WO2015012128A1 - タッチパネルシステム及び電子情報機器 - Google Patents

タッチパネルシステム及び電子情報機器 Download PDF

Info

Publication number
WO2015012128A1
WO2015012128A1 PCT/JP2014/068571 JP2014068571W WO2015012128A1 WO 2015012128 A1 WO2015012128 A1 WO 2015012128A1 JP 2014068571 W JP2014068571 W JP 2014068571W WO 2015012128 A1 WO2015012128 A1 WO 2015012128A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
indicator
signal
touch panel
detection surface
Prior art date
Application number
PCT/JP2014/068571
Other languages
English (en)
French (fr)
Inventor
貴史 堀山
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015528228A priority Critical patent/JP5986685B2/ja
Publication of WO2015012128A1 publication Critical patent/WO2015012128A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a touch panel system including a projected capacitive touch panel, an electronic information device including the touch panel system, and an operation method of the touch panel system.
  • touch panel systems that accept user instructions by detecting the position of an indicator (for example, a user's finger or stylus pen) that is in contact with or close to the detection surface of the touch panel have been used in mobile phones and personal computers. Increasingly, it is mounted on electronic information equipment. In particular, projection capacitive touch panels capable of multi-touch are increasingly mounted on electronic information devices.
  • an indicator for example, a user's finger or stylus pen
  • a projected capacitive touch panel system includes a touch panel that outputs an electrostatic capacitance (hereinafter simply referred to as “capacitance”) between electrodes or wirings provided along a detection surface.
  • capacitance an electrostatic capacitance
  • an indicator that is in contact with or close to the detection surface is detected. Therefore, an object other than an indicator that can change the capacity (for example, water) exists on the detection surface, or a noise source that generates electromagnetic waves (for example, a display device or a power source included in an electronic information device) exists near the touch panel. If the noise is mixed in the electrical signal output from the touch panel, the indicator cannot be detected with high accuracy.
  • Patent Document 1 when more than a preset number of indicators are detected, or when contact of an indicator is detected in a region larger than a preset size, the touch panel gets wet.
  • a touch panel system that determines that the touch panel is invalidated has been proposed.
  • the present invention accurately distinguishes the position erroneously detected by noise caused by the adhesion of liquid and the position of the indicator, so that the touch panel by the user can be used even in a situation where the noise occurs.
  • the touch panel system capable of accepting the operation
  • the electronic information device equipped with the touch panel system the position erroneously detected by noise due to liquid adhesion, and the position of the indicator
  • a touch panel system operation method capable of accepting a touch panel operation by a user even in a situation where the noise is generated.
  • the present invention provides a plurality of drive lines provided parallel to each other along the detection surface, and a plurality of sense lines provided parallel to each other along the detection surface and three-dimensionally intersecting the drive lines.
  • a touch line comprising: a drive line driving unit that drives the drive line by applying a drive signal; and an indicator that contacts or approaches each position of the detection surface that appears on the sense line by driving the drive line.
  • a detection signal processing unit for generating a detection target signal respectively represented by the above, and based on each signal value of the detection target signal, An indicator position detecting unit that detects an indicator position that is a position of a touching or approaching indicator, and the indicator position detecting unit corresponds to a signal value of the detection target signal that exceeds a first threshold value.
  • exclusion candidate positions that are positions of the detection surface corresponding to the signal value of the detection target signal that exceeds the first threshold but does not exceed the second threshold, and surroundings
  • the touch panel system is characterized in that the indicator position is detected by excluding a non-indicator position that is a position where the other candidate exclusion position exists within the first range.
  • a signal value of the detection target signal corresponding to at least a part of the position of the detection surface serving as a peripheral portion of the liquid is the first value. It is preferable that the first threshold value and the second threshold value are set so as to exceed the threshold value but not exceed the second threshold value.
  • the signal value of the detection target signal corresponding to the position of the detection surface touched by the finger exceeds the second threshold value. It is preferable that the second threshold value is set.
  • the signal value of the detection target signal corresponding to the position of the detection surface that the stylus pen has contacted exceeds the first threshold value.
  • the second threshold may not be exceeded.
  • the first range is a range within a first distance from the exclusion candidate position.
  • the drive line extends in the X direction
  • the sense line extends in the Y direction
  • the first range is a first X distance from the exclusion candidate position in the X direction.
  • the first X distance may be shorter than the first Y distance.
  • the sense signal processing unit when the sense signal processing unit generates the detection target signal including the signal values corresponding to the positions on the detection surface as one frame, the indicator position detection unit leaves a position where the state within the second distance continues for a predetermined number of frames or more in two consecutive frames before and after the indicator position, and indicates the other positions. It is preferable to exclude it from the body position.
  • the present invention also provides an electronic information device comprising the touch panel system described above.
  • a touch panel including a plurality of drive lines provided parallel to each other along the detection surface and a plurality of sense lines provided parallel to each other along the detection surface and three-dimensionally intersecting with the drive lines.
  • the touch panel system has a strength corresponding to the presence or absence of an indicator that touches or is close to each position on the detection surface, which appears on the sense line by driving the drive line by applying a drive signal to the drive line.
  • the detection target By detecting and processing a sense signal, the detection target that represents the presence or absence of the indicator that is in contact with or close to each position on the detection surface by the magnitude of each signal value corresponding to each position on the detection surface A detection target signal generation operation for generating a signal, and a position of the detection surface corresponding to a signal value of the detection target signal exceeding a first threshold value.
  • Selection candidate position detection operation for detecting a selection candidate position, and exclusion for detecting an exclusion candidate position that is the position of the detection surface corresponding to the signal value of the detection target signal that exceeds the first threshold but does not exceed the second threshold
  • a candidate position detection operation for detecting a non-indicator position detection operation for detecting a non-indicator position that is the exclusion candidate position and the position where the other exclusion candidate position exists within a surrounding first range
  • the selection candidate And a pointer position detection operation for detecting a pointer position that is a position of a pointer that is in contact with or close to the detection surface by excluding the non-pointer position from the positions.
  • the non-indicator position and the indicator position can be distinguished with high accuracy. Therefore, even in a situation where noise due to liquid adhesion occurs, the touch panel by the user Can be accepted.
  • the block diagram which shows an example of the whole structure of the touchscreen system which concerns on embodiment of this invention.
  • the top view and circuit diagram which are shown about an example of the structure of the drive line and sense line with which the touch panel of FIG. 1 is provided.
  • the schematic diagram which shows the state of the electric field of a touchscreen.
  • the schematic diagram which shows the state of the electric field of a touchscreen when a water droplet adheres to the detection surface.
  • FIG. 1 is a block diagram showing an example of the overall structure of a touch panel system according to an embodiment of the present invention.
  • the touch panel system 1 includes a touch panel 10, a drive line driving unit 20, a sense signal processing unit 30, a pointer position detection unit 40, a control unit 50, and a storage unit 60. .
  • the touch panel 10 includes a plurality of drive lines DL provided in parallel with each other along the detection surface P, and a plurality of sense lines SL provided in parallel with each other along the detection surface P and intersecting the drive lines DL.
  • the drive line DL is provided so as to extend along the X direction (vertical direction in the drawing).
  • the sense line SL is provided so as to extend along the Y direction (left and right direction in the figure) perpendicular to the X direction. That is, in the touch panel system 1 shown in FIG. 1, the drive line DL and the sense line SL intersect perpendicularly. Note that the drive line DL and the sense line SL may intersect at an angle other than vertical.
  • FIG. 2 is a plan view and a circuit diagram showing an example of the structure of drive lines and sense lines provided in the touch panel of FIG. 2A is a plan view showing the structure of the drive line DL and the sense line SL provided in the touch panel 10, and FIG. 2B is a circuit diagram showing an equivalent circuit of FIG. 2A.
  • the drive line DL includes a drive line pad portion DLP having a locally increased area except for a portion intersecting with the sense line SL.
  • the sense line SL includes a sense line pad portion SLP having a locally increased area except for a portion intersecting the drive line DL.
  • a capacitor C is formed between the drive line DL and the sense line SL.
  • the capacitor C is formed mainly between the adjacent drive line pad portion DLP and the sense line pad portion SLP (that is, between the intersecting drive line DL and sense line SL). Is done. Note that the drive line pad portion DLP is not provided in the drive line DL, and the sense line pad portion SLP may not be provided in the sense line SL. Even in this case, the capacitor C is formed at the intersection of the drive line DL and the sense line SL.
  • FIG. 3 is a schematic diagram showing the state of the electric field of the touch panel.
  • FIG. 3A is a schematic diagram when the indicator is not present on the detection surface P
  • FIG. 3B is a schematic diagram when the indicator (finger F) is present on the detection surface P. is there.
  • the electric force line is shown by the arrow.
  • the drive line pad portion DLP and the sense line pad portion SLP are illustrated on the same plane for simplification of illustration. They may exist on different planes.
  • the human body including the finger F behaves as a grounded object (that is, a shield). Therefore, as shown in FIG. 3B, when the finger F is brought into contact with or close to the detection surface P as compared to the case where the finger F does not exist on the detection surface P as shown in FIG.
  • the capacitance formed by the drive line DL and the sense line SL is reduced. Note that the capacitance C similarly changes even when the drive line pad portion DLP is not provided in the drive line DL and the sense line pad portion SLP is not provided in the sense line SL.
  • the drive line driving unit 20 repeatedly drives a plurality of drive lines DL with drive signals Di whose signal voltage combinations fluctuate in a predetermined order. As a result, a sense signal Si having a strength corresponding to the capacitance formed by the drive line DL and the sense line SL appears in the sense line SL.
  • the sense signal processing unit 30 acquires and processes the sense signal Si appearing on the sense line SL, thereby generating the detection target signal Bi.
  • the detection target signal Bi is a signal that indicates the presence or absence of an indicator that is in contact with or close to each position on the detection surface P by the magnitude of each signal value corresponding to each position on the detection surface P.
  • the detection target signal Bi generated in the touch panel system 1 illustrated in FIG. 1 is a signal indicating the in-plane distribution of capacitance formed by the drive line DL and the sense line SL.
  • the indicator position detection unit 40 detects the position of the indicator that is in contact with or close to the detection surface P (hereinafter referred to as “indicator position”) based on the detection target signal Bi, and a detection result signal indicating the detection result. Ti is generated. Specifically, the pointer position detection unit 40 detects the position in the detection surface P where the capacitance is fluctuating with respect to the in-plane distribution of the capacitance represented by each signal value of the detection target signal Bi. Detect body position.
  • the detection result signal Ti includes the number of detected pointers, the position of each pointer, data indicating the degree of contact or proximity of each pointer to the detection surface P, the movement of the pointer position (previously detected). Data indicating the relationship with the indicator position). And this detection result signal Ti is utilized as a signal which shows a user's instruction
  • the control unit 50 controls the operations of the drive line driving unit 20, the sense signal processing unit 30, and the indicator position detection unit 40, respectively.
  • the pointer position detection unit 40 and the control unit 50 are illustrated as separate bodies, but the pointer position detection unit 40 may be a part of the control unit 50.
  • the storage unit 60 temporarily stores data required when the sense signal processing unit 30, the indicator position detection unit 40, and the control unit 50 perform arithmetic processing. For example, when the pointer position detection unit 40 detects the position of the current pointer using the past pointer position in addition to the detection target signal Bi, or the movement of the pointer position (the previously detected instruction When the data indicating the relationship with the body position is included in the detection result signal Ti, the storage unit 60 temporarily stores the data indicating the position of the pointer detected by the pointer position detection unit 40 in the past (for example, the latest). And the data may be given to the indicator position detection unit 40. In FIG. 1, one storage unit 60 is illustrated as storing data of the sense signal processing unit 30, the indicator position detection unit 40, and the control unit 50, but the sense signal processing unit 30, the instruction At least one of the body position detection unit 40 and the control unit 50 may include an independent storage unit.
  • FIG. 4 is a diagram illustrating orthogonal parallel driving of the touch panel.
  • FIG. 5 is a diagram for explaining a method of decoding the capacity distribution signal when the touch panel is driven in orthogonal parallel.
  • FIG. 4 only one sense line SL1 and four drive lines DL1 to DL4 are shown for simplicity of explanation.
  • the capacitances formed by the sense line SL1 and the drive lines DL1 to DL4 are C11 to C41.
  • the sense signal processing unit 30 includes an amplification unit 31, a capacitance signal generation unit 32, and a detection target signal generation unit 33.
  • the amplifying unit 31 has an inverting input terminal ( ⁇ ) to which the sense line SL1 is connected and an output terminal connected via an amplifying capacitor Cint, and an operational amplifier in which a non-inverting input terminal (+) becomes a ground voltage (GND). It is constituted by.
  • the capacitance signal generation unit 32 obtains a conversion value Ct corresponding to the capacitances C11 to C41 by performing a predetermined calculation after AD (Analog to Digital) conversion of the voltage value Vout of the output terminal of the amplification unit 31.
  • the capacity distribution signal Ai is generated by decoding the conversion value Ct.
  • the signal voltages “1” positive voltage, + V
  • ⁇ 1 negative
  • Drive signal Di having a component of ⁇ V) as a component.
  • the drive signal Di given to the drive lines DL1 to DL4 is repeated as the combination of “1” and “ ⁇ 1” fluctuates in the order shown in the lower table of FIG. (For example, the first time, the second time, the third time, the fourth time, the first time, the second time,).
  • the capacitance signal generation unit 32 adds the capacitances C11 to C41 or simply performs a simple calculation on the voltage value Vout (multiply by Cint / V). A converted value Ct obtained by subtraction can be obtained.
  • a conversion value Ct indicating C11 + C21 + C31 + C41 is obtained.
  • Vout (C11 ⁇ C21 + C31 ⁇ C41) ⁇ V / Cint. Then, a conversion value Ct indicating C11 ⁇ C21 + C31 ⁇ C41 is obtained by the calculation of the capacitance signal generation unit 32.
  • Vout (C11 + C21 ⁇ C31 ⁇ C41) ⁇ V / Cint. Then, the conversion value Ct indicating C11 + C21 ⁇ C31 ⁇ C41 is obtained by the calculation of the capacitance signal generation unit 32.
  • Vout (C11 ⁇ C21 ⁇ C31 + C41) ⁇ V / Cint. Then, the conversion value Ct indicating C11 ⁇ C21 ⁇ C31 + C41 is obtained by the calculation of the capacitance signal generation unit 32.
  • FIG. 5 illustrates the case where the capacitors C11 to C44 formed by the four sense lines SL1 to SL4 and the drive lines DL1 to DL4 are respectively obtained, but the drive signal Di applied to the drive lines DL1 to DL4 is described. Is the same as FIG.
  • the capacitances formed by the sense line SL1 and the drive lines DL1 to DL4 are C11 to C41, and the capacitances formed by the sense line SL2 and the drive lines DL1 to DL4 are C12 to C42,
  • the capacitors formed by the sense line SL3 and the drive lines DL1 to DL4 are C13 to C43, and the capacitors formed by the sense line SL4 and the drive lines DL1 to DL4 are C14 to C44.
  • the conversion value of the sense line SL1 in the first to fourth driving is Ct11 to Ct41
  • the conversion value of the sense line SL2 in the first to fourth driving is Ct12 to Ct42, and the first to fourth driving.
  • the conversion values of the sense line SL3 are Ct13 to Ct43, and the conversion values of the sense line SL4 during the first to fourth driving are Ct14 to Ct44.
  • the matrix “Ct” of the converted values Ct11 to Ct44 is an inner product of the matrix “H” of the drive signal Di and the matrix “C” of the capacitors C11 to C44.
  • the matrix “Ct” has sense lines SL1 to SL4 from which conversion values are obtained as rows and the order in which the conversion values are obtained as columns.
  • the matrix “H” has the drive lines DL1 to DL4 that supply the components (signal voltages) of the drive signal Di as rows and the order of supplying the components of the drive signal Di as columns.
  • the matrix “C” has the capacitance along the direction (X direction) in which the drive lines DL1 to DL4 extend as rows, and the column along the direction (Y direction) as the sense lines SL1 to SL4 extend. .
  • Ct11 which is a component in the first row and first column of the inner product “H” / “C” in FIG. 5B is expressed by the following formula (1).
  • Ct21 which is a component in the second row and first column of the inner product “H” / “C” is Ct31 which is a component in the third row and first column of the inner product “H” / “C”.
  • Ct41 which is the component of the fourth row and first column of the inner product “H” / “C” is the following equation (4).
  • Ct11 C11 + C21 + C31 + C41 (1)
  • Ct21 C11 ⁇ C21 + C31 ⁇ C41 (2)
  • Ct31 C11 + C21-C31-C41 (3)
  • Ct41 C11 ⁇ C21 ⁇ C31 + C41 (4)
  • the matrix “H” is an orthogonal matrix. Therefore, as shown in FIG. 5C, only the inner product of the transpose matrix (matrix in which the row components and the column components are exchanged) “H T ” and the matrix “Ct” of the drive signal matrix “H” is obtained. Thus, the matrix “C” (that is, the in-plane distribution of capacitance) can be obtained. In this example, the matrix “H T ” is equal to the matrix “H”.
  • the calculation result of the first row and first column of the inner product “H T ” / “Ct” is expressed by the following equation (5).
  • the inner product "H T”, the second row, first column of the operation result shown by the following formula "Ct” (6), and the inner product "H T ', third row operation result of the first column of the" Ct " is The following equation (7) is obtained, and the calculation result of the fourth row and first column of the inner product “H T ” / “Ct” is represented by the following equation (8).
  • the right sides of the following formulas (5) to (8) can be obtained by substituting the above formulas (1) to (4) for the left sides of the following formulas (5) to (8).
  • Ct11 + Ct21 + Ct31 + Ct41 4 ⁇ C11 (5)
  • Ct11 ⁇ Ct21 + Ct31 ⁇ Ct41 4 ⁇ C21 (6)
  • Ct11 + Ct21 ⁇ Ct31 ⁇ Ct41 4 ⁇ C31 (7)
  • Ct11 ⁇ Ct21 ⁇ Ct31 + Ct41 4 ⁇ C41 (8)
  • the capacity distribution signal Ai generated as described above represents the capacity at each position on the detection surface P by the magnitude of each signal value.
  • the capacitance distribution signal Ai generated by the above method has a corresponding signal value that decreases as the capacitance formed on the detection surface P increases.
  • the detection target signal Bi generated by adjusting the capacitance distribution signal Ai is the detection target signal generated by adjusting the capacitance distribution signal Ai.
  • the sense signal Si generated by the touch panel 10 is affected by various influences such as structural variations of the touch panel 10, dirt attached to the detection surface P, deterioration over time, and usage environment (particularly temperature).
  • the detection target signal generation unit 33 determines the signal value adjustment method of the capacitance distribution signal Ai by executing calibration described below. Then, the detection target signal generation unit 33 generates the detection target signal Bi by adjusting the signal value of the capacitance distribution signal Ai based on the determined adjustment method.
  • FIG. 6 is a graph showing each of the capacitance distribution signal, the calibration data, and the detection target signal.
  • FIG. 6A is a graph showing the capacity distribution signal Ai.
  • FIG. 6B is a graph showing the calibration data.
  • FIG. 6C is a graph showing the detection target signal Bi. Further, the capacity distribution signal Ai, the calibration data, and the detection target signal Bi shown in FIGS. 6A to 6C are each generated in a non-instruction state.
  • each signal value of the capacitance distribution signal Ai varies even in the non-instruction state as described above, and thus becomes non-uniform. Therefore, the detection target signal generation unit 33 adjusts the signal value of the capacitance distribution signal Ai (calibration) so that each signal value of the detection target signal Bi generated in the non-instruction state becomes a reference value that is a predetermined value. Data). In the following, a case where the reference value is “0” is illustrated for the sake of concrete explanation.
  • the detection target signal generation unit 33 is a value obtained by inverting each signal value of the capacitance distribution signal Ai in FIG. 6A with respect to the reference value (ie, reference value ⁇ signal value). ) Is generated and stored in the storage unit 60. Then, the detection target signal generation unit 33 adds each value corresponding to the calibration data read from the storage unit 60 to each signal value of the capacitance distribution signal Ai, thereby each signal value of the detection target signal Bi. Is calculated. Each signal value of the detection target signal Bi calculated in this way is uniform because it becomes a reference value (or a value approximate to the reference value) as shown in FIG. .
  • FIG. 7 is a graph showing a detection target signal generated when an indicator contacts the detection surface.
  • FIG. 7A is a graph showing a detection target signal Bi generated when a finger touches the detection surface P.
  • FIG. 7B is a graph showing a detection target signal Bi generated when the stylus pen contacts the detection surface P.
  • the signal value of the detection target signal Bi which corresponds to a touch position Q F is significantly increased as compared to the baseline.
  • the signal value of the detection target signal Bi which corresponds to a touch position Q U is significantly larger as compared to the baseline.
  • the signal value of the detection target signal Bi corresponding to the other position of the detection surface P remains the reference value (or a value approximated to the reference value).
  • the pointer position detection unit 40 can detect the pointer position with high accuracy by detecting the pointer position using the detection target signal Bi.
  • the increase amount of the signal value of the detection target signal Bi (the decrease amount of the capacity) is the detection surface P. It becomes smaller than the increase amount (the decrease amount of the capacity) of the signal value of the detection target signal Bi when the finger touches.
  • the amount of increase in the signal value of the detection target signal Bi when the stylus pen touches the detection surface P (the amount of decrease in the capacity) is the signal value of the detection target signal Bi when the finger touches the detection surface P.
  • the amount of increase (the amount of decrease in capacity) decreases from one third to about one tenth.
  • the stylus pen is generally used when performing fine work, and the tip of the stylus pen is designed to be sufficiently thinner (smaller contact area) than the finger. This is because the change amount (decrease amount) of the capacitance C when the finger touches the detection surface P is smaller than the change amount (decrease amount) when the finger touches the detection surface P.
  • liquid in the present application is not necessarily limited to water (pure water), and may naturally include tea, juice, lotion, saliva, sweat, and the like.
  • the “liquid” in the present application may include a liquid having a high relative dielectric constant.
  • the case where the “liquid” is water (pure water) will be described as an example.
  • FIG. 8 is a schematic diagram showing the state of the electric field of the touch panel when water droplets adhere to the detection surface.
  • FIG. 9 is a graph showing a detection target signal generated when a water droplet adheres to the detection surface.
  • the signal value of the detection target signal Bi corresponding to the attachment position R W of the water droplet W on the detection surface P is smaller than the reference value.
  • the signal value of the corresponding detection target signal Bi can be larger than the reference value. That is, in the false detection position Q W, and if the pointer is in contact with or in proximity to the detection surface P, changes occur in the same signal value.
  • the signal value of the detection target signal Bi corresponding to the false detection position Q W is the signal value of the detection target signal Bi which corresponds to the contact position Q U when the stylus pen is in contact with the detection surface P ( Figure 7 (b ))).
  • the indicator position detecting unit 40 simply detects the indicator position on the basis of the signal value of the detection target signal Bi, there is a possibility of erroneous detection of false detection position Q W as indicator position.
  • the indicator position detecting unit 40 detects the indicator position to exclude such false detection position Q W.
  • FIGS. 10 and 11 are schematic diagrams illustrating the positional relationship between the water droplet and the false detection position.
  • FIG. 10A is a diagram showing a case where a large water droplet W (0.6 cm 3 in this example) adheres to the detection surface P
  • FIG. 10B is a diagram shown in FIG. it is a diagram illustrating the attachment position R W and false detection position Q W when.
  • FIG. 11A is a diagram showing a case where a plurality of small water droplets adhere to the detection surface P in a sprayed manner
  • FIG. 11B is an attachment position R in the case shown in FIG. it is a diagram illustrating a W and false detection position Q W.
  • FIGS. 10 (b) and 11 (b) shows the adhesion position R W by circles whitewashed shows a false detection position Q W by a circle of black.
  • the false detection position Q W has a plurality on the periphery of the water drop W (e.g., two) appears.
  • the false detection position Q W as arranged along the Y direction (direction sense line SL extends), it appears multiple. That is, the false detection position Q W is within a relatively narrow range in the detection plane P, said to have a characteristic that a plurality appear.
  • the indicator position detecting unit 40 the false detection position Q W on the basis of the above characteristic selectively excluded, for detecting the indicator position.
  • FIG. 12 is a flowchart illustrating an operation example of the pointer position detection unit.
  • FIG. 13 is a graph showing threshold values used for detecting the indicator position.
  • the indicator at a certain timing (for example, a period during which the detection target signal Bi including one signal value corresponding to each position on the detection surface P is generated, hereinafter referred to as “frame”).
  • the position is detected, and is repeatedly performed by the indicator position detection unit 40.
  • the pointer position detection unit 40 first acquires a detection target signal Bi for one frame (detection target signal Bi including one set of signal values corresponding to each position on the detection surface P). (Step # 1).
  • the indicator position detection unit 40 sets a position corresponding to the signal value of the detection target signal Bi that exceeds the first threshold Th1 (exceeds the first threshold Th1) illustrated in FIG. 13 as a “selection candidate position”. Detect (step # 2).
  • the first threshold value Th1, other contact position Q F and stylus contact position Q U of the above-mentioned finger, as the false detection position Q W is included in the selected candidate position is set.
  • a plurality of signal values of the detection target signal Bi corresponding to a plurality of consecutive positions forming a certain region in the detection surface P are respectively set to the first threshold value. It may be higher than Th1.
  • the indicator position detection unit 40 selects the position where the signal value of the corresponding detection target signal Bi in the area is the maximum as the representative candidate position. Choose as.
  • the indicator position detection unit 40 is a signal of the detection target signal Bi that exceeds the first threshold value Th1 but falls below the second threshold value Th2 (exceeds the first threshold value Th1 but does not exceed the second threshold value Th2) shown in FIG.
  • a position corresponding to the value is detected as an “exclusion candidate position” (step # 3).
  • the second threshold Th2 as included false detection position Q W described above, is set.
  • the exclusion candidate position is obtained by weighting the condition “below the second threshold Th2 (does not exceed the second threshold Th2)” with respect to the condition of the selection candidate position. All).
  • the indicator position detecting section 40 from among the excluded candidate positions, selectively detect false detection position Q W as a non-indicator position (Step # 4). The specific method for detecting a false detection position Q W as a non-indicator position will be described later.
  • the indicator position detecting unit 40 detects the indicator position by excluding the non-indicator position detected in step # 4 from the selection candidate positions detected in step # 2 (step # 5). Then, the pointer position detection unit 40 generates and outputs a detection result signal Ti indicating the detection result of the pointer position (step # 6), and the operation for one frame is completed.
  • FIG. 14A is a diagram illustrating a case where the water droplet W is attached to the detection surface P and the finger F is in contact with the detection surface P.
  • FIG. 14B is a diagram illustrating the case illustrated in FIG. It is a figure which shows an example of the detection method of the non-indicator position in.
  • FIG. 15A is a diagram illustrating a case where the water droplet W adheres to the detection surface P and the stylus pen U contacts the detection surface P
  • FIG. 15B is illustrated in FIG.
  • FIG. 14 (b) shows an example of the detection method of the non-indicator position in a case.
  • the contact position Q F of the finger F shown in black triangles in FIG. 15 (b), the show a contact position Q U of the stylus pen U a square of black.
  • the illustrated attachment position R W by circles whitewashed shows a false detection position Q W by a circle of black.
  • the as selection candidate position, contact position Q F and the false detection position Q W of the finger F is detected (see step # 2 and 13 of FIG. 12 ). Further, as an exclusion candidate position, the false detection position Q W is detected (see Step # 3 and 13 in FIG. 12).
  • the indicator position detection unit 40 sets a first range (a range indicated by a broken line in FIG. 14B) around the exclusion candidate position (false detection position Q W in this example).
  • the false detection position Q W is to appear more to the periphery of the water drop W, it can be said that appear more than once in a relatively narrow range (Fig. 9, FIGS. 10 (b) and 11 (b) see) . Therefore, the indicator position detecting section 40, in the first range set around a certain exclusion candidate positions, if the other excluded candidate position is present, the certain exclusion candidate positions to be false detection position Q W determined And detected as a non-indicator position.
  • the indicator position detection unit 40 performs processing such as adding a flag in the course of data processing for the selection candidate position (exclusion candidate position) detected as the non-indicator position.
  • the first range is a circle whose radius centered on the exclusion candidate position is the first distance L1.
  • the first range is a range that is within the first distance L1 from the exclusion candidate position
  • the certain range is present.
  • other exclusion candidate positions not only excludes the candidate position be determined to be false detection position Q W simultaneously, it is possible to detect a non-indicator position.
  • the non-indicator position detection method in this example can also be interpreted as a detection method in which an exclusion candidate position that falls within the first distance L1 is detected as a non-indicator position.
  • the two false detection position Q W other exists (distance between them is within a first distance L1) within a first range of one. Accordingly, the indicator position detecting section 40, the two false detection position Q W, is detected as a non-indicator position (see step # 4 in FIG. 12). Therefore, in this embodiment, the contact position Q F and the false detection position Q W of the finger F is selected candidate position, contact position Q F of the finger F obtained by excluding false detection position Q W which is a non-indicator position Is detected as the indicator position (see step # 5 in FIG. 12).
  • FIGS. 15A and 15B also detects the non-indicator position by the same method as the example shown in FIGS. 14A and 14B.
  • the as selection candidate position, steps # 2 and although the contact position Q F and the false detection position Q W of the finger F is detected (FIG. 12 see FIG. 13), as an exclusion candidate positions, in addition to the false detection position Q W also contact position Q U of the stylus pen U is detected (see step # 3 and 13 in FIG. 12).
  • the indicator position detecting section 40 around the exclusion candidate position (contact position Q U of the present embodiment false detection position Q W and stylus pen U), the first range (broken line in FIG. 15 (b) Range). Furthermore, also in this embodiment, the two false detection position Q W, other exists (distance between them is within a first distance L1) within a first range of one. Accordingly, the indicator position detecting section 40, the two false detection position Q W, is detected as a non-indicator position (see step # 4 in FIG. 12).
  • the indicator position detecting section 40 for the contact position Q U of the stylus pen U, not detected as a non-indicator position (see step # 4 in FIG. 12). Therefore, in this embodiment, the contact position Q U and false detection position Q W of the stylus pen U is selected candidate position, the contact position of the stylus pen U obtained by excluding false detection position Q W which is a non-indicator position Q U is detected as the indicator position (see step # 5 in FIG. 12).
  • the detected selection candidate position is not instructed based on both the signal value of the detection target signal Bi and the positional relationship on the detection surface P. Distinguish between body position and indicator position. As a result, it is possible to accurately distinguish between the non-indicator position and the indicator position, so that the user can accept the operation of the touch panel 10 even in a situation where noise due to liquid adhesion occurs. Is possible.
  • the contact positions Q of the plurality of stylus pens U It is difficult to assume that the distance of U is 1 cm or less. Therefore, for example, it is preferable to set the first distance L1 to about 1 cm.
  • size of the 1st distance L1 may be set according to a user's instruction
  • the first distance L1 may be set. For example, in the case where the user often operates the finger F with large fluctuation in contact with the detection surface P, even if the first distance L1 is increased, the contact position of the indicator is detected as the non-instructed pair position. It is unlikely to be excluded from the indicated pair position (see FIG. 14B). Therefore, for example, when the user inputs to the touch panel system 1 that the finger F is used as an instruction pair, or each signal value of the detection symmetric signal Bi includes a signal value that exceeds the second threshold Th2. When the indicator detection unit 40 detects that the first distance L1 is present, the first distance L1 may be set to be larger than in other cases.
  • the first range is not necessarily a range within the first distance L1 from the exclusion candidate position.
  • the false detection position Q W is, considering that the plurality appear to line up along the Y direction (direction sense line SL extends), a first range of length in the Y direction than the length in the X direction becomes longer (That is, the first range in which the detection sensitivity of the non-pointer position is low in the X direction but the detection sensitivity of the non-pointer position is high in the Y direction) may be set. Setting such a first range is preferable because it is possible to increase the detection accuracy of the non-instruction position and the indicator position.
  • a first range that is within a first X distance in the X direction and within a first Y distance in the Y direction from the exclusion candidate position is set, and the first Y distance is longer than the first X distance. This is preferable.
  • FIG. 16 is a schematic diagram illustrating an example of a method for associating a pointer position.
  • FIG. 17 is a schematic diagram showing an example of a method for excluding sudden noise occurrence positions using the pointer position association method shown in FIG.
  • FIG. 16 (a) is a diagram showing a case where the finger F is in contact with the detection surface P between four consecutive frames 1 to 4, and FIG. 16 (b) is shown in FIG. 16 (a).
  • FIG. 17A is a diagram showing a case where the finger F contacts the detection surface P and sudden noise occurs between four consecutive frames 1 to 4, and FIG. It is a figure which shows an example of the exclusion method of the sudden noise generation position in the case shown to Fig.17 (a).
  • FIG. 16 (b) and FIG. 17 (b) the contact position Q F of the finger F shown in black triangles, the contact position QB F of the finger F in the previous frame dashed white painted triangles Is shown.
  • FIG. 16 (b) and FIG. 17 (b) the contact position Q F of the finger F shown in black triangles, the contact position QB F of the finger F in the previous frame dashed white painted triangles Is shown.
  • FIG. 16 (b) and FIG. 17 (b) the contact position Q F of the finger F shown in black triangles, the contact position QB F of the finger F in the previous frame dashed white painted triangles Is shown.
  • FIG. 16 (b) and FIG. 17 (b) the contact position Q F of the
  • the indicated sudden position detection plane P corresponding to the signal value of the detection target signal Bi were varied by noise (sudden noise generation position) Q N by the solid line crosses, previous shows a sudden noise occurrence position QB N in the frame is indicated by broken lines of crosses.
  • the contact positions Q F and QBF of the finger F and the sudden noise occurrence position Q N shown in FIGS. 16B and 17B are both detected by the detection method described above (see FIGS. 12 to 15). It is assumed that the indicator position.
  • the indicator position detection unit 40 within the second distance L2 in two consecutive frames before and after the indicator position detected as described above. It shows an associating method for associating positions where the number of frames to be kept continues for a predetermined number (two in this example) or more.
  • the indicator position associated in this way indicates the indicator position of one common indicator. Therefore, for example, in an electronic information device that uses the detection result signal Ti, if the movement of the associated indicator position is small, it is determined that the user has performed a normal tap, and the movement of the associated indicator position is If it is larger, it can be determined that the user has flicked or swipe.
  • the indicator position detection unit 40 may determine the type of action (such as tap, flick, or swipe) performed by the user and include data indicating the determination result in the detection result signal Ti. Further, for example, the second distance L2 is preferably set in consideration of the normally assumed movement speed of the indicator (the distance that the indicator can move between consecutive frames).
  • the indicator position detecting section 40 associates the contact position Q F of each of the finger F in the frame 1 and the frame 2. Furthermore, the indicator position detecting section 40, by performing the same processing as the frame 2 even frame 4, associates the contact position Q F of the finger F in the frame 3 and the frame 4 (i.e., these contact positions Q F is, Indicating the same action).
  • the indicator position detecting unit 40 does not associate a contact position Q F of each of the finger F in the frame 2 and frame 3 (i.e., those of the contact position Q F becomes denote the different actions).
  • the indicator position detection unit 40 within the second distance L2 in two consecutive frames before and after the indicator position detected as described above.
  • a method for excluding a sudden noise occurrence position by leaving a position where the number of frames that continue within a predetermined number of frames (two in this example) continues at the pointer position and excluding other positions from the pointer position is shown. ing.
  • the frame 1 in addition to the contact position Q F of the finger F, the sudden noise generation position Q N is present.
  • the frame 2 although the contact position Q F of the finger F still present, sudden noise generation position Q N due to the suddenly generated noise N is absent.
  • the indicator position detecting section 40 determines whether a contact position Q F of the finger F in the frame 1 and frame 2 is a contact position Q F of the finger F. Furthermore, the indicator position detecting section 40, by performing the same processing as the frame 2 even frame 3, decides to leave a contact position Q F of the finger F as indicator position. In frame 4, from the contact position QB F of one frame before the finger F within the second distance L2, an indicator position is not present at all. However, the contact position Q F of the finger F in the frame 3 is determined to leave the indicator position at the stage of the frame 3. Therefore, at the stage of the frame 4 and does not contact position Q F of the finger F in the frame 3 is excluded from the indicator position.
  • the indicator position detecting unit 40 determines to exclude from the indicator position. Furthermore, the indicator position detecting unit 40 determines to exclude the same processing as the frame 2 by performing any frame 4, the indicator position sudden noise generation position Q N in the frame 3.
  • the indicator position detecting unit 40 performs the processing, the sudden noise generation position Q N of the detection plane P due to suddenly appear noise N, can be excluded from the indicator position become. Therefore, it is possible to improve the detection accuracy of the indicator position.
  • FIGS. 16 (a) and 16 FIG. may be associated with contact position Q F of the finger F, as shown in 16 (b).
  • the indicator position detector 40 is within the second distance L2 in two consecutive frames before and after the indicator position.
  • the position that continues for more than the frame is left at the indicator position, and the other positions are excluded from the indicator position.
  • the number of frames to be monitored within the second distance L2 may be three or more.
  • the indicator position detection unit 40 is within the second distance L2 in two consecutive frames before and after the indicator position within three frames or more.
  • the position to be continued is left at the indicator position and the other positions are excluded from the indicator position, it is determined at the stage of frame 3 that the contact position Q F of the finger F in the frames 1 to 3 remains as the indicator position.
  • the indicator position detection unit 40 is within the second distance L2 in two consecutive frames before and after the indicator position.
  • the contact position Q F of the finger F in the frames 1 to 3 is excluded from the indicator position at the stage of frame 4. It is decided that
  • the delay until the position to be left at the indicator position is increased. That is, since the timing at which the pointer position detection unit 40 outputs the pointer position is delayed, the response to the user's operation is deteriorated. For this reason, it is preferable to suppress the number of frames for monitoring the state falling within the second distance L2 to about two or three.
  • FIG. 18 is a block diagram illustrating a configuration example of the electronic information device according to the embodiment of the present invention.
  • an electronic information device 100 includes a display device 101, a display device control unit 102 that controls the display device 101, a touch panel 103 corresponding to the touch panel 10 described above, Touch panel controller 104 corresponding to each part (drive line drive unit 20, sense signal processing unit 30, indicator position detection unit 40, control unit 50, and storage unit 60) excluding touch panel 10 in touch panel system 1 of FIG.
  • Button switch unit 105 that accepts user instructions, imaging unit 106 that generates image data by imaging, audio output unit 107 that outputs input audio data as audio, and generates audio data by collecting sound
  • wireless communication unit 110 that wirelessly communicates communication data with devices external to electronic information device 100, and communication data that wireless communication unit 110 communicates wirelessly
  • An antenna 111 that radiates as an electromagnetic wave and receives an electromagnetic wave emitted from an external device of the electronic information device 100, a wired communication unit 112 that communicates communication data with an external device of the electronic information device 100 by wire, and various data
  • a memory 113 to be stored and a main body control unit 114 for controlling the overall operation of the electronic information device 100 are provided.
  • indicator position detection unit 40 and control unit 50 may be part of the main body control unit 114 instead of the touch panel controller 104.
  • the storage unit 60 described above may be a part of the memory 113 instead of the touch panel controller 104.
  • the electronic information device 100 shown in FIG. 18 is only one application example of the touch panel system 1.
  • the touch panel system 1 is naturally applicable to an electronic information device having a configuration different from that of the electronic information device 100 shown in FIG.
  • the capacity distribution signal Ai and the detection target signal Bi are described as having a corresponding signal value that decreases as the capacitance formed on the detection surface P increases.
  • the capacitance distribution signal Ai and the detection target signal Bi are not necessarily such signals.
  • the capacitance distribution signal Ai and the detection target signal Bi may be such that the corresponding signal value increases as the capacitance formed on the detection surface P increases.
  • the indicator position detection unit 40 corresponds to the signal value of the detection target signal Bi that exceeds the exclusion candidate position (exceeding the second threshold Th2 but exceeding the first threshold Th1).
  • all exclusion candidate positions may be immediately set as non-indicator positions (that is, Only the position of the detection surface P corresponding to the signal value of the detection target signal Bi exceeding the second threshold may be detected as the indicator position.
  • the touch panel system 1 when the touch panel system 1 is mounted on an electronic information device 100 that can be operated simultaneously by a plurality of people, such as an electronic blackboard or digital signage, the stylus pen U must be in contact at a plurality of locations on the detection surface P. Therefore, it is preferable to apply the touch panel system 1 according to the above-described embodiment as it is without applying this modification.
  • the detection target signal Bi in which each signal value in the non-instruction state becomes a reference value is generated by adjusting the capacitance distribution signal Ai based on the calibration data. To do. However, if the signal values of the capacitance distribution signal Ai in the non-instruction state do not vary excessively, the capacitance distribution signal Ai may be used as the detection target signal Bi without performing calibration and signal value adjustment.
  • the touch panel system 1 includes a plurality of drive lines DL provided parallel to each other along the detection surface P, and provided parallel to each other along the detection surface P and three-dimensionally intersecting with the drive line DL.
  • Touch panel 10 including a plurality of sense lines SL, a drive line drive unit 20 that is driven by applying a drive signal Di to the drive line DL, and the detection that appears on the sense line SL by driving the drive line DL
  • a sense signal Si having an intensity corresponding to the presence or absence of an indicator that is in contact with or close to each position on the surface P
  • the presence or absence of the indicator that is in contact with or close to each position on the detection surface P is determined.
  • a pointer position detection unit that detects a pointer position that is a position of the pointer that is in contact with or close to the detection surface P based on the signal values of the detection target signal Bi.
  • the pointer position detection unit exceeds the first threshold Th1 among the selection candidate positions that are positions of the detection surface P corresponding to the signal value of the detection target signal Bi exceeding the first threshold Th1.
  • 2 is an exclusion candidate position that is the position of the detection surface P corresponding to the signal value of the detection target signal Bi that does not exceed the threshold value Th2, and is a position where another exclusion candidate position exists in the surrounding first range.
  • the indicator position is detected by excluding the non-indicator position.
  • the touch panel system 1 based on both the signal value of the detection target signal Bi and the positional relationship on the detection surface P, whether the detected selection candidate position is the non-indicator position or not is indicated by the indicator position. Distinguish between them. Therefore, it is possible to accurately distinguish the non-indicator position and the indicator position.
  • the signal value of the detection target signal Bi corresponding to at least a part of the position of the detection surface P serving as a peripheral portion of the liquid is:
  • the first threshold Th1 and the second threshold Th2 are set so as to exceed the first threshold Th1 but not exceed the second threshold Th2.
  • the liquid on the detection surface P e.g., water droplet W
  • precisely excluded candidate position can be detected as Is possible.
  • the signal value of the detection target signal Bi corresponding to the position of the detection surface P in contact with the finger satisfies the second threshold Th2.
  • the second threshold Th2 is set so as to exceed.
  • a contact position Q F of the finger F by being detected as excluded candidate position, it is possible to detect as accurately indicator position.
  • the signal value of the detection target signal Bi corresponding to the position of the detection surface P in contact with the stylus pen U is the first value. Although it exceeds 1 threshold value Th1, it does not need to exceed said 2nd threshold value Th2.
  • the contact position Q U of the stylus pen U can be detected as an exclusion candidate positions.
  • the contact position Q U of the stylus pen U from the position relationship on the detection surface P because difficult to be judged as a non-indicator position, eventually it is possible to detect the indicator position.
  • the first range is a range within a first distance L1 from the exclusion candidate position.
  • the drive line DL extends along the X direction
  • the sense line SL extends along the Y direction
  • the first range extends from the exclusion candidate position in the X direction.
  • the range is within 1X distance and within the first Y distance in the Y direction, and the first Y distance is longer than the first X distance.
  • the touch panel system 1 when the non-indicator position has a characteristic that occurs along the Y direction, it is possible to increase the detection accuracy of the non-indicator position and the indicator position.
  • a period in which the sense signal processing unit 30 generates the detection target signal Bi including the signal values corresponding to the positions on the detection surface P is set to one frame.
  • the indicator position detection unit 40 leaves a position where the state within the second distance in two consecutive frames before and after the indicator position continues for a predetermined number of frames or more. The position is excluded from the indicator position.
  • a sudden noise generation position Q N of the detection plane P due to suddenly appear noise N it is possible to exclude from the indicator position. Therefore, it is possible to improve the detection accuracy of the indicator position.
  • the electronic information device 100 includes the touch panel system 1 described above.
  • the operation method of the touch panel system 1 includes a plurality of drive lines DL provided in parallel to each other along the detection surface P, and provided in parallel to each other along the detection surface P.
  • Presence / absence of the indicator in contact with or close to each position on the detection surface P by obtaining and processing a sense signal Si having an intensity corresponding to the presence or absence of the indicator in contact with or close to each position on the detection surface P Are detected by the magnitude of each signal value corresponding to each position of the detection surface P.
  • Exclusion candidate position detection operation for detecting an exclusion candidate position that is a position of the detection surface P corresponding to the signal value of the detection target signal Bi that exceeds the second threshold Th2 but does not exceed the second threshold Th2,
  • a non-indicator position detection operation for detecting a non-indicator position that is a position where the other exclusion candidate positions exist within a first range, and excluding the non-indicator position from the selection candidate positions,
  • An indicator position detection operation for detecting an indicator position that is the position of the indicator that is in contact with or close to the detection surface P is executed.
  • the present invention can be suitably used for a touch panel system including a projection touch panel, an electronic information device including the touch panel system, and an operation method of the touch panel system.
  • Touch panel system 10 Touch panel 20: Drive line drive unit 30: Sense signal processing unit 40: Pointer position detection unit 50: Control unit 60: Storage unit 100: Electronic information device DL: Drive line SL: Sense line P: Detection plane F: finger U: stylus W: water droplet Di: drive signal Si: sense signal Ai: capacity distribution signal Bi: detection target signal L1: first distance L2: second distance Q F, Q U: a contact position Q W: false detection position R W: attachment position

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

 液体の付着等に起因したノイズによって誤って検出される位置と、指示体の位置と、を精度良く区別することで、当該ノイズが発生する状況であってもユーザによるタッチパネルの操作を受け付けることが可能なタッチパネルシステムと、当該タッチパネルシステムを備えた電子情報機器と、タッチパネルシステムの動作方法と、を提供する。タッチパネルシステム1は、タッチパネル10と、ドライブライン駆動部20と、センス信号処理部30と、指示体位置検出部40と、を備える。指示体位置検出部40は、第1閾値Th1を超える信号値に対応する選択候補位置の中から、第1閾値Th1を超えるが第2閾値Th2は超えない信号値に対応する除外候補位置であって周囲の第1範囲内に他の除外候補位置が存在する位置である非指示体位置を除外して、指示体位置を検出する。

Description

タッチパネルシステム及び電子情報機器
 本発明は、投影型の静電容量方式等のタッチパネルを備えたタッチパネルシステムや、当該タッチパネルシステムを備えた電子情報機器、タッチパネルシステムの動作方法に関する。
 近年、タッチパネルの検出面に接触または近接する指示体(例えば、ユーザの指やスタイラスペンなど、以下同じ)の位置を検出することによって、ユーザの指示を受け付けるタッチパネルシステムが、携帯電話やパソコンなどの電子情報機器に搭載されることが多くなってきている。特に、マルチタッチが可能な投影型の静電容量方式のタッチパネルが、電子情報機器に搭載されることが多くなってきている。
 投影型の静電容量方式のタッチパネルシステムは、検出面に沿って設けられた電極間または配線間の静電容量(以下、単に「容量」と称する)を電気信号として出力するタッチパネルを備え、当該電気信号の処理により容量の変化を認識することで、検出面上に接触または近接する指示体の有無及び位置を検出する。そのため、容量を変化させ得る指示体以外の物体(例えば、水)が検出面上に存在したり、電磁波を生じるノイズ源(例えば、電子情報機器が備える表示装置や電源)がタッチパネルの付近に存在したりすることで、タッチパネルが出力する電気信号にノイズが混入すると、指示体を精度良く検出することができなくなってしまう。
 特に、タッチパネルシステムが、電気信号のノイズによる変動を、指示体による容量の変化であると誤認識すると、ユーザが意図しない指示がタッチパネルシステムを介して電子情報機器に入力され、電子情報機器が意図せずON/OFFするなど、暴走することがあり得る。そして、この電子情報機器の暴走は、雨や霧の中で電子情報機器が使用されたり、電子情報機器の操作中にユーザがくしゃみや咳をしたりするなど、日常的な場面でも発生し得る。
 そこで、特許文献1では、予め設定した数よりも多い指示体が検出される場合や、予め設定した大きさよりも大きい領域内で指示体の接触が検出される場合に、タッチパネルが水濡れしていると判定して、タッチパネルを無効化するタッチパネルシステムが提案されている。
特開2012-216053号公報
 しかしながら、特許文献1で提案されているタッチパネルシステムでは、タッチパネルの検出面に対して多量の水が付着しない限り、水濡れした状態であることを検出することができない。そのため、このタッチパネルシステムでは、例えば1個または少数の水滴がタッチパネルの検出面に付着するなど、日常的に生じる蓋然性が高い状況におけるノイズについては、検出することができない。
 さらに、このタッチパネルシステムでは、タッチパネルが水濡れした状態であることが検出されると、その後はタッチパネルからの入力を受け付けない。そのため、ユーザは、タッチパネル以外の操作手段によって電子機器を操作しなければならず、タッチパネルシステム及び当該タッチパネルシステムを備えた電子機器の使い勝手が悪いものとなる。
 そこで、本発明は、液体の付着等に起因したノイズによって誤って検出される位置と、指示体の位置と、を精度良く区別することで、当該ノイズが発生する状況であってもユーザによるタッチパネルの操作を受け付けることが可能なタッチパネルシステムと、当該タッチパネルシステムを備えた電子情報機器と、液体の付着等に起因したノイズによって誤って検出される位置と、指示体の位置と、を精度良く区別することで、当該ノイズが発生する状況であってもユーザによるタッチパネルの操作を受け付けることが可能なタッチパネルシステムの動作方法と、を提供する。
 上記目的を達成するため、本発明は、検出面に沿って互いに平行に設けられる複数のドライブラインと、前記検出面に沿って互いに平行に設けられるとともに前記ドライブラインと立体交差する複数のセンスラインと、を備えるタッチパネルと、前記ドライブラインにドライブ信号を与えて駆動するドライブライン駆動部と、前記ドライブラインの駆動により前記センスラインに表れる、前記検出面の各位置に接触または近接する指示体の有無に対応した強度のセンス信号を取得して処理することで、前記検出面の各位置に接触または近接する前記指示体の有無を、前記検出面の各位置に対応する各信号値の大きさでそれぞれ表した検出対象信号を生成するセンス信号処理部と、前記検出対象信号の前記各信号値に基づいて、前記検出面に接触または近接する指示体の位置である指示体位置を検出する指示体位置検出部と、を備え、前記指示体位置検出部は、第1閾値を超える前記検出対象信号の信号値に対応する前記検出面の位置である選択候補位置の中から、前記第1閾値を超えるが第2閾値は超えない前記検出対象信号の信号値に対応する前記検出面の位置である除外候補位置であって周囲の第1範囲内に他の前記除外候補位置が存在する位置である非指示体位置を、除外して、前記指示体位置を検出することを特徴とするタッチパネルシステムを提供する。
 さらに、上記特徴のタッチパネルシステムにおいて、前記検出面に液体が付着したとき、当該液体の周縁部となる前記検出面の位置の少なくとも一部に対応する前記検出対象信号の信号値が、前記第1閾値を超えるが前記第2閾値を超えないように、前記第1閾値及び前記第2閾値がそれぞれ設定されていると、好ましい。
 さらに、上記特徴のタッチパネルシステムにおいて、前記検出面に指が接触したとき、当該指が接触した前記検出面の位置に対応する前記検出対象信号の信号値が、前記第2閾値を超えるように、前記第2閾値が設定されていると、好ましい。
 さらに、上記特徴のタッチパネルシステムにおいて、前記検出面にスタイラスペンが接触したとき、当該スタイラスペンが接触した前記検出面の位置に対応する前記検出対象信号の信号値が、前記第1閾値を超えるが前記第2閾値を超えなくてもよい。
 さらに、上記特徴のタッチパネルシステムにおいて、前記第1範囲が、前記除外候補位置から第1距離以内となる範囲であると、好ましい。
 さらに、上記特徴のタッチパネルシステムにおいて、前記ドライブラインがX方向に沿って延びるとともに、前記センスラインがY方向に沿って延び、前記第1範囲が、前記除外候補位置から前記X方向について第1X距離以内かつ前記Y方向について第1Y距離以内となる範囲であり、前記第1X距離が前記第1Y距離よりも短くてもよい。
 さらに、上記特徴のタッチパネルシステムにおいて、前記センス信号処理部が、前記検出面の各位置に対応する前記各信号値を一通り含む前記検出対象信号を生成する期間を、1フレームとするとき、前記指示体位置検出部は、前記指示体位置の中で、連続する前後の2フレームで第2距離以内に収まる状態が所定数のフレーム以上継続している位置を残し、それ以外の位置を前記指示体位置から除外すると、好ましい。
 また、本発明は、上記のタッチパネルシステムを備えたことを特徴とする電子情報機器を提供する。
 また、本発明は、検出面に沿って互いに平行に設けられる複数のドライブラインと、前記検出面に沿って互いに平行に設けられるとともに前記ドライブラインと立体交差する複数のセンスラインと、を備えるタッチパネルを有するタッチパネルシステムの動作方法であって、前記ドライブラインにドライブ信号を与えて駆動することで前記センスラインに表れる、前記検出面の各位置に接触または近接する指示体の有無に対応した強度のセンス信号を取得して処理することで、前記検出面の各位置に接触または近接する前記指示体の有無を、前記検出面の各位置に対応する各信号値の大きさでそれぞれ表した検出対象信号を生成する検出対象信号生成動作と、第1閾値を超える前記検出対象信号の信号値に対応する前記検出面の位置である選択候補位置を検出する選択候補位置検出動作と、前記第1閾値を超えるが第2閾値は超えない前記検出対象信号の信号値に対応する前記検出面の位置である除外候補位置を検出する除外候補位置検出動作と、前記除外候補位置であって周囲の第1範囲内に他の前記除外候補位置が存在する位置である非指示体位置を検出する非指示体位置検出動作と、前記選択候補位置の中から前記非指示体位置を除外して、前記検出面に接触または近接する指示体の位置である指示体位置を検出する指示体位置検出動作と、が実行されることを特徴とするタッチパネルシステムの動作方法を提供する。
 上記特徴のタッチパネルシステムによれば、非指示体位置と指示体位置とを精度良く区別することが可能であるため、液体の付着等に起因したノイズが発生する状況であっても、ユーザによるタッチパネルの操作を受け付けることが可能となる。
本発明の実施形態に係るタッチパネルシステムの全体的な構造の一例を示すブロック図。 図1のタッチパネルが備えるドライブライン及びセンスラインの構造の一例について示す平面図及び回路図。 タッチパネルの電界の状態を示す模式図。 タッチパネルの直交並列駆動について説明する図。 タッチパネルを直交並列駆動する場合における容量分布信号の復号方法について説明する図。 容量分布信号とキャリブレーションデータと検出対象信号とのそれぞれについて示すグラフ。 検出面に指示体が接触した場合に生成される検出対象信号を示すグラフ。 検出面に水滴が付着した場合におけるタッチパネルの電界の状態を示す模式図。 検出面に水滴が付着した場合に生成される検出対象信号を示すグラフ。 水滴と偽検出位置との位置関係について示した模式図。 水滴と偽検出位置との位置関係について示した模式図。 指示体位置検出部の動作例について示すフローチャート。 指示体位置を検出するために用いられる閾値を示すグラフ。 非指示体位置の検出方法の一例を示す模式図。 非指示体位置の検出方法の一例を示す模式図。 指示体位置の関連付け方法の一例について示す模式図。 図16に示す指示体位置の関連付け方法を利用した突発ノイズ発生位置の除外方法の一例について示す模式図。 本発明の実施形態に係る電子情報機器の構成例を示すブロック図。
<<タッチパネルシステム>>
<全体構造例及び全体動作例>
 以下、本発明の実施形態に係るタッチパネルシステムについて、図面を参照して説明する。最初に、本発明の実施形態に係るタッチパネルシステムの全体的な構造及び動作の一例について、図面を参照して説明する。
 図1は、本発明の実施形態に係るタッチパネルシステムの全体的な構造の一例を示すブロック図である。
 図1に示すように、タッチパネルシステム1は、タッチパネル10と、ドライブライン駆動部20と、センス信号処理部30と、指示体位置検出部40と、制御部50と、記憶部60と、を備える。
 タッチパネル10は、検出面Pに沿って互いに平行に設けられる複数のドライブラインDLと、検出面Pに沿って互いに平行に設けられるとともにドライブラインDLと交差する複数のセンスラインSLと、を備える。ドライブラインDLは、X方向(図中上下方向)に沿って延びるように設けられている。一方、センスラインSLは、X方向に対して垂直なY方向(図中左右方向)に沿って延びるように設けられている。即ち、図1に示すタッチパネルシステム1では、ドライブラインDL及びセンスラインSLが、垂直に交差する。なお、ドライブラインDL及びセンスラインSLは、垂直以外の角度で交差してもよい。
 図2は、図1のタッチパネルが備えるドライブライン及びセンスラインの構造の一例について示す平面図及び回路図である。図2(a)は、タッチパネル10が備えるドライブラインDL及びセンスラインSLの構造について示す平面図であり、図2(b)は、図2(a)の等価回路を示す回路図である。
 図2(a)及び図2(b)に示すように、ドライブラインDLは、センスラインSLと交差する部分を除いて局所的に面積が大きくなるドライブラインパッド部DLPを備える。同様に、センスラインSLは、ドライブラインDLと交差する部分を除いて局所的に面積が大きくなるセンスラインパッド部SLPを備える。
 ドライブラインDL及びセンスラインSLが交差する部分では、ドライブラインDLとセンスラインSLとの間に容量Cが形成される。なお、図2(a)に例示する構造では、主として隣接するドライブラインパッド部DLP及びセンスラインパッド部SLPの間(即ち、交差するドライブラインDL及びセンスラインSLの間)で、容量Cが形成される。なお、ドライブラインDLにドライブラインパッド部DLPが設けられず、センスラインSLにセンスラインパッド部SLPが設けられなくてもよい。この場合でも、ドライブラインDL及びセンスラインSLの交差部分において、容量Cが形成される。
 図3は、タッチパネルの電界の状態を示す模式図である。図3(a)は、検出面P上に指示体が存在しない場合の模式図であり、図3(b)は、検出面P上に指示体(指F)が存在する場合の模式図である。なお、図3(a)及び図3(b)のそれぞれにおいて、電気力線(静電力線)を矢印で示している。また、図3(a)及び図3(b)では、図示の簡略化のため、ドライブラインパッド部DLP及びセンスラインパッド部SLPが、同一平面に存在するように図示しているが、これらは異なる平面に存在していてもよい。
 図3(b)に示すように、検出面Pに指Fを接触または近接させると、指Fを含む人体は、接地された物体(即ち、シールド)として振る舞う。そのため、図3(b)に示すように、検出面P上に指Fを接触または近接させると、図3(a)に示すような検出面P上に指Fが存在しない場合と比較して、ドライブラインDL及びセンスラインSLが形成する容量が小さくなる。なお、ドライブラインDLにドライブラインパッド部DLPが設けられず、センスラインSLにセンスラインパッド部SLPが設けられない場合であっても、容量Cは同様に変化する。
 ドライブライン駆動部20は、複数のドライブラインDLに対して、信号電圧の組み合わせが所定の順番で変動するドライブ信号Diを、繰り返し与えて駆動する。これにより、センスラインSLに、ドライブラインDL及びセンスラインSLが形成する容量に対応した強度のセンス信号Siが表れる。
 センス信号処理部30は、センスラインSLに表れるセンス信号Siを取得して処理することで、検出対象信号Biを生成する。検出対象信号Biは、検出面Pの各位置に接触または近接する指示体の有無を、検出面Pの各位置に対応する各信号値の大きさでそれぞれ表した信号である。具体的に、図1に例示するタッチパネルシステム1において生成される検出対象信号Biは、ドライブラインDLとセンスラインSLとが形成する容量の面内分布を示す信号となる。
 指示体位置検出部40は、検出対象信号Biに基づいて、検出面Pに接触または近接する指示体の位置(以下、「指示体位置」という)を検出し、その検出結果を示す検出結果信号Tiを生成する。具体的に、指示体位置検出部40は、検出対象信号Biの各信号値によって表される容量の面内分布について、容量が変動している検出面P内の位置を検出することによって、指示体位置を検出する。
 検出結果信号Tiには、検出された指示体の数や、それぞれの指示体位置、それぞれの指示体の検出面Pに対する接触または近接の程度を示すデータ、指示体位置の動き(前に検出された指示体位置との関連性)を示すデータなどが含まれ得る。そして、この検出結果信号Tiは、例えばタッチパネルシステム1を備える電子情報機器において、ユーザの指示を示す信号として利用される。
 制御部50は、ドライブライン駆動部20と、センス信号処理部30と、指示体位置検出部40と、の動作をそれぞれ制御する。なお、図1において、指示体位置検出部40と制御部50とを別体として表しているが、指示体位置検出部40は、制御部50の一部を成すものであってもよい。
 記憶部60は、センス信号処理部30、指示体位置検出部40及び制御部50が演算処理をする際に必要となるデータを、一時的に記憶する。例えば、指示体位置検出部40が、検出対象信号Biの他に過去の指示体位置を利用して現在の指示体の位置を検出する場合や、指示体位置の動き(前に検出された指示体位置との関連性)を示すデータを検出結果信号Tiに含める場合、記憶部60が、過去(例えば、直近)に指示体位置検出部40が検出した指示体の位置を示すデータを一時的に記憶するとともに、当該データを指示体位置検出部40に対して与えてもよい。なお、図1において、1つの記憶部60が、センス信号処理部30、指示体位置検出部40及び制御部50のそれぞれのデータを記憶するものとして表しているが、センス信号処理部30、指示体位置検出部40及び制御部50の少なくとも1つが、独立した記憶部を備えてもよい。
<タッチパネルの駆動方法とセンス信号の処理方法>
 次に、上述したタッチパネルシステム1の各部の具体的な動作例について、図面を参照して説明する。最初に、ドライブライン駆動部20によるタッチパネル10の駆動方法のと、センス信号処理部30によるセンス信号の処理方法について、図面を参照して説明する。なお、以下では説明の具体化のため、ドライブライン駆動部20が、タッチパネル10を直交並列駆動する場合について例示する。
 図4及び図5を参照して、タッチパネル10の直交並列駆動について説明する。図4は、タッチパネルの直交並列駆動について説明する図である。また、図5は、タッチパネルを直交並列駆動する場合における容量分布信号の復号方法について説明する図である。なお、図4では説明の簡略化のために、1本のセンスラインSL1と、4本のドライブラインDL1~DL4のみを示している。また、センスラインSL1とドライブラインDL1~DL4のそれぞれとが成すそれぞれの容量を、C11~C41とする。
 図4の上側のブロック図に示すように、センス信号処理部30は、増幅部31と、容量信号生成部32と、検出対象信号生成部33と、を備える。増幅部31は、センスラインSL1が接続される反転入力端子(-)と出力端子とが増幅容量Cintを介して接続されるとともに、非反転入力端子(+)が接地電圧(GND)となるオペアンプによって構成されている。また、容量信号生成部32は、増幅部31の出力端子の電圧値VoutをAD(Analog to Digital)変換した上で所定の演算を行うことにより容量C11~C41に対応した変換値Ctを得て、当該変換値Ctを復号して容量分布信号Aiを生成するように構成されている。
 また、図4の下側の表に示すように、タッチパネル10の直交並列駆動では、ドライブラインDL1~DL4に対して、信号電圧「1」(正の電圧、+V)及び「-1」(負の電圧、-V)を成分として有するドライブ信号Diが与えられる。本例では、ドライブラインDL1~DL4に対して与えられるドライブ信号Diは、「1」及び「-1」の組み合わせが、図4の下側の表に示す順番で変動するとともに、繰り返されるものとなる(例えば、1回目、2回目、3回目、4回目、1回目、2回目、・・・)。
 直交並列駆動では、ドライブラインDL1~DL4の駆動によって、ドライブラインDL1~DL4のそれぞれに正または負の電荷が蓄積される。そのため、センスラインSL1には、全ての容量C11~C41を加算または減算して組み合わせた値に対応した電圧値のセンス信号Siが表れ、増幅部31の出力端子の電圧値Voutも、容量C11~C41を加算または減算して組み合わせた値に対応した値となる。
 具体的に、1回目の駆動では、ドライブラインDL1~DL4の全てに対して「1」が与えられるため、増幅部31の出力端子の電圧値Voutは、Vout=(C11+C21+C31+C41)・V/Cintとなる。このとき、電圧V及び増幅容量Cintが既知であるため、容量信号生成部32は、電圧値Voutに対して簡単な演算を行う(Cint/Vを乗じる)だけで、容量C11~C41を加算または減算して組み合わせた変換値Ctを得ることができる。この1回目の駆動では、容量信号生成部32が演算を行うと、C11+C21+C31+C41を示す変換値Ctが得られる。
 また、2回目の駆動では、ドライブラインDL1,DL3に対して「1」が与えられ、ドライブラインDL2,DL4に対しては「-1」が与えられるため、増幅部31の出力端子の電圧値Voutは、Vout=(C11-C21+C31-C41)・V/Cintとなる。そして、容量信号生成部32の演算によって、C11-C21+C31-C41を示す変換値Ctが得られる。
 また、3回目の駆動では、ドライブラインDL1,DL2に対して「1」が与えられ、ドライブラインDL3,DL4に対しては「-1」が与えられるため、増幅部31の出力端子の電圧値Voutは、Vout=(C11+C21-C31-C41)・V/Cintとなる。そして、容量信号生成部32の演算によって、C11+C21-C31-C41を示す変換値Ctが得られる。
 また、4回目の駆動では、ドライブラインDL1,DL4に対して「1」が与えられ、ドライブラインDL2,DL3に対しては「-1」が与えられるため、増幅部31の出力端子の電圧値Voutは、Vout=(C11-C21-C31+C41)・V/Cintとなる。そして、容量信号生成部32の演算によって、C11-C21-C31+C41を示す変換値Ctが得られる。
 上記のようにして得られた変換値Ctから、それぞれの容量C11~C41を求めるためには、図5に示すような変換値Ctの復号が必要となる。なお、図5では、4本のセンスラインSL1~SL4と、ドライブラインDL1~DL4と、が形成する容量C11~C44をそれぞれ求める場合について説明するが、ドライブラインDL1~DL4に与えられるドライブ信号Diは、図4と同様である。
 また、図5(a)に示すように、センスラインSL1とドライブラインDL1~DL4とが形成する容量をC11~C41、センスラインSL2とドライブラインDL1~DL4とが形成する容量をC12~C42、センスラインSL3とドライブラインDL1~DL4とが形成する容量をC13~C43、センスラインSL4とドライブラインDL1~DL4とが形成する容量をC14~C44とする。さらに、1回目~4回目の駆動時におけるセンスラインSL1の変換値をCt11~Ct41、1回目~4回目の駆動時におけるセンスラインSL2の変換値をCt12~Ct42、1回目~4回目の駆動時におけるセンスラインSL3の変換値をCt13~Ct43、1回目~4回目の駆動時におけるセンスラインSL4の変換値をCt14~Ct44とする。
 この場合、図5(b)に示すように、変換値Ct11~Ct44の行列「Ct」は、ドライブ信号Diの行列「H」と容量C11~C44の行列「C」との内積になる。なお、行列「Ct」は、変換値が得られるセンスラインSL1~SL4を行、変換値が得られる順番を列としたものである。また、行列「H」は、ドライブ信号Diの成分(信号電圧)を与えるドライブラインDL1~DL4を行、ドライブ信号Diの成分を与える順番を列としたものである。また、行列「C」は、ドライブラインDL1~DL4が延びる方向(X方向)に沿った容量を行、センスラインSL1~SL4が延びる方向(Y方向)に沿った容量を列としたものである。
 ここで、説明の具体化のために、図4に示したセンスラインSL1及び容量C11~C41に着目する。なお、以下の説明は、これ以外のセンスラインSL2~SL4及び容量C12~C42,C13~C43,C14~C44についても、同様に妥当するものである。
 図5(b)における内積「H」・「C」の第1行第1列の成分であるCt11は、下記式(1)となる。同様に、内積「H」・「C」の第2行第1列の成分であるCt21は下記式(2)、内積「H」・「C」の第3行第1列の成分であるCt31は下記式(3)、内積「H」・「C」の第4行第1列の成分であるCt41は下記式(4)となる。
 Ct11=C11+C21+C31+C41 ・・・(1)
 Ct21=C11-C21+C31-C41 ・・・(2)
 Ct31=C11+C21-C31-C41 ・・・(3)
 Ct41=C11-C21-C31+C41 ・・・(4)
 直交並列駆動では、ドライブラインDL1~DL4に対して与えられるドライブ信号Diの成分「1」及び「-1」が直交系列となるため、行列「H」が直交行列になる。そのため、図5(c)に示すように、ドライブ信号の行列「H」の転置行列(行の成分と列の成分を入れ替えた行列)「H」と行列「Ct」との内積を求めるのみで、行列「C」(即ち、容量の面内分布)を求めることができる。なお、本例では、行列「H」が行列「H」と等しくなる。
 具体的に、内積「H」・「Ct」の第1行第1列の演算結果は、下記式(5)となる。同様に、内積「H」・「Ct」の第2行第1列の演算結果は下記式(6)となり、内積「H」・「Ct」の第3行第1列の演算結果は下記式(7)となり、内積「H」・「Ct」の第4行第1列の演算結果は下記式(8)となる。なお、下記式(5)~(8)の右辺は、下記式(5)~(8)の左辺に対して上記式(1)~(4)をそれぞれ代入することで求められる。
 Ct11+Ct21+Ct31+Ct41=4・C11 ・・・(5)
 Ct11-Ct21+Ct31-Ct41=4・C21 ・・・(6)
 Ct11+Ct21-Ct31-Ct41=4・C31 ・・・(7)
 Ct11-Ct21-Ct31+Ct41=4・C41 ・・・(8)
 直交並列駆動では、容量信号生成部32における復号処理(行列の演算)によって、t倍(図5の例では4)の容量C11~C41が求められるため、ノイズの影響がt1/2倍に低減される。
 そして、以上のようにして生成される容量分布信号Aiは、検出面Pの各位置における容量の大きさを、各信号値の大きさで表したものとなる。特に、上記の方法で生成される容量分布信号Aiは、検出面Pに形成される容量が大きくなるほど、対応する信号値が小さくなる。これは、容量分布信号Aiを調整して生成される検出対象信号Biにおいても同様である。
 ところで、タッチパネル10が生成するセンス信号Siは、タッチパネル10の構造上のばらつきや、検出面Pに付着した汚れ、経年劣化、使用環境(特に、温度)などの様々な影響を受ける。センス信号Siを処理して得られる容量分布信号Aiも同様であり、これらの影響を受ける。そのため、容量分布信号Aiの各信号値は、検出面Pに接触または近接する指示体が存在しない状態(以下、「無指示状態」という)であってもばらついてしまい、不均一となる。
 そこで、本発明の実施形態に係るタッチパネルシステム1では、検出対象信号生成部33が、以下において説明するキャリブレーションを実行することで、容量分布信号Aiの信号値の調整方法を決定する。そして、検出対象信号生成部33は、この決定した整方法に基づいて容量分布信号Aiの信号値を調整することで、検出対象信号Biを生成する。
 検出対象信号生成部33によるキャリブレーションについて、図面を参照して説明する。図6は、容量分布信号とキャリブレーションデータと検出対象信号とのそれぞれについて示すグラフである。図6(a)は、容量分布信号Aiについて示すグラフである。図6(b)は、キャリブレーションデータについて示すグラフである。図6(c)は、検出対象信号Biについて示すグラフである。また、図6(a)~図6(c)に示す容量分布信号Ai、キャリブレーションデータ及び検出対象信号Biは、それぞれ無指示状態で生成されたものである。
 図6(a)に示すように、容量分布信号Aiの各信号値は、上述したように無指示状態であってもばらつくため、不均一となる。そこで、検出対象信号生成部33は、無指示状態において生成する検出対象信号Biの各信号値が、所定の値である基準値となるような、容量分布信号Aiの信号値の調整方法(キャリブレーションデータ)を決定する。なお、以下では説明の具体化のため、基準値が「0」である場合について例示する。
 例えば、検出対象信号生成部33は、図6(b)に示すように、図6(a)の容量分布信号Aiの各信号値を基準値について反転させた値(即ち、基準値-信号値)を有するキャリブレーションデータを生成して、記憶部60に記憶させる。そして、検出対象信号生成部33は、容量分布信号Aiの各信号値に対して、記憶部60から読み出したキャリブレーションデータの対応する各値を加算することで、検出対象信号Biの各信号値を算出する。このようにして算出される検出対象信号Biの各信号値は、無指示状態において、図6(c)に示すように基準値(または、基準値に近似した値)となるため、均一となる。
 ここで、検出面Pに指示体が接触した場合に生成される検出対象信号Biについて、図面を参照して説明する。図7は、検出面に指示体が接触した場合に生成される検出対象信号を示すグラフである。図7(a)は、検出面Pに指が接触した場合に生成される検出対象信号Biを示すグラフである。図7(b)は、検出面Pにスタイラスペンが接触した場合に生成される検出対象信号Biを示すグラフである。
 図7(a)に示すように、検出面Pに指が接触すると、その接触位置Qに対応する検出対象信号Biの信号値が、基準値と比較して著しく大きくなる。同様に、図7(b)に示すように、検出面Pにスタイラスペンが接触すると、その接触位置Qに対応する検出対象信号Biの信号値が、基準値と比較して著しく大きくなる。これに対して、検出面Pの他の位置に対応する検出対象信号Biの信号値は、基準値(または、基準値に近似した値)のままである。
 このように、キャリブレーションを実行すると、検出面Pに指示体が接触または近接した場合において、その接触位置Q,Qまたは近接位置に対応する信号値が、他の位置に対応する信号値とは顕著に異なる検出対象信号Biを、生成することが可能となる。そのため、指示体位置検出部40が、この検出対象信号Biを利用して指示体位置の検出を行うことで、指示体位置を精度良く検出することが可能になる。
 ところで、図7(a)及び図7(b)に示すように、検出面Pにスタイラスペンが接触した場合における検出対象信号Biの信号値の増大量(容量の減少量)は、検出面Pに指が接触した場合における検出対象信号Biの信号値の増大量(容量の減少量)よりも、小さくなる。具体的に、検出面Pにスタイラスペンが接触した場合における検出対象信号Biの信号値の増大量(容量の減少量)は、検出面Pに指が接触した場合における検出対象信号Biの信号値の増大量(容量の減少量)の、3分の1から10分の1程度まで小さくなる。
 これは、スタイラスペンが、一般的に細かい作業をする際に使用されるものであり、その先端が指よりも十分に細くなる(接触面積が小さくなる)ように設計されているため、スタイラスペンが検出面Pに接触した場合における容量Cの変化量(減少量)が、指が検出面Pに接触した場合における変化量(減少量)と比較して、小さくなるからである。
<液体の付着>
 以下、検出面Pに液体が付着した場合について説明する。なお、本願における「液体」は、必ずしも水(純水)に限定されるものではなく、お茶、ジュース、化粧水、唾液、汗なども当然に含まれ得る。特に、本願における「液体」には、比誘電率が高い液体が含まれ得る。ただし、以下では説明の具体化のため、「液体」が水(純水)である場合を例に挙げて説明する。
 検出面Pに水滴が付着した場合におけるタッチパネルの電界の状態について、図面を参照して説明する。図8は、検出面に水滴が付着した場合におけるタッチパネルの電界の状態を示す模式図である。
 図8に示すように、検出面Pに水滴Wが付着すると、指やスタイラスペンなどの指示体が検出面Pに近接または接触した場合(図3(b)参照)とは反対の現象が生じる。即ち、検出面Pに水滴Wが付着した場合、水滴Wは接地されておらず比誘電率が高いため、検出面P上に物体が存在しない場合(図3(a)参照)と比較して、電界及び容量が大きくなる。
 ここで、検出面Pに水滴Wが付着した場合に生成される検出対象信号Biについて、図面を参照して説明する。図9は、検出面に水滴が付着した場合に生成される検出対象信号を示すグラフである。
 図9に示すように、検出面Pに水滴Wが付着すると、上述のように電界及び容量が大きくなる。そのため、検出面Pにおける水滴Wの付着位置R(図中、白塗りの矢印で示した位置)に対応する検出対象信号Biの信号値は、基準値よりも小さくなる。
 ただし、検出面Pに水滴Wが付着する場合において、水滴Wの周縁部の一部の位置(図中、黒塗りの矢印で示した位置、以下、「偽検出位置Q」とする)に対応する検出対象信号Biの信号値は、基準値よりも大きくなり得る。即ち、偽検出位置Qでは、指示体が検出面Pに接触または近接する場合と、同様の信号値の変化が生じる。
 さらに、この偽検出位置Qに対応する検出対象信号Biの信号値は、検出面Pにスタイラスペンが接触した場合における接触位置Qに対応する検出対象信号Biの信号値(図7(b)参照)と、同程度の大きさとなる。また、検出面Pに指が接触せずに近接した場合における、指の接触時よりも変動量が小さい状態検出対象信号Biの信号値と、同程度の大きさとなることも想定される。そのため、指示体位置検出部40が、単に検出対象信号Biの信号値に基づいて指示体位置を検出すると、偽検出位置Qを指示体位置として誤検出する可能性がある。
 そこで、本発明の実施形態に係るタッチパネルシステム1では、以下に説明するように、指示体位置検出部40が、このような偽検出位置Qを除外して指示体位置を検出する。
<指示体位置の検出方法>
 最初に、偽検出位置Qの検出原理について、図面を参照して説明する。図10及び図11は、水滴と偽検出位置との位置関係について示した模式図である。なお、図10(a)は、大粒の水滴W(本例では0.6cm)が検出面Pに付着した場合について示す図であり、図10(b)は、図10(a)に示す場合における付着位置R及び偽検出位置Qを示す図である。一方、図11(a)は、霧吹き状に複数の小粒の水滴が検出面Pに付着した場合について示す図であり、図11(b)は、図11(a)に示す場合における付着位置R及び偽検出位置Qを示す図である。また、図10(b)及び図11(b)では、付着位置Rを白塗りの丸印で示し、偽検出位置Qを黒塗りの丸印で示している。
 図10(b)及び図11(b)に示すように、偽検出位置Qは、水滴Wの周縁部に複数(例えば、2つ)現れる。特に、偽検出位置Qは、Y方向(センスラインSLが延びる方向)に沿って並ぶように、複数現れる。即ち、偽検出位置Qは、検出面P内の比較的狭い範囲内で、複数現れるという特徴を有していると言える。
 そこで、指示体位置検出部40は、上記の特徴に基づいて偽検出位置Qを選択的に除外して、指示体位置を検出する。
 指示体位置検出部40による指示体位置を検出する一連の動作について、図面を参照して説明する。図12は、指示体位置検出部の動作例について示すフローチャートである。図13は、指示体位置を検出するために用いられる閾値を示すグラフである。なお、図12に示すフローチャートは、あるタイミング(例えば、検出面Pの各位置に対応する各信号値を一通り含む検出対象信号Biが生成される期間、以下「フレーム」という)における指示体の位置を検出するものであり、指示体位置検出部40によって繰り返し行われるものである。
 図12に示すように、指示体位置検出部40は、最初に、1フレーム分の検出対象信号Bi(検出面Pの各位置に対応する各信号値を一通り含む検出対象信号Bi)を取得する(ステップ#1)。
 次に、指示体位置検出部40は、図13に示す第1閾値Th1を上回った(第1閾値Th1を超えた)検出対象信号Biの信号値に対応する位置を、「選択候補位置」として検出する(ステップ#2)。このとき、第1閾値Th1は、上述した指の接触位置QFやスタイラスペンの接触位置Qの他、偽検出位置Qが選択候補位置に含まれるように、設定される。
 ところで、指が検出面Pに対して広範囲に接触する場合など、検出面P内のある領域を形成する連続した複数の位置に対応する検出対象信号Biの複数の信号値が、それぞれ第1閾値Th1を上回っている場合がある。例えばこの場合、指示体位置検出部40は、当該領域の重心位置や、当該領域の中で対応する検出対象信号Biの信号値が最大となる位置を、当該ある領域を代表させて選択候補位置として選択する。
 次に、指示体位置検出部40は、図13に示す第1閾値Th1を上回るが第2閾値Th2を下回る(第1閾値Th1を超えるが第2閾値Th2は超えない)検出対象信号Biの信号値に対応する位置を、「除外候補位置」として検出する(ステップ#3)。このとき、第2閾値Th2は、上述した偽検出位置Qが含まれるように、設定される。なお、除外候補位置は、選択候補位置の条件に対して「第2閾値Th2を下回る(第2閾値Th2は超えない)」という条件を加重したものであるため、選択候補位置の一部(または全部)となる。
 ただし、上述のように、偽検出位置Qに対応する検出対象信号Biの信号値は、例えば検出面Pにスタイラスペンが接触した場合における接触位置Qに対応する検出対象信号Biの信号値(図7(b)参照)と同程度の大きさとなる。そこで、指示体位置検出部40は、除外候補位置の中から、偽検出位置Qを非指示体位置として選択的に検出する(ステップ#4)。なお、偽検出位置Qを非指示体位置として検出する具体的な方法については、後述する。
 次に、指示体位置検出部40は、ステップ#2で検出した選択候補位置から、ステップ#4で検出した非指示体位置を除外して、指示体位置を検出する(ステップ#5)。そして、指示体位置検出部40が、指示体位置の検出結果を示す検出結果信号Tiを生成して出力することで(ステップ#6)、1フレーム分の動作が終了する。
 ここで、非指示体位置の具体的な検出方法(図12のステップ#4)について、図面を参照して説明する。図14及び図15は、非指示体位置の検出方法の一例を示す模式図である。なお、図14(a)は、水滴Wが検出面Pに付着するとともに指Fが検出面Pに接触する場合について示す図であり、図14(b)は、図14(a)に示す場合における非指示体位置の検出方法の一例を示す図である。一方、図15(a)は、水滴Wが検出面Pに付着するとともにスタイラスペンUが検出面Pに接触する場合について示す図であり、図15(b)は、図15(a)に示す場合における非指示体位置の検出方法の一例を示す図である。また、図14(b)では、指Fの接触位置Qを黒塗りの三角形で示し、図15(b)では、スタイラスペンUの接触位置Qを黒塗りの四角形で示している。また、図14(b)及び図15(b)では、付着位置Rを白塗りの丸印で示し、偽検出位置Qを黒塗りの丸印で示している。
 図14(a)及び図14(b)に示す例の場合、選択候補位置として、指Fの接触位置Q及び偽検出位置Qが検出される(図12のステップ#2及び図13参照)。また、除外候補位置として、偽検出位置Qが検出される(図12のステップ#3及び図13参照)。
 ここで、指示体位置検出部40は、除外候補位置(本例では偽検出位置Q)の周囲に、第1範囲(図14(b)中の破線で示す範囲)を設定する。上述のように、偽検出位置Qは、水滴Wの周縁部に複数現れるため、比較的狭い範囲内に複数現れるものと言える(図9、図10(b)及び図11(b)参照)。そこで、指示体位置検出部40は、ある除外候補位置の周囲に設定した第1範囲内に、他の除外候補位置が存在する場合、当該ある除外候補位置を偽検出位置Qであると判断し、非指示体位置として検出する。例えばこのとき、指示体位置検出部40は、非指示体位置として検出した選択候補位置(除外候補位置)について、データ処理の過程でフラグを付けるなどの処理を行う。
 本例では、第1範囲を、除外候補位置を中心とした半径が第1距離L1である円としている。このように、第1範囲を、除外候補位置から第1距離L1以内となる範囲とすると、ある除外候補位置に対して設定した第1範囲内に他の除外候補位置が存在する場合、当該ある除外候補位置だけでなく他の除外候補位置も同時に偽検出位置Qであると判断して、非指示体位置として検出することが可能である。また、本例における非指示体位置の検出方法は、第1距離L1以内に収まる除外候補位置を非指示体位置として検出する検出方法、としても解釈され得る。
 本例では、2つの偽検出位置Qのうち、一方の第1範囲内に他方が存在している(両者の距離が第1距離L1以内である)。したがって、指示体位置検出部40は、この2つの偽検出位置Qを、非指示体位置として検出する(図12のステップ#4参照)。よって、本例では、選択候補位置である指Fの接触位置Q及び偽検出位置Qから、非指示体位置である偽検出位置Qを除外して得られる指Fの接触位置Qが、指示体位置として検出される(図12のステップ#5参照)。
 図15(a)及び図15(b)に示す例も、図14(a)及び図14(b)に示す例と同様の方法で、非指示体位置を検出するものである。ただし、図15(a)及び図15(b)に示す例の場合、選択候補位置として、指Fの接触位置Q及び偽検出位置Qが検出されるが(図12のステップ#2及び図13参照)、除外候補位置として、偽検出位置Qに加えてスタイラスペンUの接触位置Qも検出される(図12のステップ#3及び図13参照)。
 本例でも、指示体位置検出部40は、除外候補位置(本例では偽検出位置Q及びスタイラスペンUの接触位置Q)の周囲に、第1範囲(図15(b)中の破線で示す範囲)を設定する。さらに、本例でも、2つの偽検出位置Qのうち、一方の第1範囲内に他方が存在している(両者の距離が第1距離L1以内である)。したがって、指示体位置検出部40は、この2つの偽検出位置Qを、非指示体位置として検出する(図12のステップ#4参照)。
 一方、本例では、除外候補位置であるスタイラスペンUの接触位置Qの周囲の第1範囲内に、他の除外候補位置が存在しない。したがって、指示体位置検出部40は、スタイラスペンUの接触位置Qについては、非指示体位置として検出しない(図12のステップ#4参照)。よって、本例では、選択候補位置であるスタイラスペンUの接触位置Q及び偽検出位置Qから、非指示体位置である偽検出位置Qを除外して得られるスタイラスペンUの接触位置Qが、指示体位置として検出される(図12のステップ#5参照)。
 以上のように、本発明の実施形態に係るタッチパネルシステム1は、検出対象信号Biの各信号値と、検出面P上における位置関係と、の双方に基づいて、検出した選択候補位置が非指示体位置であるか指示体位置であるかを区別する。これにより、非指示体位置と指示体位置とを精度良く区別することが可能となるため、液体の付着等に起因したノイズが発生する状況であっても、ユーザによるタッチパネル10の操作を受け付けることが可能となる。
 なお、第1距離L1を大きくするほど、偽検出位置Qが除外される可能性を高めることができるが、近接した指示体の接触位置(特に、容量の変動が小さいスタイラスペンUなどの接触位置Q)が誤って除外される可能性が高くなってしまう。反対に、第1距離L1を小さくするほど、近接した指示体の接触位置が誤って除外される可能性を低くすることができるが、偽検出位置Qが除外される確率も低くなってしまう。そこで、これらの点を踏まえて、第1距離L1を設定すると、好ましい。
 具体的には、複数の指示体(特に、容量の変動が小さいスタイラスペンUなど)が使用される場合に想定され得る、接触位置の距離の最小値を、第1距離L1として設定すると、好ましい。例えば、1人のユーザが2つのスタイラスペンUを使用する場合や、大型の検出面Pに対して複数のユーザのそれぞれがスタイラスペンUを使用する場合において、複数のスタイラスペンUの接触位置Qの距離が1cm以下になることは、想定され難い。そこで、例えば第1距離L1を1cm程度に設定すると、好ましい。
 また、ユーザの指示に応じて第1距離L1の大きさが設定されるように構成してもよいし、ユーザによるタッチパネルシステム1の操作態様(特に、どの指示体を使用するか)に応じた第1距離L1が設定されるように構成してもよい。例えば、ユーザが、容量の変動が大きい指Fを検出面Pに接触させて操作することが多い場合は、第1距離L1を大きくしても、指示体の接触位置が非指示対位置として検出されて指示対位置から除外されることは、生じ難い(図14(b)参照)。そこで、例えば、ユーザが指Fを指示対として使用することをタッチパネルシステム1に対して入力した場合や、検出対称信号Biの各信号値の中に第2閾値Th2を上回る信号値が含まれていることを指示体検出部40が検出した場合は、これ以外の場合と比較して大きい第1距離L1が設定されるように構成してもよい。
 また、第1範囲は、必ずしも除外候補位置から第1距離L1以内の範囲とする必要はない。例えば、偽検出位置Qが、Y方向(センスラインSLが延びる方向)に沿って並ぶように複数現れることを考慮して、X方向の長さよりもY方向の長さが長くなる第1範囲(即ち、X方向については非指示体位置の検出感度が低いが、Y方向については非指示体位置の検出感度が高い第1範囲)を設定してもよい。このような第1範囲を設定すると、非指示位置及び指示体位置の検出精度を高くすることが可能となるため、好ましい。
 具体的に、例えば、除外候補位置からX方向について第1X距離以内かつY方向について第1Y距離以内となる範囲となるような第1範囲を設定して、第1Y距離が第1X距離よりも長くなるようにすると、好ましい。
<突発的に発生するノイズの除去>
 次に、上述のようにして検出された指示体位置から、突発的に発生したノイズに起因する位置(以下、「突発ノイズ発生位置」という)を除外する方法について、図面を参照して説明する。図16は、指示体位置の関連付け方法の一例について示す模式図である。また、図17は、図16に示す指示体位置の関連付け方法を利用した突発ノイズ発生位置の除外方法の一例について示す模式図である。なお、図16(a)は、4つの連続するフレーム1~4の間に指Fが検出面Pに接触する場合について示す図であり、図16(b)は、図16(a)に示す場合における指示体位置の関連付け方法の一例を示す図である。一方、図17(a)は、4つの連続するフレーム1~4の間に指Fが検出面Pに接触するとともに突発的なノイズが発生する場合について示す図であり、図17(b)は、図17(a)に示す場合における突発ノイズ発生位置の除外方法の一例を示す図である。また、図16(b)及び図17(b)では、指Fの接触位置Qを黒塗りの三角形で示し、1つ前のフレームにおける指Fの接触位置QBを破線の白塗りの三角形で示している。さらに図17(b)では、突発的なノイズによって変動した検出対象信号Biの信号値に対応する検出面P内の位置(突発ノイズ発生位置)Qを実線のバツ印で示し、1つ前のフレームにおける突発ノイズ発生位置QBを破線のバツ印で示している。また、図16(b)及び図17(b)に示す指Fの接触位置Q,QB及び突発ノイズ発生位置Qは、いずれも上述した検出方法(図12~15参照)によって検出された指示体位置であるものとする。
 図16(a)及び図16(b)に示す例では、指示体位置検出部40が、上述のように検出した指示体位置の中で、連続する前後の2フレームで第2距離L2以内に収まる状態が所定数(本例では、2つ)のフレーム以上継続する位置を関連付ける関連付け方法について示している。
 このようにして関連付けられた指示体位置は、共通した1つの指示体の指示体位置を示すものとなる。そのため、例えば、検出結果信号Tiを利用する電子情報機器において、関連付けられた指示体位置の動きが小さければ、ユーザが通常のタップを行ったものと判断し、関連付けられた指示体位置の動きが大きければ、ユーザがフリックやスワイプを行ったものと判断することができる。なお、指示体位置検出部40が、このようなユーザが行ったアクション(タップ、フリック、スワイプなど)の種類を判断して、その判断結果を示すデータを検出結果信号Tiに含めてもよい。また、例えば、第2距離L2は、通常想定され得る指示体の移動速度(連続するフレーム間における指示体の移動可能距離)を考慮して設定すると、好ましい。
 本例のフレーム2では、1フレーム前の指Fの接触位置QBから第2距離L2以内に、指Fの接触位置Qが存在する。この場合、指示体位置検出部40は、フレーム1及びフレーム2におけるそれぞれの指Fの接触位置Qを関連付ける。また、指示体位置検出部40は、フレーム2と同様の処理をフレーム4でも行うことで、フレーム3及びフレーム4における指Fの接触位置Qを関連付ける(即ち、これらの接触位置Qが、同一のアクションを示すものとなる)。
 一方、本例のフレーム3では、1フレーム前の指Fの接触位置QBから第2距離L2以内に、指Fの接触位置Qが存在しない。この場合、指示体位置検出部40は、フレーム2及びフレーム3におけるそれぞれの指Fの接触位置Qを関連付けない(即ち、これらの接触位置Qが、異なるアクションを示すものとなる)。
 次に、指示体位置検出部40が、上述した指示体位置の関連付け方法を利用して、突発ノイズ発生位置を指示体位置から除外する方法について説明する。
 図17(a)及び図17(b)に示す例では、指示体位置検出部40が、上述のように検出した指示体位置の中で、連続する前後の2フレームで第2距離L2以内に収まる状態が所定数(本例では、2つ)のフレーム以上継続する位置を指示体位置に残し、それ以外の位置を指示体位置から除外することで、突発ノイズ発生位置を除外する方法について示している。
 図17(a)及び図17(b)に示す例において、フレーム1では、指Fの接触位置Qの他に、突発ノイズ発生位置Qが存在している。しかし、フレーム2では、指Fの接触位置Qは依然として存在するが、突発的に発生したノイズNに起因する突発ノイズ発生位置Qは存在しない。
 本例のフレーム2では、1フレーム前の指Fの接触位置QBから第2距離L2以内に、指Fの接触位置Qが存在する。この場合、指示体位置検出部40は、フレーム1及びフレーム2におけるそれぞれの指Fの接触位置Qを、指示体位置として残すことを決定する。また、指示体位置検出部40は、このフレーム2と同様の処理をフレーム3でも行うことで、指Fの接触位置Qを指示体位置として残すことを決定する。なお、フレーム4では、1フレーム前の指Fの接触位置QBから第2距離L2以内に、指示体位置が何ら存在しない。しかし、フレーム3における指Fの接触位置Qは、フレーム3の段階で指示体位置として残すことが決定されている。そのため、フレーム4の段階で、フレーム3における指Fの接触位置Qが指示体位置から除外されることはない。
 一方、本例のフレーム2では、1フレーム前の突発ノイズ発生位置QBから第2距離L2以内に、指示体位置が何ら存在しない。この場合、指示体位置検出部40は、フレーム1における突発ノイズ発生位置Qを、指示体位置から除外することを決定する。また、指示体位置検出部40は、このフレーム2と同様の処理をフレーム4でも行うことで、フレーム3における突発ノイズ発生位置Qを指示体位置から除外することを決定する。
 本例のように、指示体位置検出部40が処理を行うことで、突発的に現れるノイズNに起因する検出面P内の突発ノイズ発生位置Qを、指示体位置から除外することが可能になる。そのため、指示体位置の検出精度を向上させることが可能となる。
 なお、図17(a)及び図17(b)に示す例において、指示体位置検出部40が、突発ノイズ発生位置Qを指示体位置から除外するだけでなく、図16(a)及び図16(b)に示したように指Fの接触位置Qを関連付けてもよい。
 また、図17(a)及び図17(b)に示す例では、指示体位置検出部40が、指示体位置の中で、連続する前後の2フレームで第2距離L2以内に収まる状態が2フレーム以上継続する位置を指示体位置に残し、他の位置を指示体位置から除外するものとしたが、第2距離L2以内に収まる状態を監視するフレームの数は、3以上としてもよい。
 図17(a)及び図17(b)に示す例において、指示体位置検出部40が、指示体位置の中で、連続する前後の2フレームで第2距離L2以内に収まる状態が3フレーム以上継続する位置を指示体位置に残し、他の位置を指示体位置から除外する場合、フレーム3の段階で、フレーム1~3における指Fの接触位置Qが指示体位置として残ることが決定される。また、図17(a)及び図17(b)に示す例において、指示体位置検出部40が、指示体位置の中で、連続する前後の2フレームで第2距離L2以内に収まる状態が4フレーム以上継続する位置を指示体位置に残し、他の位置を指示体位置から除外する場合は、フレーム4の段階で、フレーム1~3における指Fの接触位置Qが指示体位置から除外されることが決定される。
 このように、第2距離L2以内に収まる状態を監視するフレームの数を増大させるほど、指示体位置に残す位置を決定するまでの遅れが大きくなる。即ち、指示体位置検出部40が、指示体位置を出力するタイミングが遅れることになるため、ユーザの操作に対する反応が悪くなる。そのため、第2距離L2以内に収まる状態を監視するフレームの数については、2つまたは3つ程度に抑えると、好ましい。
<<電子情報機器>>
 上述のタッチパネルシステム1を備えた、本発明の実施形態に係る電子情報機器の構成例について、図18を参照して説明する。図18は、本発明の実施形態に係る電子情報機器の構成例を示すブロック図である。
 図18に示すように、本発明の実施形態に係る電子情報機器100は、表示装置101と、表示装置101を制御する表示装置制御部102と、上述のタッチパネル10に相当するタッチパネル103と、上述のタッチパネルシステム1におけるタッチパネル10を除いた各部(ドライブライン駆動部20、センス信号処理部30、指示体位置検出部40、制御部50及び記憶部60)に相当するタッチパネルコントローラ104と、ユーザに押下されることでユーザの指示を受け付けるボタンスイッチ部105と、撮像により画像データを生成する撮像部106と、入力される音声データを音声として出力する音声出力部107と、集音により音声データを生成する集音部108と、音声出力部107に与える音声データの処理や集音部108から与えられる音声データの処理を行う音声処理部109と、電子情報機器100の外部の機器と無線により通信データを通信する無線通信部110と、無線通信部110が無線により通信する通信データを電磁波として放射するとともに電子情報機器100の外部の機器から放射された電磁波を受信するアンテナ111と、電子情報機器100の外部の機器と有線により通信データを通信する有線通信部112と、各種データを記憶するメモリ113と、電子情報機器100の全体の動作を制御する本体制御部114と、を備える。
 なお、上述の指示体位置検出部40及び制御部50の一部または全部を、タッチパネルコントローラ104ではなく、本体制御部114の一部としてもよい。同様に、上述の記憶部60を、タッチパネルコントローラ104ではなく、メモリ113の一部としてもよい。
 また、図18に示す電子情報機器100は、タッチパネルシステム1の適用例の1つに過ぎない。上述タッチパネルシステム1は、図18に示す電子情報機器100とは異なる構成の電子情報機器に対しても、当然に適用可能である。
<<変形等>>
[1] 上述の実施形態では、容量分布信号Ai及び検出対象信号Biについて、検出面Pに形成される容量が大きくなるほど、対応する信号値が小さくなるものとして説明している。しかし、容量分布信号Ai及び検出対象信号Biは、必ずしもこのような信号である必要はない。例えば、容量分布信号Ai及び検出対象信号Biが、検出面Pに形成される容量が大きくなるほど、対応する信号値が大きくなるものであってもよい。
[2] 例えば、携帯電話やタブレット型端末などに代表される携帯端末等(即ち、小型の電子情報機器100)に、上述のタッチパネルシステム1が搭載される場合、複数のスタイラスペンUが検出面Pに対して同時に接触することは、生じ難いと考えられる。
 そこで、携帯端末等にタッチパネルシステム1を搭載する場合、指示体位置検出部40が、除外候補位置(第1閾値Th1を超えるが第2閾値Th2は超えない検出対象信号Biの信号値に対応する検出面Pの位置、例えば、図15の偽検出位置Q及びスタイラスペンUの接触位置Q)を複数検出した時点で、即座に全ての除外候補位置を非指示体位置としてもよい(即ち、第2閾値を超える検出対象信号Biの信号値が対応する検出面Pの位置のみを、指示体位置として検出してもよい。
 なお、例えば、電子黒板やデジタルサイネージ等のような、複数人が同時に操作し得る電子情報機器100にタッチパネルシステム1を搭載する場合は、検出面Pの複数の場所でスタイラスペンUが接触することが生じ得るため、本変形例を適用せず、上述した実施形態に係るタッチパネルシステム1をそのまま適用した方が、好ましい。
[3] また、上述の実施形態に係るタッチパネルシステム1では、主として液体の付着等に起因したノイズによって生じる偽検出位置Qと、スタイラスペンUの接触位置Qと、を区別する指示体位置の検出方法について説明した。しかし、区別する対象はこの例の限りではない。検出対象信号Biの信号値が同程度であり、非指示体位置とすべき位置が検出面Pの比較的狭い範囲内に複数現れる全ての場合において、上述した実施形態に係るタッチパネルシステム1を好適に利用することが可能である。
[4] また、上述の実施形態に係るタッチパネルシステム1では、容量分布信号Aiをキャリブレーションデータに基づいて調整することで、無指示状態における各信号値が基準値となる検出対象信号Biを生成するものとした。しかし、無指示状態における容量分布信号Aiの各信号値が過大にばらつかない場合は、キャリブレーション及び信号値の調整を行うことなく、容量分布信号Aiをそのまま検出対象信号Biとしてもよい。
[5] 図4及び図5において、ドライブ信号Diの成分として直交系列を用いる場合について例示したが、擬似直交系列であるM系列を用いてもよい。即ち、ドライブ信号Diの成分である行列「H」を、1行目に符号長N(=2n-1)のM系列符号を当てはめ、2行目以降にはそれを順次1bit毎巡回シフトした符号を当てはめたものとしてもよい。この場合も、「H」の転置行列「H」と行列「Ct」との内積を求めるのみで、行列「C」(即ち、容量の面内分布)を求めることができる。但し直交系列を用いた場合と異なり、M系列を用いた場合は内積演算結果に誤差を含むが、N=63または127のように符号長Nを大きくすることで、SN比の劣化を抑制することが可能である。
<<まとめ>>
 本発明の実施形態に係るタッチパネルシステム1及び電子情報機器100、タッチパネルシステム1の動作方法は、例えば以下のように把握され得る。
 本発明の実施形態に係るタッチパネルシステム1は、検出面Pに沿って互いに平行に設けられる複数のドライブラインDLと、前記検出面Pに沿って互いに平行に設けられるとともに前記ドライブラインDLと立体交差する複数のセンスラインSLと、を備えるタッチパネル10と、前記ドライブラインDLにドライブ信号Diを与えて駆動するドライブライン駆動部20と、前記ドライブラインDLの駆動により前記センスラインSLに表れる、前記検出面Pの各位置に接触または近接する指示体の有無に対応した強度のセンス信号Siを取得して処理することで、前記検出面Pの各位置に接触または近接する前記指示体の有無を、前記検出面Pの各位置に対応する各信号値の大きさでそれぞれ表した検出対象信号Biを生成するセンス信号処理部30と、前記検出対象信号Biの前記各信号値に基づいて、前記検出面Pに接触または近接する指示体の位置である指示体位置を検出する指示体位置検出部と、を備え、前記指示体位置検出部は、第1閾値Th1を超える前記検出対象信号Biの信号値に対応する前記検出面Pの位置である選択候補位置の中から、前記第1閾値Th1を超えるが第2閾値Th2は超えない前記検出対象信号Biの信号値に対応する前記検出面Pの位置である除外候補位置であって周囲の第1範囲内に他の前記除外候補位置が存在する位置である非指示体位置を、除外して、前記指示体位置を検出する。
 このタッチパネルシステム1によれば、検出対象信号Biの各信号値と、検出面P上における位置関係と、の双方に基づいて、検出した選択候補位置が非指示体位置であるか指示体位置であるかを区別する。そのため、非指示体位置と指示体位置とを精度良く区別することが可能となる。
 さらに、上記のタッチパネルシステム1において、前記検出面Pに液体が付着したとき、当該液体の周縁部となる前記検出面Pの位置の少なくとも一部に対応する前記検出対象信号Biの信号値が、前記第1閾値Th1を超えるが前記第2閾値Th2を超えないように、前記第1閾値Th1及び前記第2閾値Th2がそれぞれ設定されている。
 このタッチパネルシステム1によれば、検出面Pに液体(例えば、水滴W)が付着することによって生じる偽検出位置Qを、精度良く除外候補位置(さらには、非指示体位置)として検出することが可能となる。
 さらに、上記のタッチパネルシステム1において、前記検出面Pに指が接触したとき、当該指が接触した前記検出面Pの位置に対応する前記検出対象信号Biの信号値が、前記第2閾値Th2を超えるように、前記第2閾値Th2が設定されている。
 このタッチパネルシステム1によれば、指Fの接触位置Qを、除外候補位置として検出されないようにすることで、精度良く指示体位置として検出することが可能となる。
 また、上記のタッチパネルシステム1において、前記検出面PにスタイラスペンUが接触したとき、当該スタイラスペンUが接触した前記検出面Pの位置に対応する前記検出対象信号Biの信号値が、前記第1閾値Th1を超えるが前記第2閾値Th2を超えなくてもよい。
 この場合、上記のタッチパネルシステム1において、スタイラスペンUの接触位置Qが、除外候補位置として検出され得る。しかし、スタイラスペンUの接触位置Qは、検出面P上における位置関係からは、非指示体位置として判定され難いため、最終的には指示体位置として検出することが可能である。
 さらに、上記のタッチパネルシステム1において、前記第1範囲が、前記除外候補位置から第1距離L1以内となる範囲である。
 このタッチパネルシステム1によれば、ある除外候補位置に対して設定した第1範囲内に他の除外候補位置が存在する場合、当該ある除外候補位置だけでなく他の除外候補位置も同時に非指示体位置として検出することが可能となる。
 または、上記のタッチパネルシステム1において、前記ドライブラインDLがX方向に沿って延びるとともに、前記センスラインSLがY方向に沿って延び、前記第1範囲が、前記除外候補位置から前記X方向について第1X距離以内かつ前記Y方向について第1Y距離以内となる範囲であり、前記第1Y距離が前記第1X距離よりも長い。
 このタッチパネルシステム1によれば、非指示体位置がY方向に沿って発生する特性を有する場合、非指示位置及び指示体位置の検出精度を高くすることが可能となる。
 さらに、上記のタッチパネルシステム1において、前記センス信号処理部30が、前記検出面Pの各位置に対応する前記各信号値を一通り含む前記検出対象信号Biを生成する期間を、1フレームとするとき、前記指示体位置検出部40は、前記指示体位置の中で、連続する前後の2フレームで第2距離以内に収まる状態が所定数のフレーム以上継続している位置を残し、それ以外の位置を前記指示体位置から除外する。
 このタッチパネルシステム1によれば、突発的に現れるノイズNに起因する検出面P内の突発ノイズ発生位置Qを、指示体位置から除外することが可能になる。そのため、指示体位置の検出精度を向上させることが可能となる。
 また、本発明の実施形態に係る電子情報機器100は、上記のタッチパネルシステム1を備える。
 また、本発明の実施形態に係るタッチパネルシステム1の動作方法は、検出面Pに沿って互いに平行に設けられる複数のドライブラインDLと、前記検出面Pに沿って互いに平行に設けられるとともに前記ドライブラインDLと立体交差する複数のセンスラインSLと、を備えるタッチパネル10を有するタッチパネルシステムの動作方法であって、前記ドライブラインDLにドライブ信号Diを与えて駆動することで前記センスラインSLに表れる、前記検出面Pの各位置に接触または近接する指示体の有無に対応した強度のセンス信号Siを取得して処理することで、前記検出面Pの各位置に接触または近接する前記指示体の有無を、前記検出面Pの各位置に対応する各信号値の大きさでそれぞれ表した検出対象信号Biを生成する検出対象信号生成動作と、第1閾値Th1を超える前記検出対象信号Biの信号値に対応する前記検出面Pの位置である選択候補位置を検出する選択候補位置検出動作と、前記第1閾値Th1を超えるが第2閾値Th2は超えない前記検出対象信号Biの信号値に対応する前記検出面Pの位置である除外候補位置を検出する除外候補位置検出動作と、前記除外候補位置であって周囲の第1範囲内に他の前記除外候補位置が存在する位置である非指示体位置を検出する非指示体位置検出動作と、前記選択候補位置の中から前記非指示体位置を除外して、前記検出面Pに接触または近接する指示体の位置である指示体位置を検出する指示体位置検出動作と、が実行される。
 本発明は、投影型のタッチパネルを備えたタッチパネルシステムや、当該タッチパネルシステムを備えた電子情報機器、当該タッチパネルシステムの動作方法に対して、好適に利用され得る。
 1    : タッチパネルシステム
 10   : タッチパネル
 20   : ドライブライン駆動部
 30   : センス信号処理部
 40   : 指示体位置検出部
 50   : 制御部
 60   : 記憶部
 100  : 電子情報機器
 DL   : ドライブライン
 SL   : センスライン
 P    : 検出面
 F    : 指
 U    : スタイラスペン
 W    : 水滴
 Di   : ドライブ信号
 Si   : センス信号
 Ai   : 容量分布信号
 Bi   : 検出対象信号
 L1   : 第1距離
 L2   : 第2距離
 Q,Q : 接触位置
 Q   : 偽検出位置
 R   : 付着位置

Claims (5)

  1.  検出面に沿って互いに平行に設けられる複数のドライブラインと、前記検出面に沿って互いに平行に設けられるとともに前記ドライブラインと立体交差する複数のセンスラインと、を備えるタッチパネルと、
     前記ドライブラインにドライブ信号を与えて駆動するドライブライン駆動部と、
     前記ドライブラインの駆動により前記センスラインに表れる、前記検出面の各位置に接触または近接する指示体の有無に対応した強度のセンス信号を取得して処理することで、前記検出面の各位置に接触または近接する前記指示体の有無を、前記検出面の各位置に対応する各信号値の大きさでそれぞれ表した検出対象信号を生成するセンス信号処理部と、
     前記検出対象信号の前記各信号値に基づいて、前記検出面に接触または近接する指示体の位置である指示体位置を検出する指示体位置検出部と、を備え、
     前記指示体位置検出部は、第1閾値を超える前記検出対象信号の信号値に対応する前記検出面の位置である選択候補位置の中から、前記第1閾値を超えるが第2閾値は超えない前記検出対象信号の信号値に対応する前記検出面の位置である除外候補位置であって周囲の第1範囲内に他の前記除外候補位置が存在する位置である非指示体位置を、除外して、前記指示体位置を検出することを特徴とするタッチパネルシステム。
  2.  前記検出面に液体が付着したとき、当該液体の周縁部となる前記検出面の位置の少なくとも一部に対応する前記検出対象信号の信号値が、前記第1閾値を超えるが前記第2閾値を超えないように、前記第1閾値及び前記第2閾値がそれぞれ設定されていることを特徴とする請求項1に記載のタッチパネルシステム。
  3.  前記検出面に指が接触したとき、当該指が接触した前記検出面の位置に対応する前記検出対象信号の信号値が、前記第2閾値を超えるように、前記第2閾値が設定されていることを特徴とする請求項1または2に記載のタッチパネルシステム。
  4.  前記センス信号処理部が、前記検出面の各位置に対応する前記各信号値を一通り含む前記検出対象信号を生成する期間を、1フレームとするとき、
     前記指示体位置検出部は、前記指示体位置の中で、連続する前後の2フレームで第2距離以内に収まる状態が所定数のフレーム以上継続している位置を残し、それ以外の位置を前記指示体位置から除外することを特徴とする請求項1~3のいずれか1項に記載のタッチパネルシステム。
  5.  請求項1~4のいずれか1項に記載のタッチパネルシステムを備えることを特徴とする電子情報機器。
PCT/JP2014/068571 2013-07-26 2014-07-11 タッチパネルシステム及び電子情報機器 WO2015012128A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528228A JP5986685B2 (ja) 2013-07-26 2014-07-11 タッチパネルシステム及び電子情報機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-156060 2013-07-26
JP2013156060 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015012128A1 true WO2015012128A1 (ja) 2015-01-29

Family

ID=52393174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068571 WO2015012128A1 (ja) 2013-07-26 2014-07-11 タッチパネルシステム及び電子情報機器

Country Status (2)

Country Link
JP (1) JP5986685B2 (ja)
WO (1) WO2015012128A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106990860A (zh) * 2015-11-06 2017-07-28 禾瑞亚科技股份有限公司 侦测大面积导电液体覆盖的触控处理装置、系统与方法
JPWO2017090081A1 (ja) * 2015-11-24 2018-06-28 Necディスプレイソリューションズ株式会社 表示方法、表示装置およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267614A (ja) * 1989-04-07 1990-11-01 Sony Corp 位置検出装置
JP2009181232A (ja) * 2008-01-29 2009-08-13 Tokai Rika Co Ltd タッチスイッチ
JP2012084144A (ja) * 2010-10-06 2012-04-26 Thales マルチモードタッチスクリーン装置用の力測定方法
JP2013020370A (ja) * 2011-07-08 2013-01-31 Wacom Co Ltd 位置検出センサ、位置検出装置および位置検出方法
JP2013065092A (ja) * 2011-09-15 2013-04-11 Brother Ind Ltd 電子筆記装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994489B2 (ja) * 2010-10-19 2012-08-08 パナソニック株式会社 タッチパネル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267614A (ja) * 1989-04-07 1990-11-01 Sony Corp 位置検出装置
JP2009181232A (ja) * 2008-01-29 2009-08-13 Tokai Rika Co Ltd タッチスイッチ
JP2012084144A (ja) * 2010-10-06 2012-04-26 Thales マルチモードタッチスクリーン装置用の力測定方法
JP2013020370A (ja) * 2011-07-08 2013-01-31 Wacom Co Ltd 位置検出センサ、位置検出装置および位置検出方法
JP2013065092A (ja) * 2011-09-15 2013-04-11 Brother Ind Ltd 電子筆記装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106990860A (zh) * 2015-11-06 2017-07-28 禾瑞亚科技股份有限公司 侦测大面积导电液体覆盖的触控处理装置、系统与方法
CN106990860B (zh) * 2015-11-06 2020-07-03 禾瑞亚科技股份有限公司 侦测大面积导电液体覆盖的触控处理装置、系统与方法
JPWO2017090081A1 (ja) * 2015-11-24 2018-06-28 Necディスプレイソリューションズ株式会社 表示方法、表示装置およびプログラム
US10606473B2 (en) 2015-11-24 2020-03-31 Nec Display Solutions, Ltd. Display method, display device, and program

Also Published As

Publication number Publication date
JPWO2015012128A1 (ja) 2017-03-02
JP5986685B2 (ja) 2016-09-06

Similar Documents

Publication Publication Date Title
US10955983B2 (en) Interaction sensing
US10042446B2 (en) Interaction modes for object-device interactions
US8797280B2 (en) Systems and methods for improved touch screen response
US20180046269A1 (en) Pen Wake Up on Screen Detect
US20150103046A1 (en) Touch signal detection circuit and method, and touch device
TW201510828A (zh) 觸摸識別方法
JP5986685B2 (ja) タッチパネルシステム及び電子情報機器
KR20150103455A (ko) 터치스크린 장치 및 터치 감지 방법
US9733775B2 (en) Information processing device, method of identifying operation of fingertip, and program
JP5997842B2 (ja) タッチパネルシステム及び電子情報機器
US10540042B2 (en) Impedance ratio-based current conveyor
KR20160022583A (ko) 터치스크린 장치 및 터치 감지 방법
KR20160096942A (ko) 터치스크린 장치 및 터치 감지 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528228

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829505

Country of ref document: EP

Kind code of ref document: A1