WO2015011909A1 - Device and method for controlling traveling position of steel sheet, and method for producing steel sheet - Google Patents

Device and method for controlling traveling position of steel sheet, and method for producing steel sheet Download PDF

Info

Publication number
WO2015011909A1
WO2015011909A1 PCT/JP2014/003818 JP2014003818W WO2015011909A1 WO 2015011909 A1 WO2015011909 A1 WO 2015011909A1 JP 2014003818 W JP2014003818 W JP 2014003818W WO 2015011909 A1 WO2015011909 A1 WO 2015011909A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
electromagnet
determined
plate
steel
Prior art date
Application number
PCT/JP2014/003818
Other languages
French (fr)
Japanese (ja)
Inventor
雄亮 石垣
石田 匡平
西名 慶晃
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2014554113A priority Critical patent/JP6065921B2/en
Publication of WO2015011909A1 publication Critical patent/WO2015011909A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0032Apparatus specially adapted for batch coating of substrate
    • C23C2/00322Details of mechanisms for immersing or removing substrate from molten liquid bath, e.g. basket or lifting mechanism
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/24Removing excess of molten coatings; Controlling or regulating the coating thickness using magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/51Computer-controlled implementation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/524Position of the substrate
    • C23C2/5245Position of the substrate for reducing vibrations of the substrate

Definitions

  • the present invention relates to a steel plate threading position control device and method, and a steel sheet manufacturing method, and is intended to stably travel a steel plate within a predetermined range, and in particular, hot dip plating such as zinc (hot- It is useful for dip coating lines and coating lines.
  • the hot dip galvanizing is plated on the surface of the steel sheet by traveling while immersing the steel sheet in the hot dip zinc in the hot dip galvanizing bath.
  • a wiping gas is blown onto the steel sheet surface from a gas wiper provided after the molten zinc bath to make the coating thickness of the steel sheet surface uniform.
  • the pressure of the wiping gas Is not uniform in the front and back of the steel plate and in the plate width direction.
  • the amount of zinc adhered becomes uneven in the front and back sides of the steel plate, the plate width direction, and the sheet passing direction.
  • a technique for stabilizing a steel plate pass line by using an electromagnet to suppress warpage or vibration of the steel plate in a non-contact manner For example, a pair of electromagnets are arranged so as to face each other with respect to the steel plate pass line, and the attractive force of each electromagnet is switched between each other according to a signal from a separately provided position detector.
  • a method of controlling the plate position (hereinafter also simply referred to as the position of the steel plate) in a non-contact manner is known (see Patent Document 1).
  • the attractive force of the electromagnet acting on the steel plate has a non-linear relationship with the distance between the steel plate and the electromagnet, that is, the attractive force increases rapidly as the steel plate approaches the electromagnet.
  • Patent Document 1 when there is some disturbance or change in operating conditions, the steel sheet is attracted and contacts the electromagnet. As a result, there was a risk of causing quality defects and equipment failures.
  • a safety measure is taken to stop the current supply to the electromagnet.
  • the electromagnet since the electromagnet does not operate, there is a problem that it is not possible to control the plate passing position of the steel plate.
  • the present invention has been made in view of the above problems, and its object is to provide a plate passing position control device for a steel plate capable of controlling the plate passing position of the steel plate without stopping the current supply to the electromagnet, and It is providing the method and the manufacturing method of a steel plate.
  • the present inventors have intensively studied to solve the above problems. As a result, when the plate passing position of the steel plate is controlled in a non-contact manner, the steel plate can be continuously passed without stopping the current supply to the electromagnet by changing the control pattern according to the distance between the steel plate and the electromagnet. It was found that position control can be continued.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • electromagnets respectively disposed on one surface side and the opposite surface side of a steel plate to be subjected to threading position control;
  • a displacement sensor for measuring the passing position of the steel sheet in a non-contact manner;
  • a control unit for determining the amount of current to be supplied to the electromagnet based on the passing position of the steel plate measured by the displacement sensor;
  • a current supply unit that supplies current to the electromagnet based on the amount of current determined by the control unit;
  • the control unit includes a determination unit that determines whether or not the steel plate needs to be moved and a storage unit that stores a preset threshold value.
  • the determination unit If it is determined that the sheet passing position of the steel sheet does not match the preset target position and the steel sheet needs to be moved, the direction of movement, the electromagnet to be used, the amount of current are determined, and the current supply unit Output, move the steel plate, When the plate position of the steel plate measured again by the displacement sensor with respect to the moved steel plate is greater than or equal to the threshold value with respect to the determined electromagnet, and when the electromagnet is determined to be farther than the determined electromagnet.
  • a plate passing position control device for a steel plate characterized in that different controls are performed depending on whether or not they are close.
  • a plate passing position control device for a steel sheet wherein a plurality of electromagnets are installed in the width direction of the steel plate on each surface side of the steel plate, and current can be supplied independently.
  • An electromagnet is disposed on one side of the steel plate to be subjected to threading position control and on the opposite side, Non-contact measurement of the plate position of the steel plate with a displacement sensor, If it is determined that the measured sheet passing position does not match the preset target position and the sheet needs to be moved, among the electromagnets, the electromagnet further away from the measured sheet passing position.
  • the amount of current to be passed through the determined electromagnet is determined and output, and the steel sheet is moved,
  • the plate position of the steel plate measured again for the moved steel plate is more than a predetermined threshold with respect to the determined electromagnet, and is farther from the determined electromagnet, and closer to the determined electromagnet than the threshold
  • the sheet passing position control method of the steel sheet wherein the sheet passing position of the steel sheet is controlled by performing different control.
  • the steel plate passing position control device and method and the steel plate manufacturing method according to the present invention since the control pattern is changed according to the distance between the steel plate and the electromagnet, the current supply to the electromagnet is stopped. Therefore, it is possible to continuously control the sheet passing position of the steel sheet and improve productivity.
  • FIG. 1 is a diagram showing a configuration of a steel plate passing position control device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of a control unit in a conventional steel plate manufacturing apparatus.
  • FIG. 3 is a schematic diagram showing the force acting on the steel plate when the position of the steel plate is stably controlled.
  • FIG. 4 is a schematic diagram showing the force acting on the steel plate when the position of the steel plate is not stably controlled.
  • FIG. 5 is a schematic diagram showing the force acting on the steel plate when the steel plate is stably controlled by using the position control method of the embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the concept of the sheet passing position control of the steel plate according to the embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a control unit and a current supply unit according to the embodiment of the present invention.
  • FIG. 8 is a flow showing the control method of the embodiment of the present invention.
  • FIG. 9 is a flow showing a control method when the steel plate approaches the electromagnet exceeding the threshold value among the flows showing the control method of the embodiment of the present invention.
  • FIG. 10 is a schematic view showing a part of a general hot-dip metal strip production line.
  • FIG. 11 is an enlarged view of the vicinity of the gas wiper in the production line for the hot-dip metal strip.
  • the steel sheet passing position control device will be described by taking a hot-dip galvanized steel sheet production line as an example.
  • FIG. 1 is a diagram showing a configuration of a steel plate threading position control apparatus according to an embodiment of the present invention.
  • the control device 100 is a device for continuously controlling the electromagnet and the steel plate without bringing them into contact with each other.
  • a pair of electromagnets 2 are installed so as to sandwich the steel plate 1 traveling upward.
  • a non-contact displacement sensor (displacement sensor) 3 is arranged in the vicinity.
  • a control unit 4 for controlling the current flowing through the electromagnet 2 is installed. There may be a plurality of pairs of electromagnets.
  • a molten zinc bath and a gas wiper are respectively installed below the steel plate 1.
  • the non-contact displacement sensor 3 is attached only to one side of the steel plate. This is because if the distance is measured from both sides of the steel plate, it becomes difficult to select the electromagnet to be used and determine the magnitude of the current, resulting in hindrance to the control of the electromagnet. Moreover, the non-contact displacement sensor 3 should just be able to measure the distance with a steel plate appropriately, For example, the thing of arbitrary systems, such as optical systems, such as an eddy current type and a laser, can be used. The position of the reference point for distance measurement may be the position of the non-contact displacement sensor 3 or a predetermined position of the control device 100.
  • FIG. 2 is a block diagram illustrating a configuration of a control unit in a conventional steel plate manufacturing apparatus.
  • the position of the steel sheet is measured by the non-contact displacement sensor 3, and the control unit 4 performs processing such as proportional, differentiation, integration (for example, PID control) (proportional) to the deviation signal (error signal) between the position of the steel sheet and the target position.
  • processing such as proportional, differentiation, integration (for example, PID control) (proportional) to the deviation signal (error signal) between the position of the steel sheet and the target position.
  • -integral-derivative control is performed, the operation amount for controlling the pass line of the steel plate 1 is calculated, the current amount is determined according to the obtained operation amount, and the amplifier is applied to the electromagnet selected by the front / back selection device. A current of the determined amount is passed through. And the vibration and the curvature of the steel plate 1 were suppressed by the generated suction force, and the pass line of the steel plate was controlled.
  • FIG. 3 is a schematic diagram showing the force acting on the steel sheet when the position of the steel sheet is stably controlled.
  • a force as shown in FIG. 3 acts on the steel plate.
  • FIG. 3 shows a case where the steel plate 1 is pulled to the target position using the electromagnet 2a because the steel plate 1 has moved away from the non-contact displacement sensor 3 in FIG.
  • the steel plate 1 is moved by the attractive force of the electromagnet 2a.
  • the attractive force of the electromagnet 2a increases as the steel plate approaches the electromagnet 2a, and increases as the current flowing through the electromagnet 2a increases. That is, as the current supplied to the electromagnet 2a increases, the attractive force increases as the current increases in the order of A, B, and C in the figure.
  • the restoring force to return to the position before the movement acts in proportion to the moving amount of the steel plate 1.
  • the restoring force acts in the direction opposite to the moving direction of the steel plate 1, that is, the direction opposite to the attractive force of the electromagnet 2a.
  • a current is supplied to the electromagnet according to the distance from the position of the steel plate 1 measured by the non-contact displacement sensor 3 to the target position, and the current supplied to the electromagnet 2a is changed by feedback control until the steel plate 1 reaches the target position. 1 is moved to the target position.
  • the target position is set in advance and is approximately in the middle between the electromagnets 2a and 2b.
  • the target position is not necessarily limited to a fixed point, and is within the specification range of the coating amount of the molten metal coated on the steel plate.
  • the target range may be determined and set as appropriate.
  • a control method such as PID control can be used as appropriate.
  • the steel plate 1 When the steel plate 1 moves in a direction approaching the electromagnet 2a from this balance point, the restoring force of the steel plate becomes larger than the attractive force of the electromagnet, and the steel plate 1 tries to return to the balance point. On the contrary, when the steel plate moves away from the electromagnet 2a, the attractive force of the electromagnet 2a becomes larger than the restoring force of the steel plate, and the steel plate 1 tries to return to the balance point. That is, the steel plate 1 can be stably held at this balance point.
  • the attraction force of the electromagnet to the steel plate also depends on the thickness of the steel plate
  • the restoring force of the steel plate 1 and the attraction force of the electromagnet 2a balance at the target position depending on the operating conditions such as when the plate thickness is large. There may be no control and the control may become unstable.
  • FIG. 4 is a schematic diagram showing the force acting on the steel plate when the position of the steel plate is not stably controlled.
  • the attractive force of the electromagnet 2a increases rapidly. It shows the case of the condition.
  • curve C in FIG. 4 when the current supplied to the electromagnet 2a is increased by feedback control, there is a balance point between the restoring force and the attractive force when a certain current value is exceeded (curve C in FIG. 4). It will be in a state that does not. Therefore, in the conventional method, the steel plate 1 cannot be stabilized, and there is a risk that the steel plate 1 is directly attracted to the electromagnet 2a and comes into contact.
  • the ideal control is to follow the current passed through the electromagnet as the steel plate moves, but the electromagnet response speed is limited and cannot be controlled quickly. Also, it takes time to determine whether the position of the steel plate is stable. Therefore, the current control intervals are discrete.
  • the control method of the electromagnet 2a is changed to change the steel plate 1 and the electromagnet. Prevent contact with 2a.
  • the steel plate 1 when the steel plate 1 approaches the electromagnet 2a more than necessary, it is determined that there is no balancing point, the current flowing through the electromagnet 2a is immediately reduced to reduce the attractive force, and the moving direction of the steel plate 1 is determined by the restoring force.
  • the steel plate 1 is reversed and settled at a position where the restoring force and the suction force are balanced.
  • the threshold value represents the distance from the electromagnet 2a in the target position direction, and when the steel plate 1 comes closer than that distance, even if a command is issued to reduce the current of the electromagnet 2a, This is the limit distance that the position control cannot be made in time without reversing the moving direction of the steel plate 1.
  • FIG. 5 is a schematic diagram showing the force acting on the steel plate when the steel plate is stably controlled by using the position control method of the embodiment of the present invention.
  • the steel plate 1 When the current flowing to the electromagnet 2a is increased by feedback control, the steel plate 1 is attracted in the direction of the electromagnet 2a. And when the steel plate 1 exceeds a threshold value, in order to reduce the attractive force of the electromagnet 2a, the electric current sent through the electromagnet 2a is made small. As a result, the steel plate 1 is moved away from the electromagnet 2a by the restoring force, and settles at a position where the restoring force and the attractive force are balanced (the position of ⁇ in FIG. 5 is the settlement point). As a result, although the steel plate 1 settles at a position different from the target position, it is possible to prevent the steel plate 1 from being attracted and brought into contact with the electromagnet 2a. In FIG. 5, the landing point is farther from the target position when viewed from the non-contact displacement sensor 3, but the landing point may be closer to the target position.
  • a position in an allowable range from the viewpoint of operation and product including a target position indicating the position of the optimum pass line is determined as an allowable range in advance, and the steel plate 1 settles at a position within the allowable range. It is good to do so.
  • the allowable range is set so as to satisfy the upper limit and lower limit of the adhesion amount specification range of the molten metal to be coated on the steel plate, there is no possibility of producing a defective product.
  • the allowable range is set between a threshold value 1 on the electromagnet 2a side and a threshold value 2 on the electromagnet 2b side, as shown in FIG.
  • the threshold 1 and the threshold 2 may be set between the threshold 1 and the threshold 2 as an allowable range. Thereby, it is possible to avoid equipment damage and operation stoppage due to contact and adsorption between the steel plate and the electromagnet.
  • the steel plate 1 since the control may become unstable if the amount of decrease in current is changed according to the distance between the steel plate 1 and the electromagnet 2a, the steel plate 1 is at a position closer to the electromagnet 2a than the threshold value. If it is determined, the current value is decreased by a certain value regardless of the distance between the steel plate 1 and the electromagnet 2a. This procedure is repeated until the steel plate is separated from the electromagnet by a threshold value or more and enters the above-described allowable range.
  • P PID control allows fine control, but takes a long response time. If the PID control is continued even when the steel plate exceeds the threshold, the current control cannot catch up with the movement of the plate. As a result, there is a possibility that the steel plate contacts the electromagnet. Therefore, as soon as the steel plate approaches the threshold value, the control method is switched to decrease the current by a certain value. For example, the current value at the time point when it is determined that the threshold value is approaching is decreased by 3 A in one second. That is, if the control loop is 1 ms, it is decreased by 0.003 A for each control loop. In some cases, the current may be decreased at a constant rate.
  • FIG. 6 is a diagram schematically showing the position control of the steel plate 1 in FIG.
  • threshold 1 and threshold 2 are set, respectively.
  • Threshold 1 is for the electromagnet 2a
  • threshold 2 is for the electromagnet 2b.
  • the threshold values 1 and 2 are fixed regardless of the steel type and plate thickness, and are determined in consideration of the interval between the electromagnets 2a and 2b, the response speed of the electromagnet, the time lag of feedback control, and the like.
  • 11a indicates the position of the steel sheet in a state where the steel sheet has deviated from the target position. And by attracting
  • FIG. 7 is a block diagram of the control unit 4 and the current supply unit 5 in the embodiment of the present invention.
  • the control unit 4 includes a determination unit 41 and a storage unit 42.
  • the determination unit 41 determines the position of the steel plate based on the distance between the preset reference point and the steel plate 1 measured by the non-contact displacement sensor 3. And the presence or absence of the necessity for the movement of the steel plate 1 is judged compared with the position and target position of a steel plate.
  • the direction of movement, the electromagnet to be used, and the amount of current are determined.
  • an instruction to increase or decrease the electromagnet to be used and the current to be supplied is issued to the current supply unit 5.
  • the storage unit 42 stores the threshold values 1 and 2 that are set, and the position of the steel plate 1 is recorded as needed.
  • the current supply unit 5 receives an instruction from the control unit 4 and switches the electromagnet 2a or 2b to be used by the electromagnet switching unit 51. Then, the determined amount of current is supplied. Although not shown in FIG. 7, the current supply unit 5 includes devices necessary for current supply. In the present embodiment, the current supply unit 5 is separated from the control unit 4. However, the control unit 4 and the current supply unit 5 may be integrated, or the current supply unit 5 is the control unit. 4 may be part of the function. Furthermore, a plurality of a pair of electromagnets may be installed in the width direction of the steel plate so that each can be controlled independently.
  • step 100 the distance between the reference point set in advance and the steel plate is measured using the non-contact displacement sensor 3 to determine the position of the steel plate.
  • step 110 it is determined whether or not the position of the steel sheet should be corrected.
  • the direction in which the steel plate 1 is moved is determined in S120, and the electromagnet used for moving the steel plate is determined in S130 (for example, The electromagnet 2a is determined.
  • the electromagnet 2a is described as being determined.
  • the amount of current flowing through the electromagnet 2a is determined according to the distance from the target position to the steel plate 1.
  • the electromagnet far from the steel plate is selected.
  • the electromagnet 2b close to 11a but the far electromagnet 2a is used for the movement of the steel plate. This is because an electromagnet close to the steel plate is selected, and problems such as subsequent attraction and contact of the steel plate with the electromagnet are avoided, and stable feedback control is first performed in S140 and S150.
  • the amount of current determined in S140 is output from the electric supply unit 5 to the electromagnet 2a. And an electric current is sent through the electromagnet 2a and a steel plate is moved. Thereafter, in S160, the position of the moved steel plate 1 is measured again. Then, in S170, it is determined whether or not the steel plate is at the target position. If it is determined that the steel plate 1 has reached the target position (Yes), the current flowing through the electromagnet 2a is maintained in S200 to maintain a stable state.
  • the feedback control up to that point is continued. That is, in S190, the amount of current flowing through the electromagnet 2a is increased or decreased by a predetermined amount according to the distance from the target position to the steel plate 1, and the flow after S150 is repeated again.
  • control is performed so as to sequentially decrease from the amount of current that has been supplied until S310.
  • the current passed through the electromagnet 2a is reduced in S320 to move the steel plate 1 in the reverse direction. After the movement, the distance from the steel plate 1 is measured again in S330.
  • S340 it is determined whether the steel plate position is within the allowable range. If it is determined that the steel sheet 1 is in a position within a predetermined allowable range as shown in FIG. 6 (Yes), the current flowing through the electromagnet 2a is maintained in S350 and the state is maintained. If the steel plate 1 is not at the position within the allowable range (No), the process returns to S310, and the current flowing through the electromagnet 2a is further reduced until the steel plate 1 is within the allowable range.
  • the feature of the control here is that the current decrease in S310 is reduced at a constant value regardless of the distance between the target position and the steel plate.
  • the position of the steel plate 1 may move even if it is the same product due to a change in manufacturing line conditions, for example, a temperature change. is there.
  • the position of the steel plate 1 is recorded in the storage unit 42 in S260 of FIG. 8 when the position is stabilized at a target position or a position within an allowable range.
  • the position of the steel plate 1 is continuously measured. This measurement interval is determined in consideration of the response speed of the electromagnet, the time lag of feedback control, and the like. And the flow after S100 is continued.
  • Identification of product switching may be performed by detecting identification marks provided on the steel plate 1, or a means for separately providing information from the outside may be used.
  • the steel plate 1 since the steel plate 1 has moved away from the non-contact displacement sensor 3 side, the case where the steel plate 1 is moved to the non-contact displacement sensor 3 side is described as an example, but conversely, the steel plate 1 approaches the non-contact displacement sensor 3 side. Even in this case, the position of the steel plate 1 can be controlled similarly. In that case, the steel plate 1 is moved using the attractive force of the electromagnet 2b. Further, the comparison with the distance of the steel sheet 1 is performed with the threshold value 2, but when it is determined that the distance exceeds the threshold value 2 and is too close to the electromagnet 2b, the steel sheet 1 according to the present invention is controlled.
  • the selection of the electromagnet 2a or 2b is determined depending on which side the steel plate 1 is closer to the center between the electromagnets 2a and 2b when the control starts. However, once the electromagnet (2a or 2b) to be used is determined, the same electromagnet is continuously used until the steel plate 1 is stably held at the target position or stable point. If the electromagnet is switched while the steel plate 1 is not stable, the balance point is not determined, so the steel plate 1 continues to move between the electromagnets 2a and 2b, and as a result, the steel plate 1 vibrates.
  • electromagnets 2 there may be a plurality of electromagnets 2 in the width direction of the steel plate. This is because fluctuations in the position of the steel sheet also occur due to, for example, warpage in the width direction of the steel sheet. In such a case, the distance is different between the central portion and the end portion of the steel plate. Therefore, if a plurality of pairs of electromagnets are installed in the width direction of the steel plate, the warp in the width direction of the steel plate can be appropriately handled. Further, by controlling the electromagnets installed in plural pairs independently, it is possible to control the position of only a necessary portion, and it is possible to let the entire steel plate pass through at an optimal position.
  • the control part 4 may control all the electromagnets by one, and may install the control part 4 separately in a corresponding electromagnet. Similarly, the current may be supplied to all the electromagnets with one current supply unit 5, or the current supply units 5 may be individually installed in the corresponding electromagnets.
  • One non-contact displacement sensor 3 may be installed for a pair of electromagnets, or a number of sensors different from the number of electromagnet pairs may be installed. For example, a plurality of electromagnet pairs may be controlled based on the distance measured by one sensor, or conversely, a pair of electromagnets may be controlled based on the distance measured by a plurality of sensors. Also good. However, control becomes easier when the number of pairs of electromagnets and the number of sensors is 1: 1.
  • the electromagnet is arrange
  • control flow is not limited to this embodiment, and any flow may be used as long as the position of the steel plate can be moved and the contact between the electromagnet and the steel plate can be avoided.
  • the current value is maintained in order to hold the steel plate 1 at that position.
  • the position is stable for a certain time or longer, it may be possible to further control to move to the target position.
  • the control by this invention can be applied. Needless to say, you can.
  • the plate passing direction of the steel plate is not limited to the vertical direction, and may be a horizontal direction. Since the characteristics of the attractive force of the electromagnet change depending on the steel type and thickness of the product, it is possible to optimize the hardware configuration such as the number of turns and the arrangement of the electromagnet for each condition, but this is not realistic.
  • FIG. 10 is a schematic view showing a part of a general hot-dip metal strip production line.
  • the steel sheet 1 is transported from a previous process such as a cold rolling process and is annealed in an annealing furnace 14 maintained in a non-oxidizing or reducing atmosphere. After that, the molten metal is cooled to approximately the same temperature as the molten metal and guided into the molten metal bath 15.
  • the steel plate 1 In the molten metal bath 15, the steel plate 1 is passed while immersed in the molten metal, and the molten metal adheres to the surface. Thereafter, excess molten metal is wiped off from the molten steel bath 15 by the gas ejected from the gas wiper 16, and the amount of adhesion of the molten metal is adjusted.
  • an alloying process is performed in which the metal strip is reheated using the alloying furnace 17 to produce a homogeneous alloy layer. May be applied.
  • the steel sheet 1 After passing through the cooling zone 18, the steel sheet 1 is subjected to special rust prevention and corrosion resistance treatments at the chemical conversion treatment unit 19, wound around a coil and shipped.
  • FIG. 11 is an enlarged view of the vicinity of the gas wiper (dashed line area in FIG. 10) in the hot-dip metal strip production line.
  • the drawing roller 20 draws the steel plate 1 into the molten metal bath 15 and attaches the molten metal to the steel plate 1 in the molten metal bath 15.
  • the pulling roller 21 pulls the steel plate 1 out of the molten metal bath 15.
  • the gas wiper 16 is arranged in a pass line in the middle of the pulling roller 21 pulling up the steel plate 1, and adjusts the amount of molten metal attached by wiping off the excess molten metal adhering to the steel plate 1.
  • the electromagnets 2a and 2b and the non-contact displacement sensor 3 of the steel sheet passing position control device according to the embodiment of the present invention are arranged in a pass line immediately above the gas wiper 16, and control the vibration and position of the metal strip.
  • the distance between the gas wiper 16 and the steel plate 1 becomes constant, so that the pressure of the wiping gas becomes uniform, and unevenness in the amount of molten metal adhering to the steel plate 1 can be suppressed.
  • the present invention is useful for a line for producing a steel sheet, and is particularly suitable for a production line such as a hot dipping line such as zinc or a coating line.

Abstract

Provided are a device and a method for controlling the traveling position of a steel sheet, whereby it becomes possible to continue the control sustainably without bringing an electromagnet into contact with the steel sheet even when the position of the steel sheet deviates from a predetermined position. The traveling position of a steel sheet can be stabilized by controlling in such a manner that the current to be passed through an electromagnet for controlling the traveling position is increased or decreased in accordance with the distance between the traveling position of the steel sheet and a preset target position when the traveling position of the steel sheet is farther away from a preset threshold value relative to the position of the electromagnet, and the current to be passed through the electromagnet is decreased by a certain value regardless of the above-mentioned distance when the traveling positon of the steel sheet is closer to the preset threshold value relative to the position of the electromagnet.

Description

鋼板の通板位置制御装置および方法、ならびに鋼板の製造方法Steel plate passing position control device and method, and steel plate manufacturing method
 本発明は、鋼板の通板位置制御装置および方法、ならびに鋼板の製造方法に関し、鋼板を所定の範囲内で安定的に通板(travel)させるものであり、特に亜鉛等の溶融めっき(hot-dip coating)ライン、コーティングライン等に有用なものである。 TECHNICAL FIELD The present invention relates to a steel plate threading position control device and method, and a steel sheet manufacturing method, and is intended to stably travel a steel plate within a predetermined range, and in particular, hot dip plating such as zinc (hot- It is useful for dip coating lines and coating lines.

 鋼板を製造するラインにおいて、鋼板の振動(vibration)や反り(warp)を抑制して鋼板のパスライン(pass line)を安定に保つことは、鋼板の品質を向上させるばかりでなく、その製造ラインの能率を向上させることにも寄与する。

In the production line of steel sheets, keeping the steel plate pass line stable by suppressing vibration and warp of the steel sheet not only improves the quality of the steel sheet, but also the production line. It also contributes to improving the efficiency of.
 例えば、溶融亜鉛めっき鋼板の製造ラインのめっき工程においては、鋼板を溶融亜鉛浴槽中の溶融亜鉛に浸漬しながら通板(travel)することにより、鋼板の表面に溶融亜鉛をめっきする。この工程の後に、溶融亜鉛浴槽後に設けられたガスワイパからワイピングガスを鋼板表面に吹き付けることにより鋼板表面のめっき厚(coating thickness)を均一にする。 このめっき厚を均一にするための工程では、ワイピングガスの圧力が、鋼板の表裏および板幅方向で均一になるようにすることが必要である。したがって、鋼板が振動している場合、鋼板が反っている場合、あるいは鋼板のパスラインが表裏どちらかに偏っている場合など、ガスワイパと鋼板との距離が一定ではないときは、ワイピングガスの圧力が鋼板表裏および板幅方向に均一にならない。その結果、鋼板の表裏や板幅方向および通板方向で亜鉛の付着量が不均一になるという問題が生じる。 For example, in a plating process of a production line for a hot dip galvanized steel sheet, the hot dip galvanizing is plated on the surface of the steel sheet by traveling while immersing the steel sheet in the hot dip zinc in the hot dip galvanizing bath. After this step, a wiping gas is blown onto the steel sheet surface from a gas wiper provided after the molten zinc bath to make the coating thickness of the steel sheet surface uniform. In the process for making the plating thickness uniform, it is necessary to make the pressure of the wiping gas uniform in the front and back of the steel plate and in the plate width direction. Therefore, when the distance between the gas wiper and the steel plate is not constant, such as when the steel plate is vibrating, when the steel plate is warped, or when the pass line of the steel plate is biased to the front or back, the pressure of the wiping gas Is not uniform in the front and back of the steel plate and in the plate width direction. As a result, there arises a problem that the amount of zinc adhered becomes uneven in the front and back sides of the steel plate, the plate width direction, and the sheet passing direction.
 このような問題点を解決する方法として、電磁石を用いて鋼板の反りや振動を非接触(non-contact)で抑制し、鋼板のパスラインを安定化する技術が知られている。例えば、鋼板のパスラインに対して一対の電磁石を互いに対向するように配置し、別途設けた位置検出器からの信号に応じて各電磁石の吸引力(attractive force)を相互に切り替えながら鋼板の通板位置(以下、単に鋼板の位置とも記載)を非接触で制御する方法が知られている(特許文献1参照)。 As a method for solving such a problem, there is known a technique for stabilizing a steel plate pass line by using an electromagnet to suppress warpage or vibration of the steel plate in a non-contact manner. For example, a pair of electromagnets are arranged so as to face each other with respect to the steel plate pass line, and the attractive force of each electromagnet is switched between each other according to a signal from a separately provided position detector. A method of controlling the plate position (hereinafter also simply referred to as the position of the steel plate) in a non-contact manner is known (see Patent Document 1).
特開平2-62355号公報Japanese Patent Laid-Open No. 2-62355
 しかしながら、鋼板に作用する電磁石の吸引力は、鋼板と電磁石の距離に対して非線形の関係、すなわち鋼板が電磁石に近づくほど吸引力が急激に大きくなる特性がある。特許文献1に記載された技術では、何らかの外乱や操業条件の変化等が有った場合に、鋼板が吸引されて電磁石に接触してしまう。その結果、品質欠陥や設備故障を引き起こす危険性があった。一般的には、鋼板が電磁石に接近した場合には、電磁石への電流供給を停止する安全対策が取られる。しかし、この場合は電磁石が稼動しなくなるため、鋼板の通板位置制御ができなくなるという問題点があった。 However, the attractive force of the electromagnet acting on the steel plate has a non-linear relationship with the distance between the steel plate and the electromagnet, that is, the attractive force increases rapidly as the steel plate approaches the electromagnet. In the technique described in Patent Document 1, when there is some disturbance or change in operating conditions, the steel sheet is attracted and contacts the electromagnet. As a result, there was a risk of causing quality defects and equipment failures. Generally, when the steel plate approaches the electromagnet, a safety measure is taken to stop the current supply to the electromagnet. However, in this case, since the electromagnet does not operate, there is a problem that it is not possible to control the plate passing position of the steel plate.
 本発明は上記課題に鑑みてなされたものであって、その目的は、電磁石への電流供給を停止することなく、鋼板の通板位置の制御を行うことができる鋼板の通板位置制御装置および方法、ならびに鋼板の製造方法を提供することである。 The present invention has been made in view of the above problems, and its object is to provide a plate passing position control device for a steel plate capable of controlling the plate passing position of the steel plate without stopping the current supply to the electromagnet, and It is providing the method and the manufacturing method of a steel plate.
 本発明者らは上記課題を解決すべく鋭意検討を重ねた。その結果、鋼板の通板位置を非接触で制御する場合、鋼板と電磁石の距離に応じて制御パターンを変更することで、電磁石への電流供給を停止させることなく、持続的に鋼板の通板位置の制御を続けることができることを見出した。 The present inventors have intensively studied to solve the above problems. As a result, when the plate passing position of the steel plate is controlled in a non-contact manner, the steel plate can be continuously passed without stopping the current supply to the electromagnet by changing the control pattern according to the distance between the steel plate and the electromagnet. It was found that position control can be continued.
 本発明は上記知見に基づきなされたものであり、その要旨は以下のとおりである。
(1)通板位置制御の対象となる鋼板の一方の面側とその反対の面側にそれぞれ配置される電磁石と、
前記鋼板の通板位置を非接触で測定する変位センサーと、
該変位センサーが測定した鋼板の通板位置に基づいて前記電磁石に供給する電流量を決定する制御部と、
該制御部で決定した電流量に基づいて前記電磁石に電流を供給する電流供給部とを具備し、
前記制御部は、前記鋼板の移動の必要性の有無を判断する判断部と予め設定された閾値を格納する記憶部とからなり、
前記判断部は、
前記鋼板の通板位置が予め設定した目標位置と一致せず、前記鋼板を移動させる必要があると判断した場合は、移動の方向、使用する電磁石、電流量を決定し、前記電流供給部に出力して、前記鋼板を移動させ、
移動した鋼板を前記変位センサーで再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合と、前記閾値よりも前記決定した電磁石に近い場合とで、異なる制御を行うことを特徴とする鋼板の通板位置制御装置。
(2)上記(1)に記載の鋼板の通板位置制御装置において、
前記再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合には、
前記鋼板を前記目標位置に近づけるように、前記決定した電磁石に流す電流量を前記再度測定した鋼板の通板位置と前記目標位置との距離に応じて増減させて、
前記閾値よりも前記決定した電磁石に近い場合には、
前記鋼板が予め設定した許容範囲内に入るまで、前記距離にかかわらず前記決定した電磁石に流す電流量を一定の値もしくは一定の割合で減少させることを特徴とする鋼板の通板位置制御装置。
(3)上記(1)または(2)に記載の鋼板の通板位置制御装置において、
前記鋼板のそれぞれの面側において前記電磁石が前記鋼板の幅方向に複数設置され、それぞれ独立して電流を供給できることを特徴とする鋼板の通板位置制御装置。
(4)通板位置制御の対象となる鋼板の一方の面側とその反対の面側にそれぞれ電磁石を配置し、
前記鋼板の通板位置を変位センサーにて非接触で測定し、
測定した鋼板の通板位置が予め設定した目標位置と一致せず、前記鋼板を移動させる必要があると判断した場合は、前記電磁石のうち、前記測定した鋼板の通板位置からより離れた電磁石を前記鋼板の移動に使用する電磁石として決定し、
前記目標位置から前記測定した鋼板の通板位置までの距離に応じて、前記決定した電磁石に流す電流量を決定、出力して、前記鋼板を移動させ、
移動した鋼板を再度測定した鋼板の通板位置が、前記決定した電磁石に対して予め設定した閾値以上、前記決定した電磁石よりも離れている場合と、前記閾値よりも前記決定した電磁石に近い場合とで、異なる制御を行うことによって、前記鋼板の通板位置を制御することを特徴とする鋼板の通板位置制御方法。
(5)上記(4)に記載の鋼板の通板位置制御方法において、
前記再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合には、
前記鋼板を前記目標位置に近づけるように、前記決定した電磁石に流す電流量を前記再度測定した鋼板の通板位置と前記目標位置との距離に応じて増減させて、
前記閾値よりも前記決定した電磁石に近い場合には、
前記鋼板が予め設定した許容範囲内に入るまで、前記距離にかかわらず前記決定した電磁石に流す電流量を一定の値もしくは一定の割合で減少させることを特徴とする鋼板の通板位置制御方法。
(6)製造ライン通板中の鋼板に溶融金属を付着させる付着工程と、
前記鋼板に付着した過剰の溶融金属を払拭するガスワイパによって溶融金属の付着量を調整する調整工程と、
上記(1)~(3)の何れか1項に記載の鋼板の通板位置制御装置により、前記鋼板の振動および位置を非接触で制御する制御工程と、
を有することを特徴とする鋼板の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) electromagnets respectively disposed on one surface side and the opposite surface side of a steel plate to be subjected to threading position control;
A displacement sensor for measuring the passing position of the steel sheet in a non-contact manner;
A control unit for determining the amount of current to be supplied to the electromagnet based on the passing position of the steel plate measured by the displacement sensor;
A current supply unit that supplies current to the electromagnet based on the amount of current determined by the control unit;
The control unit includes a determination unit that determines whether or not the steel plate needs to be moved and a storage unit that stores a preset threshold value.
The determination unit
If it is determined that the sheet passing position of the steel sheet does not match the preset target position and the steel sheet needs to be moved, the direction of movement, the electromagnet to be used, the amount of current are determined, and the current supply unit Output, move the steel plate,
When the plate position of the steel plate measured again by the displacement sensor with respect to the moved steel plate is greater than or equal to the threshold value with respect to the determined electromagnet, and when the electromagnet is determined to be farther than the determined electromagnet. A plate passing position control device for a steel plate, characterized in that different controls are performed depending on whether or not they are close.
(2) In the sheet passing position control device according to (1) above,
When the plate position of the steel plate measured again is more than the threshold with respect to the determined electromagnet, and is farther than the determined electromagnet,
In order to bring the steel plate closer to the target position, the amount of current passed through the determined electromagnet is increased or decreased according to the distance between the plate position of the steel plate measured again and the target position,
When closer to the determined electromagnet than the threshold,
A sheet feeding position control device for a steel sheet, wherein the amount of current flowing through the determined electromagnet is decreased at a constant value or at a constant rate regardless of the distance until the steel sheet falls within a preset allowable range.
(3) In the plate passing position control device for a steel sheet according to (1) or (2) above,
A plate passing position control device for a steel plate, wherein a plurality of electromagnets are installed in the width direction of the steel plate on each surface side of the steel plate, and current can be supplied independently.
(4) An electromagnet is disposed on one side of the steel plate to be subjected to threading position control and on the opposite side,
Non-contact measurement of the plate position of the steel plate with a displacement sensor,
If it is determined that the measured sheet passing position does not match the preset target position and the sheet needs to be moved, among the electromagnets, the electromagnet further away from the measured sheet passing position. Is determined as the electromagnet used to move the steel plate,
According to the distance from the target position to the measured sheet passing position of the steel sheet, the amount of current to be passed through the determined electromagnet is determined and output, and the steel sheet is moved,
When the plate position of the steel plate measured again for the moved steel plate is more than a predetermined threshold with respect to the determined electromagnet, and is farther from the determined electromagnet, and closer to the determined electromagnet than the threshold The sheet passing position control method of the steel sheet, wherein the sheet passing position of the steel sheet is controlled by performing different control.
(5) In the sheet passing position control method according to (4) above,
When the plate position of the steel plate measured again is more than the threshold with respect to the determined electromagnet, and is farther than the determined electromagnet,
In order to bring the steel plate closer to the target position, the amount of current passed through the determined electromagnet is increased or decreased according to the distance between the plate position of the steel plate measured again and the target position,
When closer to the determined electromagnet than the threshold,
A plate passing position control method for a steel plate, wherein the amount of current flowing through the determined electromagnet is decreased at a constant value or at a constant rate regardless of the distance until the steel plate falls within a preset allowable range.
(6) An adhesion process for adhering molten metal to the steel plate in the production line through-plate,
An adjustment step of adjusting the amount of adhesion of the molten metal by a gas wiper that wipes off the excess molten metal adhering to the steel sheet;
A control step of controlling the vibration and position of the steel sheet in a non-contact manner by the steel sheet passing position control device according to any one of (1) to (3) above;
The manufacturing method of the steel plate characterized by having.
 本発明に係る鋼板の通板位置制御装置および方法、ならびに鋼板の製造方法によれば、鋼板と電磁石の距離に応じて制御パターンを変更するようにしたので、電磁石への電流供給を停止させることなく、持続的に鋼板の通板位置の制御を続けることができ、生産性の向上が図れる。 According to the steel plate passing position control device and method and the steel plate manufacturing method according to the present invention, since the control pattern is changed according to the distance between the steel plate and the electromagnet, the current supply to the electromagnet is stopped. Therefore, it is possible to continuously control the sheet passing position of the steel sheet and improve productivity.
図1は、本発明の実施形態に係る鋼板の通板位置制御装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a steel plate passing position control device according to an embodiment of the present invention. 図2は、従来の鋼板の製造装置における制御部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a control unit in a conventional steel plate manufacturing apparatus. 図3は、鋼板の位置が安定的に制御されている場合に、鋼板に作用する力を示す模式図である。FIG. 3 is a schematic diagram showing the force acting on the steel plate when the position of the steel plate is stably controlled. 図4は、鋼板の位置が安定的に制御されていない場合に、鋼板に作用する力を示す模式図である。FIG. 4 is a schematic diagram showing the force acting on the steel plate when the position of the steel plate is not stably controlled. 図5は、本発明の実施形態の位置制御方法を用いることにより鋼板が安定的に制御されている場合の、鋼板に作用する力を示す模式図である。FIG. 5 is a schematic diagram showing the force acting on the steel plate when the steel plate is stably controlled by using the position control method of the embodiment of the present invention. 図6は、本発明の実施形態の鋼板の通板位置制御の考え方を説明する図である。FIG. 6 is a diagram for explaining the concept of the sheet passing position control of the steel plate according to the embodiment of the present invention. 図7は、本発明の実施形態の制御部および電流供給部を示すブロック図である。FIG. 7 is a block diagram illustrating a control unit and a current supply unit according to the embodiment of the present invention. 図8は、本発明の実施形態の制御方法を示すフローである。FIG. 8 is a flow showing the control method of the embodiment of the present invention. 図9は、本発明の実施形態の制御方法を示すフローのうち、鋼板が閾値を超えて電磁石に接近した場合の制御方法を示すフローである。FIG. 9 is a flow showing a control method when the steel plate approaches the electromagnet exceeding the threshold value among the flows showing the control method of the embodiment of the present invention. 図10は、一般的な溶融めっき金属帯の製造ラインの一部を示す概略図である。FIG. 10 is a schematic view showing a part of a general hot-dip metal strip production line. 図11は、溶融めっき金属帯の製造ラインのガスワイパの近傍の拡大図である。FIG. 11 is an enlarged view of the vicinity of the gas wiper in the production line for the hot-dip metal strip.
 本発明の実施形態に係る鋼板の通板位置制御装置について、溶融亜鉛めっき鋼板(hot-dip galvanized steel sheet)の製造ラインを例に説明する。 The steel sheet passing position control device according to the embodiment of the present invention will be described by taking a hot-dip galvanized steel sheet production line as an example.
 図1は、本発明の実施形態に係る鋼板の通板位置制御装置の構成を示す図である。制御装置100は、電磁石と鋼板とを接触させることなく持続的に制御するための装置であり、上方に走行する鋼板1を挟むように対向して1対の電磁石2が設置され、電磁石2の近傍に非接触変位センサー(displacement sensor)3が配置されている。また電磁石2に流す電流を制御する制御部4が設置されている。電磁石は複数対あってもよい。 FIG. 1 is a diagram showing a configuration of a steel plate threading position control apparatus according to an embodiment of the present invention. The control device 100 is a device for continuously controlling the electromagnet and the steel plate without bringing them into contact with each other. A pair of electromagnets 2 are installed so as to sandwich the steel plate 1 traveling upward. A non-contact displacement sensor (displacement sensor) 3 is arranged in the vicinity. Further, a control unit 4 for controlling the current flowing through the electromagnet 2 is installed. There may be a plurality of pairs of electromagnets.
 図1には示されていないが、鋼板1の下方に、溶融亜鉛浴槽およびガスワイパがそれぞれ設置されている。 Although not shown in FIG. 1, a molten zinc bath and a gas wiper are respectively installed below the steel plate 1.
 非接触変位センサー3は、鋼板の片側にのみ取り付けられている。これは、鋼板の両側から距離を測定すると、使用する電磁石の選択や電流の大きさを決定することが難しくなり、結果として電磁石の制御に支障をきたすからである。また、非接触変位センサー3は、鋼板との距離を適切に測定できればよく、例えば、渦電流式、レーザーなどの光学式など、任意の方式のものが使用できる。距離測定の基準点の位置は、非接触変位センサー3の位置としてもよいし、制御装置100の所定の位置としてもよい。

 図2は、従来の鋼板の製造装置における制御部の構成を示すブロック図である。従来は、非接触変位センサー3で鋼板の位置が測定され、制御部4で鋼板の位置と目標位置との偏差信号(error signal)に比例、微分、積分などの処理(例えばPID制御)(proportional-integral-derivative control )が実施され鋼板1のパスラインを制御するための操作量が演算され、得られた操作量に応じて電流量が決定され、表裏選択装置により選ばれた電磁石にアンプを介して決定された電流量の電流が流される。そして発生する吸引力によって、鋼板1の振動および反りが抑制され、鋼板のパスラインの制御が行われていた。   
The non-contact displacement sensor 3 is attached only to one side of the steel plate. This is because if the distance is measured from both sides of the steel plate, it becomes difficult to select the electromagnet to be used and determine the magnitude of the current, resulting in hindrance to the control of the electromagnet. Moreover, the non-contact displacement sensor 3 should just be able to measure the distance with a steel plate appropriately, For example, the thing of arbitrary systems, such as optical systems, such as an eddy current type and a laser, can be used. The position of the reference point for distance measurement may be the position of the non-contact displacement sensor 3 or a predetermined position of the control device 100.

FIG. 2 is a block diagram illustrating a configuration of a control unit in a conventional steel plate manufacturing apparatus. Conventionally, the position of the steel sheet is measured by the non-contact displacement sensor 3, and the control unit 4 performs processing such as proportional, differentiation, integration (for example, PID control) (proportional) to the deviation signal (error signal) between the position of the steel sheet and the target position. -integral-derivative control) is performed, the operation amount for controlling the pass line of the steel plate 1 is calculated, the current amount is determined according to the obtained operation amount, and the amplifier is applied to the electromagnet selected by the front / back selection device. A current of the determined amount is passed through. And the vibration and the curvature of the steel plate 1 were suppressed by the generated suction force, and the pass line of the steel plate was controlled.
 図3は、鋼板の位置が安定的に制御されている場合に、鋼板に作用する力を示す模式図である。電磁石2の吸引力で鋼板を移動させる場合、鋼板には図3に示すような力が作用する。 FIG. 3 is a schematic diagram showing the force acting on the steel sheet when the position of the steel sheet is stably controlled. When the steel plate is moved by the attractive force of the electromagnet 2, a force as shown in FIG. 3 acts on the steel plate.
 図中、A、B、Cは、電磁石の吸引力を、Dは鋼板の復元力をそれぞれ示す。また、図3は、図1における非接触変位センサー3から、鋼板1が離れていく方向に移動したために、電磁石2aを使用して鋼板1を目標位置に引き寄せる場合を示す。 In the figure, A, B, and C indicate the attractive force of the electromagnet, and D indicates the restoring force of the steel plate. FIG. 3 shows a case where the steel plate 1 is pulled to the target position using the electromagnet 2a because the steel plate 1 has moved away from the non-contact displacement sensor 3 in FIG.
 鋼板1は電磁石2aの吸引力により移動する。そして、電磁石2aの吸引力は、鋼板が電磁石2aに近づくほど大きくなり、また電磁石2aに流れる電流が大きくなるほど大きい。すなわち、電磁石2aに供給される電流が大きくなると、図のA、B、Cの順に電流が大きくなると吸引力が大きくなっていく。 The steel plate 1 is moved by the attractive force of the electromagnet 2a. The attractive force of the electromagnet 2a increases as the steel plate approaches the electromagnet 2a, and increases as the current flowing through the electromagnet 2a increases. That is, as the current supplied to the electromagnet 2a increases, the attractive force increases as the current increases in the order of A, B, and C in the figure.
 一方、鋼板1には通板方向に張力がかけられているため、移動前の位置に戻ろうとする復元力が鋼板1の移動量に比例して作用する。復元力は鋼板1の移動方向とは反対の方向、すなわち電磁石2aの吸引力とは反対の方向に作用する。電磁石2aの吸引力と鋼板1の復元力がつり合ったところで鋼板1の移動は停止し、このつり合い点で鋼板1は安定する。 On the other hand, since the steel plate 1 is tensioned in the plate-passing direction, the restoring force to return to the position before the movement acts in proportion to the moving amount of the steel plate 1. The restoring force acts in the direction opposite to the moving direction of the steel plate 1, that is, the direction opposite to the attractive force of the electromagnet 2a. When the attractive force of the electromagnet 2a and the restoring force of the steel plate 1 are balanced, the movement of the steel plate 1 is stopped, and the steel plate 1 is stabilized at this balanced point.
 非接触変位センサー3で測定した鋼板1の位置から目標位置までの距離に応じて電磁石へ電流を流し、フィードバック制御によって鋼板1が目標位置に達するまで電磁石2aに供給する電流を変化させて、鋼板1を目標位置に移動させる。目標位置はあらかじめ設定されており、電磁石2aと2bの間のおよそ中間となるが、必ずしも固定点に限られるわけではなく、鋼板にコーティングされる溶融金属の付着量(coating weight)の仕様範囲内で適宜目標の範囲を決めて設定するようにしてもよい。フィードバック制御には、PID制御などの制御方法を適宜使用することができる。 A current is supplied to the electromagnet according to the distance from the position of the steel plate 1 measured by the non-contact displacement sensor 3 to the target position, and the current supplied to the electromagnet 2a is changed by feedback control until the steel plate 1 reaches the target position. 1 is moved to the target position. The target position is set in advance and is approximately in the middle between the electromagnets 2a and 2b. However, the target position is not necessarily limited to a fixed point, and is within the specification range of the coating amount of the molten metal coated on the steel plate. The target range may be determined and set as appropriate. For feedback control, a control method such as PID control can be used as appropriate.
 このつり合い点から鋼板1が電磁石2aに近づく方向に移動した場合は、電磁石の吸引力に比べて鋼板の復元力が大きくなり鋼板1はつり合い点に戻ろうとする。逆に、鋼板が電磁石2aから遠ざかる方向に移動した場合は、鋼板の復元力に比べて電磁石2aの吸引力が大きくなり鋼板1はつり合い点に戻ろうとする。つまり、このつり合い点において鋼板1を安定的に保持することが可能となる。 When the steel plate 1 moves in a direction approaching the electromagnet 2a from this balance point, the restoring force of the steel plate becomes larger than the attractive force of the electromagnet, and the steel plate 1 tries to return to the balance point. On the contrary, when the steel plate moves away from the electromagnet 2a, the attractive force of the electromagnet 2a becomes larger than the restoring force of the steel plate, and the steel plate 1 tries to return to the balance point. That is, the steel plate 1 can be stably held at this balance point.
 しかし、鋼板に対する電磁石の吸引力は、鋼板の厚さ等にも依存するため、板厚が厚い場合などの操業条件によっては、鋼板1の復元力と電磁石2aの吸引力が目標位置でつり合わない場合があり、制御が不安定になることがある。 However, since the attraction force of the electromagnet to the steel plate also depends on the thickness of the steel plate, the restoring force of the steel plate 1 and the attraction force of the electromagnet 2a balance at the target position depending on the operating conditions such as when the plate thickness is large. There may be no control and the control may become unstable.
 図4は、鋼板の位置が安定的に制御されていない場合に、鋼板に作用する力を示す模式図であり、鋼板1と電磁石2aとの距離が近くなると電磁石2aの吸引力が急激に大きくなる条件の場合を示している。図4に示すように、フィードバック制御により電磁石2aへ供給する電流を大きくしていくと、ある電流値を超えたところ(図4中のカーブC)で復元力と吸引力とのつり合い点が存在しない状態になる。そのため、従来の方法では鋼板1を安定させることができなくなり、鋼板1がそのまま電磁石2aまで吸引され、接触してしまう危険性がある。そこで、電磁石2aへの電流供給を停止すれば、鋼板1はその復元力によって制御前の元の位置に戻り、電磁石2aへの接触は防げるものの、溶融金属の付着量が不均一になってしまうという問題が生ずる。 FIG. 4 is a schematic diagram showing the force acting on the steel plate when the position of the steel plate is not stably controlled. When the distance between the steel plate 1 and the electromagnet 2a becomes short, the attractive force of the electromagnet 2a increases rapidly. It shows the case of the condition. As shown in FIG. 4, when the current supplied to the electromagnet 2a is increased by feedback control, there is a balance point between the restoring force and the attractive force when a certain current value is exceeded (curve C in FIG. 4). It will be in a state that does not. Therefore, in the conventional method, the steel plate 1 cannot be stabilized, and there is a risk that the steel plate 1 is directly attracted to the electromagnet 2a and comes into contact. Therefore, if the current supply to the electromagnet 2a is stopped, the steel plate 1 returns to the original position before the control by its restoring force, and although the contact with the electromagnet 2a can be prevented, the amount of molten metal attached becomes uneven. The problem arises.
 鋼板の移動にあわせて電磁石に流す電流を追随させる制御が理想であるが、電磁石の応答速度には限界があり、速い制御はできない。また鋼板の位置が安定しているのかどうかの判断にも時間が必要である。そのため、電流の制御の間隔が離散的になる。 The ideal control is to follow the current passed through the electromagnet as the steel plate moves, but the electromagnet response speed is limited and cannot be controlled quickly. Also, it takes time to determine whether the position of the steel plate is stable. Therefore, the current control intervals are discrete.
 そこで、本発明では、フィードバック制御の結果、鋼板1の位置があらかじめ設定された閾値よりも電磁石2aに接近してしまった場合には、電磁石2aの制御方法を変更することで、鋼板1と電磁石2aとの接触を防止する。 Therefore, in the present invention, as a result of feedback control, when the position of the steel plate 1 is closer to the electromagnet 2a than a preset threshold value, the control method of the electromagnet 2a is changed to change the steel plate 1 and the electromagnet. Prevent contact with 2a.
 すなわち、鋼板1が電磁石2aに必要以上に接近した場合にはつり合い点は存在しないと判断し、直ちに電磁石2aに流す電流を小さくして吸引力を減少させ、復元力により鋼板1の移動方向を逆転させ、鋼板1が復元力と吸引力とがつり合う位置に落ち着かせる。 That is, when the steel plate 1 approaches the electromagnet 2a more than necessary, it is determined that there is no balancing point, the current flowing through the electromagnet 2a is immediately reduced to reduce the attractive force, and the moving direction of the steel plate 1 is determined by the restoring force. The steel plate 1 is reversed and settled at a position where the restoring force and the suction force are balanced.
 ここで、閾値は、電磁石2aから目標位置方向への距離をあらわすもので、その距離よりも近くに鋼板1が来た場合には、たとえ電磁石2aの電流を下げるように指令を出しても、鋼板1の移動方向を逆転させることができずに位置制御が間に合わなくなってしまう限界の距離である。 Here, the threshold value represents the distance from the electromagnet 2a in the target position direction, and when the steel plate 1 comes closer than that distance, even if a command is issued to reduce the current of the electromagnet 2a, This is the limit distance that the position control cannot be made in time without reversing the moving direction of the steel plate 1.
 この場合、鋼板1に作用する力は、図5のようになる。図5は、本発明の実施形態の位置制御方法を用いることにより鋼板が安定的に制御されている場合の、鋼板に作用する力を示す模式図である。 In this case, the force acting on the steel plate 1 is as shown in FIG. FIG. 5 is a schematic diagram showing the force acting on the steel plate when the steel plate is stably controlled by using the position control method of the embodiment of the present invention.
 フィードバック制御によって電磁石2aへ流す電流が大きくなると、鋼板1が電磁石2aの方向に吸引される。そして、鋼板1が閾値を超えたとき、電磁石2aの吸引力を減少させるため電磁石2aに流す電流を小さくする。結果として、鋼板1は復元力により電磁石2aから遠ざかり、復元力と吸引力とがつり合う位置(図5中の●の位置:落着点)に落ち着くことになる。これは結果的には、鋼板1は目標位置とは異なる位置に落ち着くことになるものの、鋼板1が電磁石2aに吸引され接触してしまうことを防止できる。なお、図5では、落着点は非接触変位センサー3から見て目標位置よりも遠いところになっているが、落着点は目標位置よりも近くてもよい。 When the current flowing to the electromagnet 2a is increased by feedback control, the steel plate 1 is attracted in the direction of the electromagnet 2a. And when the steel plate 1 exceeds a threshold value, in order to reduce the attractive force of the electromagnet 2a, the electric current sent through the electromagnet 2a is made small. As a result, the steel plate 1 is moved away from the electromagnet 2a by the restoring force, and settles at a position where the restoring force and the attractive force are balanced (the position of ● in FIG. 5 is the settlement point). As a result, although the steel plate 1 settles at a position different from the target position, it is possible to prevent the steel plate 1 from being attracted and brought into contact with the electromagnet 2a. In FIG. 5, the landing point is farther from the target position when viewed from the non-contact displacement sensor 3, but the landing point may be closer to the target position.
 その際に、最適なパスラインの位置を示す目標位置を含めて操業上や製品上の観点から許容できる範囲の位置を許容範囲として予め定めておき、鋼板1がその許容範囲内の位置に落ち着くようにするとよい。 At that time, a position in an allowable range from the viewpoint of operation and product including a target position indicating the position of the optimum pass line is determined as an allowable range in advance, and the steel plate 1 settles at a position within the allowable range. It is good to do so.
 例えば、許容範囲として、鋼板にコーティングする溶融金属の付着量仕様範囲の上限および下限を満たすように設定すれば、不良品を製造するおそれはない。通常、許容範囲は図6に示されるように、電磁石2a側の閾値1と電磁石2b側の閾値2の間に設定される。 For example, if the allowable range is set so as to satisfy the upper limit and lower limit of the adhesion amount specification range of the molten metal to be coated on the steel plate, there is no possibility of producing a defective product. Normally, the allowable range is set between a threshold value 1 on the electromagnet 2a side and a threshold value 2 on the electromagnet 2b side, as shown in FIG.
 また、場合によっては、閾値1と閾値2の間を許容範囲として設定することも考えられる。それによって、鋼板と電磁石との接触や吸着による設備損傷や操業停止を回避することができる。 In some cases, it may be possible to set between the threshold 1 and the threshold 2 as an allowable range. Thereby, it is possible to avoid equipment damage and operation stoppage due to contact and adsorption between the steel plate and the electromagnet.
 なお、電流の減少量を鋼板1と電磁石2aとの距離に応じて変化させてしまうと制御が不安定となる可能性があるため、鋼板1が閾値よりも電磁石2aに近づいた位置にあると判断された場合には、鋼板1と電磁石2aとの距離にかかわらず電流値を一定の値減少させる。鋼板が電磁石より閾値以上に離れ、かつ上述の許容範囲に入るまでこの手順が繰り返される。 In addition, since the control may become unstable if the amount of decrease in current is changed according to the distance between the steel plate 1 and the electromagnet 2a, the steel plate 1 is at a position closer to the electromagnet 2a than the threshold value. If it is determined, the current value is decreased by a certain value regardless of the distance between the steel plate 1 and the electromagnet 2a. This procedure is repeated until the steel plate is separated from the electromagnet by a threshold value or more and enters the above-described allowable range.
 PID制御はきめ細かい制御が可能な反面、応答時間が長くかかる。鋼板が閾値を超えた場合においてもPID制御を継続すると、電流の制御が板の移動に追いつかなくなる。結果として、鋼板が電磁石に接触する可能性が発生する。そこで、鋼板が閾値より近づいたらすぐに制御の方法を切り替え、電流を一定の値減少させる。例えば、閾値より近づいていると判断された時点の電流値から1秒間で3A減少させていく。つまり、制御ループが1msなら、1回の制御ループ毎に0.003Aずつ減少させる。なお、場合によっては、電流を一定の割合で減少させてもよい。 P PID control allows fine control, but takes a long response time. If the PID control is continued even when the steel plate exceeds the threshold, the current control cannot catch up with the movement of the plate. As a result, there is a possibility that the steel plate contacts the electromagnet. Therefore, as soon as the steel plate approaches the threshold value, the control method is switched to decrease the current by a certain value. For example, the current value at the time point when it is determined that the threshold value is approaching is decreased by 3 A in one second. That is, if the control loop is 1 ms, it is decreased by 0.003 A for each control loop. In some cases, the current may be decreased at a constant rate.
 図6は、図5における鋼板1の位置制御を模式的に表した図である。閾値として、閾値1と閾値2がそれぞれ設定される。閾値1は電磁石2a用の、閾値2は電磁石2b用の閾値である。閾値1、閾値2は、鋼種や板厚にかかわらず固定とし、電磁石2aと2bとの間隔、電磁石の応答速度、フィードバック制御のタイムラグなどを考慮して決定される。 FIG. 6 is a diagram schematically showing the position control of the steel plate 1 in FIG. As the threshold, threshold 1 and threshold 2 are set, respectively. Threshold 1 is for the electromagnet 2a, and threshold 2 is for the electromagnet 2b. The threshold values 1 and 2 are fixed regardless of the steel type and plate thickness, and are determined in consideration of the interval between the electromagnets 2a and 2b, the response speed of the electromagnet, the time lag of feedback control, and the like.
 11aは、鋼板が目標位置から外れてしまった状態の鋼板の位置を示している。そして、フィードバック制御によって電磁石2aに電流を流すことで吸引力が発生し、鋼板は電磁石2a側に移動する。しかしながら、もし閾値1を超えて電磁石2aに近づいてしまった場合(11bの位置)には、フィードバック制御から制御方法を変更し、それまでの供給電流量からを一定の値で電流量を減少させる。この電流量の減少を鋼板1が許容範囲内の位置(11cの位置)に落ち着くまで繰り返す。 11a indicates the position of the steel sheet in a state where the steel sheet has deviated from the target position. And by attracting | sucking force by sending an electric current through the electromagnet 2a by feedback control, a steel plate moves to the electromagnet 2a side. However, if the threshold value 1 is exceeded and the electromagnet 2a is approached (position 11b), the control method is changed from the feedback control, and the current amount is decreased by a constant value from the current supply amount so far. . This decrease in the amount of current is repeated until the steel sheet 1 settles at a position within the allowable range (position 11c).
 図7は、本発明の実施形態における制御部4および電流供給部5のブロック図である。制御部4は、判断部41と記憶部42からなる。先ず、判断部41は、非接触変位センサー3で測定された、予め設定した基準点と鋼板1との距離をもとに、鋼板の位置を決定する。そして、鋼板の位置と目標位置と比べて、鋼板1の移動の必要性の有無を判断する。鋼板の位置が目標位置と一致せず、鋼板を目標位置に移動させる必要があると判断した場合は、移動の方向、使用する電磁石、電流量を決定する。そして、電流供給部5に対して、使用する電磁石および供給する電流の増加または減少の指令を出す。記憶部42には、設定されている閾値1および閾値2の値が格納されており、また鋼板1の位置が随時記録される。 FIG. 7 is a block diagram of the control unit 4 and the current supply unit 5 in the embodiment of the present invention. The control unit 4 includes a determination unit 41 and a storage unit 42. First, the determination unit 41 determines the position of the steel plate based on the distance between the preset reference point and the steel plate 1 measured by the non-contact displacement sensor 3. And the presence or absence of the necessity for the movement of the steel plate 1 is judged compared with the position and target position of a steel plate. When it is determined that the position of the steel plate does not coincide with the target position and it is necessary to move the steel plate to the target position, the direction of movement, the electromagnet to be used, and the amount of current are determined. Then, an instruction to increase or decrease the electromagnet to be used and the current to be supplied is issued to the current supply unit 5. The storage unit 42 stores the threshold values 1 and 2 that are set, and the position of the steel plate 1 is recorded as needed.
 電流供給部5は、制御部4からの指令を受けて、使用する電磁石2aまたは2bの切替を電磁石切替部51で行う。そして、決定された電流量を供給する。なお、図7に図示はしていないが、電流供給部5には電流供給に必要な機器が含まれる。また、本実施形態では、電流供給部5は制御部4とは分離しているものとしたが、制御部4と電流供給部5が一体化していてもよく、また電流供給部5が制御部4の機能の一部となっていてもよい。さらに、鋼板の幅方向に一対の電磁石が複数設置され、それぞれ独立して制御できるようにしてもよい。 The current supply unit 5 receives an instruction from the control unit 4 and switches the electromagnet 2a or 2b to be used by the electromagnet switching unit 51. Then, the determined amount of current is supplied. Although not shown in FIG. 7, the current supply unit 5 includes devices necessary for current supply. In the present embodiment, the current supply unit 5 is separated from the control unit 4. However, the control unit 4 and the current supply unit 5 may be integrated, or the current supply unit 5 is the control unit. 4 may be part of the function. Furthermore, a plurality of a pair of electromagnets may be installed in the width direction of the steel plate so that each can be controlled independently.
 図8および図9に、本発明の実施形態に係る鋼板の通板位置制御装置における制御フローの例を示す。この制御フローに基づいて、以下に処理手順の説明を行う。 8 and 9 show an example of a control flow in the sheet passing position control device for a steel plate according to the embodiment of the present invention. Based on this control flow, the processing procedure will be described below.
 まず、ステップ100(以下、ステップをSと略す)において非接触変位センサー3を用いて、予め設定した基準点と鋼板との距離を測定し鋼板の位置を決定する。そして、S110において、鋼板の位置を修正すべきかどうか判断する。目標位置に対して鋼板1の位置がずれているために修正すべきと判断された場合には、S120において鋼板1を移動させる方向を、S130において鋼板の移動に使用する電磁石を決定し(例えば、電磁石2aに決定、以下、電磁石2aを決定したとして説明する)、目標位置から鋼板1までの距離に応じてS140にて電磁石2aに流す電流量を決定する。 First, in step 100 (hereinafter, step is abbreviated as S), the distance between the reference point set in advance and the steel plate is measured using the non-contact displacement sensor 3 to determine the position of the steel plate. In S110, it is determined whether or not the position of the steel sheet should be corrected. When it is determined that the steel plate 1 is to be corrected because the position of the steel plate 1 is deviated from the target position, the direction in which the steel plate 1 is moved is determined in S120, and the electromagnet used for moving the steel plate is determined in S130 (for example, The electromagnet 2a is determined. Hereinafter, the electromagnet 2a is described as being determined.) In S140, the amount of current flowing through the electromagnet 2a is determined according to the distance from the target position to the steel plate 1.
 なお、S130において鋼板の移動に使用する電磁石を決定するにあたっては、鋼板から遠い方の電磁石を選ぶようにする。図6では、11aの位置からの制御において、11aに近い電磁石2bではなく、遠い電磁石2aを鋼板の移動に用いている。これは、鋼板に近い電磁石を選び、その後の鋼板の電磁石への吸引や接触といった問題が生ずるのを避け、一先ず安定的なフィードバック制御をS140およびS150にて行うためである。 In determining the electromagnet to be used for moving the steel plate in S130, the electromagnet far from the steel plate is selected. In FIG. 6, in the control from the position of 11a, not the electromagnet 2b close to 11a but the far electromagnet 2a is used for the movement of the steel plate. This is because an electromagnet close to the steel plate is selected, and problems such as subsequent attraction and contact of the steel plate with the electromagnet are avoided, and stable feedback control is first performed in S140 and S150.
 S150では、S140で決定した電流量を電気供給部5から電磁石2aに出力する。そして、電磁石2aに電流を流して鋼板を移動させる。この後S160で、移動した鋼板1の位置を再度測定する。そして、S170で鋼板が目標位置にあるかどうかを判定する。ここで目標位置に鋼板1が到達した(Yes)と判断されれば、S200で電磁石2aに流れる電流を維持して安定状態を保つ。 In S150, the amount of current determined in S140 is output from the electric supply unit 5 to the electromagnet 2a. And an electric current is sent through the electromagnet 2a and a steel plate is moved. Thereafter, in S160, the position of the moved steel plate 1 is measured again. Then, in S170, it is determined whether or not the steel plate is at the target position. If it is determined that the steel plate 1 has reached the target position (Yes), the current flowing through the electromagnet 2a is maintained in S200 to maintain a stable state.
 一方、S170で目標位置に鋼板1が到達していない(No)と判断した場合には、S180で、鋼板1の位置が、決定した電磁石に対して閾値1より近い(閾値1より電磁石2aに近い)か否かを判断する。 On the other hand, when it is determined in S170 that the steel plate 1 has not reached the target position (No), in S180, the position of the steel plate 1 is closer to the determined electromagnet than the threshold 1 (the threshold 1 is closer to the electromagnet 2a). Or not).
 ここで、閾値1より近くない(閾値1以上電磁石2aと鋼板1が離れている)と判断された場合(No)には、それまでのフィードバック制御を継続する。すなわち、S190で、電磁石2aに流す電流量を目標位置から鋼板1までの距離に応じて所定量を増減させて、再度S150以降のフローを繰り返す。 Here, if it is determined that it is not closer than the threshold value 1 (the electromagnet 2a and the steel plate 1 are separated from each other by the threshold value 1 or more) (No), the feedback control up to that point is continued. That is, in S190, the amount of current flowing through the electromagnet 2a is increased or decreased by a predetermined amount according to the distance from the target position to the steel plate 1, and the flow after S150 is repeated again.
 これに対して、S180で、鋼板1の位置が、決定した電磁石に対して閾値1より近い(閾値1より電磁石2aに近い)と判断された場合(Yes)には、図9に示す処理フローに移行する。この場合は、鋼板1が電磁石2aに接触する危険性があると判断して、フィードバック制御でなく、S310以降に示すように制御方法の変更を行う。 On the other hand, if it is determined in S180 that the position of the steel plate 1 is closer to the determined electromagnet than the threshold 1 (closer to the electromagnet 2a than the threshold 1) (Yes), the processing flow shown in FIG. Migrate to In this case, it is determined that there is a risk that the steel plate 1 may come into contact with the electromagnet 2a, and the control method is changed as shown in S310 and subsequent steps instead of feedback control.
 すなわち、S310以降でそれまでに供給していた電流量から順次減少させる制御を行う。S310の予め設定しておいた一定の電流減少量のもとに、S320で電磁石2aに流す電流を減少させて鋼板1を逆方向に移動させる。移動後、S330で鋼板1との距離を再度測定する。 That is, the control is performed so as to sequentially decrease from the amount of current that has been supplied until S310. Based on the constant current reduction amount set in advance in S310, the current passed through the electromagnet 2a is reduced in S320 to move the steel plate 1 in the reverse direction. After the movement, the distance from the steel plate 1 is measured again in S330.
 そして、S340で鋼板の位置が許容範囲内にあるかどうか判定します。鋼板1が、図6に示すように予め決めた許容範囲内の位置にある(Yes)と判断されれば、S350で電磁石2aに流す電流を維持してその状態を保つ。鋼板1が許容範囲内の位置になければ(No)、S310にもどり、さらに電磁石2aに流す電流を減少させて鋼板1が許容範囲内の位置に収まるまで繰り返す。ここでの制御の特徴は、S310における電流の減少が、目標位置と鋼板との距離によらずに一定の値で減少させることにある。 Then, in S340, it is determined whether the steel plate position is within the allowable range. If it is determined that the steel sheet 1 is in a position within a predetermined allowable range as shown in FIG. 6 (Yes), the current flowing through the electromagnet 2a is maintained in S350 and the state is maintained. If the steel plate 1 is not at the position within the allowable range (No), the process returns to S310, and the current flowing through the electromagnet 2a is further reduced until the steel plate 1 is within the allowable range. The feature of the control here is that the current decrease in S310 is reduced at a constant value regardless of the distance between the target position and the steel plate.
 鋼板1が目標位置あるいは許容範囲内の位置で一度安定した場合であっても、製造ラインの条件の変化、たとえば温度変化等により、同一の製品といえども、鋼板1の位置が移動する場合がある。そのような場合に備えて、鋼板1の位置は、目標位置あるいは許容範囲内の位置で安定した時点で、図8のS260において記憶部42に記録される。さらに鋼板1の位置は、継続的に測定される。この測定間隔は、電磁石の応答速度、フィードバック制御のタイムラグなどを考慮して決定される。そして、S100以降のフローが継続される。 Even when the steel plate 1 is once stabilized at a target position or a position within an allowable range, the position of the steel plate 1 may move even if it is the same product due to a change in manufacturing line conditions, for example, a temperature change. is there. In preparation for such a case, the position of the steel plate 1 is recorded in the storage unit 42 in S260 of FIG. 8 when the position is stabilized at a target position or a position within an allowable range. Furthermore, the position of the steel plate 1 is continuously measured. This measurement interval is determined in consideration of the response speed of the electromagnet, the time lag of feedback control, and the like. And the flow after S100 is continued.
 また、製造される製品が変わった場合には直ちにS100が開始される。製品の切り替えの識別は、鋼板1につけられた識別用のマーク類を検出することで行ってもよいし、別途外部から情報を与える手段を用いてもよい。 Also, if the manufactured product changes, S100 is started immediately. Identification of product switching may be performed by detecting identification marks provided on the steel plate 1, or a means for separately providing information from the outside may be used.
 本実施形態では、鋼板1が非接触変位センサー3側から離れたために、非接触変位センサー3側に移動させる場合を例に説明したが、反対に鋼板1が非接触変位センサー3側に近づいた場合であっても同様に鋼板1の位置を制御することが可能である。その場合は、電磁石2bの吸引力を使って鋼板1を移動させることになる。また鋼板1の距離との比較は閾値2で行うが、当該距離が閾値2を超えて電磁石2bに近くなりすぎたと判断されたときに、本発明による鋼板1の制御を行う。 In this embodiment, since the steel plate 1 has moved away from the non-contact displacement sensor 3 side, the case where the steel plate 1 is moved to the non-contact displacement sensor 3 side is described as an example, but conversely, the steel plate 1 approaches the non-contact displacement sensor 3 side. Even in this case, the position of the steel plate 1 can be controlled similarly. In that case, the steel plate 1 is moved using the attractive force of the electromagnet 2b. Further, the comparison with the distance of the steel sheet 1 is performed with the threshold value 2, but when it is determined that the distance exceeds the threshold value 2 and is too close to the electromagnet 2b, the steel sheet 1 according to the present invention is controlled.
 電磁石2aあるいは2bの選択は、制御が始まる時点で、鋼板1が電磁石2aと2bとの間の中央よりどちら側に近いかで決められる。ただし、一度使用する電磁石(2aまたは2b)を決定したら、鋼板1が目標位置または安定点で安定に保持されるまでは同じ電磁石を使い続ける。鋼板1が安定しないうちに電磁石を切り替えると、つり合い点が決まらないために鋼板1が電磁石2aと2bとの間を移動し続けることになり、結果として鋼板1が振動してしまうからである。 The selection of the electromagnet 2a or 2b is determined depending on which side the steel plate 1 is closer to the center between the electromagnets 2a and 2b when the control starts. However, once the electromagnet (2a or 2b) to be used is determined, the same electromagnet is continuously used until the steel plate 1 is stably held at the target position or stable point. If the electromagnet is switched while the steel plate 1 is not stable, the balance point is not determined, so the steel plate 1 continues to move between the electromagnets 2a and 2b, and as a result, the steel plate 1 vibrates.
 電磁石2は、鋼板の幅方向に複数対あってもよい。というのも、鋼板の位置の変動は、たとえば鋼板の幅方向の反りによっても発生するからで、このような場合は鋼板の中央部と端部では距離が異なることになる。そこで、鋼板の幅方向に電磁石を複数対設置すれば、鋼板の幅方向の反りにも適切に対応できるようになる。また、複数対設置された電磁石をそれぞれ独立して制御することにより、必要な部分のみ位置を制御することができ、鋼板全体を最適な位置で通板させることが可能になる。 There may be a plurality of electromagnets 2 in the width direction of the steel plate. This is because fluctuations in the position of the steel sheet also occur due to, for example, warpage in the width direction of the steel sheet. In such a case, the distance is different between the central portion and the end portion of the steel plate. Therefore, if a plurality of pairs of electromagnets are installed in the width direction of the steel plate, the warp in the width direction of the steel plate can be appropriately handled. Further, by controlling the electromagnets installed in plural pairs independently, it is possible to control the position of only a necessary portion, and it is possible to let the entire steel plate pass through at an optimal position.
 制御部4は、ひとつですべての電磁石の制御を行ってもよいし、対応する電磁石に個別に制御部4を設置してもよい。同様に、ひとつの電流供給部5ですべての電磁石に電流を供給してもよいし、対応する電磁石に個別に電流供給部5を設置してもよい。 The control part 4 may control all the electromagnets by one, and may install the control part 4 separately in a corresponding electromagnet. Similarly, the current may be supplied to all the electromagnets with one current supply unit 5, or the current supply units 5 may be individually installed in the corresponding electromagnets.
 非接触変位センサー3は、1対の電磁石に対して1個設置してもよいし、電磁石の対の数と異なる数のセンサーを設置してもよい。たとえば、1個のセンサーで測定した距離をもとに複数の電磁石の対を制御してもよいし、逆に複数のセンサーで測定した距離をもとに1対の電磁石を制御するようにしてもよい。ただし、電磁石の対の数とセンサーの数とを1:1とするほうが、制御が容易になる。 One non-contact displacement sensor 3 may be installed for a pair of electromagnets, or a number of sensors different from the number of electromagnet pairs may be installed. For example, a plurality of electromagnet pairs may be controlled based on the distance measured by one sensor, or conversely, a pair of electromagnets may be controlled based on the distance measured by a plurality of sensors. Also good. However, control becomes easier when the number of pairs of electromagnets and the number of sensors is 1: 1.
 なお、ここでは、鋼板を挟んで対になるように電磁石を配置しているが、配置スペース等の都合によっては、電磁石を向かい合わせとはせずに配置してもよい。例えば、鋼板を挟んで互い違いになる位置に配置してもよいし、鋼板を挟んで電磁石の配置個数が異なっていてもよい。 In addition, although the electromagnet is arrange | positioned here so that it may become a pair on both sides of a steel plate, according to the convenience of arrangement space etc., you may arrange | position an electromagnet not facing each other. For example, you may arrange | position in the position which turns on both sides of a steel plate, and the arrangement number of electromagnets may differ on both sides of a steel plate.
 制御のフローも本実施形態に限定されるわけではなく、鋼板の位置の移動が可能であり、かつ電磁石と鋼板との接触が回避できるものであれば、どのようなフローであってもよい。 The control flow is not limited to this embodiment, and any flow may be used as long as the position of the steel plate can be moved and the contact between the electromagnet and the steel plate can be avoided.
 例えば、図9では、閾値を越えた鋼板1が許容範囲内に位置すれば、その位置で保持するために電流値を維持している。しかし、その位置で一定時間以上安定した状態にある場合は、さらに目標位置に移動するように制御することも考えられる。 For example, in FIG. 9, if the steel plate 1 exceeding the threshold is located within the allowable range, the current value is maintained in order to hold the steel plate 1 at that position. However, if the position is stable for a certain time or longer, it may be possible to further control to move to the target position.
 また本発明の実施形態を、溶融亜鉛めっき鋼板の製造ラインを例に説明したが、電磁石を使用して鋼板の通板位置制御を行う製造ラインであれば、本発明による制御を適用することができることは言うまでもない。さらに鋼板の通板方向も、鉛直方向に限らず水平方向であってもよい。

 製品の鋼種や板厚によって電磁石の吸引力の特性が変わるため、各条件ごとに電磁石の巻数や配置などのハード構成をその都度最適化することも考えられるものの現実的ではなく、本発明では製品の鋼種、板厚によらず、基準点と鋼板との距離に基づいて電磁石に供給される電流を変えることのみで鋼板の通板位置制御が実現できる。 以上、本発明によって、鋼板と電磁石が過度に接近した場合でも電磁石への電流供給を停止させる必要がなくなり、鋼板の位置の制御を持続的に安定して続けることができ、生産性の向上が図れる。
Moreover, although embodiment of this invention was demonstrated to the example of the manufacturing line of the hot dip galvanized steel plate, if it is a manufacturing line which performs the sheet-feeding position control of a steel plate using an electromagnet, the control by this invention can be applied. Needless to say, you can. Furthermore, the plate passing direction of the steel plate is not limited to the vertical direction, and may be a horizontal direction.

Since the characteristics of the attractive force of the electromagnet change depending on the steel type and thickness of the product, it is possible to optimize the hardware configuration such as the number of turns and the arrangement of the electromagnet for each condition, but this is not realistic. Regardless of the steel type and plate thickness, it is possible to realize the plate passing position control of the steel plate only by changing the current supplied to the electromagnet based on the distance between the reference point and the steel plate. As described above, according to the present invention, even when the steel plate and the electromagnet are excessively close to each other, it is not necessary to stop the current supply to the electromagnet, and the control of the position of the steel plate can be continued continuously and stably. I can plan.
 次に、本発明の実施形態に係る鋼板の通板位置制御装置を、溶融めっき金属帯の製造ラインに配置する構成例について説明する。 Next, a description will be given of a configuration example in which the plate passing position control device for the steel plate according to the embodiment of the present invention is arranged in the production line for the hot dip metal strip.
 図10は、一般的な溶融めっき金属帯の製造ラインの一部を示す概略図である。図10に示される溶融めっき金属帯の製造ラインにおいて、鋼板1は、冷間圧延プロセスなどの前工程から運搬され、無酸化性あるいは還元性の雰囲気に保たれた焼鈍炉14において焼鈍処理をされた後、溶融金属の温度とほぼ同程度まで冷却されて溶融金属浴15内に導かれる。 FIG. 10 is a schematic view showing a part of a general hot-dip metal strip production line. In the production line for the hot-dip metal strip shown in FIG. 10, the steel sheet 1 is transported from a previous process such as a cold rolling process and is annealed in an annealing furnace 14 maintained in a non-oxidizing or reducing atmosphere. After that, the molten metal is cooled to approximately the same temperature as the molten metal and guided into the molten metal bath 15.
 溶融金属浴15内において、鋼板1は、溶融金属中を浸漬しながら通板し、その表面に溶融金属が付着する。その後、溶融金属浴15から引き出された鋼板1は、ガスワイパ16から噴出されるガスにより過剰な溶融金属が払拭され、溶融金属の付着量の調整が行われる。 In the molten metal bath 15, the steel plate 1 is passed while immersed in the molten metal, and the molten metal adheres to the surface. Thereafter, excess molten metal is wiped off from the molten steel bath 15 by the gas ejected from the gas wiper 16, and the amount of adhesion of the molten metal is adjusted.
 続くプロセスでは、用途に応じて、例えばその鋼板1が自動車用外板として使用される場合には、合金化炉17を使用して金属帯を再加熱し均質な合金層を作り出す合金化処理を施す場合がある。鋼板1は冷却帯18を通過した後、化成処理部19で特殊の防錆、耐食処理が施され、コイルに巻き取られて出荷される。 In the subsequent process, depending on the application, for example, when the steel plate 1 is used as an automobile outer plate, an alloying process is performed in which the metal strip is reheated using the alloying furnace 17 to produce a homogeneous alloy layer. May be applied. After passing through the cooling zone 18, the steel sheet 1 is subjected to special rust prevention and corrosion resistance treatments at the chemical conversion treatment unit 19, wound around a coil and shipped.
 図11は、溶融めっき金属帯の製造ラインのガスワイパの近傍(図10中の破線領域)の拡大図である。図11に示されるように、溶融めっき金属帯の製造ラインのガスワイパ16の近傍では、引き込みローラー20が鋼板1を溶融金属浴15中に引き込み、溶融金属浴15中で鋼板1に溶融金属を付着させ、引き上げローラー21が鋼板1を溶融金属浴15外に引き上げる。ガスワイパ16は、引き上げローラー21が鋼板1を引き上げる途中のパスラインに配置され、鋼板1に付着した過剰の溶融金属を払拭することによって溶融金属の付着量を調整する。 FIG. 11 is an enlarged view of the vicinity of the gas wiper (dashed line area in FIG. 10) in the hot-dip metal strip production line. As shown in FIG. 11, in the vicinity of the gas wiper 16 in the production line for the hot-dip metal strip, the drawing roller 20 draws the steel plate 1 into the molten metal bath 15 and attaches the molten metal to the steel plate 1 in the molten metal bath 15. The pulling roller 21 pulls the steel plate 1 out of the molten metal bath 15. The gas wiper 16 is arranged in a pass line in the middle of the pulling roller 21 pulling up the steel plate 1, and adjusts the amount of molten metal attached by wiping off the excess molten metal adhering to the steel plate 1.
 本発明の実施形態に係る鋼板の通板位置制御装置の電磁石2a,2bおよび非接触変位センサー3は、ガスワイパ16の直上のパスラインに配置され、金属帯の振動および位置を制御する。当該配置により、ガスワイパ16と鋼板1との距離が一定となる結果、ワイピングガスの圧力が均一になり、鋼板1に対する溶融金属の付着量のムラを抑えることができる。 The electromagnets 2a and 2b and the non-contact displacement sensor 3 of the steel sheet passing position control device according to the embodiment of the present invention are arranged in a pass line immediately above the gas wiper 16, and control the vibration and position of the metal strip. As a result of the arrangement, the distance between the gas wiper 16 and the steel plate 1 becomes constant, so that the pressure of the wiping gas becomes uniform, and unevenness in the amount of molten metal adhering to the steel plate 1 can be suppressed.
 本発明は、鋼板を製造するラインに有用であり、特に亜鉛等の溶融めっきライン、コーティングライン等の製造ラインに適している。 The present invention is useful for a line for producing a steel sheet, and is particularly suitable for a production line such as a hot dipping line such as zinc or a coating line.
100           鋼板の通板位置制御装置
1、11a、11b、11c 鋼板
2、2a、2b       電磁石
3             非接触変位センサー
4             制御部
 41           判断部
 42           記憶部
5             電流供給部
 51           電磁石切替部
 14           焼鈍炉
 15           溶融金属浴
 16           ガスワイパ
 17           合金化炉
 18           冷却帯
 19           化成処理部
 20           引き込みローラー
 21           引き上げローラー
DESCRIPTION OF SYMBOLS 100 Steel plate passage position control apparatus 1, 11a, 11b, 11c Steel plate 2, 2a, 2b Electromagnet 3 Non-contact displacement sensor 4 Control part 41 Judgment part 42 Storage part 5 Current supply part 51 Electromagnet switching part 14 Annealing furnace 15 Molten metal Bath 16 Gas wiper 17 Alloying furnace 18 Cooling zone 19 Chemical conversion section 20 Pull-in roller 21 Pull-up roller

Claims (6)

  1. 通板位置制御の対象となる鋼板の一方の面側とその反対の面側にそれぞれ配置される電磁石と、
    前記鋼板の通板位置を非接触で測定する変位センサーと、
    該変位センサーが測定した鋼板の通板位置に基づいて前記電磁石に供給する電流量を決定する制御部と、
    該制御部で決定した電流量に基づいて前記電磁石に電流を供給する電流供給部とを具備し、
    前記制御部は、前記鋼板の移動の必要性の有無を判断する判断部と予め設定された閾値を格納する記憶部とからなり、
    前記判断部は、
    前記鋼板の通板位置が予め設定した目標位置と一致せず、前記鋼板を移動させる必要があると判断した場合は、移動の方向、使用する電磁石、電流量を決定し、前記電流供給部に出力して、前記鋼板を移動させ、
    移動した鋼板を前記変位センサーで再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合と、前記閾値よりも前記決定した電磁石に近い場合とで、異なる制御を行うことを特徴とする鋼板の通板位置制御装置。
    Electromagnets respectively disposed on one surface side and the opposite surface side of a steel plate to be subjected to threading position control;
    A displacement sensor for measuring the passing position of the steel sheet in a non-contact manner;
    A control unit for determining the amount of current to be supplied to the electromagnet based on the passing position of the steel plate measured by the displacement sensor;
    A current supply unit that supplies current to the electromagnet based on the amount of current determined by the control unit;
    The control unit includes a determination unit that determines whether or not the steel plate needs to be moved and a storage unit that stores a preset threshold value.
    The determination unit
    If it is determined that the sheet passing position of the steel sheet does not match the preset target position and the steel sheet needs to be moved, the direction of movement, the electromagnet to be used, the amount of current are determined, and the current supply unit Output, move the steel plate,
    When the plate position of the steel plate measured again by the displacement sensor with respect to the moved steel plate is greater than or equal to the threshold value with respect to the determined electromagnet, and when the electromagnet is determined to be farther than the determined electromagnet. A plate passing position control device for a steel plate, characterized in that different controls are performed depending on whether or not they are close.
  2. 請求項1に記載の鋼板の通板位置制御装置において、
    前記再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合には、
    前記鋼板を前記目標位置に近づけるように、前記決定した電磁石に流す電流量を前記再度測定した鋼板の通板位置と前記目標位置との距離に応じて増減させて、
    前記閾値よりも前記決定した電磁石に近い場合には、
    前記鋼板が予め設定した許容範囲内に入るまで、前記距離にかかわらず前記決定した電磁石に流す電流量を一定の値もしくは一定の割合で減少させることを特徴とする鋼板の通板位置制御装置。
    In the sheet passing position control apparatus of the steel plate according to claim 1,
    When the plate position of the steel plate measured again is more than the threshold with respect to the determined electromagnet, and is farther than the determined electromagnet,
    In order to bring the steel plate closer to the target position, the amount of current passed through the determined electromagnet is increased or decreased according to the distance between the plate position of the steel plate measured again and the target position,
    When closer to the determined electromagnet than the threshold,
    A sheet feeding position control device for a steel sheet, wherein the amount of current flowing through the determined electromagnet is decreased at a constant value or at a constant rate regardless of the distance until the steel sheet falls within a preset allowable range.
  3. 請求項1または2に記載の鋼板の通板位置制御装置において、
    前記鋼板のそれぞれの面側において前記電磁石が前記鋼板の幅方向に複数設置され、それぞれ独立して電流を供給できることを特徴とする鋼板の通板位置制御装置。
    In the sheet passing position control apparatus of the steel plate according to claim 1 or 2,
    A plate passing position control device for a steel plate, wherein a plurality of electromagnets are installed in the width direction of the steel plate on each surface side of the steel plate, and current can be supplied independently.
  4. 通板位置制御の対象となる鋼板の一方の面側とその反対の面側にそれぞれ電磁石を配置し、
    前記鋼板の通板位置を変位センサーにて非接触で測定し、
    測定した鋼板の通板位置が予め設定した目標位置と一致せず、前記鋼板を移動させる必要があると判断した場合は、前記電磁石のうち、前記測定した鋼板の通板位置からより離れた電磁石を前記鋼板の移動に使用する電磁石として決定し、
    前記目標位置から前記測定した鋼板の通板位置までの距離に応じて、前記決定した電磁石に流す電流量を決定、出力して、前記鋼板を移動させ、
    移動した鋼板を再度測定した鋼板の通板位置が、前記決定した電磁石に対して予め設定した閾値以上、前記決定した電磁石よりも離れている場合と、前記閾値よりも前記決定した電磁石に近い場合とで、異なる制御を行うことによって、前記鋼板の通板位置を制御することを特徴とする鋼板の通板位置制御方法。
    Electromagnets are arranged on one side and the opposite side of the steel plate subject to threading position control,
    Non-contact measurement of the plate position of the steel plate with a displacement sensor,
    If it is determined that the measured sheet passing position does not match the preset target position and the sheet needs to be moved, among the electromagnets, the electromagnet further away from the measured sheet passing position. Is determined as the electromagnet used to move the steel plate,
    According to the distance from the target position to the measured sheet passing position of the steel sheet, the amount of current to be passed through the determined electromagnet is determined and output, and the steel sheet is moved,
    When the plate position of the steel plate measured again for the moved steel plate is more than a predetermined threshold with respect to the determined electromagnet, and is farther from the determined electromagnet, and closer to the determined electromagnet than the threshold The sheet passing position control method of the steel sheet, wherein the sheet passing position of the steel sheet is controlled by performing different control.
  5. 請求項4に記載の鋼板の通板位置制御方法において、
    前記再度測定した鋼板の通板位置が、前記決定した電磁石に対して前記閾値以上、前記決定した電磁石よりも離れている場合には、
    前記鋼板を前記目標位置に近づけるように、前記決定した電磁石に流す電流量を前記再度測定した鋼板の通板位置と前記目標位置との距離に応じて増減させて、
    前記閾値よりも前記決定した電磁石に近い場合には、
    前記鋼板が予め設定した許容範囲内に入るまで、前記距離にかかわらず前記決定した電磁石に流す電流量を一定の値もしくは一定の割合で減少させることを特徴とする鋼板の通板位置制御方法。
    In the sheet passing position control method of the steel plate according to claim 4,
    When the plate position of the steel plate measured again is more than the threshold with respect to the determined electromagnet, and is farther than the determined electromagnet,
    In order to bring the steel plate closer to the target position, the amount of current passed through the determined electromagnet is increased or decreased according to the distance between the plate position of the steel plate measured again and the target position,
    When closer to the determined electromagnet than the threshold,
    A plate passing position control method for a steel plate, wherein the amount of current flowing through the determined electromagnet is decreased at a constant value or at a constant rate regardless of the distance until the steel plate falls within a preset allowable range.
  6. 製造ライン通板中の鋼板に溶融金属を付着させる付着工程と、
    前記鋼板に付着した過剰の溶融金属を払拭するガスワイパによって溶融金属の付着量を調整する調整工程と、
    請求項1~3の何れか1項に記載の鋼板の通板位置制御装置により、前記鋼板の振動および位置を非接触で制御する制御工程と、
    を有することを特徴とする鋼板の製造方法。
     
     
    An adhesion process for adhering molten metal to the steel plate in the production line through plate,
    An adjustment step of adjusting the amount of adhesion of the molten metal by a gas wiper that wipes off the excess molten metal adhering to the steel sheet;
    A control step of controlling the vibration and position of the steel sheet in a non-contact manner by the steel sheet passing position control device according to any one of claims 1 to 3,
    The manufacturing method of the steel plate characterized by having.

PCT/JP2014/003818 2013-07-22 2014-07-18 Device and method for controlling traveling position of steel sheet, and method for producing steel sheet WO2015011909A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014554113A JP6065921B2 (en) 2013-07-22 2014-07-18 Steel plate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013151231 2013-07-22
JP2013-151231 2013-07-22

Publications (1)

Publication Number Publication Date
WO2015011909A1 true WO2015011909A1 (en) 2015-01-29

Family

ID=52392973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003818 WO2015011909A1 (en) 2013-07-22 2014-07-18 Device and method for controlling traveling position of steel sheet, and method for producing steel sheet

Country Status (2)

Country Link
JP (2) JP6065921B2 (en)
WO (1) WO2015011909A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204758A (en) * 2013-07-22 2016-12-08 Jfeスチール株式会社 Steel plate passing position control device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060614A (en) * 1996-08-12 1998-03-03 Nisshin Steel Co Ltd Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
JPH10298727A (en) * 1997-04-23 1998-11-10 Nkk Corp Vibration and shape controller for steel sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2629029B2 (en) * 1988-08-26 1997-07-09 川崎製鉄株式会社 Steel plate vibration suppression and position control device
JP3238290B2 (en) * 1994-10-17 2001-12-10 株式会社神戸製鋼所 Steel plate warp straightening device
JPH09184055A (en) * 1995-12-28 1997-07-15 Kawasaki Steel Corp Vibration controller in hot dip metal coating equipment
JP4154804B2 (en) * 1999-05-26 2008-09-24 神鋼電機株式会社 Steel plate damping device
BRPI0815633B1 (en) * 2007-08-22 2018-10-23 Sms Group Gmbh melt dip treatment process and installation for tape stabilization of a tape provided with a coating, guided between scraping nozzles of the melt dip installation
WO2011115153A1 (en) * 2010-03-19 2011-09-22 シンフォニアテクノロジー株式会社 Electromagnetic vibration suppression device and electromagnetic vibration suppression control program
WO2015011909A1 (en) * 2013-07-22 2015-01-29 Jfeスチール株式会社 Device and method for controlling traveling position of steel sheet, and method for producing steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060614A (en) * 1996-08-12 1998-03-03 Nisshin Steel Co Ltd Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
JPH10298727A (en) * 1997-04-23 1998-11-10 Nkk Corp Vibration and shape controller for steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204758A (en) * 2013-07-22 2016-12-08 Jfeスチール株式会社 Steel plate passing position control device and method

Also Published As

Publication number Publication date
JP6065921B2 (en) 2017-01-25
JP6274279B2 (en) 2018-02-07
JP2016204758A (en) 2016-12-08
JPWO2015011909A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
EP1312692A1 (en) Production method of hot-dip metal strip and device therefor
US20090280270A1 (en) Method and Device for the Hot Dip Coating of a Metal Strip
JP5979323B1 (en) Metal strip stabilizer and method of manufacturing hot-dip metal strip using the same
US20100112238A1 (en) Method and device for hot dip coating a metal strand
EP1516939A1 (en) Molten metal plated steel sheet production method and apparatus
JP6274279B2 (en) Steel plate threading position control device and method
JP5263433B2 (en) Metal strip stabilizer and hot-plated metal strip manufacturing method
JP5842855B2 (en) Method for producing hot-dip galvanized steel strip
JPH1053849A (en) Method for preventing meandering of hot dipped steel strip
JP3876810B2 (en) Metal band damping device and metal band manufacturing method
JP5644141B2 (en) Metal band damping and position correcting apparatus, and hot-dip plated metal band manufacturing method using the apparatus
JPH1060614A (en) Method for adjusting coating weight of plating utilizing electromagnetic force and apparatus therefor
US7361224B2 (en) Device for hot dip coating metal strands
JP5223451B2 (en) Method for producing hot-dip metal strip
JP2000345310A (en) Continuous hot dip metal plating equipment for steel strip
JP4525105B2 (en) Metal strip control device and manufacturing method of hot dip metal strip
JP6187577B2 (en) Metal strip stabilizer and hot-plated metal strip manufacturing method
JP5600873B2 (en) Method for producing hot-dip steel strip
JP4450662B2 (en) Steel plate damping device
WO2016092601A1 (en) Metal strip stabilizer, and method of manufacturing hot-dip plated metal strip
JP3840912B2 (en) Ferromagnetic material control apparatus and ferromagnetic material manufacturing method
JP6112040B2 (en) Non-contact control device for metal strip and method of manufacturing hot-dip metal strip
JP4713184B2 (en) Steel plate shape correction device and shape correction method
JP2002275610A (en) Device for controlling shape of metal strip
JP6648650B2 (en) Metal strip stabilizer and method for manufacturing hot-dip coated metal strip

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014554113

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201600491

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14829081

Country of ref document: EP

Kind code of ref document: A1