散剤(ピロリン酸ナトリウム、ポリアクリル酸ナトリウム、ヘキサメタリン酸ナトリウムなど)、消泡剤(ポリグリコール、脂肪酸エステル、リン酸エステル、シリコーンオイルなど)、レベリング剤(ロート油、ジシアンジアミド、尿素など)、防腐剤、離型剤(ステアリン酸カルシウム、パラフィンエマルジョンなど)、蛍光染料、カラー保水性向上剤(アルギン酸ナトリウムなど)などが挙げられる。 Auxiliaries include dispersants (sodium pyrophosphate, sodium polyacrylate, sodium hexametaphosphate, etc.), antifoaming agents (polyglycol, fatty acid ester, phosphate ester, silicone oil, etc.), leveling agents (funnel oil, dicyandiamide, Urea, etc.), preservatives, mold release agents (calcium stearate, paraffin emulsion, etc.), fluorescent dyes, color water retention agents (sodium alginate, etc.) and the like.
 紙塗工用組成物における共重合体ラテックスの含有量は、顔料100質量部に対して固形分の含有量が1~20質量部となることが好ましく、2~15質量部となることがより好ましい。 The content of the copolymer latex in the paper coating composition is preferably 1 to 20 parts by mass and more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the pigment. preferable.
 電池電極用組成物は、例えば、実施形態に係る共重合体ラテックス及び活物質と、必要に応じて、助剤などとを含むものが挙げられる。 Examples of the battery electrode composition include those containing the copolymer latex and the active material according to the embodiment, and, if necessary, an auxiliary agent.
 正極活物質としては、特に限定されないが、非水電解液二次電池の場合、例えば、MnO、MoO、V、V13、Fe、Feなどの遷移金属酸化物、LiCoO、LiMnO、LiNiO、LiCoSnなどのリチウムを含む複合酸化物、LiFePOなどのリチウムを含む複合金属酸化物、TiS、TiS、MoS、FeSなどの遷移金属硫化物、CuF、NiFなどの金属フッ化物が挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて使用することができる。 As the positive electrode active material is not particularly limited, if the non-aqueous electrolyte secondary battery, for example, such as MnO 2, MoO 3, V 2 O 5, V 6 O 13, Fe 2 O 3, Fe 3 O 4 Transition metal oxides, LiCoO 2 , LiMnO 2 , LiNiO 2 , Li X Co Y Sn Z O 2 -containing complex oxides, LiFePO 4 and other complex metal oxides, TiS 2 , TiS 3 , MoS 3, transition metal sulfides such as FeS 2, and metal fluorides such as CuF 2, NiF 2. These can be used alone or in combination of two or more.
 負極活物質としては、特に限定されないが、非水電解液二次電池の場合、例えば、フッ化カーボン、黒鉛、炭素繊維、樹脂焼成炭素、リニア・グラファイト・ハイブリット、コークス、熱分解気層成長炭素、フルフリルアルコール樹脂焼成炭素、メソカーボンマイクロビーズ、メソフェーズピッチ系炭素、黒鉛ウィスカー、擬似等方性炭素、天然素材の焼成体、およびこれらの粉砕物などの導電性炭素質材料、ポリアセン系有機半導体、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子、並びに、ケイ素、スズなどの金属単体、もしくは金属酸化物、もしくはその金属の合金を含む複合材料などが挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて使用することができる。 The negative electrode active material is not particularly limited, but in the case of a non-aqueous electrolyte secondary battery, for example, carbon fluoride, graphite, carbon fiber, resin-fired carbon, linear graphite hybrid, coke, pyrolysis gas growth carbon , Furfuryl alcohol resin calcined carbon, mesocarbon microbeads, mesophase pitch carbon, graphite whiskers, pseudo-isotropic carbon, calcined natural materials, and pulverized conductive carbonaceous materials such as polyacene organic semiconductors And a conductive polymer such as polyacetylene and poly-p-phenylene, and a single metal such as silicon and tin, or a composite material containing a metal oxide or an alloy of the metal. These can be used alone or in combination of two or more.
 助剤としては、水溶性増粘剤、分散剤、安定化剤、導電剤などが挙げられる。水溶性増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどが挙げられ、分散剤としては、例えば、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ピロリン酸ソーダ、ポリアクリル酸ソーダなどが挙げられ、安定化剤としては、例えば、ノニオン性、アニオン性界面活性剤などが挙げられ、導電剤としては、例えば、アセチレンブラック、カーボンナノファイバーなどが挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて使用することができる。 Assistants include water-soluble thickeners, dispersants, stabilizers, conductive agents and the like. Examples of the water-soluble thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein. Examples of the dispersant include Examples thereof include sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate, and sodium polyacrylate. Examples of the stabilizer include nonionic and anionic surfactants. Examples of the conductive agent include acetylene. Examples include black and carbon nanofibers. These can be used alone or in combination of two or more.
 電池電極用組成物中の共重合体ラテックスの含有量は、活物質100質量部(固形分)に対して、0.1~10質量部(固形分)であることが好ましく、0.5~7質量部であることがより好ましい。共重合体ラテックスの含有量を、0.1質量部以上とすると、活物質や集電体などに対する良好な接着力が得られる観点から好ましく、10質量部以下とすると、二次電池として組み立てたときに過電圧が著しく上昇し、電池特性を低下させることを防ぐ観点から好ましい。 The content of the copolymer latex in the battery electrode composition is preferably 0.1 to 10 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the active material, 0.5 to More preferably, it is 7 parts by mass. When the content of the copolymer latex is 0.1 parts by mass or more, it is preferable from the viewpoint of obtaining a good adhesive force with respect to the active material or the current collector, and when it is 10 parts by mass or less, a secondary battery is assembled. It is preferable from the viewpoint of sometimes preventing the overvoltage from significantly increasing and degrading the battery characteristics.
 電池電極用組成物は、集電体に塗布、乾燥されることにより、集電体上に電極塗工層を形成し、電極シートを得る。そのような電極シートは、例えば非水電解液二次電池の正極板または負極板として用いられる。 The battery electrode composition is applied to a current collector and dried to form an electrode coating layer on the current collector to obtain an electrode sheet. Such an electrode sheet is used as, for example, a positive electrode plate or a negative electrode plate of a non-aqueous electrolyte secondary battery.
 電池電極用組成物を集電体に塗布する方法としては、例えば、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法などの公知の方法を用いることができ、乾燥には、放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが用いられる。 As a method of applying the battery electrode composition to the current collector, for example, a known method such as a reverse roll method, a comma bar method, a gravure method, or an air knife method can be used. A dryer, a warm air dryer, an infrared heater, a far infrared heater, or the like is used.
 第一実施形態に係る共重合体ラテックスを使用した電池電極用組成物は、例えば、非水電解液二次電池、ニッケル水素電池、ニッケルカドミウム電池などの二次電池の電極用として好適である。 The battery electrode composition using the copolymer latex according to the first embodiment is suitable for an electrode of a secondary battery such as a non-aqueous electrolyte secondary battery, a nickel hydrogen battery, or a nickel cadmium battery.
<第二態様>
 本発明の第二実施形態に係る共重合体ラテックスは、乳化重合により得られる共重合体ラテックスであって、共重合体は、脂肪族共役ジエン系単量体15~60質量%、エチレン系不飽和カルボン酸単量体5~35質量%、シアン化ビニル単量体0.5~30質量%、及び、これらと共重合可能な単量体0~79.5質量%、からなる単量体成分で構成されており、上記の乳化重合が、重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、反応系のポリマー転化率が1.0%に到達した到達時から単量体成分の全量投入終了した終了時までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行われ、中和滴定法により測定される共重合体ラテックスの固形分100g当たりの全酸性基量A(ミリ当量/100g)(以下、検出酸量Aともいう)と、酸成分の配合量に基づいて算出される共重合体ラテックスの固形分100g当たりの全酸性基量B(ミリ当量/100g)(以下、理論酸量Bともいう)との比A/Bが、0.8以下である。
<Second aspect>
The copolymer latex according to the second embodiment of the present invention is a copolymer latex obtained by emulsion polymerization, and the copolymer comprises 15 to 60% by mass of an aliphatic conjugated diene monomer, an ethylene-based nonpolymer. A monomer comprising 5 to 35% by weight of a saturated carboxylic acid monomer, 0.5 to 30% by weight of a vinyl cyanide monomer, and 0 to 79.5% by weight of a monomer copolymerizable therewith. It is composed of components, and the above-mentioned emulsion polymerization is carried out by allowing the reaction system at the start of charging the polymerization initiator to contain more than 0% by mass and 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer. From the time of 5% from the time when the polymer conversion rate of the system reached 1.0% to the time when the monomer component was completely charged, the above-mentioned ethylenically unsaturated carboxylic acid monomer From the start of the remaining part until the end of the above 100 g of copolymer latex measured by a neutralization titration method by adding 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer up to 80% of time. Total acidic group amount per 100 g of solid content of the copolymer latex calculated based on the total acidic group amount A (milli equivalent / 100 g) (hereinafter also referred to as detected acid amount A) and the blending amount of the acid component The ratio A / B to B (milli equivalent / 100 g) (hereinafter also referred to as the theoretical acid amount B) is 0.8 or less.
 第二実施形態に係る共重合体を構成する単量体成分については、上述した第一実施形態に係る共重合体を構成する単量体成分として例示したものと同様の化合物を使用することができる。 About the monomer component which comprises the copolymer which concerns on 2nd embodiment, it is possible to use the same compound as what was illustrated as a monomer component which comprises the copolymer which concerns on 1st embodiment mentioned above. it can.
 (a)成分の含有量は、共重合体を構成する単量体成分全量に対し、15~60質量%であり、17~56質量%であることが好ましく、20~52質量%であることがより好ましい。なお、共重合体ラテックスを紙塗工用組成物に使用する場合においては、(a)成分の含有量は、共重合体を構成する単量体成分全量に対し、25~60質量%であることが好ましく、27~56質量%であることがより好ましく、30~55質量%であることが好ましい、30~52質量%であることがより好ましい。(a)成分の含有量を上記範囲とすることにより、接着強度と操業性とのバランスに優れた共重合体ラテックスを得ることができる。 The content of the component (a) is 15 to 60% by mass, preferably 17 to 56% by mass, and preferably 20 to 52% by mass with respect to the total amount of the monomer components constituting the copolymer. Is more preferable. When the copolymer latex is used for the paper coating composition, the content of the component (a) is 25 to 60% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 27 to 56% by mass, more preferably 30 to 55% by mass, and even more preferably 30 to 52% by mass. By making content of (a) component into the said range, the copolymer latex excellent in the balance of adhesive strength and operativity can be obtained.
 (b)成分の含有量は、共重合体を構成する単量体成分全量に対し、5~35質量%であり、5.5~33質量%であることが好ましく、6~28質量%であることがより好ましい。(b)成分の含有量を上記範囲とすることにより、共重合体ラテックスの強度、特にはフィルムにしたときの引張強度及び電極活物質への被覆性を十分に向上させることができる。共重合体ラテックスの電極活物質への被覆性が良好であることにより、充放電を繰り返した際の電池のサイクル特性を向上させることができる。 The content of the component (b) is 5 to 35% by mass, preferably 5.5 to 33% by mass, and preferably 6 to 28% by mass with respect to the total amount of monomer components constituting the copolymer. More preferably. By making content of (b) component into the said range, the intensity | strength of copolymer latex, especially the tensile strength when made into a film, and the covering property to an electrode active material can fully be improved. Since the coating property of the copolymer latex on the electrode active material is good, the cycle characteristics of the battery when charging and discharging are repeated can be improved.
 第二実施形態においては、(b)成分がエチレン系不飽和モノカルボン酸単量体を30質量%超えて含有することが好ましく、37質量%以上含有することがより好ましく、45質量%以上含有することが更に好ましく、55質量%以上含有することが特に好ましい。エチレン系不飽和モノカルボン酸単量体の含有量を上記範囲とすることにより、pH中性域での粘度低減効果がより高い共重合体ラテックスを得ることができる。更に上記の観点から、エチレン系不飽和モノカルボン酸単量体の含有量が50質量%以上であることがより好ましく、60質量%以上であることが更により好ましい。 In the second embodiment, the component (b) preferably contains more than 30% by mass of the ethylenically unsaturated monocarboxylic acid monomer, more preferably contains 37% by mass or more, and contains 45% by mass or more. More preferably, it is particularly preferable to contain 55% by mass or more. By setting the content of the ethylenically unsaturated monocarboxylic acid monomer in the above range, a copolymer latex having a higher viscosity reducing effect in the neutral pH range can be obtained. Furthermore, from the above viewpoint, the content of the ethylenically unsaturated monocarboxylic acid monomer is more preferably 50% by mass or more, and still more preferably 60% by mass or more.
 (c)成分の含有量は、共重合体を構成する単量体成分全量に対し、0.5~30質量%であり、1~28質量%であることが好ましく、3~25質量%であることがより好ましい。(c)成分の含有量を上記範囲とすることにより、耐溶剤性の良好な共重合体ラテックスを得ることができる。 The content of the component (c) is 0.5 to 30% by mass, preferably 1 to 28% by mass, and preferably 3 to 25% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably. By setting the content of the component (c) in the above range, a copolymer latex having good solvent resistance can be obtained.
 (d)成分の含有量は、共重合体を構成する単量体成分全量に対し、0~79.5質量%であり、2~75質量%であることが好ましく、5~70質量%であることがより好ましい。なお、共重合体ラテックスを紙塗工用組成物に使用する場合においては、(d)成分の含有量は、共重合体を構成する単量体成分全量に対し、0~69.5質量%であることが好ましく、2~65質量%であることがより好ましく、5~60質量%であることがより好ましい。 The content of the component (d) is 0 to 79.5% by mass, preferably 2 to 75% by mass, and preferably 5 to 70% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably. When the copolymer latex is used for a paper coating composition, the content of the component (d) is 0 to 69.5% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 2 to 65% by mass, more preferably 5 to 60% by mass.
 第二実施形態においては、共重合体ラテックスポリマーの凝集力をコントロールすることを目的として、(d)成分として、スチレンを、共重合体を構成する単量体成分全量に対し、1~79.5質量%含有させることが好ましく、共重合体ラテックスを紙塗工用組成物に使用する場合は、1~69.5質量%含有させることが好ましい。 In the second embodiment, for the purpose of controlling the cohesive force of the copolymer latex polymer, styrene is used as the component (d) with respect to the total amount of monomer components constituting the copolymer. It is preferably contained in an amount of 5% by mass. When the copolymer latex is used in a paper coating composition, it is preferably contained in an amount of 1 to 69.5% by mass.
 次に、第二実施形態に係る乳化重合について説明する。 Next, the emulsion polymerization according to the second embodiment will be described.
 第二実施形態においては、乳化重合が、重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、反応系のポリマー転化率が1.0%に到達した到達時(以下、単に「到達時」という場合もある)から、単量体成分の全量投入終了した終了時(以下、単に「終了時」という場合もある)までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行われる。 In the second embodiment, the emulsion polymerization is carried out by adding more than 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer in the reaction system at the start of charging the polymerization initiator. From the time when the polymer conversion rate reaches 1.0% (hereinafter sometimes simply referred to as “when reached”) to the time when the entire amount of the monomer component has been charged (hereinafter referred to simply as “when completed”) From the time point of 5% of the time until (there is)), starting the charging of the remainder of the ethylenically unsaturated carboxylic acid monomer, until the time point of 80% of the time from the arrival time to the end time And 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer.
 上記到達時及び上記ポリマー転化率については、第一実施形態において説明したものと同義である。 The arrival time and the polymer conversion rate are synonymous with those described in the first embodiment.
 上記の検出酸量Aは、例えば、エチレン系不飽和カルボン酸単量体を上述した化合物から適宜選択し、それらを組み合わせることにより調整することができる。 The detected acid amount A can be adjusted by, for example, appropriately selecting an ethylenically unsaturated carboxylic acid monomer from the above-mentioned compounds and combining them.
 重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、より好ましくは0.1質量%以上30質量%以下を含有させ、上記到達時から上記終了時までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の添加を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して乳化重合を行うことにより、反応系の粘度を抑制しながら乳化重合を進めることができるとともに、上記の検出酸量Aと理論酸量Bとの比A/Bが0.8以下である共重合体ラテックスを得ることができる。 The reaction system at the start of charging the polymerization initiator contains 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer, more preferably 0.1% by mass to 30% by mass. And starting addition of the remainder of the ethylenically unsaturated carboxylic acid monomer from the time point of 5% of the time from the arrival time to the end time, from the arrival time to the end time. Emulsion polymerization is carried out while suppressing the viscosity of the reaction system by introducing 92% by mass or more of the total amount of the above-mentioned ethylenically unsaturated carboxylic acid monomer by 80% of the time. In addition, a copolymer latex having a ratio A / B between the detected acid amount A and the theoretical acid amount B of 0.8 or less can be obtained.
 上記効果をさらに高めるためには、上記エチレン系不飽和カルボン酸単量体は、上記到達時から上記終了時までの時間、の10%の時点以降から、さらに好ましくは15%の時点以降から上記エチレン系不飽和カルボン酸単量体の残部の投入を開始することが好ましい。また、上記エチレン系不飽和カルボン酸単量体の残部の投入は、上記到達時から上記終了時までの時間、の50%の時点までに開始することが好ましく、45%の時点までに開始することがより好ましく、40%の時点までに開始することがさらに好ましい。また、上記到達時から上記終了時までの時間、の70%の時点までに、全量の95%以上添加することが好ましい。さらに好ましくは、上記到達時から上記終了時までの時間、の60%の時点までに、全量添加することが好ましい。 In order to further enhance the above effect, the ethylenically unsaturated carboxylic acid monomer is used after 10% of the time from the arrival time to the end time, more preferably after 15%. It is preferable to start charging the remainder of the ethylenically unsaturated carboxylic acid monomer. Further, the introduction of the remainder of the ethylenically unsaturated carboxylic acid monomer is preferably started by 50% of the time from the arrival to the end, and by 45%. More preferably, it is even more preferred to start by 40%. Moreover, it is preferable to add 95% or more of the total amount by the time point of 70% of the time from the arrival time to the end time. More preferably, it is preferable to add the total amount up to 60% of the time from the arrival time to the end time.
 第二実施形態に係る反応系には、上記(a)~(d)成分以外に、乳化剤(界面活性剤)、重合開始剤、更に必要に応じて、連鎖移動剤、還元剤などを配合することができる。 In the reaction system according to the second embodiment, in addition to the components (a) to (d), an emulsifier (surfactant), a polymerization initiator, and, if necessary, a chain transfer agent, a reducing agent, and the like are blended. be able to.
 乳化剤(界面活性剤)、重合開始剤、連鎖移動剤、還元剤などについては、上述した第一実施形態において例示したものと同様の化合物を使用することができる。 As the emulsifier (surfactant), the polymerization initiator, the chain transfer agent, the reducing agent, etc., the same compounds as those exemplified in the first embodiment described above can be used.
 また、第二実施形態に係る反応系には、共重合体の分子量及び架橋構造を制御する目的で、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロヘプタン等の飽和炭化水素;ペンテン、ヘキセン、ヘプテン、シクロペンテン、シクロヘキセン、シクロヘプテン、4-メチルシクロヘキセン、1-メチルシクロヘキセン等の不飽和炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などの炭化水素化合物を配合することができる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。これらのうち、シクロヘキセン、トルエンを用いることが好ましい。 The reaction system according to the second embodiment includes saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane; pentene, hexene, heptene, for the purpose of controlling the molecular weight and cross-linked structure of the copolymer. , Cyclopentene, cyclohexene, cycloheptene, 4-methylcyclohexene, 1-methylcyclohexene and other unsaturated hydrocarbons; and hydrocarbon compounds such as benzene, toluene, xylene and other aromatic hydrocarbons. These can be used alone or in combination of two or more. Of these, cyclohexene and toluene are preferably used.
 更に、第二実施形態に係る反応系には、必要に応じて、電解質、酸素補足剤、キレート剤、分散剤、消泡剤、老化防止剤、防腐剤、抗菌剤、難燃剤、紫外線吸収剤等の添加剤を配合してもよい。これらの添加剤は、種類及び使用量ともに適宜適量使用することができる。 Furthermore, the reaction system according to the second embodiment includes an electrolyte, an oxygen scavenger, a chelating agent, a dispersant, an antifoaming agent, an anti-aging agent, an antiseptic, an antibacterial agent, a flame retardant, and an ultraviolet absorber as necessary. You may mix | blend additives, such as. These additives can be used in appropriate amounts in both types and amounts.
 第二実施形態においては、重合開始剤投入開始時の反応系に(a)成分の一部、(b)成分の一部、(c)成分の一部、(d)成分の一部、乳化剤、還元剤、連鎖移動剤を含有させることが好ましい。 In the second embodiment, a part of (a) component, part of (b) component, part of (c) component, part of (d) component, emulsifier It is preferable to contain a reducing agent and a chain transfer agent.
 重合開始剤投入開始時の反応系に(a)成分の一部を含有させる場合、(a)成分の全量の1~25質量%を含有させることが好ましく、3~20質量%を含有させることがより好ましい。 When a part of the component (a) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 25% by mass of the total amount of the component (a), and 3 to 20% by mass is contained. Is more preferable.
 重合開始剤投入開始時の反応系に(c)成分の一部を含有させる場合、(c)成分の全量の3~55質量%を含有させることが好ましく、5~50質量%を含有させることがより好ましい。 When a part of the component (c) is contained in the reaction system at the start of charging the polymerization initiator, the content of the component (c) is preferably 3 to 55% by mass, and preferably 5 to 50% by mass. Is more preferable.
 重合開始剤投入開始時の反応系に(d)成分の一部を含有させる場合、(d)成分の全量の1~45質量%を含有させることが好ましく、2~30質量%を含有させることがより好ましい。 When a part of the component (d) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 45% by mass of the total amount of the component (d), and 2 to 30% by mass is contained. Is more preferable.
 乳化剤及び重合開始剤は全量を重合開始剤投入開始時の反応系に含有させることが好ましい。 The total amount of the emulsifier and the polymerization initiator is preferably contained in the reaction system at the start of charging the polymerization initiator.
 重合開始剤投入開始時の反応系は、例えば、耐圧性の重合反応容器に、純水、上述した各(a)~(d)成分、乳化剤、重合開始剤、連鎖移動剤、還元剤、その他の成分を所定量加え、例えば、傾斜翼、タービン翼、マックスブレンド翼などにより撹拌することにより調製できる。 The reaction system at the start of charging of the polymerization initiator is, for example, a pressure-resistant polymerization reaction vessel, pure water, the components (a) to (d) described above, an emulsifier, a polymerization initiator, a chain transfer agent, a reducing agent, and the like. Can be prepared by adding a predetermined amount of the above components and stirring them with, for example, an inclined blade, a turbine blade, a Max blend blade, or the like.
 第二実施形態においては、安全性に配慮した槽内圧力および生産性の観点から、上記反応温度を30~100℃の範囲に設定することが好ましく、40~85℃の範囲に設定することがより好ましい。この場合、上記の反応温度の範囲に開始温度を有する重合開始剤が用いられる。 In the second embodiment, the reaction temperature is preferably set in a range of 30 to 100 ° C., and preferably set in a range of 40 to 85 ° C., from the viewpoint of safety in the tank and productivity in consideration of safety. More preferred. In this case, a polymerization initiator having an initiation temperature in the above reaction temperature range is used.
 反応系の温度は、例えば、外部加熱により、0.25~1.0℃/分で昇温することができる。 The temperature of the reaction system can be increased by, for example, 0.25 to 1.0 ° C./min by external heating.
 上記到達時以降の反応系に(a)~(d)成分を添加する方法としては、例えば、一括添加方法、分割添加方法、連続添加方法、パワーフィード方法を採用することができる。反応系内の単量体をある一定濃度以下に抑制して安全性を向上する観点からは、連続添加方法(以下、連添という場合もある)を採用することが好ましい。更に、連添を複数回行ってもよい。 As a method of adding the components (a) to (d) to the reaction system after reaching the above time, for example, a batch addition method, a divided addition method, a continuous addition method, or a power feed method can be employed. From the viewpoint of improving the safety by suppressing the monomer in the reaction system to a certain concentration or less, it is preferable to employ a continuous addition method (hereinafter sometimes referred to as continuous addition). Further, the attachment may be performed a plurality of times.
 第二実施形態においては、上記到達時から(a)~(d)成分の全量投入終了時までの時間、の60%の時点までに、上記(c)成分の全量の80質量%以上、さらに好ましくは85質量%以上を反応系に投入して乳化重合を行うことが好ましい。これにより、反応系の重合中の粘度を更に低減することができる。 In the second embodiment, 80% by mass or more of the total amount of the component (c) by 60% of the time from the arrival to the end of charging the total amount of the components (a) to (d), It is preferable to carry out emulsion polymerization by adding 85% by mass or more to the reaction system. Thereby, the viscosity during the polymerization of the reaction system can be further reduced.
 乳化重合の反応時間については、例えば、生産性の観点から、上記到達時から(a)~(d)成分の全量投入終了時までの時間を1~15時間とすることが好ましく、2~10時間とすることがより好ましい。また、乳化重合は、(a)~(d)成分のポリマー転化率が95%以上となるまで行うことが好ましく、97%以上となるまで行うことがより好ましい。 With respect to the reaction time of the emulsion polymerization, for example, from the viewpoint of productivity, the time from the above arrival to the end of the total addition of the components (a) to (d) is preferably 1 to 15 hours. More preferably, it is time. The emulsion polymerization is preferably carried out until the polymer conversion rate of the components (a) to (d) reaches 95% or more, and more preferably 97% or more.
 また、第二実施形態においては、ポリマー転化率が95%を超えたことを確認して反応を終了させることが好ましい。ポリマー転化率は、固形分量から算出、又は重合槽を冷却した熱量から算出できる。こうして、共重体ラテックスが得られる。 In the second embodiment, it is preferable to terminate the reaction after confirming that the polymer conversion rate exceeds 95%. The polymer conversion rate can be calculated from the solid content or from the amount of heat obtained by cooling the polymerization tank. In this way, a copolymer latex is obtained.
 共重合体ラテックスは、分散安定性の観点から、アンモニア、水酸化カリウム、水酸化ナトリウムなどにより、pHが5~8.5に調整されていることが好ましく、5.5~7.5に調整されていることがより好ましい。 From the viewpoint of dispersion stability, the copolymer latex is preferably adjusted to a pH of 5 to 8.5 with ammonia, potassium hydroxide, sodium hydroxide or the like, and adjusted to 5.5 to 7.5. More preferably.
 また、共重合体ラテックスは、加熱減圧蒸留などの方法により、未反応単量体及び他の低沸点化合物が除去されていることが好ましい。 The copolymer latex is preferably freed of unreacted monomers and other low-boiling compounds by a method such as heating under reduced pressure.
 第二実施形態に係る方法によれば、低粘度の共重合体ラテックスを十分な固形分濃度で得ることができる。共重合体ラテックスの固形分濃度は、運搬時にかかるコストや貯蔵時のタンク容量の観点から、35~65質量%が好ましく、40~60質量%がより好ましい。 According to the method according to the second embodiment, a low viscosity copolymer latex can be obtained at a sufficient solid content concentration. The solid content concentration of the copolymer latex is preferably 35 to 65% by mass, more preferably 40 to 60% by mass, from the viewpoints of cost during transportation and tank capacity during storage.
 また、共重合体ラテックスは、蒸発法などの方法により、固形分濃度が45~69質量%となるように濃縮されていてもよい。第二実施形態に係る方法により得られる共重合体ラテックスは、濃縮した場合であっても十分に低い粘度を有することができる。 The copolymer latex may be concentrated by a method such as an evaporation method so that the solid content concentration is 45 to 69% by mass. The copolymer latex obtained by the method according to the second embodiment can have a sufficiently low viscosity even when concentrated.
 共重合体ラテックスの粘度は、25℃において、50~1000mPa・sであることが好ましく、70~700mPa・sであることがより好ましい。なお、粘度は、JIS K7117-1の測定方法に準じて、B型(BL型)粘度計(TOKI SANGYO LTD製 VISCOMETER(モデルBM)、粘度0~100mPa・sの場合、No.1ローター、100~500mPa・sの場合:No.2ローター、500~2000mPa・sの場合:No.3ローター、2000mPa・s以上の場合:No.4ローターを用い、回転数は60rpm)を用いて測定される。 The viscosity of the copolymer latex is preferably 50 to 1000 mPa · s at 25 ° C., and more preferably 70 to 700 mPa · s. The viscosity is a B type (BL type) viscometer (TOKI SANGYO LTD made by VISCOMETER (model BM) according to the measurement method of JIS K7117-1, in the case of a viscosity of 0 to 100 mPa · s, No. 1 rotor, 100. ˜500 mPa · s: No. 2 rotor, 500 to 2000 mPa · s: No. 3 rotor, 2000 mPa · s or more: No. 4 rotor, rotation speed is 60 rpm) .
 共重合体ラテックスには、必要に応じて、防腐剤、老化防止剤、分散剤、印刷適性向上剤、表面サイズ剤、潤滑剤、界面活性剤などの機能性添加剤を配合してもよい。これらの添加剤は、種類及び使用量ともに適宜適量使用することができる。 If necessary, the copolymer latex may contain functional additives such as preservatives, anti-aging agents, dispersants, printability improvers, surface sizing agents, lubricants, and surfactants. These additives can be used in appropriate amounts in both types and amounts.
 第二実施形態に係る共重合体ラテックスは、十分な強度を発現でき、なおかつ凝固物が付着しにくいものになり得る。また、第二実施形態に係る共重合体ラテックスは、電極活物質への被覆性も良好であるとともに電池電極用組成物において凝集物の発生が少ないものになり得る。なお、検出酸量A/理論酸量Bが0.8以下である共重合体ラテックスは、中和滴定により検出されない酸性基が20%を超えることを意味し、共重合体ラテックスの内部に存在する酸性基が多いと考えられる。そして、このような内部酸の存在が、エチレン系不飽和カルボン酸単量体の割合を上記の範囲として共重合体ラテックスの強度を高めた場合であっても凝固物の発生や付着を十分抑制できる要因の一つであると本発明者らは推察する。 The copolymer latex according to the second embodiment can exhibit a sufficient strength and can hardly adhere to a coagulated product. In addition, the copolymer latex according to the second embodiment has good coverage to the electrode active material and can be less likely to generate aggregates in the battery electrode composition. A copolymer latex having a detected acid amount A / theoretical acid amount B of 0.8 or less means that acidic groups not detected by neutralization titration exceed 20%, and is present inside the copolymer latex. It is thought that there are many acidic groups to do. The presence of such an internal acid sufficiently suppresses the generation and adhesion of coagulum even when the ratio of the ethylenically unsaturated carboxylic acid monomer is within the above range and the strength of the copolymer latex is increased. The present inventors speculate that this is one of the possible factors.
 中和滴定法により測定される共重合体ラテックスの固形分100g当たりの全酸性基量A(ミリ当量/100g)(検出酸量A)は、以下の方法で求めることができる。 The total acidic group amount A (milli equivalent / 100 g) (detected acid amount A) per 100 g of the solid content of the copolymer latex measured by the neutralization titration method can be determined by the following method.
 共重合体ラテックスをイオン交換水で約1質量%(固形分濃度)に希釈し、約0.1Nの塩酸を過剰量添加した後、0.1Nの水酸化ナトリウム水溶液で逆滴定し、伝導滴定曲線を得る。得られた伝導滴定曲線から共重合体ラテックスの固形分100g当たりの検出酸量A(ミリ当量/100g)を下記式に基づき算出することができる。
検出酸量A=0.1×T×100/(W×M/100)
T:水酸化ナトリウム水溶液の滴定量(ml)
W:共重合体ラテックスのサンプリング量(g)
M:共重合体ラテックスの固形分濃度(%)
The copolymer latex is diluted to about 1% by mass (solid content concentration) with ion-exchanged water, and an excess amount of about 0.1N hydrochloric acid is added, followed by back titration with a 0.1N sodium hydroxide aqueous solution and conducting titration. Get a curve. From the obtained conductivity titration curve, the detected acid amount A (milli equivalent / 100 g) per 100 g of the solid content of the copolymer latex can be calculated based on the following formula.
Detected acid amount A = 0.1 × T × 100 / (W × M / 100)
T: titration of sodium hydroxide aqueous solution (ml)
W: Sampling amount of copolymer latex (g)
M: solid content concentration of copolymer latex (%)
 酸成分の配合量に基づいて算出される共重合体ラテックスの固形分100g当たりの全酸性基量B(ミリ当量/100g)(理論酸量B)は、以下の方法で求めることができる。 The total acidic group amount B (milli equivalent / 100 g) (theoretical acid amount B) per 100 g of the solid content of the copolymer latex calculated based on the blending amount of the acid component can be obtained by the following method.
 共重合体を構成する単量体成分全量に対するエチレン系不飽和カルボン酸単量体の質量%をX(質量%)、エチレン系不飽和カルボン酸単量体の分子量をY、エチレン系不飽和カルボン酸単量体の最大解離度数をZとし、下記式(1)より、エチレン系不飽和カルボン酸単量体に由来する理論酸量を計算する。
理論酸量=(X×Z×1000)/Y   ・・・式(1)
配合したすべてのエチレン系不飽和カルボン酸単量体について、同様に理論酸量を計算し、これらを合計することにより、共重合体ラテックスの固形分100g当たりの理論酸量B(ミリ当量/100g)を求める。
X (mass%) is the mass% of the ethylenically unsaturated carboxylic acid monomer, Y is the molecular weight of the ethylenically unsaturated carboxylic acid monomer, and Y is the ethylenically unsaturated carboxylic acid monomer. The maximum dissociation frequency of the acid monomer is Z, and the theoretical acid amount derived from the ethylenically unsaturated carboxylic acid monomer is calculated from the following formula (1).
Theoretical acid amount = (X × Z × 1000) / Y (1)
For all the ethylenically unsaturated carboxylic acid monomers blended, the theoretical acid amount is calculated in the same manner, and these are summed to obtain the theoretical acid amount B (milli equivalent / 100 g per 100 g of the solid content of the copolymer latex). )
 なお、ポリカルボン酸を主体とする分散剤などのように酸性基を有する添加剤を用いた場合は、上記と同様にして酸性基を有する添加剤に由来する理論酸量を計算し、これを合算する。 In addition, when an additive having an acidic group such as a dispersant mainly composed of polycarboxylic acid is used, the theoretical acid amount derived from the additive having an acidic group is calculated in the same manner as described above. Add up.
 第二実施形態に係る共重合体ラテックスは、紙塗工用、不織布などの繊維結合用、カーペットのバッキング用、電池用(例えば電極、セパレータ、耐熱保護層など)、塗料用、粘接着剤用などのバインダーとして有用である。 The copolymer latex according to the second embodiment is used for paper coating, fiber bonding such as nonwoven fabric, carpet backing, batteries (for example, electrodes, separators, heat-resistant protective layers, etc.), paints, and adhesives. Useful as a binder.
 紙塗工用組成物は、例えば、第二実施形態に係る共重合体ラテックスと、必要に応じて、顔料、他のバインダー、助剤などとを含むものが挙げられる。 Examples of the paper coating composition include a copolymer latex according to the second embodiment and, if necessary, a pigment, another binder, an auxiliary agent, and the like.
 顔料、他のバインダー、助剤などについては、上述した第一実施形態において例示したものと同様の化合物を使用することができる。 As for pigments, other binders, auxiliaries and the like, the same compounds as those exemplified in the first embodiment described above can be used.
 紙塗工用組成物における共重合体ラテックスの含有量は、顔料100質量部に対して固形分の含有量が1~20質量部となることが好ましく、2~15質量部となることがより好ましい。 The content of the copolymer latex in the paper coating composition is preferably 1 to 20 parts by mass and more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the pigment. preferable.
 電池電極用組成物は、例えば、第二実施形態に係る共重合体ラテックス及び活物質と、必要に応じて、助剤などとを含むものが挙げられる。 Examples of the battery electrode composition include those containing the copolymer latex and the active material according to the second embodiment, and, if necessary, an auxiliary agent.
 正極活物質、負極活物質、助剤などについては、上述した第一実施形態において例示したものと同様の化合物を使用することができる。 As the positive electrode active material, the negative electrode active material, the auxiliary agent, etc., the same compounds as those exemplified in the first embodiment described above can be used.
 電池電極用組成物中の共重合体ラテックスの含有量は、活物質100質量部(固形分)に対して、0.1~10質量部(固形分)であることが好ましく、0.5~7質量部であることがより好ましい。共重合体ラテックスの含有量を、0.1質量部以上とすると、活物質や集電体などに対する良好な接着力が得られる観点から好ましく、10質量部以下とすると、二次電池として組み立てたときに過電圧が著しく上昇し、電池特性を低下させることを防ぐ観点から好ましい。 The content of the copolymer latex in the battery electrode composition is preferably 0.1 to 10 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the active material, 0.5 to More preferably, it is 7 parts by mass. When the content of the copolymer latex is 0.1 parts by mass or more, it is preferable from the viewpoint of obtaining a good adhesive force with respect to the active material or the current collector, and when it is 10 parts by mass or less, a secondary battery is assembled. It is preferable from the viewpoint of sometimes preventing the overvoltage from significantly increasing and degrading the battery characteristics.
 電池電極用組成物は、集電体に塗布、乾燥されることにより、集電体上に電極塗工層を形成し、電極シートを得る。そのような電極シートは、例えば非水電解液二次電池の正極板または負極板として用いられる。 The battery electrode composition is applied to a current collector and dried to form an electrode coating layer on the current collector to obtain an electrode sheet. Such an electrode sheet is used as, for example, a positive electrode plate or a negative electrode plate of a non-aqueous electrolyte secondary battery.
 電池電極用組成物を集電体に塗布する方法としては、例えば、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法などの公知の方法を用いることができ、乾燥には、放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが用いられる。 As a method of applying the battery electrode composition to the current collector, for example, a known method such as a reverse roll method, a comma bar method, a gravure method, or an air knife method can be used. A dryer, a warm air dryer, an infrared heater, a far infrared heater, or the like is used.
 第二実施形態に係る共重合体ラテックスを使用した電池電極用組成物は、例えば、非水電解液二次電池、ニッケル水素電池、ニッケルカドミウム電池などの二次電池の電極用として好適である。 The battery electrode composition using the copolymer latex according to the second embodiment is suitable for an electrode of a secondary battery such as a non-aqueous electrolyte secondary battery, a nickel hydrogen battery, or a nickel cadmium battery.
<第三態様>
 本発明に係る第三実施形態に係る共重合体ラテックスは、乳化重合により得られる共重合体ラテックスであって、共重合体は、脂肪族共役ジエン系単量体15~60質量%、エチレン系不飽和カルボン酸単量体5~35質量%、シアン化ビニル単量体0.5~30質量%、及び、これらと共重合可能な単量体0~79.5質量%、からなる単量体成分で構成されており、上記の乳化重合が、重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、反応系のポリマー転化率が1.0%に到達した到達時から単量体成分の全量投入終了した終了時までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行われ、示差走査熱量測定により、-25℃に冷却した共重合体ラテックスを1℃/分の昇温速度で加熱したときに得られるDSC曲線から算出される-20℃から0℃までの融解熱量ΔH(mJ/mg)が下記式(2)を満たす。
[ΔH×(100/100-C)]/ΔH≦0.8   ・・・(2)
<Third embodiment>
The copolymer latex according to the third embodiment of the present invention is a copolymer latex obtained by emulsion polymerization, and the copolymer is an aliphatic conjugated diene monomer of 15 to 60% by mass, an ethylene-based latex. A monomer comprising 5 to 35% by weight of an unsaturated carboxylic acid monomer, 0.5 to 30% by weight of a vinyl cyanide monomer, and 0 to 79.5% by weight of a monomer copolymerizable therewith. The emulsion polymerization is caused to contain more than 0% by mass and 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer in the reaction system at the start of charging the polymerization initiator, The ethylenically unsaturated carboxylic acid monomer from the time point after 5% from the time when the polymer conversion rate of the reaction system reaches 1.0% to the time when the entire amount of the monomer components are charged is finished. From the time of arrival to the end of At a time point of 80% of the total amount of the ethylenically unsaturated carboxylic acid monomer up to a point of 80%, and the co-polymer was cooled to −25 ° C. by differential scanning calorimetry. The heat of fusion ΔH (mJ / mg) from −20 ° C. to 0 ° C. calculated from the DSC curve obtained when the combined latex is heated at a rate of temperature increase of 1 ° C./min satisfies the following formula (2).
[ΔH × (100 / 100−C S )] / ΔH W ≦ 0.8 (2)
 式(2)中、Cは、共重合体ラテックスの測定試料の固形分濃度(質量%)を示し、ΔHは、蒸留水を同条件で測定したときの融解熱量(mJ/mg)を示す。共重合体ラテックスの測定試料はpH7に調整することができる。pHの調整には、アンモニア、水酸化カリウム、水酸化ナトリウムなどを用いることができる。Cは、10~50質量%に設定することができ、好ましくは40質量%に設定される。濃度の調整には、蒸留水、イオン交換水、精製水を用いることができる。ΔHを算出するための水は、蒸留水(和光純薬工業製)を用いることができる。 Wherein (2), C S represents the solid content of the sample of the copolymer latex (weight%), [Delta] H W is the heat of fusion when the distilled water was measured under the same conditions (mJ / mg) Show. The measurement sample of the copolymer latex can be adjusted to pH 7. For adjusting the pH, ammonia, potassium hydroxide, sodium hydroxide, or the like can be used. C S may be set to 10 to 50 mass% is preferably set to 40 mass%. For adjusting the concentration, distilled water, ion-exchanged water, or purified water can be used. Water for calculating the [Delta] H W may be used distilled water (manufactured by Wako Pure Chemical Industries).
 第三実施形態に係る共重合体を構成する単量体成分については、上述した第一実施形態に係る共重合体を構成する単量体成分として例示したものと同様の化合物を使用することができる。 About the monomer component which comprises the copolymer which concerns on 3rd embodiment, it is possible to use the same compound as what was illustrated as a monomer component which comprises the copolymer which concerns on 1st embodiment mentioned above. it can.
 (a)成分の含有量は、共重合体を構成する単量体成分全量に対し、15~60質量%であり、17~56質量%であることが好ましく、20~52質量%であることがより好ましい。なお、共重合体ラテックスを紙塗工用組成物に使用する場合においては、(a)成分の含有量は、共重合体を構成する単量体成分全量に対し、25~60質量%であることが好ましく、27~56質量%であることがより好ましく、30~55質量%であることが好ましい、30~52質量%であることがより好ましい。(a)成分の含有量を上記範囲とすることにより、接着強度と操業性とのバランスに優れた共重合体ラテックスを得ることができる。 The content of the component (a) is 15 to 60% by mass, preferably 17 to 56% by mass, and preferably 20 to 52% by mass with respect to the total amount of the monomer components constituting the copolymer. Is more preferable. When the copolymer latex is used for the paper coating composition, the content of the component (a) is 25 to 60% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 27 to 56% by mass, more preferably 30 to 55% by mass, and even more preferably 30 to 52% by mass. By making content of (a) component into the said range, the copolymer latex excellent in the balance of adhesive strength and operativity can be obtained.
 (b)成分の含有量は、共重合体を構成する単量体成分全量に対し、5~35質量%であり、5.5~33質量%であることが好ましく、6~28質量%であることがより好ましい。(b)成分の含有量を上記範囲とすることにより、共重合体ラテックスの接着強度及び電極活物質への被覆性を十分に向上させることができる。共重合体ラテックスの電極活物質への被覆性が良好であることにより、充放電を繰り返した際の電池のサイクル特性を向上させることができる。 The content of the component (b) is 5 to 35% by mass, preferably 5.5 to 33% by mass, and preferably 6 to 28% by mass with respect to the total amount of monomer components constituting the copolymer. More preferably. By making content of (b) component into the said range, the adhesive strength of copolymer latex and the covering property to an electrode active material can fully be improved. Since the coating property of the copolymer latex on the electrode active material is good, the cycle characteristics of the battery when charging and discharging are repeated can be improved.
 第三実施形態においては、(b)成分がエチレン系不飽和モノカルボン酸単量体を30質量%超えて含有することが好ましく、37質量%以上含有することがより好ましく、45質量%以上含有することが更に好ましく、55質量%以上含有することが特に好ましい。エチレン系不飽和モノカルボン酸単量体の含有量を上記範囲とすることにより、pH中性域での粘度低減効果がより高い共重合体ラテックスを得ることができる。 In the third embodiment, the component (b) preferably contains more than 30% by mass of the ethylenically unsaturated monocarboxylic acid monomer, more preferably contains 37% by mass or more, and contains 45% by mass or more. More preferably, it is particularly preferable to contain 55% by mass or more. By setting the content of the ethylenically unsaturated monocarboxylic acid monomer in the above range, a copolymer latex having a higher viscosity reducing effect in the neutral pH range can be obtained.
 (c)成分の含有量は、共重合体を構成する単量体成分全量に対し、0.5~30質量%であり、1~28質量%であることが好ましく、3~25質量%であることがより好ましい。(c)成分の含有量を上記範囲とすることにより、耐溶剤性の良好な共重合体ラテックスを得ることができる。 The content of the component (c) is 0.5 to 30% by mass, preferably 1 to 28% by mass, and preferably 3 to 25% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably. By setting the content of the component (c) in the above range, a copolymer latex having good solvent resistance can be obtained.
 (d)成分の含有量は、共重合体を構成する単量体成分全量に対し、0~79.5質量%であり、2~75質量%であることが好ましく、5~70質量%であることがより好ましい。なお、共重合体ラテックスを紙塗工用組成物に使用する場合においては、(d)成分の含有量は、共重合体を構成する単量体成分全量に対し、0~69.5質量%であることが好ましく、2~65質量%であることがより好ましく、5~60質量%であることがより好ましい。 The content of the component (d) is 0 to 79.5% by mass, preferably 2 to 75% by mass, and preferably 5 to 70% by mass with respect to the total amount of the monomer components constituting the copolymer. More preferably. When the copolymer latex is used for a paper coating composition, the content of the component (d) is 0 to 69.5% by mass with respect to the total amount of monomer components constituting the copolymer. It is preferably 2 to 65% by mass, more preferably 5 to 60% by mass.
 第三実施形態においては、共重合体ラテックスポリマーの硬さをコントロールすることを目的として、(d)成分として、スチレンを、共重合体を構成する単量体成分全量に対し、1~79.5質量%含有させることが好ましく、共重合体ラテックスを紙塗工用組成物に使用する場合は、1~69.5質量%含有させることが好ましい。 In the third embodiment, for the purpose of controlling the hardness of the copolymer latex polymer, styrene is used as component (d) with respect to the total amount of monomer components constituting the copolymer. It is preferably contained in an amount of 5% by mass. When the copolymer latex is used in a paper coating composition, it is preferably contained in an amount of 1 to 69.5% by mass.
 次に、第三実施形態に係る乳化重合について説明する。 Next, the emulsion polymerization according to the third embodiment will be described.
 第三実施形態においては、乳化重合が、重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、反応系のポリマー転化率が1.0%に到達した到達時(以下、単に「到達時」という場合もある)から、単量体成分の全量投入終了した終了時(以下、単に「終了時」という場合もある)までの時間、の5%の時点以降から、上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに、上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行われる。 In the third embodiment, the emulsion polymerization includes a reaction system at the start of addition of a polymerization initiator containing more than 0% by mass and 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer. From the time when the polymer conversion rate reaches 1.0% (hereinafter sometimes simply referred to as “when reached”) to the time when the entire amount of the monomer component has been charged (hereinafter referred to simply as “when completed”) From the time point of 5% of the time until (there is)), starting the charging of the remainder of the ethylenically unsaturated carboxylic acid monomer, until the time point of 80% of the time from the arrival time to the end time And 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer.
 上記到達時及び上記ポリマー転化率については、第一実施形態において説明したものと同義である。 The arrival time and the polymer conversion rate are synonymous with those described in the first embodiment.
 重合開始剤投入開始時の反応系に、上記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下、より好ましくは0.1質量%以上30質量%以下を含有させ、上記到達時から上記終了時までの時間、の5%の時点以降から上記エチレン系不飽和カルボン酸単量体の残部の投入を開始して、上記到達時から上記終了時までの時間、の80%の時点までに上記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して乳化重合を行うことにより、得られる共重合体ラテックスの粘度を抑制することができるとともに、上記式(2)を満たす共重合体ラテックスを得ることができる。 Into the reaction system at the start of charging the polymerization initiator, more than 0% by mass and 40% by mass or less, more preferably 0.1% by mass to 30% by mass of the total amount of the ethylenically unsaturated carboxylic acid monomer, Starting from the time of 5% of the time from the time of arrival to the end of time, the charging of the remainder of the ethylenically unsaturated carboxylic acid monomer is started, and the time from the time of arrival to the time of completion is 80% % By adding 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer and performing emulsion polymerization, the viscosity of the resulting copolymer latex can be suppressed, and A copolymer latex satisfying the formula (2) can be obtained.
 上記効果をさらに高めるためには、上記エチレン系不飽和カルボン酸単量体は、上記到達時から上記終了時までの時間、の10%の時点以降から、さらに好ましくは15%の時点以降から上記エチレン系不飽和カルボン酸単量体の残部の投入を開始することが好ましい。また、上記エチレン系不飽和カルボン酸単量体の残部の投入は、上記到達時から上記終了時までの時間、の50%の時点までに開始することが好ましく、45%の時点までに開始することがより好ましく、40%の時点までに開始することがさらに好ましい。また、上記到達時から上記終了時までの時間、の70%の時点までに、全量の95質量%以上添加することが好ましい。さらに好ましくは、上記到達時から上記終了時までの時間、の60%の時点までに、全量添加することが好ましい。 In order to further enhance the above effect, the ethylenically unsaturated carboxylic acid monomer is used after 10% of the time from the arrival time to the end time, more preferably after 15%. It is preferable to start charging the remainder of the ethylenically unsaturated carboxylic acid monomer. Further, the introduction of the remainder of the ethylenically unsaturated carboxylic acid monomer is preferably started by 50% of the time from the arrival to the end, and by 45%. More preferably, it is even more preferred to start by 40%. Further, it is preferable to add 95% by mass or more of the total amount by 70% of the time from the arrival time to the end time. More preferably, it is preferable to add the total amount up to 60% of the time from the arrival time to the end time.
 第三実施形態に係る反応系には、上記(a)~(d)成分以外に、乳化剤(界面活性剤)、重合開始剤、更に必要に応じて、連鎖移動剤、還元剤などを配合することができる。 In the reaction system according to the third embodiment, in addition to the components (a) to (d), an emulsifier (surfactant), a polymerization initiator, and, if necessary, a chain transfer agent, a reducing agent, and the like are blended. be able to.
 乳化剤(界面活性剤)、重合開始剤、連鎖移動剤、還元剤などについては、上述した第一実施形態において例示したものと同様の化合物を使用することができる。 As the emulsifier (surfactant), the polymerization initiator, the chain transfer agent, the reducing agent, etc., the same compounds as those exemplified in the first embodiment described above can be used.
 また、第三実施形態に係る反応系には、共重合体の分子量及び架橋構造を制御する目的で、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロヘプタン等の飽和炭化水素;ペンテン、ヘキセン、ヘプテン、シクロペンテン、シクロヘキセン、シクロヘプテン、4-メチルシクロヘキセン、1-メチルシクロヘキセン等の不飽和炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素などの炭化水素化合物を配合することができる。これらは1種を単独でまたは2種以上を組み合わせて使用することができる。これらのうち、シクロヘキセン、トルエンを用いることが好ましい。 In addition, the reaction system according to the third embodiment includes saturated hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, cycloheptane; pentene, hexene, heptene for the purpose of controlling the molecular weight and the crosslinked structure of the copolymer. , Cyclopentene, cyclohexene, cycloheptene, 4-methylcyclohexene, 1-methylcyclohexene and other unsaturated hydrocarbons; and hydrocarbon compounds such as benzene, toluene, xylene and other aromatic hydrocarbons. These can be used alone or in combination of two or more. Of these, cyclohexene and toluene are preferably used.
 更に、第三実施形態に係る反応系には、必要に応じて、電解質、酸素補足剤、キレート剤、分散剤、消泡剤、老化防止剤、防腐剤、抗菌剤、難燃剤、紫外線吸収剤等の添加剤を配合してもよい。これらの添加剤は、種類及び使用量ともに適宜適量使用することができる。 Furthermore, in the reaction system according to the third embodiment, if necessary, an electrolyte, an oxygen scavenger, a chelating agent, a dispersant, an antifoaming agent, an anti-aging agent, an antiseptic, an antibacterial agent, a flame retardant, and an ultraviolet absorber. You may mix | blend additives, such as. These additives can be used in appropriate amounts in both types and amounts.
 第三実施形態においては、重合開始剤投入開始時の反応系に(a)成分の一部、(b)成分の一部、(c)成分の一部、(d)成分の一部、乳化剤、還元剤、連鎖移動剤を含有させることが好ましい。 In the third embodiment, a part of the component (a), a part of the component (b), a part of the component (c), a part of the component (d), an emulsifier It is preferable to contain a reducing agent and a chain transfer agent.
 重合開始剤投入開始時の反応系に(a)成分の一部を含有させる場合、(a)成分の全量の1~25質量%を含有させることが好ましく、3~20質量%を含有させることがより好ましい。 When a part of the component (a) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 25% by mass of the total amount of the component (a), and 3 to 20% by mass is contained. Is more preferable.
 重合開始剤投入開始時の反応系に(c)成分の一部を含有させる場合、(c)成分の全量の3~55質量%を含有させることが好ましく、5~50質量%を含有させることがより好ましい。 When a part of the component (c) is contained in the reaction system at the start of charging the polymerization initiator, the content of the component (c) is preferably 3 to 55% by mass, and preferably 5 to 50% by mass. Is more preferable.
 重合開始剤投入開始時の反応系に(d)成分の一部を含有させる場合、(d)成分の全量の1~45質量%を含有させることが好ましく、2~30質量%を含有させることがより好ましい。 When a part of the component (d) is contained in the reaction system at the start of charging the polymerization initiator, it is preferable to contain 1 to 45% by mass of the total amount of the component (d), and 2 to 30% by mass is contained. Is more preferable.
 乳化剤及び重合開始剤は全量を重合開始剤投入開始時の反応系に含有させることが好ましい。 The total amount of the emulsifier and the polymerization initiator is preferably contained in the reaction system at the start of charging the polymerization initiator.
 重合開始剤投入開始時の反応系は、例えば、耐圧性の重合反応容器に、純水、上述した各(a)~(d)成分、乳化剤、重合開始剤、連鎖移動剤、還元剤、その他の成分を所定量加え、例えば、傾斜翼、タービン翼、マックスブレンド翼などにより撹拌することにより調製できる。 The reaction system at the start of charging of the polymerization initiator is, for example, a pressure-resistant polymerization reaction vessel, pure water, the components (a) to (d) described above, an emulsifier, a polymerization initiator, a chain transfer agent, a reducing agent, and the like. Can be prepared by adding a predetermined amount of the above components and stirring them with, for example, an inclined blade, a turbine blade, a Max blend blade, or the like.
 第三実施形態においては、安全性に配慮した槽内圧力及び生産性の観点から、上記反応温度を30~100℃の範囲に設定することが好ましく、40~85℃の範囲に設定することがより好ましい。この場合、上記の反応温度の範囲に開始温度を有する重合開始剤が用いられる。 In the third embodiment, the reaction temperature is preferably set in the range of 30 to 100 ° C., and preferably set in the range of 40 to 85 ° C., from the viewpoint of safety in the tank and productivity in consideration of safety. More preferred. In this case, a polymerization initiator having an initiation temperature in the above reaction temperature range is used.
 反応系の温度は、例えば、外部加熱により0.25~1.0℃/分で昇温することができる。 The temperature of the reaction system can be increased by, for example, 0.25 to 1.0 ° C./min by external heating.
 上記到達時以降の反応系に(a)~(d)成分を添加する方法としては、例えば、一括添加方法、分割添加方法、連続添加方法、パワーフィード方法を採用することができる。反応系内の単量体をある一定濃度以下に抑制して安全性を向上する観点からは、連続添加方法(以下、連添という場合もある)を採用することが好ましい。更に、連添を複数回行ってもよい。 As a method of adding the components (a) to (d) to the reaction system after reaching the above time, for example, a batch addition method, a divided addition method, a continuous addition method, or a power feed method can be employed. From the viewpoint of improving the safety by suppressing the monomer in the reaction system to a certain concentration or less, it is preferable to employ a continuous addition method (hereinafter sometimes referred to as continuous addition). Further, the attachment may be performed a plurality of times.
 第三実施形態においては、上記エチレン系不飽和カルボン酸単量体の全量投入終了時までに上記反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分のFedors法による溶解度パラメータをSPとし、上記エチレン系不飽和カルボン酸単量体の全量投入終了時よりも後に上記反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分のFedors法による溶解度パラメータをSPとしたときに、SPとSPとの差が絶対値で1.50以下、より好ましくは1.45以下、さらに好ましくは0.97以下、さらにより好ましくは0.92以下となるように、上記反応系に上記単量体成分を投入して行われることが好ましい。この場合、凍結安定性に一層優れた共重合体ラテックスを得ることができる。 In the third embodiment, by the Fedors method of monomer components other than the ethylenically unsaturated carboxylic acid monomer charged into the reaction system by the end of the total amount of the ethylenically unsaturated carboxylic acid monomer. Fedors method for monomer components other than the ethylenically unsaturated carboxylic acid monomer introduced into the reaction system after the end of charging all of the ethylenically unsaturated carboxylic acid monomer, with a solubility parameter of SP 1 the solubility parameter is taken as SP 2 by 1.50 or less in the difference absolute value between the SP 1 and SP 2, more preferably 1.45 or less, more preferably 0.97 or less, even more preferably 0. The reaction is preferably carried out by adding the monomer component to the reaction system so as to be 92 or less. In this case, a copolymer latex having further excellent freezing stability can be obtained.
 ここで、SP及びSPの算出方法について説明する。
 Fedorsは分子構造からSP値を算出する方法として凝集エネルギー密度とモル分子容の両方が置換基の種類および数に依存していると考え、以下の式(3)と種々置換基の定数を提案している(例えば、“A Method for Both the Solubility Parameters and Molar Volumes of Liquids”、Robert F.Fedors、 POLYMER ENGINEERING AND SCIENCE, FEBRUARY, 1974, Vol.14, No.2,p.147-154を参照)。
δ=[ΣEcoh/ΣV]1/2    (3)
ここで、ΣEcohは凝集エネルギーを示し、ΣVはモル分子容を示す。
代表的な原子及び原子団のEcoh及びVの値は、POLYMER ENGINEERING AND SCIENCE, FEBRUARY, 1974, Vol.14, No.2,p.152 table 5に記載の値を用いることができ、例えば、下記表のとおりである。
Here, a calculation method of SP 1 and SP 2 will be described.
Fedors thinks that both the cohesive energy density and molar molecular volume depend on the type and number of substituents as a method for calculating the SP value from the molecular structure, and proposes the following formula (3) and constants for various substituents. (See, for example, “A Method for Both the Solidarity Parameters and Molecular Volumes of Liquids”, Robert F. Fedors, POLYMER ENGINERAND. 74 E. ).
δ = [ΣEcoh / ΣV] 1/2 (3)
Here, ΣEcoh represents the cohesive energy, and ΣV represents the molar molecular volume.
The values of Ecoh and V of typical atoms and atomic groups are shown in POLYMER ENGINEERING AND SCIENCE, FEBRUARY, 1974, Vol. 14, no. 2, p. The values described in 152 table 5 can be used, for example, as shown in the following table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例えば、ポリスチレンのδは、[(1180×1+820×1+7630)/(16.1×1+(-1.0)×1+71.4×1)]1/2=10.55と算出される。
 また、共重合体におけるδは、上記式(3)におけるΣEcohを、各単量体成分のΣEcohの値にその成分のモル比を乗じた値の合計値とし、上記式(3)におけるΣVを、各単量体成分のΣVの値にその成分のモル比を乗じた値の合計値として、算出する。
For example, δ of polystyrene is calculated as [(1180 × 1 + 820 × 1 + 7630) / (16.1 × 1 + (− 1.0) × 1 + 71.4 × 1)] 1/2 = 10.55.
Further, δ in the copolymer is ΣEcoh in the above formula (3) is the sum of the values of ΣEcoh of each monomer component multiplied by the molar ratio of that component, and ΣV in the above formula (3) is The total value is calculated by multiplying the value of ΣV of each monomer component by the molar ratio of the component.
 SP及びSPの算出方法について後述する実施例III-1を例として挙げると、先ず、エチレン系不飽和カルボン酸単量体の全量投入終了時までに反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分は、ブタジエン18質量部、スチレン14質量部、アクリロニトリル8質量部となり、エチレン系不飽和カルボン酸単量体の全量投入終了時よりも後に反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分は、ブタジエン24質量部、スチレン19質量部、アクリロニトリル11質量部となる。
SPは、[{(4420×18/54)+(9630×14/104)+(8100×8/53)}/{(59.2×18/54)+(86.5×14/104)+(39.1×8/53)}]1/2=10.35と算出される。
SPは、[{(4420×24/54)+(9630×19/104)+(8100×11/53)}/{(59.2×24/54)+(86.5×19/104)+(39.1×11/53)}]1/2=10.37と算出される。
SPとSPとの差は、絶対値で0.02となる。
As an example of Example III-1, which will be described later with respect to the calculation method of SP 1 and SP 2 , first, the ethylenic unsaturation charged into the reaction system by the end of the total amount of the ethylenically unsaturated carboxylic acid monomer. The monomer components other than the carboxylic acid monomer are 18 parts by mass of butadiene, 14 parts by mass of styrene, and 8 parts by mass of acrylonitrile, and are charged into the reaction system after the completion of the total amount of the ethylenically unsaturated carboxylic acid monomer. The monomer components other than the ethylenically unsaturated carboxylic acid monomer are 24 parts by mass of butadiene, 19 parts by mass of styrene, and 11 parts by mass of acrylonitrile.
SP 1 is [{(4420 × 18/54) + (9630 × 14/104) + (8100 × 8/53)} / {(59.2 × 18/54) + (86.5 × 14/104). ) + (39.1 × 8/53)}] 1/2 = 10.35.
SP 2 is [{(4420 × 24/54) + (9630 × 19/104) + (8100 × 11/53)} / {(59.2 × 24/54) + (86.5 × 19/104). ) + (39.1 × 11/53)}] 1/2 = 10.37.
The difference between SP 1 and SP 2 is 0.02 in absolute value.
 乳化重合の反応時間については、例えば、生産性の観点から、上記到達時から(a)~(d)成分の全量投入終了時までの時間を1~15時間とすることが好ましく、2~10時間とすることがより好ましい。また、乳化重合は、(a)~(d)成分のポリマー転化率が95%以上となるまで行うことが好ましく、97%以上となるまで行うことがより好ましい。 With respect to the reaction time of the emulsion polymerization, for example, from the viewpoint of productivity, the time from the above arrival to the end of the total addition of the components (a) to (d) is preferably 1 to 15 hours. More preferably, it is time. The emulsion polymerization is preferably carried out until the polymer conversion rate of the components (a) to (d) reaches 95% or more, and more preferably 97% or more.
 また、第三実施形態においては、ポリマー転化率が95%を超えたことを確認して反応を終了させることが好ましい。ポリマー転化率は、固形分量から算出、又は重合槽を冷却した熱量から算出できる。こうして、共重体ラテックスが得られる。 Further, in the third embodiment, it is preferable to terminate the reaction after confirming that the polymer conversion rate exceeds 95%. The polymer conversion rate can be calculated from the solid content or from the amount of heat obtained by cooling the polymerization tank. In this way, a copolymer latex is obtained.
 共重合体ラテックスは、分散安定性の観点から、アンモニア、水酸化カリウム、水酸化ナトリウムなどにより、pHが5~8.5に調整されていることが好ましく、5.5~7.5に調整されていることがより好ましい。 From the viewpoint of dispersion stability, the copolymer latex is preferably adjusted to a pH of 5 to 8.5 with ammonia, potassium hydroxide, sodium hydroxide or the like, and adjusted to 5.5 to 7.5. More preferably.
 また、共重合体ラテックスは、加熱減圧蒸留などの方法により、未反応単量体及び他の低沸点化合物が除去されていることが好ましい。 The copolymer latex is preferably freed of unreacted monomers and other low-boiling compounds by a method such as heating under reduced pressure.
 第三実施形態に係る方法によれば、低粘度の共重合体ラテックスを十分な固形分濃度で得ることができる。共重合体ラテックスの固形分濃度は、運搬時にかかるコストや貯蔵時のタンク容量の観点から、35~65質量%が好ましく、40~60質量%がより好ましい。 According to the method according to the third embodiment, a low viscosity copolymer latex can be obtained at a sufficient solid content concentration. The solid content concentration of the copolymer latex is preferably 35 to 65% by mass, more preferably 40 to 60% by mass, from the viewpoints of cost during transportation and tank capacity during storage.
 また、共重合体ラテックスは、蒸発法などの方法により、固形分濃度が45~69質量%となるように濃縮されていてもよい。第三実施形態に係る方法により得られる共重合体ラテックスは、濃縮した場合であっても十分に低い粘度を有することができる。 The copolymer latex may be concentrated by a method such as an evaporation method so that the solid content concentration is 45 to 69% by mass. The copolymer latex obtained by the method according to the third embodiment can have a sufficiently low viscosity even when concentrated.
 共重合体ラテックスの粘度は、25℃において、50~1000mPa・sであることが好ましく、70~700mPa・sであることがより好ましい。なお、粘度は、JIS K7117-1の測定方法に準じて、B型(BL型)粘度計(TOKI SANGYO LTD製 VISCOMETER(モデルBM)、粘度0~100mPa・sの場合、No.1ローター、100~500mPa・sの場合:No.2ローター、500~2000mPa・sの場合:No.3ローター、2000mPa・s以上の場合:No.4ローターを用い、回転数は60rpm)を用いて測定される。 The viscosity of the copolymer latex is preferably 50 to 1000 mPa · s at 25 ° C., and more preferably 70 to 700 mPa · s. The viscosity is a B type (BL type) viscometer (TOKI SANGYO LTD made by VISCOMETER (model BM) according to the measurement method of JIS K7117-1, in the case of a viscosity of 0 to 100 mPa · s, No. 1 rotor, 100. ˜500 mPa · s: No. 2 rotor, 500 to 2000 mPa · s: No. 3 rotor, 2000 mPa · s or more: No. 4 rotor, rotation speed is 60 rpm) .
 共重合体ラテックスには、必要に応じて、防腐剤、老化防止剤、分散剤、印刷適性向上剤、表面サイズ剤、潤滑剤、界面活性剤などの機能性添加剤を配合してもよい。これらの添加剤は、種類及び使用量ともに適宜適量使用することができる。 If necessary, the copolymer latex may contain functional additives such as preservatives, anti-aging agents, dispersants, printability improvers, surface sizing agents, lubricants, and surfactants. These additives can be used in appropriate amounts in both types and amounts.
 第三実施形態に係る共重合体ラテックスは、十分な接着強度及び電極活物質への被覆性を発現できるとともに、低粘度化を実現でき、なおかつ凍結安定性に優れるラテックスになり得る。また、第三実施形態に係る共重合体ラテックスを配合した電池電極用組成物は、集電体などの金属に対して優れた結着力を有する塗工層を形成することができる。なお、第三実施形態の共重合体ラテックスが凍結安定性に優れる理由について本発明者らは以下のとおり考えている。式(2)の左辺は、共重合体ラテックスに含まれる水の全融解熱量に対する、-20℃から0℃までに検出される水の融解熱量の割合を示す。この値が、式(2)の右辺の値0.8以下となる場合、-20℃から0℃までに検出されない水の量がラテックス中に20質量%以上存在すると考えられる。-20℃から0℃までに検出されるピークが結合水及び自由水であり、検出されない水は不凍水であると推察される。このような不凍水を、上記特定の乳化重合によりラテックス中に十分存在させることができた結果、接着強度と低粘度化との両立を図りながら凍結安定性の向上が可能になったものと考えられる。 The copolymer latex according to the third embodiment can be a latex that can exhibit sufficient adhesive strength and covering property to the electrode active material, can achieve low viscosity, and is excellent in freeze stability. Moreover, the composition for battery electrodes which mix | blended the copolymer latex which concerns on 3rd embodiment can form the coating layer which has the outstanding binding force with respect to metals, such as a collector. In addition, the present inventors consider the reason why the copolymer latex of the third embodiment is excellent in freezing stability as follows. The left side of the formula (2) indicates the ratio of the heat of fusion detected from −20 ° C. to 0 ° C. with respect to the total heat of fusion of water contained in the copolymer latex. When this value is 0.8 or less on the right side of the formula (2), it is considered that the amount of water not detected from −20 ° C. to 0 ° C. is present in the latex by 20% by mass or more. The peaks detected from −20 ° C. to 0 ° C. are bound water and free water, and the water not detected is presumed to be antifreeze water. Such antifreeze water can be sufficiently present in the latex by the above specific emulsion polymerization, and as a result, it has become possible to improve freezing stability while achieving both adhesive strength and low viscosity. Conceivable.
 換言すれば、第三実施形態に係る共重合体ラテックスは、示差走査熱量測定により求められる上記不凍水の割合が全水分量に対し20質量%以上であることが好ましく、25質量%以上であることがより好ましい。この場合、全水分量に対する不凍水量(質量%)は以下の手順で求めることができる。 In other words, in the copolymer latex according to the third embodiment, the proportion of the antifreeze water obtained by differential scanning calorimetry is preferably 20% by mass or more with respect to the total water content, and is 25% by mass or more. More preferably. In this case, the amount of antifreeze water (% by mass) relative to the total amount of water can be determined by the following procedure.
 共重合体ラテックスを固形分C(質量%)、pH7に調整し、測定試料を作製する。濃度及びpHの調整には、それぞれ純水及び水酸化ナトリウムを用いることができる。作製した測定試料をアルミパンに詰め、示差走査熱量計(DSC6200:セイコーインスツルメンツ社製)にセットする。温度を-25℃にした後、昇温速度1℃/分で30℃まで昇温し、DSC曲線を得る。得られるDSC曲線から-20℃から0℃までの融解熱量ΔH(mJ/mg)を算出する。同様にして、水についての融解熱量ΔH(mJ/mg)を算出する。これらの値から、下記式(A)、(B)、(C)及び(D)により、全水分量に対する不凍水量の割合(質量%)が求められる。 The copolymer latex is adjusted to a solid content C S (mass%) and pH 7 to prepare a measurement sample. For adjusting the concentration and pH, pure water and sodium hydroxide can be used, respectively. The prepared measurement sample is packed in an aluminum pan and set in a differential scanning calorimeter (DSC6200: manufactured by Seiko Instruments Inc.). After setting the temperature to −25 ° C., the temperature is raised to 30 ° C. at a rate of temperature rise of 1 ° C./min to obtain a DSC curve. The heat of fusion ΔH (mJ / mg) from −20 ° C. to 0 ° C. is calculated from the obtained DSC curve. Similarly, heat of fusion ΔH W (mJ / mg) for water is calculated. From these values, the ratio (mass%) of the antifreeze water amount to the total water amount is obtained by the following formulas (A), (B), (C), and (D).
 式(A):結合水及び自由水の合計量(mg)=[ΔH(mJ/mg)×測定試料の質量(mg)]/ΔH(mJ/mg)
 式(B):測定試料中の全水分量(mg)=測定試料の質量(mg)×(100-C)/100
 式(C):不凍水量(mg)=測定試料中の全水分量(mg)-結合水及び自由水の合計量(mg)
 式(D):全水分量に対する不凍水量の割合(質量%)=不凍水量(mg)×100/測定試料中の全水分量(mg)
Formula (A): Total amount of bound water and free water (mg) = [ΔH (mJ / mg) × mass of measurement sample (mg)] / ΔH W (mJ / mg)
Formula (B): Total water content in measurement sample (mg) = mass of measurement sample (mg) × (100−C S ) / 100
Formula (C): Amount of antifreeze water (mg) = total water amount in measurement sample (mg) −total amount of combined water and free water (mg)
Formula (D): Ratio of antifreeze water amount to total water amount (mass%) = antifreeze water amount (mg) × 100 / total water amount in measurement sample (mg)
 第三実施形態に係る共重合体ラテックスは、紙塗工用、不織布などの繊維結合用、カーペットのバッキング用、電池用(例えば電極、セパレータ、耐熱保護層など)、塗料用、粘接着剤用などのバインダーとして有用である。 The copolymer latex according to the third embodiment is used for paper coating, fiber bonding such as nonwoven fabric, carpet backing, batteries (for example, electrodes, separators, heat-resistant protective layers, etc.), paints, and adhesives. Useful as a binder.
 紙塗工用組成物は、例えば、第三実施形態に係る共重合体ラテックスと、必要に応じて、顔料、他のバインダー、助剤などとを含むものが挙げられる。 Examples of the paper coating composition include a copolymer latex according to the third embodiment and, if necessary, a pigment, another binder, an auxiliary agent, and the like.
 顔料、他のバインダー、助剤などについては、上述した第一実施形態において例示したものと同様の化合物を使用することができる。 As for pigments, other binders, auxiliaries and the like, the same compounds as those exemplified in the first embodiment described above can be used.
 紙塗工用組成物における共重合体ラテックスの含有量は、顔料100質量部に対して固形分の含有量が1~20質量部となることが好ましく、2~15量部となることがより好ましい。 The content of the copolymer latex in the paper coating composition is preferably 1 to 20 parts by mass and more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the pigment. preferable.
 電池電極用組成物は、例えば、第三実施形態に係る共重合体ラテックス及び活物質と、必要に応じて、助剤などとを含むものが挙げられる。 Examples of the battery electrode composition include those containing the copolymer latex and the active material according to the third embodiment, and, if necessary, an auxiliary agent.
 正極活物質、負極活物質、助剤などについては、上述した第一実施形態において例示したものと同様の化合物を使用することができる。 As the positive electrode active material, the negative electrode active material, the auxiliary agent, etc., the same compounds as those exemplified in the first embodiment described above can be used.
 電池電極用組成物中の共重合体ラテックスの含有量は、活物質100質量部(固形分)に対して、0.1~10質量部(固形分)であることが好ましく、0.5~7質量部であることがより好ましい。共重合体ラテックスの含有量を、0.1質量部以上とすると、活物質や集電体などに対する良好な接着力が得られる観点から好ましく、10質量部以下とすると、二次電池として組み立てたときに過電圧が著しく上昇し、電池特性を低下させることを防ぐ観点から好ましい。 The content of the copolymer latex in the battery electrode composition is preferably 0.1 to 10 parts by mass (solid content) with respect to 100 parts by mass (solid content) of the active material, 0.5 to More preferably, it is 7 parts by mass. When the content of the copolymer latex is 0.1 parts by mass or more, it is preferable from the viewpoint of obtaining a good adhesive force with respect to the active material or the current collector, and when it is 10 parts by mass or less, a secondary battery is assembled. It is preferable from the viewpoint of sometimes preventing the overvoltage from significantly increasing and degrading the battery characteristics.
 電池電極用組成物は、集電体に塗布、乾燥されることにより、集電体上に電極塗工層を形成し、電極シートを得る。そのような電極シートは、例えば非水電解液二次電池の正極板または負極板として用いられる。 The battery electrode composition is applied to a current collector and dried to form an electrode coating layer on the current collector to obtain an electrode sheet. Such an electrode sheet is used as, for example, a positive electrode plate or a negative electrode plate of a non-aqueous electrolyte secondary battery.
 電池電極用組成物を集電体に塗布する方法としては、例えば、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法などの公知の方法を用いることができ、乾燥には、放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが用いられる。 As a method of applying the battery electrode composition to the current collector, for example, a known method such as a reverse roll method, a comma bar method, a gravure method, or an air knife method can be used. A dryer, a warm air dryer, an infrared heater, a far infrared heater, or the like is used.
 第三実施形態に係る共重合体ラテックスを使用した電池電極用組成物は、例えば、非水電解液二次電池、ニッケル水素電池、ニッケルカドミウム電池などの二次電池の電極用として好適である。 The battery electrode composition using the copolymer latex according to the third embodiment is suitable for an electrode of a secondary battery such as a nonaqueous electrolyte secondary battery, a nickel hydrogen battery, or a nickel cadmium battery.
 以下、実施例により、本発明を更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
<第一態様>
<共重合ラテックスの製造>
 表2~5に示す材料を同表に示す配合量(単位:質量部)で配合して反応を行い、共重合体ラテックスを合成した。具体的な合成手順を以下に示す。
<First aspect>
<Manufacture of copolymer latex>
The materials shown in Tables 2 to 5 were mixed in the amounts shown in the same table (unit: parts by mass) and reacted to synthesize copolymer latex. A specific synthesis procedure is shown below.
 なお、表2~5中の各成分及び記号は下記の化合物を示す。
(a)成分:脂肪族共役ジエン系単量体
BDE:1,3-ブタジエン
(b)成分(エチレン系不飽和カルボン酸単量体)
IA:イタコン酸
FA:フマル酸
AA:アクリル酸
MAA:メタクリル酸
(c)成分:シアン化ビニル単量体
ACN:アクリロニトリル
(d)成分:(a)~(c)成分と共重合可能な単量体
STY:スチレン
MMA:メタクリル酸メチル
AAMID:アクリルアミド
(その他の成分)
tDM:t-ドデシルメルカプタン
乳化剤:ドデシルベンゼンスルホン酸ナトリウム
電解質:炭酸水素ナトリウム(NaHCO
KPS:過硫酸カリウム
STPP:トリポリリン酸ナトリウム
PW:純水
The components and symbols in Tables 2 to 5 represent the following compounds.
(A) Component: Aliphatic conjugated diene monomer BDE: 1,3-butadiene (b) Component (ethylenically unsaturated carboxylic acid monomer)
IA: Itaconic acid FA: Fumaric acid AA: Acrylic acid MAA: Methacrylic acid (c) Component: Vinyl cyanide monomer ACN: Acrylonitrile (d) Component: Monomer copolymerizable with components (a) to (c) Body STY: Styrene MMA: Methyl methacrylate AAMID: Acrylamide (other components)
tDM: t-dodecyl mercaptan emulsifier: sodium dodecylbenzenesulfonate electrolyte: sodium bicarbonate (NaHCO 3 )
KPS: Potassium persulfate STPP: Sodium tripolyphosphate PW: Pure water
(実施例I-1)
 耐圧性の重合反応容器に、シクロヘキセン10質量部、及び、表2の1段目に示す配合量(質量部)の各単量体成分とその他の化合物を加えて十分攪拌し、反応液を得た。
Example I-1
In a pressure-resistant polymerization reaction vessel, 10 parts by mass of cyclohexene and each monomer component and other compounds in the blending amounts (parts by mass) shown in the first stage of Table 2 are added and stirred sufficiently to obtain a reaction solution. It was.
 次に、重合槽内温度を上げていき、反応系のポリマー転化率が1.0%になった時点を到達時とし、この到達時を基準(0分)として85分後から、表2の2段目に示す配合量(質量部)の各単量体成分とその他の化合物を、表2の2段目に示す連添時間帯(到達時を基準として85分後から290分後まで、ただし(b)成分は85分後から220分後まで)に、反応液に添加した。なお重合系の反応温度は65℃とした。 Next, the temperature in the polymerization tank was raised, and the time when the polymer conversion rate of the reaction system reached 1.0% was regarded as reaching time, and after 85 minutes with this reaching time as a reference (0 minutes), Each monomer component and other compounds in the compounding amount (parts by mass) shown in the second stage are added to the continuous time zone shown in the second stage of Table 2 (from 85 minutes to 290 minutes after the arrival time, However, the component (b) was added to the reaction solution from 85 minutes to 220 minutes later. The reaction temperature of the polymerization system was 65 ° C.
 続いて、表2の3段目に示す配合量(質量部)の各単量体成分とその他化合物を、表2の3段目に示す連添時間帯(到達時を基準として290分後から470分後まで)に、反応液に添加した。 Subsequently, each monomer component and other compounds in the blending amounts (parts by mass) shown in the third row of Table 2 are added to the continuous addition time zone shown in the third row of Table 2 (after 290 minutes on the basis of arrival time). Until 470 minutes).
 続いて、表2の4段目に示す配合量(質量部)の各単量体成分とその他化合物を、表2の4段目に示す連添時間帯(到達時を基準として470分後から495分後まで)に、反応液に添加した。 Subsequently, the monomer components and other compounds in the blending amounts (parts by mass) shown in the fourth row of Table 2 were added to the continuous time zone shown in the fourth row of Table 2 (after 470 minutes on the basis of arrival time). (Until 495 minutes).
 単量体成分の全量の投入を終了した後、重合槽内温度を85℃に昇温し、85℃を維持した。ポリマー転化率が97%を超えたことを、重合槽を冷却した熱量から確認して、重合を終了し、反応生成物を得た。 After the addition of the entire amount of monomer components was completed, the temperature in the polymerization tank was raised to 85 ° C. and maintained at 85 ° C. The fact that the polymer conversion rate exceeded 97% was confirmed from the amount of heat by which the polymerization tank was cooled, the polymerization was terminated, and a reaction product was obtained.
 重合反応終了後、水酸化ナトリウムを用いて反応生成物のpHを6.5に調整した。次いで、未反応単量体及び他の低沸点化合物を除去するために反応生成物の加熱減圧蒸留を行い、共重合体ラテックスI-Aを得た。 After completion of the polymerization reaction, the pH of the reaction product was adjusted to 6.5 using sodium hydroxide. Next, in order to remove unreacted monomers and other low-boiling compounds, the reaction product was subjected to heating under reduced pressure to obtain a copolymer latex IA.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例I-2~I-11、I-12、I-13)
 各単量体成分及びその他の化合物の配合量、連添時間帯、反応温度を表2、3又は5に示す条件に変更したこと以外は、実施例I-1と同様にして共重合体ラテックスI-B~I-K、I-L、I-Mをそれぞれ得た。
(Examples I-2 to I-11, I-12, I-13)
Copolymer latex in the same manner as in Example I-1, except that the blending amount of each monomer component and other compounds, the addition time zone, and the reaction temperature were changed to the conditions shown in Table 2, 3 or 5. IB to IK, IL, and IM were obtained.
(比較例I-1~I-5、I-7、I-8)
 各単量体成分及びその他の化合物の配合量、連添時間帯、反応温度を表4又は5に示す条件に変更したこと以外は、実施例I-1と同様にして共重合体ラテックスI-CE-1~I-CE-5、I-CE-7、I-CE-8をそれぞれ得た。
(Comparative Examples I-1 to I-5, I-7, I-8)
A copolymer latex I- was prepared in the same manner as in Example I-1, except that the blending amount of each monomer component and other compounds, the addition time zone, and the reaction temperature were changed to the conditions shown in Table 4 or 5. CE-1 to I-CE-5, I-CE-7, and I-CE-8 were obtained.
(比較例I-6)
 耐圧性の重合反応器に、シクロヘキセン10質量部を加える代わりにα-メチルスチレンダイマー0.5質量部を加えたこと、α-メチルスチレンダイマーを2段目に0.2質量部及び3段目に0.2質量部を各々単量体成分と共に連続添加したこと、各単量体成分及びその他の化合物の配合量、連添時間帯、反応温度を表4に示す条件に変更したこと以外は、実施例I-1と同様にして共重合体ラテックスI-CE-6を得た。
(Comparative Example I-6)
Instead of adding 10 parts by mass of cyclohexene to the pressure-resistant polymerization reactor, 0.5 parts by mass of α-methylstyrene dimer was added, and 0.2 parts by mass and α-methylstyrene dimer were added to the second stage and the third stage. In addition to the fact that 0.2 parts by weight were continuously added together with the monomer component, the blending amount of each monomer component and other compounds, the addition time zone, and the reaction temperature were changed to the conditions shown in Table 4. In the same manner as in Example I-1, a copolymer latex I-CE-6 was obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<共重合体ラテックスの評価>
 上記で得られた共重合体ラテックスについて下記の方法に従って凝集物量、濃縮後のラテックス粘度及び濾過性の評価を行った。
<Evaluation of copolymer latex>
The copolymer latex obtained above was evaluated for the amount of aggregate, the latex viscosity after concentration, and the filterability according to the following method.
[凝集物量]
 共重合体ラテックスを濃度1質量%の食塩水で約0.05質量%に希釈し、この希釈液を300メッシュ金網でろ過後、マルチサイザー3(ベックマンコールター社製)にて粒子径2~10μmの粒子数を測定した。測定結果から粒子径2~10μmの粒子の総質量を算出し、共重合体ラテックスの固形分に対する粒子径2~10μmの粒子の割合(質量%)を算出した。
[Aggregate amount]
The copolymer latex is diluted to about 0.05% by mass with a 1% by mass saline solution, and the diluted solution is filtered through a 300 mesh wire mesh, and then the particle size is 2 to 10 μm using Multisizer 3 (manufactured by Beckman Coulter). The number of particles was measured. From the measurement results, the total mass of particles having a particle diameter of 2 to 10 μm was calculated, and the ratio (mass%) of particles having a particle diameter of 2 to 10 μm to the solid content of the copolymer latex was calculated.
[濃縮後のラテックス粘度]
 共重合体ラテックスを蒸発法により濃縮し、水酸化ナトリウムを用いて、固形分52質量%、pH6に調整したサンプルを得た。このサンプルについて、JIS K7117-1の測定方法に準じて、B型(BL型)粘度計(TOKI SANGYO LTD製 VISCOMETER(モデルBM)、粘度0~100mPa・sの場合、No.1ローター、100~500mPa・sの場合:No.2ローター、500~2000mPa・sの場合:No.3ローター、2000mPa・s以上の場合:No.4ローターを用い、回転数は60rpm)を用い、25℃での粘度を測定した。得られた粘度から下記基準により濃縮後のラテックス粘度を判定した。
A:B型粘度が3500mPa・s以下
B:B型粘度が3500mPa・s超5000mPa・s以下
C:B型粘度が5000mPa・s超
[Latex viscosity after concentration]
The copolymer latex was concentrated by an evaporation method, and a sample adjusted to a solid content of 52 mass% and pH 6 using sodium hydroxide was obtained. For this sample, in accordance with the measurement method of JIS K7117-1, a B-type (BL type) viscometer (TOKI SANGYO LTD, VISCOMETER (model BM), with a viscosity of 0 to 100 mPa · s, No. 1 rotor, 100 to 500 mPa · s: No. 2 rotor, 500-2000 mPa · s: No. 3 rotor, 2000 mPa · s or more: No. 4 rotor, rotation speed is 60 rpm) The viscosity was measured. The latex viscosity after concentration was determined from the obtained viscosity according to the following criteria.
A: B-type viscosity is 3500 mPa · s or less B: B-type viscosity is more than 3500 mPa · s 5000 mPa · s or less C: B-type viscosity is more than 5000 mPa · s
[ろ過性]
 共重合体ラテックスを蒸発法により濃縮し、水酸化ナトリウムを用いて、固形分47質量%、pH6に調整した共重合体ラテックスを、高さ約20cmから300メッシュ金網でろ過した。ろ過は、12.5cm四方の金網を4つ折りにし、開いた部分に共重合体ラテックスを常に5割~8割になるよう供給して行った。共重合体ラテックスを50mlろ過した際にかかる時間から単位時間当たりのろ過量α(mL/秒)を算出し、下記基準によりろ過性を評価した。なお、金網からろ過される共重合体ラテックスが停止した場合は、その時点でのろ過量と時間から単位時間当たりのろ過量を算出した。また、金網から全くろ過されないものはCと判断した。
A:α≧0.2
B:0.1<α<0.2
C:α≦0.1
[Filterability]
The copolymer latex was concentrated by an evaporation method, and the copolymer latex adjusted to pH 6 with a solid content of 47% by mass using sodium hydroxide was filtered through a metal mesh of about 20 cm in height to 300 mesh. Filtration was performed by folding a 12.5 cm square wire mesh into four and feeding the latex latex with a copolymer latex at 50 to 80% at all times. The filtration rate α (mL / second) per unit time was calculated from the time taken when 50 ml of copolymer latex was filtered, and the filterability was evaluated according to the following criteria. In addition, when the copolymer latex filtered from the wire mesh stopped, the filtration amount per unit time was calculated from the filtration amount and time at that time. Moreover, it was judged as C what was not filtered at all from a metal-mesh.
A: α ≧ 0.2
B: 0.1 <α <0.2
C: α ≦ 0.1
<塗工紙の作成及び評価>
 上記で得られた共重合体ラテックスを用いて下記の方法により紙塗工用組成物を調製して塗工紙を作成した。
<Creation and evaluation of coated paper>
Using the copolymer latex obtained above, a paper coating composition was prepared by the following method to prepare a coated paper.
(紙塗工用組成物の調製)
 下記に示した配合処方に従って紙塗工用組成物を作製した。なお、紙塗工用組成物は、水酸化ナトリウムでpH9.5に調整し、純水を必要量添加することによって固形分濃度を67質量%に調整した。
(配合処方)
カオリン((株)イメリスミネラルズ・ジャパン製、商品名:DBグレーズ)   20質量部
重質炭酸カルシウム((株)イメリスミネラルズ・ジャパン製、商品名:カービタル90)        80質量部
変性デンプン(日本食品化工(株)製、商品名:MS4600)   2質量部
共重合体ラテックス                6質量部(固形分量)
(Preparation of composition for paper coating)
A paper coating composition was prepared according to the formulation shown below. The paper coating composition was adjusted to pH 9.5 with sodium hydroxide, and the solid content concentration was adjusted to 67% by mass by adding a necessary amount of pure water.
(Combination prescription)
Kaolin (product name: DB Glaze, manufactured by Imerizu Minerals Japan Co., Ltd.) 20 parts by weight heavy calcium carbonate (product name: Carbital 90, manufactured by Imeris Minerals Japan Co., Ltd.) 80 parts by weight modified starch (Japanese food) Kako Co., Ltd., trade name: MS4600) 2 parts by mass copolymer latex 6 parts by mass (solid content)
(塗工紙の作成)
 塗工原紙(坪量55g/m)に、上記の紙塗工用組成物を片面あたりの塗被量が10g/mとなるようにワイヤーバーを用いて塗工し乾燥した後、線圧60kg/cm、温度50℃の条件でカレンダー処理を行って塗工紙を得た。得られた塗工紙について、下記の方法によりドライピック強度の評価を行った。結果を表7に示す。
(Creating coated paper)
After coating and drying the above-mentioned composition for paper coating on a coated base paper (basis weight 55 g / m 2 ) using a wire bar so that the coating amount per side becomes 10 g / m 2 , A calender treatment was performed under the conditions of a pressure of 60 kg / cm and a temperature of 50 ° C. to obtain a coated paper. About the obtained coated paper, dry pick strength was evaluated by the following method. The results are shown in Table 7.
(塗工紙のドライピック強度の評価)
 RI印刷機を用い、各塗工紙にピッキングテスト用墨インキ(DICグラフィックス(株)製)を同時に印刷した。得られた印刷物を塗工上質紙に押し当ててインキを写し取り、インキが写し取られなかった部分(白抜け部分)をピッキング発生箇所と見なし、このときのピッキングの程度を肉眼で判定し、ピッキングの発生量が最も少ないものを5級とし、5級(優)から1級(劣)まで相対的に目視評価した。
(Evaluation of dry pick strength of coated paper)
Using a RI printer, a black ink for picking test (manufactured by DIC Graphics Co., Ltd.) was simultaneously printed on each coated paper. The obtained printed matter is pressed against coated fine paper to copy the ink, the portion where the ink is not copied (the white portion) is regarded as the picking occurrence point, and the degree of picking at this time is judged with the naked eye, The one with the least amount of picking was classified as grade 5, and was visually evaluated from grade 5 (excellent) to grade 1 (inferior).
<電極の作製及び評価>
 上記で得られた共重合体ラテックスを用いて、下記の方法により電池電極用組成物を調製して電極を作製した。
<Production and evaluation of electrode>
Using the copolymer latex obtained above, a battery electrode composition was prepared by the following method to prepare an electrode.
(電池電極用組成物の調製)
(1-1)正極用組成物の調製
 正極活物質としてLiCoOを100質量部と、導電剤としてアセチレンブラックを5質量部と、増粘剤としてカルボキシメチルセルロース水溶液を固形分で1質量部と、結着剤として、各実施例および各比較例の共重合体ラテックスを固形分で2質量部とを全固形分が65質量%となるように適量の純水を加えて混練し、正極用組成物を調製した。
(Preparation of battery electrode composition)
(1-1) Preparation of composition for positive electrode 100 parts by mass of LiCoO 2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive agent, and 1 part by mass of an aqueous carboxymethyl cellulose as a thickener, As a binder, 2 parts by mass of the copolymer latex of each Example and each Comparative Example was kneaded by adding an appropriate amount of pure water so that the total solid content was 65% by mass, and the composition for the positive electrode A product was prepared.
(1-2)負極用組成物の調製
 負極活物質として平均粒子径が20μmの天然黒鉛を使用し、天然黒鉛100質量部に対して、増粘剤としてカルボキシメチルセルロース水溶液を固形分で1質量部と、結着剤として、各実施例および各比較例の共重合体ラテックスを固形分で2質量部とを全固形分が45質量%となるように適量の純水を加えて混練し、負極用組成物を調製した。
(1-2) Preparation of Composition for Negative Electrode Using natural graphite having an average particle size of 20 μm as a negative electrode active material, 1 part by mass of a carboxymethyl cellulose aqueous solution as a thickener is used as a thickener with respect to 100 parts by mass of natural graphite. Then, as a binder, the copolymer latex of each Example and each Comparative Example was kneaded by adding a proper amount of pure water so that the total solid content was 45% by mass with 2 parts by mass in solid content, and the negative electrode A composition was prepared.
(電極の作製)
(1-1)正極の作製
 上記のようにして得られた正極用組成物を集電体となる厚さ20μmのアルミニウム箔に塗布し、130℃で5分間乾燥後、室温でロールプレスして、塗工層の厚みが100μmの正極を得た。
(Production of electrodes)
(1-1) Production of positive electrode The composition for positive electrode obtained as described above was applied to an aluminum foil having a thickness of 20 μm serving as a current collector, dried at 130 ° C. for 5 minutes, and then roll-pressed at room temperature. A positive electrode having a coating layer thickness of 100 μm was obtained.
(1-2)負極の作製
 上記のようにして得られた負極用組成物を集電体となる厚さ20μmの銅箔に塗布し、130℃で5分間乾燥後、室温でロールプレスして、塗工層の厚みが100μmの負極を得た。なお、電極活物質の被覆性を評価する際には、ロールプレスによる圧延を行う前の状態のものを用いた。
(1-2) Production of Negative Electrode The negative electrode composition obtained as described above was applied to a 20 μm thick copper foil serving as a current collector, dried at 130 ° C. for 5 minutes, and then roll pressed at room temperature. A negative electrode having a coating layer thickness of 100 μm was obtained. In addition, when evaluating the coverage of an electrode active material, the thing before the rolling by roll press was used.
(共重合体ラテックスの活物質への被覆性の評価)
 共重合体ラテックスが活物質の表面をより多く被覆することにより、充放電を繰り返した際のサイクル特性が向上することから、上記の方法で得られた各負極シートにおいて、下記の方法により共重合体ラテックスの活物質への被覆性を評価した。
 すなわち、上記で得られた各負極シート(圧延前のもの)を1cm四方に切り、四酸化オスミウム雰囲気下で染色した後、走査型電子顕微鏡(日本電子製、商品名:JSM-6510LA)を用いて、5000倍にて観察した。SEM観察画像において、活物質の面積に対し、活物質上に共重合体ラテックスが付着している面積を目視で確認し、下記のとおり評価した。なお、SEM観察画像8画面のうち、最も平均的な画像を選び、評価した。結果を表7に示す。
A:活物質の表面の80%以上を共重合体ラテックスが被覆している。
B:活物質の表面の60%以上80%未満を共重合体ラテックスが被覆している。
C:活物質の表面の40%以上60%未満を共重合体ラテックスが被覆している。
D:活物質の表面の40%未満しか共重合体ラテックスが被覆していない。
(Evaluation of coverage of copolymer latex on active material)
Since the cycle characteristics upon repeated charge / discharge are improved by coating the surface of the active material more with the copolymer latex, in each negative electrode sheet obtained by the above method, copolymerization is performed by the following method. The coverage of the combined latex on the active material was evaluated.
That is, each negative electrode sheet (before rolling) obtained above was cut into a 1 cm square, dyed in an osmium tetroxide atmosphere, and then used with a scanning electron microscope (trade name: JSM-6510LA, manufactured by JEOL Ltd.). And observed at 5000 times. In the SEM observation image, the area where the copolymer latex was adhered on the active material was visually confirmed with respect to the area of the active material, and evaluated as follows. Of the 8 SEM observation images, the average image was selected and evaluated. The results are shown in Table 7.
A: Copolymer latex covers 80% or more of the surface of the active material.
B: Copolymer latex covers 60% or more and less than 80% of the surface of the active material.
C: Copolymer latex covers 40% or more and less than 60% of the surface of the active material.
D: Less than 40% of the surface of the active material is coated with the copolymer latex.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例I-1~I-10で得られた共重合体ラテックスは、濃縮後であっても粘度が十分低く、凝集物が発生しにくく、ろ過性に優れていることが確認された。共重合体ラテックスI-A~I-K、I-L、I-Mがろ過性に優れている理由としては、粘度が低いこととシェアによる凝集物の発生が少ないこととの相乗効果が考えられる。また、表7に示した結果から明らかなように、実施例I-1~I-11、I-12、I-13で得られた共重合体ラテックスは、電池電極用としての評価においても、良好な電極活物質の被覆性を備えていることが確認された。 It was confirmed that the copolymer latex obtained in Examples I-1 to I-10 has a sufficiently low viscosity even after concentration, hardly generates aggregates, and has excellent filterability. The reason why copolymer latexes IA to IK, IL, and IM are excellent in filterability is considered to be a synergistic effect of low viscosity and less aggregate formation due to shear. It is done. Further, as is apparent from the results shown in Table 7, the copolymer latexes obtained in Examples I-1 to I-11, I-12, and I-13 were evaluated in battery electrodes. It was confirmed that it had good electrode active material coverage.
 第一実施形態に係る発明によれば、濃縮後であっても粘度が十分低い共重合体ラテックスを得ることができるので、共重合体ラテックスを移送するためのポンプへの負担を少なくすることができ、省エネルギー化を図ることができる。また、第一実施形態に係る発明によれば、ろ過性に優れた共重合体ラテックスを得ることができるので、共重合体ラテックスのろ過にかかる時間を短くすること及びろ過によるロスを少なくすることが可能となり、接着強度及び活物質の被覆性に優れた共重合体ラテックスを生産性よく得ることができる。 According to the invention according to the first embodiment, a copolymer latex having a sufficiently low viscosity can be obtained even after concentration, so that the burden on the pump for transferring the copolymer latex can be reduced. This can save energy. Further, according to the invention according to the first embodiment, a copolymer latex excellent in filterability can be obtained, so that the time required for filtration of the copolymer latex is shortened and loss due to filtration is reduced. Thus, it is possible to obtain a copolymer latex excellent in adhesive strength and active material coverage with high productivity.
 実施例I-12、I-13で得られた共重合体ラテックスについては、移送時の粘度(以下、「移送時粘度」という場合もある)の測定を行った。 For the copolymer latex obtained in Examples I-12 and I-13, the viscosity at the time of transfer (hereinafter sometimes referred to as “viscosity at transfer”) was measured.
[移送時粘度]
 共重合体ラテックスの固形分100質量部に対して、分散剤として東亞合成株式会社製のアロン(登録商標)T-50(商品名、ポリアクリル酸ナトリウム、重量平均分子量:6000)を、一律2.5質量部(固形分換算)添加した後、純水によって固形分濃度50.5質量%、pH6.0、液温25℃となるよう調整した。なお、ラテックスのpHは必要に応じて水酸化ナトリウム、塩酸などのpH調整剤で調整を行った。調整後の共重合体ラテックスの粘度を、JIS K7117-1の測定方法に準じて、B型(BL型)粘度計を用いて回転数60rpmでの回転開始1分後の粘度を測定し、これを移送時粘度とした。
[Transport viscosity]
Aron (registered trademark) T-50 (trade name, sodium polyacrylate, weight average molecular weight: 6000) manufactured by Toagosei Co., Ltd. as a dispersant was uniformly 2 with respect to 100 parts by mass of the solid content of the copolymer latex. After adding 0.5 parts by mass (in terms of solid content), the solid content was adjusted to 50.5% by mass with pure water, pH 6.0, and the liquid temperature was 25 ° C. The pH of the latex was adjusted with a pH adjuster such as sodium hydroxide or hydrochloric acid as necessary. The viscosity of the copolymer latex after adjustment was measured according to the measurement method of JIS K7117-1 using a B-type (BL type) viscometer after 1 minute from the start of rotation at a rotation speed of 60 rpm. Was the viscosity at the time of transfer.
 実施例I-12、及びI-13で得られた共重合体ラテックスの移送時粘度はそれぞれ、400mPa・s、及び420mPa・sであった。 The viscosity of the copolymer latex obtained in Examples I-12 and I-13 was 400 mPa · s and 420 mPa · s, respectively.
<第二態様>
<共重合ラテックスの製造>
 表8~10に示す材料を同表に示す配合量(単位:質量部)で配合して反応を行い、共重合体ラテックスを合成した。具体的な合成手順を以下に示す。
<Second aspect>
<Manufacture of copolymer latex>
The materials shown in Tables 8 to 10 were mixed in the amounts shown in the same table (unit: parts by mass) and reacted to synthesize copolymer latex. A specific synthesis procedure is shown below.
 なお、表8~10中の各成分及び記号は、表2~5中の各成分及び記号と同様である。 The components and symbols in Tables 8 to 10 are the same as the components and symbols in Tables 2 to 5.
(実施例II-1)
 耐圧性の重合反応容器に、シクロヘキセン10質量部、及び表8の1段目に示す配合量(質量部)の各単量体成分とその他の化合物を加えて十分攪拌し、反応液を得た。
Example II-1
To the pressure-resistant polymerization reaction vessel, 10 parts by mass of cyclohexene and each monomer component and other compounds in the blending amounts (parts by mass) shown in the first stage of Table 8 were added and stirred sufficiently to obtain a reaction solution. .
 次に、重合槽内温度を上げていき、反応系のポリマー転化率が1.0%になった時点を到達時とし、この到達時を基準(0分)として90分後から、表8の2段目に示す配合量(質量部)の各単量体成分とその他の化合物を、表8の2段目に示す連添時間帯(到達時を基準として90分後から285分後まで、ただし(b)成分は90分後から180分後まで)に、反応液に添加した。なお重合系の反応温度は67℃とした。 Next, the temperature in the polymerization tank was increased, and the time when the polymer conversion rate of the reaction system reached 1.0% was regarded as reaching time, and after 90 minutes from this reaching time as a reference (0 minutes), Each monomer component and other compounds in the compounding amount (parts by mass) shown in the second stage are added to the continuous time zone shown in the second stage of Table 8 (from 90 minutes to 285 minutes after reaching the time, However, the component (b) was added to the reaction solution from 90 minutes to 180 minutes later. The reaction temperature of the polymerization system was 67 ° C.
 続いて、表8の3段目に示す配合量(質量部)の各単量体成分とその他化合物を、表8の3段目に示す連添時間帯(到達時を基準として285分後から480分後まで)に、反応液に添加した。 Subsequently, the monomer components and other compounds in the blending amounts (parts by mass) shown in the third row of Table 8 were added to the continuous time zone shown in the third row of Table 8 (after 285 minutes on the basis of arrival time). Until 480 minutes).
 続いて、表8の4段目に示す配合量(質量部)の各単量体成分とその他化合物を、表8の4段目に示す連添時間帯(到達時を基準として480分後から495分後まで)に、反応液に添加した。 Subsequently, the respective monomer components and other compounds in the blending amounts (parts by mass) shown in the fourth row of Table 8 were added to the continuous addition time zone shown in the fourth row of Table 8 (after 480 minutes on the basis of arrival time). (Until 495 minutes).
 単量体成分の全量の投入を終了した後、重合槽内温度を85℃に昇温し、85℃を維持した。ポリマー転化率が97%を超えたことを、重合槽を冷却した熱量から確認して、重合を終了し、反応生成物を得た。 After the addition of the entire amount of monomer components was completed, the temperature in the polymerization tank was raised to 85 ° C. and maintained at 85 ° C. The fact that the polymer conversion rate exceeded 97% was confirmed from the amount of heat by which the polymerization tank was cooled, the polymerization was terminated, and a reaction product was obtained.
 重合反応終了後、水酸化ナトリウムを用いて反応生成物のpHを6.5に調整した。次いで、未反応単量体及び他の低沸点化合物を除去するために反応生成物の加熱減圧蒸留を行い、共重合体ラテックスII-Aを得た。 After completion of the polymerization reaction, the pH of the reaction product was adjusted to 6.5 using sodium hydroxide. Subsequently, in order to remove unreacted monomers and other low-boiling compounds, the reaction product was subjected to heating under reduced pressure to obtain a copolymer latex II-A.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実施例II-2~II-11)
 各単量体成分及びその他の化合物の配合量、連添時間帯、反応温度を表8又は9に示す条件に変更したこと以外は、実施例II-1と同様にして共重合体ラテックスII-B~II-Kをそれぞれ得た。
(Examples II-2 to II-11)
Copolymer latex II- in the same manner as in Example II-1, except that the amount of each monomer component and other compounds, addition time zone, and reaction temperature were changed to the conditions shown in Table 8 or 9. B to II-K were obtained respectively.
(比較例II-1~II-4、II-6~II-8)
 各単量体成分及びその他の化合物の配合量、連添時間帯、反応温度を表9又は10に示す条件に変更したこと以外は、実施例II-1と同様にして共重合体ラテックスII-CE-1~II-CE-4、II-CE-6~II-CE-8をそれぞれ得た。
(Comparative Examples II-1 to II-4, II-6 to II-8)
Copolymer latex II- in the same manner as in Example II-1, except that the amount of each monomer component and other compounds, addition time zone, and reaction temperature were changed to the conditions shown in Table 9 or 10. CE-1 to II-CE-4 and II-CE-6 to II-CE-8 were obtained, respectively.
(比較例II-5)
 耐圧性の重合反応器に、シクロヘキセン10質量部を加える代わりにα-メチルスチレンダイマー0.5質量部を加えたこと、α-メチルスチレンダイマーを2段目に0.2質量部及び3段目に0.2質量部を各々単量体成分と共に連続添加したこと、各単量体成分及びその他の化合物の配合量、連添時間帯、反応温度を表10に示す条件に変更したこと以外は、実施例II-1と同様にして共重合体ラテックスII-CE-5を得た。
(Comparative Example II-5)
Instead of adding 10 parts by mass of cyclohexene to the pressure-resistant polymerization reactor, 0.5 parts by mass of α-methylstyrene dimer was added, and 0.2 parts by mass and α-methylstyrene dimer were added to the second stage and the third stage. In addition to the fact that 0.2 parts by weight were continuously added together with the monomer component, the blending amount of each monomer component and other compounds, the addition time zone, and the reaction temperature were changed to the conditions shown in Table 10. In the same manner as in Example II-1, a copolymer latex II-CE-5 was obtained.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<共重合体ラテックスの評価>
 上記で得られた共重合体ラテックスについて、下記の方法に従って検出酸量A、理論酸量B及び内部酸比率(%)の算出、凝固物の付着、引張応力の評価を行った。
<Evaluation of copolymer latex>
About the copolymer latex obtained above, calculation of the detected acid amount A, theoretical acid amount B and internal acid ratio (%), adhesion of coagulum, and evaluation of tensile stress were performed according to the following methods.
[検出酸量A]
 イオン交換水にて約1質量%に希釈した共重合体ラテックスに、約0.1Nの塩酸を過剰量添加した後、0.1Nの水酸化ナトリウム水溶液で逆滴定し、伝導滴定曲線を得た。得られた伝導滴定曲線から共重合体ラテックスの固形分100g当たりの全酸性基量(ミリ当量/共重合体ラテックス固形100g)を、下記式により、算出し、これを検出酸量Aとした。
検出酸量A=0.1×T×100/(W×M/100)
T:水酸化ナトリウム水溶液の滴定量(mL)
W:共重合体ラテックスのサンプリング量(g)
M:共重合体ラテックスの固形分濃度(%)
[Detected acid amount A]
An excess amount of about 0.1N hydrochloric acid was added to the copolymer latex diluted to about 1% by mass with ion-exchanged water, and then back titrated with a 0.1N aqueous sodium hydroxide solution to obtain a conductive titration curve. . From the obtained conductivity titration curve, the total amount of acidic groups per milligram of the copolymer latex (100 milligrams / 100 g of copolymer latex solids) was calculated according to the following formula.
Detected acid amount A = 0.1 × T × 100 / (W × M / 100)
T: titration amount of aqueous sodium hydroxide solution (mL)
W: Sampling amount of copolymer latex (g)
M: solid content concentration of copolymer latex (%)
[理論酸量B]
 共重合体を構成する単量体成分全量に対するエチレン系不飽和カルボン酸単量体の配合割合をX(質量%)、エチレン系不飽和カルボン酸単量体の分子量をY、エチレン系不飽和カルボン酸単量体の最大解離度数をZとし、下記式(1)より、エチレン系不飽和カルボン酸単量体に由来する理論酸量を計算した。
理論酸量=(X×Z×1000)/Y   ・・・(1)
配合したすべてのエチレン系不飽和カルボン酸単量体について、同様に理論酸量を計算し、これらを合計することにより、共重合体ラテックスの固形分100g当たりの理論酸量B(ミリ当量/100g)を求めた。
[Theoretical acid amount B]
The blending ratio of the ethylenically unsaturated carboxylic acid monomer to the total amount of the monomer components constituting the copolymer is X (mass%), the molecular weight of the ethylenically unsaturated carboxylic acid monomer is Y, and the ethylenically unsaturated carboxylic acid The maximum dissociation frequency of the acid monomer was Z, and the theoretical acid amount derived from the ethylenically unsaturated carboxylic acid monomer was calculated from the following formula (1).
Theoretical acid amount = (X × Z × 1000) / Y (1)
For all the ethylenically unsaturated carboxylic acid monomers blended, the theoretical acid amount is calculated in the same manner, and these are summed to obtain the theoretical acid amount B (milli equivalent / 100 g per 100 g of the solid content of the copolymer latex). )
 なお、ポリカルボン酸を主体とする分散剤などのように酸性基を有する添加剤を用いた場合は、上記と同様にして酸性基を有する添加剤に由来する理論酸量を計算し、これを合算した。
 分散剤として(CHCHCOONa)を配合した場合、式(1)における、Xを、共重合体を構成する単量体成分全量に対する分散剤の配合割合(質量%)とし、Yを、分散剤単量体(n=1)の分子量とし、Zを分散剤単量体(n=1)の価数とした。
In addition, when an additive having an acidic group such as a dispersant mainly composed of polycarboxylic acid is used, the theoretical acid amount derived from the additive having an acidic group is calculated in the same manner as described above. Totaled.
When (CH 2 CHCOONa) n is blended as a dispersant, in Formula (1), X is the blending ratio (mass%) of the dispersant with respect to the total amount of monomer components constituting the copolymer, and Y is dispersed The molecular weight of the dispersant monomer (n = 1) was used, and Z was the valence of the dispersant monomer (n = 1).
[内部酸比率(%)]
 検出酸量A及び理論酸量Bの値に基づき、下記式(4)にしたがって、内部酸比率(%)を計算した。
内部酸比率(%)=(1-A/B)×100   ・・・(4)
[Internal acid ratio (%)]
Based on the value of the detected acid amount A and the theoretical acid amount B, the internal acid ratio (%) was calculated according to the following formula (4).
Internal acid ratio (%) = (1−A / B) × 100 (4)
[凝固物の付着の評価]
 上述した実施例及び比較例において、重合反応終了後、水酸化ナトリウムを用いて反応生成物のpHを6.0に調整した後、反応器下部より共重合体ラテックスを全量排出した。その後、反応器内をイオン交換水で満たし、10分攪拌後、再度反応器下部よりイオン交換水を全量排出した。排出後の耐圧性重合反応容器(100LのSUS製の容器)の内壁に付着した凝固物を目視で確認して、反応器内壁面積Sに対する凝固物付着面積Sの割合S/Sを計算し、下記の基準に従って評価した。
A: S/S<0.1
B: 0.1≦S/S≦0.3
C: S/S>0.3
[Evaluation of adhesion of coagulum]
In the examples and comparative examples described above, after completion of the polymerization reaction, the pH of the reaction product was adjusted to 6.0 using sodium hydroxide, and then the entire copolymer latex was discharged from the lower part of the reactor. Thereafter, the inside of the reactor was filled with ion-exchanged water, and after stirring for 10 minutes, the entire amount of ion-exchanged water was again discharged from the lower part of the reactor. The coagulum was adhered to the inner wall of the pressure-resistant polymerization container after discharge (SUS-made vessel 100L) was visually observed, calculates the ratio S / S 0 of the clot adhesion area S with respect to the inner wall of the reactor area S 0 And evaluated according to the following criteria.
A: S / S 0 <0.1
B: 0.1 ≦ S / S 0 ≦ 0.3
C: S / S 0> 0.3
[引張応力]
 共重合体ラテックスを用いて、以下の手順で厚さ0.3~0.5mmのラテックスフィルムを作製した。まず、共重合体ラテックスを水酸化ナトリウムでpH10に調整し、そこに増粘剤としてポリアクリル酸ナトリウム(第一工業製薬製、商品名:IX-1177、重量平均分子量:700万~800万)を固形分割合で1質量%以下添加して粘度調整し、塗布液を調製した。ここで、ポリアクリル酸ナトリウムの添加量は、上記上限値を超えない範囲で、塗布液の粘度が厚さ0.3~0.5mmのラテックスフィルムを作製可能な粘度となるように適宜調整した。
 得られた塗布液をフィルムアプリケーターで薄膜化し、23℃、50%RHの条件下で48時間放置して乾燥させた。なお、上記乾燥条件でラテックスの連続フィルムが得られない場合には、JIS K6828-2の方法に準じて測定したラテックスの最低造膜温度より20℃高い温度、50%RHの条件下で48時間放置して乾燥させた。更に、乾燥後の薄膜に対し、130℃に設定されたオーブン中にて15分間加熱処理を施し、0.3mm~0.5mm厚のラテックスフィルムを得た。得られたラテックスフィルムを、厚さ以外はJIS K-6251に記載のダンベル状3号型の形状及び寸法に打ち抜いて試験片とした。この試験片をデシケーター中で24時間放置後、ミネベア株式会社製の引張圧縮試験機(商品名:TechnoGraph TGE-5kN)を用いて、500mm/minの引っ張り速度で試験した際の応力と伸び率(変位)を測定した。測定結果から、切断時引張応力を求め、表12に示した。なお、試験条件等は以下の通りである。
[Tensile stress]
Using the copolymer latex, a latex film having a thickness of 0.3 to 0.5 mm was prepared by the following procedure. First, the copolymer latex was adjusted to pH 10 with sodium hydroxide, and sodium polyacrylate (made by Daiichi Kogyo Seiyaku Co., Ltd., trade name: IX-1177, weight average molecular weight: 7 to 8 million) as a thickener. Was added at a solid content ratio of 1% by mass or less to adjust the viscosity to prepare a coating solution. Here, the amount of sodium polyacrylate added was adjusted as appropriate so that the viscosity of the coating solution was such that a latex film having a thickness of 0.3 to 0.5 mm could be produced within a range not exceeding the above upper limit. .
The obtained coating solution was thinned with a film applicator and allowed to dry for 48 hours under conditions of 23 ° C. and 50% RH. In the case where a continuous film of latex cannot be obtained under the above drying conditions, the temperature is 20 ° C. higher than the minimum film-forming temperature of the latex measured according to the method of JIS K6828-2, and the condition is 50% RH for 48 hours. Allowed to dry. Further, the dried thin film was subjected to heat treatment in an oven set at 130 ° C. for 15 minutes to obtain a latex film having a thickness of 0.3 mm to 0.5 mm. The obtained latex film was punched into the shape and dimensions of a dumbbell-shaped No. 3 described in JIS K-6251 except for the thickness to obtain a test piece. After leaving this test piece for 24 hours in a desiccator, using a tensile compression tester (trade name: TechnoGraph TGE-5kN) manufactured by Minebea Co., Ltd., stress and elongation (when tested at a pulling speed of 500 mm / min) Displacement) was measured. From the measurement results, the tensile stress at the time of cutting was determined and shown in Table 12. The test conditions are as follows.
(試験条件等)
 チャック間距離:50mm
 試験力容量:5kN
 試験温度:23℃、50%RH
 伸び率:ダンベル状3号型の標線間距離を基準にした初期に対する比率(%)で表す。
 応力:JIS K-6251記載の用語の定義による。単位はMPa。
 切断時引張応力:試験片が切断したときに記録される引張力を試験片の初期断面積で除したもの。
(Test conditions, etc.)
Distance between chucks: 50mm
Test force capacity: 5kN
Test temperature: 23 ° C., 50% RH
Elongation rate: Expressed as a ratio (%) to the initial value based on the distance between marked lines of the dumbbell-shaped No. 3
Stress: According to definitions of terms described in JIS K-6251. The unit is MPa.
Tensile stress at cutting: The tensile force recorded when the specimen is cut divided by the initial cross-sectional area of the specimen.
<電極の作製及び評価>
 上記で得られた共重合体ラテックスを用いて、下記の方法により電池電極用組成物を調製して電極を作製した。
<Production and evaluation of electrode>
Using the copolymer latex obtained above, a battery electrode composition was prepared by the following method to prepare an electrode.
(電池電極用組成物の調製)
(1-1)正極用組成物の調製
 正極活物質としてLiCoOを100質量部と、導電剤としてアセチレンブラックを5質量部と、増粘剤としてカルボキシメチルセルロース水溶液を固形分で1質量部と、結着剤として、各実施例および各比較例の共重合体ラテックスを固形分で2質量部とを全固形分が65質量%となるように適量の純水を加えて混練し、正極用組成物を調製した。
(Preparation of battery electrode composition)
(1-1) Preparation of composition for positive electrode 100 parts by mass of LiCoO 2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive agent, and 1 part by mass of an aqueous carboxymethyl cellulose as a thickener, As a binder, 2 parts by mass of the copolymer latex of each Example and each Comparative Example was kneaded by adding an appropriate amount of pure water so that the total solid content was 65% by mass, and the composition for the positive electrode A product was prepared.
(1-2)負極用組成物の調製
 負極活物質として平均粒子径が20μmの天然黒鉛を使用し、天然黒鉛100質量部に対して、増粘剤としてカルボキシメチルセルロース水溶液を固形分で1質量部と、結着剤として、各実施例および各比較例の共重合体ラテックスを固形分で2質量部とを全固形分が45質量%となるように適量の純水を加えて混練し、負極用組成物を調製した。
(1-2) Preparation of Composition for Negative Electrode Using natural graphite having an average particle size of 20 μm as a negative electrode active material, 1 part by mass of a carboxymethyl cellulose aqueous solution as a thickener is used as a thickener with respect to 100 parts by mass of natural graphite. Then, as a binder, the copolymer latex of each Example and each Comparative Example was kneaded by adding a proper amount of pure water so that the total solid content was 45% by mass with 2 parts by mass in solid content, and the negative electrode A composition was prepared.
(電池電極用組成物の凝集物の評価)
 上記のように得られた各電池電極用組成物(各正極用組成物および各負極用組成物)において、粒度ゲージ(東洋精機製作所製 M100型)を用いて、JIS K5701-1に準じて値を読み取り、下記のとおり評価した。結果を表12に示す。
A(凝集物の発生が少ない):10mm以上の粒の軌跡が3本以上現れた数値が40μm以下である。
C(凝集物の発生が多い):10mm以上の粒の軌跡が3本以上現れた数値が40μmを超える。
(Evaluation of aggregate of battery electrode composition)
In each battery electrode composition (each positive electrode composition and each negative electrode composition) obtained as described above, a value according to JIS K5701-1 was measured using a particle size gauge (M100 type manufactured by Toyo Seiki Seisakusho). Was evaluated as follows. The results are shown in Table 12.
A (the occurrence of aggregates is small): The numerical value at which three or more trajectories of particles of 10 mm or more appear is 40 μm or less.
C (Many agglomerates are generated): A numerical value in which three or more trajectories of grains of 10 mm or more appear exceeds 40 μm.
(電極の作製)
(1-1)正極の作製
 上記のようにして得られた正極用組成物を集電体となる厚さ20μmのアルミニウム箔に塗布し、130℃で5分間乾燥後、室温でロールプレスして、塗工層の厚みが100μmの正極を得た。
(Production of electrodes)
(1-1) Production of positive electrode The composition for positive electrode obtained as described above was applied to an aluminum foil having a thickness of 20 μm serving as a current collector, dried at 130 ° C. for 5 minutes, and then roll-pressed at room temperature. A positive electrode having a coating layer thickness of 100 μm was obtained.
(1-2)負極の作製
 上記のようにして得られた負極用組成物を集電体となる厚さ20μmの銅箔に塗布し、130℃で5分間乾燥後、室温でロールプレスして、塗工層の厚みが100μmの負極を得た。なお、電極活物質の被覆性を評価する際には、ロールプレスによる圧延を行う前の状態のものを用いた。
(1-2) Production of Negative Electrode The negative electrode composition obtained as described above was applied to a 20 μm thick copper foil serving as a current collector, dried at 130 ° C. for 5 minutes, and then roll pressed at room temperature. A negative electrode having a coating layer thickness of 100 μm was obtained. In addition, when evaluating the coverage of an electrode active material, the thing before the rolling by roll press was used.
(共重合体ラテックスの活物質への被覆性の評価)
 共重合体ラテックスが活物質の表面をより多く被覆することにより、充放電を繰り返した際のサイクル特性が向上することから、上記の方法で得られた各負極シートにおいて、下記の方法により共重合体ラテックスの活物質への被覆性を評価した。
 すなわち、上記で得られた各負極シート(圧延前のもの)を1cm四方に切り、四酸化オスミウム雰囲気下で染色した後、走査型電子顕微鏡(日本電子製、商品名:JSM-6510LA)を用いて、5000倍にて観察した。SEM観察画像において、活物質の面積に対し、活物質上に共重合体ラテックスが付着している面積を目視で確認し、下記のとおり評価した。なお、SEM観察画像8画面のうち、最も平均的な画像を選び、評価した。結果を表12に示す。
A:活物質の表面の80%以上を共重合体ラテックスが被覆している。
B:活物質の表面の60%以上80%未満を共重合体ラテックスが被覆している。
C:活物質の表面の40%以上60%未満を共重合体ラテックスが被覆している。
D:活物質の表面の40%未満しか共重合体ラテックスが被覆していない。
(Evaluation of coverage of copolymer latex on active material)
Since the cycle characteristics upon repeated charge / discharge are improved by coating the surface of the active material more with the copolymer latex, in each negative electrode sheet obtained by the above method, copolymerization is performed by the following method. The coverage of the combined latex on the active material was evaluated.
That is, each negative electrode sheet (before rolling) obtained above was cut into a 1 cm square, dyed in an osmium tetroxide atmosphere, and then used with a scanning electron microscope (trade name: JSM-6510LA, manufactured by JEOL Ltd.). And observed at 5000 times. In the SEM observation image, the area where the copolymer latex was adhered on the active material was visually confirmed with respect to the area of the active material, and evaluated as follows. Of the 8 SEM observation images, the average image was selected and evaluated. The results are shown in Table 12.
A: Copolymer latex covers 80% or more of the surface of the active material.
B: Copolymer latex covers 60% or more and less than 80% of the surface of the active material.
C: Copolymer latex covers 40% or more and less than 60% of the surface of the active material.
D: Less than 40% of the surface of the active material is coated with the copolymer latex.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例II-1~II-10で得られた共重合体ラテックスは、凝固物の付着が少なく且つ十分な切断時引張応力を示すことが確認された。また、表12に示した結果から明らかなように、実施例II-1~II-11で得られた共重合体ラテックスは、電池電極用としての評価においても、電池電極用組成物の凝集物の発生が少なく、良好な電極活物質の被覆性を備えていることが確認された。 It was confirmed that the copolymer latex obtained in Examples II-1 to II-10 showed less adhesion of coagulum and sufficient tensile stress at the time of cutting. Further, as is apparent from the results shown in Table 12, the copolymer latex obtained in Examples II-1 to II-11 was agglomerated of the composition for battery electrodes even in evaluation for battery electrodes. It was confirmed that the material has good electrode active material coverage.
<第三態様>
<共重合ラテックスの製造>
 表13~15に示す材料を同表に示す配合量(単位:質量部)で配合して反応を行い、共重合体ラテックスを合成した。具体的な合成手順を以下に示す。
<Third embodiment>
<Manufacture of copolymer latex>
The materials shown in Tables 13 to 15 were mixed in the amounts shown in the same table (unit: parts by mass) and reacted to synthesize copolymer latex. A specific synthesis procedure is shown below.
 なお、表13~15中の各成分及び記号は、表2~5中の各成分及び記号と同様である。 The components and symbols in Tables 13 to 15 are the same as the components and symbols in Tables 2 to 5.
(実施例III-1)
 耐圧性の重合反応容器に、シクロヘキセン10質量部、及び表13の1段目に示す配合量(質量部)の各単量体成分とその他の化合物を加えて十分攪拌し、反応液を得た。
Example III-1
Into a pressure-resistant polymerization reaction vessel, 10 parts by mass of cyclohexene and each monomer component and other compounds in the blending amount (parts by mass) shown in the first stage of Table 13 were added and stirred sufficiently to obtain a reaction solution. .
 次に、重合槽内温度を上げていき、反応系のポリマー転化率が1.0%になった時点を到達時とし、この到達時を基準(0分)として85分後から、表13の2段目に示す配合量(質量部)の各単量体成分とその他の化合物を、表13の2段目に示す連添時間帯(到達時を基準として85分後から220分後まで)に、反応液に添加した。なお重合系の反応温度は65℃とした。 Next, the temperature in the polymerization tank was raised, and the time when the polymer conversion rate of the reaction system reached 1.0% was regarded as reaching time, and after 85 minutes from this reaching time as a reference (0 minutes), Each monomer component and other compounds in the blending amount (parts by mass) shown in the second stage are added to the continuous time zone shown in the second stage of Table 13 (from 85 minutes to 220 minutes after reaching the standard). Was added to the reaction solution. The reaction temperature of the polymerization system was 65 ° C.
 続いて、表13の3段目に示す配合量(質量部)の各単量体成分とその他化合物を、表13の3段目に示す連添時間帯(到達時を基準として220分後から490分後まで)に、反応液に添加した。 Subsequently, each monomer component and other compounds in the blending amounts (parts by mass) shown in the third row of Table 13 were added to the continuous addition time zone shown in the third row of Table 13 (after 220 minutes on the basis of arrival time). (Until 490 minutes later).
 単量体成分の全量の投入を終了した後、重合槽内温度を85℃に昇温し、85℃を維持した。ポリマー転化率が97%を超えたことを重合槽を冷却した熱量から確認して、重合を終了し、反応生成物を得た。 After the addition of the entire amount of monomer components was completed, the temperature in the polymerization tank was raised to 85 ° C. and maintained at 85 ° C. After confirming that the polymer conversion rate exceeded 97% from the amount of heat of cooling the polymerization tank, the polymerization was terminated and a reaction product was obtained.
 重合反応終了後、水酸化ナトリウムを用いて反応生成物のpHを6.5に調整した。次いで、未反応単量体及び他の低沸点化合物を除去するために反応生成物の加熱減圧蒸留を行い、共重合体ラテックスIII-Aを得た。 After completion of the polymerization reaction, the pH of the reaction product was adjusted to 6.5 using sodium hydroxide. Subsequently, in order to remove unreacted monomers and other low-boiling compounds, the reaction product was subjected to heating under reduced pressure to obtain a copolymer latex III-A.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(実施例III-2~III-11)
 各単量体成分及びその他の化合物の配合量、連添時間帯、反応温度を表13又は14に示す条件に変更したこと以外は、実施例III-1と同様にして共重合体ラテックスIII-B~III-Kをそれぞれ得た。
Examples III-2 to III-11
A copolymer latex III- was prepared in the same manner as in Example III-1, except that the amount of each monomer component and other compounds, addition time zone, and reaction temperature were changed to the conditions shown in Table 13 or 14. B to III-K were obtained respectively.
(比較例III-1~III-4、III-6、III-7)
 各単量体成分及びその他の化合物の配合量、連添時間帯、反応温度を表14又は15に示す条件に変更したこと以外は、実施例III-1と同様にして共重合体ラテックスIII-CE-1~III-CE-4、III-CE-6、III-CE-7をそれぞれ得た。
(Comparative Examples III-1 to III-4, III-6, III-7)
Copolymer latex III-, as in Example III-1, except that the blending amounts of each monomer component and other compounds, the addition time zone, and the reaction temperature were changed to the conditions shown in Table 14 or 15. CE-1 to III-CE-4, III-CE-6, and III-CE-7 were obtained, respectively.
(比較例III-5)
 耐圧性の重合反応器に、シクロヘキセン10質量部を加える代わりにα-メチルスチレンダイマー0.5質量部を加えたこと、α-メチルスチレンダイマーを2段目に0.2質量部及び3段目に0.2質量部を各々単量体成分と共に連続添加したこと、各単量体成分及びその他の化合物の配合量、連添時間帯、反応温度を表15に示す条件に変更したこと以外は、実施例III-1と同様にして共重合体ラテックスIII-CE-5を得た。
(Comparative Example III-5)
Instead of adding 10 parts by mass of cyclohexene to the pressure-resistant polymerization reactor, 0.5 parts by mass of α-methylstyrene dimer was added, and 0.2 parts by mass and α-methylstyrene dimer were added to the second stage and the third stage. In addition to the fact that 0.2 parts by weight were continuously added together with the monomer component, the blending amount of each monomer component and other compounds, the addition time zone, and the reaction temperature were changed to the conditions shown in Table 15. In the same manner as in Example III-1, copolymer latex III-CE-5 was obtained.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<共重合体ラテックスの評価>
 上記で得られた共重合体ラテックスについて、下記の方法に従って、上記式(1)の左辺:[ΔH×(100/100-C)]/ΔH、不凍水量(%)、ラテックス粘度、凍結安定性の評価を行った。
<Evaluation of copolymer latex>
About the copolymer latex obtained above, according to the following method, the left side of the above formula (1): [ΔH × (100 / 100−C S )] / ΔH W , amount of antifreeze water (%), latex viscosity, Evaluation of freezing stability was performed.
([ΔH×(100/100-C)]/ΔH及び不凍水量(%)の算出)
 共重合体ラテックスを、純水及び水酸化ナトリウムを用いてpH7、固形分40質量%に調整し、測定試料を作製した。作製した測定試料をアルミパンに詰め、示差走査熱量計(DSC6200:セイコーインスツルメンツ社製)にセットし、温度を-25℃にした後、昇温速度1℃/分で30℃まで昇温し、DSC曲線を得た。得られるDSC曲線から-20℃から0℃までの融解熱量ΔH(mJ/mg)を算出した。同様にして、水についての融解熱量ΔH(mJ/mg)を算出した。[ΔH×(100/100-C)]/ΔHの値をそれぞれ表18に示す。また、実施例III-1、実施例III-3及び比較例III-1の共重合体ラテックスについて得られたDSC曲線をそれぞれ図1、2及び3に示す。
(Calculation of [ΔH × (100 / 100−C S )] / ΔH W and amount of antifreeze water (%))
The copolymer latex was adjusted to pH 7 and solid content of 40% by mass using pure water and sodium hydroxide to prepare a measurement sample. The prepared measurement sample was packed in an aluminum pan, set in a differential scanning calorimeter (DSC6200: manufactured by Seiko Instruments Inc.), the temperature was set to −25 ° C., and the temperature was raised to 30 ° C. at a rate of 1 ° C./min. A DSC curve was obtained. The heat of fusion ΔH (mJ / mg) from −20 ° C. to 0 ° C. was calculated from the obtained DSC curve. Similarly, heat of fusion ΔH W (mJ / mg) for water was calculated. [ΔH × (100/100- C S)] / indicate [Delta] H W values of the respective table 18. The DSC curves obtained for the copolymer latexes of Example III-1, Example III-3 and Comparative Example III-1 are shown in FIGS. 1, 2 and 3, respectively.
 得られた値から、下記式(A)、(B)、(C)及び(D)により、全水分量に対する不凍水量の割合(質量%)を求めた。結果をそれぞれ表18に示す。
 式(A):結合水及び自由水の合計量(mg)=[ΔH(mJ/mg)×測定試料の質量(mg)]/ΔH(mJ/mg)
 式(B):測定試料中の全水分量(mg)=測定試料の質量(mg)×(100-C)/100
 式(C):不凍水量(mg)=測定試料中の全水分量(mg)-結合水及び自由水の合計量(mg)
 式(D):全水分量に対する不凍水量の割合(質量%)=不凍水量(mg)×100/測定試料中の全水分量(mg)
From the obtained value, the ratio (mass%) of the amount of antifreeze water to the total amount of water was determined by the following formulas (A), (B), (C) and (D). The results are shown in Table 18, respectively.
Formula (A): Total amount of bound water and free water (mg) = [ΔH (mJ / mg) × mass of measurement sample (mg)] / ΔH W (mJ / mg)
Formula (B): Total water content in measurement sample (mg) = mass of measurement sample (mg) × (100−C S ) / 100
Formula (C): Amount of antifreeze water (mg) = total water amount in measurement sample (mg) −total amount of combined water and free water (mg)
Formula (D): Ratio of antifreeze water amount to total water amount (mass%) = antifreeze water amount (mg) × 100 / total water amount in measurement sample (mg)
<凍結安定性の評価>
 共重合体ラテックスに対して、純水を添加し固形分濃度40質量%、pH7、液温25℃に調製した。なお、ラテックスのpHは必要に応じて、水酸化ナトリウム、塩酸などのpH調整剤で調整を行った。50mLのポリビーカーに、調整後の溶液25mL加えて、-20℃に調整された冷凍庫に入れ2時間冷凍した。その後、25℃の室温下で3時間かけ解凍した。解凍後の溶液について、目視観察を行い下記のとおり判定した。
A:凝集物がない。
B:凝集物はないが、増粘している。
C:凝集物が発生している。
D:凝固していて流動しない。
<Evaluation of freezing stability>
Pure water was added to the copolymer latex to prepare a solid concentration of 40% by mass, pH 7, and a liquid temperature of 25 ° C. The pH of the latex was adjusted with a pH adjuster such as sodium hydroxide or hydrochloric acid as necessary. To a 50 mL poly beaker, 25 mL of the adjusted solution was added and placed in a freezer adjusted to −20 ° C. and frozen for 2 hours. Then, it thawed at room temperature of 25 degreeC over 3 hours. The thawed solution was visually observed and determined as follows.
A: There is no aggregate.
B: Although there is no aggregate, it is thickening.
C: Aggregates are generated.
D: Solidified and does not flow.
(ラテックスの粘度)
 分散剤として東亞合成株式会社製のアロン(登録商標)T-50(商品名、ポリアクリル酸ナトリウム、重量平均分子量:6000)を、共重合体ラテックスの固形分100質量部に対し一律2.5質量部(固形分換算)添加後、純水によって固形分濃度50.0質量%、pH6.5、液温25℃に調整した。なお、ラテックスのpHは必要に応じて水酸化ナトリウム、塩酸などのpH調整剤で調整を行った。調整後の共重合体ラテックスの粘度を、JIS K7117-1の測定方法に準じて、B型(BL型)粘度計を用いて回転数60rpmでの回転開始1分後の粘度を測定した。得られた粘度について、下記のとおり判定した。粘度は低い方が良好である。
A:400mPa・s以下
B:400超1000mPa・s以下
C:1000mPa・s超
(Latex viscosity)
Aron (registered trademark) T-50 (trade name, sodium polyacrylate, weight average molecular weight: 6000) manufactured by Toagosei Co., Ltd. as a dispersant was uniformly 2.5 with respect to 100 parts by mass of the solid content of the copolymer latex. After the addition of parts by mass (in terms of solid content), the solid content was adjusted to 50.0% by mass with pure water, pH 6.5, and the liquid temperature was adjusted to 25 ° C. The pH of the latex was adjusted with a pH adjuster such as sodium hydroxide or hydrochloric acid as necessary. The viscosity of the copolymer latex after adjustment was measured 1 minute after the start of rotation at a rotation speed of 60 rpm using a B-type (BL type) viscometer according to the measurement method of JIS K7117-1. About the obtained viscosity, it determined as follows. The lower the viscosity, the better.
A: 400 mPa · s or less B: More than 400 1000 mPa · s or less C: 1000 mPa · s or less
<塗工紙の作成及び評価>
 上記で得られた共重合体ラテックスを用いて下記の方法により紙塗工用組成物を調製して塗工紙を作成した。
<Creation and evaluation of coated paper>
Using the copolymer latex obtained above, a paper coating composition was prepared by the following method to prepare a coated paper.
(紙塗工用組成物の調製)
 下記に示した配合処方に従って紙塗工用組成物を作製した。なお、紙塗工用組成物は、水酸化ナトリウムでpH9.5に調整し、純水を必要量添加することによって固形分濃度を67質量%に調整した。
(配合処方)
カオリン((株)イメリスミネラルズ・ジャパン製、商品名:DBグレーズ)   20質量部
重質炭酸カルシウム((株)イメリスミネラルズ・ジャパン製、商品名:カービタル90)     80質量部
変性デンプン(日本食品化工(株)製、商品名:MS4600)   2質量部
共重合体ラテックス                6質量部(固形分換算値)
(Preparation of composition for paper coating)
A paper coating composition was prepared according to the formulation shown below. The paper coating composition was adjusted to pH 9.5 with sodium hydroxide, and the solid content concentration was adjusted to 67% by mass by adding a necessary amount of pure water.
(Combination prescription)
Kaolin (product name: DB Glaze, manufactured by Imerizu Minerals Japan Co., Ltd.) 20 parts by weight heavy calcium carbonate (product name: Carbital 90, manufactured by Imeris Minerals Japan Co., Ltd.) 80 parts by weight modified starch (Japanese food) Kako Co., Ltd., trade name: MS4600) 2 parts by weight of copolymer latex 6 parts by weight (in terms of solid content)
(塗工紙の作成)
 塗工原紙(坪量55g/m)に、上記の紙塗工用組成物を片面あたりの塗被量が10g/mとなるようにワイヤーバーを用いて塗工し乾燥した後、線圧60kg/cm、温度50℃の条件でカレンダー処理を行って塗工紙を得た。得られた塗工紙について、下記の方法によりドライピック強度の評価を行った。
(Creating coated paper)
The coating base paper (basis weight 55g / m 2), after the coated amount per one surface of the above paper coating composition was coated and dried by using a wire bar such that the 10 g / m 2, line A calender treatment was performed under the conditions of a pressure of 60 kg / cm and a temperature of 50 ° C. to obtain a coated paper. About the obtained coated paper, dry pick strength was evaluated by the following method.
(塗工紙のドライピック強度の評価)
 RI印刷機を用い、各塗工紙にピッキングテスト用墨インキ(DICグラフィックス(株)製)を同時に印刷した。得られた印刷物を塗工上質紙に押し当ててインキを写し取り、インキが写し取られなかった部分(白抜け部分)をピッキング発生箇所と見なし、このときのピッキングの程度を肉眼で判定し、ピッキングの発生量が最も少ないものを5級とし、5級(優)から1級(劣)まで相対的に目視評価した。
(Evaluation of dry pick strength of coated paper)
Using a RI printer, a black ink for picking test (manufactured by DIC Graphics Co., Ltd.) was simultaneously printed on each coated paper. The obtained printed matter is pressed against coated fine paper to copy the ink, the portion where the ink is not copied (the white portion) is regarded as the picking occurrence point, and the degree of picking at this time is judged with the naked eye, The one with the least amount of picking was classified as grade 5, and was visually evaluated from grade 5 (excellent) to grade 1 (inferior).
<単量体成分の溶解度パラメータの計算>
 エチレン系不飽和カルボン酸単量体の全量投入終了時までに反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分のFedors法による溶解度パラメータSPと、上記エチレン系不飽和カルボン酸単量体の全量投入終了時よりも後に上記反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分のFedors法による溶解度パラメータSPとを、上記式(2)を用いて以下のように算出した。SP、SP、及び|SP-SP|の値をそれぞれ表18に示す。
<Calculation of solubility parameter of monomer component>
Solubility parameter SP 1 by the Fedors method of monomer components other than the ethylenically unsaturated carboxylic acid monomer introduced into the reaction system by the end of the introduction of the entire amount of the ethylenically unsaturated carboxylic acid monomer, and the ethylene system a solubility parameter SP 2 by the Fedors method of the monomer component other than the unsaturated carboxylic acid monomer described above is introduced into the reaction system ethylenically unsaturated carboxylic acid monomer later than at the total amount charged completion of the above formula Using (2), calculation was performed as follows. Table 18 shows values of SP 1 , SP 2 , and | SP 1 -SP 2 |.
 例えば、実施例III-1の場合、エチレン系不飽和カルボン酸単量体の全量投入終了時までに反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分は、ブタジエン18質量部、スチレン14質量部、アクリロニトリル8質量部となり、エチレン系不飽和カルボン酸単量体の全量投入終了時よりも後に反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分は、ブタジエン24質量部、スチレン19質量部、アクリロニトリル11質量部となる。
SPは、[{(4420×18/54)+(9630×14/104)+(8100×8/53)}/{(59.2×18/54)+(86.5×14/104)+(39.1×8/53)}]1/2=10.35と算出される。
SPは、[{(4420×24/54)+(9630×19/104)+(8100×11/53)}/{(59.2×24/54)+(86.5×19/104)+(39.1×11/53)}]1/2=10.37と算出される。
SPとSPとの差は、絶対値で0.02となる。
For example, in the case of Example III-1, monomer components other than the ethylenically unsaturated carboxylic acid monomer charged into the reaction system by the end of the total amount of the ethylenically unsaturated carboxylic acid monomer are butadiene 18 parts by mass, 14 parts by mass of styrene, and 8 parts by mass of acrylonitrile, and a unit other than the ethylenically unsaturated carboxylic acid monomer introduced into the reaction system after the completion of the entire introduction of the ethylenically unsaturated carboxylic acid monomer. The monomer component is 24 parts by mass of butadiene, 19 parts by mass of styrene, and 11 parts by mass of acrylonitrile.
SP 1 is [{(4420 × 18/54) + (9630 × 14/104) + (8100 × 8/53)} / {(59.2 × 18/54) + (86.5 × 14/104). ) + (39.1 × 8/53)}] 1/2 = 10.35.
SP 2 is [{(4420 × 24/54) + (9630 × 19/104) + (8100 × 11/53)} / {(59.2 × 24/54) + (86.5 × 19/104). ) + (39.1 × 11/53)}] 1/2 = 10.37.
The difference between SP 1 and SP 2 is 0.02 in absolute value.
<電極の作製及び評価>
 上記で得られた共重合体ラテックスを用いて、下記の方法により電池電極用組成物を調製して電極を作製した。
<Production and evaluation of electrode>
Using the copolymer latex obtained above, a battery electrode composition was prepared by the following method to prepare an electrode.
(電池電極用組成物の調製)
(1-1)正極用組成物の調製
 正極活物質としてLiCoOを100質量部と、導電剤としてアセチレンブラックを5質量部と、増粘剤としてカルボキシメチルセルロース水溶液を固形分で1質量部と、結着剤として、各実施例および各比較例の共重合体ラテックスを固形分で2質量部とを全固形分が65質量%となるように適量の純水を加えて混練し、正極用組成物を調製した。
(Preparation of battery electrode composition)
(1-1) Preparation of composition for positive electrode 100 parts by mass of LiCoO 2 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive agent, and 1 part by mass of an aqueous carboxymethyl cellulose as a thickener, As a binder, 2 parts by mass of the copolymer latex of each Example and each Comparative Example was kneaded by adding an appropriate amount of pure water so that the total solid content was 65% by mass, and the composition for the positive electrode A product was prepared.
(1-2)負極用組成物の調製
 負極活物質として平均粒子径が20μmの天然黒鉛を使用し、天然黒鉛100質量部に対して、増粘剤としてカルボキシメチルセルロース水溶液を固形分で1質量部と、結着剤として、各実施例および各比較例の共重合体ラテックスを固形分で2質量部とを全固形分が45質量%となるように適量の純水を加えて混練し、負極用組成物を調製した。
(1-2) Preparation of Composition for Negative Electrode Using natural graphite having an average particle size of 20 μm as a negative electrode active material, 1 part by mass of a carboxymethyl cellulose aqueous solution as a thickener is used as a thickener with respect to 100 parts by mass of natural graphite. Then, as a binder, the copolymer latex of each Example and each Comparative Example was kneaded by adding a proper amount of pure water so that the total solid content was 45% by mass with 2 parts by mass in solid content, and the negative electrode A composition was prepared.
(電極の作製)
(1-1)正極の作製
 上記のようにして得られた正極用組成物を集電体となる厚さ20μmのアルミニウム箔に塗布し、130℃で5分間乾燥後、室温でロールプレスして、塗工層の厚みが100μmの正極を得た。
(Production of electrodes)
(1-1) Production of positive electrode The composition for positive electrode obtained as described above was applied to an aluminum foil having a thickness of 20 μm serving as a current collector, dried at 130 ° C. for 5 minutes, and then roll-pressed at room temperature. A positive electrode having a coating layer thickness of 100 μm was obtained.
(1-2)負極の作製
 上記のようにして得られた負極用組成物を集電体となる厚さ20μmの銅箔に塗布し、130℃で5分間乾燥後、室温でロールプレスして、塗工層の厚みが100μmの負極を得た。なお、電極活物質の被覆性を評価する際には、ロールプレスによる圧延を行う前の状態のものを用いた。
(1-2) Production of Negative Electrode The negative electrode composition obtained as described above was applied to a 20 μm thick copper foil serving as a current collector, dried at 130 ° C. for 5 minutes, and then roll pressed at room temperature. A negative electrode having a coating layer thickness of 100 μm was obtained. In addition, when evaluating the coverage of an electrode active material, the thing before the rolling by roll press was used.
(共重合体ラテックスの活物質への被覆性の評価)
 共重合体ラテックスが活物質の表面をより多く被覆することにより、充放電を繰り返した際のサイクル特性が向上することから、上記の方法で得られた各負極シートにおいて、下記の方法により共重合体ラテックスの活物質への被覆性を評価した。
 すなわち、上記で得られた各負極シート(圧延前のもの)を1cm四方に切り、四酸化オスミウム雰囲気下で染色した後、走査型電子顕微鏡(日本電子製、商品名:JSM-6510LA)を用いて、5000倍にて観察した。SEM観察画像において、活物質の面積に対し、活物質上に共重合体ラテックスが付着している面積を目視で確認し、下記のとおり評価した。なお、SEM観察画像8画面のうち、最も平均的な画像を選び、評価した。結果を表18に示す。
A:活物質の表面の80%以上を共重合体ラテックスが被覆している。
B:活物質の表面の60%以上80%未満を共重合体ラテックスが被覆している。
C:活物質の表面の40%以上60%未満を共重合体ラテックスが被覆している。
D:活物質の表面の40%未満しか共重合体ラテックスが被覆していない。
(Evaluation of coverage of copolymer latex on active material)
Since the cycle characteristics upon repeated charge / discharge are improved by coating the surface of the active material more with the copolymer latex, in each negative electrode sheet obtained by the above method, copolymerization is performed by the following method. The coverage of the combined latex on the active material was evaluated.
That is, each negative electrode sheet (before rolling) obtained above was cut into a 1 cm square, dyed in an osmium tetroxide atmosphere, and then used with a scanning electron microscope (trade name: JSM-6510LA, manufactured by JEOL Ltd.). And observed at 5000 times. In the SEM observation image, the area where the copolymer latex was adhered on the active material was visually confirmed with respect to the area of the active material, and evaluated as follows. Of the 8 SEM observation images, the average image was selected and evaluated. The results are shown in Table 18.
A: Copolymer latex covers 80% or more of the surface of the active material.
B: Copolymer latex covers 60% or more and less than 80% of the surface of the active material.
C: Copolymer latex covers 40% or more and less than 60% of the surface of the active material.
D: Less than 40% of the surface of the active material is coated with the copolymer latex.
(電極塗工層のピール強度の評価)
 上記の方法で得られた各負極シートを、7cm×2cmの短冊状に切り出し、塗工層側にセロハン粘着テープを貼り付け、手で5mmほど塗工層と集電体を剥がした。剥がした部分の集電体を引張試験機に固定し、セロハン粘着テープを、剥離面に対して垂直方向に引っ張った際の剥離にかかる応力を測定した。なお、引張速度は、100mm/minで行ない、n=3の平均値(単位(N/m))を表18に示した。数値が大きいほうが、負極シートの集電体と塗工層の界面における結着力が良好なことを示す。
(Evaluation of peel strength of electrode coating layer)
Each negative electrode sheet obtained by the above method was cut into a strip of 7 cm × 2 cm, a cellophane adhesive tape was attached to the coating layer side, and the coating layer and the current collector were peeled off by about 5 mm by hand. The current collector of the peeled part was fixed to a tensile tester, and the stress applied to peeling when the cellophane adhesive tape was pulled in the direction perpendicular to the peeling surface was measured. The tensile rate was 100 mm / min, and the average value (unit (N / m)) of n = 3 is shown in Table 18. A larger numerical value indicates a better binding force at the interface between the current collector of the negative electrode sheet and the coating layer.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例III-1~III-10で得られた共重合体ラテックスは、ドライピック強度に優れるとともに、低粘度化を実現でき、なおかつ凍結安定性に優れることが確認された。また、実施例III-1~III-11で得られた共重合体ラテックスは、電池電極用組成物を塗布して得られる電極塗工層のピール強度及び電極活物質への被覆性も良好であることが確認された。 It was confirmed that the copolymer latex obtained in Examples III-1 to III-10 was excellent in dry pick strength, low viscosity, and excellent in freeze stability. In addition, the copolymer latex obtained in Examples III-1 to III-11 has good peel strength of the electrode coating layer obtained by applying the composition for battery electrodes and good coverage to the electrode active material. It was confirmed that there was.

Claims (9)

  1.  乳化重合により得られる共重合体ラテックスの製造方法であって、
     前記共重合体は、
    脂肪族共役ジエン系単量体15~60質量%、
    エチレン系不飽和カルボン酸単量体5~35質量%、
    シアン化ビニル単量体0.5~30質量%、及び
    これらと共重合可能な単量体0~79.5質量%、からなる単量体成分で構成されており、
     前記乳化重合を、
     重合開始剤投入開始時の反応系に、前記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、
     前記反応系のポリマー転化率が1.0%に到達した到達時から、単量体成分の全量投入終了した終了時までの時間、の5%の時点以降から、前記エチレン系不飽和カルボン酸単量体の残部の添加を開始して、前記到達時から前記終了時までの時間、の80%の時点までに、前記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行う、共重合体ラテックスの製造方法。
    A method for producing a copolymer latex obtained by emulsion polymerization,
    The copolymer is
    15-60% by weight of aliphatic conjugated diene monomer,
    5 to 35% by mass of an ethylenically unsaturated carboxylic acid monomer,
    Composed of 0.5 to 30% by mass of vinyl cyanide monomer and 0 to 79.5% by mass of monomer copolymerizable therewith,
    The emulsion polymerization,
    Into the reaction system at the start of charging the polymerization initiator, 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer is contained,
    From the time point of 5% from the time when the polymer conversion rate of the reaction system reaches 1.0% to the time when the whole amount of the monomer components are charged, the ethylenically unsaturated carboxylic acid unit At least 80% of the total amount of the ethylenically unsaturated carboxylic acid monomer is charged by 80% of the time from the arrival to the end of the addition of the remainder of the monomer. A process for producing a copolymer latex.
  2.  前記エチレン系不飽和カルボン酸単量体がモノカルボン酸単量体を30質量%超含む、請求項1記載の共重合体ラテックスの製造方法。 The method for producing a copolymer latex according to claim 1, wherein the ethylenically unsaturated carboxylic acid monomer contains a monocarboxylic acid monomer in an amount of more than 30% by mass.
  3.  前記乳化重合を、前記到達時から前記終了時までの時間、の60%の時点までに、前記シアン化ビニル単量体の全量の80質量%以上を投入して行う、請求項1又は2記載の共重合体ラテックスの製造方法。 The emulsion polymerization is carried out by charging 80% by mass or more of the total amount of the vinyl cyanide monomer by 60% of the time from the arrival time to the end time. A method for producing a copolymer latex.
  4.  乳化重合により得られる共重合体ラテックスであって、
     前記共重合体は、
    脂肪族共役ジエン系単量体15~60質量%、
    エチレン系不飽和カルボン酸単量体5~35質量%、
    シアン化ビニル単量体0.5~30質量%、及び
    これらと共重合可能な単量体0~79.5質量%、からなる単量体成分で構成されており、
     前記乳化重合が、重合開始剤投入開始時の反応系に、前記反応系のポリマー転化率が1.0%に到達した到達時から、単量体成分の全量投入終了した終了時までの時間、の5%の時点以降から、前記エチレン系不飽和カルボン酸単量体の残部の添加を開始して、前記到達時から前記終了時までの時間、の80%の時点までに、前記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行われ、
     中和滴定法により測定される共重合体ラテックスの固形分100g当たりの全酸性基量A(ミリ当量/100g)と、酸成分の配合量に基づいて算出される共重合体ラテックスの固形分100g当たりの全酸性基量B(ミリ当量/100g)との比A/Bが、0.8以下である、共重合体ラテックス。
    A copolymer latex obtained by emulsion polymerization,
    The copolymer is
    15-60% by weight of aliphatic conjugated diene monomer,
    5 to 35% by mass of an ethylenically unsaturated carboxylic acid monomer,
    Composed of 0.5 to 30% by mass of vinyl cyanide monomer and 0 to 79.5% by mass of monomer copolymerizable therewith,
    From the time when the emulsion polymerization reaches the reaction system at the start of charging the polymerization initiator until the polymer conversion rate of the reaction system has reached 1.0%, the time from the completion of charging the entire amount of the monomer components, From the time point of 5% of the ethylenically unsaturated carboxylic acid monomer, the addition of the remainder of the ethylenically unsaturated carboxylic acid monomer is started until the time point of 80% of the time from the arrival time to the end time. It is carried out by charging 92% by mass or more of the total amount of the saturated carboxylic acid monomer,
    100 g of the solid content of the copolymer latex calculated based on the total amount of acidic groups A (milli equivalents / 100 g) per 100 g of the solid content of the copolymer latex measured by the neutralization titration method and the blending amount of the acid component. Copolymer latex in which the ratio A / B to the total acidic group amount B (milli equivalent / 100 g) is 0.8 or less.
  5.  前記エチレン系不飽和カルボン酸単量体がモノカルボン酸単量体を30質量%超含む、請求項4記載の共重合体ラテックス。 The copolymer latex according to claim 4, wherein the ethylenically unsaturated carboxylic acid monomer contains more than 30% by mass of a monocarboxylic acid monomer.
  6.  前記乳化重合が、前記到達時から前記終了時までの時間、の60%の時点までに、前記シアン化ビニル単量体の全量の80質量%以上を投入して行われる、請求項4又は5記載の共重合体ラテックス。 The emulsion polymerization is carried out by charging 80% by mass or more of the total amount of the vinyl cyanide monomer by 60% of the time from the arrival time to the end time. The copolymer latex described.
  7.  乳化重合により得られる共重合体ラテックスであって、
     前記共重合体は、
    脂肪族共役ジエン系単量体15~60質量%、
    エチレン系不飽和カルボン酸単量体5~35質量%、
    シアン化ビニル単量体0.5~30質量%、及び
    これらと共重合可能な単量体0~79.5質量%、からなる単量体成分で構成されており、
     前記乳化重合が、重合開始剤投入開始時の反応系に、前記エチレン系不飽和カルボン酸単量体の全量の0質量%超40質量%以下を含有させ、前記反応系のポリマー転化率が1.0%に到達した到達時から、単量体成分の全量投入終了した終了時までの時間、の5%の時点以降から、前記エチレン系不飽和カルボン酸単量体の残部の添加を開始して、前記到達時から前記終了時までの時間、の80%の時点までに、前記エチレン系不飽和カルボン酸単量体の全量の92質量%以上を投入して行われ、
     示差走査熱量測定により、-25℃に冷却した共重合体ラテックスを1℃/分の昇温速度で加熱したときに得られるDSC曲線から算出される-20℃から0℃までの融解熱量ΔH(mJ/mg)が下記式(2)を満たす、共重合体ラテックス。
    [ΔH×(100/100-C)]/ΔH≦0.8   ・・・(2)
    [式(2)中、Cは、共重合体ラテックスの測定試料の固形分濃度(質量%)を示し、ΔHは、蒸留水を同条件で測定したときの融解熱量(mJ/mg)を示す。]
    A copolymer latex obtained by emulsion polymerization,
    The copolymer is
    15-60% by weight of aliphatic conjugated diene monomer,
    5 to 35% by mass of an ethylenically unsaturated carboxylic acid monomer,
    Composed of 0.5 to 30% by mass of vinyl cyanide monomer and 0 to 79.5% by mass of monomer copolymerizable therewith,
    In the emulsion polymerization, the reaction system at the start of addition of the polymerization initiator contains 0% by mass to 40% by mass or less of the total amount of the ethylenically unsaturated carboxylic acid monomer, and the polymer conversion rate of the reaction system is 1 Addition of the remainder of the ethylenically unsaturated carboxylic acid monomer is started after 5% from the time when it reaches 0.0% to the time when the whole amount of the monomer components is finished. Then, by 80% of the time from the arrival time to the end time, 92% by mass or more of the total amount of the ethylenically unsaturated carboxylic acid monomer is charged,
    By differential scanning calorimetry, the heat of fusion ΔH (from −20 ° C. to 0 ° C. calculated from the DSC curve obtained when the copolymer latex cooled to −25 ° C. was heated at a rate of temperature increase of 1 ° C./min. mJ / mg) copolymer latex satisfying the following formula (2).
    [ΔH × (100 / 100−C S )] / ΔH W ≦ 0.8 (2)
    [Wherein (2), C S represents the solid content of the sample of the copolymer latex (weight%), [Delta] H W is heat of fusion (mJ / mg) when the distilled water was measured under the same conditions Indicates. ]
  8.  前記エチレン系不飽和カルボン酸単量体がモノカルボン酸単量体を30質量%超含む、請求項7記載の共重合体ラテックス。 The copolymer latex according to claim 7, wherein the ethylenically unsaturated carboxylic acid monomer contains more than 30% by mass of a monocarboxylic acid monomer.
  9.  前記乳化重合が、前記エチレン系不飽和カルボン酸単量体の全量投入終了時までに前記反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分のFedors法による溶解度パラメータをSPとし、前記エチレン系不飽和カルボン酸単量体の全量投入終了時よりも後に前記反応系に投入されたエチレン系不飽和カルボン酸単量体以外の単量体成分のFedors法による溶解度パラメータをSPとしたときに、SPとSPとの差が絶対値で1.50以下となるように、前記反応系に前記単量体成分を投入して行われる、請求項7又は8記載の共重合体ラテックス。 Solubility parameter by Fedors method of monomer components other than the ethylenically unsaturated carboxylic acid monomer charged into the reaction system by the end of the emulsion polymerization when the whole amount of the ethylenically unsaturated carboxylic acid monomer is charged SP 1 and the solubility of monomer components other than the ethylenically unsaturated carboxylic acid monomer introduced into the reaction system after the end of the introduction of the entire amount of the ethylenically unsaturated carboxylic acid monomer by the Fedors method The process is carried out by introducing the monomer component into the reaction system so that the difference between SP 1 and SP 2 is 1.50 or less in absolute value when the parameter is SP 2. 8. Copolymer latex according to 8.
PCT/JP2014/069609 2013-07-24 2014-07-24 Method for manufacturing copolymer latex, and copolymer latex WO2015012371A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480025652.9A CN105189567B (en) 2013-07-24 2014-07-24 The manufacturing method and copolymer emulsion of copolymer emulsion
KR1020157033061A KR101639547B1 (en) 2013-07-24 2014-07-24 Method for manufacturing copolymer latex, and copolymer latex

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2013153680 2013-07-24
JP2013-153680 2013-07-24
JP2013153676 2013-07-24
JP2013153677 2013-07-24
JP2013-153676 2013-07-24
JP2013-153677 2013-07-24
JP2013-269965 2013-12-26
JP2013269967A JP5632954B1 (en) 2013-07-24 2013-12-26 Copolymer latex
JP2013-269967 2013-12-26
JP2013269965A JP5632953B1 (en) 2013-07-24 2013-12-26 Method for producing copolymer latex
JP2013-269971 2013-12-26
JP2013269971A JP5632955B1 (en) 2013-07-24 2013-12-26 Copolymer latex

Publications (1)

Publication Number Publication Date
WO2015012371A1 true WO2015012371A1 (en) 2015-01-29

Family

ID=52393404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069609 WO2015012371A1 (en) 2013-07-24 2014-07-24 Method for manufacturing copolymer latex, and copolymer latex

Country Status (3)

Country Link
KR (1) KR101639547B1 (en)
CN (1) CN105189567B (en)
WO (1) WO2015012371A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241310A (en) * 1985-04-18 1986-10-27 Soken Kagaku Kk Production of emulsion of crosslinked polymer
JPH10182709A (en) * 1996-12-27 1998-07-07 Asahi Chem Ind Co Ltd Diene-based copolymer latex
JPH10298208A (en) * 1997-04-22 1998-11-10 Sumika A B S Latex Kk Production of copolymer latex and paper coating composition containing the copolymer latex
JP2002194006A (en) * 2000-12-27 2002-07-10 Asahi Kasei Corp Method for producing copolymer latex
JP2003268017A (en) * 2002-03-14 2003-09-25 Asahi Kasei Corp Copolymer latex and paper coating composition
JP2011195973A (en) * 2010-03-17 2011-10-06 Nippon A&L Inc Copolymer latex for paper coating and composition for paper coating
JP2012007172A (en) * 2011-08-15 2012-01-12 Asahi Kasei Chemicals Corp Copolymer latex and composition for paper coating
JP2012509971A (en) * 2008-11-25 2012-04-26 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing aqueous polymer dispersion from vinyl aromatic compound, conjugated aliphatic diene and ethylenically unsaturated carboxylic nitrile
JP2012188797A (en) * 2011-02-25 2012-10-04 Nippon A&L Inc Copolymer latex for paper coating and composition for paper coating
JP2012214694A (en) * 2011-03-31 2012-11-08 Nippon A&L Inc Copolymer latex and composition containing the copolymer latex

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2936681B2 (en) 1990-09-14 1999-08-23 東陶機器株式会社 Drive device for piezoelectric actuator
JP3148999B2 (en) 1992-04-28 2001-03-26 日本エイアンドエル株式会社 Method for producing copolymer latex
JP2007084738A (en) * 2005-09-26 2007-04-05 Asahi Kasei Chemicals Corp Copolymer latex, coating composition for coating printing paper and coated paper for printing
JP2008248446A (en) 2007-03-30 2008-10-16 Nippon A & L Kk Copolymer latex for paper coating
JP5242115B2 (en) 2007-10-04 2013-07-24 日本エイアンドエル株式会社 Copolymer latex for paper coating
KR101817356B1 (en) * 2010-02-26 2018-01-10 니폰 에이 엔 엘 가부시키가이샤 Copolymer latex, method for manufacturing the same, and paper coating composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241310A (en) * 1985-04-18 1986-10-27 Soken Kagaku Kk Production of emulsion of crosslinked polymer
JPH10182709A (en) * 1996-12-27 1998-07-07 Asahi Chem Ind Co Ltd Diene-based copolymer latex
JPH10298208A (en) * 1997-04-22 1998-11-10 Sumika A B S Latex Kk Production of copolymer latex and paper coating composition containing the copolymer latex
JP2002194006A (en) * 2000-12-27 2002-07-10 Asahi Kasei Corp Method for producing copolymer latex
JP2003268017A (en) * 2002-03-14 2003-09-25 Asahi Kasei Corp Copolymer latex and paper coating composition
JP2012509971A (en) * 2008-11-25 2012-04-26 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing aqueous polymer dispersion from vinyl aromatic compound, conjugated aliphatic diene and ethylenically unsaturated carboxylic nitrile
JP2011195973A (en) * 2010-03-17 2011-10-06 Nippon A&L Inc Copolymer latex for paper coating and composition for paper coating
JP2012188797A (en) * 2011-02-25 2012-10-04 Nippon A&L Inc Copolymer latex for paper coating and composition for paper coating
JP2012214694A (en) * 2011-03-31 2012-11-08 Nippon A&L Inc Copolymer latex and composition containing the copolymer latex
JP2012007172A (en) * 2011-08-15 2012-01-12 Asahi Kasei Chemicals Corp Copolymer latex and composition for paper coating

Also Published As

Publication number Publication date
CN105189567A (en) 2015-12-23
KR101639547B1 (en) 2016-07-13
CN105189567B (en) 2019-03-26
KR20150135549A (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5329559B2 (en) Secondary battery electrode binder
JP5651346B2 (en) Battery electrode composition
JP5809636B2 (en) Secondary battery electrode binder, secondary battery electrode slurry, and secondary battery electrode
WO2015012366A1 (en) Binder for electrode, composition for electrode, and electrode sheet
JP2010192434A (en) Binder for secondary battery electrode
JP5547504B2 (en) Secondary battery electrode binder
KR20130111387A (en) Binder for battery electrode, and composition and electrode containing said binder
WO2017104770A1 (en) Binder composition for secondary battery negative electrode, secondary battery negative electrode, and secondary battery
JP6363331B2 (en) Aqueous binder for battery electrode and method for producing the same
JP6029823B2 (en) Aqueous composition for secondary battery electrode and electrode for secondary battery positive electrode
JP5835682B2 (en) Battery electrode composition
JP5632956B1 (en) Copolymer latex
JP5547505B2 (en) Secondary battery electrode binder
JP2012169112A (en) Binder composition for secondary battery electrode, slurry for secondary battery electrode, and electrode for secondary battery
WO2015012371A1 (en) Method for manufacturing copolymer latex, and copolymer latex
JP2019053942A (en) Method for manufacturing electrode for electrochemical device
JP6902376B2 (en) Latex composition
JP5613316B1 (en) Copolymer latex
JP5632955B1 (en) Copolymer latex
JP5632954B1 (en) Copolymer latex
KR102191359B1 (en) Copolymer latex
JP5613317B1 (en) Copolymer latex
WO2015012370A1 (en) Copolymer latex
JP5632953B1 (en) Method for producing copolymer latex
KR20190134661A (en) Binder for electrodes, composition for electrodes and electrode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480025652.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157033061

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14828850

Country of ref document: EP

Kind code of ref document: A1