WO2015011956A1 - Ultrasonic generation element, ultrasonic generation device, and method for manufacturing ultrasonic generation element - Google Patents

Ultrasonic generation element, ultrasonic generation device, and method for manufacturing ultrasonic generation element Download PDF

Info

Publication number
WO2015011956A1
WO2015011956A1 PCT/JP2014/059642 JP2014059642W WO2015011956A1 WO 2015011956 A1 WO2015011956 A1 WO 2015011956A1 JP 2014059642 W JP2014059642 W JP 2014059642W WO 2015011956 A1 WO2015011956 A1 WO 2015011956A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
protrusion
ultrasonic
generating element
excitation
Prior art date
Application number
PCT/JP2014/059642
Other languages
French (fr)
Japanese (ja)
Inventor
藤本 克己
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015528167A priority Critical patent/JP5975178B2/en
Publication of WO2015011956A1 publication Critical patent/WO2015011956A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • G10K9/125Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means with a plurality of active elements

Definitions

  • the present invention relates to an ultrasonic wave generating element and an ultrasonic wave generating device that generate ultrasonic waves, and more specifically, an ultrasonic wave generating element in which first and second vibrators generate ultrasonic waves in a buckling tuning fork vibration mode, and The present invention relates to an ultrasonic generator.
  • ultrasonic generators that emit ultrasonic waves are used for distance measurement methods using ultrasonic waves.
  • Patent Document 1 discloses an ultrasonic generator in which an ultrasonic generator is housed in a case.
  • the plate-like first piezoelectric vibrator is joined to the plate-like second piezoelectric vibrator via a frame having an opening exposing the vibration part.
  • a so-called buckling tuning fork vibration mode in which the first piezoelectric vibrator and the second piezoelectric vibrator vibrate at the same frequency and in opposite phases to each other is used.
  • the first and second piezoelectric vibrators In order to reduce the size of the ultrasonic generator described in Patent Document 1, it is necessary to make the first and second piezoelectric vibrators smaller. However, when the first and second piezoelectric vibrators become smaller, the resonance frequency increases and the sound pressure decreases. In order to suppress a decrease in sound pressure, the first and second piezoelectric vibrators may be thinned. However, if the thickness is reduced, cracks are likely to occur in the first and second piezoelectric vibrators. In particular, when the first and second piezoelectric vibrators are joined via the frame, if a force is applied in the thickness direction, there is a problem that cracks are likely to occur in the first and second piezoelectric vibrators.
  • An object of the present invention is to provide an ultrasonic wave generating element that can be miniaturized and hardly generate cracks and a method for manufacturing the same.
  • Another object of the present invention is to provide an ultrasonic generator having an ultrasonic generator that can be miniaturized and hardly generate cracks.
  • the ultrasonic wave generating element includes a first vibrator and a second vibrator.
  • the first vibrator has a first diaphragm, a first protrusion, and a second protrusion.
  • the first diaphragm has first and second main surfaces that face each other.
  • An excitation region for exciting ultrasonic waves is provided at the center of the first diaphragm.
  • the first protrusion protrudes from the first main surface around the excitation region of the first diaphragm.
  • the second protrusion protrudes from the second main surface around the excitation region.
  • the second vibrator has a second diaphragm, a third protrusion, and a fourth protrusion.
  • the second diaphragm has third and fourth main surfaces that face each other.
  • An excitation region for exciting ultrasonic waves is provided in the center of the second diaphragm.
  • the third protrusion protrudes from the third main surface around the excitation region of the second diaphragm.
  • the fourth protrusion protrudes from the fourth main surface around the excitation region.
  • the second projecting portion of the first vibrator and the third projecting portion of the second vibrator are joined, and the first vibrator is placed on the second vibrator.
  • the vibrator is laminated.
  • the ultrasonic wave generating element of the present invention utilizes a buckling tuning fork vibration mode in which the first vibrator and the second vibrator vibrate at the same frequency and in opposite phases.
  • a bonding material layer for bonding the first vibrator and the second vibrator is further provided.
  • At least one of the first to fourth protrusions includes a plurality of protrusions separated from each other.
  • the ultrasonic generator according to the present invention includes an ultrasonic generator configured according to the present invention, a first case material, and a second case material.
  • the ultrasonic wave generating element is mounted on the first case material.
  • the second case material is bonded to the first case material, and surrounds the ultrasonic wave generating element together with the first case material.
  • the second case material is provided with an ultrasonic wave emission hole for emitting ultrasonic waves to the outside.
  • the method for manufacturing an ultrasonic generator according to the present invention includes the following steps.
  • a first vibrator having a first protrusion protruding from the first main surface and a second protrusion protruding from the second main surface around the excitation region, and opposed to the first vibrator
  • a second diaphragm having a third and a fourth main surface that meet each other and provided with an excitation region for exciting an ultrasonic wave in the center; and around the excitation region of the second diaphragm,
  • a third vibrator having a third protrusion protruding from the third main surface and a fourth protrusion protruding from the fourth main surface around the excitation region is prepared.
  • the first and second vibrators are used by using a joining material. Join.
  • the second protrusion of the first vibrator and the third protrusion of the second vibrator are joined, and the first and second vibrators are laminated. Therefore, it is difficult to apply a force to the excitation regions of the first and second vibrators in the joining process and the like. Therefore, the thickness of the first and second diaphragms can be reduced. Therefore, even if the miniaturization is advanced, the sound pressure is hardly lowered and cracks in the first and second vibrators are hardly caused.
  • FIG. 1 is a front sectional view of an ultrasonic generator according to an embodiment of the present invention.
  • 2 (a) and 2 (b) are a perspective view showing an appearance of an ultrasonic wave generating element used in an embodiment of the invention and a cross-sectional view taken along the line BB in FIG. 2 (a). is there.
  • FIG. 3A to FIG. 3C are plan views for explaining the shape of the excitation electrode provided on the first diaphragm.
  • 4 (a) and 4 (b) are side views showing the side surface on which the external electrode of the ultrasonic wave generating element shown in FIGS. 2 (a) and 2 (b) is formed.
  • FIG. 1 is a front sectional view of an ultrasonic generator according to an embodiment of the present invention.
  • 2 (a) and 2 (b) are a perspective view showing an appearance of an ultrasonic wave generating element used in an embodiment of the invention and a cross-sectional view taken along the line BB in FIG. 2 (a). is there.
  • FIG. 5 is a front cross-sectional view for explaining a step of laminating a plurality of ceramic green sheets in the method for manufacturing an ultrasonic generator according to one embodiment of the present invention.
  • FIG. 6 is a front cross-sectional view showing a mother laminate for constituting the first diaphragm in the method of manufacturing an ultrasonic generator according to one embodiment of the present invention.
  • FIG. 7A and FIG. 7B are a plan view and a front sectional view of the first vibrator prepared in the method for manufacturing an ultrasonic wave generating element according to the first embodiment of the present invention.
  • FIG. 8 is a perspective view of an ultrasonic generator according to another embodiment of the present invention as viewed from below.
  • FIG. 1 is a front sectional view of an ultrasonic generator according to an embodiment of the present invention.
  • the ultrasonic generator 1 has a substrate 2 as a first case material.
  • An ultrasonic wave generating element 11 as an embodiment of the present invention is mounted on the substrate 2.
  • a second case material 3 is bonded to the substrate 2 so as to surround the ultrasonic wave generating element 11.
  • the substrate 2 is made of an appropriate rigid material such as ceramics.
  • the second case member 3 has a bottomed cylindrical shape having an opening, and surrounds the ultrasonic wave generating element 11 together with the substrate 2.
  • Ultrasonic emission holes 3 a and 3 a are provided on the upper surface of the second case member 3.
  • the second case material 3 can be formed of an appropriate material such as metal or ceramics.
  • the ultrasonic wave generated by the ultrasonic wave generating element 11 is emitted to the outside from the ultrasonic wave emission hole 3a.
  • 2 (a) and 2 (b) are a perspective view showing an appearance of the ultrasonic wave generating element 11 and a cross-sectional view of a portion along the line BB in FIG. 2 (a).
  • the ultrasonic generating element 11 has a first vibrator 12 and a second vibrator 13.
  • the first vibrator 12 has a first diaphragm 14.
  • the first diaphragm 14 has first and second main surfaces 14a and 14b facing each other.
  • an excitation region is formed at the center. This excitation region is constituted by a region in which the vibrating electrodes 15 to 17 are overlapped via the piezoelectric ceramic.
  • the first diaphragm 14 has a structure in which a plurality of piezoelectric ceramics are stacked.
  • the excitation electrodes 15 to 17 have a circular shape.
  • the planar shape of the excitation electrodes 15 to 17 is not particularly limited.
  • the excitation electrodes 15 to 17 are connected to the routing electrodes 15a, 15a to 17a, and 17a, respectively.
  • the routing electrodes 15a, 15a to 17a, 17a are provided so as to reach the outer surface of the first vibrator 12, although not shown in FIG.
  • the excitation electrodes 15 to 17 are overlapped via the piezoelectric ceramic.
  • the piezoelectric ceramic layer above the excitation electrode 16 and the piezoelectric ceramic layer below are expanded and contracted in opposite phases. Accordingly, the first vibrator 12 is a bimorph vibrator.
  • the first protrusion 18 is provided on the first main surface 14a around the excitation region.
  • the first protrusion 18 protrudes in a direction away from the first main surface 14a with respect to the first main surface 14a, that is, upward in FIG.
  • the first protrusion 18 has a frame shape having a circular opening.
  • the first projecting portion 18 may have a frame shape having an opening other than a circle, or may have a shape other than the frame shape. That is, a protruding portion having a shape in which a part of the closed frame is cut out may be provided as the first protruding portion 18.
  • a second protrusion 19 is provided outside the excitation region.
  • the second protrusion 19 is configured to have the same shape as the first protrusion 18 in plan view. However, the planar shape of the second projecting portion 19 may not be equal to the planar shape of the first projecting portion 18.
  • the second protrusion 19 protrudes in a direction away from the second main surface 14b, that is, downward in FIG. 2 (b).
  • the distal end surface, that is, the lower surface of the second protrusion 19 is a flat surface.
  • the excitation electrodes 15 to 17 and the routing electrodes 15a to 17a are made of an appropriate metal or alloy such as Al, Cu, or Ag.
  • the first diaphragm 14 is made of piezoelectric ceramics.
  • a piezoelectric ceramic an appropriate piezoelectric ceramic such as a lead zirconate titanate ceramic can be used.
  • the first and second projecting portions 18 and 19 are made of the same ceramic as the ceramic constituting the first diaphragm 14. But the 1st, 2nd protrusion parts 18 and 19 may be comprised with the material different from the ceramics which comprise the 1st diaphragm 14. FIG.
  • the second vibrator 13 is configured in substantially the same manner as the first vibrator 12.
  • the second vibrator 13 includes the second diaphragm 20.
  • excitation electrodes 21 to 23 are overlapped via piezoelectric ceramics.
  • an excitation region is formed.
  • the excitation electrodes 21 to 23 are configured in the same manner as the excitation electrodes 15 to 17.
  • the third protrusion 24 is formed on the third main surface 20 a around the excitation region.
  • a fourth protrusion 25 is formed on the fourth main surface 20b.
  • the third protrusion 24 and the fourth protrusion 25 are configured in the same manner as the first protrusion 18 and the second protrusion 19. Note that the tip surface, that is, the upper surface of the third protrusion 24 is a flat surface.
  • the second vibrator 13 is also a bimorph vibrator having excitation electrodes 21 to 23.
  • the polarization direction of the piezoelectric ceramic layer sandwiched between the excitation electrodes 15 to 17 in the first vibrator 12 is indicated by an arrow. Also in the second vibrator 13, the polarization direction of the piezoelectric ceramic layer sandwiched between the excitation electrodes 21 to 23 is indicated by an arrow.
  • the second vibrator 13 is configured to vibrate at the same frequency as the first vibrator 12 and in the opposite phase. Therefore, in the ultrasonic wave generating element 11, ultrasonic waves are generated using a buckling tuning fork vibration mode in which the first and second vibrators 12 and 13 vibrate at the same frequency and in opposite phases.
  • the second projecting portion 19 of the first vibrator 12 and the third projecting portion 24 of the second vibrator 13 are joined via a joining material layer 26. More specifically, the distal end surface of the second projecting portion 19 and the distal end surface of the third projecting portion 24 are joined via the joining material layer 26. Thereby, the first vibrator 12 is laminated on the second vibrator 13 and integrated.
  • the first and second vibrators 12 and 13 are joined using the second protrusion 19 and the third protrusion 24. Therefore, as is apparent from the manufacturing method described later, even when a force is applied in the thickness direction during the joining, the force is applied to the portion where the second projecting portion 19 and the third projecting portion 24 are joined. concentrate. That is, it is difficult to apply a force to the excitation region where the excitation electrodes 15 to 17 and the excitation electrodes 21 to 23 are provided.
  • the first and second vibrators 12 and 13 are smaller in order to reduce the size. That is, it is necessary to reduce the excitation area, but the sound pressure decreases. In order not to reduce the sound pressure, the thickness of the excitation region may be reduced.
  • the conventional ultrasonic generator has a fatal problem that cracks are likely to occur when the thickness of the diaphragm in the excitation region is reduced.
  • the bonding material layer 26 is provided on the tip surface of the second protrusion 19 and the tip surface of the third protrusion 24, the bonding material layer 26 is excited. It is difficult to flow into the region and the excitation of the excitation region is difficult to be hindered. Therefore, it is possible to reduce the size of the ultrasonic wave generating element 11 without reducing the sound pressure.
  • FIGS. 4A and 4B are side views for explaining the external electrodes 31 and 32 provided on the respective side surfaces of the ultrasonic wave generating element 11.
  • an external electrode 31 is formed on one side surface of the ultrasonic wave generating element 11.
  • the external electrode 31 is electrically connected to the routing electrodes 15a and 17a described above. It is also connected to the routing electrodes 21a and 23a.
  • the routing electrodes 21 a and 23 a are connected to the excitation electrodes 21 and 23.
  • an external electrode 32 is formed on another side surface of the ultrasonic wave generating element 11.
  • the external electrode 32 is electrically connected to the routing electrode 16a.
  • the external electrode 32 is also connected to the routing electrode 22a.
  • the routing electrode 22 a is connected to the excitation electrode 22 of the second vibrator 13.
  • the external electrodes 31 and 32 shown in FIGS. 1, 2A, and 2B are exaggerated for easy understanding. Actually, the thicknesses of the external electrodes 31 and 32 are extremely thin with respect to the first and second vibrators 12 and 13.
  • the height of the projecting direction surface of the first projecting portion 18 and the surface of the external electrodes 31 and 32 provided so as to cover the projecting direction surface of the first projecting portion 18 are substantially the same.
  • the heights of the surfaces of the fourth projecting portions 25 and the surfaces of the external electrodes 31 and 32 provided so as to cover the surfaces of the fourth projecting portions 25 in the projecting direction are substantially the same. .
  • the mother ceramic green sheets 41 to 44 shown in FIG. 5 are laminated as shown by the arrows in the figure.
  • the mother ceramic green sheets 41 to 44 are ceramic green sheets mainly composed of piezoelectric ceramics.
  • Openings 41a and 44a are formed in the mother ceramic green sheets 41 and 44, respectively, by punching.
  • the openings 41a and 44a finally form an opening surrounded by the first protrusion or the second protrusion.
  • a conductive paste 15A is screen-printed on the upper surface of the ceramic green sheet 43.
  • the conductive paste 15A becomes the excitation electrode 15 after firing.
  • the conductive paste 16A is screen-printed on the upper surface of the ceramic green sheet 42.
  • a conductive paste 17A is screen-printed on the lower surface. The conductive pastes 16A and 17A become the excitation electrodes 16 and 17 after firing.
  • excitation electrodes 15 to 17 may be formed by forming a metal material by other thin film forming methods or thick film forming methods without using the conductive paste.
  • the mother ceramic green sheets 41 to 44 are laminated, and the mother ceramic green sheet 44 and the mother ceramic green sheet 41 are further added and laminated.
  • a mother laminate 45 shown in FIG. 6 is obtained.
  • hydrostatic pressure is applied to bring the ceramic green sheets into close contact with each other.
  • the applied pressure is applied to the mother ceramic green sheet 41 and the mother ceramic green sheet 44. Therefore, it is difficult to apply the applied pressure to the overlapping portions of the conductive pastes 15A and 17A.
  • the mother laminate 45 is cut along the dashed lines C and C in FIG. Thereby, a laminated body chip is obtained.
  • the obtained laminated chip 46 is shown in a plan view and a front sectional view in FIGS.
  • the first vibrator 12 shown in FIG. 2B By firing the laminate chip 46, the first vibrator 12 shown in FIG. 2B can be obtained.
  • the first projecting portion 18 and the second projecting portion 19 are provided around the excitation region, cracks in the first vibrator 12 that occur during cutting can be suppressed, and a non-defective product produced by manufacturing can be obtained. The rate can be increased.
  • the second vibrator 13 can be obtained. Then, the obtained first and second vibrators 12 and 13 are bonded through the bonding material layer 26. In this case, it is desirable to polish the tip end surface of the second protrusion 19 of the first vibrator 12 in advance to obtain the above-described flat surface. Further, it is desirable that the tip surface of the second protrusion 13 of the second vibrator 13 shown in FIG. If it does in this way, joint strength can be raised. Then, the distal end surface of the second projecting portion 19 and the distal end surface of the third projecting portion 24 are joined via the joining material layer 26.
  • the ultrasonic wave generating element 11 can be obtained as described above.
  • the mother laminate 45 is cut to form a laminate chip, and then fired.
  • the first vibrator 12 may be obtained by cutting along the one-dot chain lines C and C described above.
  • a mother laminated body constituting the second vibrator 13 is prepared. Then, the mother laminate 45 and the mother laminate for forming the second vibrator 13 may be laminated, pressure-bonded, and integrally fired. In that case, the ultrasonic wave generating element 11 can be obtained by cutting the mother sintered body after firing. That is, it is possible to provide an ultrasonic wave generating element in which the first and second vibrators 12 and 13 are bonded without using a bonding material. Therefore, in the present invention, the first and second vibrators may be integrated by joining the second protrusion 19 and the third protrusion 24 without using a bonding material.
  • FIG. 8 is a perspective view showing another embodiment of the ultrasonic wave generating element of the present invention.
  • the first and second vibrators 12 and 13 are bonded via the bonding material layer 26.
  • the plurality of fourth protrusion portions 25A1 to 25A4 protrude away from the fourth main surface 20b of the second diaphragm 20, that is, downward in FIG. That is, the fourth projecting portion is not frame-shaped but is composed of a plurality of independent projecting portion portions 25A1 to 25A4.
  • the fourth protrusion portions 25A1 to 25A are provided at rectangular corner portions of the fourth main surface 20b.
  • the fourth projecting portions 25A1 to 25A4 can have a function as a pedestal when the ultrasonic wave generating element 11 is mounted on the substrate 2 shown in FIG.
  • the fourth protrusion 25 of the second vibrator 13 may be divided into a plurality of protrusions so as to function as a pedestal.
  • the first protrusion 18, the second protrusion 19, or the third protrusion 24 shown in FIG. 2B may be divided into a plurality of protrusions.
  • the first diaphragm 14 is made of a lead zirconate titanate ceramic, but is not limited thereto.
  • it may be made of a lead-free piezoelectric ceramic piezoelectric material such as potassium sodium niobate or alkali niobate ceramic.
  • the tip surface of the fourth protrusion 25 is in direct contact with the substrate while being covered by the external electrodes 31 and 32, but the fourth protrusion The tip surface of the portion 25 may be in direct contact with the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Provided is an ultrasonic generation element that is small in size and resists cracks and the like. An ultrasonic generation element (11) for generating ultrasonic by use of a buckling tuning-fork oscillation mode in which a first oscillator (12) and a second oscillator (13) oscillate at the same frequency and in mutually opposite phases, wherein: first and second protrusions (18, 19) are formed, on the first and second main surfaces (14a, 14b) of a first oscillation plate (14) of the first oscillator (12), around the excitation area; third and fourth protrusions (24, 25) are formed, on the first and second main surfaces (20a, 20b) of a second oscillation plate (20) of the second oscillator (13), around the excitation area; and the second protrusion (19) and third protrusion (24) are joined to each other such that the first oscillator (12) is laid on the second oscillator (13).

Description

超音波発生素子、超音波発生装置及び超音波発生素子の製造方法Ultrasonic generator, ultrasonic generator, and method for manufacturing ultrasonic generator
 本発明は、超音波を発生させる超音波発生素子及び超音波発生装置に関し、より詳細には、第1,第2の振動子が座屈音叉振動モードにより超音波を発生させる超音波発生素子及び超音波発生装置に関する。 The present invention relates to an ultrasonic wave generating element and an ultrasonic wave generating device that generate ultrasonic waves, and more specifically, an ultrasonic wave generating element in which first and second vibrators generate ultrasonic waves in a buckling tuning fork vibration mode, and The present invention relates to an ultrasonic generator.
 超音波を利用した距離測定方法などに超音波を放出する様々な超音波発生装置が用いられている。 Various ultrasonic generators that emit ultrasonic waves are used for distance measurement methods using ultrasonic waves.
 例えば、下記の特許文献1には、ケース内に、超音波発生素子が収納されている超音波発生装置が開示されている。この超音波発生素子では、板状の第1の圧電振動子が、板状の第2の圧電振動子に対し、振動部を露出させる開口を有する枠体を介して接合されている。この超音波発生装置では、第1の圧電振動子と、第2の圧電振動子とが同じ周波数で互いに逆位相で振動する、いわゆる座屈音叉振動モードが利用されている。 For example, the following Patent Document 1 discloses an ultrasonic generator in which an ultrasonic generator is housed in a case. In this ultrasonic wave generating element, the plate-like first piezoelectric vibrator is joined to the plate-like second piezoelectric vibrator via a frame having an opening exposing the vibration part. In this ultrasonic generator, a so-called buckling tuning fork vibration mode in which the first piezoelectric vibrator and the second piezoelectric vibrator vibrate at the same frequency and in opposite phases to each other is used.
WO2012/026319WO2012 / 026319
 特許文献1に記載の超音波発生装置において小型化を進めるには、第1,第2の圧電振動子を小さくする必要がある。しかしながら、第1,第2の圧電振動子が小さくなると、共振周波数が上昇し、音圧が低下する。音圧の低下を抑制するには、第1,第2の圧電振動子を薄くすればよい。しかしながら、薄くすると、第1,第2の圧電振動子においてクラックが生じやすくなる。特に、第1,第2の圧電振動子を枠体を介して接合するに際し、厚み方向に力が加わると、第1,第2の圧電振動子においてクラックが生じやすくなるという問題があった。 In order to reduce the size of the ultrasonic generator described in Patent Document 1, it is necessary to make the first and second piezoelectric vibrators smaller. However, when the first and second piezoelectric vibrators become smaller, the resonance frequency increases and the sound pressure decreases. In order to suppress a decrease in sound pressure, the first and second piezoelectric vibrators may be thinned. However, if the thickness is reduced, cracks are likely to occur in the first and second piezoelectric vibrators. In particular, when the first and second piezoelectric vibrators are joined via the frame, if a force is applied in the thickness direction, there is a problem that cracks are likely to occur in the first and second piezoelectric vibrators.
 本発明の目的は、小型化を図ることができ、クラック等が生じ難い、超音波発生素子及びその製造方法を提供することにある。 An object of the present invention is to provide an ultrasonic wave generating element that can be miniaturized and hardly generate cracks and a method for manufacturing the same.
 また、本発明の他の目的は、小型化を図ることができ、クラック等が生じ難い超音波発生素子を有する超音波発生装置を提供することにある。 Another object of the present invention is to provide an ultrasonic generator having an ultrasonic generator that can be miniaturized and hardly generate cracks.
 本発明に係る超音波発生素子は、第1の振動子と、第2の振動子とを備える。 The ultrasonic wave generating element according to the present invention includes a first vibrator and a second vibrator.
 第1の振動子は、第1の振動板と、第1の突出部と、第2の突出部とを有する。第1の振動板は、対向し合う第1及び第2の主面を有する。第1の振動板の中央に、超音波を励振する励振領域が設けられている。第1の突出部は、上記第1の振動板の上記励振領域の周囲において、上記第1の主面から突出している。上記第2の突出部は、上記励振領域の周囲において、上記第2の主面から突出している。 The first vibrator has a first diaphragm, a first protrusion, and a second protrusion. The first diaphragm has first and second main surfaces that face each other. An excitation region for exciting ultrasonic waves is provided at the center of the first diaphragm. The first protrusion protrudes from the first main surface around the excitation region of the first diaphragm. The second protrusion protrudes from the second main surface around the excitation region.
 第2の振動子は、第2の振動板と、第3の突出部と、第4の突出部とを有する。第2の振動板は、対向し合う第3及び第4の主面を有する。第2の振動板の中央に、超音波を励振する励振領域が設けられている。第3の突出部は、上記第2の振動板の励振領域の周囲において、上記第3の主面から突出している。第4の突出部は、上記励振領域の周囲において、上記第4の主面から突出している。 The second vibrator has a second diaphragm, a third protrusion, and a fourth protrusion. The second diaphragm has third and fourth main surfaces that face each other. An excitation region for exciting ultrasonic waves is provided in the center of the second diaphragm. The third protrusion protrudes from the third main surface around the excitation region of the second diaphragm. The fourth protrusion protrudes from the fourth main surface around the excitation region.
 本発明では、上記第1の振動子の上記第2の突出部と、上記第2の振動子の上記第3の突出部とが接合されて、上記第2の振動子上に上記第1の振動子が積層されている。また、本発明の超音波発生素子は、上記第1の振動子と上記第2の振動子とが同じ周波数で互いに逆位相で振動する座屈音叉振動モードを利用している。 In the present invention, the second projecting portion of the first vibrator and the third projecting portion of the second vibrator are joined, and the first vibrator is placed on the second vibrator. The vibrator is laminated. In addition, the ultrasonic wave generating element of the present invention utilizes a buckling tuning fork vibration mode in which the first vibrator and the second vibrator vibrate at the same frequency and in opposite phases.
 本発明に係る超音波発生素子のある特定の局面では、前記第1の振動子と前記第2の振動子とを接合している接合材層がさらに備えられている。 In a specific aspect of the ultrasonic wave generating element according to the present invention, a bonding material layer for bonding the first vibrator and the second vibrator is further provided.
 本発明に係る超音波発生素子の他の特定の局面では、前記第1~第4の突出部の内、少なくとも1つの突出部が、互いに隔てられている複数の突出部部分からなる。 In another specific aspect of the ultrasonic wave generating element according to the present invention, at least one of the first to fourth protrusions includes a plurality of protrusions separated from each other.
 本発明に係る超音波発生装置は、本発明に従って構成されている超音波発生素子と、第1のケース材と、第2のケース材とを備える。上記第1のケース材に、上記超音波発生素子が搭載される。上記第2のケース材は、上記第1のケース材に接合されており、かつ上記第1のケース材と共に超音波発生素子を取り囲んでいる。上記第2のケース材には、超音波を外部に放出する超音波放出孔が設けられている。 The ultrasonic generator according to the present invention includes an ultrasonic generator configured according to the present invention, a first case material, and a second case material. The ultrasonic wave generating element is mounted on the first case material. The second case material is bonded to the first case material, and surrounds the ultrasonic wave generating element together with the first case material. The second case material is provided with an ultrasonic wave emission hole for emitting ultrasonic waves to the outside.
 本発明に係る超音波発生素子の製造方法は、以下の各工程を備える。 The method for manufacturing an ultrasonic generator according to the present invention includes the following steps.
 対向し合う第1及び第2の主面を有し、中央に超音波を励振する励振領域が設けられている第1の振動板と、前記第1の振動板の前記励振領域の周囲において、前記第1の主面から突出している第1の突出部と、前記励振領域の周囲において、前記第2の主面から突出している第2の突出部とを有する第1の振動子と、対向し合う第3及び第4の主面を有し、中央に超音波を励振する励振領域が設けられている第2の振動板と、前記第2の振動板の前記励振領域の周囲において、前記第3の主面から突出している第3の突出部と、前記励振領域の周囲において、前記第4の主面から突出している第4の突出部とを有する第2の振動子とを用意する工程。 In the periphery of the first vibration plate having the first and second main surfaces facing each other and provided with an excitation region for exciting ultrasonic waves in the center, and the excitation region of the first vibration plate, A first vibrator having a first protrusion protruding from the first main surface and a second protrusion protruding from the second main surface around the excitation region, and opposed to the first vibrator A second diaphragm having a third and a fourth main surface that meet each other and provided with an excitation region for exciting an ultrasonic wave in the center; and around the excitation region of the second diaphragm, A third vibrator having a third protrusion protruding from the third main surface and a fourth protrusion protruding from the fourth main surface around the excitation region is prepared. Process.
 前記第1の振動子の前記第2の突出部と、前記第2の振動子の前記第3の突出部とを接合する工程。 Joining the second projecting portion of the first vibrator and the third projecting portion of the second vibrator.
 本発明に係る超音波発生素子の製造方法のある特定の局面では、前記第1の振動子と前記第2の振動子とを接合するに際し、接合材を用いて第1,第2の振動子を接合する。 In a specific aspect of the method of manufacturing an ultrasonic wave generating element according to the present invention, when the first vibrator and the second vibrator are joined, the first and second vibrators are used by using a joining material. Join.
 本発明に係る超音波発生素子では、第1の振動子の第2の突出部と、第2の振動子の第3の突出部とが接合されて、第1,第2の振動子が積層されているため、接合工程等において、第1,第2の振動子の励振領域に力が加わり難い。そのため、第1,第2の振動板の厚みを薄くすることができる。よって、小型化を進めたとしても、音圧の低下が生じ難く、かつ第1,第2の振動子におけるクラックも生じ難い。 In the ultrasonic wave generating element according to the present invention, the second protrusion of the first vibrator and the third protrusion of the second vibrator are joined, and the first and second vibrators are laminated. Therefore, it is difficult to apply a force to the excitation regions of the first and second vibrators in the joining process and the like. Therefore, the thickness of the first and second diaphragms can be reduced. Therefore, even if the miniaturization is advanced, the sound pressure is hardly lowered and cracks in the first and second vibrators are hardly caused.
図1は、本発明の一実施形態に係る超音波発生装置の正面断面図である。FIG. 1 is a front sectional view of an ultrasonic generator according to an embodiment of the present invention. 図2(a)及び図2(b)は、発明の一実施形態に用いられている超音波発生素子の外観を示す斜視図及び図2(a)中のB-B線に沿う断面図である。2 (a) and 2 (b) are a perspective view showing an appearance of an ultrasonic wave generating element used in an embodiment of the invention and a cross-sectional view taken along the line BB in FIG. 2 (a). is there. 図3(a)~図3(c)は、第1の振動板に設けられている励振電極の形状を説明するための各平面図である。FIG. 3A to FIG. 3C are plan views for explaining the shape of the excitation electrode provided on the first diaphragm. 図4(a)及び図4(b)は、図2(a)及び図2(b)に示した超音波発生素子の外部電極が形成されている側面を示す各側面図である。4 (a) and 4 (b) are side views showing the side surface on which the external electrode of the ultrasonic wave generating element shown in FIGS. 2 (a) and 2 (b) is formed. 図5は、本発明の一実施形態に係る超音波発生素子の製造方法において、複数枚のセラミックグリーンシートを積層する工程を説明するための正面断面図である。FIG. 5 is a front cross-sectional view for explaining a step of laminating a plurality of ceramic green sheets in the method for manufacturing an ultrasonic generator according to one embodiment of the present invention. 図6は、本発明の一実施形態の超音波発生素子の製造方法において、第1の振動板を構成するためのマザーの積層体を示す正面断面図である。FIG. 6 is a front cross-sectional view showing a mother laminate for constituting the first diaphragm in the method of manufacturing an ultrasonic generator according to one embodiment of the present invention. 図7(a)及び図7(b)は、本発明の第1の実施形態の超音波発生素子の製造方法において用意された第1の振動子の平面図及び正面断面図である。FIG. 7A and FIG. 7B are a plan view and a front sectional view of the first vibrator prepared in the method for manufacturing an ultrasonic wave generating element according to the first embodiment of the present invention. 図8は、本発明の他の実施形態に係る超音波発生素子の下方からみた斜視図である。FIG. 8 is a perspective view of an ultrasonic generator according to another embodiment of the present invention as viewed from below.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1は、本発明の一実施形態に係る超音波発生装置の正面断面図である。超音波発生装置1は、第1のケース材としての基板2を有する。基板2上に、本発明の実施形態としての超音波発生素子11が搭載されている。超音波発生素子11を囲むように、基板2に、第2のケース材3が接合されている。 FIG. 1 is a front sectional view of an ultrasonic generator according to an embodiment of the present invention. The ultrasonic generator 1 has a substrate 2 as a first case material. An ultrasonic wave generating element 11 as an embodiment of the present invention is mounted on the substrate 2. A second case material 3 is bonded to the substrate 2 so as to surround the ultrasonic wave generating element 11.
 上記基板2は、セラミックスなどの適宜の剛性材料からなる。第2のケース材3は、開口を有する有底筒状であり、上記基板2と共に超音波発生素子11を取り囲んでいる。第2のケース材3の上面には、超音波放出孔3a,3aが設けられている。第2のケース材3は、金属やセラミックスなどの適宜の材料により形成され得る。 The substrate 2 is made of an appropriate rigid material such as ceramics. The second case member 3 has a bottomed cylindrical shape having an opening, and surrounds the ultrasonic wave generating element 11 together with the substrate 2. Ultrasonic emission holes 3 a and 3 a are provided on the upper surface of the second case member 3. The second case material 3 can be formed of an appropriate material such as metal or ceramics.
 本実施形態では、超音波発生素子11で発生された超音波が、超音波放出孔3aから外部に放出される。 In this embodiment, the ultrasonic wave generated by the ultrasonic wave generating element 11 is emitted to the outside from the ultrasonic wave emission hole 3a.
 図2(a)及び(b)は、上記超音波発生素子11の外観を示す斜視図及び(a)中のB-B線に沿う部分の断面図である。 2 (a) and 2 (b) are a perspective view showing an appearance of the ultrasonic wave generating element 11 and a cross-sectional view of a portion along the line BB in FIG. 2 (a).
 超音波発生素子11は、第1の振動子12と第2の振動子13とを有する。第1の振動子12は、第1の振動板14を有する。第1の振動板14は、対向し合う第1及び第2の主面14a,14bを有する。第1の振動板14においては、中央に励振領域が構成されている。この励振領域は振動電極15~17が圧電セラミックスを介して重なり合っている領域により構成されている。第1の振動板14は、複数の圧電セラミックスを積層した構造を有する。 The ultrasonic generating element 11 has a first vibrator 12 and a second vibrator 13. The first vibrator 12 has a first diaphragm 14. The first diaphragm 14 has first and second main surfaces 14a and 14b facing each other. In the first diaphragm 14, an excitation region is formed at the center. This excitation region is constituted by a region in which the vibrating electrodes 15 to 17 are overlapped via the piezoelectric ceramic. The first diaphragm 14 has a structure in which a plurality of piezoelectric ceramics are stacked.
 励振電極の15~17の平面形状を図3(a)~(c)に示す。本実施形態では、励振電極15~17は、円形の形状を有する。もっとも、励振電極15~17の平面形状は特に限定されるものではない。励振電極15~17は、それぞれ、引き回し電極15a,15a~17a,17aに連ねられている。引き回し電極15a,15a~17a,17aは、図2では図示されていないが、第1の振動子12の外側面に至るように設けられている。 3A to 3C show the planar shapes of the excitation electrodes 15 to 17. In the present embodiment, the excitation electrodes 15 to 17 have a circular shape. However, the planar shape of the excitation electrodes 15 to 17 is not particularly limited. The excitation electrodes 15 to 17 are connected to the routing electrodes 15a, 15a to 17a, and 17a, respectively. The routing electrodes 15a, 15a to 17a, 17a are provided so as to reach the outer surface of the first vibrator 12, although not shown in FIG.
 図2(b)に示すように、励振電極15~17が圧電セラミックスを介して重なりあっている。この励振電極15,17と、励振電極16との間に電圧を印加することにより、励振電極16の上方の圧電セラミック層と、下方の圧電セラミック層とが逆相で伸縮する。従って、第1の振動子12は、バイモルフ型の振動子である。 As shown in FIG. 2B, the excitation electrodes 15 to 17 are overlapped via the piezoelectric ceramic. By applying a voltage between the excitation electrodes 15 and 17 and the excitation electrode 16, the piezoelectric ceramic layer above the excitation electrode 16 and the piezoelectric ceramic layer below are expanded and contracted in opposite phases. Accordingly, the first vibrator 12 is a bimorph vibrator.
 上記励振領域の周囲において、第1の主面14aには、第1の突出部18が設けられている。第1の突出部18は、第1の主面14aに対し第1の主面14aから遠ざかる方向、すなわち図2(b)における上方に突出している。第1の突出部18は、本実施形態では、円形の開口部を有する枠状の形状を有している。もっとも、第1の突出部18は、円形以外の開口を有する枠状の形状を有していても良く、あるいは、枠状以外の形状を有していてもよい。すなわち閉じた枠の一部が切り欠かれている形状の突出部を第1の突出部18として設けてもよい。 The first protrusion 18 is provided on the first main surface 14a around the excitation region. The first protrusion 18 protrudes in a direction away from the first main surface 14a with respect to the first main surface 14a, that is, upward in FIG. In the present embodiment, the first protrusion 18 has a frame shape having a circular opening. However, the first projecting portion 18 may have a frame shape having an opening other than a circle, or may have a shape other than the frame shape. That is, a protruding portion having a shape in which a part of the closed frame is cut out may be provided as the first protruding portion 18.
 第2の主面14b側においても、励振領域の外側に第2の突出部19が設けられている。第2の突出部19は、第1の突出部18と平面視した場合同じ形状を有するように構成されている。もっとも、第2の突出部19の平面形状は第1の突出部18の平面形状と等しくなくともよい。 Also on the second main surface 14b side, a second protrusion 19 is provided outside the excitation region. The second protrusion 19 is configured to have the same shape as the first protrusion 18 in plan view. However, the planar shape of the second projecting portion 19 may not be equal to the planar shape of the first projecting portion 18.
 本実施形態では、第2の突出部19は、第2の主面14bから遠ざかる方向、すなわち図2(b)における下方に突出している。第2の突出部19の先端面、すなわち下面は平坦面とされている。 In the present embodiment, the second protrusion 19 protrudes in a direction away from the second main surface 14b, that is, downward in FIG. 2 (b). The distal end surface, that is, the lower surface of the second protrusion 19 is a flat surface.
 上記第1の振動子12において、励振電極15~17及び引き回し電極15a~17aは、Al、Cu、Agなどの適宜の金属もしくは合金によりなる。 In the first vibrator 12, the excitation electrodes 15 to 17 and the routing electrodes 15a to 17a are made of an appropriate metal or alloy such as Al, Cu, or Ag.
 また、前述したように、第1の振動板14は、圧電セラミックスからなる。このような圧電セラミックスとしては、チタン酸ジルコン酸鉛系セラミックスのような適宜の圧電セラミックスを用いることができる。 As described above, the first diaphragm 14 is made of piezoelectric ceramics. As such a piezoelectric ceramic, an appropriate piezoelectric ceramic such as a lead zirconate titanate ceramic can be used.
 また、第1,第2の突出部18,19は、本実施形態では、第1の振動板14を構成するセラミックスと同じセラミックスにより構成されている。もっとも、第1,第2の突出部18,19は、第1の振動板14を構成しているセラミックスと異なる材料により構成されていてもよい。 Further, in the present embodiment, the first and second projecting portions 18 and 19 are made of the same ceramic as the ceramic constituting the first diaphragm 14. But the 1st, 2nd protrusion parts 18 and 19 may be comprised with the material different from the ceramics which comprise the 1st diaphragm 14. FIG.
 第2の振動子13は、第1の振動子12とほぼ同様に構成されている。すなわち、第2の振動子13は、第2の振動板20を有する。第2の振動板20の中央には、圧電セラミックスを介して励振電極21~23が重なり合っている。それによって励振領域が構成されている。この励振電極21~23は、上記励振電極15~17と同様に構成されている。第2の振動子13においても、励振領域の周囲において、第3の主面20aに第3の突出部24が形成されている。また、第4の主面20bには、第4の突出部25が形成されている。第3の突出部24及び第4の突出部25は、上記第1の突出部18及び第2の突出部19と同様に構成されている。なお、第3の突出部24の先端面すなわち上面が平坦面とされている。第2の振動子13もまた、励振電極21~23を有するバイモルフ型の振動子である。 The second vibrator 13 is configured in substantially the same manner as the first vibrator 12. In other words, the second vibrator 13 includes the second diaphragm 20. In the center of the second diaphragm 20, excitation electrodes 21 to 23 are overlapped via piezoelectric ceramics. As a result, an excitation region is formed. The excitation electrodes 21 to 23 are configured in the same manner as the excitation electrodes 15 to 17. Also in the second vibrator 13, the third protrusion 24 is formed on the third main surface 20 a around the excitation region. In addition, a fourth protrusion 25 is formed on the fourth main surface 20b. The third protrusion 24 and the fourth protrusion 25 are configured in the same manner as the first protrusion 18 and the second protrusion 19. Note that the tip surface, that is, the upper surface of the third protrusion 24 is a flat surface. The second vibrator 13 is also a bimorph vibrator having excitation electrodes 21 to 23.
 図2(b)において、第1の振動子12における、励振電極15~17で挟まれた圧電セラミックス層の分極方向を矢印で示す。第2の振動子13においても、励振電極21~23で挟まれた圧電セラミックス層の分極方向を矢印で示す。 2B, the polarization direction of the piezoelectric ceramic layer sandwiched between the excitation electrodes 15 to 17 in the first vibrator 12 is indicated by an arrow. Also in the second vibrator 13, the polarization direction of the piezoelectric ceramic layer sandwiched between the excitation electrodes 21 to 23 is indicated by an arrow.
 第2の振動子13は、第1の振動子12と同じ周波数でかつ逆位相で振動するように構成されている。従って、超音波発生素子11では、第1,第2の振動子12,13が同じ周波数で、かつ互いに逆位相で振動する、座屈音叉振動モードが利用されて超音波が発生する。 The second vibrator 13 is configured to vibrate at the same frequency as the first vibrator 12 and in the opposite phase. Therefore, in the ultrasonic wave generating element 11, ultrasonic waves are generated using a buckling tuning fork vibration mode in which the first and second vibrators 12 and 13 vibrate at the same frequency and in opposite phases.
 上記第1の振動子12の第2の突出部19と、第2の振動子13の第3の突出部24とが、接合材層26を介して接合されている。より具体的には、第2の突出部19の先端面と第3の突出部24の先端面とが接合材層26を介して接合されている。それによって、第2の振動子13上に第1の振動子12が積層され、一体化されている。 The second projecting portion 19 of the first vibrator 12 and the third projecting portion 24 of the second vibrator 13 are joined via a joining material layer 26. More specifically, the distal end surface of the second projecting portion 19 and the distal end surface of the third projecting portion 24 are joined via the joining material layer 26. Thereby, the first vibrator 12 is laminated on the second vibrator 13 and integrated.
 上記超音波発生素子11では、第2の突出部19と第3の突出部24を利用して、第1,第2の振動子12,13が接合される。従って、後述する製造方法からも明らかなように、上記接合に際し、厚み方向に力を加えたとしても、力は、第2の突出部19と第3の突出部24とが接合される部分に集中する。すなわち、上記励振電極15~17や励振電極21~23が設けられている励振領域には力が加わり難い。 In the ultrasonic wave generating element 11, the first and second vibrators 12 and 13 are joined using the second protrusion 19 and the third protrusion 24. Therefore, as is apparent from the manufacturing method described later, even when a force is applied in the thickness direction during the joining, the force is applied to the portion where the second projecting portion 19 and the third projecting portion 24 are joined. concentrate. That is, it is difficult to apply a force to the excitation region where the excitation electrodes 15 to 17 and the excitation electrodes 21 to 23 are provided.
 よって、上記接合時や、超音波発生素子11の製造工程、例えば、超音波発生素子11を用いて超音波発生装置1を組み立てる際のハンドリング時に、第1及び第2の振動板14,20におけるクラックが生じ難い。 Therefore, in the first and second diaphragms 14 and 20 at the time of the joining and the manufacturing process of the ultrasonic generator 11, for example, at the time of handling when assembling the ultrasonic generator 1 using the ultrasonic generator 11. Cracks are unlikely to occur.
 前述したように、小型化を進めるには、第1,第2の振動子12,13を小さくする必要がある。すなわち、励振領域を小さくする必要があるが、音圧が低下する。音圧を低下させないためには、励振領域の厚みを薄くすればよい。しかしながら、従来の超音波発生素子では、励振領域における振動板の厚みを薄くするとクラックが生じやすいという致命的な問題があった。 As described above, it is necessary to make the first and second vibrators 12 and 13 smaller in order to reduce the size. That is, it is necessary to reduce the excitation area, but the sound pressure decreases. In order not to reduce the sound pressure, the thickness of the excitation region may be reduced. However, the conventional ultrasonic generator has a fatal problem that cracks are likely to occur when the thickness of the diaphragm in the excitation region is reduced.
 これに対して、本実施形態によれば、励振領域における第1,第2の振動板14,20の厚みを薄くしたとしても、上記のようにクラックが生じ難い。従って、超音波発生素子11では、音圧の低下をもたらすことなく、小型化を図ることが可能となる。 On the other hand, according to this embodiment, even if the thickness of the first and second diaphragms 14 and 20 in the excitation region is reduced, cracks are hardly generated as described above. Therefore, it is possible to reduce the size of the ultrasonic wave generating element 11 without reducing the sound pressure.
 また、従来では接合材層を用いた接合に際し、励振領域の周縁に接合材層が設けられていた。このため、厚み方向に力を加えた場合に接合材層が励振領域に流れこみ、励振領域の励振が妨げられてしまうという問題があった。 Further, conventionally, a bonding material layer has been provided on the periphery of the excitation region when bonding using the bonding material layer. For this reason, there is a problem that when a force is applied in the thickness direction, the bonding material layer flows into the excitation region and the excitation of the excitation region is hindered.
 これに対して、本実施形態によれば、第2の突出部19の先端面と第3の突出部24の先端面とに接合材層26が設けられているので、接合材層26が励振領域に流れこみ難く、励振領域の励振が妨げられ難い。従って、超音波発生素子11では、音圧の低下をもたらすことなく、小型化を図ることが可能となる。 On the other hand, according to the present embodiment, since the bonding material layer 26 is provided on the tip surface of the second protrusion 19 and the tip surface of the third protrusion 24, the bonding material layer 26 is excited. It is difficult to flow into the region and the excitation of the excitation region is difficult to be hindered. Therefore, it is possible to reduce the size of the ultrasonic wave generating element 11 without reducing the sound pressure.
 図4(a)及び(b)は、上記超音波発生素子11の各側面に設けられた外部電極31,32を説明するための側面図である。図1、図2(a)、図2(b)及び図4(a)に示すように、超音波発生素子11の1つの側面には、外部電極31が形成されている。この外部電極31は、前述した引き回し電極15a,17aに電気的に接続される。また引き回し電極21a,23aにも接続される。引き回し電極21a,23aは、上記励振電極21,23に連ねられている。 FIGS. 4A and 4B are side views for explaining the external electrodes 31 and 32 provided on the respective side surfaces of the ultrasonic wave generating element 11. As shown in FIGS. 1, 2 (a), 2 (b), and 4 (a), an external electrode 31 is formed on one side surface of the ultrasonic wave generating element 11. The external electrode 31 is electrically connected to the routing electrodes 15a and 17a described above. It is also connected to the routing electrodes 21a and 23a. The routing electrodes 21 a and 23 a are connected to the excitation electrodes 21 and 23.
 図1、図2(a)、図2(b)及び図4(b)に示すように、超音波発生素子11の別の側面には、外部電極32が形成されている。外部電極32は、引き回し電極16aに電気的に接続されている。また、外部電極32は、引き回し電極22aにも接続されている。引き回し電極22aは、第2の振動子13の励振電極22に連ねられている。 As shown in FIGS. 1, 2 (a), 2 (b), and 4 (b), an external electrode 32 is formed on another side surface of the ultrasonic wave generating element 11. The external electrode 32 is electrically connected to the routing electrode 16a. The external electrode 32 is also connected to the routing electrode 22a. The routing electrode 22 a is connected to the excitation electrode 22 of the second vibrator 13.
 なお、図1、図2(a)及び図2(b)に示す外部電極31,32は分かりやすくするために誇張して表現している。実際には外部電極31,32の厚みは第1,第2の振動子12,13に対して極めて薄い。第1の突出部18の突出方向の面と、第1の突出部18の突出方向の面を覆うように設けられている外部電極31,32の面との高さはほぼ同一である。同様に、第4の突出部25の突出方向の面と、第4の突出部25の突出方向の面を覆うように設けられている外部電極31,32の面の高さはほぼ同一である。 The external electrodes 31 and 32 shown in FIGS. 1, 2A, and 2B are exaggerated for easy understanding. Actually, the thicknesses of the external electrodes 31 and 32 are extremely thin with respect to the first and second vibrators 12 and 13. The height of the projecting direction surface of the first projecting portion 18 and the surface of the external electrodes 31 and 32 provided so as to cover the projecting direction surface of the first projecting portion 18 are substantially the same. Similarly, the heights of the surfaces of the fourth projecting portions 25 and the surfaces of the external electrodes 31 and 32 provided so as to cover the surfaces of the fourth projecting portions 25 in the projecting direction are substantially the same. .
 次に、上記超音波発生素子11の製造方法の一例を図5~図7を参照して説明する。 Next, an example of a method for manufacturing the ultrasonic generator 11 will be described with reference to FIGS.
 まず、図5に示すマザーのセラミックグリーンシート41~44を図中の矢印で示すように積層する。マザーのセラミックグリーンシート41~44は、圧電セラミックスを主体とするセラミックグリーンシートである。 First, the mother ceramic green sheets 41 to 44 shown in FIG. 5 are laminated as shown by the arrows in the figure. The mother ceramic green sheets 41 to 44 are ceramic green sheets mainly composed of piezoelectric ceramics.
 マザーのセラミックグリーンシート41,44には、それぞれ、パンチングにより開口部41a,44aが形成されている。この開口部41a,44aは、最終的に第1の突出部または第2の突出部で囲まれる開口部を構成することになる。 Openings 41a and 44a are formed in the mother ceramic green sheets 41 and 44, respectively, by punching. The openings 41a and 44a finally form an opening surrounded by the first protrusion or the second protrusion.
 セラミックグリーンシート43の上面には、導電ペースト15Aがスクリーン印刷されている。導電ペースト15Aは、焼成後に励振電極15となる。 A conductive paste 15A is screen-printed on the upper surface of the ceramic green sheet 43. The conductive paste 15A becomes the excitation electrode 15 after firing.
 また、セラミックグリーンシート42の上面には、導電ペースト16Aがスクリーン印刷されている。下面には、導電ペースト17Aがスクリーン印刷されている。導電ペースト16A,17Aは、焼成後に、励振電極16,17となる。 Further, on the upper surface of the ceramic green sheet 42, the conductive paste 16A is screen-printed. A conductive paste 17A is screen-printed on the lower surface. The conductive pastes 16A and 17A become the excitation electrodes 16 and 17 after firing.
 なお、上記導電ペーストを用いずに、金属材料を他の薄膜形成方法や厚膜形成方法により形成し、励振電極15~17を形成してもよい。 Note that the excitation electrodes 15 to 17 may be formed by forming a metal material by other thin film forming methods or thick film forming methods without using the conductive paste.
 本実施形態では、上記マザーのセラミックグリーンシート41~44を積層し、さらにマザーのセラミックグリーンシート44及びマザーのセラミックグリーンシート41を追加し、積層する。このようにして、図6に示すマザーの積層体45を得る。マザーの積層体45を得た後に、静水圧を加えて、セラミックグリーンシート同士を密着させる。この厚み方向に加圧する工程において、加圧力はマザーのセラミックグリーンシート41及びマザーのセラミックグリーンシート44に加わるため、上記導電ペースト15A、17Aが重なり合っている部分には、加圧力が加わり難い。 In the present embodiment, the mother ceramic green sheets 41 to 44 are laminated, and the mother ceramic green sheet 44 and the mother ceramic green sheet 41 are further added and laminated. In this way, a mother laminate 45 shown in FIG. 6 is obtained. After obtaining the mother laminate 45, hydrostatic pressure is applied to bring the ceramic green sheets into close contact with each other. In the pressurizing process in the thickness direction, the applied pressure is applied to the mother ceramic green sheet 41 and the mother ceramic green sheet 44. Therefore, it is difficult to apply the applied pressure to the overlapping portions of the conductive pastes 15A and 17A.
 次に、上記マザーの積層体45を、図6の一点鎖線C,Cに沿って切断する。それによって、積層体チップを得る。 Next, the mother laminate 45 is cut along the dashed lines C and C in FIG. Thereby, a laminated body chip is obtained.
 得られた積層体チップ46を図7(a)及び(b)に平面図及び正面断面図で示す。上記積層体チップ46を焼成することにより、図2(b)に示されている第1の振動子12を得ることができる。本発明によれば、励振領域の周囲に第1の突出部18及び第2の突出部19を設けているので、切断の際に生じる第1の振動子12のクラックを抑制でき、製造による良品率を高めることができる。 The obtained laminated chip 46 is shown in a plan view and a front sectional view in FIGS. By firing the laminate chip 46, the first vibrator 12 shown in FIG. 2B can be obtained. According to the present invention, since the first projecting portion 18 and the second projecting portion 19 are provided around the excitation region, cracks in the first vibrator 12 that occur during cutting can be suppressed, and a non-defective product produced by manufacturing can be obtained. The rate can be increased.
 上記第1の振動子12を得る工程と同様にして、第2の振動子13を得ることができる。そして、得られた第1,第2の振動子12,13を、接合材層26を介して接合する。この場合、予め、第1の振動子12の第2の突出部19の先端面を研磨し、前述した平坦面としておくことが望ましい。また、第2の振動子13の第3の突出図24の先端面も研磨により、平坦面としておくことが望ましい。このようにすると、接合強度を上げることができる。そして、第2の突出部19の先端面と第3の突出部24の先端面とを、接合材層26を介して接合する。 In the same manner as the step of obtaining the first vibrator 12, the second vibrator 13 can be obtained. Then, the obtained first and second vibrators 12 and 13 are bonded through the bonding material layer 26. In this case, it is desirable to polish the tip end surface of the second protrusion 19 of the first vibrator 12 in advance to obtain the above-described flat surface. Further, it is desirable that the tip surface of the second protrusion 13 of the second vibrator 13 shown in FIG. If it does in this way, joint strength can be raised. Then, the distal end surface of the second projecting portion 19 and the distal end surface of the third projecting portion 24 are joined via the joining material layer 26.
 接合に際しては、図2(b)の上下方向、すなわち第2の振動子13を第1の振動子12側に押しつける力が働く。しかしながら、この力は、上記接合界面に作用し、前述したように、励振領域には至らない。従って、第1,第2の振動板14,20のクラックを引き起こすことなく、第1,第2の振動子12,13を確実に接合することができる。上記のようにして、超音波発生素子11を得ることができる。 When joining, a force pressing the second vibrator 13 against the first vibrator 12 side in the vertical direction of FIG. However, this force acts on the joint interface and does not reach the excitation region as described above. Therefore, the first and second vibrators 12 and 13 can be reliably joined without causing cracks in the first and second diaphragms 14 and 20. The ultrasonic wave generating element 11 can be obtained as described above.
 なお、上記実施形態では、マザーの積層体45を切断して積層体チップとした後に、焼成を行っていた。これに代えて、マザーの積層体45を焼成した後に、前述した一点鎖線C,Cに沿って切断し、個々の第1の振動子12を得てもよい。 In the above embodiment, the mother laminate 45 is cut to form a laminate chip, and then fired. Alternatively, after firing the mother laminated body 45, the first vibrator 12 may be obtained by cutting along the one-dot chain lines C and C described above.
 また、上記マザーの積層体45と同様にして、第2の振動子13を構成するマザーの積層体を用意する。そして、マザーの積層体45と、第2の振動子13を構成するためのマザーの積層体とを積層し、圧着し、一体焼成してもよい。その場合には、焼成後に、マザーの焼結体を切断することにより、上記超音波発生素子11を得ることができる。すなわち、接合材を用いることなく、第1,第2の振動子12,13が接合されている超音波発生素子を提供することができる。従って、本発明においては第1,第2の振動子は、接合材を用いずに第2の突出部19と第3の突出部24とが接合されて、一体化されていてもよい。 In the same manner as the mother laminated body 45, a mother laminated body constituting the second vibrator 13 is prepared. Then, the mother laminate 45 and the mother laminate for forming the second vibrator 13 may be laminated, pressure-bonded, and integrally fired. In that case, the ultrasonic wave generating element 11 can be obtained by cutting the mother sintered body after firing. That is, it is possible to provide an ultrasonic wave generating element in which the first and second vibrators 12 and 13 are bonded without using a bonding material. Therefore, in the present invention, the first and second vibrators may be integrated by joining the second protrusion 19 and the third protrusion 24 without using a bonding material.
 図8は、本発明の超音波発生素子の他の実施形態を示す斜視図である。本実施形態の超音波発生素子51では、第1,第2の振動子12,13が接合材層26を介して接合されている。第2の振動子13では、複数の第4の突出部部分25A1~25A4は、第2の振動板20の第4の主面20bから遠ざかる方向、すなわち図8における下方に突出している。すなわち、第4の突出部が、枠状ではなく、独立した複数の突出部部分25A1~25A4で構成されている。第4の突出部部分25A1~25Aは、第4の主面20bの矩形形状のコーナー部分に設けられている。 FIG. 8 is a perspective view showing another embodiment of the ultrasonic wave generating element of the present invention. In the ultrasonic wave generating element 51 of the present embodiment, the first and second vibrators 12 and 13 are bonded via the bonding material layer 26. In the second vibrator 13, the plurality of fourth protrusion portions 25A1 to 25A4 protrude away from the fourth main surface 20b of the second diaphragm 20, that is, downward in FIG. That is, the fourth projecting portion is not frame-shaped but is composed of a plurality of independent projecting portion portions 25A1 to 25A4. The fourth protrusion portions 25A1 to 25A are provided at rectangular corner portions of the fourth main surface 20b.
 従って、図1に示した基板2に超音波発生素子11を搭載するに際しての台座としての機能を第4の突出部部分25A1~25A4に持たせることができる。 Therefore, the fourth projecting portions 25A1 to 25A4 can have a function as a pedestal when the ultrasonic wave generating element 11 is mounted on the substrate 2 shown in FIG.
 このように、第2の振動子13の第4の突出部25については、台座としての機能を果たすように、複数の突出部部分に分割されていてもよい。同様に、図2(b)に示した第1の突出部18、第2の突出部19または第3の突出部24についても、複数の突出部部分に分割されていてもよい。 Thus, the fourth protrusion 25 of the second vibrator 13 may be divided into a plurality of protrusions so as to function as a pedestal. Similarly, the first protrusion 18, the second protrusion 19, or the third protrusion 24 shown in FIG. 2B may be divided into a plurality of protrusions.
 なお、上述の実施形態では、第1の振動板14は、チタン酸ジルコン酸鉛系セラミックスからなっているが、これに限るものではない。例えば、ニオブ酸カリウムナトリウム系やアルカリニオブ酸系セラミックス等の非鉛系圧電セラミックスの圧電材料などからなっていてもよい。 In the above-described embodiment, the first diaphragm 14 is made of a lead zirconate titanate ceramic, but is not limited thereto. For example, it may be made of a lead-free piezoelectric ceramic piezoelectric material such as potassium sodium niobate or alkali niobate ceramic.
 なお、上述の実施形態では、図1に示すように、第4の突出部25の先端面は、外部電極31,32によって覆われた状態で基板に直接接触しているが、第4の突出部25の先端面は基板に直接接触していてもよい。 In the above-described embodiment, as shown in FIG. 1, the tip surface of the fourth protrusion 25 is in direct contact with the substrate while being covered by the external electrodes 31 and 32, but the fourth protrusion The tip surface of the portion 25 may be in direct contact with the substrate.
1…超音波発生装置
2…基板
3…第2のケース材
3a…超音波放出孔
11…超音波発生素子
12,13…第1,第2の振動子
14…第1の振動板
14a,14b…第1,第2の主面
15~17…励振電極
15A~17A…導電ペースト
15a~17a…引き回し電極
18,19…第1,第2の突出部
20…第2の振動板
20a,20b…第3,第4の主面
21~23…励振電極
21a~23a…引き回し電極
24,25…第3,第4の突出部
25A1~25A4…第4の突出部部分
26…接合材層
31,32…外部電極
41~44…セラミックグリーンシート
41a,44a…開口部
45…積層体
46…積層体チップ
51…超音波発生素子
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic generator 2 ... Board | substrate 3 ... 2nd case material 3a ... Ultrasonic emission hole 11 ... Ultrasonic generating element 12, 13 ... 1st, 2nd vibrator | oscillator 14 ... 1st diaphragm 14a, 14b ... first and second main surfaces 15 to 17 ... excitation electrodes 15A to 17A ... conductive pastes 15a to 17a ... leading electrodes 18, 19 ... first and second protrusions 20 ... second diaphragms 20a, 20b ... Third and fourth main surfaces 21 to 23... Excitation electrodes 21a to 23a... Leading electrodes 24 and 25... Third and fourth protrusions 25A1 to 25A4. ... External electrodes 41 to 44 ... Ceramic green sheets 41a, 44a ... Opening 45 ... Laminated body 46 ... Laminated body chip 51 ... Ultrasonic wave generating element

Claims (6)

  1.  対向し合う第1及び第2の主面を有し、中央に超音波を励振する励振領域が設けられている第1の振動板と、前記第1の振動板の前記励振領域の周囲において、前記第1の主面から突出している第1の突出部と、前記励振領域の周囲において、前記第2の主面から突出している第2の突出部とを有する第1の振動子と、
     対向し合う第3及び第4の主面を有し、中央に超音波を励振する励振領域が設けられている第2の振動板と、前記第2の振動板の前記励振領域の周囲において、前記第3の主面から突出している第3の突出部と、前記励振領域の周囲において、前記第4の主面から突出している第4の突出部とを有する第2の振動子とを備え、
     前記第1の振動子の前記第2の突出部と、前記第2の振動子の前記第3の突出部とが接合されて前記第2の振動子上に前記第1の振動子が積層されており、第1の振動子と第2の振動子とが同じ周波数で互いに逆位相で振動する座屈音叉振動モードを利用している、超音波発生素子。
    In the periphery of the first vibration plate having the first and second main surfaces facing each other and provided with an excitation region for exciting ultrasonic waves in the center, and the excitation region of the first vibration plate, A first vibrator having a first protrusion protruding from the first main surface and a second protrusion protruding from the second main surface around the excitation region;
    In the periphery of the excitation area of the second diaphragm, the second diaphragm having the third and fourth main surfaces facing each other and provided with an excitation area for exciting ultrasonic waves in the center, A second vibrator having a third protrusion protruding from the third main surface and a fourth protrusion protruding from the fourth main surface around the excitation region; ,
    The second protrusion of the first vibrator and the third protrusion of the second vibrator are joined together, and the first vibrator is stacked on the second vibrator. An ultrasonic wave generating element using a buckling tuning fork vibration mode in which the first vibrator and the second vibrator vibrate in the opposite phase with each other at the same frequency.
  2.  前記第1の振動子と前記第2の振動子とを接合している接合材層をさらに備える、請求項1に記載の超音波発生素子。 The ultrasonic generating element according to claim 1, further comprising a bonding material layer bonding the first vibrator and the second vibrator.
  3.  前記第1~第4の突出部の内、少なくとも1つの突出部が、互いに隔てられている複数の突出部部分からなる、請求項1または2に記載の超音波発生素子。 3. The ultrasonic generating element according to claim 1, wherein at least one of the first to fourth protrusions comprises a plurality of protrusions separated from each other.
  4.  請求項1~3のいずれか1項に記載の超音波発生素子と、
     前記超音波発生素子が搭載される第1のケース材と、
     前記第1のケース材に接合されており、前記第1のケース材と共に超音波発生素子を取り囲んでいる第2のケース材とを備え、前記第2のケース材に、超音波を外部に放出する超音波放出孔が設けられている、超音波発生装置。
    The ultrasonic generator according to any one of claims 1 to 3,
    A first case material on which the ultrasonic wave generating element is mounted;
    A second case material joined to the first case material and surrounding the ultrasonic generating element together with the first case material, and the second case material emits ultrasonic waves to the outside. An ultrasonic generator provided with an ultrasonic discharge hole.
  5.  対向し合う第1及び第2の主面を有し、中央に超音波を励振する励振領域が設けられている第1の振動板と、前記第1の振動板の前記励振領域の周囲において、前記第1の主面から突出している第1の突出部と、前記励振領域の周囲において、前記第2の主面から突出している第2の突出部とを有する第1の振動子と、
     対向し合う第3及び第4の主面を有し、中央に超音波を励振する励振領域が設けられている第2の振動板と、前記第2の振動板の前記励振領域の周囲において、前記第3の主面から突出している第3の突出部と、前記励振領域の周囲において、前記第4の主面から突出している第4の突出部とを有する第2の振動子とを用意する工程と、
     前記第1の振動子の前記第2の突出部と、前記第2の振動子の前記第3の突出部とを接合する工程とを備える超音波発生素子の製造方法。
    In the periphery of the first vibration plate having the first and second main surfaces facing each other and provided with an excitation region for exciting ultrasonic waves in the center, and the excitation region of the first vibration plate, A first vibrator having a first protrusion protruding from the first main surface and a second protrusion protruding from the second main surface around the excitation region;
    In the periphery of the excitation area of the second diaphragm, the second diaphragm having the third and fourth main surfaces facing each other and provided with an excitation area for exciting ultrasonic waves in the center, A third protrusion having a third protrusion protruding from the third main surface, and a second vibrator having a fourth protrusion protruding from the fourth main surface around the excitation region is prepared. And a process of
    A method for manufacturing an ultrasonic wave generating element, comprising the step of joining the second protrusion of the first vibrator and the third protrusion of the second vibrator.
  6.  前記第1の振動子と前記第2の振動子とを接合するに際し、接合材を用いて第1,第2の振動子を接合する、請求項5に記載の超音波発生素子の製造方法。 The method for manufacturing an ultrasonic generating element according to claim 5, wherein when the first vibrator and the second vibrator are joined, the first and second vibrators are joined using a joining material.
PCT/JP2014/059642 2013-07-26 2014-04-01 Ultrasonic generation element, ultrasonic generation device, and method for manufacturing ultrasonic generation element WO2015011956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528167A JP5975178B2 (en) 2013-07-26 2014-04-01 Ultrasonic generator, ultrasonic generator, and method for manufacturing ultrasonic generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-155721 2013-07-26
JP2013155721 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015011956A1 true WO2015011956A1 (en) 2015-01-29

Family

ID=52393014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059642 WO2015011956A1 (en) 2013-07-26 2014-04-01 Ultrasonic generation element, ultrasonic generation device, and method for manufacturing ultrasonic generation element

Country Status (2)

Country Link
JP (1) JP5975178B2 (en)
WO (1) WO2015011956A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140333182A1 (en) * 2012-02-23 2014-11-13 Murata Manufacturing Co., Ltd. Ultrasonic generator
WO2021192417A1 (en) * 2020-03-26 2021-09-30 株式会社村田製作所 Ultrasonic transducer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311577A (en) * 1993-04-22 1994-11-04 Nec Corp Low frequency underwater echo sounder transmitter
JP2013088234A (en) * 2011-10-17 2013-05-13 Murata Mfg Co Ltd Ultrasonic wave generation device and ultrasonic wave generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991827B2 (en) * 2002-09-10 2007-10-17 日本電気株式会社 Bending type transmitter
JP2012217038A (en) * 2011-03-31 2012-11-08 Nec Casio Mobile Communications Ltd Oscillation device and portable terminal device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06311577A (en) * 1993-04-22 1994-11-04 Nec Corp Low frequency underwater echo sounder transmitter
JP2013088234A (en) * 2011-10-17 2013-05-13 Murata Mfg Co Ltd Ultrasonic wave generation device and ultrasonic wave generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140333182A1 (en) * 2012-02-23 2014-11-13 Murata Manufacturing Co., Ltd. Ultrasonic generator
US9853578B2 (en) * 2012-02-23 2017-12-26 Murata Manufacturing Co., Ltd. Ultrasonic generator
WO2021192417A1 (en) * 2020-03-26 2021-09-30 株式会社村田製作所 Ultrasonic transducer

Also Published As

Publication number Publication date
JP5975178B2 (en) 2016-08-23
JPWO2015011956A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP5594435B2 (en) Ultrasonic transducer
JP5136644B2 (en) Piezoelectric generator
JP2009182924A (en) Piezoelectric device and method of manufacturing the same
JP2007214941A (en) Piezoelectric vibration chip and piezoelectric device
TW201414327A (en) Audio emitter, audio emission device, and electronic apparatus
JP5708079B2 (en) Crystal oscillator
WO2014174729A1 (en) Ultrasound emission device
JP5975178B2 (en) Ultrasonic generator, ultrasonic generator, and method for manufacturing ultrasonic generator
JP5638170B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP2009206614A (en) Piezoelectric vibration device and method of manufacturing piezoelectric vibration device
JP2009246583A (en) Piezoelectric vibration device
JP5041145B2 (en) Piezoelectric device
JP2006303761A (en) Surface mount piezoelectric oscillator
JP2013207527A (en) Piezoelectric vibration piece and piezoelectric vibration device using the same
JP6107940B2 (en) Ultrasonic generator
JP5534938B2 (en) Piezoelectric speaker
JPH09172346A (en) Piezoelectric resonance parts and manufacture of the same
JP2010258667A (en) Electronic component and manufacturing method thereof, and piezoelectric vibrator and manufacturing method thereof
WO2014174731A1 (en) Ultrasound generation device
CN112970195B (en) Vibrator and method for manufacturing vibrator
JP2006074567A (en) Piezoelectric device
JP2013098701A (en) Piezoelectric vibration device and manufacturing method of piezoelectric vibration device
JP5333806B2 (en) device
JP5321867B2 (en) Piezoelectric device and manufacturing method thereof
WO2022259941A1 (en) Ultrasonic transducer and non-contact tactile sensation presentation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528167

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14830204

Country of ref document: EP

Kind code of ref document: A1