WO2015012199A1 - Touch panel and conductive film - Google Patents

Touch panel and conductive film Download PDF

Info

Publication number
WO2015012199A1
WO2015012199A1 PCT/JP2014/069094 JP2014069094W WO2015012199A1 WO 2015012199 A1 WO2015012199 A1 WO 2015012199A1 JP 2014069094 W JP2014069094 W JP 2014069094W WO 2015012199 A1 WO2015012199 A1 WO 2015012199A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
touch panel
detection electrode
image display
refractive index
Prior art date
Application number
PCT/JP2014/069094
Other languages
French (fr)
Japanese (ja)
Inventor
遠藤 靖
松並 由木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015012199A1 publication Critical patent/WO2015012199A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present invention relates to a touch panel, and in particular, a substrate showing optical anisotropy contained in a touch panel sensor exhibits a predetermined Nz coefficient and nx, and an in-plane slow axis of the substrate and a straight line emitted from an image display panel.
  • the present invention relates to a touch panel in which a polarization vibration direction has a predetermined relationship.
  • this invention relates also to the electroconductive film used for the said touch panel.
  • a flexible transparent substrate is a substrate such as PET that has been subjected to stretching / crystallization treatment because of its excellent mechanical properties. These substrates have a large birefringence in the plane and in the thickness direction. That is, the flexible transparent substrate exhibits optical anisotropy.
  • the touch panel In recent years, in order to meet the demand for a larger touch panel screen, it is required to perform position detection with higher accuracy.
  • the touch panel is used in a warm environment such as high temperature and high humidity, and may be exposed to high temperature and high humidity for accelerated device reliability testing.
  • High position detection accuracy touch position detection accuracy
  • it is also required to reduce the occurrence of rainbow unevenness.
  • the inventors produce a touch panel using a transparent conductive film having a predetermined Nz coefficient described in Patent Document 1 and leave it in a high-temperature and high-humidity environment, the occurrence of rainbow unevenness is reduced.
  • the position detection accuracy deteriorates.
  • an object of the present invention is to provide a touch panel in which the occurrence of rainbow unevenness is reduced and the position detection accuracy is hardly deteriorated even after high-temperature and high-humidity processing.
  • the inventors of the present invention use a touch panel sensor including a substrate exhibiting a predetermined Nz coefficient and nx, and the in-plane slow axis of the substrate and linearly polarized light emitted from the image display panel. It has been found that the above problem can be solved by making the arrangement with the vibration direction a predetermined relationship. That is, it has been found that the above object can be achieved by the following configuration.
  • a touch panel having an image display panel that emits linearly polarized light, and a touch panel sensor disposed on a viewing side of the image display panel,
  • the touch panel sensor includes at least a substrate exhibiting optical anisotropy, The substrate satisfies the relationship of formula (1) described later,
  • the vibration direction of the linearly polarized light emitted from the image display panel and the in-plane slow axis of the substrate are arranged so as to be orthogonal or parallel,
  • a touch panel having a maximum refractive index nx in the substrate plane of 1.60 or more.
  • the present invention it is possible to provide a touch panel in which occurrence of rainbow unevenness is reduced and position detection accuracy is hardly deteriorated even after high-temperature and high-humidity treatment.
  • FIG. 4 is a cross-sectional view taken along a cutting line AA shown in FIG. It is an enlarged plan view of a 1st detection electrode. It is a partial cross section of 2nd Embodiment of a touch panel sensor. It is a partial cross section of 3rd Embodiment of a touchscreen sensor. It is the schematic which shows the relationship between a polar angle and an azimuth.
  • Re ( ⁇ ) represents in-plane retardation at the wavelength ⁇ , respectively.
  • Re ( ⁇ ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of ⁇ nm incident in the normal direction of the film.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like. Details of the method for measuring Re ( ⁇ ) are described in paragraphs 0010 to 0012 of JP2013-041213A, the contents of which are incorporated herein by reference.
  • a measurement wavelength when there is no special mention about a measurement wavelength, a measurement wavelength is 550 nm.
  • an angle for example, an angle such as “90 °”
  • a relationship thereof for example, “orthogonal (right angle)”, “parallel”, etc.
  • the allowable error means, for example, that the angle is within a range of a strict angle ⁇ 5 ° or less, and the error from the strict angle is preferably 3 ° or less. More specifically, orthogonal (right angle) is intended to be within the range of 90 ° ⁇ 5 °, and parallel is intended to be within the range of 0 ° ⁇ 5 °.
  • the touch panel of the present invention is characterized by using a touch panel sensor including a substrate showing a predetermined Nz coefficient (also simply referred to as Nz) and nx, as well as an in-plane slow axis and image of the substrate.
  • Nz a predetermined Nz coefficient
  • nx an in-plane slow axis and image of the substrate.
  • the arrangement of the linearly polarized light emitted from the display panel and the vibration direction may have a predetermined relationship.
  • the inventors of the present invention are flexible and transparent as a cause of the deterioration of position detection accuracy when a high-temperature and high-humidity treatment is performed on a touch panel manufactured using the transparent conductive film described in Patent Document 1.
  • the deformation of the substrate contributed greatly. That is, since the flexible transparent substrate is deformed, it has been found that the position of the transparent conductive layer functioning as the detection electrode is displaced, and as a result, the position detection accuracy is likely to deteriorate.
  • the cause of the problem in the prior art will be described in more detail.
  • the present inventors have found that the refractive index and heat shrinkability show a certain relationship. That is, it has been found that when the substrate exhibits a high refractive index in a predetermined direction, the heat shrinkability in that direction becomes small.
  • Nz (nx ⁇ nz) / (nx ⁇ ny)
  • the denominator (nx ⁇ ny) in formula (X) Is large, in other words, the difference between nx and ny needs to be large. That is, the difference (refractive index difference) between nx and ny is required to be large.
  • the heat shrinkability in the direction will become large.
  • the heat shrinkability in the ny direction becomes relatively large, and the position of the detection electrode included in the touch panel sensor is greatly displaced due to the heat shrinkage of the substrate, resulting in degradation of position detection accuracy. It becomes easy.
  • the Nz of the substrate used is large.
  • the denominator (nx ⁇ ny) in formula (X) is small, in other words, the difference between nx and ny is small.
  • the molecule (nx-nz) in formula (X) is required to be large, and nx itself is relatively large. Then, since the value of ny approximates nx, the refractive index in the ny direction is large. In other words, since the heat shrinkability in that direction (y direction) is reduced, the detection electrode is less likely to be misaligned, and as a result, the position detection accuracy is less likely to deteriorate. In the present invention, the rainbow unevenness is less likely to occur because the arrangement of the in-plane slow axis of the substrate and the vibration direction of the linearly polarized light emitted from the image display panel satisfies a predetermined relationship.
  • the observation of rainbow unevenness is when the touch panel is observed while changing the azimuth angle from the direction orthogonal or the same as the vibration direction of the linearly polarized light emitted from the image display panel (in particular, When observing at an azimuth angle of 30 to 60 °), it is intended to observe whether or not rainbow unevenness is suppressed.
  • FIG. 1 is a cross-sectional view of the touch panel of the present invention.
  • the figure in this invention is a schematic diagram, and the relationship of the thickness of each layer, a positional relationship, etc. do not necessarily correspond with an actual thing.
  • the touch panel 1 includes an image display panel 2 and a touch panel sensor 3, and the image display panel 2 emits linearly polarized light toward the viewing side. In addition, in FIG. 1, it visually recognizes from the direction of an arrow.
  • the image display panel 2 includes at least an image display cell 4 and a polarizing plate 5 on the viewing side.
  • the touch panel 1 is a capacitive touch panel
  • a position detection driver (not shown) always detects a change in capacitance between the finger and the detection electrode.
  • the position detection driver detects a change in capacitance that is equal to or greater than a predetermined value
  • the position detection driver detects a position where the change in capacitance is detected as an input position. In this way, the touch panel 1 can detect the input position.
  • each member of the touch panel 1 will be described in detail. First, the image display panel 2 will be described.
  • the image display panel 2 includes an image display cell 4 and a polarizing plate 5 (viewing-side polarizing plate) on the viewing side.
  • a liquid crystal cell an organic EL cell, or the like is used.
  • Liquid crystal cells include reflective liquid crystal cells that use external light, transmissive liquid crystal cells that use light from a light source such as a backlight, and semi-transmissive and semi-reflective types that use both external light and light from the light source. Any liquid crystal cell may be used.
  • any type such as a VA mode, an IPS mode, a TN mode, an STN mode, or a bend alignment ( ⁇ type) can be used.
  • the image display panel When a transmissive liquid crystal cell or a transflective liquid crystal cell is adopted as the liquid crystal cell, the image display panel includes a light source side polarizing plate on the side opposite to the viewing side of the liquid crystal cell, and further includes a light source. It may be.
  • the light emitted from the light source is converted in its polarization state while propagating through the liquid crystal cell, and the amount of transmitted light is absorbed by the polarizing plate disposed on the viewing side of the liquid crystal cell.
  • the light emitted from the image display panel to the viewing side is linearly polarized light having a vibration surface in the transmission axis direction of the polarizing plate 5.
  • the organic EL cell for example, a light emitting body (organic electroluminescent light emitting body) in which a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate is used.
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or the like Structures having various combinations such as a laminate of an electron injection layer composed of a light emitting layer and a perylene derivative, or a laminate of these hole injection layer, light emitting layer, and electron injection layer are known.
  • a polarizing plate is not essential for image display.
  • the thickness of the organic light emitting layer is very thin, external light is reflected by the metal electrode and emitted again to the viewing side, and when viewed from the outside, the display surface of the organic EL display device may appear as a mirror surface. is there.
  • a circularly polarizing plate 8 in which a polarizing plate 5 and a quarter-wave plate 7 are laminated is arranged on the viewing side of the organic EL cell 6 as shown in FIG. The method is adopted.
  • the light emitted from the organic EL panel 9 including the circularly polarizing plate 8 on the viewing side to the viewing side is linearly polarized light having a vibration surface in the transmission axis direction of the polarizing plate 5 constituting the circularly polarizing plate 8.
  • the light emitted from the image display cell is absorbed by the polarizing plate 5 in the absorption axis direction of the polarizing plate 5 and only the light in the transmission axis direction orthogonal to the absorption axis direction is emitted to the touch panel sensor 3 side. Is done.
  • polarizing plate 5 a polarizing plate having an appropriate absorption type linear polarizer is used.
  • a polarizing plate for example, a polarizing plate made of a polyvinyl alcohol-based stretched film containing iodine is suitably used.
  • the touch panel sensor 3 is disposed on the image display panel 2 (on the operator side), and uses, for example, a change in capacitance that occurs when an external conductor such as a human finger comes into contact (approaching). It is a sensor that detects the position of an external conductor such as a finger.
  • the touch panel sensor 3 is a projection type that identifies the coordinates of a finger by detecting a change in capacitance of a detection electrode (in particular, a detection electrode extending in the X direction and a detection electrode extending in the Y direction) that is in contact with or close to the finger.
  • a capacitive touch panel sensor is preferably used.
  • a resistive film type touch panel sensor may be used.
  • the configuration of the touch panel sensor 3 is not particularly limited as long as it includes a substrate exhibiting optical anisotropy, but is a conductive film having a substrate exhibiting optical anisotropy and a detection electrode disposed on at least one surface of the substrate. It is preferable to contain at least.
  • the detection electrode constitutes a conductive part in the conductive film.
  • a substrate exhibiting optical anisotropy is a substrate having birefringence in the in-plane and thickness directions, and the substrate is generally excellent in mechanical properties.
  • the touch panel sensor 3 including at least a conductive film having a substrate exhibiting optical anisotropy and a detection electrode disposed on at least one surface of the substrate will be described in detail with reference to the drawings.
  • substrate 12 shown in FIG. 3 mentioned later is a board
  • FIG. 3 and 4 are diagrams illustrating an example of a capacitive touch panel sensor using a single conductive film.
  • FIG. 3 shows a plan view of the touch panel sensor 300.
  • FIG. 4 is a cross-sectional view taken along the cutting line AA in FIG. 3 and 4 are schematically shown to facilitate understanding of the layer configuration of the touch panel sensor, and are not drawings that accurately represent the arrangement of each layer.
  • the touch panel sensor 300 includes a substrate 12, a first detection electrode 14 disposed on one main surface (on the surface) of the substrate 12, a first lead wiring 16, a first transparent resin layer 40, and a first protection.
  • a substrate 50, a second detection electrode 18 disposed on the other main surface (back surface) of the substrate 12, a second lead wiring 20, a second transparent resin layer 42, and a second protective substrate 52 are provided.
  • the region where the first detection electrode 14 and the second detection electrode 18 are provided constitutes an input region E I that can be input by the user, and the outer region E O located outside the input region E I is the first region.
  • a first lead-out wiring 16, a second lead-out wiring 20, and a flexible printed wiring board (not shown) are arranged.
  • substrate 12, the 1st detection electrode 14, and the 2nd detection electrode 18 comprise an electroconductive film. Below, the said structure is explained in full detail.
  • the substrate 12 plays a role of supporting a first detection electrode 14 and a second detection electrode 18 to be described later in the input region E I , and supports a first lead wiring 16 and a second lead wiring 20 to be described later in the outer region E O. It is a member that plays the role of The board
  • Nz represents the Nz coefficient
  • nx is the maximum refractive index in the substrate surface at a wavelength of 550 nm
  • ny is the refractive index in the direction orthogonal to nx in the substrate surface at a wavelength of 550 nm
  • the refractive index is in the substrate thickness direction at a wavelength of 550 nm.
  • nx of the substrate 12 is 1.60 or more, and is preferably 1.61 or more, more preferably 1.65 or more in terms of further suppressing the occurrence of deterioration in the position detection accuracy of the touch panel.
  • the upper limit is not particularly limited, but is usually 1.70 or less in many cases.
  • the value of ny of the substrate 12 is not particularly limited as long as it satisfies the relationship of the Nz coefficient. However, the difference from nx (nx ⁇ ny) is preferably within 0.05, and is preferably within 0.03. preferable.
  • the lower limit is not particularly limited, but usually the difference from nx (nx ⁇ ny) is greater than zero.
  • nz of the substrate 12 is not particularly limited as long as it satisfies the relationship of the Nz coefficient, but is preferably 1.55 or less, and more preferably 1.50 or less.
  • the lower limit is not particularly limited, but is usually 1.45 or more in many cases.
  • a biaxially stretched substrate is preferably used as the substrate satisfying the above Nz and nx.
  • Orthogonal in that the in-plane slow axis of the substrate 12 and the vibration direction of the linearly polarized light emitted from the image display panel 2 described above are orthogonal or parallel, and the occurrence of rainbow unevenness is further suppressed. It is preferable that If this is not the case, rainbow unevenness occurs more.
  • the definitions of orthogonal and parallel are as described above.
  • the said aspect is synonymous with arrange
  • the Nz and nx of the substrate 12 and the arrangement of the in-plane slow axis of the substrate 12 and the vibration direction of the linearly polarized light are defined. If included, like the substrate 12, those substrates also have predetermined Nz and nx, and the in-plane slow axis of the substrate and the vibration direction of the linearly polarized light satisfy the predetermined arrangement. More specifically, as described later, when the first protective substrate 50 or the second protective substrate 52 exhibits optical anisotropy, they also satisfy the above-described Nz and nx, as in the substrate 12, and The in-plane slow axis and the vibration direction of linearly polarized light are arranged so as to be orthogonal or parallel to each other.
  • Re (550) which is a retardation value measured at a wavelength of 550 nm of the substrate 12 is not particularly limited, but is preferably 1000 to 3500 nm from the viewpoint of suppressing generation of rainbow unevenness. It is preferable that the substrate 12 appropriately transmits light. Specifically, the total light transmittance of the substrate 12 is preferably 85 to 100%.
  • the substrate 12 preferably has an insulating property. That is, the substrate 12 is preferably a layer for ensuring the insulation between the first detection electrode 14 and the second detection electrode 18.
  • the substrate 12 is preferably a transparent substrate. Specific examples thereof include an insulating resin substrate, a ceramic substrate, and a glass substrate. Among these, an insulating resin substrate is preferable because of its excellent toughness. More specifically, the material constituting the substrate 12 is polyethylene terephthalate, polyethersulfone, polyacrylic resin, polyurethane resin, polyester, polycarbonate, polysulfone, polyamide, polyarylate, polyolefin, cellulose resin, polychlorinated resin. Examples thereof include vinyl and cycloolefin resins.
  • substrate which has polyester as a main component is used suitably from a mechanical strength, dimensional stability, and a heat resistant viewpoint.
  • the polyester include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid.
  • Diphenoxyethanedicarboxylic acid Diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid , Malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, dimer , Dicarboxylic acids such as sebacic acid, suberic acid, dodecadicarboxylic acid, and ethylene glycol, propylene glycol, hexamethylene glycol, neopent
  • diols are each a homopolymer obtained by polycondensation of one kind, a copolymer obtained by polycondensation of one or more dicarboxylic acids and two or more diols, or two or more dicarboxylic acids and one or more kinds of diols.
  • Copolymers obtained by polycondensation of diols, and their homopoly It can include any of the polyester resin blend resin obtained by blending two or more of the chromatography and copolymers.
  • an aromatic polyester is preferable, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is particularly preferable, and polyethylene terephthalate is most preferable.
  • the polyester film can be obtained by, for example, a method in which the above polyester-based resin is melt-extruded on a casting drum and then cooled and solidified.
  • substrate 12 may contain resin, an additive, etc. other than aromatic polyester.
  • the main component is aromatic polyester means that the aromatic polyester is 50% by weight or more, preferably 60% by weight or more, more preferably 70% or more, further preferably 80% or more with respect to the total weight of the substrate 12. Means that.
  • a biaxially stretched polyester film can be suitably used as the substrate.
  • the substrate 12 is a single layer, but may be a multilayer of two or more layers.
  • the thickness of the substrate 12 (when the substrate 12 is a multilayer of two or more layers is not particularly limited), it is preferably 5 to 350 ⁇ m, more preferably 30 to 150 ⁇ m. Within the above range, desired visible light transmittance can be obtained, and handling is easy.
  • the planar view shape of the substrate 12 is substantially rectangular, but is not limited thereto. For example, it may be circular or polygonal.
  • the first detection electrode 14 and the second detection electrode 18 are sensing electrodes that sense a change in capacitance, and constitute a sensing unit (sensor unit). That is, when the fingertip is brought into contact with the touch panel, the mutual capacitance between the first detection electrode 14 and the second detection electrode 18 changes, and the position of the fingertip is calculated by the IC circuit based on the change amount.
  • the first detection electrodes 14 are electrodes that extend in a first direction (X direction) and are arranged at a predetermined interval in a second direction (Y direction) orthogonal to the first direction.
  • Second detection electrode 18 which has a role to detect the input position in the Y direction of the finger of the user in proximity to the input region E I, has the function of generating an electrostatic capacitance between the finger ing.
  • the second detection electrodes 18 are electrodes that extend in the second direction (Y direction) and are arranged at a predetermined interval in the first direction (X direction), and include a predetermined pattern as will be described later.
  • five first detection electrodes 14 and five second detection electrodes 18 are provided, but the number is not particularly limited and may be plural.
  • the first detection electrode 14 and the second detection electrode 18 can be composed of, for example, conductive thin wires.
  • FIG. 5 shows an enlarged plan view of a part of the first detection electrode 14.
  • the first detection electrode 14 is composed of conductive thin wires 30, and includes a plurality of lattices 32 formed of intersecting conductive thin wires 30.
  • the first detection electrode 14 has a mesh pattern composed of a plurality of conductive thin wires that intersect.
  • the second detection electrode 18 similarly to the first detection electrode 14, also includes a plurality of lattices 32 formed by intersecting conductive thin wires 30.
  • Examples of the material of the conductive thin wire 30 include metals and alloys such as gold (Au), silver (Ag), copper (Cu), and aluminum (Al), ITO, tin oxide, zinc oxide, cadmium oxide, gallium oxide, Examples thereof include metal oxides such as titanium oxide. Especially, it is preferable that it is silver from the reason for which the electroconductivity of the electroconductive fine wire 30 is excellent.
  • the conductive fine wire 30 preferably contains a binder from the viewpoint of adhesion between the conductive fine wire 30 and the substrate 12.
  • the binder is preferably a water-soluble polymer because the adhesion between the conductive thin wire 30 and the substrate 12 is more excellent.
  • the binder include gelatin, carrageenan, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacryl.
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacryl.
  • examples include acid, polyalginic acid, polyhyaluronic acid, carboxycellulose, gum arabic, and sodium al
  • gelatin is preferable because the adhesion between the conductive thin wire 30 and the substrate 12 is more excellent.
  • acid-processed gelatin may be used as gelatin, and gelatin hydrolyzate, gelatin enzyme decomposition product, and other gelatins modified with amino groups and carboxyl groups (phthalated gelatin, acetylated gelatin) Can be used.
  • the volume ratio of metal to binder (metal volume / binder volume) in the conductive thin wire 30 is preferably 1.0 or more, and more preferably 1.5 or more. By setting the volume ratio of the metal and the binder to 1.0 or more, the conductivity of the conductive thin wire 30 can be further increased.
  • the upper limit is not particularly limited, but is preferably 4.0 or less and more preferably 2.5 or less from the viewpoint of productivity.
  • the volume ratio of the metal and the binder can be calculated from the density of the metal and the binder contained in the conductive thin wire 30. For example, when the metal is silver, the density of silver is 10.5 g / cm 3 , and when the binder is gelatin, the density of gelatin is 1.34 g / cm 3 .
  • the line width of the conductive thin wire 30 is not particularly limited, but is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 9 ⁇ m or less, from the viewpoint that a low-resistance electrode can be formed relatively easily. 7 ⁇ m or less is most preferable, 0.5 ⁇ m or more is preferable, and 1.0 ⁇ m or more is more preferable.
  • the thickness of the conductive thin wire 30 is not particularly limited, but can be selected from 0.00001 to 0.2 mm from the viewpoint of conductivity and visibility, but is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and 0.01 Is more preferably from 9 to 9 ⁇ m, most preferably from 0.05 to 5 ⁇ m.
  • the lattice 32 includes an opening region surrounded by the thin conductive wires 30.
  • the length W of one side of the grating 32 is preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less, preferably 50 ⁇ m or more, and more preferably 400 ⁇ m or more.
  • the aperture ratio is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more from the viewpoint of visible light transmittance. preferable.
  • the aperture ratio corresponds to the ratio of the transmissive portion excluding the conductive thin wire 30 in the first detection electrode 14 or the second detection electrode 18 in the predetermined region.
  • the lattice 32 has a substantially rhombus shape.
  • other polygonal shapes for example, a triangle, a quadrangle, a hexagon, and a random polygon
  • the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape.
  • the arc shape for example, the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inwardly convex arc shape.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous. Of course, the shape of each side may be a sine curve.
  • the conductive thin wire 30 is formed as a mesh pattern, but is not limited to this mode, and may be a stripe pattern.
  • the first detection electrode 14 and the second detection electrode 18 are configured with a mesh structure of the conductive thin wires 30, but are not limited to this mode.
  • ITO indium gallium oxide
  • a transparent metal oxide thin film such as cadmium oxide, gallium oxide, or titanium oxide may also be used.
  • the first detection electrode 14 and the second detection electrode 18 may be formed of metal oxide particles, metal paste such as silver paste or copper paste, and metal nanowire particles such as silver nanowire or copper nanowire. Among these, silver nanowires are preferable because they are excellent in conductivity and transparency.
  • the patterning of the electrode part can be selected according to the material of the electrode part, and a photolithography method, a resist mask screen printing-etching method, an ink jet method, a printing method, or the like may be used.
  • the first lead wiring 16 and the second lead wiring 20 are members that play a role in applying a voltage to the first detection electrode 14 and the second detection electrode 18, respectively.
  • the first lead-out wiring 16 is disposed on the substrate 12 in the outer region E O , one end thereof is electrically connected to the corresponding first detection electrode 14, and the other end is an external continuity in which a flexible printed wiring board or the like is disposed. It is located in the region G I.
  • the second lead-out wiring 20 is disposed on the substrate 12 in the outer region E O , one end of which is electrically connected to the corresponding second detection electrode 18, and the other end is an external continuity in which a flexible printed wiring board or the like is disposed. It is located in the region G I.
  • five first lead wires 16 and five second lead wires 20 are shown, but the number is not particularly limited, and a plurality of the first lead wires 16 are usually arranged according to the number of detection electrodes.
  • Examples of the wiring material constituting the first lead wiring 16 and the second lead wiring 20 include metals such as gold (Au), silver (Ag), copper (Cu), tin oxide, zinc oxide, cadmium oxide, Examples thereof include metal oxides such as gallium oxide and titanium oxide. Among these, silver is preferable because of its excellent conductivity. Moreover, you may be comprised by metal or alloy thin films, such as metal pastes, such as a silver paste and a copper paste, aluminum (Al), molybdenum (Mo), and palladium (Pd).
  • metal pastes such as a silver paste and a copper paste, aluminum (Al), molybdenum (Mo), and palladium (Pd).
  • the binder is contained in the 1st lead-out wiring 16 and the 2nd lead-out wiring 20 from the point which adhesiveness with the board
  • the kind of binder is as above-mentioned.
  • the first transparent resin layer 40 and the second transparent resin layer 42 are disposed on the first detection electrode 14 and the second detection electrode 18 in the input region E I , respectively, and the first detection electrode 14 and the first protective substrate 50 are disposed. And a layer (particularly an adhesive transparent resin layer) for ensuring adhesion between the second detection electrode 18 and the second protective substrate 52.
  • the thickness of the first transparent resin layer 40 and the second transparent resin layer 42 is not particularly limited, but is preferably 5 to 350 ⁇ m, and more preferably 20 to 150 ⁇ m. Within the above range, desired visible light transmittance can be obtained, and handling is easy.
  • the total light transmittance of the first transparent resin layer 40 and the second transparent resin layer 42 is preferably 85 to 100%.
  • the 1st transparent resin layer 40 and the 2nd transparent resin layer 42 usually show optical isotropy.
  • a known pressure-sensitive adhesive is preferably used, and examples thereof include a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive. It is done. Among these, an acrylic pressure-sensitive adhesive is preferable from the viewpoint of excellent transparency.
  • the acrylic pressure-sensitive adhesive that is a preferred embodiment of the pressure-sensitive adhesive is mainly composed of an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate. (Meth) acrylate refers to acrylate and / or methacrylate.
  • an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate having an alkyl group having about 1 to 12 carbon atoms is preferable because the adhesiveness is more excellent.
  • An acrylic polymer having a number of repeating units derived from alkyl methacrylate and a number of repeating units derived from alkyl acrylate having the above carbon number is more preferred.
  • a repeating unit derived from (meth) acrylic acid may be contained.
  • the first protective substrate 50 and the second protective substrate 52 are substrates disposed on the first transparent resin layer 40 and the second transparent resin layer 42, respectively, and the first detection electrode 14 and the second detection electrode 18 from the external environment.
  • the main surface of one of the protective substrates constitutes a touch surface.
  • the first protective substrate 50 and the second protective substrate 52 are preferably transparent substrates, and a plastic film, a plastic plate, a glass plate, or the like is used. It is desirable that the thickness of the layer is appropriately selected according to each application.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and EVA; Resin;
  • polycarbonate (PC) polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), cycloolefin resin (COP), and the like can be used.
  • substrate which shows optical isotropy from the point which is excellent in mechanical strength is used preferably, however, The board
  • the respective substrates are arranged in the same manner as the substrate 12 with respect to the image display panel 2. More specifically, when the first protective substrate 50 exhibits optical anisotropy, the in-plane slow axis of the first protective substrate 50 and the vibration direction of the linearly polarized light emitted from the image display panel are orthogonal or parallel.
  • the first protective substrate 50 is arranged so that When the second protective substrate 52 exhibits optical anisotropy, the in-plane slow axis of the second protective substrate 52 and the vibration direction of the linearly polarized light emitted from the image display panel are the same as the first protective substrate 50.
  • the second protective substrate 52 is arranged so that is orthogonal or parallel to each other. Furthermore, when the 1st protective substrate 50 and / or the 2nd protective substrate 52 show optical anisotropy, Nz and nx of each board
  • the first protective substrate 50 when the first protective substrate 50 exhibits optical anisotropy, the first protective substrate 50 satisfies the relationship of the above formula (1): Nz> 3.0, and nx is 1.6 or more.
  • the preferred embodiment is the same as that of the substrate 12.
  • the second protective substrate 52 exhibits optical anisotropy, the second protective substrate 52 satisfies the relationship of the above formula (1): Nz> 3.0, and nx is 1.6 or more.
  • the preferred embodiment is the same as that of the substrate 12.
  • the second protective substrate 52 may not be used, and the second transparent resin layer 42 may be in direct contact with the image display panel 2.
  • a hard coat layer may be provided on the surfaces of the first protective substrate 50 and the second protective substrate 52.
  • the hard coat layer is provided for the purpose of preventing the scratch by imparting hardness to the substrate.
  • the resin that forms the hard coat layer include thermosetting resins, thermoplastic resins, ultraviolet curable resins, electron beam curable resins, and two-component mixed resins, among which curing by ultraviolet irradiation.
  • An ultraviolet curable resin capable of efficiently forming a hard coat layer by a simple processing operation is preferable.
  • Examples of the ultraviolet curable resin include various types such as polyester, acrylic, urethane, amide, silicone, and epoxy, and examples include ultraviolet curable monomers, oligomers, and polymers.
  • Examples of the ultraviolet curable resin preferably used include those having an ultraviolet polymerizable functional group, particularly those containing an acrylic monomer or oligomer component having two or more, particularly 3 to 6 functional groups. . Further, an ultraviolet polymerization initiator is blended in the ultraviolet curable resin.
  • the formation method in particular of a hard-coat layer is not restrict
  • the external conductive region G I of FIG. 3, is arranged a flexible printed circuit board (not shown).
  • the flexible printed wiring board is a board in which a plurality of wirings and terminals are provided on a substrate, and is connected to the other end of each of the first lead-out wirings 16 and the other end of each of the second lead-out wirings 20, and is a touch panel sensor. It plays a role of connecting 300 and an external device (for example, an image display panel).
  • the manufacturing method in particular of the touch panel sensor 300 is not restrict
  • a method of manufacturing the detection electrode and the lead-out wiring a photoresist film on the metal foil formed on both main surfaces of the substrate 12 is exposed and developed to form a resist pattern, and the metal exposed from the resist pattern A method of etching the foil is mentioned.
  • a method of printing a paste containing metal fine particles or metal nanowires on both main surfaces of the substrate 12 and performing metal plating on the paste can be mentioned.
  • substrate 12 with a screen printing plate or a gravure printing plate, or the method of forming by an inkjet is also mentioned.
  • a method using silver halide can be mentioned. More specifically, first, silver halide was used as a method of forming the first detection electrode 14 and the first lead wiring 16, and the second detection electrode 18 and the second lead wiring 20 on the substrate 12. A method is mentioned. More specifically, the step (1) of forming a silver halide emulsion layer (hereinafter also referred to simply as a photosensitive layer) containing silver halide and gelatin on both surfaces of the substrate 12, respectively, and exposing the photosensitive layer After that, a method including a step (2) of forming the first detection electrode 14 and the first lead wiring 16, and the second detection electrode 18 and the second lead wiring 20 by developing is given. Below, each process is demonstrated.
  • a silver halide emulsion layer hereinafter also referred to simply as a photosensitive layer
  • Step (1) is a step of forming a photosensitive layer containing silver halide and gelatin on both surfaces of the substrate 12.
  • the method for forming the photosensitive layer is not particularly limited, but from the viewpoint of productivity, the photosensitive layer forming composition containing silver halide and a binder is brought into contact with the substrate 12, and the photosensitive layer is formed on both surfaces of the substrate 12.
  • the method of forming is preferred. Below, after explaining in full detail the aspect of the composition for photosensitive layer formation used with the said method, the procedure of a process is explained in full detail.
  • the composition for forming a photosensitive layer contains silver halide and gelatin.
  • the halogen element contained in the silver halide may be any of chlorine, bromine, iodine and fluorine, or a combination thereof.
  • As the silver halide for example, silver halides mainly composed of silver chloride, silver bromide and silver iodide are preferably used, and silver halides mainly composed of silver bromide and silver chloride are preferably used.
  • the types of gelatin are as described above.
  • the volume ratio of silver halide and gelatin contained in the composition for forming a photosensitive layer is not particularly limited, and is appropriately adjusted so as to be within a suitable volume ratio range of the metal and the binder in the conductive thin wire 30 described above. Is done.
  • the composition for forming a photosensitive layer contains a solvent, if necessary.
  • the solvent used include water, organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, sulfoxides such as dimethyl sulfoxide, esters such as ethyl acetate, ethers, and the like. Etc.), ionic liquids, or mixed solvents thereof.
  • the content of the solvent to be used is not particularly limited, but is preferably in the range of 30 to 90% by mass, and more preferably in the range of 50 to 80% by mass with respect to the total mass of silver halide and binder.
  • a method for bringing the composition for forming a photosensitive layer and the substrate 12 into contact with each other is not particularly limited, and a known method can be adopted.
  • substrate 12 in the composition for photosensitive layer formation, etc. are mentioned.
  • the silver halide content in the photosensitive layer is not particularly limited, but is preferably 1.0 to 20.0 g / m 2 in terms of silver, and preferably 5.0 to 15.0 g / m 2 in terms of more excellent conductive properties. 2 is more preferable.
  • Step (2) Exposure and development step
  • the photosensitive layer obtained in the above step (1) is subjected to pattern exposure and then developed to thereby perform the first detection electrode 14 and the first lead wiring 16, and the second detection electrode 18 and the second detection electrode.
  • This is a step of forming the two lead wirings 20.
  • the pattern exposure process will be described in detail, and then the development process will be described in detail.
  • the silver halide in the photosensitive layer in the exposed region forms a latent image.
  • the first detection electrode 14 and the first lead-out wiring 16, and the second detection electrode 18 and the second lead-out wiring 20 are formed by a development process described later.
  • the silver halide dissolves and flows out of the photosensitive layer during the fixing process described later, and a transparent film is obtained.
  • the light source used in the exposure is not particularly limited, and examples thereof include light such as visible light and ultraviolet light, and radiation such as X-rays.
  • the method for performing pattern exposure is not particularly limited. For example, surface exposure using a photomask may be performed, or scanning exposure using a laser beam may be performed.
  • the shape of the pattern is not particularly limited, and is appropriately adjusted according to the pattern of the conductive fine wire to be formed.
  • the development processing method is not particularly limited, and a known method can be employed.
  • a usual development processing technique used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
  • the type of the developer used in the development process is not particularly limited.
  • PQ developer, MQ developer, MAA developer and the like can be used.
  • the development process can include a fixing process performed for the purpose of removing and stabilizing the silver salt in the unexposed part.
  • a technique of fixing process used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask and the like can be used.
  • the fixing temperature in the fixing step is preferably about 20 ° C.
  • the fixing time is preferably 5 seconds to 1 minute, more preferably 7 seconds to 50 seconds.
  • the mass of the metallic silver contained in the exposed area (conductive thin wire) after the development treatment is preferably a content of 50% by mass or more based on the mass of silver contained in the exposed area before the exposure, More preferably, it is at least mass%. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
  • the method for forming the first transparent resin layer 40 and the second transparent resin layer 42 is not particularly limited, and a method for pasting known transparent resin films or a composition for forming a transparent resin layer for forming a transparent resin layer is applied. And a method of forming a layer.
  • a method for forming the first protective substrate 50 and the second protective substrate 52 is not particularly limited, and examples thereof include a method in which protective substrates are bonded to the first transparent resin layer 40 and the second transparent resin layer 42, respectively.
  • FIG. 6 shows a partial cross-sectional view of the second embodiment of the touch panel sensor.
  • the touch panel sensor 400 is electrically connected to the second substrate 62, the second detection electrode 18 disposed on the second substrate 62, and one end of the second detection electrode 18.
  • a second lead-out wiring (not shown) disposed on the substrate 62, the second transparent resin layer 42, the first detection electrode 14, and a first electrode electrically connected to one end of the first detection electrode 14.
  • a lead wiring 16 (not shown), a first substrate 60 adjacent to the first detection electrode 14 and the first lead wiring 16, a first transparent resin layer 40, and a first protective substrate 50 are provided.
  • the touch panel sensor 400 shown in FIG. 6 has the same layers as the touch panel sensor 300 shown in FIG. 3 except that the order of the layers is different. Therefore, the same reference numerals are assigned to the same components. The description is omitted.
  • substrate 62 are the layers similar to the board
  • the touch panel sensor 400 shown in FIG. 6 prepares two substrates (conductive films) with electrodes having a substrate and detection electrodes arranged on the substrate surface and lead-out wiring, and the detection electrodes face each other. It corresponds to the touch panel obtained by bonding through a transparent resin layer.
  • the in-plane slow axis of the first substrate 60 and the in-plane slow axis of the second substrate 62 included in the touch panel sensor 400 are orthogonal to the vibration direction of the linearly polarized light emitted from the image display panel, respectively. Or it arrange
  • FIG. 7 shows a partial cross-sectional view of a third embodiment of the touch panel sensor.
  • the touch panel sensor 500 is electrically connected to the second substrate 62, the second detection electrode 18 disposed on the second substrate 62, and one end of the second detection electrode 18.
  • a first lead wiring (not shown), a first transparent resin layer 40, and a first protective substrate 50 are electrically connected to one end of the detection electrode 14 and disposed on the first substrate 60. Since the touch panel sensor 500 shown in FIG.
  • the touch panel sensor 500 shown in FIG. 7 is prepared by preparing two substrates with electrodes (conductive film) having a substrate and detection electrodes and lead wires arranged on the substrate surface, and the substrate in one substrate with electrodes. This corresponds to a touch panel obtained by bonding through a transparent resin layer so that the electrode of the other substrate with an electrode faces each other.
  • the in-plane slow axis of the first substrate 60 and the in-plane slow axis of the second substrate 62 included in the touch panel sensor 500 are orthogonal to the vibration direction of the linearly polarized light emitted from the image display panel, respectively. Or it arrange
  • An adhesive layer may be disposed between the image display panel and the touch panel sensor as necessary.
  • the pressure-sensitive adhesive in the pressure-sensitive adhesive layer to be used those having transparency are preferable.
  • acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate / vinyl chloride copolymer those having a base polymer such as a modified polyolefin, an epoxy-based polymer, a fluorine-based polymer, a rubber-based polymer such as natural rubber, and synthetic rubber can be appropriately selected and used.
  • an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.
  • Example 1> (Preparation of silver halide emulsion) To the following 1 liquid maintained at 38 ° C. and pH 4.5, an amount corresponding to 90% of each of the following 2 and 3 liquids was simultaneously added over 20 minutes while stirring to form 0.16 ⁇ m core particles. Subsequently, the following 4 and 5 solutions were added over 8 minutes, and the remaining 10% of the following 2 and 3 solutions were added over 2 minutes to grow to 0.21 ⁇ m. Further, 0.15 g of potassium iodide was added and ripened for 5 minutes to complete the grain formation.
  • the emulsion after washing with water and desalting was adjusted to pH 6.4 and pAg 7.5, and gelatin 3.9 g, sodium benzenethiosulfonate 10 mg, sodium benzenethiosulfinate 3 mg, sodium thiosulfate 15 mg and chloroauric acid 10 mg were added.
  • Chemical sensitization to obtain optimum sensitivity at 0 ° C. 100 mg of 1,3,3a, 7-tetraazaindene as stabilizer and 100 mg of proxel (trade name, manufactured by ICI Co., Ltd.) as preservative It was.
  • the finally obtained emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide. It was a silver iodochlorobromide cubic grain emulsion having a coefficient of 9%.
  • a polyethylene terephthalate (PET) film having a thickness of 99.8 ⁇ m is subjected to corona discharge treatment, and then a gelatin layer having a thickness of 0.1 ⁇ m as an undercoat layer on both sides of the PET film, and an optical density of about 1 on the undercoat layer.
  • An antihalation layer containing a dye that is decolorized by alkali in the developer at 0.0 was provided.
  • the composition for forming a photosensitive layer was applied, a gelatin layer having a thickness of 0.15 ⁇ m was further provided, and a PET film having a photosensitive layer formed on both sides was obtained.
  • the obtained film is referred to as film A.
  • the formed photosensitive layer had a silver amount of 6.0 g / m 2 and a gelatin amount of 1.0 g / m 2 .
  • the used PET film showed optical anisotropy, Nz was 10, Re (550) was 1700 nm, nx was 1.668, ny was 1.651, and nz was 1.495.
  • Exposure development process Through a photomask in which a touch panel sensor pattern (first detection electrode and second detection electrode) and a lead wiring portion (first lead wiring and second lead wiring) as shown in FIG. 3 are arranged on both surfaces of the film A, Exposure was performed using parallel light using a high-pressure mercury lamp as a light source. After the exposure, development was performed with the following developer, and further development processing was performed using a fixing solution (trade name: N3X-R for CN16X, manufactured by Fuji Film Co., Ltd.). Furthermore, by rinsing with pure water and drying, a PET film having a detection electrode having a mesh pattern made of Ag fine wires and a gelatin layer on both surfaces was obtained. The gelatin layer was formed between the Ag fine wires.
  • the resulting film is referred to as film B.
  • the first detection electrode arranged on the PET film is an electrode extending in the X direction
  • the second detection electrode is an electrode extending in the Y direction
  • a touch panel was manufactured by the following method.
  • a touch panel was produced by the following method using the touch panel sensor obtained above. On the surface of the touch panel sensor obtained above (the bottom surface, the surface opposite to the surface with soda lime glass), put the necessary amount for the final thickness of 300 ⁇ m with Kyotsuri Chemical OCR (HRJ-21) dispenser, After bonding with a liquid crystal display including a front polarizing plate, a touch panel was prepared by ultraviolet curing.
  • the film B was arrange
  • the touch panel sensor in the formed touch panel corresponds to an aspect in which the second protective substrate 52 in FIG. 3 is not provided.
  • Example 2 A touch panel was produced by the following method using the film B produced in Example 1. On one surface (bottom surface) of the film B obtained above, 3M OCA (# 8146-4: 100 micrometers thick), Kimoto hard coat film (G1SBF: 50 micrometers thick) (hereinafter, HC-PET) was laminated in this order. Further, an OCA (# 8146-4: 100 micrometer thickness) manufactured by 3M was bonded to the other surface (top surface) of the film B. The OCA and hard coat film on the other end of each of the first lead wiring and the second lead wiring corresponding to the FPC press-bonding portion were previously made so that the hollow FPC can be pressure-bonded.
  • a touch panel was produced by the following method using the touch panel sensor obtained above.
  • a double-sided adhesive tape (Nitto Denko, 5000NS) is applied to the peripheral edge of the hard coat film surface of the touch panel sensor obtained above, and the front polarizing plate of the liquid crystal display including the front polarizing plate and the hard coat film are faced to each other.
  • the touch panel was produced by bonding.
  • an air layer surrounded by a double-sided adhesive tape exists between the liquid crystal display and the touch panel sensor.
  • the film B was arrange
  • the HC-PET corresponding to the second protective substrate was arranged so that the in-plane slow axis of the HC-PET and the transmission axis of the front polarizing plate were parallel (0 °).
  • the PET film in HC-PET exhibited optical anisotropy, Nz was 4.3, Re (550) was 2800 nm, and nx was 1.642.
  • the touch panel sensor in the formed touch panel corresponds to the aspect in FIG.
  • Example 3 A touch panel was produced according to the same procedure as in Example 2 except that the in-plane slow axis of HC-PET and the transmission axis of the front polarizing plate were arranged to be orthogonal to each other.
  • Example 4 (Formation of conductive film) On the ITO transparent conductive layer of the ITO substrate including the PET film (thickness: 100.1 ⁇ m) and the ITO transparent conductive layer, an etching mask material is formed by a negative photoresist method and immersed in an etching solution for dissolving ITO. A conductive film provided with a detection electrode was formed. The procedure of each process is shown below.
  • the PET film used exhibited optical anisotropy, Nz was 10, Re (550) was 1700 nm, nx was 1.668, ny was 1.651, and nz was 1.495.
  • a photosensitive composition (1) described later was applied with a bar so as to have a dry film thickness of 5 ⁇ m, and dried in an oven at 150 ° C. for 5 minutes.
  • the substrate was exposed to 400 mJ / cm 2 (illuminance: 50 mW / cm 2 ) with a high-pressure mercury lamp i-line (365 nm) from above the exposure glass mask.
  • the exposed substrate was subjected to shower development for 60 seconds with a 1% aqueous sodium hydroxide solution (35 ° C.). The shower pressure was 0.08 MPa, and the time until the stripe pattern appeared was 30 seconds.
  • a conductive member with a resist pattern was immersed in an etching solution for ITO. Etching is performed by immersing in an etching solution adjusted to 35 ° C. for 2 minutes, rinsing with a shower of pure water, then blowing off water on the surface of the sample with an air knife, drying at 60 ° C. for 5 minutes, and a pattern with a resist pattern A conductive member was produced.
  • the detection electrode of the first conductive film was an electrode extending in the X direction (length: 170 mm), and there were 32 detection electrodes.
  • the number of detection electrodes of the second conductive film was 56 (length: 300 mm) extending in the Y direction.
  • the molecular weight was measured using gel permeation chromatography (GPC). As a result, the weight average molecular weight (Mw) in terms of polystyrene was 30,000, and the molecular weight distribution (Mw / Mn) was 2.21.
  • binder (A-1) solid content: 40.0% by mass, PGMEA solution
  • KAYARAD DPHA manufactured by Nippon Kayaku Co., Ltd.
  • IRGACURE 379 manufactured by Ciba Specialty Chemicals Co., Ltd. 0.159 parts by mass
  • EHPE-3150 manufactured by Daicel Chemical Co., Ltd. 0.150 parts by mass as a cross-linking agent
  • Megafac F781F manufactured by DIC Corporation
  • the lead-out wiring (peripheral wiring) formed by the patterning and connected to the detection electrode in the conductive film was produced as follows. That is, a silver paste (Dotite FA-401CA, manufactured by Fujikura Kasei) was printed by a screen printer, and then cured by annealing at 130 ° C. for 30 minutes to form peripheral wiring.
  • the screen printing plate used was a printing plate capable of forming a capacitive touch panel peripheral wiring.
  • a touch panel was produced by the following method.
  • An OCA (# 8146-4: 100 micrometer thickness) manufactured by 3M was bonded to the ITO layer surface of the second conductive film (bottom surface) obtained above, and another first conductive film was passed through the OCA. What was bonded to the surface opposite to the side having the ITO layer (top surface) was produced.
  • the obtained laminate has a PET film, an ITO layer, an OCA, a PET film, and an ITO layer in this order. Note that the OCA on the other end of each of the first lead-out wiring and the second lead-out wiring corresponding to the FPC crimping portion can be preliminarily crimped with the FPC.
  • 3M OCA (# 8146-4: 100 micrometer thickness) is pasted on the ITO layer (top surface) of the above laminate, and the outer shape is adjusted to the same size as 0.7mm thick soda lime glass with a sensor size.
  • the FPC was pressure bonded with Sony Chemicals ACF (CP906AM-25AC), and then the soda lime glass was pasted on the top side to produce a touch panel sensor.
  • a touch panel was produced by the following method using the touch panel sensor obtained above.
  • a double-sided adhesive tape (Nitto Denko, 5000NS) is applied to the peripheral edge of the PET film surface of the touch panel sensor obtained above, and the front polarizing plate of the liquid crystal display including the front polarizing plate and the PET film are bonded to each other.
  • a touch panel was produced.
  • an air layer surrounded by a double-sided adhesive tape exists between the liquid crystal display and the touch panel sensor.
  • the two conductive films were arranged such that the in-plane slow axis of the PET film in each conductive film and the transmission axis of the front polarizing plate were parallel (0 °).
  • the touch panel sensor in the formed touch panel corresponds to the aspect in FIG.
  • Example 5 The same as Example 4 except that the in-plane slow axis of the PET film in the conductive film on the side close to the liquid crystal display in the two conductive films and the transmission axis of the front polarizing plate are orthogonal to each other.
  • a touch panel was manufactured in accordance with the procedure described above.
  • Example 1 of Patent Document 1 a uniaxially stretched polyethylene terephthalate film having a thickness of 46 ⁇ m was obtained.
  • a touch panel was produced according to the same procedure as in Example 1 except that the PET film was used.
  • the PET film used exhibited optical anisotropy, Nz was 1.0, and Re (550) was 1900 nm.
  • nx was 1.681.
  • Detection position accuracy evaluation method The touch panel produced above was left in an environment of 85 ° C. and 85% for 240 hours, and then the detection position accuracy of the touch panel was evaluated. Specifically, a 5 mm square grid is displayed on the display panel of the liquid crystal display, and a finger is traced in parallel to the side in a region close to the edge of each side of the rectangular input region of the touch panel sensor. Evaluate the displacement (maximum value) of the touch position and the locus displayed on the screen, and calculate the displacement amount (maximum value) (mm) / electrode wiring length (mm) x 100 (%) on the four sides. The maximum value was taken as the position accuracy.
  • the value was evaluated as A when the value was ⁇ 2% or less, B when the value was more than ⁇ 2% and ⁇ 5% or less, and C when the value was ⁇ 5% or more.
  • the electrode wiring length in the above formula is intended to be a length of 170 mm of the X detection electrode (length: 170 mm) when a region along the short side of the rectangular input region is traced with a finger.
  • the length of the Y detection electrode (length: 300 mm) is intended to be 300 mm.
  • the angle between the touch panel plane and the observer's line of sight is the azimuth angle ⁇ 1
  • the angle between the line perpendicular to the long side of the touch panel and the observer's line of sight is the polar The angle is ⁇ 2.
  • the direction of the long side of the touch panel and the transmission axis of the front polarizing plate in the liquid crystal display are in a parallel relationship.
  • the uneven coloring was confirmed and evaluated according to the following criteria.
  • the case where there is a score 4 is defined as “A”.
  • At least one of the unevenness evaluation 0 ° and the rainbow unevenness evaluation 90 ° is evaluated as “B” when the score 3 is present, and the case where both the rainbow unevenness evaluation 0 ° and the rainbow unevenness evaluation 90 ° are equal to or less than the evaluation 2 is evaluated as “C”. did. In practice, “B” or more is preferable.
  • Score 1 Rainbow irregularities appear prominent with respect to changes in polar angle and azimuth angle. Rating 2: Rainbow irregularities can be visually recognized with respect to changes in polar angle and azimuth angle, but coloring is lighter than 1. Rating 3: Rainbow irregularities are visible, but within an acceptable range. Score 4: Rainbow unevenness is not visually recognized.
  • the refractive index (nx, ny, nx) of the PET film used in each example and comparative example was evaluated by an Abbe refractometer (Atago NAR-1T SOLID).
  • Table 1 summarizes the evaluation results of the touch panels produced in the examples and comparative examples.
  • the “presence / absence” column of “protective substrate” indicates whether or not a protective substrate (HC-PET) showing optical anisotropy was used.
  • “Arrangement” indicates the relationship (orthogonal or parallel) between the in-plane slow axis of the substrate (PET film) or protective substrate and the vibration direction of linearly polarized light. “/” In Examples 4 and 5 indicates the arrangement of the substrates in the two conductive films used, respectively.

Abstract

The present invention provides a touch panel whereby occurrence of iridescence is reduced, and which is not prone to location detection precision degradation even after high-temperature high-humidity processing. This touch panel comprises an image display panel which emits linearly polarized light, and a touch panel sensor which is positioned on a viewable side of the image display panel. The touch panel sensor further comprises at least a substrate which exhibits optical anisotropy. The substrate satisfies the relation of the formula (1) and is positioned such that the oscillation direction of the linearly polarized light which is emitted from the image display panel and the planar slow axis of the substrate are either orthogonal or parallel, and the maximum index of refraction (nx) in the plane of the substrate is 1.60 or greater. Formula (1): Nz > 3.0

Description

タッチパネル、導電性フィルムTouch panel, conductive film
 本発明は、タッチパネルに係り、特に、タッチパネルセンサー中に含まれる光学異方性を示す基板が所定のNz係数およびnxを示すと共に、基板の面内遅相軸と画像表示パネルから出射される直線偏光の振動方向とが所定の関係をなすタッチパネルに関する。
 また、本発明は、上記タッチパネルに使用される導電性フィルムにも関する。
The present invention relates to a touch panel, and in particular, a substrate showing optical anisotropy contained in a touch panel sensor exhibits a predetermined Nz coefficient and nx, and an in-plane slow axis of the substrate and a straight line emitted from an image display panel. The present invention relates to a touch panel in which a polarization vibration direction has a predetermined relationship.
Moreover, this invention relates also to the electroconductive film used for the said touch panel.
 近年、携帯電話や携帯ゲーム機器等へのタッチパネルの搭載率が上昇しており、例えば、多点検出が可能な静電容量方式のタッチパネルが注目を集めている。
 なかでも、タッチパネルの視認性向上を目的として、所定のNz係数を示す透明導電性フィルムを使用する態様が開示されている(特許文献1)。より具体的には、可撓性透明基板の少なくとも一方の面に透明導電層を有し、かつ、Nz係数が以下(ii)の関係を満たす透明導電性フィルムを使用すると、虹ムラの発生を抑制できる旨が開示されている。
(ii)  0.8≦Nz≦1.4
 なお、特許文献1の段落[0057]においては、透明導電性フィルム全体のNzが上記(ii)の関係を満たすためには、可撓性透明基板が上記(ii)を満たすことが必要かつ十分である旨が記載されている。
 また、特許文献1に記載されるように、可撓性透明基板としては、機械特性に優れるという理由から、延伸・結晶化処理が施されたPETなどの基板が使用されることが好まれており、それらの基板は面内および厚み方向に大きな複屈折を有する。つまり、可撓性透明基板は、光学異方性を示す。
In recent years, the mounting rate of touch panels on mobile phones, portable game devices, and the like has increased, and for example, capacitive touch panels capable of multipoint detection have attracted attention.
Especially, the aspect which uses the transparent conductive film which shows a predetermined Nz coefficient for the purpose of the visibility improvement of a touch panel is disclosed (patent document 1). More specifically, when a transparent conductive film having a transparent conductive layer on at least one surface of a flexible transparent substrate and having an Nz coefficient satisfying the following relationship (ii) is used, rainbow unevenness is generated. It is disclosed that it can be suppressed.
(Ii) 0.8 ≦ Nz ≦ 1.4
In paragraph [0057] of Patent Document 1, in order for Nz of the entire transparent conductive film to satisfy the above relationship (ii), it is necessary and sufficient that the flexible transparent substrate satisfies the above (ii). Is described.
Moreover, as described in Patent Document 1, it is preferred that a flexible transparent substrate is a substrate such as PET that has been subjected to stretching / crystallization treatment because of its excellent mechanical properties. These substrates have a large birefringence in the plane and in the thickness direction. That is, the flexible transparent substrate exhibits optical anisotropy.
特開2012-230491号公報JP 2012-230491 A
 近年、タッチパネルの大画面化などの要求に応えるため、位置検出をより高い精度で行うことが求められている。一方で、タッチパネルは高温高湿下である温暖地などの使用環境下において使用され、更にはデバイスの信頼性加速試験のため高温高湿下に曝されることがあり、そのような場合においても高い位置検出精度(タッチ位置検出精度)が求められる。さらに、タッチパネルの視認性の向上という点から、虹ムラの発生の低減も求められる。
 本発明者らは、特許文献1に記載される所定のNz係数を示す透明導電性フィルムを用いてタッチパネルを作製して高温高湿環境下にて放置した場合、虹ムラの発生は低減されるものの、位置検出精度が劣化しまうという問題があることを知見した。
In recent years, in order to meet the demand for a larger touch panel screen, it is required to perform position detection with higher accuracy. On the other hand, the touch panel is used in a warm environment such as high temperature and high humidity, and may be exposed to high temperature and high humidity for accelerated device reliability testing. High position detection accuracy (touch position detection accuracy) is required. Furthermore, from the viewpoint of improving the visibility of the touch panel, it is also required to reduce the occurrence of rainbow unevenness.
When the inventors produce a touch panel using a transparent conductive film having a predetermined Nz coefficient described in Patent Document 1 and leave it in a high-temperature and high-humidity environment, the occurrence of rainbow unevenness is reduced. However, it has been found that there is a problem that the position detection accuracy deteriorates.
 本発明は、上記実情に鑑みて、虹ムラの発生が低減されると共に、高温高湿処理後であっても位置検出精度の劣化が生じにくいタッチパネルを提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a touch panel in which the occurrence of rainbow unevenness is reduced and the position detection accuracy is hardly deteriorated even after high-temperature and high-humidity processing.
 本発明者らは、上記課題について鋭意検討した結果、所定のNz係数およびnxを示す基板を含むタッチパネルセンサーを用いると共に、基板の面内遅相軸と画像表示パネルから出射される直線偏光との振動方向との配置を所定の関係にすることにより、上記課題を解決できることを見出した。つまり、以下の構成により上記目的を達成することができることを見出した。 As a result of intensive studies on the above problems, the inventors of the present invention use a touch panel sensor including a substrate exhibiting a predetermined Nz coefficient and nx, and the in-plane slow axis of the substrate and linearly polarized light emitted from the image display panel. It has been found that the above problem can be solved by making the arrangement with the vibration direction a predetermined relationship. That is, it has been found that the above object can be achieved by the following configuration.
(1) 直線偏光を出射する画像表示パネルと、画像表示パネルの視認側に配置されるタッチパネルセンサーとを有するタッチパネルであって、
 タッチパネルセンサーが、光学異方性を示す基板を少なくとも含み、
 基板が後述する式(1)の関係を満たし、
 画像表示パネルから出射される直線偏光の振動方向と、基板の面内遅相軸とが直交または平行になるように配置され、
 基板面内の最大屈折率nxが1.60以上である、タッチパネル。
(2) nxが1.61~1.70である、(1)に記載のタッチパネル。
(3) 波長550nmで測定した基板のレターデーション値であるRe(550)が1000~3500nmである、(1)または(2)に記載のタッチパネル。
(4) 基板がポリエチレンテレフタレートを含む、(1)~(3)のいずれかに記載のタッチパネル。
(5) タッチパネルセンサーに含まれる検出電極が、交差する複数の導電性細線で構成されるメッシュパターンを有する、(1)~(4)のいずれかに記載のタッチパネル。
(6) 導電性細線が、金、銀、および銅からなる群から選択される少なくとも1種を含む、(5)に記載のタッチパネル。
(7) 直線偏光を出射する画像表示パネルの視認側に配置される導電性フィルムであって、
 光学異方性を示す基板と、基板の少なくとも一方の表面に導電部を備え、
 基板が後述する式(1)の関係を満たし、
 基板面内の最大屈折率nxが1.60以上である、導電性フィルム。
(1) A touch panel having an image display panel that emits linearly polarized light, and a touch panel sensor disposed on a viewing side of the image display panel,
The touch panel sensor includes at least a substrate exhibiting optical anisotropy,
The substrate satisfies the relationship of formula (1) described later,
The vibration direction of the linearly polarized light emitted from the image display panel and the in-plane slow axis of the substrate are arranged so as to be orthogonal or parallel,
A touch panel having a maximum refractive index nx in the substrate plane of 1.60 or more.
(2) The touch panel according to (1), wherein nx is 1.61 to 1.70.
(3) The touch panel according to (1) or (2), wherein Re (550), which is a retardation value of the substrate measured at a wavelength of 550 nm, is 1000 to 3500 nm.
(4) The touch panel according to any one of (1) to (3), wherein the substrate includes polyethylene terephthalate.
(5) The touch panel according to any one of (1) to (4), wherein the detection electrode included in the touch panel sensor has a mesh pattern including a plurality of conductive thin wires that intersect.
(6) The touch panel according to (5), wherein the conductive thin wire includes at least one selected from the group consisting of gold, silver, and copper.
(7) A conductive film disposed on the viewing side of the image display panel that emits linearly polarized light,
A substrate having optical anisotropy, and a conductive portion on at least one surface of the substrate,
The substrate satisfies the relationship of formula (1) described later,
The electroconductive film whose maximum refractive index nx in a substrate surface is 1.60 or more.
 本発明によれば、虹ムラの発生が低減されると共に、高温高湿処理後であっても位置検出精度の劣化が生じにくいタッチパネルを提供することができる。 According to the present invention, it is possible to provide a touch panel in which occurrence of rainbow unevenness is reduced and position detection accuracy is hardly deteriorated even after high-temperature and high-humidity treatment.
本発明のタッチパネルの実施形態の断面図である。It is sectional drawing of embodiment of the touchscreen of this invention. 本発明のタッチパネルの他の実施形態の断面図である。It is sectional drawing of other embodiment of the touchscreen of this invention. タッチパネルセンサーの一実施形態を示す平面図である。It is a top view which shows one Embodiment of a touchscreen sensor. 図3中に示した切断線A-Aに沿って切断した断面図である。FIG. 4 is a cross-sectional view taken along a cutting line AA shown in FIG. 第1検出電極の拡大平面図である。It is an enlarged plan view of a 1st detection electrode. タッチパネルセンサーの第2の実施形態の一部断面である。It is a partial cross section of 2nd Embodiment of a touch panel sensor. タッチパネルセンサーの第3の実施形態の一部断面である。It is a partial cross section of 3rd Embodiment of a touchscreen sensor. 極角と方位角との関係を示す概略図である。It is the schematic which shows the relationship between a polar angle and an azimuth.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。まず、本明細書で用いられる用語について説明する。
 Re(λ)は、各々、波長λにおける面内のレターデーションを表す。Re(λ)はKOBRA 21ADH、またはWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルタをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。Re(λ)の測定方法の詳細は、特開2013-041213号公報の段落0010~0012に記載され、その内容は本明細書に参照として取り込まれる。
Hereinafter, the present invention will be described in detail. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. First, terms used in this specification will be described.
Re (λ) represents in-plane retardation at the wavelength λ, respectively. Re (λ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of λ nm incident in the normal direction of the film. In selecting the measurement wavelength λnm, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like. Details of the method for measuring Re (λ) are described in paragraphs 0010 to 0012 of JP2013-041213A, the contents of which are incorporated herein by reference.
 なお、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 また、本明細書において、角度(例えば「90°」等の角度)、およびその関係(例えば「直交(直角)」、「平行」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。この時、許容される誤差としては、例えば、厳密な角度±5°以下の範囲内であることなどを意味し、具体的に厳密な角度との誤差は、3°以下であることが好ましい。より具体的には、直交(直角)とは90°±5°の範囲内を意図し、平行とは0°±5°の範囲内を意図する。
In addition, in this specification, when there is no special mention about a measurement wavelength, a measurement wavelength is 550 nm.
In this specification, an angle (for example, an angle such as “90 °”) and a relationship thereof (for example, “orthogonal (right angle)”, “parallel”, etc.) are errors allowed in the technical field to which the present invention belongs. The range of At this time, the allowable error means, for example, that the angle is within a range of a strict angle ± 5 ° or less, and the error from the strict angle is preferably 3 ° or less. More specifically, orthogonal (right angle) is intended to be within the range of 90 ° ± 5 °, and parallel is intended to be within the range of 0 ° ± 5 °.
 以下に、本発明のタッチパネル(以後、単にタッチパネルとも称する)の好適態様について図面を参照して説明する。
 なお、本発明のタッチパネルの特徴点としては、上述したように、所定のNz係数(単に、Nzとも称する)およびnxを示す基板を含むタッチパネルセンサーを用いると共に、基板の面内遅相軸と画像表示パネルから出射される直線偏光との振動方向との配置を所定の関係にすることが挙げられる。本発明者らは、特許文献1に記載される透明導電性フィルムを用いて作製されたタッチパネルに高温高湿処理を施した場合に位置検出精度の劣化が生じやすくなる原因として、可撓性透明基板の変形が大きく寄与していることを知見した。つまり、可撓性透明基板が変形するため、検出電極として機能する透明導電層の位置ズレが生じ、その結果、位置検出精度の劣化が生じやすくなることを知見した。以下、従来技術で問題が起こる原因について、より詳細に述べる。
 本発明者ら、従来技術の問題点について鋭意検討したところ、屈折率と熱収縮性とが一定の関連性を示すことを見出した。つまり、基板が所定の方向において高い屈折率を示す場合、その方向における熱収縮性が小さくなることを見出した。これは言い換えると、基板が所定の方向において低い屈折率を示す場合、その方向における熱収縮性が大きくなることにも相当する。
 特許文献1に使用される透明導電性フィルムは0.8≦Nz≦1.4を示し、Nzは比較的小さい。Nzが「式(X):Nz=(nx-nz)/(nx-ny)」である点を考慮すれば、Nzが小さくなるためには、式(X)中の分母(nx-ny)が大きいこと、言い換えると、nxとnyとの差が大きくなる必要がある。つまり、nxとnyとの差(屈折率差)が大きくなることが求められる。そうすると、nyの値としては小さくなり、結果としてその方向における熱収縮性が大きくなる。つまり、Nzが小さいとny方向での熱収縮性が比較的大きくなり、タッチパネルセンサー内に含まれる検出電極の位置が基板の熱収縮により大きくズレることになり、結果として位置検出精度の劣化を生じやすくなる。
 それに対して、本発明においては、使用される基板のNzが大きい。Nzが大きい場合は、式(X)中の分母(nx-ny)が小さい、言い換えると、nxとnyとの差が小さくなる。また、式(X)中の分子(nx-nz)も大きいことが求められ、nx自体も比較的大きい。そうすると、nyの値がnxと近似してくるために、nyの方向での屈折率が大きい。言い換えると、その方向(y方向)での熱収縮性が小さくなるために、検出電極の位置ズレが生じにくくなり、結果として位置検出精度の劣化が生じにくくなる。
 また、本発明では、基板の面内遅相軸と画像表示パネルから出射される直線偏光との振動方向との配置が所定の関係を満たすことにより、虹ムラが生じにくくなる。なお、本明細書において、虹ムラの観察とは、画像表示パネルから出射される直線偏光の振動方向に対して直交または同一の方位から、方位角を変更しながらタッチパネルを観察した際(特に、方位角30~60°にて観察した際)に虹ムラが抑制されるか否かの観察を意図する。
Below, the suitable aspect of the touchscreen of this invention (henceforth only a touchscreen) is demonstrated with reference to drawings.
As described above, the touch panel of the present invention is characterized by using a touch panel sensor including a substrate showing a predetermined Nz coefficient (also simply referred to as Nz) and nx, as well as an in-plane slow axis and image of the substrate. For example, the arrangement of the linearly polarized light emitted from the display panel and the vibration direction may have a predetermined relationship. The inventors of the present invention are flexible and transparent as a cause of the deterioration of position detection accuracy when a high-temperature and high-humidity treatment is performed on a touch panel manufactured using the transparent conductive film described in Patent Document 1. It was found that the deformation of the substrate contributed greatly. That is, since the flexible transparent substrate is deformed, it has been found that the position of the transparent conductive layer functioning as the detection electrode is displaced, and as a result, the position detection accuracy is likely to deteriorate. Hereinafter, the cause of the problem in the prior art will be described in more detail.
As a result of intensive studies on the problems of the prior art, the present inventors have found that the refractive index and heat shrinkability show a certain relationship. That is, it has been found that when the substrate exhibits a high refractive index in a predetermined direction, the heat shrinkability in that direction becomes small. In other words, when the substrate exhibits a low refractive index in a predetermined direction, it corresponds to an increase in heat shrinkability in that direction.
The transparent conductive film used in Patent Document 1 shows 0.8 ≦ Nz ≦ 1.4, and Nz is relatively small. In consideration of the point that Nz is “formula (X): Nz = (nx−nz) / (nx−ny)”, in order for Nz to be small, the denominator (nx−ny) in formula (X) Is large, in other words, the difference between nx and ny needs to be large. That is, the difference (refractive index difference) between nx and ny is required to be large. If it does so, it will become small as a value of ny and, as a result, the heat shrinkability in the direction will become large. In other words, if Nz is small, the heat shrinkability in the ny direction becomes relatively large, and the position of the detection electrode included in the touch panel sensor is greatly displaced due to the heat shrinkage of the substrate, resulting in degradation of position detection accuracy. It becomes easy.
On the other hand, in the present invention, the Nz of the substrate used is large. When Nz is large, the denominator (nx−ny) in formula (X) is small, in other words, the difference between nx and ny is small. Also, the molecule (nx-nz) in formula (X) is required to be large, and nx itself is relatively large. Then, since the value of ny approximates nx, the refractive index in the ny direction is large. In other words, since the heat shrinkability in that direction (y direction) is reduced, the detection electrode is less likely to be misaligned, and as a result, the position detection accuracy is less likely to deteriorate.
In the present invention, the rainbow unevenness is less likely to occur because the arrangement of the in-plane slow axis of the substrate and the vibration direction of the linearly polarized light emitted from the image display panel satisfies a predetermined relationship. In this specification, the observation of rainbow unevenness is when the touch panel is observed while changing the azimuth angle from the direction orthogonal or the same as the vibration direction of the linearly polarized light emitted from the image display panel (in particular, When observing at an azimuth angle of 30 to 60 °), it is intended to observe whether or not rainbow unevenness is suppressed.
 図1は、本発明のタッチパネルの断面図である。なお、本発明における図は模式図であり、各層の厚みの関係や位置関係などは必ずしも実際のものとは一致しない。
 図1に示すように、タッチパネル1は、画像表示パネル2と、タッチパネルセンサー3とを有し、画像表示パネル2は、視認側に直線偏光を出射する。なお、図1においては、矢印の方向から視認する。画像表示パネル2は、画像表示セル4と、視認側に偏光板5とを少なくとも備える。
 なお、このタッチパネル1が静電容量式タッチパネルである場合においては、タッチパネルセンサー3上に指が近接、接触すると、指とタッチパネルセンサー3中の検出電極との静電容量が変化する。ここで、図示しない位置検出ドライバは、指と検出電極との間の静電容量の変化を常に検出している。この位置検出ドライバは、所定値以上の静電容量の変化を検出すると、静電容量の変化が検出された位置を入力位置として検出する。このようにして、タッチパネル1は、入力位置を検出することができる。
 以下、タッチパネル1の各部材について詳述する。まず、画像表示パネル2について述べる。
FIG. 1 is a cross-sectional view of the touch panel of the present invention. In addition, the figure in this invention is a schematic diagram, and the relationship of the thickness of each layer, a positional relationship, etc. do not necessarily correspond with an actual thing.
As shown in FIG. 1, the touch panel 1 includes an image display panel 2 and a touch panel sensor 3, and the image display panel 2 emits linearly polarized light toward the viewing side. In addition, in FIG. 1, it visually recognizes from the direction of an arrow. The image display panel 2 includes at least an image display cell 4 and a polarizing plate 5 on the viewing side.
In the case where the touch panel 1 is a capacitive touch panel, when a finger approaches or touches the touch panel sensor 3, the capacitance between the finger and the detection electrode in the touch panel sensor 3 changes. Here, a position detection driver (not shown) always detects a change in capacitance between the finger and the detection electrode. When the position detection driver detects a change in capacitance that is equal to or greater than a predetermined value, the position detection driver detects a position where the change in capacitance is detected as an input position. In this way, the touch panel 1 can detect the input position.
Hereinafter, each member of the touch panel 1 will be described in detail. First, the image display panel 2 will be described.
[画像表示パネル]
 画像表示パネル2は、画像表示セル4と、視認側に偏光板5(視認側偏光板)とを備える。
 画像表示セル4としては、液晶セルや有機ELセル等が用いられる。
 液晶セルとしては、外光を利用する反射型液晶セル、バックライト等の光源からの光を利用する透過型液晶セル、外部からの光と光源からの光の両者を利用する半透過半反射型液晶セルのいずれを用いてもよい。また、液晶セルの駆動方式としては、例えばVAモード、IPSモード、TNモード、STNモードやベンド配向(π型)等の任意なタイプのものを用いうる。なお、液晶セルとして、透過型液晶セル、または、半透過半反射型液晶セルを採用する場合、画像表示パネルは、液晶セルの視認側と反対側に光源側偏光板を備え、さらに光源を備えていてもよい。この場合、光源からの出射光が、液晶セルを伝搬中に偏光状態が変換され、液晶セルの視認側に配置された偏光板によって偏光状態に応じた量の光が吸収されるために透過光量が調整され、画像表示を可能としている。そのため、画像表示パネルから視認側に出射する光は、偏光板5の透過軸方向に振動面を有する直線偏光である。
[Image display panel]
The image display panel 2 includes an image display cell 4 and a polarizing plate 5 (viewing-side polarizing plate) on the viewing side.
As the image display cell 4, a liquid crystal cell, an organic EL cell, or the like is used.
Liquid crystal cells include reflective liquid crystal cells that use external light, transmissive liquid crystal cells that use light from a light source such as a backlight, and semi-transmissive and semi-reflective types that use both external light and light from the light source. Any liquid crystal cell may be used. In addition, as a driving method of the liquid crystal cell, for example, any type such as a VA mode, an IPS mode, a TN mode, an STN mode, or a bend alignment (π type) can be used. When a transmissive liquid crystal cell or a transflective liquid crystal cell is adopted as the liquid crystal cell, the image display panel includes a light source side polarizing plate on the side opposite to the viewing side of the liquid crystal cell, and further includes a light source. It may be. In this case, the light emitted from the light source is converted in its polarization state while propagating through the liquid crystal cell, and the amount of transmitted light is absorbed by the polarizing plate disposed on the viewing side of the liquid crystal cell. Has been adjusted to enable image display. Therefore, the light emitted from the image display panel to the viewing side is linearly polarized light having a vibration surface in the transmission axis direction of the polarizing plate 5.
 有機ELセルとしては、例えば、透明基板上に透明電極と有機発光層と金属電極とを順に積層した発光体(有機エレクトロルミネセンス発光体)が用いられる。有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、このような発光層とペリレン誘導体等からなる電子注入層の積層体、または、これらの正孔注入層、発光層、および電子注入層の積層体等、種々の組み合わせをもった構成が知られている。有機ELパネルは、有機ELセル自体の発光量を調整することによって画像表示を可能としているため、画像表示において偏光板は必須ではない。しかしながら、有機発光層の厚みがきわめて薄いために、外光が金属電極で反射して再び視認側へ出射され、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える場合がある。このような外光の鏡面反射を遮蔽するために、図2に示すように、有機ELセル6の視認側に、偏光板5と1/4波長板7を積層した円偏光板8を配置する方法が採用されている。そのため、視認側に円偏光板8を備える有機ELパネル9から視認側に出射する光は、円偏光板8を構成する偏光板5の透過軸方向に振動面を有する直線偏光である。
 このように、画像表示セルから出射した光は、偏光板5によって、偏光板5の吸収軸方向の光が吸収され、吸収軸方向と直交する透過軸方向の光のみがタッチパネルセンサー3側へ出射される。
As the organic EL cell, for example, a light emitting body (organic electroluminescent light emitting body) in which a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate is used. The organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or the like Structures having various combinations such as a laminate of an electron injection layer composed of a light emitting layer and a perylene derivative, or a laminate of these hole injection layer, light emitting layer, and electron injection layer are known. Since the organic EL panel enables image display by adjusting the light emission amount of the organic EL cell itself, a polarizing plate is not essential for image display. However, since the thickness of the organic light emitting layer is very thin, external light is reflected by the metal electrode and emitted again to the viewing side, and when viewed from the outside, the display surface of the organic EL display device may appear as a mirror surface. is there. In order to shield such specular reflection of external light, a circularly polarizing plate 8 in which a polarizing plate 5 and a quarter-wave plate 7 are laminated is arranged on the viewing side of the organic EL cell 6 as shown in FIG. The method is adopted. Therefore, the light emitted from the organic EL panel 9 including the circularly polarizing plate 8 on the viewing side to the viewing side is linearly polarized light having a vibration surface in the transmission axis direction of the polarizing plate 5 constituting the circularly polarizing plate 8.
As described above, the light emitted from the image display cell is absorbed by the polarizing plate 5 in the absorption axis direction of the polarizing plate 5 and only the light in the transmission axis direction orthogonal to the absorption axis direction is emitted to the touch panel sensor 3 side. Is done.
 偏光板5としては、適宜の吸収型直線偏光子を有する偏光板が用いられる。このような偏光板としては、例えば、ヨウ素を含有するポリビニルアルコール系延伸フィルムからなる偏光子を適宜の透明保護フィルムで挟持したものが好適に用いられる。 As the polarizing plate 5, a polarizing plate having an appropriate absorption type linear polarizer is used. As such a polarizing plate, for example, a polarizing plate made of a polyvinyl alcohol-based stretched film containing iodine is suitably used.
[タッチパネルセンサー]
 タッチパネルセンサー3は、画像表示パネル2上(操作者側)に配置され、例えば、人間の指などの外部導体が接触(接近)するときに発生する静電容量の変化を利用して、人間の指などの外部導体の位置を検出するセンサーである。
 タッチパネルセンサー3としては、指が接触または近接した検出電極(特に、X方向に延びる検出電極およびY方向に延びる検出電極)の静電容量変化を検出することによって、指の座標を特定する投影型静電容量方式のタッチパネルセンサーが好ましく用いられる。タッチパネルセンサー3としては、例えば、抵抗膜方式のタッチパネルセンサーを用いてもよい。
 タッチパネルセンサー3の構成は光学異方性を示す基板を含んでいれば特に制限されないが、光学異方性を示す基板と基板の少なくとも一方の表面上に配置された検出電極とを有する導電性フィルムを少なくとも含むことが好ましい。なお、検出電極は、導電性フィルム中の導電部を構成する。
 上述したように、光学異方性を示す基板とは、面内および厚み方向に複屈折を有する基板であり、該基板は概して機械的特性に優れる。
 以下、図面を用いて、光学異方性を示す基板と基板の少なくとも一方の表面上に配置された検出電極とを有する導電性フィルムを少なくとも含むタッチパネルセンサー3の好適態様について詳述する。なお、後述する図3に示す基板12は、光学異方性を示す基板である。
[Touch panel sensor]
The touch panel sensor 3 is disposed on the image display panel 2 (on the operator side), and uses, for example, a change in capacitance that occurs when an external conductor such as a human finger comes into contact (approaching). It is a sensor that detects the position of an external conductor such as a finger.
The touch panel sensor 3 is a projection type that identifies the coordinates of a finger by detecting a change in capacitance of a detection electrode (in particular, a detection electrode extending in the X direction and a detection electrode extending in the Y direction) that is in contact with or close to the finger. A capacitive touch panel sensor is preferably used. As the touch panel sensor 3, for example, a resistive film type touch panel sensor may be used.
The configuration of the touch panel sensor 3 is not particularly limited as long as it includes a substrate exhibiting optical anisotropy, but is a conductive film having a substrate exhibiting optical anisotropy and a detection electrode disposed on at least one surface of the substrate. It is preferable to contain at least. The detection electrode constitutes a conductive part in the conductive film.
As described above, a substrate exhibiting optical anisotropy is a substrate having birefringence in the in-plane and thickness directions, and the substrate is generally excellent in mechanical properties.
Hereinafter, a preferred embodiment of the touch panel sensor 3 including at least a conductive film having a substrate exhibiting optical anisotropy and a detection electrode disposed on at least one surface of the substrate will be described in detail with reference to the drawings. In addition, the board | substrate 12 shown in FIG. 3 mentioned later is a board | substrate which shows optical anisotropy.
 図3および4は、1枚の導電性フィルムを用いた静電容量式タッチパネルセンサーの例を示す図である。図3に、タッチパネルセンサー300の平面図を示す。図4は、図3中の切断線A-Aに沿って切断した断面図である。なお、図3および4は、タッチパネルセンサーの層構成に対する理解を容易にするために模式的に表したものであり、各層の配置を正確に表した図面ではない。
 タッチパネルセンサー300は、基板12と、基板12の一方の主面上(表面上)に配置される第1検出電極14と、第1引き出し配線16と、第1透明樹脂層40と、第1保護基板50と、基板12の他方の主面上(裏面上)に配置される第2検出電極18と、第2引き出し配線20と、第2透明樹脂層42と、第2保護基板52とを備える。なお、第1検出電極14および第2検出電極18がある領域は、使用者によって入力操作が可能な入力領域EIを構成し、入力領域EIの外側に位置する外側領域EOには第1引き出し配線16、第2引き出し配線20および図示しないフレキシブルプリント配線板が配置される。また、基板12と、第1検出電極14と、第2検出電極18とは、導電性フィルムを構成する。
 以下では、上記構成について詳述する。
3 and 4 are diagrams illustrating an example of a capacitive touch panel sensor using a single conductive film. FIG. 3 shows a plan view of the touch panel sensor 300. FIG. 4 is a cross-sectional view taken along the cutting line AA in FIG. 3 and 4 are schematically shown to facilitate understanding of the layer configuration of the touch panel sensor, and are not drawings that accurately represent the arrangement of each layer.
The touch panel sensor 300 includes a substrate 12, a first detection electrode 14 disposed on one main surface (on the surface) of the substrate 12, a first lead wiring 16, a first transparent resin layer 40, and a first protection. A substrate 50, a second detection electrode 18 disposed on the other main surface (back surface) of the substrate 12, a second lead wiring 20, a second transparent resin layer 42, and a second protective substrate 52 are provided. . The region where the first detection electrode 14 and the second detection electrode 18 are provided constitutes an input region E I that can be input by the user, and the outer region E O located outside the input region E I is the first region. A first lead-out wiring 16, a second lead-out wiring 20, and a flexible printed wiring board (not shown) are arranged. Moreover, the board | substrate 12, the 1st detection electrode 14, and the 2nd detection electrode 18 comprise an electroconductive film.
Below, the said structure is explained in full detail.
 基板12は、入力領域EIにおいて後述する第1検出電極14および第2検出電極18を支持する役割を担うとともに、外側領域EOにおいて後述する第1引き出し配線16および第2引き出し配線20を支持する役割を担う部材である。
 基板12は、以下の式(1)の関係を満たす。
 式(1):Nz>3.0
 なかでも、高温高湿下でのタッチパネルの位置検出精度劣化がより抑制される点で、Nzは4.0以上であることが好ましい。Nzの上限は特に限定されないが、二軸延伸フィルムの延伸による破断を防ぐ点から、20以下が好ましく、10以下がより好ましい。
 Nzが3.0以下である場合、タッチパネルの位置検出精度の劣化が生じやすくなる。
 なお、NzはNz係数を表し、波長550nmにおける基板面内の最大屈折率をnx、波長550nmにおける基板面内でnxに対して直交する方向の屈折率をny、波長550nmにおける基板厚み方向の屈折率をnzとした場合に、Nz=(nx-nz)/(nx-ny)により求められる値である。
The substrate 12 plays a role of supporting a first detection electrode 14 and a second detection electrode 18 to be described later in the input region E I , and supports a first lead wiring 16 and a second lead wiring 20 to be described later in the outer region E O. It is a member that plays the role of
The board | substrate 12 satisfy | fills the relationship of the following formula | equation (1).
Formula (1): Nz> 3.0
Especially, it is preferable that Nz is 4.0 or more at the point by which the position detection accuracy degradation of a touch panel under high temperature, high humidity is suppressed more. Although the upper limit of Nz is not specifically limited, 20 or less is preferable and 10 or less is more preferable from the point which prevents the fracture | rupture by extending | stretching of a biaxially stretched film.
When Nz is 3.0 or less, the position detection accuracy of the touch panel is likely to deteriorate.
Nz represents the Nz coefficient, nx is the maximum refractive index in the substrate surface at a wavelength of 550 nm, ny is the refractive index in the direction orthogonal to nx in the substrate surface at a wavelength of 550 nm, and the refractive index is in the substrate thickness direction at a wavelength of 550 nm. When the rate is nz, this is a value obtained by Nz = (nx−nz) / (nx−ny).
 基板12のnxの値は、1.60以上であり、タッチパネルの位置検出精度の劣化の発生がより抑制される点で、1.61以上が好ましく、1.65以上がより好ましい。上限は特に制限されないが、通常、1.70以下の場合が多い。
 基板12のnyの値は上記Nz係数の関係を満たしていれば特に制限されないが、nxとの差(nx-ny)が0.05以内であることが好ましく、0.03以内であることが好ましい。下限は特に制限されないが、通常、nxとの差(nx-ny)は0超である。
 基板12のnzの値は上記Nz係数の関係を満たしていれば特に制限されないが、1.55以下が好ましく、1.50以下がより好ましい。下限は特に制限されないが、通常、1.45以上の場合が多い。
 なお、上記Nzおよびnxを満たす基板としては、二軸延伸基板が好ましく使用される。
The value of nx of the substrate 12 is 1.60 or more, and is preferably 1.61 or more, more preferably 1.65 or more in terms of further suppressing the occurrence of deterioration in the position detection accuracy of the touch panel. The upper limit is not particularly limited, but is usually 1.70 or less in many cases.
The value of ny of the substrate 12 is not particularly limited as long as it satisfies the relationship of the Nz coefficient. However, the difference from nx (nx−ny) is preferably within 0.05, and is preferably within 0.03. preferable. The lower limit is not particularly limited, but usually the difference from nx (nx−ny) is greater than zero.
The value of nz of the substrate 12 is not particularly limited as long as it satisfies the relationship of the Nz coefficient, but is preferably 1.55 or less, and more preferably 1.50 or less. The lower limit is not particularly limited, but is usually 1.45 or more in many cases.
A biaxially stretched substrate is preferably used as the substrate satisfying the above Nz and nx.
 基板12の面内遅相軸と、上述した画像表示パネル2から出射される直線偏光の振動方向とが直交または平行になるように配置され、虹ムラの発生がより抑制される点で、直交であることが好ましい。この態様でない場合は、虹ムラがより発生する。直交および平行の定義は、上述の通りである。
 なお、上記態様は、基板12の面内遅相軸と、画像表示パネル2中の偏光板5(視認側偏光板)の透過軸とが直交または平行になるように配置されることと同義である。
Orthogonal in that the in-plane slow axis of the substrate 12 and the vibration direction of the linearly polarized light emitted from the image display panel 2 described above are orthogonal or parallel, and the occurrence of rainbow unevenness is further suppressed. It is preferable that If this is not the case, rainbow unevenness occurs more. The definitions of orthogonal and parallel are as described above.
In addition, the said aspect is synonymous with arrange | positioning so that the in-plane slow axis of the board | substrate 12 and the transmission axis of the polarizing plate 5 (viewing side polarizing plate) in the image display panel 2 may become orthogonal or parallel. is there.
 なお、上記では基板12のNzおよびnx、並びに、基板12の面内遅相軸と直線偏光の振動方向との配置について規定したが、タッチパネルセンサーに基板12以外に光学異方性を示す基板が含まれていれば、それらの基板も基板12と同様に、所定のNzおよびnx、並びに、その基板の面内遅相軸と直線偏光の振動方向とが所定の配置を満たす。より具体的には、後述するように、第1保護基板50または第2保護基板52が光学異方性を示す場合は、それらも基板12と同様に、上述したNzおよびnxを満たすと共に、それらの面内遅相軸と直線偏光の振動方向とが直交または平行になるように配置される。 In the above, the Nz and nx of the substrate 12 and the arrangement of the in-plane slow axis of the substrate 12 and the vibration direction of the linearly polarized light are defined. If included, like the substrate 12, those substrates also have predetermined Nz and nx, and the in-plane slow axis of the substrate and the vibration direction of the linearly polarized light satisfy the predetermined arrangement. More specifically, as described later, when the first protective substrate 50 or the second protective substrate 52 exhibits optical anisotropy, they also satisfy the above-described Nz and nx, as in the substrate 12, and The in-plane slow axis and the vibration direction of linearly polarized light are arranged so as to be orthogonal or parallel to each other.
 基板12の波長550nmで測定したレターデーション値であるRe(550)は特に制限されないが、虹ムラの発生がより抑制される点で、1000~3500nmが好ましい。
 基板12は、光を適切に透過することが好ましい。具体的には、基板12の全光線透過率は、85~100%であることが好ましい。
Re (550) which is a retardation value measured at a wavelength of 550 nm of the substrate 12 is not particularly limited, but is preferably 1000 to 3500 nm from the viewpoint of suppressing generation of rainbow unevenness.
It is preferable that the substrate 12 appropriately transmits light. Specifically, the total light transmittance of the substrate 12 is preferably 85 to 100%.
 基板12は、絶縁性を有することが好ましい。つまり、基板12は、第1検出電極14と第2検出電極18との間の絶縁性を担保するための層であることが好ましい。
 基板12としては、透明基板であることが好ましい。その具体例としては、例えば、絶縁樹脂基板、セラミックス基板、ガラス基板などが挙げられる。なかでも、靭性に優れる理由から、絶縁樹脂基板であることが好ましい。
 基板12を構成する材料としては、より具体的には、ポリエチレンテレフタレート、ポリエーテルスルホン、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリエステル、ポリカーボネート、ポリスルホン、ポリアミド、ポリアリレート、ポリオレフィン、セルロース系樹脂、ポリ塩化ビニル、シクロオレフィン系樹脂などが挙げられる。
 なかでも、機械強度や寸法安定性、耐熱性の観点から、ポリエステルを主成分とする基板(ポリエステルフィルム)が好適に用いられる。ポリエステルとしては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等のジカルボン酸と、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等のジオールを、それぞれ1種を重縮合してなるホモポリマー、または、ジカルボン酸1種以上とジオール2種以上を重縮合してなる共重合体、または、ジカルボン酸2種以上と1種以上のジオールを重縮合してなる共重合体、およびこれらのホモポリマーや共重合体を2種以上ブレンドしてなるブレンド樹脂のいずれかのポリエステル系樹脂を挙げることができる。なかでも、ポリエステルが結晶性を示す観点から、芳香族ポリエステルが好ましく、ポリエチレンテレフタレート(PET)、または、ポリエチレンナフタレート(PEN)が特に好ましく、ポリエチレンテレフタレートが最も好ましい。
The substrate 12 preferably has an insulating property. That is, the substrate 12 is preferably a layer for ensuring the insulation between the first detection electrode 14 and the second detection electrode 18.
The substrate 12 is preferably a transparent substrate. Specific examples thereof include an insulating resin substrate, a ceramic substrate, and a glass substrate. Among these, an insulating resin substrate is preferable because of its excellent toughness.
More specifically, the material constituting the substrate 12 is polyethylene terephthalate, polyethersulfone, polyacrylic resin, polyurethane resin, polyester, polycarbonate, polysulfone, polyamide, polyarylate, polyolefin, cellulose resin, polychlorinated resin. Examples thereof include vinyl and cycloolefin resins.
Especially, the board | substrate (polyester film) which has polyester as a main component is used suitably from a mechanical strength, dimensional stability, and a heat resistant viewpoint. Examples of the polyester include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid. , Diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid , Malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, dimer , Dicarboxylic acids such as sebacic acid, suberic acid, dodecadicarboxylic acid, and ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, etc. These diols are each a homopolymer obtained by polycondensation of one kind, a copolymer obtained by polycondensation of one or more dicarboxylic acids and two or more diols, or two or more dicarboxylic acids and one or more kinds of diols. Copolymers obtained by polycondensation of diols, and their homopoly It can include any of the polyester resin blend resin obtained by blending two or more of the chromatography and copolymers. Among these, from the viewpoint of showing crystallinity of the polyester, an aromatic polyester is preferable, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is particularly preferable, and polyethylene terephthalate is most preferable.
 ポリエステルフィルムは、例えば上記のポリエステル系樹脂をキャスティングドラム上に溶融押出し後、冷却固化させる方法等によって得られる。なお、基板12として芳香族ポリエステルを主成分とするものを用いる場合、かかる基板12は芳香族ポリエステル以外の樹脂や添加剤等を含有するものであってもよい。「芳香族ポリエステルを主成分とする」とは、基板12全重量に対して芳香族ポリエステルを50重量%以上、好ましくは60重量%以上、より好ましくは70%以上、さらに好ましくは80%以上有することを意味する。
 なお、ポリエステルフィルムに結晶性を付与して上記特性を達成する観点から、基板として二軸延伸ポリエステルフィルムを好適に用いることができる。
The polyester film can be obtained by, for example, a method in which the above polyester-based resin is melt-extruded on a casting drum and then cooled and solidified. In addition, when using what has an aromatic polyester as a main component as the board | substrate 12, this board | substrate 12 may contain resin, an additive, etc. other than aromatic polyester. “The main component is aromatic polyester” means that the aromatic polyester is 50% by weight or more, preferably 60% by weight or more, more preferably 70% or more, further preferably 80% or more with respect to the total weight of the substrate 12. Means that.
In addition, from the viewpoint of imparting crystallinity to the polyester film and achieving the above characteristics, a biaxially stretched polyester film can be suitably used as the substrate.
 図3および4において、基板12は単層であるが、2層以上の複層であってもよい。
 基板12の厚み(基板12が2層以上の複層の場合は、それらの合計厚み)は特に制限されないが、5~350μmであることが好ましく、30~150μmであることがより好ましい。上記範囲内であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
 また、図3および4においては、基板12の平面視形状は実質的に矩形状とされているが、これには限られない。例えば、円形状、多角形状であってもよい。
3 and 4, the substrate 12 is a single layer, but may be a multilayer of two or more layers.
The thickness of the substrate 12 (when the substrate 12 is a multilayer of two or more layers is not particularly limited), it is preferably 5 to 350 μm, more preferably 30 to 150 μm. Within the above range, desired visible light transmittance can be obtained, and handling is easy.
3 and 4, the planar view shape of the substrate 12 is substantially rectangular, but is not limited thereto. For example, it may be circular or polygonal.
 第1検出電極14および第2検出電極18は、静電容量の変化を感知するセンシング電極であり、感知部(センサ部)を構成する。つまり、指先をタッチパネルに接触させると、第1検出電極14および第2検出電極18の間の相互静電容量が変化し、この変化量に基づいて指先の位置をIC回路によって演算する。
 第1検出電極14は、入力領域EIに接近した使用者の指のX方向における入力位置の検出を行う役割を有するものであり、指との間に静電容量を発生する機能を有している。第1検出電極14は、第1方向(X方向)に延び、第1方向と直交する第2方向(Y方向)に所定の間隔をあけて配列された電極であり、後述するように所定のパターンを含む。
 第2検出電極18は、入力領域EIに接近した使用者の指のY方向における入力位置の検出を行う役割を有するものであり、指との間に静電容量を発生する機能を有している。第2検出電極18は、第2方向(Y方向)に延び、第1方向(X方向)に所定の間隔をあけて配列された電極であり、後述するように所定のパターンを含む。図3においては、第1検出電極14は5つ、第2検出電極18は5つ設けられているが、その数は特に制限されず複数あればよい。
The first detection electrode 14 and the second detection electrode 18 are sensing electrodes that sense a change in capacitance, and constitute a sensing unit (sensor unit). That is, when the fingertip is brought into contact with the touch panel, the mutual capacitance between the first detection electrode 14 and the second detection electrode 18 changes, and the position of the fingertip is calculated by the IC circuit based on the change amount.
First detection electrode 14, which has a role to detect the input position in the X direction of the finger of the user in proximity to the input region E I, has the function of generating an electrostatic capacitance between the finger ing. The first detection electrodes 14 are electrodes that extend in a first direction (X direction) and are arranged at a predetermined interval in a second direction (Y direction) orthogonal to the first direction. Includes patterns.
Second detection electrode 18, which has a role to detect the input position in the Y direction of the finger of the user in proximity to the input region E I, has the function of generating an electrostatic capacitance between the finger ing. The second detection electrodes 18 are electrodes that extend in the second direction (Y direction) and are arranged at a predetermined interval in the first direction (X direction), and include a predetermined pattern as will be described later. In FIG. 3, five first detection electrodes 14 and five second detection electrodes 18 are provided, but the number is not particularly limited and may be plural.
 図3中、第1検出電極14および第2検出電極18は、例えば、導電性細線により構成することができる。図5に、第1検出電極14の一部の拡大平面図を示す。図5に示すように、第1検出電極14は、導電性細線30により構成され、交差する導電性細線30による複数の格子32を含んでいる。言い換えると、第1検出電極14は、交差する複数の導電性細線で構成されるメッシュパターンを有する。なお、第2検出電極18も、第1検出電極14と同様に、交差する導電性細線30による複数の格子32を含んでいる。 In FIG. 3, the first detection electrode 14 and the second detection electrode 18 can be composed of, for example, conductive thin wires. FIG. 5 shows an enlarged plan view of a part of the first detection electrode 14. As shown in FIG. 5, the first detection electrode 14 is composed of conductive thin wires 30, and includes a plurality of lattices 32 formed of intersecting conductive thin wires 30. In other words, the first detection electrode 14 has a mesh pattern composed of a plurality of conductive thin wires that intersect. Note that, similarly to the first detection electrode 14, the second detection electrode 18 also includes a plurality of lattices 32 formed by intersecting conductive thin wires 30.
 導電性細線30の材料としては、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)などの金属や合金、ITO、酸化スズ、酸化亜鉛、酸化カドミウム、酸化ガリウム、酸化チタンなどの金属酸化物、などが挙げられる。なかでも、導電性細線30の導電性が優れる理由から、銀であることが好ましい。 Examples of the material of the conductive thin wire 30 include metals and alloys such as gold (Au), silver (Ag), copper (Cu), and aluminum (Al), ITO, tin oxide, zinc oxide, cadmium oxide, gallium oxide, Examples thereof include metal oxides such as titanium oxide. Especially, it is preferable that it is silver from the reason for which the electroconductivity of the electroconductive fine wire 30 is excellent.
 導電性細線30の中には、導電性細線30と基板12との密着性の観点から、バインダーが含まれていることが好ましい。
 バインダーとしては、導電性細線30と基板12との密着性がより優れる理由から、水溶性高分子であることが好ましい。バインダーの種類としては、例えば、ゼラチン、カラギナン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロースおよびその誘導体、ポリエチレンオキサイド、ポリサッカライド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース、アラビアゴム、アルギン酸ナトリウムなどが挙げられる。なかでも、導電性細線30と基板12との密着性がより優れる理由から、ゼラチンが好ましい。
 なお、ゼラチンとしては石灰処理ゼラチンの他、酸処理ゼラチンを用いてもよく、ゼラチンの加水分解物、ゼラチン酵素分解物、その他アミノ基、カルボキシル基を修飾したゼラチン(フタル化ゼラチン、アセチル化ゼラチン)を使用することができる。
The conductive fine wire 30 preferably contains a binder from the viewpoint of adhesion between the conductive fine wire 30 and the substrate 12.
The binder is preferably a water-soluble polymer because the adhesion between the conductive thin wire 30 and the substrate 12 is more excellent. Examples of the binder include gelatin, carrageenan, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polysaccharides such as starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacryl. Examples include acid, polyalginic acid, polyhyaluronic acid, carboxycellulose, gum arabic, and sodium alginate. Among these, gelatin is preferable because the adhesion between the conductive thin wire 30 and the substrate 12 is more excellent.
In addition to lime-processed gelatin, acid-processed gelatin may be used as gelatin, and gelatin hydrolyzate, gelatin enzyme decomposition product, and other gelatins modified with amino groups and carboxyl groups (phthalated gelatin, acetylated gelatin) Can be used.
 導電性細線30中における金属とバインダーとの体積比(金属の体積/バインダーの体積)は、1.0以上が好ましく、1.5以上がさらに好ましい。金属とバインダーの体積比を1.0以上とすることで、導電性細線30の導電性をより高めることができる。上限は特に制限されないが、生産性の観点から、4.0以下が好ましく、2.5以下がより好ましい。
 なお、金属とバインダーの体積比は、導電性細線30中に含まれる金属およびバインダーの密度より計算することができる。例えば、金属が銀の場合、銀の密度を10.5g/cm3として、バインダーがゼラチンの場合、ゼラチンの密度を1.34g/cm3として計算して求めるものとする。
The volume ratio of metal to binder (metal volume / binder volume) in the conductive thin wire 30 is preferably 1.0 or more, and more preferably 1.5 or more. By setting the volume ratio of the metal and the binder to 1.0 or more, the conductivity of the conductive thin wire 30 can be further increased. The upper limit is not particularly limited, but is preferably 4.0 or less and more preferably 2.5 or less from the viewpoint of productivity.
The volume ratio of the metal and the binder can be calculated from the density of the metal and the binder contained in the conductive thin wire 30. For example, when the metal is silver, the density of silver is 10.5 g / cm 3 , and when the binder is gelatin, the density of gelatin is 1.34 g / cm 3 .
 導電性細線30の線幅は特に制限されないが、低抵抗の電極を比較的容易に形成できる観点から、30μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、9μm以下が特に好ましく、7μm以下が最も好ましく、0.5μm以上が好ましく、1.0μm以上がより好ましい。
 導電性細線30の厚みは特に制限されないが、導電性と視認性との観点から、0.00001~0.2mmから選択可能であるが、30μm以下が好ましく、20μm以下がより好ましく、0.01~9μmがさらに好ましく、0.05~5μmが最も好ましい。
The line width of the conductive thin wire 30 is not particularly limited, but is preferably 30 μm or less, more preferably 15 μm or less, still more preferably 10 μm or less, and particularly preferably 9 μm or less, from the viewpoint that a low-resistance electrode can be formed relatively easily. 7 μm or less is most preferable, 0.5 μm or more is preferable, and 1.0 μm or more is more preferable.
The thickness of the conductive thin wire 30 is not particularly limited, but can be selected from 0.00001 to 0.2 mm from the viewpoint of conductivity and visibility, but is preferably 30 μm or less, more preferably 20 μm or less, and 0.01 Is more preferably from 9 to 9 μm, most preferably from 0.05 to 5 μm.
 格子32は、導電性細線30で囲まれる開口領域を含んでいる。格子32の一辺の長さWは、800μm以下が好ましく、600μm以下がより好ましく、50μm以上であることが好ましく、400μm以上であることがより好ましい。
 第1検出電極14および第2検出電極18では、可視光透過率の点から開口率は85%以上であることが好ましく、90%以上であることがさらに好ましく、95%以上であることが最も好ましい。開口率とは、所定領域において第1検出電極14または第2検出電極18中の導電性細線30を除いた透過性部分が全体に占める割合に相当する。
The lattice 32 includes an opening region surrounded by the thin conductive wires 30. The length W of one side of the grating 32 is preferably 800 μm or less, more preferably 600 μm or less, preferably 50 μm or more, and more preferably 400 μm or more.
In the first detection electrode 14 and the second detection electrode 18, the aperture ratio is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more from the viewpoint of visible light transmittance. preferable. The aperture ratio corresponds to the ratio of the transmissive portion excluding the conductive thin wire 30 in the first detection electrode 14 or the second detection electrode 18 in the predetermined region.
 格子32は、略ひし形の形状を有している。但し、その他、多角形状(例えば、三角形、四角形、六角形、ランダムな多角形)としてもよい。また、一辺の形状を直線状の他、湾曲形状でもよいし、円弧状にしてもよい。円弧状とする場合は、例えば、対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
 なお、図5においては、導電性細線30はメッシュパターンとして形成されているが、この態様には限定されず、ストライプパターンであってもよい。
The lattice 32 has a substantially rhombus shape. However, other polygonal shapes (for example, a triangle, a quadrangle, a hexagon, and a random polygon) may be used. Further, the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape. In the case of the arc shape, for example, the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inwardly convex arc shape. The shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous. Of course, the shape of each side may be a sine curve.
In FIG. 5, the conductive thin wire 30 is formed as a mesh pattern, but is not limited to this mode, and may be a stripe pattern.
 なお、図3においては、第1検出電極14および第2検出電極18は導電性細線30のメッシュ構造で構成されていたが、この態様には限定されず、例えば、ITO、酸化スズ、酸化亜鉛、酸化カドミウム、酸化ガリウム、酸化チタンなどの透明金属酸化物薄膜であってもよい。また、第1検出電極14および第2検出電極18は、金属酸化物粒子、銀ペーストまたは銅ペーストなどの金属ペースト、銀ナノワイヤや銅ナノワイヤなどの金属ナノワイヤ粒子で形成されていてもよい。なかでも導電性と透明性に優れる点で、銀ナノワイヤが好ましい。
 また、電極部のパターニングは、電極部の材料に応じて選択でき、フォトリソグラフィー法、レジストマスクスクリーン印刷-エッチング法、インクジェット法、印刷法などを用いてもよい。
In FIG. 3, the first detection electrode 14 and the second detection electrode 18 are configured with a mesh structure of the conductive thin wires 30, but are not limited to this mode. For example, ITO, tin oxide, zinc oxide A transparent metal oxide thin film such as cadmium oxide, gallium oxide, or titanium oxide may also be used. Further, the first detection electrode 14 and the second detection electrode 18 may be formed of metal oxide particles, metal paste such as silver paste or copper paste, and metal nanowire particles such as silver nanowire or copper nanowire. Among these, silver nanowires are preferable because they are excellent in conductivity and transparency.
The patterning of the electrode part can be selected according to the material of the electrode part, and a photolithography method, a resist mask screen printing-etching method, an ink jet method, a printing method, or the like may be used.
 第1引き出し配線16および第2引き出し配線20は、それぞれ上記第1検出電極14および第2検出電極18に電圧を印加するための役割を担う部材である。
 第1引き出し配線16は、外側領域EOの基板12上に配置され、その一端が対応する第1検出電極14に電気的に接続され、その他端はフレキシブルプリント配線板などが配置される外部導通領域Gに位置している。
 第2引き出し配線20は、外側領域EOの基板12上に配置され、その一端が対応する第2検出電極18に電気的に接続され、その他端はフレキシブルプリント配線板などが配置される外部導通領域Gに位置している。
 なお、図3においては、第1引き出し配線16は5本、第2引き出し配線20は5本記載されているが、その数は特に制限されず、通常、検出電極の数に応じて複数配置される。
The first lead wiring 16 and the second lead wiring 20 are members that play a role in applying a voltage to the first detection electrode 14 and the second detection electrode 18, respectively.
The first lead-out wiring 16 is disposed on the substrate 12 in the outer region E O , one end thereof is electrically connected to the corresponding first detection electrode 14, and the other end is an external continuity in which a flexible printed wiring board or the like is disposed. It is located in the region G I.
The second lead-out wiring 20 is disposed on the substrate 12 in the outer region E O , one end of which is electrically connected to the corresponding second detection electrode 18, and the other end is an external continuity in which a flexible printed wiring board or the like is disposed. It is located in the region G I.
In FIG. 3, five first lead wires 16 and five second lead wires 20 are shown, but the number is not particularly limited, and a plurality of the first lead wires 16 are usually arranged according to the number of detection electrodes. The
 第1引き出し配線16および第2引き出し配線20を構成する配線の材料としては、例えば、金(Au)、銀(Ag)、銅(Cu)などの金属や、酸化スズ、酸化亜鉛、酸化カドミウム、酸化ガリウム、酸化チタンなどの金属酸化物などが挙げられる。なかでも、導電性が優れる理由から、銀であることが好ましい。また、銀ペーストや銅ペーストなどの金属ペーストや、アルミニウム(Al)やモリブデン(Mo)、パラジウム(Pd)などの金属や合金薄膜で構成されていてもよい。金属ペーストの場合は、スクリーン印刷やインクジェット印刷法で、金属や合金薄膜の場合は、スパッタ膜をフォトリソグラフィー法などのパターニング方法が好適に用いられる。
 なお、第1引き出し配線16および第2引き出し配線20中には、基板12との密着性がより優れる点から、バインダーが含まれていることが好ましい。バインダーの種類は、上述の通りである。
Examples of the wiring material constituting the first lead wiring 16 and the second lead wiring 20 include metals such as gold (Au), silver (Ag), copper (Cu), tin oxide, zinc oxide, cadmium oxide, Examples thereof include metal oxides such as gallium oxide and titanium oxide. Among these, silver is preferable because of its excellent conductivity. Moreover, you may be comprised by metal or alloy thin films, such as metal pastes, such as a silver paste and a copper paste, aluminum (Al), molybdenum (Mo), and palladium (Pd). In the case of a metal paste, a screen printing or ink jet printing method is used, and in the case of a metal or alloy thin film, a patterning method such as a photolithography method is suitably used for the sputtered film.
In addition, it is preferable that the binder is contained in the 1st lead-out wiring 16 and the 2nd lead-out wiring 20 from the point which adhesiveness with the board | substrate 12 is more excellent. The kind of binder is as above-mentioned.
 第1透明樹脂層40および第2透明樹脂層42は、それぞれ入力領域EIにある第1検出電極14上および第2検出電極18上に配置され、第1検出電極14と第1保護基板50との間、および、第2検出電極18と第2保護基板52との間の密着性を担保するための層(特に、粘着性透明樹脂層)である。
 第1透明樹脂層40および第2透明樹脂層42の厚みは特に制限されないが、5~350μmであることが好ましく、20~150μmであることがより好ましい。上記範囲内であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
 第1透明樹脂層40および第2透明樹脂層42の全光線透過率は、85~100%であることが好ましい。
 なお、第1透明樹脂層40および第2透明樹脂層42は、通常、光学的等方性を示す。
The first transparent resin layer 40 and the second transparent resin layer 42 are disposed on the first detection electrode 14 and the second detection electrode 18 in the input region E I , respectively, and the first detection electrode 14 and the first protective substrate 50 are disposed. And a layer (particularly an adhesive transparent resin layer) for ensuring adhesion between the second detection electrode 18 and the second protective substrate 52.
The thickness of the first transparent resin layer 40 and the second transparent resin layer 42 is not particularly limited, but is preferably 5 to 350 μm, and more preferably 20 to 150 μm. Within the above range, desired visible light transmittance can be obtained, and handling is easy.
The total light transmittance of the first transparent resin layer 40 and the second transparent resin layer 42 is preferably 85 to 100%.
In addition, the 1st transparent resin layer 40 and the 2nd transparent resin layer 42 usually show optical isotropy.
 第1透明樹脂層40および第2透明樹脂層42を構成する材料としては、公知の粘着剤を使用することが好ましく、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤などが挙げられる。なかでも、透明性に優れる観点から、アクリル系粘着剤が好ましい。
 上記粘着剤の好適態様であるアクリル系粘着剤は、アルキル(メタ)アクリレート由来の繰り返し単位を有するアクリル系ポリマーを主成分としたものである。なお、(メタ)アクリレートは、アクリレートおよび/またはメタクリレートをいう。アクリル系粘着剤のなかでも、粘着性がより優れる点から、アルキル基の炭素数が1~12程度であるアルキル(メタ)アクリレート由来の繰り返し単位を有するアクリル系ポリマーであることが好ましく、上記炭素数のアルキルメタクリレート由来の繰り返し単位および上記炭素数のアルキルアクリレート由来の繰り返し単位を有するアクリル系ポリマーがより好ましい。
 上記アクリル系ポリマー中の繰り返し単位のなかには、(メタ)アクリル酸由来の繰り返し単位が含まれていてもよい。
As a material constituting the first transparent resin layer 40 and the second transparent resin layer 42, a known pressure-sensitive adhesive is preferably used, and examples thereof include a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive. It is done. Among these, an acrylic pressure-sensitive adhesive is preferable from the viewpoint of excellent transparency.
The acrylic pressure-sensitive adhesive that is a preferred embodiment of the pressure-sensitive adhesive is mainly composed of an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate. (Meth) acrylate refers to acrylate and / or methacrylate. Among the acrylic pressure-sensitive adhesives, an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate having an alkyl group having about 1 to 12 carbon atoms is preferable because the adhesiveness is more excellent. An acrylic polymer having a number of repeating units derived from alkyl methacrylate and a number of repeating units derived from alkyl acrylate having the above carbon number is more preferred.
In the repeating unit in the acrylic polymer, a repeating unit derived from (meth) acrylic acid may be contained.
 第1保護基板50および第2保護基板52は、それぞれ第1透明樹脂層40および第2透明樹脂層42上に配置される基板であり、外部環境から第1検出電極14や第2検出電極18を保護する基板であり、通常、一方の保護基板の主面はタッチ面を構成する。
 第1保護基板50および第2保護基板52として、透明基板であることが好ましく、プラスチックフィルム、プラスチック板、ガラス板等が用いられる。層の厚みはそれぞれの用途に応じて適宜選択することが望ましい。
 上記プラスチックフィルムおよびプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA等のポリオレフィン類;ビニル系樹脂;その他、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)、シクロオレフィン系樹脂(COP)等を用いることができる。
The first protective substrate 50 and the second protective substrate 52 are substrates disposed on the first transparent resin layer 40 and the second transparent resin layer 42, respectively, and the first detection electrode 14 and the second detection electrode 18 from the external environment. In general, the main surface of one of the protective substrates constitutes a touch surface.
The first protective substrate 50 and the second protective substrate 52 are preferably transparent substrates, and a plastic film, a plastic plate, a glass plate, or the like is used. It is desirable that the thickness of the layer is appropriately selected according to each application.
Examples of the raw material for the plastic film and the plastic plate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and EVA; Resin; In addition, polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), cycloolefin resin (COP), and the like can be used.
 なお、第1保護基板50および第2保護基板52としては、機械強度が優れる点から、光学等方性を示す基板が好ましく用いられるが、光学異方性を示す基板が用いられてもよい。
 第1保護基板50および/または第2保護基板52が光学異方性を示す場合は、それぞれの基板は画像表示パネル2に対して、基板12と同様の配置をなす。
 より具体的には、第1保護基板50が光学異方性を示す場合は、第1保護基板50の面内遅相軸と画像表示パネルから出射される直線偏光の振動方向とが直交または平行となるように、第1保護基板50が配置される。また、第2保護基板52が光学異方性を示す場合は、第1保護基板50と同様に、第2保護基板52の面内遅相軸と画像表示パネルから出射される直線偏光の振動方向とが直交または平行となるように、第2保護基板52が配置される。
 さらに、第1保護基板50および/または第2保護基板52が光学異方性を示す場合は、それぞれの基板のNzおよびnxは上記基板12と同様の範囲を示す。より具体的には、第1保護基板50が光学異方性を示す場合は、第1保護基板50は上記式(1):Nz>3.0の関係を満たすと共に、nxは1.6以上であり、その好適態様は基板12と同様である。また、第2保護基板52が光学異方性を示す場合は、第2保護基板52は上記式(1):Nz>3.0の関係を満たすと共に、nxは1.6以上であり、その好適態様は基板12と同様である。
In addition, as the 1st protective substrate 50 and the 2nd protective substrate 52, the board | substrate which shows optical isotropy from the point which is excellent in mechanical strength is used preferably, However, The board | substrate which shows optical anisotropy may be used.
When the first protective substrate 50 and / or the second protective substrate 52 exhibit optical anisotropy, the respective substrates are arranged in the same manner as the substrate 12 with respect to the image display panel 2.
More specifically, when the first protective substrate 50 exhibits optical anisotropy, the in-plane slow axis of the first protective substrate 50 and the vibration direction of the linearly polarized light emitted from the image display panel are orthogonal or parallel. The first protective substrate 50 is arranged so that When the second protective substrate 52 exhibits optical anisotropy, the in-plane slow axis of the second protective substrate 52 and the vibration direction of the linearly polarized light emitted from the image display panel are the same as the first protective substrate 50. The second protective substrate 52 is arranged so that is orthogonal or parallel to each other.
Furthermore, when the 1st protective substrate 50 and / or the 2nd protective substrate 52 show optical anisotropy, Nz and nx of each board | substrate show the range similar to the said board | substrate 12. FIG. More specifically, when the first protective substrate 50 exhibits optical anisotropy, the first protective substrate 50 satisfies the relationship of the above formula (1): Nz> 3.0, and nx is 1.6 or more. The preferred embodiment is the same as that of the substrate 12. When the second protective substrate 52 exhibits optical anisotropy, the second protective substrate 52 satisfies the relationship of the above formula (1): Nz> 3.0, and nx is 1.6 or more. The preferred embodiment is the same as that of the substrate 12.
 なお、上記第2保護基板52は使用されず、直接、第2透明樹脂層42が上記画像表示パネル2に接する態様であってもよい。
 また、上記第1保護基板50および第2保護基板52の表面には、ハードコート層が設けられていてもよい。ハードコート層は、基板に硬度を持たせてキズ付きを防止する目的で設けられる。
 ハードコート層を形成する樹脂としては、熱硬化型樹脂、熱可塑型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂などが挙げられるが、これらのなかでも紫外線照射による硬化処理にて、簡単な加工操作にて効率よくハードコート層を形成することができる紫外線硬化型樹脂が好適である。紫外線硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種のものが挙げられ、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、例えば、紫外線重合性の官能基を有するもの、なかでもこの官能基を2個以上、特に3~6個有するアクリル系のモノマーやオリゴマー成分を含むものが挙げられる。また、紫外線硬化型樹脂には、紫外線重合開始剤が配合されている。
 ハードコート層の形成方法は特に制限されず、適宜な方式を採用することができる。
The second protective substrate 52 may not be used, and the second transparent resin layer 42 may be in direct contact with the image display panel 2.
A hard coat layer may be provided on the surfaces of the first protective substrate 50 and the second protective substrate 52. The hard coat layer is provided for the purpose of preventing the scratch by imparting hardness to the substrate.
Examples of the resin that forms the hard coat layer include thermosetting resins, thermoplastic resins, ultraviolet curable resins, electron beam curable resins, and two-component mixed resins, among which curing by ultraviolet irradiation. An ultraviolet curable resin capable of efficiently forming a hard coat layer by a simple processing operation is preferable. Examples of the ultraviolet curable resin include various types such as polyester, acrylic, urethane, amide, silicone, and epoxy, and examples include ultraviolet curable monomers, oligomers, and polymers. Examples of the ultraviolet curable resin preferably used include those having an ultraviolet polymerizable functional group, particularly those containing an acrylic monomer or oligomer component having two or more, particularly 3 to 6 functional groups. . Further, an ultraviolet polymerization initiator is blended in the ultraviolet curable resin.
The formation method in particular of a hard-coat layer is not restrict | limited, A suitable system can be employ | adopted.
 図3の外部導通領域Gには、図示しないフレキシブルプリント配線板が配置される。フレキシブルプリント配線板とは、基板上に複数の配線および端子が設けられた板であり、第1引き出し配線16のそれぞれの他端および第2引き出し配線20のそれぞれの他端に接続され、タッチパネルセンサー300と外部の装置(例えば、画像表示パネル)とを接続する役割を果たす。 The external conductive region G I of FIG. 3, is arranged a flexible printed circuit board (not shown). The flexible printed wiring board is a board in which a plurality of wirings and terminals are provided on a substrate, and is connected to the other end of each of the first lead-out wirings 16 and the other end of each of the second lead-out wirings 20, and is a touch panel sensor. It plays a role of connecting 300 and an external device (for example, an image display panel).
(タッチパネルセンサーの製造方法)
 タッチパネルセンサー300の製造方法は特に制限されず、公知の方法を採用することができる。まず、検出電極および引き出し配線の製造方法としては、基板12の両主面上に形成された金属箔上のフォトレジスト膜を露光、現像処理してレジストパターンを形成し、レジストパターンから露出する金属箔をエッチングする方法が挙げられる。また、基板12の両主面上に金属微粒子または金属ナノワイヤを含むペーストを印刷し、ペーストに金属めっきを行う方法が挙げられる。また、基板12上にスクリーン印刷版またはグラビア印刷版によって印刷形成する方法、または、インクジェットにより形成する方法も挙げられる。
(Method for manufacturing touch panel sensor)
The manufacturing method in particular of the touch panel sensor 300 is not restrict | limited, A well-known method is employable. First, as a method of manufacturing the detection electrode and the lead-out wiring, a photoresist film on the metal foil formed on both main surfaces of the substrate 12 is exposed and developed to form a resist pattern, and the metal exposed from the resist pattern A method of etching the foil is mentioned. Further, a method of printing a paste containing metal fine particles or metal nanowires on both main surfaces of the substrate 12 and performing metal plating on the paste can be mentioned. Moreover, the method of printing and forming on the board | substrate 12 with a screen printing plate or a gravure printing plate, or the method of forming by an inkjet is also mentioned.
 さらに、上記方法以外にハロゲン化銀を使用した方法が挙げられる。より具体的には、まず、基板12上に第1検出電極14および第1引き出し配線16、並びに、第2検出電極18および第2引き出し配線20を形成する方法としては、ハロゲン化銀を使用した方法が挙げられる。より具体的には、基板12の両面にそれぞれ、ハロゲン化銀とゼラチンとを含有するハロゲン化銀乳剤層(以後、単に感光性層とも称する)を形成する工程(1)、感光性層を露光した後、現像処理することにより第1検出電極14および第1引き出し配線16、並びに、第2検出電極18および第2引き出し配線20を形成する工程(2)を有する方法が挙げられる。
 以下に、各工程に関して説明する。
Furthermore, in addition to the above method, a method using silver halide can be mentioned. More specifically, first, silver halide was used as a method of forming the first detection electrode 14 and the first lead wiring 16, and the second detection electrode 18 and the second lead wiring 20 on the substrate 12. A method is mentioned. More specifically, the step (1) of forming a silver halide emulsion layer (hereinafter also referred to simply as a photosensitive layer) containing silver halide and gelatin on both surfaces of the substrate 12, respectively, and exposing the photosensitive layer After that, a method including a step (2) of forming the first detection electrode 14 and the first lead wiring 16, and the second detection electrode 18 and the second lead wiring 20 by developing is given.
Below, each process is demonstrated.
[工程(1):感光性層形成工程]
 工程(1)は、基板12の両面に、ハロゲン化銀とゼラチンとを含有する感光性層を形成する工程である。
 感光性層を形成する方法は特に制限されないが、生産性の点から、ハロゲン化銀およびバインダーを含有する感光性層形成用組成物を基板12に接触させ、基板12の両面上に感光性層を形成する方法が好ましい。
 以下に、上記方法で使用される感光性層形成用組成物の態様について詳述した後、工程の手順について詳述する。
[Step (1): Photosensitive layer forming step]
Step (1) is a step of forming a photosensitive layer containing silver halide and gelatin on both surfaces of the substrate 12.
The method for forming the photosensitive layer is not particularly limited, but from the viewpoint of productivity, the photosensitive layer forming composition containing silver halide and a binder is brought into contact with the substrate 12, and the photosensitive layer is formed on both surfaces of the substrate 12. The method of forming is preferred.
Below, after explaining in full detail the aspect of the composition for photosensitive layer formation used with the said method, the procedure of a process is explained in full detail.
 感光性層形成用組成物には、ハロゲン化銀およびゼラチンが含有される。
 ハロゲン化銀に含有されるハロゲン元素は、塩素、臭素、ヨウ素およびフッ素のいずれであってもよく、これらを組み合わせてもよい。ハロゲン化銀としては、例えば、塩化銀、臭化銀、ヨウ化銀を主体としたハロゲン化銀が好ましく用いられ、さらに臭化銀や塩化銀を主体としたハロゲン化銀が好ましく用いられる。
 ゼラチンの種類は、上述の通りである。
 感光性層形成用組成物中に含まれるハロゲン化銀およびゼラチンの体積比は特に制限されず、上述した導電性細線30中における金属とバインダーとの好適な体積比の範囲となるように適宜調整される。
The composition for forming a photosensitive layer contains silver halide and gelatin.
The halogen element contained in the silver halide may be any of chlorine, bromine, iodine and fluorine, or a combination thereof. As the silver halide, for example, silver halides mainly composed of silver chloride, silver bromide and silver iodide are preferably used, and silver halides mainly composed of silver bromide and silver chloride are preferably used.
The types of gelatin are as described above.
The volume ratio of silver halide and gelatin contained in the composition for forming a photosensitive layer is not particularly limited, and is appropriately adjusted so as to be within a suitable volume ratio range of the metal and the binder in the conductive thin wire 30 described above. Is done.
 感光性層形成用組成物には、必要に応じて、溶媒が含有される。
 使用される溶媒としては、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、またはこれらの混合溶媒を挙げることができる。
 使用される溶媒の含有量は特に制限されないが、ハロゲン化銀およびバインダーの合計質量に対して、30~90質量%の範囲が好ましく、50~80質量%の範囲がより好ましい。
The composition for forming a photosensitive layer contains a solvent, if necessary.
Examples of the solvent used include water, organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, sulfoxides such as dimethyl sulfoxide, esters such as ethyl acetate, ethers, and the like. Etc.), ionic liquids, or mixed solvents thereof.
The content of the solvent to be used is not particularly limited, but is preferably in the range of 30 to 90% by mass, and more preferably in the range of 50 to 80% by mass with respect to the total mass of silver halide and binder.
(工程の手順)
 感光性層形成用組成物と基板12とを接触させる方法は特に制限されず、公知の方法を採用できる。例えば、感光性層形成用組成物を基板12に塗布する方法や、感光性層形成用組成物中に基板12を浸漬する方法などが挙げられる。
 感光性層中におけるハロゲン化銀の含有量は特に制限されないが、導電特性がより優れる点で、銀換算で1.0~20.0g/m2が好ましく、5.0~15.0g/m2がより好ましい。
 なお、必要に応じて、感光性層上にバインダーからなる保護層をさらに設けてもよい。保護層を設けることにより、擦り傷防止や力学特性の改良がなされる。
(Process procedure)
A method for bringing the composition for forming a photosensitive layer and the substrate 12 into contact with each other is not particularly limited, and a known method can be adopted. For example, the method of apply | coating the composition for photosensitive layer formation to the board | substrate 12, the method of immersing the board | substrate 12 in the composition for photosensitive layer formation, etc. are mentioned.
The silver halide content in the photosensitive layer is not particularly limited, but is preferably 1.0 to 20.0 g / m 2 in terms of silver, and preferably 5.0 to 15.0 g / m 2 in terms of more excellent conductive properties. 2 is more preferable.
In addition, you may further provide the protective layer which consists of a binder on a photosensitive layer as needed. By providing the protective layer, scratches can be prevented and mechanical properties can be improved.
[工程(2):露光現像工程]
 工程(2)は、上記工程(1)で得られた感光性層をパターン露光した後、現像処理することにより第1検出電極14および第1引き出し配線16、並びに、第2検出電極18および第2引き出し配線20を形成する工程である。
 以下では、パターン露光処理について詳述し、その後現像処理について詳述する。
[Step (2): Exposure and development step]
In the step (2), the photosensitive layer obtained in the above step (1) is subjected to pattern exposure and then developed to thereby perform the first detection electrode 14 and the first lead wiring 16, and the second detection electrode 18 and the second detection electrode. This is a step of forming the two lead wirings 20.
Hereinafter, the pattern exposure process will be described in detail, and then the development process will be described in detail.
(パターン露光)
 感光性層に対してパターン状の露光を施すことにより、露光領域における感光性層中のハロゲン化銀が潜像を形成する。この潜像が形成された領域は、後述する現像処理によって第1検出電極14および第1引き出し配線16、並びに、第2検出電極18および第2引き出し配線20を形成する。一方、露光がなされなかった未露光領域では、後述する定着処理の際にハロゲン化銀が溶解して感光性層から流出し、透明な膜が得られる。
 露光の際に使用される光源は特に制限されず、可視光線、紫外線などの光、または、X線などの放射線などが挙げられる。
 パターン露光を行う方法は特に制限されず、例えば、フォトマスクを利用した面露光で行ってもよいし、レーザービームによる走査露光で行ってもよい。なお、パターンの形状は特に制限されず、形成したい導電性細線のパターンに合わせて適宜調整される。
(Pattern exposure)
By subjecting the photosensitive layer to pattern exposure, the silver halide in the photosensitive layer in the exposed region forms a latent image. In the region where the latent image is formed, the first detection electrode 14 and the first lead-out wiring 16, and the second detection electrode 18 and the second lead-out wiring 20 are formed by a development process described later. On the other hand, in an unexposed area that has not been exposed, the silver halide dissolves and flows out of the photosensitive layer during the fixing process described later, and a transparent film is obtained.
The light source used in the exposure is not particularly limited, and examples thereof include light such as visible light and ultraviolet light, and radiation such as X-rays.
The method for performing pattern exposure is not particularly limited. For example, surface exposure using a photomask may be performed, or scanning exposure using a laser beam may be performed. The shape of the pattern is not particularly limited, and is appropriately adjusted according to the pattern of the conductive fine wire to be formed.
(現像処理)
 現像処理の方法は特に制限されず、公知の方法を採用できる。例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。
 現像処理の際に使用される現像液の種類は特に制限されないが、例えば、PQ現像液、MQ現像液、MAA現像液等を用いることもできる。
 現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。定着処理は、銀塩写真フィルムや印画紙、印刷製版用フィルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。
 定着工程における定着温度は、約20℃~約50℃が好ましく、25℃~45℃がより好ましい。また、定着時間は5秒~1分が好ましく、7秒~50秒がより好ましい。
 現像処理後の露光部(導電性細線)に含まれる金属銀の質量は、露光前の露光部に含まれていた銀の質量に対して50質量%以上の含有率であることが好ましく、80質量%以上であることがより好ましい。露光部に含まれる銀の質量が露光前の露光部に含まれていた銀の質量に対して50質量%以上であれば、高い導電性を得ることができるため好ましい。
(Development processing)
The development processing method is not particularly limited, and a known method can be employed. For example, a usual development processing technique used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
The type of the developer used in the development process is not particularly limited. For example, PQ developer, MQ developer, MAA developer and the like can be used.
The development process can include a fixing process performed for the purpose of removing and stabilizing the silver salt in the unexposed part. For the fixing process, a technique of fixing process used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask and the like can be used.
The fixing temperature in the fixing step is preferably about 20 ° C. to about 50 ° C., more preferably 25 ° C. to 45 ° C. The fixing time is preferably 5 seconds to 1 minute, more preferably 7 seconds to 50 seconds.
The mass of the metallic silver contained in the exposed area (conductive thin wire) after the development treatment is preferably a content of 50% by mass or more based on the mass of silver contained in the exposed area before the exposure, More preferably, it is at least mass%. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
 第1透明樹脂層40および第2透明樹脂層42を形成する方法は特に制限されず、公知の透明樹脂フィルムを張り合わせる方法や、透明樹脂層を形成する透明樹脂層形成用組成物を塗布して層を形成する方法などが挙げられる。
 第1保護基板50および第2保護基板52を形成する方法は特に制限されず、第1透明樹脂層40および第2透明樹脂層42上にそれぞれ保護基板を張り合わせる方法が挙げられる。
The method for forming the first transparent resin layer 40 and the second transparent resin layer 42 is not particularly limited, and a method for pasting known transparent resin films or a composition for forming a transparent resin layer for forming a transparent resin layer is applied. And a method of forming a layer.
A method for forming the first protective substrate 50 and the second protective substrate 52 is not particularly limited, and examples thereof include a method in which protective substrates are bonded to the first transparent resin layer 40 and the second transparent resin layer 42, respectively.
 上記においては、第1検出電極および第2検出電極が基板の表面および裏面に配置される態様について詳述したが、タッチパネルセンサーはこの態様には限定されない。
 以下に、タッチパネルセンサーの別態様について詳述する。
 図6に、タッチパネルセンサーの第2の実施形態の一部の断面図を示す。
 図6に示すように、タッチパネルセンサー400は、第2基板62と、第2基板62上に配置された第2検出電極18と、第2検出電極18の一端に電気的に接続し、第2基板62上に配置された第2引き出し配線(図示せず)と、第2透明樹脂層42と、第1検出電極14と、第1検出電極14の一端に電気的に接続している第1引き出し配線16(図示せず)と、第1検出電極14および第1引き出し配線16が隣接する第1基板60と、第1透明樹脂層40と、第1保護基板50とを備える。
 図6に示すタッチパネルセンサー400は、各層の順番が異なる点を除いて、図3に示すタッチパネルセンサー300と同様の層を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略する。なお、第1基板60および第2基板62は、図3に示す基板12と同様の層であり、共に光学異方性を示し、その定義は上述の通りである。
 また、図6中の第1検出電極14と第2検出電極18とは、図3に示すようにそれぞれ複数使用されており、両者は図3に示すように互いに直交するように配置されている。
 なお、図6に示す、タッチパネルセンサー400は、基板と基板表面に配置された検出電極および引き出し配線とを有する電極付き基板(導電性フィルム)を2枚用意し、検出電極同士が向き合うように、透明樹脂層を介して貼り合せて得られるタッチパネルに該当する。
In the above, the aspect in which the first detection electrode and the second detection electrode are disposed on the front surface and the back surface of the substrate has been described in detail, but the touch panel sensor is not limited to this aspect.
Hereinafter, another aspect of the touch panel sensor will be described in detail.
FIG. 6 shows a partial cross-sectional view of the second embodiment of the touch panel sensor.
As shown in FIG. 6, the touch panel sensor 400 is electrically connected to the second substrate 62, the second detection electrode 18 disposed on the second substrate 62, and one end of the second detection electrode 18. A second lead-out wiring (not shown) disposed on the substrate 62, the second transparent resin layer 42, the first detection electrode 14, and a first electrode electrically connected to one end of the first detection electrode 14. A lead wiring 16 (not shown), a first substrate 60 adjacent to the first detection electrode 14 and the first lead wiring 16, a first transparent resin layer 40, and a first protective substrate 50 are provided.
The touch panel sensor 400 shown in FIG. 6 has the same layers as the touch panel sensor 300 shown in FIG. 3 except that the order of the layers is different. Therefore, the same reference numerals are assigned to the same components. The description is omitted. In addition, the 1st board | substrate 60 and the 2nd board | substrate 62 are the layers similar to the board | substrate 12 shown in FIG. 3, Both show optical anisotropy, The definition is as above-mentioned.
Further, a plurality of the first detection electrodes 14 and the second detection electrodes 18 in FIG. 6 are used as shown in FIG. 3, and they are arranged so as to be orthogonal to each other as shown in FIG. .
In addition, the touch panel sensor 400 shown in FIG. 6 prepares two substrates (conductive films) with electrodes having a substrate and detection electrodes arranged on the substrate surface and lead-out wiring, and the detection electrodes face each other. It corresponds to the touch panel obtained by bonding through a transparent resin layer.
 上記態様の場合、タッチパネルセンサー400中に含まれる第1基板60の面内遅相軸および第2基板62の面内遅相軸が、それぞれ画像表示パネルから出射される直線偏光の振動方向と直交または平行になるように配置される。
 さらに、第1基板60および第2基板62が共に、上記式(1)を満足すると共に、所定のnxを示す。
In the case of the above aspect, the in-plane slow axis of the first substrate 60 and the in-plane slow axis of the second substrate 62 included in the touch panel sensor 400 are orthogonal to the vibration direction of the linearly polarized light emitted from the image display panel, respectively. Or it arrange | positions so that it may become parallel.
Furthermore, both the first substrate 60 and the second substrate 62 satisfy the above formula (1) and exhibit a predetermined nx.
 以下に、タッチパネルセンサーの別態様について詳述する。
 図7に、タッチパネルセンサーの第3の実施形態の一部の断面図を示す。図7に示すように、タッチパネルセンサー500は、第2基板62と、第2基板62上に配置された第2検出電極18と、第2検出電極18の一端に電気的に接続し、第2基板62上に配置された第2引き出し配線(図示せず)と、第2透明樹脂層42と、第1基板60と、第1基板60上に配置された第1検出電極14と、第1検出電極14の一端に電気的に接続し、第1基板60上に配置された第1引き出し配線(図示せず)と、第1透明樹脂層40と、第1保護基板50とを備える。
 図7に示すタッチパネルセンサー500は、各層の順番が異なる点を除いて、図6に示すタッチパネルセンサー400と同様の層を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略する。
 また、図7中の第1検出電極14と第2検出電極18とは、図3に示すようにそれぞれ複数使用されており、両者は図3に示すように互いに直交するように配置されている。
 なお、図7に示す、タッチパネルセンサー500は、基板と基板表面に配置された検出電極および引き出し配線とを有する電極付き基板(導電性フィルム)を2枚用意し、一方の電極付き基板中の基板と他方の電極付き基板の電極とが向き合うように、透明樹脂層を介して貼り合せて得られるタッチパネルに該当する。
Hereinafter, another aspect of the touch panel sensor will be described in detail.
FIG. 7 shows a partial cross-sectional view of a third embodiment of the touch panel sensor. As shown in FIG. 7, the touch panel sensor 500 is electrically connected to the second substrate 62, the second detection electrode 18 disposed on the second substrate 62, and one end of the second detection electrode 18. A second lead-out wiring (not shown) disposed on the substrate 62, a second transparent resin layer 42, the first substrate 60, the first detection electrode 14 disposed on the first substrate 60, and the first A first lead wiring (not shown), a first transparent resin layer 40, and a first protective substrate 50 are electrically connected to one end of the detection electrode 14 and disposed on the first substrate 60.
Since the touch panel sensor 500 shown in FIG. 7 has the same layers as the touch panel sensor 400 shown in FIG. 6 except that the order of the layers is different, the same reference numerals are assigned to the same components. The description is omitted.
Further, a plurality of the first detection electrodes 14 and the second detection electrodes 18 in FIG. 7 are used as shown in FIG. 3, and they are arranged so as to be orthogonal to each other as shown in FIG. .
Note that the touch panel sensor 500 shown in FIG. 7 is prepared by preparing two substrates with electrodes (conductive film) having a substrate and detection electrodes and lead wires arranged on the substrate surface, and the substrate in one substrate with electrodes. This corresponds to a touch panel obtained by bonding through a transparent resin layer so that the electrode of the other substrate with an electrode faces each other.
 上記態様の場合、タッチパネルセンサー500中に含まれる第1基板60の面内遅相軸および第2基板62の面内遅相軸が、それぞれ画像表示パネルから出射される直線偏光の振動方向と直交または平行になるように配置される。
 さらに、第1基板60および第2基板62が共に、上記式(1)を満足すると共に、所定のnxを示す。
In the case of the above aspect, the in-plane slow axis of the first substrate 60 and the in-plane slow axis of the second substrate 62 included in the touch panel sensor 500 are orthogonal to the vibration direction of the linearly polarized light emitted from the image display panel, respectively. Or it arrange | positions so that it may become parallel.
Furthermore, both the first substrate 60 and the second substrate 62 satisfy the above formula (1) and exhibit a predetermined nx.
 上記画像表示パネルとタッチパネルセンサーとの間には、必要に応じて、粘着層を配置してもよい。使用される粘着層中の粘着剤としては、透明性を有するものが好ましく、具体的には、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性等の粘着特性を示し、耐候性や耐熱性等にも優れるという点からは、アクリル系粘着剤が好ましく用いられる。 An adhesive layer may be disposed between the image display panel and the touch panel sensor as necessary. As the pressure-sensitive adhesive in the pressure-sensitive adhesive layer to be used, those having transparency are preferable. Specifically, for example, acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate / vinyl chloride copolymer Those having a base polymer such as a modified polyolefin, an epoxy-based polymer, a fluorine-based polymer, a rubber-based polymer such as natural rubber, and synthetic rubber can be appropriately selected and used. In particular, an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
<実施例1>
(ハロゲン化銀乳剤の調製)
 38℃、pH4.5に保たれた下記1液に、下記の2液および3液の各々90%に相当する量を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて下記4液および5液を8分間にわたって加え、さらに、下記の2液および3液の残りの10%の量を2分間にわたって加え、0.21μmまで成長させた。さらに、ヨウ化カリウム0.15gを加え、5分間熟成し粒子形成を終了した。
<Example 1>
(Preparation of silver halide emulsion)
To the following 1 liquid maintained at 38 ° C. and pH 4.5, an amount corresponding to 90% of each of the following 2 and 3 liquids was simultaneously added over 20 minutes while stirring to form 0.16 μm core particles. Subsequently, the following 4 and 5 solutions were added over 8 minutes, and the remaining 10% of the following 2 and 3 solutions were added over 2 minutes to grow to 0.21 μm. Further, 0.15 g of potassium iodide was added and ripened for 5 minutes to complete the grain formation.
 1液:
   水                    750ml
   ゼラチン                    9g
   塩化ナトリウム                 3g
   1,3-ジメチルイミダゾリジン-2-チオン 20mg
   ベンゼンチオスルホン酸ナトリウム      10mg
   クエン酸                  0.7g
 2液:
   水                    300ml
   硝酸銀                   150g
 3液:
   水                    300ml
   塩化ナトリウム                38g
   臭化カリウム                 32g
   ヘキサクロロイリジウム(III)酸カリウム
    (0.005%KCl 20%水溶液)    8ml
   ヘキサクロロロジウム酸アンモニウム
     (0.001%NaCl 20%水溶液)  10ml
 4液:
   水                    100ml
   硝酸銀                    50g
 5液:
   水                    100ml
   塩化ナトリウム                13g
   臭化カリウム                 11g
   黄血塩                    5mg
1 liquid:
750 ml of water
9g gelatin
Sodium chloride 3g
1,3-Dimethylimidazolidine-2-thione 20mg
Sodium benzenethiosulfonate 10mg
Citric acid 0.7g
Two liquids:
300 ml of water
150 g silver nitrate
3 liquids:
300 ml of water
Sodium chloride 38g
Potassium bromide 32g
Potassium hexachloroiridium (III) (0.005% KCl 20% aqueous solution) 8 ml
Ammonium hexachlororhodate (0.001% NaCl 20% aqueous solution) 10 ml
4 liquids:
100ml water
Silver nitrate 50g
5 liquids:
100ml water
Sodium chloride 13g
Potassium bromide 11g
Yellow blood salt 5mg
 その後、常法に従い、フロキュレーション法によって水洗した。具体的には、温度を35℃に下げ、硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、上澄み液を約3リットル除去した(第一水洗)。さらに3リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、上澄み液を3リットル除去した(第二水洗)。第二水洗と同じ操作をさらに1回繰り返して(第三水洗)、水洗・脱塩工程を終了した。水洗・脱塩後の乳剤をpH6.4、pAg7.5に調整し、ゼラチン3.9g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgと塩化金酸10mgを加え55℃にて最適感度を得るように化学増感を施し、安定剤として1,3,3a,7-テトラアザインデン100mg、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られた乳剤は、沃化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径0.22μm、変動係数9%のヨウ塩臭化銀立方体粒子乳剤であった。 Then, it was washed with water by a flocculation method according to a conventional method. Specifically, the temperature was lowered to 35 ° C., and the pH was lowered using sulfuric acid until the silver halide precipitated (the pH was in the range of 3.6 ± 0.2). Next, about 3 liters of the supernatant was removed (first water washing). Further, 3 liters of distilled water was added, and sulfuric acid was added until the silver halide settled. Again, 3 liters of the supernatant was removed (second water wash). The same operation as the second water washing was further repeated once (third water washing) to complete the water washing / desalting step. The emulsion after washing with water and desalting was adjusted to pH 6.4 and pAg 7.5, and gelatin 3.9 g, sodium benzenethiosulfonate 10 mg, sodium benzenethiosulfinate 3 mg, sodium thiosulfate 15 mg and chloroauric acid 10 mg were added. Chemical sensitization to obtain optimum sensitivity at 0 ° C., 100 mg of 1,3,3a, 7-tetraazaindene as stabilizer and 100 mg of proxel (trade name, manufactured by ICI Co., Ltd.) as preservative It was. The finally obtained emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide. It was a silver iodochlorobromide cubic grain emulsion having a coefficient of 9%.
(感光性層形成用組成物の調製)
 上記乳剤に1,3,3a,7-テトラアザインデン1.2×10-4モル/モルAg、ハイドロキノン1.2×10-2モル/モルAg、クエン酸3.0×10-4モル/モルAg、2,4-ジクロロ-6-ヒドロキシ-1,3,5-トリアジンナトリウム塩0.90g/モルAgを添加し、クエン酸を用いて塗布液pHを5.6に調整して、感光性層形成用組成物を得た。
(Preparation of photosensitive layer forming composition)
1,3,3a, 7-tetraazaindene 1.2 × 10 −4 mol / mol Ag, hydroquinone 1.2 × 10 −2 mol / mol Ag, citric acid 3.0 × 10 −4 mol / Mole Ag and 2,4-dichloro-6-hydroxy-1,3,5-triazine sodium salt (0.90 g / mole Ag) were added, and the pH of the coating solution was adjusted to 5.6 using citric acid, and photosensitivity was achieved. A composition for forming a conductive layer was obtained.
(感光性層形成工程)
 厚み99.8μmのポリエチレンテレフタレート(PET)フィルムにコロナ放電処理を施した後、上記PETフィルムの両面に、下塗層として厚み0.1μmのゼラチン層、さらに下塗層上に光学濃度が約1.0で現像液のアルカリにより脱色する染料を含むアンチハレーション層を設けた。上記アンチハレーション層の上に、上記感光性層形成用組成物を塗布し、さらに厚み0.15μmのゼラチン層を設け、両面に感光性層が形成されたPETフィルムを得た。得られたフィルムをフィルムAとする。形成された感光性層は、銀量6.0g/m2、ゼラチン量1.0g/m2であった。
 また、使用したPETフィルムは光学異方性を示し、Nzは10であり、Re(550)は1700nmであり、nxは1.668、nyは1.651、nzは1.495であった。
(Photosensitive layer forming step)
A polyethylene terephthalate (PET) film having a thickness of 99.8 μm is subjected to corona discharge treatment, and then a gelatin layer having a thickness of 0.1 μm as an undercoat layer on both sides of the PET film, and an optical density of about 1 on the undercoat layer. An antihalation layer containing a dye that is decolorized by alkali in the developer at 0.0 was provided. On the antihalation layer, the composition for forming a photosensitive layer was applied, a gelatin layer having a thickness of 0.15 μm was further provided, and a PET film having a photosensitive layer formed on both sides was obtained. The obtained film is referred to as film A. The formed photosensitive layer had a silver amount of 6.0 g / m 2 and a gelatin amount of 1.0 g / m 2 .
Moreover, the used PET film showed optical anisotropy, Nz was 10, Re (550) was 1700 nm, nx was 1.668, ny was 1.651, and nz was 1.495.
(露光現像工程)
 上記フィルムAの両面に、図3に示すようなタッチパネルセンサーパターン(第1検出電極および第2検出電極)および引き出し配線部(第1引き出し配線および第2引き出し配線)を配したフォトマスクを介し、高圧水銀ランプを光源とした平行光を用いて露光を行った。露光後、下記の現像液で現像し、さらに定着液(商品名:CN16X用N3X-R、富士フィルム社製)を用いて現像処理を行った。さらに、純水でリンスし、乾燥することで、両面にAg細線からなるメッシュパターンを有する検出電極とゼラチン層とが形成されたPETフィルムを得た。ゼラチン層はAg細線間に形成されていた。得られたフィルムをフィルムBとする。
 なお、PETフィルム上に配置された第1検出電極はX方向にのびる電極で、第2検出電極はY方向に延びる電極であり、X検出電極(長さ:170mm)は32本、Y検出電極(長さ:300mm)は56本であった。
(Exposure development process)
Through a photomask in which a touch panel sensor pattern (first detection electrode and second detection electrode) and a lead wiring portion (first lead wiring and second lead wiring) as shown in FIG. 3 are arranged on both surfaces of the film A, Exposure was performed using parallel light using a high-pressure mercury lamp as a light source. After the exposure, development was performed with the following developer, and further development processing was performed using a fixing solution (trade name: N3X-R for CN16X, manufactured by Fuji Film Co., Ltd.). Furthermore, by rinsing with pure water and drying, a PET film having a detection electrode having a mesh pattern made of Ag fine wires and a gelatin layer on both surfaces was obtained. The gelatin layer was formed between the Ag fine wires. The resulting film is referred to as film B.
The first detection electrode arranged on the PET film is an electrode extending in the X direction, the second detection electrode is an electrode extending in the Y direction, and there are 32 X detection electrodes (length: 170 mm), Y detection electrodes. (Length: 300 mm) was 56.
(現像液の組成)
 現像液1リットル(L)中に、以下の化合物が含まれる。
    ハイドロキノン          0.037mol/L
    N-メチルアミノフェノール    0.016mol/L
    メタホウ酸ナトリウム       0.140mol/L
    水酸化ナトリウム         0.360mol/L
    臭化ナトリウム          0.031mol/L
    メタ重亜硫酸カリウム       0.187mol/L
(Developer composition)
The following compounds are contained in 1 liter (L) of the developer.
Hydroquinone 0.037mol / L
N-methylaminophenol 0.016 mol / L
Sodium metaborate 0.140 mol / L
Sodium hydroxide 0.360 mol / L
Sodium bromide 0.031 mol / L
Potassium metabisulfite 0.187 mol / L
 上記で得られたフィルムBを用いて、以下の方法によりタッチパネルを製造した。
 上記で得られたフィルムBの一方の面上(トップ面)に3M社製OCA(#8146-4:100マイクロメートル厚)を貼り合わせたものを作製した。なお、FPC(フレキシブルプリント配線基板)圧着部に相当する第1引き出し配線部および第2引き出し配線部のそれぞれの他端上にあるOCAは、事前にくりぬきFPCが圧着できるようにした。
 上記積層体(フィルムB+OCA)を略センサーサイズの0.7mm厚のソーダライムガラスと同じ大きさに外形を整え、FPCをソニーケミカルズ社製ACF(CP906AM-25AC)で圧着接合したのちに、トップ側に上記ソーダライムガラスを貼り付け、タッチパネルセンサーを作製した。
 上記で得られたタッチパネルセンサーを用いて、以下の方法によりタッチパネルを作製した。
 上記で得られたタッチパネルセンサー表面(ボトム面、ソーダライムガラスがある面とは反対の面)に、協立化学製OCR(HRJ-21)をディスペンサーで、最終厚み300μmに必要な量を載せ、フロント偏光板を含む液晶ディスプレイと貼り合せたのち、紫外線硬化により、タッチパネルを作製した。
 なお、フィルムBは、フィルムB中のPETフィルムの面内遅相軸と液晶ディスプレイのフロント偏光板の透過軸とが平行(0°)となるように、配置された。
 また、形成されたタッチパネル中のタッチパネルセンサーは、上記図3中の第2保護基板52がない態様に該当する。
Using the film B obtained above, a touch panel was manufactured by the following method.
A film in which OCA (# 8146-4: 100 micrometers thick) manufactured by 3M was bonded to one surface (top surface) of the film B obtained above was prepared. The OCA on the other end of each of the first lead-out wiring portion and the second lead-out wiring portion corresponding to the FPC (flexible printed wiring board) pressure-bonding portion was previously made so that the hollow FPC can be pressure-bonded.
Adjust the outer shape of the above laminate (film B + OCA) to approximately the same size as 0.7mm thick soda-lime glass, and press-fit the FPC with Sony Chemicals ACF (CP906AM-25AC), then the top side The above-mentioned soda lime glass was affixed to produce a touch panel sensor.
A touch panel was produced by the following method using the touch panel sensor obtained above.
On the surface of the touch panel sensor obtained above (the bottom surface, the surface opposite to the surface with soda lime glass), put the necessary amount for the final thickness of 300 μm with Kyotsuri Chemical OCR (HRJ-21) dispenser, After bonding with a liquid crystal display including a front polarizing plate, a touch panel was prepared by ultraviolet curing.
In addition, the film B was arrange | positioned so that the in-plane slow axis of the PET film in the film B and the transmission axis of the front polarizing plate of a liquid crystal display may become parallel (0 degree).
Further, the touch panel sensor in the formed touch panel corresponds to an aspect in which the second protective substrate 52 in FIG. 3 is not provided.
<実施例2>
 実施例1で製造したフィルムBを用いて、以下の方法によりタッチパネルを製造した。
 上記で得られたフィルムBの一方の面上(ボトム面)に3M社製OCA(#8146-4:100マイクロメートル厚)、きもと社製ハードコートフイルム(G1SBF:50マイクロメートル厚)(以後、HC-PETとも称する)をこの順に積層した。さらに、フィルムBの他方の面上(トップ面)に3M社製OCA(#8146-4:100マイクロメートル厚)を貼り合わせたものを作製した。なお、FPC圧着部に相当する第1引き出し配線および第2引き出し配線のそれぞれの他端上にあるOCAおよびハードコートフイルムは、事前にくりぬきFPCが圧着できるようにした。
 上記で得られた積層体を略センサーサイズの0.7mm厚のソーダライムガラスと同じ大きさに外形を整え、FPCをソニーケミカルズ社製ACF(CP906AM-25AC)で圧着接合したのちに、トップ側に上記ソーダライムガラスを貼り付け、タッチパネルセンサーを作製した。
 上記で得られたタッチパネルセンサーを用いて、以下の方法によりタッチパネルを作製した。
 上記で得られたタッチパネルセンサーのハードコートフイルム表面の周縁部に両面粘着テープ(日東電工製、5000NS)を貼り、更にフロント偏光板を含む液晶ディスプレイのフロント偏光板とハードコートフイルムとを向かい合わせて貼り合せて、タッチパネルを作製した。得られたタッチパネルには、液晶ディスプレイとタッチパネルセンサーとの間には、両面粘着テープで囲まれた空気層が存在する。
 なお、フィルムBは、フィルムB中のPETフィルムの面内遅相軸とフロント偏光板の透過軸とが平行(0°)となるように、配置された。また、第2保護基板に該当するHC-PETは、HC-PETの面内遅相軸とフロント偏光板の透過軸とが平行(0°)となるように、配置された。また、HC-PET中のPETフィルムは光学異方性を示し、Nzは4.3であり、Re(550)は2800nmであり、nxは1.642であった。
 また、形成されたタッチパネル中のタッチパネルセンサーは、上記図3中の態様に該当する。
<Example 2>
A touch panel was produced by the following method using the film B produced in Example 1.
On one surface (bottom surface) of the film B obtained above, 3M OCA (# 8146-4: 100 micrometers thick), Kimoto hard coat film (G1SBF: 50 micrometers thick) (hereinafter, HC-PET) was laminated in this order. Further, an OCA (# 8146-4: 100 micrometer thickness) manufactured by 3M was bonded to the other surface (top surface) of the film B. The OCA and hard coat film on the other end of each of the first lead wiring and the second lead wiring corresponding to the FPC press-bonding portion were previously made so that the hollow FPC can be pressure-bonded.
After adjusting the outer shape of the laminate obtained above to the same size as 0.7mm thick soda lime glass with a sensor size, and FPC bonded with Sony Chemicals ACF (CP906AM-25AC), the top side The above-mentioned soda lime glass was affixed to produce a touch panel sensor.
A touch panel was produced by the following method using the touch panel sensor obtained above.
A double-sided adhesive tape (Nitto Denko, 5000NS) is applied to the peripheral edge of the hard coat film surface of the touch panel sensor obtained above, and the front polarizing plate of the liquid crystal display including the front polarizing plate and the hard coat film are faced to each other. The touch panel was produced by bonding. In the obtained touch panel, an air layer surrounded by a double-sided adhesive tape exists between the liquid crystal display and the touch panel sensor.
In addition, the film B was arrange | positioned so that the in-plane slow axis of the PET film in the film B and the transmission axis of a front polarizing plate may become parallel (0 degree). The HC-PET corresponding to the second protective substrate was arranged so that the in-plane slow axis of the HC-PET and the transmission axis of the front polarizing plate were parallel (0 °). The PET film in HC-PET exhibited optical anisotropy, Nz was 4.3, Re (550) was 2800 nm, and nx was 1.642.
Moreover, the touch panel sensor in the formed touch panel corresponds to the aspect in FIG.
<実施例3>
 HC-PETの面内遅相軸とフロント偏光板の透過軸とが直交するように配置した以外は、実施例2と同様の手順に従って、タッチパネルを製造した。
<Example 3>
A touch panel was produced according to the same procedure as in Example 2 except that the in-plane slow axis of HC-PET and the transmission axis of the front polarizing plate were arranged to be orthogonal to each other.
<実施例4>
(導電性フィルムの形成)
 PETフィルム(厚み:100.1μm)およびITO透明導電層を含むITO基板のITO透明導電層上に、エッチングマスク材をネガ型フォトレジスト方式で形成し、ITOを溶解するエッチング液に浸漬することで検出電極を備える導電性フィルムを形成した。以下に各工程の手順を示す。
 なお、使用したPETフィルムは光学異方性を示し、Nzは10であり、Re(550)は1700nmであり、nxは1.668、nyは1.651、nzは1.495であった。
<Example 4>
(Formation of conductive film)
On the ITO transparent conductive layer of the ITO substrate including the PET film (thickness: 100.1 μm) and the ITO transparent conductive layer, an etching mask material is formed by a negative photoresist method and immersed in an etching solution for dissolving ITO. A conductive film provided with a detection electrode was formed. The procedure of each process is shown below.
The PET film used exhibited optical anisotropy, Nz was 10, Re (550) was 1700 nm, nx was 1.668, ny was 1.651, and nz was 1.495.
-レジストパターニング(エッチングマスク材付与)工程-
 ITO透明導電層表面上に、後述する感光性組成物(1)を乾燥膜厚5μmとなるようバー塗布し、150℃のオーブンで5分間乾燥した。この基板に露光ガラスマスク上から、高圧水銀灯i線(365nm)を400mJ/cm2(照度50mW/cm2)露光を行った。
 露光後の基板を、1%水酸化ナトリウム水溶液(35℃)でシャワー現像60秒間を行った。シャワー圧は0.08MPa、ストライプパターンが出現するまでの時間は30秒であった。純水のシャワーでリンスした後、50℃で1分間乾燥し、レジストパターン付導電性部材を作製した。
 なお、露光ガラスマスクは、静電容量式タッチパネルセンサーの検出電極が形成可能なマスクを用いた。
-エッチング工程-
 レジストパターン付導電性部材を、ITO用エッチング液に浸漬した。35℃に調整したエッチング液に2分間浸漬させてエッチング処理を行い、純水のシャワーでリンスした後、エアーナイフでサンプル表面の水を吹き飛ばし、60℃で5分間乾燥し、レジストパターン付パターン状導電性部材を作製した。
-レジスト剥離工程-
 エッチング後のレジストパターン付パターン状導電性部材を、35℃に保温した2.38%テトラメチルアンモニウムヒドロキシド水溶液でシャワー現像75秒間を行った。シャワー圧は3.0MPaであった。純水のシャワーでリンスした後、エアーナイフでサンプル表面の水を吹き飛ばし、60℃で5分間乾燥し、導電性フィルムを作製した。
 なお、導電性フィルムとしては、検出電極のパターンを変えて、2枚の導電性フィルム(第1導電性フィルム、第2導電性フィルム)を作製した。第1導電性フィルムの検出電極はX方向にのびる電極(長さ:170mm)で、32本あった。また、第2導電性フィルムの検出電極はY方向に延びる電極(長さ:300mm)で、56本であった。
-Resist patterning (etching mask material application) process-
On the surface of the ITO transparent conductive layer, a photosensitive composition (1) described later was applied with a bar so as to have a dry film thickness of 5 μm, and dried in an oven at 150 ° C. for 5 minutes. The substrate was exposed to 400 mJ / cm 2 (illuminance: 50 mW / cm 2 ) with a high-pressure mercury lamp i-line (365 nm) from above the exposure glass mask.
The exposed substrate was subjected to shower development for 60 seconds with a 1% aqueous sodium hydroxide solution (35 ° C.). The shower pressure was 0.08 MPa, and the time until the stripe pattern appeared was 30 seconds. After rinsing with a shower of pure water, it was dried at 50 ° C. for 1 minute to produce a conductive member with a resist pattern.
In addition, the mask which can form the detection electrode of a capacitive touch panel sensor was used for the exposure glass mask.
-Etching process-
The conductive member with a resist pattern was immersed in an etching solution for ITO. Etching is performed by immersing in an etching solution adjusted to 35 ° C. for 2 minutes, rinsing with a shower of pure water, then blowing off water on the surface of the sample with an air knife, drying at 60 ° C. for 5 minutes, and a pattern with a resist pattern A conductive member was produced.
-Resist stripping process-
The patterned conductive member with a resist pattern after etching was subjected to shower development for 75 seconds with a 2.38% tetramethylammonium hydroxide aqueous solution kept at 35 ° C. The shower pressure was 3.0 MPa. After rinsing with a pure water shower, water on the sample surface was blown off with an air knife and dried at 60 ° C. for 5 minutes to produce a conductive film.
In addition, as a conductive film, the pattern of the detection electrode was changed and the two conductive films (a 1st conductive film and a 2nd conductive film) were produced. The detection electrode of the first conductive film was an electrode extending in the X direction (length: 170 mm), and there were 32 detection electrodes. The number of detection electrodes of the second conductive film was 56 (length: 300 mm) extending in the Y direction.
-感光性組成物(1)の調製-
 共重合体を構成するモノマー成分として、MAA(メタクリル酸;7.79g)、BzMA(ベンジルメタクリレート;37.21g)を使用し、ラジカル重合開始剤としてAIBN(2,2’-アゾビス(イソブチロニトリル);0.5g)を使用し、これらを溶剤PGMEA(プロピレングリコールモノメチルエーテルアセテート;55.00g)中において重合反応させることにより下記式で表されるバインダー(A-1)のPGMEA溶液(固形分濃度:45質量%)を得た。なお、重合温度は、温度60℃乃至100℃に調整した。
 分子量はゲルパーミエーションクロマトグラフィ法(GPC)を用いて測定した結果、ポリスチレン換算による重量平均分子量(Mw)は30,000、分子量分布(Mw/Mn)は2.21であった。
-Preparation of photosensitive composition (1)-
MAA (methacrylic acid; 7.79 g) and BzMA (benzyl methacrylate; 37.21 g) are used as monomer components constituting the copolymer, and AIBN (2,2′-azobis (isobutyro) is used as a radical polymerization initiator. Nitrile); 0.5 g), and a PGMEA solution of the binder (A-1) represented by the following formula (solid) by solidifying these in a solvent PGMEA (propylene glycol monomethyl ether acetate; 55.00 g) The partial concentration was 45% by mass). The polymerization temperature was adjusted to 60 to 100 ° C.
The molecular weight was measured using gel permeation chromatography (GPC). As a result, the weight average molecular weight (Mw) in terms of polystyrene was 30,000, and the molecular weight distribution (Mw / Mn) was 2.21.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 バインダー(A-1)3.80質量部(固形分40.0質量%、PGMEA溶液)、感光性化合物としてのKAYARAD DPHA(日本化薬株式会社製)1.59質量部、光重合開始剤としてのIRGACURE379(チバ・スペシャルティ・ケミカルズ株式会社製)0.159質量部、架橋剤としてのEHPE-3150(ダイセル化学株式会社製)0.150質量部、メガファックF781F(DIC株式会社製)0.002質量部、およびPGMEA19.3質量部を加え、攪拌し、感光性組成物(1)を調製した。 3.80 parts by mass of binder (A-1) (solid content: 40.0% by mass, PGMEA solution), 1.59 parts by mass of KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) as a photosensitive compound, as a photopolymerization initiator IRGACURE 379 (manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.159 parts by mass, EHPE-3150 (manufactured by Daicel Chemical Co., Ltd.) 0.150 parts by mass as a cross-linking agent, Megafac F781F (manufactured by DIC Corporation) 0.002 1 part by mass and 19.3 parts by mass of PGMEA were added and stirred to prepare a photosensitive composition (1).
(周辺配線形成)
 上記パターニングにより形成された、導電性フィルム中の検出電極に接続された引き出し配線(周辺配線)は、以下の様に作製した。すなわち、銀ペースト(ドータイトFA-401CA、藤倉化成製)をスクリーン印刷機で印刷した後、130℃、30分アニール処理することにより硬化し、周辺配線を形成した。
 なお、スクリーン印刷版は静電容量式タッチパネル用周辺配線が形成可能な印刷版を用いた。
(Peripheral wiring formation)
The lead-out wiring (peripheral wiring) formed by the patterning and connected to the detection electrode in the conductive film was produced as follows. That is, a silver paste (Dotite FA-401CA, manufactured by Fujikura Kasei) was printed by a screen printer, and then cured by annealing at 130 ° C. for 30 minutes to form peripheral wiring.
The screen printing plate used was a printing plate capable of forming a capacitive touch panel peripheral wiring.
(タッチパネル作製方法)
 上記で作製した導電性フィルムを用いて、以下の方法によりタッチパネルを製造した。
 上記で得られた第2導電性フィルム(ボトム面)のITO層面に3M社製OCA(#8146-4:100マイクロメートル厚)を貼り合わせ、OCAを介してもう一枚の第1導電性フィルム(トップ面)のITO層がある側とは反対の面に貼り合せたものを作製した。得られた積層体は、PETフィルム、ITO層、OCA、PETフィルム、ITO層をこの順で有する。なお、FPC圧着部に相当する第1引き出し配線および第2引き出し配線のそれぞれの他端上にあるOCAは、事前にくりぬきFPCが圧着できるようにした。
 上記積層体のITO層(トップ面)に3M社製OCA(#8146-4:100マイクロメートル厚)を貼り合わせ、略センサーサイズの0.7mm厚のソーダライムガラスと同じ大きさに外形を整え、FPCをソニーケミカルズ社製ACF(CP906AM-25AC)で圧着接合したのちに、トップ側に上記ソーダライムガラスを貼り付け、タッチパネルセンサーを作製した。
 上記で得られたタッチパネルセンサーを用いて、以下の方法によりタッチパネルを作製した。
 上記で得られたタッチパネルセンサーのPETフィルム表面の周縁部に両面粘着テープ(日東電工製、5000NS)を貼り、更にフロント偏光板を含む液晶ディスプレイのフロント偏光板とPETフィルムとを向かい合わせて貼り合せて、タッチパネルを作製した。得られたタッチパネルには、液晶ディスプレイとタッチパネルセンサーとの間には、両面粘着テープで囲まれた空気層が存在する。
 なお、2枚の導電性フィルムは、それぞれの導電性フィルム中のPETフィルムの面内遅相軸とフロント偏光板の透過軸とが平行(0°)となるように、配置された。
 また、形成されたタッチパネル中のタッチパネルセンサーは、上記図7中の態様に該当する。
(Touch panel manufacturing method)
Using the conductive film produced above, a touch panel was produced by the following method.
An OCA (# 8146-4: 100 micrometer thickness) manufactured by 3M was bonded to the ITO layer surface of the second conductive film (bottom surface) obtained above, and another first conductive film was passed through the OCA. What was bonded to the surface opposite to the side having the ITO layer (top surface) was produced. The obtained laminate has a PET film, an ITO layer, an OCA, a PET film, and an ITO layer in this order. Note that the OCA on the other end of each of the first lead-out wiring and the second lead-out wiring corresponding to the FPC crimping portion can be preliminarily crimped with the FPC.
3M OCA (# 8146-4: 100 micrometer thickness) is pasted on the ITO layer (top surface) of the above laminate, and the outer shape is adjusted to the same size as 0.7mm thick soda lime glass with a sensor size. The FPC was pressure bonded with Sony Chemicals ACF (CP906AM-25AC), and then the soda lime glass was pasted on the top side to produce a touch panel sensor.
A touch panel was produced by the following method using the touch panel sensor obtained above.
A double-sided adhesive tape (Nitto Denko, 5000NS) is applied to the peripheral edge of the PET film surface of the touch panel sensor obtained above, and the front polarizing plate of the liquid crystal display including the front polarizing plate and the PET film are bonded to each other. A touch panel was produced. In the obtained touch panel, an air layer surrounded by a double-sided adhesive tape exists between the liquid crystal display and the touch panel sensor.
The two conductive films were arranged such that the in-plane slow axis of the PET film in each conductive film and the transmission axis of the front polarizing plate were parallel (0 °).
Moreover, the touch panel sensor in the formed touch panel corresponds to the aspect in FIG.
<実施例5>
 2枚の導電性フィルム中の液晶ディスプレイに近い側の導電性フィルム中のPETフィルムの面内遅相軸とフロント偏光板の透過軸とが直交するように配置した以外は、実施例4と同様の手順に従って、タッチパネルを製造した。
<Example 5>
The same as Example 4 except that the in-plane slow axis of the PET film in the conductive film on the side close to the liquid crystal display in the two conductive films and the transmission axis of the front polarizing plate are orthogonal to each other. A touch panel was manufactured in accordance with the procedure described above.
<比較例1>
 特許文献1の実施例1に従って、厚さ46μmの一軸延伸ポリエチレンテレフタレートフィルムを得た。該PETフィルムを用いた以外は、実施例1と同様の手順に従って、タッチパネルを作製した。尚、用いたPETフィルムは光学異方性を示し、Nzは1.0であり、Re(550)は1900nmであった。nxは1.681であった。
<Comparative Example 1>
According to Example 1 of Patent Document 1, a uniaxially stretched polyethylene terephthalate film having a thickness of 46 μm was obtained. A touch panel was produced according to the same procedure as in Example 1 except that the PET film was used. The PET film used exhibited optical anisotropy, Nz was 1.0, and Re (550) was 1900 nm. nx was 1.681.
<評価方法>
(検出位置精度評価方法)
 上記で作製したタッチパネルを、85℃85%の環境下で240時間放置した後、タッチパネルの検出位置精度評価を行った。具体的には、液晶ディスプレイの表示パネルに5mm□のグリッドを表示させ、タッチパネルセンサーの矩形状の入力領域の各辺のエッジに近い領域にて辺に対して平行に指でなぞり、実際の指タッチ位置と画面に表示される軌跡のズレ量(最大値)を評価し、4辺でのズレ量(最大値)(mm)/電極配線長(mm)×100(%)を算出し、それらのうちの最大値を位置正確性度とした。その値が±2%以下の場合をA、±2%超±5%以下の場合B、±5%以上の場合をCと評価した。
 なお、上記式中の電極配線長とは、矩形状の入力領域の短辺に沿った領域を指でなぞる場合はX検出電極(長さ:170mm)の長さ170mmを意図し、矩形状の入力領域の長辺に沿った領域を指でなぞる場合はY検出電極(長さ:300mm)の長さ300mmを意図する。
<Evaluation method>
(Detection position accuracy evaluation method)
The touch panel produced above was left in an environment of 85 ° C. and 85% for 240 hours, and then the detection position accuracy of the touch panel was evaluated. Specifically, a 5 mm square grid is displayed on the display panel of the liquid crystal display, and a finger is traced in parallel to the side in a region close to the edge of each side of the rectangular input region of the touch panel sensor. Evaluate the displacement (maximum value) of the touch position and the locus displayed on the screen, and calculate the displacement amount (maximum value) (mm) / electrode wiring length (mm) x 100 (%) on the four sides. The maximum value was taken as the position accuracy. The value was evaluated as A when the value was ± 2% or less, B when the value was more than ± 2% and ± 5% or less, and C when the value was ± 5% or more.
The electrode wiring length in the above formula is intended to be a length of 170 mm of the X detection electrode (length: 170 mm) when a region along the short side of the rectangular input region is traced with a finger. When the area along the long side of the input area is traced with a finger, the length of the Y detection electrode (length: 300 mm) is intended to be 300 mm.
(虹ムラ評価)
 上記で作製したタッチパネルを用いて、虹ムラの評価を実施した。より具体的には、図8に示すように、タッチパネル平面と観察者の視線とのなす角を方位角θ1、タッチパネルの長辺に対して直交した線と観察者の視線とのなす角を極角θ2とする。なお、タッチパネルの長辺の方向と、液晶ディスプレイ中のフロント偏光板の透過軸とは平行の関係にある。
 極角=0°または90°で、かつ、方位角=30~45°(固定)の位置を観察者視線中心とした状態で、観察者視線を極角±30°振って観察した時の虹ムラの着色を確認し、以下の基準に従って評価した。
 極角=0°における虹ムラ評価(虹ムラ評価0°)および極角=90°における虹ムラ評価(虹ムラ評価90°)の少なくとも一方において、評点4がある場合を「A」とし、虹ムラ評価0°および虹ムラ評価90°の少なくとも一方において、評点3がある場合を「B」、虹ムラ評価0°および虹ムラ評価90°のいずれも評点2以下の場合を「C」として評価した。なお、実用上、「B」以上が好ましい。
評点1:極角および方位角変化に対して虹ムラが顕著に見える。
評点2:極角および方位角変化に対して虹ムラが視認できるが、1より着色が薄い。
評点3:虹ムラが視認されるが、許容範囲である。
評点4:虹ムラが視認されない。
(Rainbow unevenness evaluation)
Using the touch panel produced above, rainbow unevenness was evaluated. More specifically, as shown in FIG. 8, the angle between the touch panel plane and the observer's line of sight is the azimuth angle θ1, and the angle between the line perpendicular to the long side of the touch panel and the observer's line of sight is the polar The angle is θ2. The direction of the long side of the touch panel and the transmission axis of the front polarizing plate in the liquid crystal display are in a parallel relationship.
A rainbow when the observer's line of sight is shaken with a polar angle of ± 30 ° with the polar angle = 0 ° or 90 ° and the azimuth = 30-45 ° (fixed) at the center. The uneven coloring was confirmed and evaluated according to the following criteria.
When at least one of the rainbow unevenness evaluation at a polar angle = 0 ° (rainbow unevenness evaluation 0 °) and the rainbow unevenness evaluation at a polar angle = 90 ° (rainbow unevenness evaluation 90 °), the case where there is a score 4 is defined as “A”. At least one of the unevenness evaluation 0 ° and the rainbow unevenness evaluation 90 ° is evaluated as “B” when the score 3 is present, and the case where both the rainbow unevenness evaluation 0 ° and the rainbow unevenness evaluation 90 ° are equal to or less than the evaluation 2 is evaluated as “C”. did. In practice, “B” or more is preferable.
Score 1: Rainbow irregularities appear prominent with respect to changes in polar angle and azimuth angle.
Rating 2: Rainbow irregularities can be visually recognized with respect to changes in polar angle and azimuth angle, but coloring is lighter than 1.
Rating 3: Rainbow irregularities are visible, but within an acceptable range.
Score 4: Rainbow unevenness is not visually recognized.
(屈折率測定)
 各実施例および比較例にて使用したPETフィルムの屈折率(nx、ny、nx)は、アッベ屈折率計(アタゴNAR-1T SOLID)によって評価した。
(Refractive index measurement)
The refractive index (nx, ny, nx) of the PET film used in each example and comparative example was evaluated by an Abbe refractometer (Atago NAR-1T SOLID).
 以下の表1に、実施例および比較例で製造したタッチパネルの評価結果をまとめて示す。
 なお、表1中、「保護基板」の「有無」欄は、光学異方性を示す保護基板(HC-PET)を使用したか否かを示す。
 また、表1中、「配置」は基板(PETフィルム)または保護基板の面内遅相軸と、直線偏光の振動方向との関係(直交または平行)を示す。実施例4および5の「 / 」は、使用された2枚の導電性フィルム中の基板の配置をそれぞれ示す。
Table 1 below summarizes the evaluation results of the touch panels produced in the examples and comparative examples.
In Table 1, the “presence / absence” column of “protective substrate” indicates whether or not a protective substrate (HC-PET) showing optical anisotropy was used.
In Table 1, “Arrangement” indicates the relationship (orthogonal or parallel) between the in-plane slow axis of the substrate (PET film) or protective substrate and the vibration direction of linearly polarized light. “/” In Examples 4 and 5 indicates the arrangement of the substrates in the two conductive films used, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、本発明のタッチパネルにおいては、虹ムラの発生および位置検出精度の劣化が抑制されることが確認された。
 一方、基板のNzが3.0以下の比較例1においては、位置検出精度の劣化が確認された。
As shown in Table 1, in the touch panel of the present invention, it was confirmed that the occurrence of rainbow unevenness and the deterioration of position detection accuracy were suppressed.
On the other hand, in Comparative Example 1 in which the Nz of the substrate was 3.0 or less, deterioration in position detection accuracy was confirmed.
 1  タッチパネル
 2  画像表示パネル
 3,300,400,500  タッチパネルセンサー
 4  画像表示セル
 5  偏光板
 6  有機ELセル
 7  1/4波長板
 8  円偏光板
 9  有機ELパネル
 12  基板
 14  第1検出電極
 16  第1引き出し配線
 18  第2検出電極
 20  第2引き出し配線
 30  導電性細線
 32  格子
 40  第1透明樹脂層
 42  第2透明樹脂層
 50  第1保護基板
 52  第2保護基板
 60  第1基板
 62  第2基板
DESCRIPTION OF SYMBOLS 1 Touch panel 2 Image display panel 3,300,400,500 Touch panel sensor 4 Image display cell 5 Polarizing plate 6 Organic EL cell 7 1/4 wavelength plate 8 Circular polarizing plate 9 Organic EL panel 12 Substrate 14 First detection electrode 16 1st Lead wire 18 Second detection electrode 20 Second lead wire 30 Conductive thin wire 32 Grid 40 First transparent resin layer 42 Second transparent resin layer 50 First protective substrate 52 Second protective substrate 60 First substrate 62 Second substrate

Claims (7)

  1.  直線偏光を出射する画像表示パネルと、前記画像表示パネルの視認側に配置されるタッチパネルセンサーとを有するタッチパネルであって、
     前記タッチパネルセンサーが、光学異方性を示す基板を少なくとも含み、
     前記基板が下記式(1)の関係を満たし、
     前記画像表示パネルから出射される直線偏光の振動方向と、前記基板の面内遅相軸とが直交または平行になるように配置され、
     前記基板面内の最大屈折率nxが1.60以上である、タッチパネル。
     式(1):Nz>3.0
    (なお、NzはNz係数を表し、波長550nmにおける基板面内の最大屈折率をnx、基板面内でnxに対して直交する方向の波長550nmにおける屈折率をny、波長550nmにおける基板厚み方向の屈折率をnzとした場合に、Nz=(nx-nz)/(nx-ny)により求められる値である。)
    A touch panel having an image display panel that emits linearly polarized light, and a touch panel sensor disposed on a viewing side of the image display panel,
    The touch panel sensor includes at least a substrate exhibiting optical anisotropy,
    The substrate satisfies the relationship of the following formula (1),
    The vibration direction of linearly polarized light emitted from the image display panel and the in-plane slow axis of the substrate are arranged so as to be orthogonal or parallel,
    The touch panel having a maximum refractive index nx in the substrate plane of 1.60 or more.
    Formula (1): Nz> 3.0
    (Nz represents the Nz coefficient, the maximum refractive index in the substrate surface at a wavelength of 550 nm is nx, the refractive index at a wavelength of 550 nm in the direction orthogonal to nx in the substrate surface is ny, and the substrate thickness direction at a wavelength of 550 nm is (When the refractive index is nz, Nz = (nx−nz) / (nx−ny)).
  2.  前記nxが1.61~1.70である、請求項1に記載のタッチパネル。 The touch panel according to claim 1, wherein the nx is 1.61 to 1.70.
  3.  波長550nmで測定した前記基板のレターデーション値であるRe(550)が1000~3500nmである、請求項1または2に記載のタッチパネル。 The touch panel according to claim 1, wherein Re (550) which is a retardation value of the substrate measured at a wavelength of 550 nm is 1000 to 3500 nm.
  4.  前記基板がポリエチレンテレフタレートを含む、請求項1~3のいずれか1項に記載のタッチパネル。 The touch panel according to any one of claims 1 to 3, wherein the substrate includes polyethylene terephthalate.
  5.  前記タッチパネルセンサーに含まれる検出電極が、交差する複数の導電性細線で構成されるメッシュパターンを有する、請求項1~4のいずれか1項に記載のタッチパネル。 The touch panel according to any one of claims 1 to 4, wherein the detection electrode included in the touch panel sensor has a mesh pattern composed of a plurality of conductive thin wires intersecting each other.
  6.  前記導電性細線が、金、銀、および銅からなる群から選択される少なくとも1種を含む、請求項5に記載のタッチパネル。 The touch panel according to claim 5, wherein the conductive thin wire includes at least one selected from the group consisting of gold, silver, and copper.
  7.  直線偏光を出射する画像表示パネルの視認側に配置される導電性フィルムであって、
     光学異方性を示す基板と、前記基板の少なくとも一方の表面に導電部を備え、
     前記基板が下記式(1)の関係を満たし、
     前記基板面内の最大屈折率nxが1.60以上である、導電性フィルム。
     式(1):Nz>3.0
    (なお、NzはNz係数を表し、波長550nmにおける基板面内の最大屈折率をnx、基板面内でnxに対して直交する方向の波長550nmにおける屈折率をny、波長550nmにおける基板厚み方向の屈折率をnzとした場合に、Nz=(nx-nz)/(nx-ny)により求められる値である。)
     
     
    A conductive film disposed on the viewing side of the image display panel that emits linearly polarized light,
    A substrate having optical anisotropy, and a conductive portion on at least one surface of the substrate,
    The substrate satisfies the relationship of the following formula (1),
    The electroconductive film whose maximum refractive index nx in the said substrate surface is 1.60 or more.
    Formula (1): Nz> 3.0
    (Nz represents the Nz coefficient, the maximum refractive index in the substrate surface at a wavelength of 550 nm is nx, the refractive index at a wavelength of 550 nm in the direction orthogonal to nx in the substrate surface is ny, and the substrate thickness direction at a wavelength of 550 nm is (When the refractive index is nz, Nz = (nx−nz) / (nx−ny)).

PCT/JP2014/069094 2013-07-22 2014-07-17 Touch panel and conductive film WO2015012199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-151807 2013-07-22
JP2013151807 2013-07-22

Publications (1)

Publication Number Publication Date
WO2015012199A1 true WO2015012199A1 (en) 2015-01-29

Family

ID=52393240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069094 WO2015012199A1 (en) 2013-07-22 2014-07-17 Touch panel and conductive film

Country Status (2)

Country Link
TW (1) TW201505038A (en)
WO (1) WO2015012199A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124916A (en) * 2018-01-11 2019-07-25 東洋紡株式会社 Laminated film and polarizing plate using the same
CN110502148A (en) * 2019-08-16 2019-11-26 芜湖伦丰电子触摸屏产业技术研究院有限公司 A kind of touch screen preparation method
US10628042B2 (en) 2016-01-27 2020-04-21 Bios Corporation Control device for connecting a host to a storage device
US11776710B2 (en) 2018-03-09 2023-10-03 Dai Nippon Printing Co., Ltd. Electroconductive film, sensor, touch panel, and image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102331516B1 (en) * 2015-10-13 2021-11-25 동우 화인켐 주식회사 Window film and method of preparing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258594A (en) * 1998-03-16 1999-09-24 Sumitomo Chem Co Ltd Touch panel for liquid crystal display
JP2003196029A (en) * 2001-12-25 2003-07-11 Fuji Photo Film Co Ltd Touch panel and liquid crystal display device with touch panel
JP2010244059A (en) * 2010-05-24 2010-10-28 Nitto Denko Corp Polarizing plate
JP2012230491A (en) * 2011-04-25 2012-11-22 Nitto Denko Corp Transparent conductive film for touch panel, and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258594A (en) * 1998-03-16 1999-09-24 Sumitomo Chem Co Ltd Touch panel for liquid crystal display
JP2003196029A (en) * 2001-12-25 2003-07-11 Fuji Photo Film Co Ltd Touch panel and liquid crystal display device with touch panel
JP2010244059A (en) * 2010-05-24 2010-10-28 Nitto Denko Corp Polarizing plate
JP2012230491A (en) * 2011-04-25 2012-11-22 Nitto Denko Corp Transparent conductive film for touch panel, and image display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10628042B2 (en) 2016-01-27 2020-04-21 Bios Corporation Control device for connecting a host to a storage device
JP2019124916A (en) * 2018-01-11 2019-07-25 東洋紡株式会社 Laminated film and polarizing plate using the same
JP2019124913A (en) * 2018-01-11 2019-07-25 東洋紡株式会社 Laminated film and polarizing plate produced using the same
JP7238324B2 (en) 2018-01-11 2023-03-14 東洋紡株式会社 LAMINATED FILM AND POLARIZING PLATE USING THE SAME
JP7238321B2 (en) 2018-01-11 2023-03-14 東洋紡株式会社 LAMINATED FILM AND POLARIZING PLATE USING THE SAME
US11776710B2 (en) 2018-03-09 2023-10-03 Dai Nippon Printing Co., Ltd. Electroconductive film, sensor, touch panel, and image display device
CN110502148A (en) * 2019-08-16 2019-11-26 芜湖伦丰电子触摸屏产业技术研究院有限公司 A kind of touch screen preparation method

Also Published As

Publication number Publication date
TW201505038A (en) 2015-02-01

Similar Documents

Publication Publication Date Title
JP6757417B2 (en) Touch panel laminates, flexible devices, organic electroluminescent display devices
JP5370601B1 (en) Image display device
WO2015146289A1 (en) Touch panel module and electronic apparatus
WO2015012199A1 (en) Touch panel and conductive film
JP2015069351A (en) Image display device, touch panel sensor with circularly polarizing plate, and touch panel sensor with optical conversion layer
JP6355824B2 (en) Touch panel
JP6179185B2 (en) Electrode film for touch panel, touch panel using the same, and image display device
WO2014123210A1 (en) Image display device
JP2014157238A (en) Image display device
JP6615146B2 (en) Laminated body, touch panel, and display device with touch panel
JP6459159B2 (en) Image display device
JP6160110B2 (en) Image display device
JP6303265B2 (en) Image display device
JP6182892B2 (en) Image display device
JP6036375B2 (en) Image display device
JP6604397B2 (en) Image display device
JP6064655B2 (en) Image display device
WO2018207579A1 (en) Composite member and touch panel
JP6248394B2 (en) Image display device
JP6509478B2 (en) Image display device
JP6102312B2 (en) Image display device
JP6182893B2 (en) Image display device
JP2017227905A (en) Image display device
JP2014157233A (en) Image display device
JP2014157278A (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14828952

Country of ref document: EP

Kind code of ref document: A1