WO2015010620A1 - 一种磁阻混频器 - Google Patents

一种磁阻混频器 Download PDF

Info

Publication number
WO2015010620A1
WO2015010620A1 PCT/CN2014/082830 CN2014082830W WO2015010620A1 WO 2015010620 A1 WO2015010620 A1 WO 2015010620A1 CN 2014082830 W CN2014082830 W CN 2014082830W WO 2015010620 A1 WO2015010620 A1 WO 2015010620A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive
magnetoresistive sensor
spiral coil
bridge
magnetic
Prior art date
Application number
PCT/CN2014/082830
Other languages
English (en)
French (fr)
Inventor
周志敏
詹姆斯·G 迪克
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US14/907,060 priority Critical patent/US9768726B2/en
Priority to JP2016528333A priority patent/JP6429871B2/ja
Priority to EP14828876.4A priority patent/EP3026814B1/en
Publication of WO2015010620A1 publication Critical patent/WO2015010620A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1491Arrangements to linearise a transconductance stage of a mixer arrangement

Definitions

  • the present invention relates to the field of magnetic sensor technology, and in particular, to a magnetoresistive mixer.
  • Mixer refers to the conversion of a source of frequency fl and a source of frequency f2 into an electronic device having fl+f2 and fl-f2 characteristic frequency output signals.
  • the mixer allows the source frequency to be moved to a high or low frequency position for easy signal processing. For example, the frequency of the signal is shifted by the mixing technique, so that it is separated from the noise signal, and then the noise can be filtered out by the filtering technique, and then the frequency of the signal is restored to the original value by the mixing technique, thereby realizing the noise signal. Processing. Therefore, the mixing technique is widely used in signal processing circuit technology.
  • the passive mixer uses one or more diodes, and the nonlinear section of the diode current-voltage characteristic curve approximates the quadratic feature to achieve the multiplication operation.
  • the sum of the two input signals is applied to the diode, and then the The diode output current signal is converted into a voltage signal to obtain an output containing the product of the two signals.
  • the active mixer uses a multiplier (such as a transistor or a vacuum tube) to increase the product signal strength. By mixing the input frequency signal and the local oscillator frequency, the signal output frequency including the addition and subtraction of the two frequencies can be obtained.
  • the mixer increases the isolation of the two inputs, but may be more noisy and consume more power.
  • the above mixer has the following problems:
  • the diode mixer adopts an approximate processing method. In addition to the required frequency, the output signal has other frequencies, and its signal strength is still relatively large. It is necessary to use filters and other techniques to separate the noise in order to obtain the required signal. signal.
  • the active mixer uses the local oscillator to achieve frequency mixing.
  • the output signal contains a variety of other frequencies. It also needs to be separated by a filter. It also requires the use of multipliers and local oscillators, which increases the complexity and power consumption of the circuit. .
  • the present invention proposes a magnetoresistive mixer, which utilizes the characteristic that the resistance of the magnetoresistive sensor has a good linear relationship with the change of the external magnetic field, and converts one of the frequency signals flowing through the spiral coil into a magnetic field. Signal, another frequency signal is converted into a power signal to act on the magnetoresistive sensor, then the output signal of the magnetoresistive sensor is a multiplication signal of two kinds of frequency signals, and the frequency of the obtained signal is the sum or difference thereof, and no other Excess signals, thus eliminating the need for other components such as filters. Due to the magnetic field coupling between the helical coil and the magnetoresistive sensor, effective isolation between the input signals and between the input signal and the output signal is achieved. In addition, the magnetoresistive sensor has low power consumption and high magnetic field sensitivity, so the magnetic field sensitive current does not need to be too large, and the output signal is large, which ensures low power consumption and low noise.
  • the magnetoresistive mixer for mixing the input first frequency signal source and the second frequency signal source to obtain a mixed signal includes: a spiral coil, a bridge magnetoresistive sensor, and a magnetic shielding layer, the spiral coil being located between the magnetic shielding layer and the bridge magnetoresistive sensor; the bridge magnetoresistive sensor comprising four forming bridges a magnetoresistive sensor unit of the type, two or two sets respectively located in two regions above or below the spiral coil having opposite current directions; each magnetoresistive sensor unit comprises N array magnetic tunnel junction rows, each The array magnetic tunnel junction is formed by M magnetic tunnel structures, M and N are positive integers, and each of the array tunnel junctions is connected in series, parallel or serial-parallel to form a two-port structure.
  • the sensitive axis of the magnetic tunnel junction is perpendicular to the direction of current flow in the helical coil in the region in which it is located; in both of the regions, the magnetic tunnel junction in the magnetoresistive sensor unit
  • the sensitive axial magnetic field distribution features are opposite, and in a single said region, the magnetic axial tunnel junction in the magnetoresistive sensor unit has the same sensitive axial magnetic field distribution characteristics;
  • the first frequency signal source Passing the helical coil input to convert the first frequency signal source into a magnetic field signal having the same frequency as the magnetic tunnel junction sensitive axial magnetic field and acting on the magnetic tunnel junction, such that The resistance of the magnetoresistive sensor unit is changed, and the second frequency signal source is input through the power-ground port of the bridge magnetoresistive sensor, so that the voltage across the magnetoresistive sensor unit changes.
  • the mixed signal is outputted through the signal output end of the bridge magnetoresistive sensor, and the frequency of the mixed signal outputted is the sum of the frequencies of the first frequency signal source and the second frequency signal source or Difference.
  • the four described magnetoresistive sensor units have the same resistance-magnetic field characteristics.
  • the magnetoresistive sensor units located in the two described regions have the same magnetic tunnel junction connection structure and are opposite in phase.
  • a linear characteristic relationship between the resistance of the magnetic tunnel junction in the magnetoresistive sensor unit and the external magnetic field is within a range of magnetic fields generated by the first frequency signal source through the spiral coil.
  • the array of magnetic tunnel junctions in a single magnetoresistive sensor unit located above or below the helical coil has a sensitive axial magnetic field with uniform or non-uniform magnetic field distribution characteristics.
  • the array magnetic tunnel junction in the magnetoresistive sensor unit located in the region above or below the spiral coil is perpendicular or parallel to the current in the spiral coil in the region direction.
  • the first frequency signal source is connected to the spiral coil by an active or passive manner.
  • the second frequency signal source is connected to the voltage-ground port of the bridge magnetoresistive sensor in a passive or active manner.
  • the mixed signal is output from the signal output end of the bridge magnetoresistive sensor in a passive or active manner.
  • the spiral coil is made of a high conductivity metal material such as copper, gold or silver.
  • the magnetic shielding layer is made of a material selected from the group consisting of high magnetic permeability ferromagnetic alloys NiFe, CoFeSiB,
  • CoZrNb, CoFeB, FeSiB or FeSiBNbCu One of CoZrNb, CoFeB, FeSiB or FeSiBNbCu.
  • the spiral coil has a thickness of 1-20 ⁇ , a width of 5-40 ⁇ , and a spacing between adjacent two single coils of 10-100 ⁇ .
  • the magnetic shielding layer has a thickness of 1-20 ⁇ m.
  • FIG. 1 is a cross-sectional view of a magnetoresistive mixer of the present invention.
  • FIG. 2 is a top plan view of a magnetoresistive mixer of the present invention.
  • FIG 3 is a schematic diagram of a bridge magnetoresistive sensor in a magnetoresistive mixer of the present invention.
  • FIG. 4 is a magnetic field distribution diagram in a spiral coil-magnetic shield layer in a magnetoresistive mixer of the present invention.
  • Fig. 5 is a diagram showing the distribution of the magnetic field component perpendicular to the current direction of the spiral coil in the magnetoresistive mixer of the present invention in the presence or absence of the magnetic shield layer.
  • FIG. 6 is a model of the parallel magnetic field attenuation of the magnetic shield layer of the magnetoresistive mixer of the present invention.
  • Figure 7 is a magnetic field distribution curve of the magnetoresistive mixer of the present invention in the case of an air shielding layer (i.e., an unshielded layer).
  • Figure 8 is a magnetic field distribution curve of the magnetoresistive mixer of the present invention in the presence of a magnetic shield layer.
  • Fig. 9 is a graph showing the magnetoresistance-external magnetic field characteristic of the magnetic tunnel junction in the magnetoresistive mixer of the present invention.
  • Fig. 10 is a schematic view showing a magnetoresistive sensor unit in which a series N magnetic tunnel structure is constructed in a magnetoresistive mixer of the present invention.
  • Figure 11 is a schematic view showing a magnetoresistive sensor unit in which a parallel N-line magnetic tunnel structure is constructed in the magnetoresistive mixer of the present invention.
  • Figure 12 is a schematic illustration of a magnetoresistive sensor unit in which a series-parallel N-line magnetic tunnel structure is constructed in a magnetoresistive mixer of the present invention.
  • Figure 13 is a diagram showing the operation of the magnetoresistive mixer of the present invention.
  • Figure 14 is a diagram showing the arrangement of the uniform magnetic field region magnetoresistive sensor unit and the helical coil in the magnetoresistive mixer of the present invention.
  • Figure 15 is a view showing the arrangement of the magnetic field resistive sensor unit and the spiral coil in parallel in the magnetoresistive mixer of the present invention.
  • Fig. 16 is a view showing the arrangement of the magnetic field region magnetoresistive sensor unit and the spiral coil in a vertical position in the magnetoresistive mixer of the present invention.
  • 17 is a signal processing circuit diagram of a mixer of a magnetoresistive mixer of the present invention using a passive coil signal, a passive power signal, and a passive output signal.
  • FIG. 18 is a signal processing circuit diagram of a mixer when the magnetoresistive mixer of the present invention uses an active coil signal, an active power signal, and a passive output signal.
  • Fig. 19 is a circuit diagram showing the signal processing of the mixer of the magnetoresistive mixer of the present invention using an active coil signal, an active power signal, and an active output signal.
  • 20 is a signal processing circuit diagram of a mixer when the magnetoresistive mixer of the present invention uses a passive coil signal, a passive power signal, and an active output signal.
  • FIG. 1 is a cross-sectional view of a magnetoresistive mixer including a magnetic shield layer 1, a spiral coil 2, and a bridge magnetoresistive sensor 9, which The middle spiral coil 2 is located between the magnetic shield layer 1 and the bridge magnetoresistive sensor 9.
  • the bridge magnetoresistive sensor 9 is located below the spiral coil 2 in accordance with the direction shown in FIG. It is of course also possible to use a bridge magnetoresistive sensor 9 located above the spiral coil 2.
  • the spiral coil is made of a high-conductivity metal material (such as copper, gold or silver) with a thickness of 1-20 ⁇ , a width of 5-40 ⁇ , and a spacing between adjacent two single coils of 10-100 ⁇ . .
  • a high-conductivity metal material such as copper, gold or silver
  • the magnetic shield layer is made of a high magnetic permeability ferromagnetic alloy (e.g., NiFe, CoFeSiB, CoZrNb, CoFeB, FeSiB or FeSiBNbCu, etc.) and has a thickness of 1-20 ⁇ .
  • a high magnetic permeability ferromagnetic alloy e.g., NiFe, CoFeSiB, CoZrNb, CoFeB, FeSiB or FeSiBNbCu, etc.
  • FIG. 2 is a top view of the magnetoresistive mixer.
  • the bridge magnetoresistive sensor 9 includes four magnetoresistive sensor units R3, R6, R4 and R5 constituting a bridge structure, and two sets of two are respectively located on the surface of the spiral coil 2 with opposite current directions.
  • magnetoresistive sensor units R3 and R4 located in the same half bridge are located in region 7 and region 8, respectively, while magnetoresistive sensor units R5 and R6 at the other half bridge are located in region 8 and region 7, respectively.
  • the region 7 is further divided into a sub-region 3 including a magnetoresistive sensor unit R3 and a sub-region 6 including a magnetoresistive sensor unit R6; the region 8 is divided into a sub-region 4 including a magnetoresistive sensor unit R4 and a magnetoresistive sensor unit R5. Sub-region 5.
  • the bridge magnetoresistive sensor 9 requires four magnetoresistive sensor units R3, R6, R4 and R5 to have the same resistance-external magnetic field characteristics, and in the regions 7 and P8, the magnetoresistive sensor units R3 and R6 and R4 and R5 The magnetic field distribution characteristics are reversed, but in the sub-regions 3 and 6, the magnetic field distribution characteristics of the magnetoresistive sensor units R3 and R6 are the same, and also in the sub-regions 4 and 5, the magnetic field distribution characteristics of the magnetoresistive sensor units R4 and R5 are also the same.
  • Fig. 4 is a distribution diagram of the magnetic field generated by the spiral coil 2 and the magnetic shield layer 1. It can be seen that the electromagnetic field generated by the spiral coil 2 generates a significant concentration of magnetic lines after passing through the magnetic shield layer 1, indicating that the magnetic field is enhanced.
  • Figure 5 is a distribution diagram of the magnetic field component perpendicular to the current direction in the regions 7 and 8 of the bridge magnetoresistive sensor 9 placed on the surface of the helical coil 2 under the conditions of the magnetic shield layer 1 and the non-magnetic shield layer 1, It can be seen in Fig. 5 that after the magnetic shield layer 1 is applied, the magnetic field strength thereof is remarkably enhanced.
  • the magnetic field has an antisymmetric distribution characteristic in the regions 7 and 8, and the magnetic field direction is opposite to the direction of the spiral coil 2 and the spiral coil 2, and the magnetic field is non-in the regions 10 and 11 near the symmetrical center and the edge of the spiral coil 2. It is evenly distributed, but has a uniform distribution feature in the intermediate region 12.
  • Figure 6 is a calculation model of the attenuation ratio of the magnetic shield layer 1 parallel to the magnetic field inside and outside the plane, in which the magnetic shield layer 1 and the air layer are placed in parallel with the Helmholtz coil (not shown).
  • FIG. 7 is a distribution diagram of a magnetic field generated by the Helmholtz coil at the position of the bridge magnetoresistive sensor 9 in the case of the non-magnetic shield layer 1
  • FIG. 8 is a bridge diagram of the Helmholtz coil in the case of the magnetic shield layer 1.
  • the magnetic field distribution map generated at the position of the sensor 9 can be seen as compared with FIG. 7 and FIG.
  • Fig. 9 is a resistance-magnetic field characteristic curve of a magnetic tunnel junction constituting the magnetoresistive sensor units R3, R4, R5 and R6, which is a linear distribution characteristic in the magnetic field working region generated by the spiral coil 2 shown in Fig. 4.
  • FIG 10-12 shows the structure of the magnetoresistive sensor unit R3, R4, R5, and R6.
  • Each magnetoresistive sensor unit contains N (N).
  • N As a positive integer) array magnetic tunnel junction line, each array type magnetic tunnel junction line is formed by M (M is a positive integer) magnetic tunnel structure, and each row of the array type magnetic tunnel junction line is connected in series as shown in FIG.
  • the display or parallel connection is shown in Figure 12 or a series-parallel hybrid connection as shown in Figure 13.
  • the magnetoresistive sensor units in regions 7 and 8 have the same magnetic tunnel junction structure, but opposite in phase, and the sensitive axial magnetic field of the array magnetic tunnel junction in a single magnetoresistive sensor unit located above or below the spiral coil has Uniform or non-uniform magnetic field distribution characteristics, and the array magnetic tunnel junctions in a single magnetoresistive sensor unit located above or below the spiral coil are perpendicular or parallel to the direction of current flow in the helical coil 2 within the region 7 or 8 thereof.
  • FIG. 13 is a schematic diagram of the operation of the magnetoresistive mixer.
  • the first frequency signal source of frequency f is input through the spiral coil 2 so that the current I flows through the spiral coil 2, and the corresponding magnetic field signal H is generated in the spiral coil 2.
  • the frequency is also fl. Since the four magnetoresistive sensor units R3 and R6 and R5 and R4 in the sub-regions 3 6 and 5 4 respectively have anti-symmetric magnetic field distribution characteristics, the magnetic field distribution characteristics of the magnetoresistive sensor units R3 and R6 R5 and R4 are two-two. In the same way, it is only necessary to analyze the resistance change of one of the magnetoresistive sensor units under the action of a magnetic field.
  • the sensitive axial magnetic field of the mth (0 ⁇ n ⁇ M) magnetic tunnel junction is ⁇ (& 4 t), where « is the magnetic field amplitude of the sensitive axis, then its The magnitude of the resistance change is d3 ⁇ 4/dli i ⁇ mS (2 ⁇ f)o Due to the antisymmetry of the magnetic field of the helical coil 2, there must be a corresponding magnetic tunnel junction in the magnetoresistive sensor unit R4, and the reverse sensitive axial magnetic field is - (2??/, ⁇ ), the corresponding magnetoresistance change is - dR/dh ' H si (2 ⁇ ⁇ ), so the total resistance of the half bridge formed by the bridge magnetoresistive sensor units R3 and R4 is unchanged, the same situation Suitable for half bridges composed of magnetoresistive sensor units R5 and R6.
  • the resistance change of the magnetic tunnel junction line constituting the series or parallel is proportional to the frequency fl of the current I, and is related to the distribution of the sensitive axial magnetic field Hnm at which the magnetic tunnel junction is located.
  • the sensitive axial magnetic field Hnm is proportional to the current I in the helical coil 2, i.e., - K Knm is a characteristic coefficient related to the electromagnetic properties and geometrical dimensions of the helical coil 2 and the magnetic shield layer 1.
  • the series, parallel and series-parallel hybrid structures between the tunnel junctions are only represented as operations between the characteristic coefficients Knm.
  • the characteristic factor of the magnetoresistive sensor unit R3 is expressed as:
  • the characteristic factor ⁇ can be expressed.
  • the total resistance change of the magnetoresistive sensor unit R3 is:
  • the total resistance of the magnetoresistive sensor unit is R when there is no external magnetic field.
  • the power-voltage characteristic frequency of the bridge magnetoresistive sensor 9 is f, and has the following form: two ⁇ * sle (2 ⁇ ), where is the magnitude of ⁇ , then the bridge magnetoresistive sensor output voltage signal is:
  • V dd dR , dR V dd dR , dR .
  • the frequency of the output signal is the sum or difference of the frequency fl of the current I in the helical coil 2 and the frequency f of the bridge magnetoresistive sensor 9 power supply-ground voltage Vdd, and does not include other frequencies. Therefore, the first frequency signal source to be mixed is input through the spiral coil 2, and the second frequency signal source is input through the power-ground port of the bridge magnetoresistive sensor 9, and the obtained mixed signal passes through the bridge magnetoresistive sensor 9. Signal output output.
  • Fig. 14 is a view showing the arrangement of the bridge magnetoresistive sensor 9 on the spiral coil 2 in the uniform field region 13 of the spiral coil 2.
  • the magnetoresistive sensor units R3, R6 and R4, R5 are respectively located in two regions 7 and 8 having a reverse current direction on the upper or lower surface of the spiral coil 2, and the magnetoresistive sensor units in the two regions have antisymmetric geometric characteristics,
  • the magnetic tunnel junctions in the magnetoresistive sensor units R3, R5, R4, R6 are located at the center of the energization section surface of the spiral coil 2, and parallel to the current direction, the array tunnel junctions in the magnetoresistive sensor units R3 and R6, R4 and R5
  • the behavior is spaced apart and the sensitive axis of the magnetic tunnel junction is perpendicular to the conductive segment of the helical coil 2.
  • the magnetic tunnel junction in the magnetoresistive sensor unit can also be arranged in other ways.
  • Figure 15-16 shows the arrangement of the bridge magnetoresistive sensor 9 on the spiral coil 2 on the upper or lower surface of the helical coil 2.
  • the magnetoresistive sensor units R3, R6 and R4, R5 are respectively located in the two regions 7 and 8 of the upper or lower surface of the helical coil 2 having a counter current direction, and the magnetoresistive sensor units in the two regions have antisymmetric geometric characteristics.
  • the magnetoresistive sensor unit R3 and R4, R5 and R6 have antisymmetric characteristics, in which R3 and R6 are identical in structure, and R4 and R5 are identical in structure.
  • the magnetoresistive sensor unit comprises N rows of array magnetic tunnel junction rows, and each array tunnel junction row is connected in a series connection, a parallel connection or a series-parallel connection to form a two-port structure, and the magnetoresistive sensor row is parallel to the corresponding spiral coil row or Vertically perpendicular to the spiral coil row, the sensitive axis of the magnetic tunnel junction is perpendicular to the spiral coil.
  • the magnetoresistive sensor unit may be located in a uniform magnetic field, or may be located in a non-uniform magnetic field, or may be partially located in a uniform magnetic field or partially in a magnetic field. Uniform zone.
  • the first frequency signal source is connected to the spiral coil by an active or passive method; the second frequency signal source is connected to the voltage-ground port of the bridge magnetoresistive sensor by passive or active means; the mixed signal is passive or The source mode bridge is output from the signal output terminal of the magnetoresistive sensor.
  • Figure 17 is a signal processing circuit diagram of the magnetoresistive mixer.
  • the first frequency signal source fl is directly connected to both ends of the spiral coil 2 in a passive form
  • the second frequency signal source f is directly input from the power source-ground port of the magnetoresistive sensor 9 in a passive form, and the mixing is performed.
  • the signal frequency is directly output in a passive form through the signal output port of the bridge magnetoresistive sensor 9.
  • the magnetoresistive mixer 18 is another signal processing circuit diagram of the magnetoresistive mixer, wherein the first frequency signal source fl converts the voltage signal into a current signal through the VI converter 14 in an active manner, and is connected to both ends of the spiral coil 2,
  • the two-frequency signal source f is input in an active manner through the buffer amplifier 13 and the power-ground port of the bridge magnetoresistive sensor 9, and the mixed signal is directly outputted in a passive form through the signal output port of the bridge magnetoresistive sensor 9.
  • 19 is a third signal processing circuit diagram of the magnetoresistive mixer, wherein the first frequency signal source fl actively converts the voltage signal into a current signal through the VI converter 16 to be connected to both ends of the spiral coil 2,
  • the two frequency signal source f is input in an active manner through the buffer amplifier 15 and the power supply-ground port of the bridge magnetoresistive sensor 9, and the mixed signal is indirectly outputted through the buffer voltage amplifier 17.
  • 20 is a fourth signal processing circuit diagram of the magnetoresistive mixer, wherein the first frequency signal source fl is connected to both ends of the spiral coil 2 in an active manner, and the second frequency signal source f is passed through the bridge in an active manner.
  • the power-ground port of the magnetoresistive sensor 9 is input, and the mixing signal is indirectly outputted through the buffer voltage amplifier 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种磁阻混频器,包括螺旋线圈(2)、桥式磁阻传感器(9)以及磁屏蔽层(1),螺旋线圈(2)位于桥式磁阻传感器(9)和磁屏蔽层(1)之间。组成桥式磁阻传感器(9)的四个隧道磁阻传感器单元(3-6)各包含N个阵列式磁隧道结行,磁隧道结行之间以串联、并联或串、并联混合连接成两端口结构。四个隧道磁阻传感器单元(3-6)分别位于螺旋线圈(2)具有相反电流方向的两个区域(7、8)内,磁隧道结敏感轴垂直于电流方向,且在这两个区域(7、8)内隧道磁阻传感器单元(3-6)敏感轴向磁场分布特征相反,单个区域内(7、8)分布特征相同。第一频率信号通过螺旋线圈(2)两端输入,第二频率信号通过桥式磁阻传感器(9)电源-地两端输入,混频信号通过桥式磁阻传感器(9)信号输出端输出。该磁阻混频器具有线性好、输入信号相互隔离,低功耗的特点。

Description

一种磁阻混频器 技术领域
本发明涉及磁传感器技术领域, 特别涉及一种磁阻混频器。
背景技术
混频器指将频率为 fl的信号源与频率为 f2的信号源转变成具有 fl+f2和 fl-f2特征频 率输出信号的电子器件。 通过混频器, 可以使得信号源频率移动到高频或低频位置, 从而 方便进行信号处理。 例如通过混频技术将信号频率发生移动, 从而使其同噪音信号分离开 来, 进而通过滤波技术可以将噪音过滤掉, 再通过混频技术使得信号频率恢复到原来的数 值, 从而可以实现噪音信号的处理。 因此, 混频技术在信号处理电路技术中得到广泛应用。
目前使用的混频器包括无源和有源两种类型。 无源混频器采用一个或多个二极管, 利 用二极管电流-电压特征曲线的非线性段近似具有二次方特征来实现乘法运算,操作时将两 个输入信号之和作用于二极管, 则进一步将二极管输出电流信号转变成电压信号即可以得 到包含两个信号乘积的输出项。
有源混频器采用乘法器 (例如晶体管或真空管) 增加乘积信号强度, 通过将输入频率 信号和本振频率进行混频, 从而可以得到包含两个频率的加法和减法的信号输出频率, 有 源混频器提高了两个输入端的隔离程度, 但可能具有更高噪音, 并且其功耗也更大。
以上混频器存在如下问题:
1 ) 二极管混频器采用近似处理方法, 输出信号除了包含所需频率之外, 还存在着其 他频率, 而且其信号强度还比较大, 需要后续采用滤波器等技术来分离噪音, 才能得到所 需信号。
2) 有源混频器采用本振实现频率混合, 输出信号包含多种其他频率, 同样需要采用 滤波器进行分离, 而且需要使用乘法器以及本振等器件, 增加了电路的复杂程度和功耗。
3 ) 输入信号和输出信号无法实现有效的隔离, 二者之间会产生相互影响。
发明内容
为了解决以上存在的问题, 本发明提出了一种磁阻混频器, 利用磁阻传感器的电阻随 外磁场变化具有良好线性关系的特点, 将其中一种流过螺旋线圈的频率信号转变成磁场信 号, 另外一种频率信号转变成电源信号作用于磁阻传感器, 则磁阻传感器的输出信号即为 两种频率信号的乘法运算信号,所得信号的频率为其之和或之差,而没有其他多余的信号, 从而不需要滤波器等其他元件。 由于螺旋线圈和磁阻传感器之间采用磁场耦合, 从而实现 了输入信号之间以及输入信号和输出信号之间的有效隔离。 此外, 磁阻传感器还具有低功 耗特点, 并具有高的磁场灵敏度, 因此磁场敏感电流不需要太大, 而且输出信号较大, 这 些保证了低功耗和低噪音。
本发明提出的用于对输入的第一频率信号源和第二频率信号源进行混频得到混频信 号的磁阻混频器包括: 螺旋线圈、 桥式磁阻传感器以及磁屏蔽层, 所述的螺旋线圈位于所述的磁屏蔽层和所 述的桥式磁阻传感器之间; 所述的桥式磁阻传感器包括四个构成桥式结构的磁阻传感器单 元, 两两一组分别位于所述的螺旋线圈上方或下方具有相反电流方向的两个区域内; 每个 磁阻传感器单元包含 N个阵列式磁隧道结行, 每个阵列式磁隧道结行由 M个磁隧道结构 成, M、 N均为正整数, 且各所述的阵列式隧道结行之间以串联、 并联或者串并联混合连 接成两端口结构, 且所述的磁隧道结的敏感轴垂直于其所在的所述的区域内所述的螺旋线 圈中的电流方向; 在两个所述的区域内, 所述的磁阻传感器单元中的磁隧道结的敏感轴向 磁场分布特征相反, 而在单个所述的区域内, 所述的磁阻传感器单元中的磁隧道结的敏感 轴向磁场分布特征相同; 所述的第一频率信号源通过所述的螺旋线圈输入, 从而使所述的 第一频率信号源转变成与所述的磁隧道结敏感轴向磁场具有相同频率的磁场信号并作用 于所述的磁隧道结, 使得所述的磁阻传感器单元的电阻发生变化, 所述的第二频率信号源 通过所述的桥式磁阻传感器的电源-地端口输入,使得所述的磁阻传感器单元两端的电压发 生变化, 所述的混频信号通过所述的桥式磁阻传感器的信号输出端输出, 其输出的混频信 号的频率为所述的第一频率信号源和所述的第二频率信号源的频率之和或之差。
优选地, 四个所述的磁阻传感器单元具有相同的电阻 -磁场特征。
优选地, 位于两个所述的区域内的所述的磁阻传感器单元具有相同的磁隧道结连接结 构, 且相位相反。
优选地, 在所述的第一频率信号源通过所述的螺旋线圈所产生的磁场范围内, 所述的 磁阻传感器单元中的磁隧道结的电阻与外磁场之间为线性特征关系。
优选地, 位于所述的螺旋线圈上方或下方的单个磁阻传感器单元内的所述的阵列式磁 隧道结行的敏感轴向磁场具有均匀或非均匀磁场分布特征。
优选地, 位于所述的螺旋线圈上方或下方的所述的区域内的所述的磁阻传感器单元中 的阵列式磁隧道结行垂直或平行于该区域内的所述的螺旋线圈中的电流方向。
优选地, 所述的第一频率信号源通过有源或无源方式与所述的螺旋线圈相连。
优选地, 所述的第二频率信号源通过无源或有源方式与所述的桥式磁阻传感器的电压 -地端口相连。
优选地, 所述的混频信号通过无源或有源方式由桥式磁阻传感器的信号输出端输出。 优选地, 所述的螺旋线圈由铜、 金或银这种高导电率金属材料制成。
优选地, 所述的磁屏蔽层的组成材料为选自高磁导率铁磁合金 NiFe、 CoFeSiB ,
CoZrNb、 CoFeB、 FeSiB或 FeSiBNbCu中的一种。
优选地, 所述的螺旋线圈厚度为 1-20 μηι, 宽度为 5-40 μηι, 相邻两个单线圈之间的间 距为 10-100 μηι。
优选地, 所述的磁屏蔽层厚度为 1-20 μηι。
附图说明 为了更清楚地说明本发明实施例技术中的技术方案, 下面将对实施例技术描述中所需 要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。
图 1 为本发明的磁阻混频器的截面图。
图 2为本发明的磁阻混频器的俯视图。
图 3 为本发明的磁阻混频器中的桥式磁阻传感器的示意图。
图 4 为本发明的磁阻混频器中的螺旋线圈-磁屏蔽层中的磁场分布图。
图 5 为本发明的磁阻混频器中的螺旋线圈在有无磁屏蔽层时垂直于电流方向磁场分 量分布图。
图 6为本发明的磁阻混频器的磁屏蔽层对平行外磁场衰减模型。
图 7为本发明的磁阻混频器在空气屏蔽层 (即无屏蔽层) 情况下的磁场分布曲线。 图 8为本发明的磁阻混频器在有磁屏蔽层情况下的磁场分布曲线。
图 9 为本发明的磁阻混频器中的磁隧道结的磁阻-外磁场特征曲线图。
图 10为本发明的磁阻混频器中串联 N行磁隧道结构成的磁阻传感器单元的示意图。 图 11为本发明的磁阻混频器中并联 N行磁隧道结构成的磁阻传感器单元的示意图。 图 12为本发明的磁阻混频器中混合串并联 N行磁隧道结构成的磁阻传感器单元的示 意图。
图 13为本发明的磁阻混频器的工作原理图。
图 14为本发明的磁阻混频器中均匀磁场区域磁阻传感器单元与螺旋线圈位置排布图。 图 15为本发明的磁阻混频器中磁场区域磁阻传感器单元与螺旋线圈平行位置排布图。 图 16为本发明的磁阻混频器中磁场区域磁阻传感器单元与螺旋线圈垂直位置排布图。 图 17 为本发明的磁阻混频器采用无源线圈信号 、 无源电源信号、 无源输出信号时混 频器的信号处理电路图。
图 18 为本发明的磁阻混频器采用有源线圈信号、 有源电源信号、 无源输出信号时混 频器的信号处理电路图。
图 19 为本发明的磁阻混频器采用有源线圈信号、 有源电源信号、 有源输出信号时混 频器的信号处理电路图。
图 20 为本发明的磁阻混频器采用无源线圈信号、 无源电源信号、 有源输出信号时混 频器的信号处理电路图。
具体实施方式
下面将参考附图并结合实施例, 来详细说明本发明。
实施例一
图 1为磁阻混频器的截面图, 其包括磁屏蔽层 1、 螺旋线圈 2、 桥式磁阻传感器 9, 其 中螺旋线圈 2位于磁屏蔽层 1和桥式磁阻传感器 9之间。 本实施例中, 依据图 1中所示的 方向, 桥式磁阻传感器 9位于螺旋线圈 2的下方。 当然也可以采用桥式磁阻传感器 9位于 螺旋线圈 2的上方的方案。
螺旋线圈由高导电率金属材料 (例如铜、 金或银等) 制成, 其厚度为 1-20 μηι, 宽度 为 5-40 μηι, 相邻两个单线圈之间的间距为 10-100 μηι。
磁屏蔽层由高磁导率铁磁合金 (例如 NiFe、 CoFeSiB、 CoZrNb、 CoFeB、 FeSiB 或 FeSiBNbCu等) 制成, 其厚度为 1-20 μηι。
图 2为磁阻混频器的俯视图。 桥式磁阻传感器 9如图 3所示, 其包含四个构成桥式结 构的磁阻传感器单元 R3、 R6、 R4和 R5, 两两一组分别位于螺旋线圈 2表面具有反电流方 向的两个区域 7和 8内,即位于同一半桥的磁阻传感器单元 R3和 R4分别位于区域 7和区 域 8中, 而位于另一半桥的磁阻传感器单元 R5和 R6分别位于区域 8和区域 7中。 区域 7 中又分为包含磁阻传感器单元 R3的子区域 3和包含磁阻传感器单元 R6的子区域 6; 区域 8中分为包含磁阻传感器单元 R4的子区域 4和包含磁阻传感器单元 R5的子区域 5。 桥式 磁阻传感器 9要求四个磁阻传感器单元 R3、 R6、 R4和 R5具有相同的电阻-外磁场特征, 且在区域 7禾 P 8内, 磁阻传感器单元 R3和 R6与 R4和 R5的磁场分布特征相反, 但在子 区域 3和 6内, 磁阻传感器单元 R3和 R6的磁场分布特征相同, 同样在子区域 4和 5内, 磁阻传感器单元 R4和 R5的磁场分布特征也相同。
图 4为螺旋线圈 2和磁屏蔽层 1所产生磁场的分布曲线图, 可以看出, 螺旋线圈 2所 产生电磁场在经过磁屏蔽层 1之后, 产生明显磁力线集中现象, 表明磁场得到增强。 图 5 为有磁屏蔽层 1和无磁屏蔽层 1这两种条件下, 螺旋线圈 2表面放置桥式磁阻传感器 9的 在区域 7和 8内垂直于电流方向的磁场分量分布图,从图 5中可以看出施加磁屏蔽层 1后, 其磁场强度得到显著增强。 此外, 磁场在区域 7和 8内具有反对称分布特征, 且螺旋线圈 2表面和螺旋线圈 2的间隙处磁场方向相反, 在靠近螺旋线圈 2的对称中心和边缘的区域 10和 11内磁场为非均匀分布, 而在中间区域 12内则具有均匀分布特征。
图 6为磁屏蔽层 1对平行于平面内外磁场的衰减率计算模型, 在该模型中磁屏蔽层 1 和空气层分别放置于赫姆霍茨线圈(图中未示出)所产生的平行于磁屏蔽层 1的磁场当中。 图 7为无磁屏蔽层 1的情况下赫姆霍茨线圈在桥式磁阻传感器 9位置处所产生磁场的分布 图,图 8为有磁屏蔽层 1的情况下赫姆霍茨线圈在桥式传感器 9位置处所产生磁场分布图, 对比图 7和图 8可以看出, 其磁场衰减率为 1/9, 表明磁屏蔽层 1对外磁场具有良好屏蔽 性。 本实施例只为说明有无屏蔽层对外磁场的影响, 跟所采用的线圈无关, 所以所得结论 也同样适用于本发明中的螺旋线圈 2。 图 9为组成磁阻传感器单元 R3、 R4、 R5和 R6的磁 隧道结的电阻-磁场特征曲线, 在图 4所示螺旋线圈 2所产生磁场工作区域内, 其为线性分 布特征。
图 10-12为磁阻传感器单元 R3、 R4、 R5、 R6结构图, 每个磁阻传感器单元包含 N (N 为正整数)个阵列式磁隧道结行, 每个阵列式磁隧道结行由 M ( M为正整数)个磁隧道结 构成, 各行阵列式磁隧道结行之间为串联连接如图 11所示或并联连接如图 12所示或者为 串并联混合连接如图 13所示。 区域 7和 8中的磁阻传感器单元具有相同的磁隧道结连接 结构, 但相位相反, 并且位于螺旋线圈上方或下方的单个磁阻传感器单元内的阵列式磁隧 道结行的敏感轴向磁场具有均匀或非均匀磁场分布特征, 且位于螺旋线圈上方或下方的单 个磁阻传感器单元内的阵列式磁隧道结行垂直或平行于其所在区域 7或 8内的螺旋线圈 2 中的电流方向。
图 13为磁阻混频器的工作原理图, 频率为 fl的第一频率信号源通过螺旋线圈 2输入 使得螺旋线圈 2中流过电流 I, 则其在螺旋线圈 2中所产生对应磁场信号 H的频率同样为 fl。 由于子区域 3 6和 5 4内对应的四个磁阻传感器单元 R3和 R6与 R5和 R4分别具 有反对称磁场分布特征, 而磁阻传感器单元 R3和 R6 R5和 R4的磁场分布特征则两两相 同, 则只需要对其中一个磁阻传感器单元在磁场作用下的电阻变化进行分析即可。
假设图 9所示磁隧道结的电阻-磁场曲线斜率为 dR/dh, 假定桥式磁阻传感器 9中的磁 阻传感器单元 R3的 N行阵列式隧道结行中, 每行包含 M ( M为正整数)个串联的磁隧道 结。假设第 n ( 0<n^N)行, 第 m ( 0<n^M)个磁隧道结的敏感轴向磁场为 ^ (& 4t), 其中 «为敏感轴向的磁场幅度,则其电阻变化幅度为 d¾/dli i^mS (2^ f)o由于螺旋线圈 2磁场的反对称性,磁阻传感器单元 R4中一定存在一个对应的磁隧道结,其反向的敏感轴 向磁场为 - (2??/, ί), 对应的磁阻变化为- dR/dh ' H s i (2π ί), 因此桥式磁阻传感器 单元 R3和 R4构成的半桥的总电阻不变, 同样情况适用于磁阻传感器单元 R5和 R6构成 的半桥。
因此, 构成串联或并联的磁隧道结行的电阻变化正比于电流 I的频率 fl, 并且与磁隧 道结行所处的敏感轴向磁场 Hnm分布有关。
另一方面, 敏感轴向磁场 Hnm正比于螺旋线圈 2中的电流 I, 即- K Knm是 与螺旋线圈 2及磁屏蔽层 1的电磁性能及几何尺寸有关的特征系数。
因此隧道结行之间串联、 并联以及串并联混合结构, 仅仅表示为特征系数 Knm之间 的运算。 对于 N行之间串联的情况, 磁阻传感器单元 R3的特征因子表示为:
而对于 Ν行之间并联的情况, 特征因子表示为:
1
对于混合串并联的情况, 假设串联有 N1行, 并联有 N-N1行, 则特征因子 Κ可以表
Figure imgf000008_0001
磁阻传感器单元 R3的总电阻变化为:
VR = I— sin (2uf, t)K
ii
假设没有外磁场作用时, 磁阻传感器单元的总电阻为 R。, 桥式磁阻传感器 9的电压- 地两端电压为 Vdd, 则单臂中流过的电流为〖 = ^。由于两个半桥的总电阻不变, 则桥式 磁阻传感器输出电压信号为:
Figure imgf000008_0002
假设桥式磁阻传感器 9的电源-电压特征频率为 f, 且具有如下形式: 二 ς * sle (2πβ), 其中 为¥^的幅值, 则桥式磁阻传感器输出电压信号为:
Vdd dR 、 d.R . .
RQ dk 、 一 R0 dh 、 ' 、 一
可以看出, 输出信号的频率为螺旋线圈 2中电流 I的频率 fl和桥式磁阻传感器 9电源-地 电压 Vdd的频率 f的和或差, 并且不包含其他频率。 故待混频的第一频率信号源经螺旋线圈 2输入, 第二频率信号源通过桥式磁阻传感器 9的电源-地端口输入, 而得到的混频信号则通 过桥式磁阻传感器 9的信号输出端输出。
对于均匀场的情况, Hi = KtnJ , Km相同, 则对于串联情况:
M
Figure imgf000008_0003
对于并联情况:
1 Μ Κ,„
Κ =
1 Ν
. 对于混合串并联情况:
Figure imgf000009_0001
图 14为螺旋线圈 2的均匀场区域 13内,桥式磁阻传感器 9在螺旋线圈 2上的排布图。 磁阻传感器单元 R3、 R6和 R4、 R5分别位于螺旋线圈 2的上表面或下表面具有反电流方 向的两个区域 7和 8内, 并且两个区域内磁阻传感器单元具有反对称几何特征, 磁阻传感 器单元 R3、 R5、 R4、 R6中的磁隧道结行位于螺旋线圈 2的通电段表面中心, 且平行于电 流方向, 磁阻传感器单元 R3和 R6, R4和 R5中的阵列式隧道结行为间隔排列形式, 且磁 隧道结的敏感轴垂直于螺旋线圈 2的导电段。
磁阻传感器单元中的磁隧道结还可以采用其他的排布方式。
图 15-16为螺旋线圈 2上表面或下表面上桥式磁阻传感器 9在螺旋线圈 2上的排布图。 磁阻传感器单元 R3、 R6和 R4、 R5分别位于螺旋线圈 2上表面或下表面具有反电流方向 的两个区域 7和 8内, 并且两个区域内磁阻传感器单元具有反对称几何特征。 且磁阻传感 器单元 R3和 R4, R5和 R6结构具有反对称特征, 此时 R3和 R6结构完全相同, R4和 R5 结构完全相同。 且在子区域 3和 6、 4和 5内磁阻传感器单元的 N行阵列式隧道结单元的 磁隧道结轴向磁场分布特征完全相同, 而子区域 3和 4, 5和 6具有反对称磁场分布特征。 磁阻传感器单元包含 N行阵列式磁隧道结行, 各阵列式隧道结行之间以串联、 并联或串并 联混合形式连接成两端口结构, 磁阻传感器行平行于所对应的螺旋线圈行或者垂直于螺旋 线圈行, 磁隧道结的敏感轴垂直于螺旋线圈, 此时, 磁阻传感器单元可以位于磁场均匀区, 也可以位于磁场非均匀区, 也可以部分位于磁场均匀区或部分位于磁场非均匀区。
第一频率信号源通过有源或无源方式与螺旋线圈相连; 第二频率信号源通过无源或有 源方式与桥式磁阻传感器的电压-地端口相连;混频信号通过无源或有源方式桥式由磁阻传 感器的信号输出端输出。
图 17为磁阻混频器的信号处理电路图。 其中, 第一频率信号源 fl直接以无源形式与 螺旋线圈 2的两端相连, 第二频率信号源 f 直接以无源形式桥式从磁阻传感器 9的电源- 地端口输入,而混频信号频率通过桥式磁阻传感器 9的信号输出端口直接以无源形式输出。
图 18为磁阻混频器的另外一种信号处理电路图, 其中, 第一频率信号源 fl以有源方 式通过 V-I转换器 14将电压信号转变成电流信号与螺旋线圈 2的两端相连,第二频率信号 源 f 以有源方式通过缓冲放大器 13与桥式磁阻传感器 9的电源-地端口输入, 混频信号则 通过桥式磁阻传感器 9的信号输出端口直接以无源形式输出。
图 19为磁阻混频器的第三种信号处理电路图, 其中, 第一频率信号源 fl以有源方式 通过 V-I转换器 16将电压信号转变成电流信号与螺旋线圈 2的两端相连,第二频率信号源 f 以有源方式通过缓冲放大器 15与桥式磁阻传感器 9的电源-地端口输入,混频信号通过缓 冲电压放大器 17间接以有源方式输出。 图 20为磁阻混频器的第四种信号处理电路图, 其中, 第一频率信号源 fl以有源方式 与螺旋线圈 2的两端相连, 第二频率信号源 f 以有源方式通过桥式磁阻传感器 9 的电源- 地端口输入, 混频信号通过缓冲电压放大器 18间接以有源方式输出。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求:
1、 一种磁阻混频器, 用于对输入的第一频率信号源和第二频率信号源进 行混频得到混频信号, 其特征在于包括:
螺旋线圈、 桥式磁阻传感器以及磁屏蔽层, 所述的螺旋线圈位于所述的 磁屏蔽层和所述的桥式磁阻传感器之间;
所述的桥式磁阻传感器包括四个构成桥式结构的磁阻传感器单元, 两两 一组分别位于所述的螺旋线圈上方或下方具有相反电流方向的两个区域 内;
每个所述的磁阻传感器单元包含 N个阵列式磁隧道结行, 每个阵列式磁 隧道结行由 M个磁隧道结构成, M、 N均为正整数, 且各所述的阵列式 隧道结行之间以串联、 并联或者串并联混合连接成两端口结构, 且所述 的磁隧道结的敏感轴垂直于其所在的所述的区域内所述的螺旋线圈中的 电流方向;
在两个所述的区域内, 所述的磁阻传感器单元中的磁隧道结的敏感轴向 磁场分布特征相反, 而在单个所述的区域内, 所述的磁阻传感器单元中 的磁隧道结的敏感轴向磁场分布特征相同;
所述的第一频率信号源通过所述的螺旋线圈输入, 从而使所述的第一频 率信号源转变成与所述的磁隧道结的敏感轴向磁场具有相同频率的磁场 信号并作用于所述的磁隧道结, 使得所述的磁阻传感器单元的电阻发生 变化, 所述的第二频率信号源通过所述的桥式磁阻传感器的电源-地端口 输入, 使得所述的磁阻传感器单元两端的电压发生变化;
所述的混频信号通过所述的桥式磁阻传感器的信号输出端输出, 其输出 的混频信号的信号频率为所述的第一频率信号源和所述的第二频率信号 源的频率之和或之差。
2、 根据权利要求 1所述的一种磁阻混频器, 其特征在于, 四个所述的磁 阻传感器单元具有相同的电阻 -磁场特征。
3、 根据权利要求 1所述的一种磁阻混频器, 其特征在于, 位于所述的螺 旋线圈上方或下方具有相反电流方向的两个区域内的所述磁阻传感器单 元具有相同的磁隧道结连接结构, 且相位相反。
4、 根据权利要求 1所述的一种磁阻混频器, 其特征在于, 在所述的第一 频率信号源通过所述的螺旋线圈所产生磁隧道结敏感轴向磁场范围内, 所述的磁阻传感器单元中的磁隧道结的电阻与外磁场之间为线性特征关 系。
5、 根据权利要求 1所述的一种磁阻混频器, 其特征在于, 位于所述的螺 旋线圈上方或下方的所述的磁阻传感器单元内的所述的阵列式磁隧道结 行的敏感轴向磁场具有均匀或非均匀磁场分布特征。
6、 根据权利要求 1所述的一种磁阻混频器, 其特征在于, 位于所述的螺 旋线圈上方或下方的所述的区域内的所述的磁阻传感器单元的阵列式磁 隧道结行垂直或平行于该区域内所述的螺旋线圈中的电流方向。
7、 根据权利要求 1所述的一种磁阻混频器, 其特征在于, 所述的第一频 率信号源通过有源或无源方式与所述的螺旋线圈相连。
8、 根据权利要求 1所述的一种磁阻混频器, 其特征在于, 所述的第二频 率信号源通过无源或有源方式与所述的桥式磁阻传感器的电压-地端口相 连。
9、 根据权利要求 1所述的一种磁阻混频器, 其特征在于, 所述的混频信 号通过无源或有源方式由桥式磁阻传感器的信号输出端输出。
10、 根据权利要求 1 所述的一种磁阻混频器, 其特征在于, 所述的螺旋 线圈由铜、 金或银这种高导电率金属材料制成。
11、 根据权利要求 1 所述的一种磁阻混频器, 其特征在于: 所述的磁屏 蔽层的组成材料为选自高磁导率铁磁合金 NiFe、 CoFeSiB、 CoZrNb、 CoFeB、 FeSiB或 FeSiBNbCu中的一种。
12、 根据权利要求 1 所述的一种磁阻混频器, 其特征在于: 所述的螺旋 线圈的厚度为 1 -20μηι, 宽度为 5-40μηι, 相邻两个单线圈之间的间距为 10- 100μηι。
13、 根据权利要求 1 所述的一种磁阻混频器, 其特征在于: 所述的磁屏 蔽层的厚度为 1 -20 μηι。
PCT/CN2014/082830 2013-07-24 2014-07-23 一种磁阻混频器 WO2015010620A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/907,060 US9768726B2 (en) 2013-07-24 2014-07-23 Magnetoresistive mixer
JP2016528333A JP6429871B2 (ja) 2013-07-24 2014-07-23 磁気抵抗ミキサ
EP14828876.4A EP3026814B1 (en) 2013-07-24 2014-07-23 Magneto-resistive mixer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310313538.3 2013-07-24
CN201310313538.3A CN103384141B (zh) 2013-07-24 2013-07-24 一种磁阻混频器

Publications (1)

Publication Number Publication Date
WO2015010620A1 true WO2015010620A1 (zh) 2015-01-29

Family

ID=49491856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082830 WO2015010620A1 (zh) 2013-07-24 2014-07-23 一种磁阻混频器

Country Status (5)

Country Link
US (1) US9768726B2 (zh)
EP (1) EP3026814B1 (zh)
JP (1) JP6429871B2 (zh)
CN (1) CN103384141B (zh)
WO (1) WO2015010620A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768726B2 (en) 2013-07-24 2017-09-19 MultiDimension Technology Co., Ltd. Magnetoresistive mixer
JP2019528624A (ja) * 2016-08-18 2019-10-10 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 平衡磁気抵抗周波数ミキサ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016016957A2 (pt) * 2014-01-28 2018-05-08 Crocus Tech Inc circuitos analógicos incorporando unidades lógicas magnéticas
CN105185655B (zh) * 2015-08-12 2017-08-29 江苏多维科技有限公司 一种磁电阻继电器
US11115084B2 (en) * 2018-11-27 2021-09-07 Allegro Microsystems, Llc Isolated data transfer system
JP7106591B2 (ja) * 2020-03-18 2022-07-26 Tdk株式会社 磁場検出装置および電流検出装置
CN114370888B (zh) * 2020-10-15 2023-09-19 江苏多维科技有限公司 一种磁编码器芯片
CN114243242A (zh) * 2021-12-17 2022-03-25 江苏多维科技有限公司 一种电屏蔽的磁隧道结信号隔离器
US11782105B2 (en) 2022-01-17 2023-10-10 Allegro Microsystems, Llc Fabricating planarized coil layer in contact with magnetoresistance element
US11630169B1 (en) 2022-01-17 2023-04-18 Allegro Microsystems, Llc Fabricating a coil above and below a magnetoresistance element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788596A (zh) * 2010-01-29 2010-07-28 王建国 Tmr电流传感器
US20120025819A1 (en) * 2010-07-30 2012-02-02 Nxp B.V. Magnetoresistive sensor
CN102621504A (zh) * 2011-04-21 2012-08-01 江苏多维科技有限公司 单片参考全桥磁场传感器
CN102680009A (zh) * 2012-06-20 2012-09-19 无锡乐尔科技有限公司 线性薄膜磁阻传感器
CN103384141A (zh) * 2013-07-24 2013-11-06 江苏多维科技有限公司 一种磁阻混频器
CN203482163U (zh) * 2013-07-24 2014-03-12 江苏多维科技有限公司 一种磁阻混频器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929636A (en) * 1996-05-02 1999-07-27 Integrated Magnetoelectronics All-metal giant magnetoresistive solid-state component
US6376933B1 (en) * 1999-12-31 2002-04-23 Honeywell International Inc. Magneto-resistive signal isolator
JP4905402B2 (ja) * 2008-03-31 2012-03-28 Tdk株式会社 混合器および周波数変換装置
JP2009250931A (ja) * 2008-04-10 2009-10-29 Rohm Co Ltd 磁気センサおよびその動作方法、および磁気センサシステム
JP2010252296A (ja) * 2009-12-10 2010-11-04 Canon Anelva Corp 周波数変換装置、及び周波数変換方法
FR2974468B1 (fr) * 2011-04-20 2013-05-31 Commissariat Energie Atomique Demodulateur d'un signal electrique module en frequence
JP5790360B2 (ja) * 2011-09-16 2015-10-07 Tdk株式会社 周波数選択性を有する混合器
CN102419393B (zh) * 2011-12-30 2013-09-04 江苏多维科技有限公司 一种电流传感器
CN102854535B (zh) * 2012-08-24 2015-03-11 中国船舶重工集团公司第七二二研究所 一种宽带磁性传感器
CN202974369U (zh) * 2012-08-24 2013-06-05 江苏多维科技有限公司 直读式计量装置和直读式水表
CN102968845B (zh) * 2012-10-31 2015-11-25 江苏多维科技有限公司 一种被磁偏置的敏感方向平行于检测面的验钞磁头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788596A (zh) * 2010-01-29 2010-07-28 王建国 Tmr电流传感器
US20120025819A1 (en) * 2010-07-30 2012-02-02 Nxp B.V. Magnetoresistive sensor
CN102621504A (zh) * 2011-04-21 2012-08-01 江苏多维科技有限公司 单片参考全桥磁场传感器
CN102680009A (zh) * 2012-06-20 2012-09-19 无锡乐尔科技有限公司 线性薄膜磁阻传感器
CN103384141A (zh) * 2013-07-24 2013-11-06 江苏多维科技有限公司 一种磁阻混频器
CN203482163U (zh) * 2013-07-24 2014-03-12 江苏多维科技有限公司 一种磁阻混频器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768726B2 (en) 2013-07-24 2017-09-19 MultiDimension Technology Co., Ltd. Magnetoresistive mixer
JP2019528624A (ja) * 2016-08-18 2019-10-10 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 平衡磁気抵抗周波数ミキサ

Also Published As

Publication number Publication date
US20160164463A1 (en) 2016-06-09
EP3026814A1 (en) 2016-06-01
US9768726B2 (en) 2017-09-19
CN103384141A (zh) 2013-11-06
CN103384141B (zh) 2015-05-06
JP2016531481A (ja) 2016-10-06
EP3026814A4 (en) 2017-05-10
EP3026814B1 (en) 2018-12-12
JP6429871B2 (ja) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2015010620A1 (zh) 一种磁阻混频器
Ji et al. Spin injection, diffusion, and detection in lateral spin-valves
JP6968449B2 (ja) 平衡磁気抵抗周波数ミキサ
JP6611167B2 (ja) 熱電変換デバイス及び熱電変換素子
Puebla et al. Acoustic ferromagnetic resonance and spin pumping induced by surface acoustic waves
Chu et al. A magnetoelectric flux gate: New approach for weak DC magnetic field detection
Nakano et al. Magnetic tunnel junctions using perpendicularly magnetized synthetic antiferromagnetic reference layer for wide-dynamic-range magnetic sensors
Bryan et al. The effect of trapping superparamagnetic beads on domain wall motion
Boughazi et al. Phase diagrams and magnetic properties of a ferrimagnetic cylindrical core/shell spin-1 Ising nanowire
Moriya et al. Dependence of field driven domain wall velocity on cross-sectional area in Ni65Fe20Co15 nanowires
Mor et al. Planar Hall effect sensors with shape-induced effective single domain behavior
Keskin et al. Dynamic magnetic properties of a hexagonal Ising nanowire system with higher-spin
Shukla et al. Generation of charge current from magnetization oscillation via the inverse of voltage-controlled magnetic anisotropy effect
Qian et al. Effective anisotropy field in the free layer of patterned spin-valve resistors
CN206077338U (zh) 一种平衡磁电阻混频器
Hyun Kwon et al. Spin waves interference from rising and falling edges of electrical pulses
Hayashi et al. Microwave assisted resonant domain wall nucleation in permalloy nanowires
Ziętek et al. The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range
Kamali Ashtiani et al. Morphological magnetostatic coupling in spin valves due to anisotropic self-affine interface roughness
Stobiecki et al. Magnetic field induced transition from weak to strong ferromagnetic coupling in NiFe∕ Au∕ Co∕ Au multilayers
Yu et al. Reduction of the noise level in mutual inductive magnetic sensors with a magnetic circuit differential
Taniguchi et al. Effect of the number of layers on determination of spin asymmetries in current-perpendicular-to-plane giant magnetoresistance
Hui et al. Spin Hall magnetoresistance in Ta/CoFe2O4 nanostructures
Genish et al. The effects of geometry on magnetic response of elliptical PHE sensors
Ito et al. Enhancement of spin–orbit torques by change in uniaxial in-plane magnetic anisotropy of Py/Pt bilayers on single crystal 128° Y-Cut LiNbO3 substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14828876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014828876

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016528333

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14907060

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE