JP2009246583A - Piezoelectric vibration device - Google Patents

Piezoelectric vibration device Download PDF

Info

Publication number
JP2009246583A
JP2009246583A JP2008089048A JP2008089048A JP2009246583A JP 2009246583 A JP2009246583 A JP 2009246583A JP 2008089048 A JP2008089048 A JP 2008089048A JP 2008089048 A JP2008089048 A JP 2008089048A JP 2009246583 A JP2009246583 A JP 2009246583A
Authority
JP
Japan
Prior art keywords
substrate
thick
thin
piezoelectric
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008089048A
Other languages
Japanese (ja)
Inventor
Shunsuke Sato
俊介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2008089048A priority Critical patent/JP2009246583A/en
Publication of JP2009246583A publication Critical patent/JP2009246583A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric vibration device which meets the need of reduction in height, without reducing a mechanical strength. <P>SOLUTION: A crystal vibrator 1 is configured by joining a pair of bases 2, 4 onto front and rear sides of a crystal substrate 3 via joining materials, respectively. On the front and rear principal surfaces of the crystal substrate 3, thick portions 301, 303 and thin portions 302, 304 are formed respectively, which are different in direction of formation on the front and rear sides. Joining surface sides of the pair of bases 2, 4 with the crystal substrate 3, thin portions 22, 46 corresponding to the thick portions 301, 303 and thick portions 21, 45 corresponding to the thin portions 302, 304 of the crystal substrate 3 are formed, respectively. The thick portions 21, 45 are formed eccentrically in a region including at least one of corners of the bases 2, 4, and the thin and thick portions of the pair of bases and the thick and thin portions of the piezoelectric substrate are joined via joining materials, respectively, in one-to-one correspondence. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子機器等に用いられる圧電振動デバイスに関するものである。   The present invention relates to a piezoelectric vibration device used for electronic equipment and the like.

移動体通信機等に広く用いられている圧電振動デバイスの一例として、水晶振動子がある。表面実装型の水晶振動子は、薄肉部を有する絶縁性材料からなる容器体(以下ベースと略称)の内部に、水晶振動片を搭載し、前記薄肉部を平板状の蓋体で気密封止した形態が一般的である。前記ベースはセラミック材料(層)を複数積層し、焼成によって一体成形されるが、焼成時のセラミックの収縮状態によっては積層ズレが発生することがある。   One example of a piezoelectric vibration device that is widely used in mobile communication devices and the like is a crystal resonator. A surface-mount type crystal unit has a crystal resonator element mounted inside a container body (hereinafter abbreviated as “base”) made of an insulating material having a thin part, and the thin part is hermetically sealed with a flat lid. This form is common. The base is formed by stacking a plurality of ceramic materials (layers) and integrally formed by firing. However, stacking deviation may occur depending on the contraction state of the ceramic during firing.

ところで、近年の圧電振動デバイスの超小型化に伴い、水晶振動子においても外形寸法(縦横寸法)が、例えば1.6×1.2mm程度よりも小さくなってくると、前述の積層ズレの影響が顕在化してくるため、セラミックベースでの対応が限界に近づいてくる。さらに、積層ズレが低背化に際して障害となる。また、低背化のためにベースの薄肉化を図る場合、機械的強度の低下が懸念される。低背化を図る一つの手段として、空間電圧印加方式(いわゆるエアギャップ方式)を用いた圧電振動デバイスが提案されている(例えば特許文献1を参照)。   By the way, with the recent miniaturization of the piezoelectric vibration device, when the external dimensions (vertical and horizontal dimensions) of the crystal resonator become smaller than, for example, about 1.6 × 1.2 mm, the influence of the above-described stacking deviation is caused. As this becomes obvious, the ceramic-based approach is approaching its limit. Furthermore, the stacking displacement becomes an obstacle when the height is lowered. Moreover, when the thickness of the base is reduced in order to reduce the height, there is a concern about a decrease in mechanical strength. As one means for reducing the height, a piezoelectric vibration device using a spatial voltage application method (so-called air gap method) has been proposed (see, for example, Patent Document 1).

特開2006−186748号JP 2006-186748 A

特許文献1の、例えば図4に示すように、下凸状の厚肉部を有する上板と、薄肉部の周囲に厚肉部を形成した圧電振動板と、上凸状の厚肉部を有する下板とを、互いに嵌合するようにして接合材を介して接合した構成があるが、このような場合、上板および下板の周縁部は薄肉となっており、低背化は図ることができるものの、機械的強度が低下する可能性がある。   For example, as shown in FIG. 4 of Patent Document 1, an upper plate having a lower convex thick portion, a piezoelectric diaphragm having a thick portion formed around the thin portion, and an upper convex thick portion. There is a configuration in which the lower plate is joined to each other via a joining material so as to be fitted to each other. In such a case, the peripheral portions of the upper plate and the lower plate are thin, and the height is reduced. Although it is possible, the mechanical strength may be reduced.

本発明は、かかる点に鑑みてなされたものであり、機械的強度を低下させることなく、低背化に対応した圧電振動デバイスを提供することを目的とするものである。   The present invention has been made in view of this point, and an object of the present invention is to provide a piezoelectric vibration device that can be reduced in height without reducing mechanical strength.

上記目的を達成するために、請求項1の発明は、一対の基材が、圧電基板の表裏に、接合材を介して各々接合された圧電振動デバイスであって、前記圧電基板は、当該基板の表裏主面の周縁の一部に、当該基板の表裏で形成方向が異なる厚肉部を、当該基板の表裏主面の、前記厚肉部以外の領域で形成される薄肉部を、各々備えてなり、前記一対の基材は、前記圧電基板との接合面側に、前記厚肉部と対応した薄肉部と、前記圧電基板の薄肉部と対応した厚肉部とを、各々備えているとともに、前記一対の基材の厚肉部は、当該基材の少なくとも1つの角部を含む領域に偏って形成されており、前記一対の基材の薄肉部および厚肉部と、前記圧電基板の厚肉部および薄肉部とが、それぞれ前記接合材を介して一対一で嵌合し、当該嵌合によって圧電基板と一対の基材との間に微小な内部空間が形成される構成である。このような構成により、基材および圧電基板が一様に薄肉化されることなく、厚肉部位も混在した形態となっている。しかも一対の基材の厚肉部は、当該基材の少なくとも1つの角部を含む領域に偏って形成されているため、基材の周縁部の強度を補うことができる。また、これらの部材を厚肉部と薄肉部が互いに嵌合し合って組立てられることによって、薄肉部を厚肉部で補完することになり、圧電振動デバイスの機械的強度の低下を防止することができる。   In order to achieve the above object, the invention of claim 1 is a piezoelectric vibration device in which a pair of base materials are bonded to the front and back of a piezoelectric substrate via a bonding material, said piezoelectric substrate being said substrate. A thick portion having a different formation direction on the front and back sides of the substrate, and a thin portion formed in a region other than the thick portion on the front and back main surfaces of the substrate, respectively. The pair of base materials includes a thin portion corresponding to the thick portion and a thick portion corresponding to the thin portion of the piezoelectric substrate, respectively, on the joint surface side with the piezoelectric substrate. In addition, the thick portions of the pair of base materials are formed to be biased toward a region including at least one corner portion of the base materials, and the thin and thick portions of the pair of base materials, and the piezoelectric substrate The thick-walled portion and the thin-walled portion are fitted on a one-to-one basis through the bonding material, respectively. Small inner space between the piezoelectric substrate and the pair of substrates is configured to is formed. With such a configuration, the base material and the piezoelectric substrate are not uniformly thinned, and a thick portion is also mixed. And since the thick part of a pair of base material is formed in the area | region including the at least 1 corner | angular part of the said base material, the intensity | strength of the peripheral part of a base material can be supplemented. In addition, by assembling these members so that the thick part and the thin part fit together, the thin part is complemented by the thick part, thereby preventing the mechanical strength of the piezoelectric vibration device from being lowered. Can do.

また、本発明の構成によると、圧電基板および一対の基材が互いに嵌合される薄肉部および厚肉部を有しているため、外的応力が加わった際に凹凸状の嵌合部位(嵌め合い部位)によって接合強度を向上させることができる。具体的に、圧電基板は、当該基板の表裏主面の周縁の一部に当該基板の表裏で形成方向が異なる厚肉部を備えており、例えば圧電基板の中心を基点として、当該基板の表裏の厚肉部が点対称となる相対位置関係とする。当該基板の表裏主面の前記厚肉部以外の領域を薄肉部とする。一方、一対の基材の前記圧電基板との接合面側に、前記厚肉部と対応した薄肉部と、前記圧電基板の薄肉部と対応した厚肉部とを各々形成する。そして、前記一対の基材の薄肉部および厚肉部と、前記圧電基板の厚肉部および薄肉部とで、嵌合状態を形成することで、基材の機械的強度の低下を防止することができる。   Further, according to the configuration of the present invention, since the piezoelectric substrate and the pair of base materials have a thin portion and a thick portion that are fitted to each other, when the external stress is applied, the uneven fitting portion ( The joint strength can be improved by the fitting part). Specifically, the piezoelectric substrate includes thick portions having different formation directions on the front and back surfaces of the substrate on a part of the periphery of the front and back main surfaces of the substrate. For example, the front and back surfaces of the substrate are based on the center of the piezoelectric substrate. The relative position is such that the thick-walled portion is point-symmetric. A region other than the thick portion on the front and back main surfaces of the substrate is defined as a thin portion. On the other hand, a thin portion corresponding to the thick portion and a thick portion corresponding to the thin portion of the piezoelectric substrate are formed on the bonding surface side of the pair of base materials with the piezoelectric substrate. Then, by forming a fitting state between the thin portion and the thick portion of the pair of base materials and the thick portion and the thin portion of the piezoelectric substrate, a reduction in the mechanical strength of the base material is prevented. Can do.

さらに本発明の構成によると、前記圧電基板および前記一対の基材は、互いに嵌合される薄肉部および厚肉部を有した状態となっているが、厚肉部は薄肉部と嵌合することによって厚みが吸収される(厚み増大が緩和される)。つまり、厚肉部の厚みがそのまま圧電振動デバイスの高さに上乗せされることがないため、圧電振動デバイス全体の高さ(厚み)を低く(薄く)することが可能となり、低背化を図ることができる。   Furthermore, according to the configuration of the present invention, the piezoelectric substrate and the pair of base materials have a thin portion and a thick portion that are fitted to each other, but the thick portion is fitted to the thin portion. Thus, the thickness is absorbed (thickness increase is mitigated). That is, since the thickness of the thick portion is not directly added to the height of the piezoelectric vibration device, the height (thickness) of the entire piezoelectric vibration device can be reduced (thin), and the height can be reduced. be able to.

また、上記目的を達成するために、請求項2の発明によると、前記圧電基板と前記一対の基材が、透光性材料で形成されている圧電振動デバイスであるので、当該圧電基板を駆動させる励振電極から引き出される引出電極と、圧電振動デバイスの底面に形成される外部接続端子とを電気的に接続するための配線導体を効率的に形成することができる。   In order to achieve the above object, according to the invention of claim 2, since the piezoelectric substrate and the pair of base materials are piezoelectric vibrating devices formed of a light-transmitting material, the piezoelectric substrate is driven. Thus, it is possible to efficiently form a wiring conductor for electrically connecting the extraction electrode drawn from the excitation electrode to be connected to the external connection terminal formed on the bottom surface of the piezoelectric vibration device.

具体的には、圧電基板と基材の各々に導体(金属)を形成(圧電基板と基材の周縁領域には例えば金属ロウ材からなる接合材を形成しておく)しておき、前記導体の一部同士が平面視で重なるように、圧電基板と基材とを接合する。その後、重なった導体部分に対して圧電振動デバイスの外部から、基材および圧電基板の内部を透過させるようにレーザービームを照射することで、重なった導体部分を溶融させて一体化することによって配線導体を形成することができる。すなわち、基材および圧電基板に透光性材料を用いることで、レーザービームや電子ビームなどの所謂エネルギービームを、基材および圧電基板の内部を透過させて前記導体部分を溶融させることができるので、雰囲気加熱によって圧電振動デバイス内部の導体を溶融させる場合に比べ、局所的な加熱で対応可能となる。   Specifically, a conductor (metal) is formed on each of the piezoelectric substrate and the base material (a bonding material made of, for example, a metal brazing material is formed on the peripheral area of the piezoelectric substrate and the base material), and the conductor The piezoelectric substrate and the base material are joined so that a part of each overlaps in plan view. After that, by irradiating the overlapped conductor part from the outside of the piezoelectric vibrating device with a laser beam so as to pass through the inside of the base material and the piezoelectric substrate, the overlapping conductor part is fused and integrated. A conductor can be formed. That is, by using a translucent material for the base material and the piezoelectric substrate, a so-called energy beam such as a laser beam and an electron beam can be transmitted through the base material and the piezoelectric substrate to melt the conductor portion. Compared with the case where the conductor inside the piezoelectric vibration device is melted by atmospheric heating, it can be handled by local heating.

さらに、基材および圧電基板に透光性材料を用いることによって、圧電振動デバイス内部の配線導体の溶融による一体形成だけでなく、圧電基板と基材の周縁領域に形成した接合材同士を当接させ、当該当接部分に対してレーザービームを照射して当該部分を溶融させることによって、基材と圧電基板との接合を行うことも可能である。   Furthermore, by using a translucent material for the base material and the piezoelectric substrate, not only the integral formation of the wiring conductor inside the piezoelectric vibration device by melting, but also the bonding materials formed in the peripheral area of the piezoelectric substrate and the base material are brought into contact with each other. It is also possible to bond the base material and the piezoelectric substrate by irradiating the contact part with a laser beam and melting the part.

また、前記嵌合形状によって、前記配線導体を形成する際に、レーザービームの照射によって溶融した金属物質の一部が、前記嵌合形状によって形成される圧電振動デバイスの微小な内部空間に飛散して、圧電基板に形成される励振電極や、引出電極に付着することによる圧電振動デバイスの特性劣化を防止することができる。これは、前記薄肉部および厚肉部による段差が、前述の重なった導体部分に近接するため、“障壁”となり、溶融金属物質の前記励振電極への付着を防止することができるためである。   In addition, when the wiring conductor is formed by the fitting shape, a part of the metal material melted by the laser beam irradiation is scattered in a minute internal space of the piezoelectric vibration device formed by the fitting shape. Thus, it is possible to prevent the deterioration of the characteristics of the piezoelectric vibrating device caused by adhering to the excitation electrode and the extraction electrode formed on the piezoelectric substrate. This is because the step due to the thin portion and the thick portion is close to the above-described overlapping conductor portion, thereby becoming a “barrier” and preventing adhesion of molten metal material to the excitation electrode.

上記構成によると、前記圧電基板と前記一対の基材に透光性材料が使用されているが、例えば、一対の基材に水晶またはガラスを、圧電基板に水晶を用いることによって、レーザービーム等のエネルギービームを効率良く透過させることができ、配線導体や封止材を高精度で溶融させることができる。   According to the above configuration, a translucent material is used for the piezoelectric substrate and the pair of base materials. For example, by using crystal or glass for the pair of base materials and crystal for the piezoelectric substrate, a laser beam or the like The energy beam can be efficiently transmitted, and the wiring conductor and the sealing material can be melted with high accuracy.

以上のように、本発明によれば、機械的強度を低下させることなく、低背化に対応した圧電振動デバイスを提供することができる。   As described above, according to the present invention, it is possible to provide a piezoelectric vibration device that can reduce the height without reducing the mechanical strength.

以下、圧電基板として水晶基板を用いた水晶振動子を例に挙げて、本発明の実施形態について図1乃至5を参照して説明する。図1は本発明の実施形態を示す水晶振動子の組立斜視図で、図2は本発明の実施形態を示す水晶振動子の分解斜視図、図3は本発明の実施形態を示す第1の基材の平面図であり、図4は本発明の実施形態を示す水晶基板の平面図、図5は図1のA−A線における断面図である。なお、図2乃至4において、2つの基材および水晶基板に形成される金属からなる各種電極および接合材の記載は省略している。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 5 by taking a quartz crystal resonator using a quartz crystal substrate as an example. FIG. 1 is an assembled perspective view of a crystal resonator showing an embodiment of the present invention, FIG. 2 is an exploded perspective view of the crystal resonator showing an embodiment of the present invention, and FIG. 3 is a first view showing the embodiment of the present invention. FIG. 4 is a plan view of a base material, FIG. 4 is a plan view of a quartz substrate showing an embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along line AA of FIG. 2 to 4, the description of various electrodes and bonding materials made of metal formed on two base materials and a quartz substrate is omitted.

本実施形態で適用される水晶振動子1は、平面視矩形状の3つの部材間に接合材Sを介して接合された構造となっている。具体的には図1に示すように、上から順に、第1の基材2、水晶基板3、第2の基材4で構成されており、図1は上記3つの部材が接合材を介して接合された状態となっている。以下、前記3つの部材の各々について説明した後、水晶振動子の製造方法について説明する。   The crystal resonator 1 applied in the present embodiment has a structure in which three members having a rectangular shape in plan view are bonded via a bonding material S. Specifically, as shown in FIG. 1, it is composed of a first base material 2, a quartz crystal substrate 3, and a second base material 4 in order from the top. In FIG. 1, the above three members are connected via a bonding material. Are joined together. Hereinafter, after describing each of the three members, a method for manufacturing a crystal resonator will be described.

図2において第1の基材2は、水晶からなる平面視矩形状の基材である。第1の基材2の、水晶基板3との接合面側には下凸状の厚肉部21が部分的に形成されている。具体的に、厚肉部21は直方体形状であり、第1の基材2の1つの角部を含む領域に偏って形成されている。つまり、一つの角部と当該角部に隣接する2辺の双方に沿って形成されている(図3を参照)。このように第1の基材2には、下凸状の厚肉部21が形成されているが、厚肉部21以外の主面部分を薄肉部22と呼ぶこととしており、前記薄肉部22は平面視では「L」字形状となっている。なお、本実施形態では第1の基材2および厚肉部21の平面視の形状は矩形となっているが、本形状に限定されるものではなく、正方形であってもよい。   In FIG. 2, the first base material 2 is a base material having a rectangular shape in plan view made of quartz. A downwardly convex thick portion 21 is partially formed on the first base member 2 on the side of the bonding surface with the crystal substrate 3. Specifically, the thick portion 21 has a rectangular parallelepiped shape and is formed so as to be biased toward a region including one corner portion of the first base material 2. That is, it is formed along both one corner and two sides adjacent to the corner (see FIG. 3). As described above, the first base member 2 is formed with the downwardly convex thick portion 21, but the main surface portion other than the thick portion 21 is referred to as the thin portion 22, and the thin portion 22. Is in an “L” shape in plan view. In the present embodiment, the shape of the first base member 2 and the thick portion 21 in a plan view is a rectangle, but is not limited to this shape, and may be a square.

第1の基材2の,水晶基板3との接合面側の周縁には周状に接合材(図2乃至4では図示せず)が形成されている。第1の基材2の,水晶基板3との接合面側は、厚肉部21が形成されているため平面ではないが、厚肉部21と薄肉部22との段差(高低差)部分の壁面にも連続して前記接合材が形成されている。   A bonding material (not shown in FIGS. 2 to 4) is formed on the periphery of the first base 2 on the side of the bonding surface with the quartz substrate 3. The bonding surface side of the first base material 2 with the crystal substrate 3 is not a flat surface because the thick portion 21 is formed, but the step (height difference) portion between the thick portion 21 and the thin portion 22 is not. The bonding material is also continuously formed on the wall surface.

水晶基板3は、平面視矩形状のATカット水晶板であり、図2に示すように当該基板の一方の主面には平面視L字状の厚肉部301が一定の高さ(厚み)で、隣接する2辺に跨って形成されている。そして前記厚肉部301が形成されていない主面領域は薄肉部302となっている。また、前記薄肉部302と対向する主面(他方の主面)には、前記厚肉部301と同形状かつ、同一の高さ(厚み)の厚肉部303が、水晶基板3の表裏で180度反転した状態で形成されている(図4の破線部分)。つまり、水晶基板の表裏で形成方向が異なった状態で厚肉部が形成されている。このような相対位置関係により、L字状の,厚肉部301および厚肉部303の各々の屈曲部同士が、平面視では対向する位置関係となっている。なお、L字状の厚肉部301および厚肉部302は、各両端部分が平面視で重なる位置関係となっている。   The quartz substrate 3 is an AT-cut quartz plate having a rectangular shape in plan view. As shown in FIG. 2, a L-shaped thick portion 301 in plan view has a constant height (thickness) on one main surface of the substrate. Thus, it is formed across two adjacent sides. A main surface area where the thick part 301 is not formed is a thin part 302. Further, a thick portion 303 having the same shape and the same height (thickness) as the thick portion 301 is formed on the front and back of the quartz substrate 3 on the main surface (the other main surface) facing the thin portion 302. It is formed in an inverted state of 180 degrees (the broken line portion in FIG. 4). That is, the thick portion is formed in a state where the formation direction is different between the front and back sides of the quartz substrate. Due to such a relative positional relationship, the bent portions of the L-shaped thick portion 301 and the thick portion 303 are in a positional relationship facing each other in plan view. Note that the L-shaped thick portion 301 and the thick portion 302 have a positional relationship in which both end portions overlap in plan view.

水晶基板3の表裏面の外周部分には接合材(図2、図4では図示せず)が周状に各々形成されている。具体的に、一主面(図2では上面側)について述べると、接合材は水晶基板3の厚肉部301の上面の周縁および,薄肉部302の上の周縁、さらに厚肉部301と薄肉部302の境界の段差(高低差)部分の壁面にも連続して形成され、周状に繋がった状態となっている。同様に他主面(図2では下面側)について述べると、接合材は水晶基板3の薄肉部304の上面の周縁および,厚肉部303の上面の周縁、さらに厚肉部303と薄肉部304の境界の段差(高低差)部分の壁面にも連続して形成され、周状に繋がった状態となっている。   Bonding materials (not shown in FIGS. 2 and 4) are formed on the outer peripheral portions of the front and back surfaces of the quartz substrate 3 in a circumferential shape. Specifically, one main surface (upper surface side in FIG. 2) will be described. The bonding material is a peripheral edge on the upper surface of the thick portion 301 of the quartz substrate 3, a peripheral edge on the thin portion 302, and a thick portion 301 and a thin portion. It is continuously formed on the wall surface of the step (height difference) portion at the boundary of the portion 302, and is connected in a circumferential shape. Similarly, the other main surface (the lower surface side in FIG. 2) will be described. The bonding material is the periphery of the upper surface of the thin portion 304 of the quartz substrate 3, the periphery of the upper surface of the thick portion 303, and the thick portion 303 and the thin portion 304. It is continuously formed on the wall surface of the step (height difference) portion of the boundary of the boundary, and is connected in a circumferential shape.

次に、水晶基板3に形成される各種電極について図5を用いて説明する。図5は図1のA−A線における断面図である。図5に示すように、水晶基板3の表裏主面の中央領域(薄肉部302と薄肉部304の一部領域)に、当該水晶基板を駆動させるための一対の励振電極(金属膜)31,32が対向して形成されている。そして、前記一対の励振電極31,32の各々からは、各主面の外周方向に引出電極311,321がそれぞれ延出されている。なお引出電極311,321は、第1の基材、水晶基板、第2の基材の各々の周縁に形成されている前述の接合材(図5では各接合材が溶融して一体化された状態となっており、記号「S」で表記)とは接触しない位置まで励振電極から延出されている(接合材Sとは離間している)。   Next, various electrodes formed on the quartz substrate 3 will be described with reference to FIG. FIG. 5 is a cross-sectional view taken along line AA in FIG. As shown in FIG. 5, a pair of excitation electrodes (metal films) 31 for driving the quartz substrate in the central region (partial region of the thin portion 302 and the thin portion 304) of the front and back main surfaces of the quartz substrate 3, 32 are formed to face each other. And from each of a pair of said excitation electrodes 31 and 32, the extraction electrodes 311 and 321 are each extended in the outer peripheral direction of each main surface. The extraction electrodes 311 and 321 are formed by integrating the above-described bonding materials (in FIG. 5, the bonding materials are melted and integrated) formed on the periphery of each of the first base material, the quartz substrate, and the second base material. It is in a state and is extended from the excitation electrode to a position where it does not contact (denoted by the symbol “S”) (separated from the bonding material S).

図5に示すように、水晶基板3の厚肉部303が形成されている側の厚肉部分には、厚み方向に貫通孔がウエットエッチングによって形成されており、当該貫通孔の内部には導体が充填されている(貫通導体33)。本実施形態では、前記貫通導体33に金錫合金(AuSn)が使用されている。なお、金錫合金以外に金ゲルマニウム合金(AuGe)を用いることも可能である。そして、貫通導体33の上下両端部分は引出電極311および接続電極34とそれぞれ接続した状態となっている。なお、接続電極34は、水晶基板3および第2の基材4の外周部分にそれぞれ形成された接合材Sと近接かつ接触しないように配置されている。本実施形態では励振電極および引出電極は、クロム(Cr)を下地層として、その上層に金(Au)が積層された膜構成となっている。なお、前述の励振電極および引出電極の膜構成は一例であり、これに限定されるものではなく、その他の膜構成に対しても本発明は適用可能である。   As shown in FIG. 5, a through hole is formed by wet etching in the thickness direction on the thick portion of the quartz substrate 3 where the thick portion 303 is formed, and a conductor is formed inside the through hole. Is filled (through conductor 33). In the present embodiment, a gold-tin alloy (AuSn) is used for the through conductor 33. It is also possible to use a gold germanium alloy (AuGe) in addition to the gold-tin alloy. The upper and lower end portions of the through conductor 33 are connected to the extraction electrode 311 and the connection electrode 34, respectively. The connection electrode 34 is disposed so as not to come into close contact with the bonding material S formed on the outer peripheral portions of the quartz crystal substrate 3 and the second base material 4. In the present embodiment, the excitation electrode and the extraction electrode have a film configuration in which chromium (Cr) is used as a base layer and gold (Au) is stacked thereon. The film configurations of the excitation electrode and the extraction electrode described above are merely examples, and the present invention is not limited thereto, and the present invention can be applied to other film configurations.

第2の基材4も水晶からなり、水晶基板3との接合面側には上凸状で、直方体形状の厚肉部45が形成されている。厚肉部45は、平面視矩形状の第2の基材4の,4つの角部のうち、一つの角部を含む領域に偏って形成されている。つまり、一つの角部と当該角部に隣接する2辺の双方に沿って形成されている(図2を参照)。なお、第2の基材4の,厚肉部45以外の一主面(上面)は薄肉部46となっている。前記薄肉部46は平面視では「L」字形状となっている。   The second base material 4 is also made of quartz, and a thick rectangular portion 45 having a rectangular parallelepiped shape is formed on the joint surface side with the quartz crystal substrate 3. The thick portion 45 is formed so as to be biased toward a region including one corner portion of the four corner portions of the second base material 4 having a rectangular shape in plan view. That is, it is formed along both one corner and two sides adjacent to the corner (see FIG. 2). Note that one main surface (upper surface) of the second substrate 4 other than the thick portion 45 is a thin portion 46. The thin portion 46 has an “L” shape in plan view.

第2の基材4の,水晶基板3との接合面側の周縁には周状に接合材(図2では図示せず)が形成されている。第2の基材4の,水晶基板3との接合面側は、厚肉部45が形成されているため平面ではないが、厚肉部45と薄肉部46との段差(高低差)部分の壁面にも連続して接合材が形成されている。   A bonding material (not shown in FIG. 2) is formed on the periphery of the second base material 4 on the side of the bonding surface with the crystal substrate 3. The bonding surface side of the second base material 4 with the crystal substrate 3 is not a flat surface because the thick portion 45 is formed, but the step (height difference) portion between the thick portion 45 and the thin portion 46 is not. A bonding material is also continuously formed on the wall surface.

図5に示すように、第2の基材4の厚肉部45および薄肉部46には、前述の貫通導体33と同一材料からなる貫通導体43,44が、第2の基材4の厚み方向にそれぞれ形成されている。本実施形態では、前記貫通導体43,44に金錫合金(AuSn)が使用されている。なお、金錫合金以外に金ゲルマニウム合金(AuGe)を用いることも可能である。貫通導体43の上端部は、接続電極41と電気的に接続されているとともに、下端部は外部接続端子5と電気的に接続されている。また、貫通導体44の上端部は、接続電極42と電気的に接続されているとともに、下端部は外部接続端子5と電気的に接続されている。ここで、接続電極41,42は、水晶基板3および第2の基材4の外周部分に各々形成された接合材Sと近接かつ、接触しない位置に形成されている。前記外部接続端子5は、外部機器等と電気的に接続するための接続端子であり、図1に示す水晶振動子1は前記外部機器等の内部の基板上に形成される導体(ランドパターン)に半田等によって固定されて使用される。   As shown in FIG. 5, through conductors 43 and 44 made of the same material as the above-described through conductor 33 are formed in the thick part 45 and the thin part 46 of the second base member 4. Each is formed in the direction. In the present embodiment, gold-tin alloy (AuSn) is used for the through conductors 43 and 44. It is also possible to use a gold germanium alloy (AuGe) in addition to the gold-tin alloy. The upper end portion of the through conductor 43 is electrically connected to the connection electrode 41, and the lower end portion is electrically connected to the external connection terminal 5. Further, the upper end portion of the through conductor 44 is electrically connected to the connection electrode 42, and the lower end portion is electrically connected to the external connection terminal 5. Here, the connection electrodes 41 and 42 are formed at positions that are close to and not in contact with the bonding material S formed on the outer peripheral portions of the quartz crystal substrate 3 and the second base material 4, respectively. The external connection terminal 5 is a connection terminal for electrical connection with an external device or the like, and the crystal resonator 1 shown in FIG. 1 is a conductor (land pattern) formed on an internal substrate of the external device or the like. It is used by being fixed with solder or the like.

本実施形態において、第1の基材2および第2の基材4に形成される前述の接合材は、クロム(Cr)を下地層として、その上層に金(Au)が真空蒸着法によって成膜され、さらに上層に金−錫合金(AuSn)が、電解メッキ法によって成膜された構成となっている。そして、水晶基板3の表裏主面に形成される各接合材は、クロム(Cr)を下地層として、その上層に金(Au)が真空蒸着法によって成膜された構成となっている。具体的に本実施形態では、Cr層が0.1〜20nm、Au層が50〜1,000nm、AuSnメッキ層が200〜20,000nmとなっている。なお、本実施形態では第1および第2の基材と水晶基板にそれぞれ形成される接合材の形成幅は略同一である。また、前記AuSnメッキ層を電解メッキ法で直接形成する方法以外に、Auメッキ層とSnメッキ層を別々に電解メッキ法で形成した後、加熱溶融させて所望比率のAuSn合金を形成することも可能である。さらに、第1の基材2および第2の基材4に形成される前述の接合材の層構成として、最上層(金−錫合金)のさらに上層にAuの薄膜(Auフラッシュメッキ層)を電解メッキ法によって形成してもよい。   In the present embodiment, the above-mentioned bonding material formed on the first base material 2 and the second base material 4 has chromium (Cr) as a base layer and gold (Au) formed thereon by a vacuum deposition method. A gold-tin alloy (AuSn) is further formed on the upper layer by electrolytic plating. Each bonding material formed on the front and back main surfaces of the quartz substrate 3 has a structure in which chromium (Cr) is used as a base layer and gold (Au) is formed thereon by a vacuum deposition method. Specifically, in this embodiment, the Cr layer is 0.1 to 20 nm, the Au layer is 50 to 1,000 nm, and the AuSn plating layer is 200 to 20,000 nm. In this embodiment, the formation widths of the bonding materials formed on the first and second base materials and the quartz substrate are substantially the same. In addition to the method of directly forming the AuSn plating layer by electrolytic plating, the Au plating layer and the Sn plating layer may be separately formed by electrolytic plating, and then heated and melted to form an AuSn alloy having a desired ratio. Is possible. Further, as a layer structure of the above-described bonding material formed on the first base material 2 and the second base material 4, an Au thin film (Au flash plating layer) is further formed on the uppermost layer (gold-tin alloy). It may be formed by electrolytic plating.

本発明の構造によると、基材および圧電基板が一様に薄肉化されることなく、厚肉部位も混在した形態となっている。しかも一対の基材の厚肉部は、当該基材の少なくとも1つの角部を含む領域に偏って形成されているため、基材の周縁部の強度を補うことができる。また、これらの部材を厚肉部と薄肉部が互いに嵌合し合って組立てられることによって、薄肉部を厚肉部で補完することになり、圧電振動デバイスの機械的強度の低下を防止することができる。   According to the structure of the present invention, the base material and the piezoelectric substrate are not uniformly thinned, and the thick part is also mixed. And since the thick part of a pair of base material is formed in the area | region including the at least 1 corner | angular part of the said base material, the intensity | strength of the peripheral part of a base material can be supplemented. In addition, by assembling these members so that the thick part and the thin part fit together, the thin part is complemented by the thick part, thereby preventing the mechanical strength of the piezoelectric vibration device from being lowered. Can do.

また、本発明の構成によると、圧電基板および一対の基材が互いに嵌合される薄肉部および厚肉部を有しているため、外的応力が加わった際に凹凸状の嵌合部位(嵌め合い部位)によって接合強度を向上させることができる。具体的に、圧電基板は、当該基板の表裏主面の周縁の一部に当該基板の表裏で形成方向が異なる厚肉部を備えており、例えば圧電基板の中心を基点として、当該基板の表裏の厚肉部が点対称となる相対位置関係とする。当該基板の表裏主面の前記厚肉部以外の領域を薄肉部とする。一方、一対の基材の前記圧電基板との接合面側に、前記厚肉部と対応した薄肉部と、前記圧電基板の薄肉部と対応した厚肉部とを各々形成する。そして、前記一対の基材の薄肉部および厚肉部と、前記圧電基板の厚肉部および薄肉部とで、嵌合状態を形成することで、基材の機械的強度の低下を防止することができる。   Further, according to the configuration of the present invention, since the piezoelectric substrate and the pair of base materials have a thin portion and a thick portion that are fitted to each other, when the external stress is applied, the uneven fitting portion ( The joint strength can be improved by the fitting part). Specifically, the piezoelectric substrate includes thick portions having different formation directions on the front and back surfaces of the substrate on a part of the periphery of the front and back main surfaces of the substrate. For example, the front and back surfaces of the substrate are based on the center of the piezoelectric substrate. The relative position is such that the thick-walled portion is point-symmetric. A region other than the thick portion on the front and back main surfaces of the substrate is defined as a thin portion. On the other hand, a thin portion corresponding to the thick portion and a thick portion corresponding to the thin portion of the piezoelectric substrate are formed on the bonding surface side of the pair of base materials with the piezoelectric substrate. Then, by forming a fitting state between the thin portion and the thick portion of the pair of base materials and the thick portion and the thin portion of the piezoelectric substrate, a reduction in the mechanical strength of the base material is prevented. Can do.

さらにまた、本発明の構成によると、前記圧電基板および前記一対の基材は、互いに嵌合される薄肉部および厚肉部を有した状態となっているが、厚肉部は薄肉部と嵌合することによって厚みが吸収される(厚み増大が緩和される)。つまり、厚肉部の厚みがそのまま圧電振動デバイスの高さに上乗せされることがないため、圧電振動デバイス全体の高さ(厚み)を低く(薄く)することが可能となり、低背化を図ることができる。   Furthermore, according to the configuration of the present invention, the piezoelectric substrate and the pair of base materials have a thin portion and a thick portion that are fitted to each other, but the thick portion is fitted with the thin portion. By combining, the thickness is absorbed (thickness increase is mitigated). That is, since the thickness of the thick portion is not directly added to the height of the piezoelectric vibration device, the height (thickness) of the entire piezoelectric vibration device can be reduced (thin), and the height can be reduced. be able to.

以上が水晶振動子1を構成する主要部材の説明である。第1および第2の基材2,4と、水晶基板3は、それぞれウエハ状態から一括的に成形され、最終的に複数の水晶振動子が形成された後に個割り分割によって個片化される。このような方法により、水晶振動子1を構成する部材(第1および第2の基材、水晶基板)の全てをウエハ状態で取り扱うことが可能となるため、個片状態で構成部材を取り扱う方法に比べて取り扱いが非常に簡便になる。以下、一単位を構成する水晶振動子の製造方法について説明する。   The above is the description of the main members constituting the crystal unit 1. The first and second base materials 2 and 4 and the quartz substrate 3 are each formed in a lump from the wafer state, and finally formed into a plurality of quartz resonators, and then separated into individual pieces. . By such a method, it becomes possible to handle all of the members (first and second base materials, crystal substrate) constituting the crystal unit 1 in a wafer state, and therefore a method of handling the component members in an individual state. Compared with, handling becomes very simple. Hereinafter, a method for manufacturing a crystal unit constituting one unit will be described.

前記したように第1の基材2および第2の基材4と、水晶基板3とは異形となっているが、平面視の外形寸法については、第1および第2の基材と水晶基板は略同一となっている。本発明の構成によると、前記3つの部材(第1および第2の基材と水晶基板)の外縁が略一致するようにして当該部材を載置すると、各々の部材に形成された厚肉部および薄肉部とが互いに嵌合されるようになっている。具体的に、第1の基材2の厚肉部21と、水晶基板3の薄肉部302とが嵌め合い(同時に薄肉部22と厚肉部301も嵌め合う)、水晶基板3の厚肉部303と、第2の基材4の厚肉部45とが嵌め合う(同時に厚肉部303と薄肉部46も嵌め合う)構造となっている。   As described above, the first base material 2 and the second base material 4 are different from the crystal substrate 3, but the outer dimensions in plan view are the first and second base materials and the crystal substrate. Are substantially identical. According to the configuration of the present invention, when the members are placed so that the outer edges of the three members (the first and second base materials and the quartz substrate) are substantially coincident with each other, the thick portion formed on each member And a thin part is mutually fitted. Specifically, the thick part 21 of the first base material 2 and the thin part 302 of the crystal substrate 3 are fitted together (the thin part 22 and the thick part 301 are also fitted), and the thick part of the crystal substrate 3 is fitted. 303 and the thick part 45 of the second base material 4 are fitted together (the thick part 303 and the thin part 46 are also fitted simultaneously).

まず、水晶基板3の表裏面、第1の基材2の水晶基板との接合面側、第2の基材4の水晶基板との接合面の外周縁の位置に前記膜構成の接合材を前述の成膜方法によって各々形成しておく。また、水晶基板3については表裏面に励振電極および引出電極、接続電極を予め真空蒸着法によって成膜しておくとともに、貫通導体33および接続電極34も形成しておく。また、第2の基材4については、当該基材の底面の外部接続端子、当該基材内部の貫通導体43、44および接続電極41、42を形成しておく。そして、水晶基板3の第2の基材4との接合面側に形成された接合材が、第2の基材4の上面に形成された接合材に平面視で略一致するように、水晶基板3を第2の基材4の上に位置決め載置する。前記位置決め載置は画像認識手段によって適切な搭載位置が認識される。   First, the bonding material having the above-described film configuration is placed on the front and back surfaces of the quartz substrate 3, the bonding surface side of the first base material 2 with the quartz substrate, and the outer peripheral edge of the bonding surface of the second substrate 4 with the quartz substrate. Each is formed by the above-described film forming method. For the quartz substrate 3, the excitation electrode, the extraction electrode, and the connection electrode are formed in advance on the front and back surfaces by a vacuum deposition method, and the through conductor 33 and the connection electrode 34 are also formed. For the second substrate 4, external connection terminals on the bottom surface of the substrate, through conductors 43 and 44 and connection electrodes 41 and 42 inside the substrate are formed. Then, the quartz crystal 3 is bonded so that the bonding material formed on the bonding surface side with the second base material 4 substantially matches the bonding material formed on the upper surface of the second base material 4 in plan view. The substrate 3 is positioned and placed on the second base material 4. In the positioning and mounting, an appropriate mounting position is recognized by the image recognition means.

前記位置決め載置により、水晶基板3の第2の基材4との接合面側に形成された接合材と、第2の基材4の上面に形成された接合材とが当接した状態となっているとともに、水晶基板3の引出電極321の終端領域が、第2の基材4の接続電極41と、水晶基板3の接続電極34が、第2の基材4の接続電極42とそれぞれ当接した状態となっている。このような状態で、水晶基板3と第2の基材4との仮止め接合を行う。前記仮止め接合は水晶基板3の上方から超音波ホーンを当接させて、超音波を印加することで、水晶基板側の接合材中の金と、第2の基材側の接合材中の金との間で金−金の拡散接合を行う。同様にして、第1の基材2と水晶基板3とを超音波印加による金−金の拡散接合を行う。これにより、第1の基材2と、水晶基板3と、第2の基材4とが仮止め接合される。なお、前記仮止め接合後の状態において、第1の基材2と水晶基板3との間と、水晶基板3と第2の基材4との間に、微小な内部空間G(ギャップ)が形成されている。前記内部空間によって、水晶基板3の表裏主面に形成された励振電極31,32が、第1および第2の基材の厚肉部21,45と接触せず、離間した状態が維持されている。前記内部空間は、励振電極の厚みや、第1と第2の基材および、圧電基板の厚肉部の厚み、接続電極の厚み、接合材の厚みに依存する。なお、接続電極同士あるいは接続電極と引出電極の一部とが重なり合う部分の厚み(高さ)と、接合材Sとの厚み(高さ)関係は略同一であることが好ましい。   A state in which the bonding material formed on the bonding surface side of the quartz substrate 3 with the second base material 4 and the bonding material formed on the upper surface of the second base material 4 are in contact with each other by the positioning placement. The termination region of the extraction electrode 321 of the quartz substrate 3 is connected to the connection electrode 41 of the second base material 4, the connection electrode 34 of the crystal substrate 3 is connected to the connection electrode 42 of the second base material 4, respectively. It is in a contact state. In such a state, the quartz substrate 3 and the second base material 4 are temporarily bonded. The temporary bonding is performed by bringing an ultrasonic horn into contact with the quartz substrate 3 from above and applying an ultrasonic wave so that the gold in the bonding material on the quartz substrate side and the bonding material on the second base material side Gold-gold diffusion bonding is performed with gold. Similarly, gold-gold diffusion bonding is performed by applying ultrasonic waves to the first base 2 and the quartz substrate 3. Thereby, the 1st base material 2, the quartz substrate 3, and the 2nd base material 4 are temporarily fixed-joined. Note that in the state after the temporary bonding, there is a minute internal space G (gap) between the first base material 2 and the crystal substrate 3 and between the crystal substrate 3 and the second base material 4. Is formed. By the internal space, the excitation electrodes 31 and 32 formed on the front and back main surfaces of the quartz substrate 3 are not in contact with the thick portions 21 and 45 of the first and second base materials, and are maintained in a separated state. Yes. The internal space depends on the thickness of the excitation electrode, the thickness of the first and second base materials and the thick portion of the piezoelectric substrate, the thickness of the connection electrode, and the thickness of the bonding material. In addition, it is preferable that the thickness (height) relationship between the connection electrodes or a portion where the connection electrode overlaps with a part of the extraction electrode and the thickness (height) relationship with the bonding material S are substantially the same.

前記仮止め接合の後、所定温度に制御された高温環境下で、前述の仮止め接合された部分の金属を溶融させて本接合を行う。このとき、基板3の引出電極321の終端領域と、第2の基材4の接続電極41とが加熱溶融によって一体化される。同様に水晶基板3の接続電極34と、第2の基材4の接続電極42も加熱溶融によって一体化される。前記本接合によって、水晶基板の表裏面の励振電極と、水晶振動子1の底面の外部接続端子とが貫通導体33、43、44を介して電気的に接続された状態となる。その後、所定の工程を経て水晶振動子1の完成となる。   After the temporary bonding, the main bonding is performed by melting the metal in the portion temporarily bonded in the high temperature environment controlled to a predetermined temperature. At this time, the terminal region of the extraction electrode 321 of the substrate 3 and the connection electrode 41 of the second base material 4 are integrated by heating and melting. Similarly, the connection electrode 34 of the quartz substrate 3 and the connection electrode 42 of the second base material 4 are also integrated by heating and melting. By the main bonding, the excitation electrodes on the front and back surfaces of the crystal substrate and the external connection terminals on the bottom surface of the crystal resonator 1 are electrically connected through the through conductors 33, 43, and 44. Thereafter, the crystal unit 1 is completed through a predetermined process.

本実施形態では雰囲気加熱による接合材(金属)の溶融によって2つの基材と水晶基板とを接合しているが、本方法に限定されるものではない。つまり、3つの部材(第1および第2の基材、水晶基板)の全てを本実施形態のように透光性材料(水晶、ガラス等)で形成していれば、前記仮止め接合後に、基材の外部(具体的には第1の基材2よりも上部の位置)からビーム(レーザービームや電子ビーム)を仮止め接合部位の直上の基材に対して照射することによって、本接合を行うことができる。つまり、基材が透光性材料であるので、前記ビームは基材内部を透過して、前記仮止め接合部位を含む金属膜(接合材)に到達して当該金属膜を溶融させる。これにより前記3つの部材の本接合を行うことができる。本実施形態では接合材の材料に金が使用されているため、レーザービームを用いる場合は、金に対する吸収率が良い波長であるグリーンレーザーを用いることで封止(接合)効率を向上させることができる。なお、グリーンレーザーと金との組み合わせは一例であり、本組み合わせに限定されるものではなく、レーザー波長に応じて良好な吸収率が得られる金属材料を接合材に選定することが可能である。   In the present embodiment, the two base materials and the quartz substrate are joined by melting the joining material (metal) by atmospheric heating, but the present invention is not limited to this method. That is, if all of the three members (first and second base materials, crystal substrate) are formed of a translucent material (crystal, glass, etc.) as in this embodiment, after the temporary bonding, By irradiating a beam (laser beam or electron beam) from the outside of the base material (specifically, a position above the first base material 2) to the base material immediately above the temporarily fixed joining portion, the main joining is performed. It can be performed. That is, since the base material is a translucent material, the beam passes through the inside of the base material, reaches the metal film (bonding material) including the temporary bonding joint portion, and melts the metal film. Thereby, the main joining of the three members can be performed. In this embodiment, since gold is used as the material of the bonding material, when using a laser beam, the sealing (bonding) efficiency can be improved by using a green laser having a wavelength with a good absorption rate for gold. it can. Note that the combination of green laser and gold is an example, and is not limited to this combination. A metal material that can obtain a good absorption rate can be selected as a bonding material in accordance with the laser wavelength.

本発明によると、前記圧電基板と前記2つの基材が、透光性材料で形成されている圧電振動デバイスであるので、レーザービーム等のエネルギービームを効率良く透過させることができ、圧電基板を駆動させる励振電極から引き出された電極と、圧電振動デバイス外部で底面に形成された外部接続端子とを電気的に接続するための内部配線導体(貫通導体)を前述のように効率的に形成することができる。さらに、仮止め接合部分が可視化されているため、容易にビーム照射後の接合状態を視認することができる。   According to the present invention, since the piezoelectric substrate and the two base materials are piezoelectric vibrating devices formed of a translucent material, an energy beam such as a laser beam can be efficiently transmitted. As described above, the internal wiring conductor (through conductor) for electrically connecting the electrode drawn from the excitation electrode to be driven and the external connection terminal formed on the bottom surface outside the piezoelectric vibration device is efficiently formed. be able to. Furthermore, since the temporarily bonded joint portion is visualized, the joined state after beam irradiation can be easily visually confirmed.

本発明の構成によると、水晶基板と、2つの基材とが異形であるとともに、互いに嵌合される薄肉部あるいは厚肉部を有しているため、例えば、図5において接続電極34、42に、水晶振動子1の外部からレーザービームを照射して当該接続電極を溶融させて一体化させる際に、スプラッシュ(溶融金属の飛散)が発生したとしても、水晶振動子1の特性劣化(例えば等価直列抵抗値の悪化等)を防止することができる。つまり、前記嵌合形状によって、厚肉部45が接続電極34、42に近接して“障壁”となり、溶融金属物質の内部空間Gにある励振電極(32)への付着を防止することができるためである。   According to the configuration of the present invention, the quartz crystal substrate and the two base materials are deformed and have thin or thick portions that are fitted to each other. For example, in FIG. Furthermore, even when a splash (spattering of molten metal) occurs when the connection electrode is melted and integrated by irradiating a laser beam from the outside of the crystal unit 1, characteristic deterioration of the crystal unit 1 (for example, Deterioration of equivalent series resistance value, etc.) can be prevented. That is, due to the fitting shape, the thick portion 45 becomes a “barrier” in the vicinity of the connection electrodes 34 and 42, and adhesion of the molten metal substance to the excitation electrode (32) in the internal space G can be prevented. Because.

また、本発明の実施形態において第1および第2の接合材に用いられる合金に金−錫合金(Au−Sn合金)が用いられているが、これに限定されるものではなく、金−錫合金以外に、錫−銀合金(Sn−Ag合金)、金−ゲルマニウム(Au−Ge合金)など他の金属を使用することも可能である。   In the embodiment of the present invention, a gold-tin alloy (Au—Sn alloy) is used as the alloy used for the first and second bonding materials, but the present invention is not limited to this. In addition to the alloy, other metals such as a tin-silver alloy (Sn—Ag alloy) and gold-germanium (Au—Ge alloy) can also be used.

本実施形態では、第1と第2の基材および、水晶基板のそれぞれに接合材が形成された構成となっているが、水晶基板には金属膜を形成せずに、第1と第2の基材にだけ接合材を形成した構成であってもよい。あるいはまた、水晶基板にだけ接合材を形成し、第1と第2の基材には接合材を形成しない構成であってもよい。   In this embodiment, a bonding material is formed on each of the first and second base materials and the quartz substrate, but the first and second substrates are not formed on the quartz substrate. The structure which formed the joining material only in the base material of this may be sufficient. Alternatively, the bonding material may be formed only on the quartz substrate, and the bonding material may not be formed on the first and second base materials.

また、本実施形態では励振電極を水晶基板の表裏主面に対向して形成しているが、本形態に限定されるものではなく、第1および第2の基材の対向する厚肉部21,45の表面に電極を形成し、水晶基板の表裏主面には電極を形成しない形態,すなわち空間電圧印加方式(いわゆるエアギャップ方式)にも本発明は適用可能である。   In this embodiment, the excitation electrode is formed so as to face the front and back main surfaces of the quartz substrate. However, the present invention is not limited to this embodiment, and the thick portions 21 of the first and second substrates that face each other. , 45 are formed on the surface and the electrodes are not formed on the front and back main surfaces of the quartz substrate, that is, the present invention can be applied to a space voltage application method (so-called air gap method).

本発明の実施形態では、表面実装型水晶振動子を例にしているが、水晶フィルタ、集積回路等の電子部品に水晶振動子を組み込んだ水晶発振器など、電子機器等に用いられる他の表面実装型の圧電振動デバイスの製造方法にも適用可能である。また、本実施形態では圧電基板として、水晶単板を用いているが、圧電薄膜素子(FBAR:Film Bulk Acoustic Resonator)を用いることも可能である。   In the embodiments of the present invention, a surface-mounted crystal resonator is taken as an example, but other surface mounts used in electronic devices such as a crystal oscillator in which a crystal resonator is incorporated in an electronic component such as a crystal filter or an integrated circuit. The present invention is also applicable to a method for manufacturing a piezoelectric vibration device of a type. In this embodiment, a single crystal plate is used as the piezoelectric substrate, but a piezoelectric thin film element (FBAR) can also be used.

本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

圧電振動デバイスの量産に適用できる。   It can be applied to mass production of piezoelectric vibration devices.

本発明の実施形態を示す水晶振動子の組立斜視図。1 is an assembled perspective view of a crystal resonator showing an embodiment of the present invention. 本発明の実施形態を示す水晶振動子の分解斜視図。1 is an exploded perspective view of a crystal resonator showing an embodiment of the present invention. 本発明の実施形態を示す第1の基材の上面図。The top view of the 1st substrate which shows the embodiment of the present invention. 本発明の実施形態を示す水晶基板の上面図。The top view of the quartz substrate which shows the embodiment of the present invention. 図1のA−A線における断面図。Sectional drawing in the AA of FIG.

符号の説明Explanation of symbols

1 水晶振動子
2 第1の基材
21、301、303、45 厚肉部
22、302、304、46 薄肉部
3 水晶基板
4 第2の基材
31、32 励振電極
311、321 引出電極
33、43、44 貫通導体
34、41、42 接続電極
5 外部接続端子
G 内部空間
S 接合材
DESCRIPTION OF SYMBOLS 1 Crystal oscillator 2 1st base material 21, 301, 303, 45 Thick part 22, 302, 304, 46 Thin part 3 Crystal substrate 4 2nd base material 31, 32 Excitation electrode 311 321 Extraction electrode 33, 43, 44 Through conductor 34, 41, 42 Connection electrode 5 External connection terminal G Internal space S Bonding material

Claims (2)

一対の基材が、圧電基板の表裏に、接合材を介して各々接合された圧電振動デバイスであって、
前記圧電基板は、当該基板の表裏主面の周縁の一部に、当該基板の表裏で形成方向が異なる厚肉部を、
当該基板の表裏主面の、前記厚肉部以外の領域で形成される薄肉部を、各々備えてなり、
前記一対の基材は、前記圧電基板との接合面側に、前記厚肉部と対応した薄肉部と、前記圧電基板の薄肉部と対応した厚肉部とを、各々備えているとともに、
前記一対の基材の厚肉部は、当該基材の少なくとも1つの角部を含む領域に偏って形成されており、
前記一対の基材の薄肉部および厚肉部と、前記圧電基板の厚肉部および薄肉部とが、それぞれ前記接合材を介して一対一で嵌合し、当該嵌合によって圧電基板と一対の基材との間に微小な内部空間が形成されていることを特徴とする圧電振動デバイス。
A pair of base materials is a piezoelectric vibration device bonded to the front and back of the piezoelectric substrate via a bonding material,
The piezoelectric substrate has a thick portion having different formation directions on the front and back sides of the substrate on a part of the periphery of the front and back main surfaces of the substrate,
Each of the front and back main surfaces of the substrate comprises a thin portion formed in a region other than the thick portion,
The pair of base materials each include a thin portion corresponding to the thick portion and a thick portion corresponding to the thin portion of the piezoelectric substrate on the bonding surface side with the piezoelectric substrate,
The thick part of the pair of base materials is formed so as to be biased to a region including at least one corner of the base material,
The thin-walled portion and the thick-walled portion of the pair of base materials and the thick-walled portion and the thin-walled portion of the piezoelectric substrate are fitted on a one-on-one basis through the bonding material, respectively, A piezoelectric vibration device characterized in that a minute internal space is formed between a substrate and a substrate.
前記圧電基板と前記一対の基材が、透光性材料からなることを特徴とする請求項1に記載の圧電振動デバイス。   The piezoelectric vibration device according to claim 1, wherein the piezoelectric substrate and the pair of base materials are made of a translucent material.
JP2008089048A 2008-03-31 2008-03-31 Piezoelectric vibration device Pending JP2009246583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089048A JP2009246583A (en) 2008-03-31 2008-03-31 Piezoelectric vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089048A JP2009246583A (en) 2008-03-31 2008-03-31 Piezoelectric vibration device

Publications (1)

Publication Number Publication Date
JP2009246583A true JP2009246583A (en) 2009-10-22

Family

ID=41308040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089048A Pending JP2009246583A (en) 2008-03-31 2008-03-31 Piezoelectric vibration device

Country Status (1)

Country Link
JP (1) JP2009246583A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042410A (en) * 2011-08-18 2013-02-28 Seiko Epson Corp Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP2013046189A (en) * 2011-08-24 2013-03-04 Seiko Epson Corp Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic device
US8791766B2 (en) 2011-08-18 2014-07-29 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element
US8970316B2 (en) 2011-08-19 2015-03-03 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object
US9048810B2 (en) 2011-06-03 2015-06-02 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
CN113098431A (en) * 2020-01-08 2021-07-09 中芯集成电路(宁波)有限公司 Composite substrate for manufacturing acoustic wave resonator, surface acoustic wave resonator and manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048810B2 (en) 2011-06-03 2015-06-02 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
US9923544B2 (en) 2011-06-03 2018-03-20 Seiko Epson Corporation Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
JP2013042410A (en) * 2011-08-18 2013-02-28 Seiko Epson Corp Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
US8791766B2 (en) 2011-08-18 2014-07-29 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element
US8970316B2 (en) 2011-08-19 2015-03-03 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object
US9225314B2 (en) 2011-08-19 2015-12-29 Seiko Epson Corporation Resonating element, resonator, electronic device, electronic apparatus, and mobile object
JP2013046189A (en) * 2011-08-24 2013-03-04 Seiko Epson Corp Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic device
CN113098431A (en) * 2020-01-08 2021-07-09 中芯集成电路(宁波)有限公司 Composite substrate for manufacturing acoustic wave resonator, surface acoustic wave resonator and manufacturing method
JP2022519148A (en) * 2020-01-08 2022-03-22 中芯集成電路(寧波)有限公司 Composite substrate for manufacturing acoustic wave resonators, and surface acoustic wave resonators and manufacturing methods
JP7291219B2 (en) 2020-01-08 2023-06-14 中芯集成電路(寧波)有限公司 Composite substrate for fabricating acoustic wave resonator, surface acoustic wave resonator and fabrication method
CN113098431B (en) * 2020-01-08 2023-09-08 中芯集成电路(宁波)有限公司 Composite substrate for manufacturing acoustic wave resonator, surface acoustic wave resonator and manufacturing method

Similar Documents

Publication Publication Date Title
JP2009182924A (en) Piezoelectric device and method of manufacturing the same
JP6252209B2 (en) Piezoelectric vibrating piece and piezoelectric device using the piezoelectric vibrating piece
JP2009246583A (en) Piezoelectric vibration device
JP2009124688A (en) Package for piezoelectric vibration device, and piezoelectric vibration device
WO2017077972A1 (en) Piezoelectric oscillation device
JP5251224B2 (en) Method for manufacturing piezoelectric vibration device and piezoelectric vibration device
JP2004208236A (en) Piezoelectric device, manufacturing method therefor, portable telephone unit utilizing piezoelectric device and electronic equipment utilizing piezoelectric device
JP5152012B2 (en) Piezoelectric vibration device and method for manufacturing piezoelectric vibration device
JP5278044B2 (en) Package member, method for manufacturing the package member, and piezoelectric vibration device using the package member
JP5070973B2 (en) Lid body assembly, piezoelectric vibration device using the lid body assembly, and method of manufacturing piezoelectric vibration device
JP5090836B2 (en) Piezoelectric device and method for manufacturing piezoelectric device
JP2009038534A (en) Piezoelectric oscillator
JP6780718B2 (en) Piezoelectric vibration device
JP2013098594A (en) Piezoelectric vibration device and method for manufacturing the same
JP2008205761A (en) Piezoelectric vibration device
JP2006303761A (en) Surface mount piezoelectric oscillator
JP2006229283A (en) Piezoelectric device
WO2021059731A1 (en) Piezoelectric vibration plate, piezoelectric vibration device, and method for manufacturing piezoelectric vibration device
JP2008252442A (en) Manufacturing method for piezoelectric vibrating device
JP2015226300A (en) Piezoelectric vibration piece and piezoelectric device using the same
JP5171228B2 (en) Crystal device for surface mounting
JP5171148B2 (en) Piezoelectric oscillator
WO2015115388A1 (en) Piezoelectric device package and piezoelectric device
JP4893602B2 (en) Piezoelectric vibration device and hermetic sealing method of piezoelectric vibration device
JP2009207068A (en) Piezoelectric device