WO2015010637A1 - 一种电子开关和电子开关的控制方法 - Google Patents

一种电子开关和电子开关的控制方法 Download PDF

Info

Publication number
WO2015010637A1
WO2015010637A1 PCT/CN2014/082915 CN2014082915W WO2015010637A1 WO 2015010637 A1 WO2015010637 A1 WO 2015010637A1 CN 2014082915 W CN2014082915 W CN 2014082915W WO 2015010637 A1 WO2015010637 A1 WO 2015010637A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
electronic switch
voltage
control unit
control
Prior art date
Application number
PCT/CN2014/082915
Other languages
English (en)
French (fr)
Inventor
田宇
欧阳春柏
刘国雄
Original Assignee
施耐德电气(澳大利亚)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施耐德电气(澳大利亚)有限公司 filed Critical 施耐德电气(澳大利亚)有限公司
Priority to AU2014295534A priority Critical patent/AU2014295534B2/en
Priority to NZ716670A priority patent/NZ716670A/en
Publication of WO2015010637A1 publication Critical patent/WO2015010637A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching

Definitions

  • the present invention relates to the field of electronic device technology, and in particular, to a method of controlling an electronic switch and an electronic switch.
  • the two-wire electronic switch includes a main switch and a power take-off circuit, wherein the main switch is connected between the live line and the load, and the power take-off circuit provides energy for the work of the main switch, etc.
  • the power take-off circuit has two main ways of taking power. Kind, that is, series power take-off and parallel power take-off.
  • the power take-off circuit When the power is taken in parallel, the power take-off circuit is connected in parallel with the main switch and between the live line and the load, the main switch will be turned on and off periodically, which will cause the load current to be discontinuous, causing electromagnetic interference. .
  • Embodiments of the present invention provide a method of controlling an electronic switch and an electronic switch to reduce electromagnetic interference in the electronic switch.
  • An embodiment of the present invention provides an electronic switch, including: a power taking circuit, a control unit, and a main switch, where:
  • the main switch and the power take-off circuit are connected in parallel between the live line and the load;
  • the control unit includes a first control end, a second control end, and a feedback end, the first control end is connected to the on/off control end of the main switch, and the second control end is connected to the power take-off circuit a control end that is connected to the main circuit, and the feedback end is connected to the output of the power take-off circuit
  • control unit is configured to: when the input voltage crosses zero, control the main switch to be turned off by the first control terminal, and control the power take-off circuit and the main loop lead through the second control end And when the feedback end receives the signal output by the power take-off circuit, and is used to indicate that the voltage of the power take-off circuit reaches a preset value, the main switch is controlled to be turned on by the first control end.
  • Embodiments of the present invention provide a method for controlling an electronic switch, and an electronic switch to be applied The power take-off circuit, the control unit, and the main switch, wherein: the main switch is connected in parallel with the power take-off circuit and between the live line and the load; the control unit includes a first control end, a second control end, and a feedback end The first control end is connected to the on/off control end of the main switch, the second control end is connected to the control end of the power take-off circuit and the main circuit, and the feedback end is connected to the power take-off circuit.
  • the method includes:
  • control unit in the electronic switch controls the main switch in the electronic switch to be turned off, and controls charging of the power take-off circuit in the electronic switch;
  • the control unit controls the main switch to be turned on.
  • FIG. 1 is a schematic structural diagram of an electronic switch provided in an embodiment of the present invention.
  • FIG. 2 is a diagram showing the correspondence between electric power and time of each component in the electronic switch according to the embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another electronic switch according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling an electronic switch according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention provides an electronic switch, which is mainly a two-wire electronic switch.
  • the schematic diagram of the structure is as shown in FIG. 1 , and includes: a power take-off circuit 12 , a control unit 11 , and a main switch 10 , wherein the power take-off circuit 12 is A circuit that can store energy, such as a capacitor, can charge the power take-off circuit 12 through the main circuit, specifically:
  • the main switch 10 is connected in parallel with the power take-off circuit 12 between the live line and the load.
  • the control unit 11 includes a first control terminal a, a second control terminal b and a feedback terminal c.
  • the first control terminal a is connected to the on/off control terminal of the main switch 10, and the second control terminal b is connected to the power take-off circuit 12 and the main control terminal.
  • the control terminal of the circuit is connected to the output terminal of the power take-off circuit 12.
  • the main circuit refers to the circuit between the live line and the load, and the continuity with the main circuit refers to whether the power take-off circuit 12 is connected between the live line and the load.
  • the control unit 11 is configured to: when the input voltage crosses zero, control the main switch 10 to be turned off by the first control end, and control the power take-off circuit 12 to be turned on by the second control terminal, so that the input can be passed through
  • the voltage is charged to the power take-off circuit 12; when the feedback end receives the signal output from the power take-off circuit 12, it is used to indicate that the voltage of the power take-off circuit 12 reaches a preset value, indicating that the voltage charged to the power take-off circuit 12 reaches a certain value,
  • the main switch 10 is controlled to be turned on by the first control terminal.
  • the input voltage zero crossing means that the input voltage will be greater than zero or less than zero for a period of time after the value of the input voltage is equal to zero; the preset value does not need to be too large, enough to support the main switch 10 and control The normal operation of the components such as the unit 11 is sufficient.
  • an input voltage is supplied from a live line input terminal, and a corresponding relationship between the input voltage and time is shown in FIG. 2-a, and a section of the input voltage crosses zero.
  • the control unit 11 controls the main switch 10 to be turned off by the first control terminal.
  • the control point unit 11 controls the main switch 10 to be turned off, and controls the power take-off circuit 12 to be electrically connected to the main circuit to charge the power take-off circuit 12 when the power take-off circuit 12 is turned on.
  • the power take-off circuit 12 After charging to a certain value, the power take-off circuit 12 outputs a signal to the feedback end of the control unit 11 to indicate that the voltage of the power take-off circuit 12 reaches a preset value; thus, the control unit 11 controls the main switch 10 to be turned on at time T1.
  • the power take-off circuit 12 continues to be in a state of charge, so that the load current continues, but when the main switch 10 is turned on, the voltage across the main switch 10 drops to approximately zero, and the power take-off circuit 12 in parallel with the main switch 10 also The power is stopped, and the current flowing through the power take-off circuit 12 is transferred to the main circuit.
  • the corresponding relationship between the voltage and time of the power take-off circuit 12 and the main switch 10 is as shown in FIG. 2-b, and the corresponding relationship between the current and the time flowing through the main switch 10 is as shown in FIG. 2-d.
  • the corresponding relationship between the current and the time of the circuit 12 is as shown in FIG. 2-e.
  • the electronic switch of the embodiment of the present invention is described below with reference to a specific embodiment.
  • the electronic switch of the embodiment of the present invention is mainly divided into two parts, and the first part is that the electronic switch is turned on (On state).
  • the working module in the state includes a zero-crossing detection circuit, a linear power supply and a main circuit including a main switch; the second part is a working module in which the electronic switch is in an off state.
  • the opening and closing of the electronic switch can be controlled by the human through the peripherals. specifically:
  • control unit U3 a transmission on signal (on signal) ⁇ wherein the control unit U3 may be a digital chip, such as a micro control unit (Micro Controller Unit, MCU) and the like.
  • MCU Micro Controller Unit
  • the mains ie, the input voltage
  • the rectifier bridge D1 passes through the rectifier bridge D1 and is a unidirectional voltage V+;
  • the comparator A1 the resistors R1 and R2 form a voltage zero-crossing detection circuit, and the zero-crossing detection voltage is connected to the rectifier bridge.
  • the two outputs of D1 are mainly used to send a voltage zero-crossing signal to the control unit U3 when a zero-crossing of the rectified unidirectional voltage is detected.
  • port 4 of control unit U3 After receiving the zero-voltage signal, port 4 of control unit U3 immediately outputs a high level from port 3 to turn on MOSFET S2, which turns on the power-off circuit and the main circuit.
  • the capacitor C1 in the power take-off circuit is charged by S2, and is supplied to the control unit U3 through the voltage stabilizing circuit U2; and the control unit U3 outputs the disconnection of the main switch signal through the port 6, to control the main switch S1 to be turned off.
  • the comparator A2, the power supply Vcc, and the reference voltage Vref constitute a voltage detecting circuit, and the voltage detecting circuit is connected to the power taking circuit, and is mainly used for detecting the charging voltage of the power taking circuit, that is, the voltage on the capacitor C1 reaches a preset value. (for example, 6V), a voltage protection signal is generated and output to the port 2 of the control unit U3, that is, the feedback terminal; the control unit U3 generates a high level signal, that is, a turn on triac signal and is driven by the port ⁇ Ul to turn on the main switch S1.
  • a preset value for example, 6V
  • control unit U3 will also work normally, mainly by the output of the working module in the off state, that is, the output of the voltage source providing circuit is connected to the power terminal of the control unit U3 for In the off state, a voltage source is provided for the operation of control unit U3.
  • the main switch S1 is turned off, and the mains (input voltage) is applied between the live line and the load line at both ends of the main switch S1, through the rectifier bridge D2, the power transformer Tl, and the voltage.
  • the feedback is Optocoupler feedback, voltage bias circuit (Vcc&Bias circuit) and constant voltage control (Clamp), and the output stable voltage source is supplied to control unit U3.
  • the embodiment of the present invention further provides a method for controlling an electronic switch, which is mainly applied to the electronic switch described in the foregoing embodiment.
  • the method in this embodiment is a method performed by a control unit in an electronic switch, and the flowchart is as follows. As shown in Figure 4, it includes:
  • Step 101 when the input voltage of the electronic switch crosses zero, the control unit in the electronic switch controls the main switch in the electronic switch to be turned off, and the control charges the power take-off circuit in the electronic switch, because the power take-off circuit is
  • the energy storage circuit such as a capacitor, can control the power take-off circuit to be turned on with the main circuit (including the circuit of the main switch), so that the input voltage in the main circuit is The power take-off circuit can be charged.
  • Step 102 Determine whether the charging voltage of the power taking circuit reaches a preset value. If yes, execute step 103; if not, end the process.
  • Step 103 the control unit does not control the power-off circuit to be disconnected from the main circuit, but directly controls the main switch to be turned on. After the main switch is turned on, the voltage value across the main switch is reduced to approximately zero. The power take-off circuit will stop charging. This will not cause a large rate of change in the current on the load, thereby reducing the electromagnetic interference of the electronic switch.
  • steps 101 to 103 are control methods in which the electronic switch is in an on state.
  • a circuit other than the control unit that is, a voltage source providing circuit is required as the control unit.
  • the operation provides a voltage source so that the control unit can provide energy for the normal operation of other devices in the electronic switch.

Landscapes

  • Electronic Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种电子开关和电子开关的控制方法,应用于电子设备技术领域。电子开关中,控制单元在控制主开关从断开到导通的时间内,负载上电流的变化主要是由于在这段时间内主开关两端的电压变化造成的,而在这段时间内取电电路继续充电,使得主开关两端的电压不会变为零,则在这段时间内主开关两端的电压不会从零开始的突变,而是从取电电路的充电电压开始的突变,则变化率较小,因此负载上电流的变化也较小,从而降低了由于负载的电流变化率较大而引起的电磁干扰,即降低了电子开关的电磁干扰。

Description

一种电子开关和电子开关的控制方法
技术领域
[01] 本发明涉及电子设备技术领域, 特别涉及电子开关和电子开关 的控制方法。
背景技术
[02] 两线电子开关包括主开关和取电电路, 其中主开关连接在火线 与负载之间, 而取电电路为主开关等的工作提供能量, 该取电电路的 取电方式主要有两种, 即串联取电和并联取电。
[03] 其中在并联取电时, 该取电电路与主开关并联连接与火线与负 载之间, 主开关会周期性地导通和断开, 这样会造成负载电流的不连 续, 引起电磁干扰。
发明内容
[04] 本发明实施例提供电子开关和电子开关的控制方法, 降低电子 开关中的电磁干扰。
[05] 本发明实施例提供一种电子开关, 包括: 取电电路、 控制单元 和主开关, 其中:
[06] 所述主开关与所述取电电路并联连接在火线与负载之间;
[07] 所述控制单元包括第一控制端、 第二控制端和反馈端, 所述第 一控制端连接所述主开关的通断控制端,所述第二控制端连接所述取 电电路与主回路通断的控制端,所述反馈端连接所述取电电路的输出
[08] 所述控制单元, 用于当输入电压过零时, 通过所述笫一控制端 控制所述主开关断开,并通过所述第二控制端控制所述取电电路与主 回路导通; 当所述反馈端接收到所述取电电路输出的信号, 用于指示 所述取电电路的电压达到预设值,则通过所述第一控制端控制所述主 开关导通。
[09] 本发明实施例提供一种电子开关的控制方法, 应用的电子开关 包括, 取电电路、 控制单元和主开关, 其中: 所述主开关与所述取电 电路并联连接与火线与负载之间; 所述控制单元包括第一控制端、 第 二控制端和反馈端, 所述第一控制端连接所述主开关的通断控制端, 所述第二控制端连接所述取电电路与主回路通断的控制端,所述反馈 端连接所述取电电路的输出端;
[10] 所述方法包括:
[11] 当所述电子开关的输入电压过零时, 所述电子开关中的控制单 元控制所述电子开关中的主开关断开,且控制对所述电子开关中的取 电电路进行充电;
[12] 当所述取电电路的充电电压达到预设值时, 所述控制单元控制 所述主开关导通。
[13] 可见, 本发明实施例的电子开关中, 控制单元在控制主开关从 断开到导通的时间内, 负载上电流的变化主要是由于在这段时间内主 开关两端的电压变化造成的, 而在这段时间内取电电路继续充电, 使 得主开关两端的电压不会变为零,则在这段时间内主开关两端的电压 不会 开始的突变, 而是从取电电路的充电电压开始的突变, 则变 化率较小, 因此负载上电流的变化也较小, 从而降低了由于负载的电 流变化率较大而引起的电磁干扰, 即降低了电子开关的电磁干扰。
附图说明
[14] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作筒单地介绍,显 而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领 域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据 这些附图获得其他的附图。
[15] 图 1是本发明实施例中提供的一种电子开关的结构示意图;
[16] 图 2是本发明实施例提供的电子开关中各个元器件的电^:与 时间的对应关系图;
[17] 图 3是本发明实施例提供的另一种电子开关的结构示意图;
[18] 图 4是本发明实施例提供的一种电子开关的控制方法的流程 图。 具体实施方式
[19] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一 部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域 普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施 例, 都属于本发明保护的范围。
[20] 本发明实施例提供一种电子开关, 主要是两线电子开关, 其结 构示意图如图 1所示, 包括:取电电路 12、控制单元 11和主开关 10, 其中取电电路 12是一个可以储能的电路, 比如电容等, 可以通过主 回路对该取电电路 12充电, 具体地:
[21] 主开关 10与取电电路 12并联连接在火线与负载之间。
[22] 控制单元 11包括第一控制端 a、 第二控制端 b和反馈端 c, 第 一控制端 a连接主开关 10的通断控制端, 笫二控制端 b连接取电电 路 12与主回路通断的控制端, 反馈端 c连接取电电路 12的输出端。 其中主回路是指火线与负载之间的电路,与主回路通断是指取电电路 12是否连接到火线与负载之间。
[23] 控制单元 11, 用于当输入电压过零时, 通过第一控制端控制主 开关 10断开, 并通过第二控制端控制取电电路 12与主回路导通, 这 样就可以通过输入电压对取电电路 12进行充电; 当反馈端接收到取 电电路 12输出的信号, 用于指示取电电路 12的电压达到预设值, 说 明对取电电路 12充电的电压达到一定值, 已经足够为主开关 10等器 件的正常运行提供能量, 则通过第一控制端控制主开关 10导通。 其 中输入电压过零是指随着时间的变化,输入电压的值在等于零后的一 段时间内该输入电压会大于零或小于零; 预设值不需要太大, 能足够 支撑主开关 10和控制单元 11等元器件的正常运行即可。
[24] 参考图 2所示, 在本实施例的电子开关中, 从火线输入端提供 输入电压, 该输入电压与时间的对应关系图如图 2-a所示, 在输入电 压过零的一段时间 A t内,控制单元 11会通过第一控制端控制主开关 10断开。
[25] 当输入电压过零后控制点单元 11会控制主开关 10断开, 并控 制取电电路 12与主回路导通来对取电电路 12充电,当对取电电路 12 充电到一定值后,取电电路 12会向控制单元 11的反馈端输出一个信 号, 指示取电电路 12的电压到达预设值; 这样控制单元 11就会在 T1时间, 控制主开关 10导通, 而取电电路 12继续保持充电状态, 使得负载电流仍然继续, 但是当主开关 10导通后, 主开关 10两端的 电压就会降到近似零,与主开关 10并联的取电电路 12也会停止取电, 原来流过取电电路 12的电流转移到了主回路中。则取电电路 12和主 开关 10两端的电压和时间的对应关系图如图 2-b所示, 而流过主开 关 10的电流和时间的对应关系图如图 2-d所示, 取电电路 12的电流 和时间的对应关系图如图 2-e所示, 可知, 在时间 T1后的 At时间内 即在主开关 10导通的时间内, 当取电电路 12继续充电到 V,后则主 开关 10导通, 取电电路 12两端的电压和电流就会降到零, 而主开关 10的电流就会上升到 I,。
[26] 在上述过程中,负载的电流与时间的对应关系图如图 2-c所示, 在主开关 10从断开到导通的时间内, 负载上电流的变化即 ΔΙ,,主要 是由于在这段时间内主开关 10两端的电压变化造成的, 而在这段时 间内取电电路 12继续充电, 使得主开关 10两端的电压不会变为零, 则在这段时间内主开关 10两端的电压不会从零开始的突变, 而是从 取电电路 12的充电电压开始的突变, 则变化率较小, 因此负载上电 流的变化也较小,从而降低了由于负载的电流变化率较大而引起的电 磁干扰, 即降低了电子开关的电磁干扰。
[27] 以下以一个具体的实施例来说明本发明实施例的电子开关, 参 考图 3所示, 本发明实施例电子开关主要分为两个部分, 第一部分为 电子开关为开通( On state )状态下的工作模块, 包括过零检测电路、 线性电源及包含主开关的主回路; 第二部分为电子开关为关断状态 ( Off state )下的工作模块。 其中电子开关的开通和关断是可以是人 工通过外设的进行控制。 具体地:
[28] ( 1 )电子开关为开通状态时, 会向控制单元 U3的端口 1发送 开通信号(on signal )β 其中控制单元 U3可以是数字芯片比如微控 制单元(Micro Controller Unit, MCU )等。
[29] 这种情况下, 市电 (即输入电压)通过整流桥 D1后为单向电 压 V+; 比较器 Al、 电阻 R1和 R2组成电压过零检测电路, 该过零 检测电压连接在整流桥 D1的两个输出端, 主要用于当检测到整流后 的单向电压过零时, 向控制单元 U3发送电压过零信号。 [30] 控制单元 U3 的端口 4接收到电压过零信号 (Zero-voltage signal )后, 立即从端口 3输出高电平去开通 MOSFET S2, 即将取电 电路与主回路导通, 这样市电就通过 S2对取电电路中的电容 C1充 电, 并通过稳压电路 U2供电给控制单元 U3; 且控制单元 U3会通过 端口 6输出断开主开关信号, 来控制主开关 S1断开。
[31] 比较器 A2、 电源 Vcc、 参考电压 Vref组成了电压检测电路, 该电压检测电路连接取电电路,主要用于当检测到取电电路的充电电 压即电容 C1上的电压达到预设值(比如 6V )时, 产生一个电压保护 信号输出给控制单元 U3的端口 2即反馈端; 控制单元 U3产生一个 高电平信号即导通主开关信号(Turn on triac signal )并通过端口 ό 给驱动 Ul来导通主开关 Sl。
[32] 当主开关 SI导通后, 由主开关 Sl、 电容 C1和稳压电路 U2组 成的线性电源两端的电压降到近似零, 整流桥 D1会截止, 取电电路 中的电容 C1会停止充电, 进 改点状态, 电压会下降, 知道半个周 期后的另一个电压过零点, 主开关 S1关断, 电容 C1又会重新充电。
[33] ( 2 )电子开关为关断状态时, 会向控制单元 U3的端口 1发送 关断信号(off signal )„
[34] 在这种情况下, 控制单元 U3也会正常工作, 主要是由关断状 态下的工作模块即电压源提供电路的输出端连接到控制单元 U3的电 源端, 用于在电子开关处于关断状态时, 为控制单元 U3的工作提供 电压源。 具体地, 在电子开关为关断状态时, 主开关 S1断开, 市电 (输入电压)会加在主开关 S1两端即火线与负载线之间, 经过整流 桥 D2、 功率变压器 Tl、 电压反馈即光耦合器反馈 ( Optocoupler feedback )、 电压偏置电路 ( Vcc&Bias circuit )和恒压控制( Clamp ), 输出稳定的电压源供电给控制单元 U3。
[35] 本发明实施例还提供一种电子开关的控制方法, 主要应用于上 述实施例所述的电子开关中,本实施例的方法是电子开关中的控制单 元所执行的方法, 流程图如图 4所示, 包括:
[36] 步骤 101, 当电子开关的输入电压过零时, 电子开关中的控制 单元控制电子开关中的主开关断开,且控制对电子开关中的取电电路 进行充电, 由于取电电路是储能电路比如电容等, 则可以控制取电电 路与主回路(包括主开关的回路)导通, 这样主回路中的输入电压就 可以对取电电路进行充电。
[37] 步骤 102, 判断取电电路的充电电压是否达到预设值, 如果达 到, 则执行步骤 103; 如果未达到, 则结束流程。
[38] 步骤 103, 控制单元并不会控制取电电路与主回路断开, 而是 直接控制主开关导通, 在主开关导通后, 主开关两端的电压值会降低 到近似零, 则取电电路会停止充电。 这样就不会引起负载上电流的较 大变化率, 从而可以降低电子开关的电磁干扰。
[39] 需要说明的是, 上述步骤 101到 103是在电子开关处于开通状 态下的控制方法, 当电子开关处于关断状态时, 需要控制单元之外的 电路即电压源提供电路为控制单元的工作提供电压源,这样控制单元 才可以为电子开关中的其它器件的正常工作提供能量。
[40] 本领域普通技术人员可以理解上述实施例的各种方法中的全 部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以 存储于一计算机可读存储介质中, 存储介质可以包括: 只读存储器 ( ROM )、 随机存 ^ "储器(RAM )、 磁盘或光盘等。
[41] 以上对本发明实施例所提供的电子开关和电子开关的控制方 法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方 式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及 其核心思想; 同时,对于本领域的一般技术人员,依据本发明的思想, 在具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书 内容不应理解为对本发明的限制。

Claims

权利 要求 书
1、 一种电子开关, 其特征在于, 包括: 取电电路、 控制单元和 主开关, 其中: 所述主开关与所述取电电路并联连接在火线与负载之 间;
所述控制单元包括第一控制端、 第二控制端和反馈端, 所述第一 控制端连接所述主开关的通断控制端,所述第二控制端连接所述取电 电路与主回路通断的控制端, 所述反馈端连接所述取电电路的输出
所述控制单元, 用于当输入电压过零时, 通过所述第一控制端控 制所述主开关断开,并通过所述第二控制端控制所述取电电路与主回 路导通; 当所述反馈端接收到所述取电电路输出的信号, 用于指示所 述取电电路的电压达到预设值,则通过所述第一控制端控制所述主开 关导通。
2、 如权利要求 1所述的电子开关, 其特征在于, 还包括: 整流 桥、 检测电路和电压检测电路;
所述整流桥连接在所述主开关两端,用于将输入电压转化为单向 电压;
所述过零检测电路连接所述整流桥的两个输出端,用于当检测到 所述单向电压过零时, 向所述控制单元发送电压过零信号;
所述电压检测电路连接所述取电电路,用于当检测到所述取电电 路的充电电压达到预设值时,向所述控制单元的反馈端发送电压保护 信号。
3、 如权利要求 1或 2所述的电子开关, 其特征在于, 所述控制 单元还包括电源端, 所述电子开关还包括电压源提供电路;
所述电压源提供电路的输出端连接所述电源端,用于在所述电子 开关处于关断状态时, 为所述控制单元的工作提供电压源。
4、一种电子开关的控制方法, 其特征在于,应用于如权利要求 1 至 3任一项所述的电子开关中, 所述方法包括:
当所述电子开关的输入电压过零时,所述电子开关中的控制单元 控制所述电子开关中的主开关断开,且控制对所述电子开关中的取电 电路进行充电;
当所述取电电路的充电电压达到预设值时,所述控制单元控制所 述主开关导通。
5、 如权利要求 4所述的方法, 其特征在于, 所述方法还包括: 当所述电子开关中处于关断状态时,所述电子开关中通过电压源提供 电路为所述控制单元的工作提供电压源。
PCT/CN2014/082915 2013-07-26 2014-07-24 一种电子开关和电子开关的控制方法 WO2015010637A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2014295534A AU2014295534B2 (en) 2013-07-26 2014-07-24 Electronic switch and control method for electronic switch
NZ716670A NZ716670A (en) 2013-07-26 2014-07-24 Electronic switch and control method for electronic switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310320913.7A CN104348456B (zh) 2013-07-26 2013-07-26 一种电子开关和电子开关的控制方法
CN201310320913.7 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015010637A1 true WO2015010637A1 (zh) 2015-01-29

Family

ID=52392746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082915 WO2015010637A1 (zh) 2013-07-26 2014-07-24 一种电子开关和电子开关的控制方法

Country Status (5)

Country Link
CN (1) CN104348456B (zh)
AU (1) AU2014295534B2 (zh)
MY (1) MY174719A (zh)
NZ (1) NZ716670A (zh)
WO (1) WO2015010637A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640113A (en) * 1994-05-06 1997-06-17 The Watt Stopper Zero crossing circuit for a relay
CN1545209A (zh) * 2003-11-25 2004-11-10 Tcl国际电工(惠州)有限公司 一种电子开关开态供电电路
CN2765395Y (zh) * 2005-01-31 2006-03-15 西门子(中国)有限公司 自动感应电子开关
US7183670B2 (en) * 2004-01-29 2007-02-27 Me Electronic Products Limited Power supply for electronic switch
CN200947591Y (zh) * 2006-09-13 2007-09-12 李硕 一种单线输入自动调光电子开关
CN101819906A (zh) * 2009-12-31 2010-09-01 重庆恩林电器有限公司 一种电子开关

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603221B1 (en) * 1999-04-22 2003-08-05 Zhongdu Liu Solid state electrical switch
CN100517926C (zh) * 2006-03-17 2009-07-22 海尔集团公司 一种部分有源电源功率因数校正电路
US7598682B2 (en) * 2006-05-26 2009-10-06 Nexxus Lighting, Inc. Current regulator apparatus and methods
CN100477047C (zh) * 2007-06-20 2009-04-08 赵世红 智能复合开关
TWI495389B (zh) * 2008-09-05 2015-08-01 Eldolab Holding Bv 以發光二極體為光源之照明系統
CN102186295A (zh) * 2011-05-17 2011-09-14 南京物联传感技术有限公司 一种单火线取电电路
CN102638255A (zh) * 2012-04-27 2012-08-15 上海尊瑞电子有限公司 一种实现交流电压过零开通和电流过零关断的软开关方法
CN103138729B (zh) * 2013-01-25 2015-08-12 温州大学 零电压型电子触摸开关

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640113A (en) * 1994-05-06 1997-06-17 The Watt Stopper Zero crossing circuit for a relay
CN1545209A (zh) * 2003-11-25 2004-11-10 Tcl国际电工(惠州)有限公司 一种电子开关开态供电电路
US7183670B2 (en) * 2004-01-29 2007-02-27 Me Electronic Products Limited Power supply for electronic switch
CN2765395Y (zh) * 2005-01-31 2006-03-15 西门子(中国)有限公司 自动感应电子开关
CN200947591Y (zh) * 2006-09-13 2007-09-12 李硕 一种单线输入自动调光电子开关
CN101819906A (zh) * 2009-12-31 2010-09-01 重庆恩林电器有限公司 一种电子开关

Also Published As

Publication number Publication date
AU2014295534B2 (en) 2017-09-07
CN104348456A (zh) 2015-02-11
AU2014295534A1 (en) 2016-02-25
CN104348456B (zh) 2017-07-11
MY174719A (en) 2020-05-10
NZ716670A (en) 2017-08-25

Similar Documents

Publication Publication Date Title
TWI577115B (zh) 開關電源及用於開關電源的母線電容電壓控制方法
TWI233252B (en) Switching power supply apparatus
CN201570873U (zh) 实现usb端口智能式电源管理的装置及集成电路
CN104160604B (zh) 用于控制反激变换器在dcm和ccm模式下工作的控制电路以及方法
TWI439006B (zh) 雙模式充電器及其充電方法
TWI317571B (en) Power supply, method for supplying power and electrical device using the same
JP5799537B2 (ja) スイッチング電源装置の制御回路及びスイッチング電源装置
TWI612417B (zh) 電子裝置
US20110210712A1 (en) AC or DC POWER SUPPLY EMPLOYING SAMPLING POWER CIRCUIT
TW201539960A (zh) 以反馳式架構爲基礎的電源轉換裝置
JP2009100647A5 (zh)
CN205793566U (zh) 一种单火线开关
CN102742137A (zh) 电源装置及其控制方法
CN212568933U (zh) 一种过零检测校准装置以及过零检测校准系统
TWM574786U (zh) 電力轉換器及一次控制器
TW201025790A (en) Power system with temperature compensation control
US20150084581A1 (en) Charging device configured to reduce power consumption during non-charging period
WO2015081630A1 (zh) 一种反激式快速启动驱动电路及驱动方法
CN109890115B (zh) 一种智能灯控系统及其闪断控制电路
CN206389593U (zh) 一种单火线取电装置及单火线开关
CN103904874B (zh) 一种用于boost-pfc的延时软启动电路
WO2015010637A1 (zh) 一种电子开关和电子开关的控制方法
TW201933713A (zh) 自動偵測待機電流的節能裝置
CN111404380B (zh) 开关电源电路及方法
CN210129019U (zh) 一种闪断开关控制系统及其输入闪断检测电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014295534

Country of ref document: AU

Date of ref document: 20140724

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14829381

Country of ref document: EP

Kind code of ref document: A1