WO2015010562A1 - 一种植物诱导育种目标植物变异的育种方法 - Google Patents

一种植物诱导育种目标植物变异的育种方法 Download PDF

Info

Publication number
WO2015010562A1
WO2015010562A1 PCT/CN2014/082344 CN2014082344W WO2015010562A1 WO 2015010562 A1 WO2015010562 A1 WO 2015010562A1 CN 2014082344 W CN2014082344 W CN 2014082344W WO 2015010562 A1 WO2015010562 A1 WO 2015010562A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
breeding
incision
seedlings
induced
Prior art date
Application number
PCT/CN2014/082344
Other languages
English (en)
French (fr)
Inventor
曹长义
Original Assignee
Cao Changyi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cao Changyi filed Critical Cao Changyi
Publication of WO2015010562A1 publication Critical patent/WO2015010562A1/zh
Priority to US14/867,012 priority Critical patent/US20160014987A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G2/00Vegetative propagation
    • A01G2/30Grafting
    • A01G2/35Cutting; Inserting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G2/00Vegetative propagation
    • A01G2/30Grafting

Definitions

  • the invention relates to a breeding method for plant variation breeding target plant variation, belonging to the field of plant breeding. Background technique
  • the common breeding methods are selective breeding, cross breeding, mutagenic breeding (mutage breeding is divided into physical mutation breeding and chemical mutation breeding), biotechnology breeding, etc., but these breeding methods have the following defects to varying degrees:
  • the breeding cycle is long. It usually takes several years or even decades to breed from hybrid rice. For example, Xu Zhaoxuan has cultivated a new ginseng variety "Bianjia No. 1" from the selection, purification, elimination and comparison of strains. It took nearly 20 years. Time; 2, low success rate of breeding; 3, low predictability of breeding, breeders often cultivate dozens or even hundreds of hybrid combinations, but the comprehensive performance of hybrid new lines is not good. Therefore, it is unpredictable to seek a new method of plant breeding.
  • the technical solution adopted by the present invention is to provide a breeding method for plant variation breeding target plant variation, comprising the following steps:
  • the incision will be induced at 5-10 cm on both sides of the incision, and the cut one will be induced.
  • the stems are excavated together with the target plants of the breeding and the soil around the incision, and transplanted.
  • the implantation incision point of step 1) is a bud point or node at a distance of 3-lOcm from the root of the induced plant seedling.
  • the breeding target plant seedling height of step 2) is 3-10 cm.
  • Step 3 Incision at the point of implantation of the incision along the direction of growth of the induced plant stem.
  • Step 4) The implantation environment is at a temperature of 25-30 ° C and a relative humidity of 75-85%.
  • Step 4) is implanted at 1-3 am, 8-11 am or 3-6 pm.
  • the moisture content of the wet soil in step 5) is 75-85%.
  • Step 6 is sprinkled 8-15 times a day.
  • the invention adopts the plant to be induced as a breeding target plant, and the plant with obvious selective characteristics, significant mutagenic effect and easy to be implanted and mutagenized as a mutagenized plant, and the breeding of the target plant for breeding.
  • Breeding target plants that have been achieved include: wheat, barley, soybean, corn, rice, millet, sorghum, oats, wild oats, mung beans, sesame seeds, rapeseed, peanuts, cotton, sweet potatoes, potatoes, yam, pumpkin, pepper, melon , watermelon, rose flowers, platycodon and so on.
  • Inducing plants that have been shown to have excellent induction include: potatoes, sweet potatoes, taro, snow lotus, peanuts, corn, sorghum, soybeans, barley, sesame, rapeseed; yam, ginseng, Polygonum, habitat, honeysuckle, radix isatidis, sunflower, nettle , dahlia, peony, peony, rose flowers, nail grass, walnut, moringa tree, pomegranate tree, fig, batch tree, jujube tree, camphor tree, bamboo, sugar cane, dentate, cactus, aloe vera, wormwood, pumpkin , gourd, loofah, bitter gourd, beans, melon, watermelon, ginger, tomato, eggplant, leeks, lettuce, perilla, pepper, strawberry, valerian, wild wormwood, montane lettuce, shot hay and so on.
  • the implantation survival rate is over 90%, the mutagenicity rate is over 30%, and the variation ideal rate is more than 10%; the mutagenic intensity is large, diversified, stable, and the comprehensive performance of mutagenesis is good.
  • sweet potato is used as a breeding target plant
  • Polygonum multiflorum is used as an inducing plant
  • an implanted split is performed to carry out sweet potato mutagenesis breeding, including the following steps:
  • sweet potato seedlings began to produce 1-2 self-generated roots in the upper part of the incision; by 45 days, the sweet potato seedlings have produced 3-5 self-generated roots, which can grow independently;
  • soybean is used as a breeding target plant, and potatoes are used as an inducing plant to implement an implanted body.
  • potatoes are used as an inducing plant to implement an implanted body.
  • Soybean seedlings and potato seedlings are fixed with a film, covered with 85% moisture, compacted;
  • soybean seedlings began to produce self-generated roots in the upper part of the incision; by about 45 days, the soybean seedlings had produced 5-7 self-generated roots and could grow independently;
  • soybeans produced 10 seeds.
  • F1 generation was harvested, and the test field was planted.
  • the soybean seedlings showed significant variation compared with the unmutaged soybean seedlings.
  • the soybean plant height after mutagenesis was 80-90 cm, and the soybean plant height was 70-75 cm.
  • the soybeans show obvious high-yield characteristics: The compact shape, many knots, and an average of 180 grains per grain.
  • the yield per mu reached more than 290 kg, while the yield per mu of unmutated soybean was 160-200 kg.
  • the protein content reached 44% or more, which was higher than that of unmutagenized soybean, by the Agricultural Products Supervision and Inspection Center of the Ministry of Agriculture. More than percentage points; 9 percentage points higher than the US genetically modified soybeans.
  • the implantation survival rate is over 90%, the mutagenic rate is over 30%, the variability ideal rate is over 10%, and the breeding success rate is over 90%.
  • soybean is used as a breeding target plant
  • peanut is used as an inducing plant
  • an implanted split is performed to carry out soybean mutation breeding, including the following steps:
  • soybean seedlings began to produce self-generated roots in the upper part of the incision; by about 45 days, the soybean seedlings had produced 5-7 self-generated roots and could grow independently;
  • Soybean seeds were planted in the second year, and the high-oil soybean oil content reached 23%, 6 percentage points higher than unmutagenized soybeans and 3 percentage points higher than US genetically modified soybeans. Experiments have shown that the implantation survival rate is over 90%, the mutagenic rate is over 30%, the variation ideal rate is over 10%, and the breeding success rate is over 90%.
  • Example 4
  • cotton is used as a breeding target plant
  • dahlia is used as an inducing plant
  • an implanted split is performed to carry out cotton mutation breeding, including the following steps:
  • cotton is used as a breeding target plant
  • sunflower is used as an inducing plant
  • an implanted split is performed to carry out cotton mutation breeding, including the following steps:
  • peanuts are used as breeding target plants
  • walnut seedlings are used as inducing plants
  • implants are implanted to perform peanut mutagenesis breeding, including the following steps:
  • peanut seedlings began to produce self-generated roots in the upper part of the incision; by 50 days or so, the flowering seedlings have grown 5-7 self-generated roots and can grow independently;
  • peanuts produced 8 seeds.
  • F1 generation was harvested, and the test field was planted.
  • Peanut seedlings showed significant variation compared with unmutaged peanut seedlings.
  • the height of peanuts after mutagenesis was 40-50 cm, and the height of peanuts without mutagenesis was 30-35 cm.
  • the yield of peanuts in spring is more than 600 kg, and the yield per mu of summer seeds is over 450 kg.
  • the oil content in the agricultural product supervision and inspection center of the Ministry of Agriculture is 52.9%, which is 5 times higher than that of unmuted peanuts. Percentage points or so.
  • the implantation survival rate is over 90%
  • the mutagenicity rate is over 30%
  • the variational ideal rate is over 10%
  • the breeding success rate is over 90%.
  • wheat is used as a breeding target plant
  • potatoes are used as an inducing plant
  • an implanted split is performed to carry out wheat mutation breeding, including the following steps:
  • wheat seedlings began to produce 1-2 self-generated roots in the upper part of the incision; by 45-60 days, wheat seedlings have grown 3-5 self-generated roots and can grow independently; 8) Cut the potato seedlings 5 cm from both sides of the cut, and cut the cut potato stalks together with the wheat seedlings and the soil around the incision, transplant them to the prepared nursery fields, and continue the conservation growth.
  • the wheat produced 12 seeds. In the second year, 5 plants were planted, F1 generation was harvested, and the test field was planted. Compared with unmutagenized wheat, there was a significant variation. The height of the wheat after mutagenesis was 70-75 cm, and the wheat was not mutagenized 80-85 cm . It showed obvious high-yield characteristics: large panicle size, large number of grains, 1000-grain weight of 50-55 g, and 40-42 g of unmutagenized wheat.
  • the yield per mu reached more than 700 kg; the protein content of 16.56% (14% of unmutagenized wheat) and vitamin content were higher than that of unmutagenized wheat by the Agricultural Products Supervision and Inspection Center of the Ministry of Agriculture.
  • pepper is used as a breeding target plant
  • eggplant is used as an inducing plant
  • an implanted split is performed to carry out pepper mutagenesis breeding, including the following steps:
  • pepper seedlings began to produce 1-2 self-generated roots in the upper part of the incision; by 50 days or so, the pepper seedlings have grown 3-5 self-generated roots and can grow independently;
  • melon seedlings began to produce 2-3 self-generated roots in the upper part of the incision; by 50 days or so, melon seedlings have grown 3-5 self-generated roots and can grow independently;
  • the seedlings were planted in the second year. Compared with the unmutaged melon, the leaves changed greatly, the leaves became larger, the color was darker green, the vines were longer, the branches were more, and the results were more. The fruit shape became round and variable. Large, fleshy, and sweet. Experiments have shown that the implantation survival rate is over 90%, the mutagenicity rate is over 30%, the variation ideal rate is over 10%, and the breeding success rate is over 90%.
  • the rose is used as the target plant for breeding, and the peony is used as the inducing plant, and the implanted split is carried out to carry out the breeding of the rose, including the following steps:
  • the seedlings of the rose begin to produce 3-5 self-generated roots in the upper part of the incision; by 50 days or so, the rose seedlings have grown 5-8 self-generated roots and can grow independently;
  • the petals increase and the color is brighter than that of the unmutated rose.
  • the second year of cutting seedlings blooms, compared with the unmutated rose, the flowering becomes larger, the flower shape becomes larger, and the petals are more The color is rainbow and the growth is strong.
  • the implantation survival rate is over 90%
  • the mutagenicity rate is over 30%
  • the variability ideal rate is over 10%
  • the breeding success rate is over 90%.

Abstract

一种植物诱导育种目标植物变异的育种方法,包括以下步骤:1)培育诱导植物幼苗,将诱导植物幼苗上的芽点或者节点作为植入切口点;2)选取育种目标植物幼苗待用;3)在植入切口点切口;4)将育种目标植物幼苗植入切口中;5)将育种目标植物和诱导植物固定,湿土覆盖,压实;6)遮阴养护,每日洒水;7)45-60天后,将诱导植物切口两侧5-10cm处剪断,将剪下的一截诱导植物茎连同育种目标植物和切口周围土壤一起移栽即得。上述方法可以实现包括同缘、近缘或远缘植物间的诱变育种,适用于大部分植物,具有育种成功率高、诱变几率高、诱变综合性能良好、诱变性能多样、稳定快等优点。

Description

一种植物诱导育种目标植物变异的育种方法 技术领域
本发明涉及一种植物诱导育种目标植物变异的育种方法,属于植物育种领域。 背景技术
随着世界人口的不断增长, 对于粮食的需求也不断增加。 因此, 培育农作物 新品种, 以提高传统农作物品质、 产量的水平已经亟不可待。 同时, 随着生活水 平的提高, 人们对生活品质的要求越来越高, 已经不满足于现有的植物品种。 因 此, 植物育种已经成为国际学者研究的热门课题。
目前常见的育种方法有选择育种、杂交育种、诱变育种(诱变育种又分为物 理诱变育种和化学诱变育种)、 生物技术育种等, 但是这些育种手段不同程度存 在以下缺陷: 1、 育种周期长, 从杂交稻育出品种一般需要几年甚至几十年, 如 徐昭玺从选择、 纯化、 淘汰和品系比较等, 培育出边条人参新品种 "边条 1号" 花费了近 20年时间; 2、 育种成功率低; 3、 育种可预见性低, 育种人往往培育 几十甚至上百个杂交组合, 但是杂交新品系的综合性能欠佳。 因此, 寻求一种新 的植物育种方法已经亟不可待。
发明内容
本发明的目的是提供一种植物诱导育种目标植物变异的育种方法,可以实现 包括同缘、 近缘或远缘植物间的诱变育种。
为了实现以上目的,本发明所采用的技术方案是提供一种植物诱导育种目标 植物变异的育种方法, 包括以下步骤:
1 ) 培育诱导植物幼苗, 将诱导植物幼苗上的芽点或者节点, 作为植入切口 点;
2 ) 选取育种目标植物幼苗, 待用;
3 ) 在植入切口点切口;
4) 将育种目标植物幼苗下部削成与切口吻合的形状, 然后植入切口中;
5 ) 将育种目标植物和诱导植物固定, 湿土覆盖, 压实;
6 ) 遮阴养护, 每日洒水;
7 ) 45-60天后, 将诱导植物切口两侧 5-lOcm处剪断, 将剪下的一截诱导植 物茎连同育种目标植物和切口周围土壤一起挖出, 移栽即得。
步骤 1 ) 的植入切口点为距离诱导植物幼苗根部 3-lOcm处的芽点或节点。 步骤 2 ) 的育种目标植物幼苗高度为 3-10cm。
步骤 3 ) 在植入切口点顺着诱导植物茎的生长方向切口。
步骤 4) 的植入环境为温度 25-30°C, 相对湿度 75-85%。
步骤 4) 的植入时间为凌晨 1-3点、 上午 8-11点或下午 3-6点。
步骤 5 ) 的湿土含水量是 75-85%。
步骤 6 ) 的洒水为每日 8-15次。
本发明将待诱导的植物作为育种目标植物, 并选择性状特点明显、诱变效果 显著且易于进行植入诱变操作的植物作为诱变植物,对育种目标植物进行诱变育 种。
目前已经实现的育种目标植物包括: 小麦、大麦、大豆、玉米、水稻、谷子、 高粱、 燕麦、 野燕麦、 绿豆、 芝麻、 油菜籽、 花生、 棉花、 红薯、 土豆、 山药、 南瓜、 辣椒、 甜瓜、 西瓜、 月季花、 桔梗等。
已经证明具有优良诱导作用的诱导植物包括: 土豆、 红薯、 芋头、 雪莲、 花 生、 玉米、 高粱、 大豆、 大麦、 芝麻、 油菜籽; 山药、 人参、 何首乌、 生地、 金 银花、 板蓝根、 向日葵、 蓖麻、 大丽花、 牡丹、 芍药、 月季花、 指甲草、 核桃、 辣木树、 石榴树、 无花果、 批把树、 酸枣树、 香椿树、 竹子、 甘蔗、 马齿菜、 仙 人掌、 芦荟、 艾草、 南瓜、 葫芦、 丝瓜、 苦瓜、 豆角、 甜瓜、 西瓜、 大姜、 西红 柿、 茄子、 苋菜、 生菜、 紫苏、 辣椒、 草莓、 苜蓿草、 野塘蒿、 蒙山莴苣、 射干 草等。
本发明具有以下优点:
1 ) 可以实现同缘、 近缘或远缘植物间的诱变育种; 育种目标植物、 诱导植 物选择范围广泛,适用于大部分的植物,可在一定程度上实现任意植物的诱变育 种。
2 )植入成活率 90%以上, 诱变率 30%以上, 变异理想率 10%以上; 诱变强度 大、 多样化、 稳定快, 诱变综合性能好。
3 ) 育种成功概率高, 可到 90%以上, 克服了常规育种方法成功概率低的缺 点。 4)育种周期缩短三分之一到二分之一 (以小麦为例, 常规育种一般需要 10 年左右,采用本发明的方法仅需 3-5年),育种效率高,可实现多品种、工厂化、 批量诱变育种。
5 ) 育种成本低, 综合成本降低数倍。
6 ) 技术简便, 操作性强, 便于推广。
具体实施方式
实施例 1
本实施例以红薯作为育种目标植物,以何首乌作为诱导植物,实施植入分体, 进行红薯诱变育种, 包括以下步骤:
1 )栽种何首乌种子,直至其幼苗长至 30-50cm,将何首乌茎距离根上部 3-5cm 处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 3-5cm的红薯幼苗, 待用;
3 ) 在植入切口点顺着何首乌茎的生长方向切口, 切口大小和深浅根据红薯 幼苗粗细而定;
4)将红薯幼苗下部削成与切口吻合的形状, 在凌晨 2点、 温度 25°C, 相对 湿度 85%的条件下, 将红薯幼苗植入切口中;
5 ) 将红薯幼苗和何首乌幼苗用薄膜固定, 含水量 85%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 8-10次;
7 ) 10-15天, 红薯幼苗在切口上部开始生出 1-2条自生根; 到 45天时, 红 薯幼苗已经生出 3-5条自生根, 能独立生长;
8 )将何首乌幼苗切口两侧 10cm处剪断,将剪下的一截何首乌茎连同红薯幼 苗和切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
将当年红薯结出的小红薯, 作为种子, 第二年育苗种植, 待红薯收获时, 与 未诱变红薯比较发现,采用本发明诱变育种的红薯薯块发生明显表观变异, 外形 如同何首乌状, 还有连体 3个、 4个、 5个成串, 味道也同未诱变红薯相异。 实 验证明, 植入成活率 90%以上, 诱变率 30%以上, 变异理想率 10%以上, 育种成 功率 90%以上。
实施例 2
本实施例以大豆作为育种目标植物, 以土豆作为诱导植物, 实施植入分体, 进行大豆诱变育种, 包括以下步骤:
1 ) 栽种土豆种子, 直至其幼苗长至 30-50cm, 将土豆茎距离根上部 3-5cm 处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 3-5cm的大豆幼苗, 待用;
3 ) 在植入切口点顺着土豆茎的生长方向切口, 切口大小和深浅根据大豆幼 苗粗细而定;
4)将大豆幼苗下部削成与切口吻合的形状, 在凌晨 1点、 温度 25°C, 相对 湿度 75%的条件下, 将大豆幼苗植入切口中;
5 ) 将大豆幼苗和土豆幼苗用薄膜固定, 含水量 85%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 10-15次;
7 ) 15天左右, 大豆幼苗在切口上部开始生出自生根; 到 45天左右时, 大 豆幼苗已经生出 5-7条自生根, 能独立生长;
8 )将土豆幼苗切口两侧 10cm处剪断,将剪下的一截土豆茎连同大豆幼苗和 切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
当年大豆结出 10粒种籽。 第二年播种成活 6棵, 收获 F1代, 播种试验田, 大豆幼苗与未诱变大豆幼苗相比, 发生明显变异, 诱变后的大豆株高 80-90cm, 未诱变大豆株高 70-75cm; 待大豆收获时, 表现出明显丰产特征: 棵型紧凑、 结 夹多、 每棵粒数平均达到 180粒。 经农民大田种植, 亩产达到 290公斤以上, 而 未诱变大豆的亩产为 160-200公斤; 经农业部农产品监督检验中心检测, 蛋白质 含量达到 44%以上, 比未诱变大豆高 3个百分点以上; 比美国转基因大豆高 9个 百分点。 实验证明, 植入成活率 90%以上, 诱变率 30%以上, 变异理想率 10%以 上, 育种成功率 90%以上。
实施例 3
本实施例以大豆作为育种目标植物, 以花生作为诱导植物, 实施植入分体, 进行大豆诱变育种, 包括以下步骤:
1 ) 栽种花生种子, 直至其幼苗长至 30-50cm, 将花生茎距离根上部 3-5cm 处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 3-5cm的大豆幼苗, 待用;
3 ) 在植入切口点顺着花生茎的生长方向切口, 切口大小和深浅根据大豆幼 苗粗细而定;
4)将大豆幼苗下部削成与切口吻合的形状, 在凌晨 1点、 温度 25°C, 相对 湿度 75%的条件下, 将大豆幼苗植入切口中;
5 ) 将大豆幼苗和花生幼苗用薄膜固定, 含水量 80%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 10-15次;
7 ) 15天左右, 大豆幼苗在切口上部开始生出自生根; 到 45左右天时, 大 豆幼苗已经生出 5-7条自生根, 能独立生长;
8 )将花生幼苗切口两侧 10cm处剪断,将剪下的一截花生茎连同大豆幼苗和 切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
将当年的大豆种子在第二年进行播种, 培育出的高油大豆含油量达到 23%, 比未诱变大豆高 6个百分点, 比美国转基因大豆高 3个百分点。 实验证明, 植入 成活率 90%以上, 诱变率 30%以上, 变异理想率 10%以上, 育种成功率 90%以上。 实施例 4
本实施例以棉花作为育种目标植物,以大丽花作为诱导植物,实施植入分体, 进行棉花诱变育种, 包括以下步骤:
1 ) 栽种大丽花种子, 直至其幼苗长至 30-50cm, 将大丽花茎距离根上部 6-lOcm处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 5-lOcm的棉花幼苗, 待用;
3 ) 在植入切口点顺着大丽花茎的生长方向切口, 切口大小和深浅根据棉花 幼苗粗细而定;
4)将棉花幼苗下部削成与切口吻合的形状, 在下午 3点、 温度 30°C, 相对 湿度 80%的条件下, 将棉花幼苗植入切口中;
5 ) 将棉花幼苗和大丽花幼苗用薄膜固定, 含水量 75%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 10次左右;
7 ) 20天左右, 棉花幼苗在切口上部开始生出自生根; 到 45-60天时, 棉花 幼苗已经能独立生长;
8 )将大丽花幼苗切口两侧 10cm处剪断,将剪下的一截大丽花茎连同棉花幼 苗和切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
当年棉花开花结籽, 作为种子, 第二年育苗种植, 待棉花开花采摘时, 棉花 绒呈现浅红色,与未诱变棉花白色绒明显不同。实验证明,植入成活率 90%以上, 诱变率 30%以上, 变异理想率 10%以上, 育种成功率 90%以上。
实施例 5
本实施例以棉花作为育种目标植物,以向日葵作为诱导植物,实施植入分体, 进行棉花诱变育种, 包括以下步骤:
1 ) 栽种向日葵种子, 直至其幼苗长至 30-50cm, 将向日葵茎距离根上部 6-lOcm处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 5-lOcm的棉花幼苗, 待用;
3 ) 在植入切口点顺着向日葵茎的生长方向切口, 切口大小和深浅根据棉花 幼苗粗细而定;
4)将棉花幼苗下部削成与切口吻合的形状, 在下午 6点、 温度 30°C, 相对 湿度 80%的条件下, 将棉花幼苗植入切口中;
5 ) 将棉花幼苗和向日葵幼苗用薄膜固定, 含水量 80%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 10次左右;
7 ) 20天, 棉花幼苗在切口上部开始生出自生根; 到 45-60天时, 棉花幼苗 已经能独立生长;
8 )将向日葵幼苗切口两侧 10cm处剪断,将剪下的一截向日葵茎连同棉花幼 苗和切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
当年棉花开花结籽, 作为种子, 第二年育苗种植, 待棉花开花采摘时, 棉花 绒呈现浅黑色,与未诱变棉花白色绒明显不同。实验证明,植入成活率 90%以上, 诱变率 30%以上, 变异理想率 10%以上, 育种成功率 90%以上。
实施例 6
本实施例以花生作为育种目标植物, 以核桃树幼苗作为诱导植物, 实施植入 分体, 进行花生诱变育种, 包括以下步骤:
1 )培养核桃树幼苗,直至其幼苗长至 5-10cm,将核桃幼苗距离根上部 3-5cm 处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 3-5cm的花生幼苗, 待用;
3 ) 在植入切口点顺着核桃树茎的生长方向切口, 切口大小和深浅根据花生 幼苗粗细而定; 4)将花生幼苗下部削成与切口吻合的形状, 在上午 8点、 温度 26°C, 相对 湿度 83%的条件下, 将花生幼苗植入切口中;
5 ) 将花生幼苗和核桃幼苗用薄膜固定, 含水量 75%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 10-15次;
7 ) 15天左右, 花生幼苗在切口上部开始生出自生根; 到 50天左右时, 花 生幼苗已经长出 5-7条自生根, 能独立生长;
8 ) 将核桃幼苗切口两侧 5cm处剪断, 将剪下的一截核桃树茎连同花生幼苗 和切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
当年花生结出 8粒种籽。 第二年播种成活 5棵, 收获 F1代, 播种试验田, 花生幼苗与未诱变花生幼苗相比, 发生明显变异, 诱变后的花生株高 40-50cm, 未诱变花生株高 30-35cm; 待花生收获时, 表现出明显丰产特征: 结果多、 果皮 薄。 经农民大田种植, 春种花生亩产达到 600公斤以上, 夏种花生亩产达到 450 公斤以上; 经农业部农产品监督检验中心检测, 油脂含量达到 52. 9%, 比未诱变 花生高 5个百分点左右。 实验证明, 植入成活率 90%以上, 诱变率 30%以上, 变 异理想率 10%以上, 育种成功率 90%以上。
实施例 7
本实施例以小麦作为育种目标植物, 以土豆作为诱导植物, 实施植入分体, 进行小麦诱变育种, 包括以下步骤:
1 ) 栽种土豆幼苗, 直至其幼苗长至 5-10cm, 将土豆幼苗距离根上部 3-5cm 处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 3-5cm的小麦幼苗, 待用;
3 ) 在植入切口点顺着土豆茎的生长方向切口, 切口大小和深浅根据小麦幼 苗粗细而定;
4) 将小麦幼苗下部削成与切口吻合的形状, 在上午 11点、 温度 30°C, 相 对湿度 75%的条件下, 将小麦幼苗植入切口中;
5 ) 将小麦幼苗和土豆幼苗用薄膜固定, 含水量 85%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 12次;
7 ) 10-15天, 小麦幼苗在切口上部开始生出 1-2条自生根; 到 45-60天时, 小麦幼苗已经长出 3-5条自生根, 能独立生长; 8 ) 将土豆幼苗切口两侧 5cm处剪断, 将剪下的一截土豆茎连同小麦幼苗和 切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
当年小麦结出 12粒种籽。 第二年播种成活 5棵, 收获 F1代, 播种试验田, 与未诱变小麦相比, 发生明显变异, 诱变后的小麦株高 70-75cm, 未诱变小麦 80-85cm;待小麦收获时,表现出明显丰产特征:穗型大、粒数多、千粒重达 50-55g, 未诱变小麦为 40-42g。 经农民大田种植, 亩产达到 700公斤以上; 经农业部农 产品监督检验中心检测, 蛋白质含量 16. 56% (未诱变小麦 14%)、 维生素含量均 高于未诱变小麦。 实验证明, 植入成活率 90%以上, 诱变率 30%以上, 变异理想 率 10%以上, 育种成功率 90%以上。
实施例 8
本实施例以辣椒作为育种目标植物, 以茄子为诱导植物, 实施植入分体, 进 行辣椒诱变育种, 包括以下步骤:
1 ) 栽种茄子幼苗, 直至其幼苗长至 5-10cm, 将茄子幼苗距离根上部 3-5cm 处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 3-5cm的辣椒幼苗, 待用;
3 ) 在植入切口点顺着茄子茎的生长方向切口, 切口大小和深浅根据辣椒幼 苗粗细而定;
4) 将辣椒幼苗下部削成与切口吻合的形状, 在上午 10点、 温度 28°C, 相 对湿度 77%的条件下, 将辣椒幼苗植入切口中;
5 ) 将辣椒幼苗和茄子幼苗用薄膜固定, 含水量 85%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 10次左右;
7 ) 10-15天,辣椒幼苗在切口上部开始生出 1-2条自生根;到 50天左右时, 辣椒幼苗已经长出 3-5条自生根, 能独立生长;
8 ) 将茄子幼苗切口两侧 5cm处剪断, 将剪下的一截茄子茎连同辣椒幼苗和 切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
当年辣椒开花结椒, 作为种子, 第二年育苗种植, 与未诱变辣椒相比, 发生 明显变异, 诱变后的辣椒株高 75-80cm, 未诱变辣椒株高 65-70cm; 叶子变大, 长势旺盛; 待结出辣椒, 果形变粗、 变短, 皮肉厚。 实验证明, 植入成活率 90% 以上, 诱变率 30%以上, 变异理想率 10%以上, 育种成功率 90%以上。 本实施例以甜瓜作为育种目标植物, 以西瓜作为诱导植物, 实施植入分体, 进行甜瓜诱变育种, 包括以下步骤:
1 )栽种西瓜幼苗, 直至其幼苗长至 10-15cm, 将西瓜幼苗距离根上部 3-5cm 处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 5-8cm的甜瓜幼苗, 待用;
3 ) 在植入切口点顺着西瓜茎的生长方向切口, 切口大小和深浅根据甜瓜幼 苗粗细而定;
4)将甜瓜幼苗下部削成与切口吻合的形状, 在凌晨 3点、 温度 25°C, 相对 湿度 81%的条件下, 将甜瓜幼苗植入切口中;
5 ) 将甜瓜幼苗和西瓜幼苗用薄膜固定, 含水量 85%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 10次左右;
7 ) 10-15天,甜瓜幼苗在切口上部开始生出 2-3条自生根;到 50天左右时, 甜瓜幼苗已经长出 3-5条自生根, 能独立生长;
8 )将西瓜幼苗切口两侧 10cm处剪断,将剪下的一截西瓜茎连同甜瓜幼苗和 切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
当年甜瓜开花结果, 作为种子, 第二年育苗种植, 与未诱变甜瓜相比, 发生 明显变异, 叶子变大, 颜色深绿, 秧蔓长, 分枝多, 结果多; 果形变圆、 变大, 肉厚, 甜度提高。 实验证明, 植入成活率 90%以上, 诱变率 30%以上, 变异理想 率 10%以上, 育种成功率 90%以上。
实施例 10
本实施例以月季作为育种目标植物, 以妁药作为诱导植物, 实施植入分体, 进行月季诱变育种, 包括以下步骤:
1 ) 栽种妁药幼苗, 直至其幼苗长至 5-10cm, 将妁药幼苗距离根上部 3-5cm 处的芽点, 作为植入切口点;
2 ) 选择幼苗高度为 3-5cm的月季幼苗, 待用;
3 ) 在植入切口点顺着妁药茎的生长方向切口, 切口大小和深浅根据月季幼 苗粗细而定;
4)将月季幼苗下部削成与切口吻合的形状, 在下午 4点、 温度 28°C, 相对 湿度 77%的条件下, 将月季幼苗植入切口中;
5 ) 将月季幼苗和妁药幼苗用薄膜固定, 含水量 85%湿土覆盖, 压实;
6 ) 遮阴养护, 每日用电动喷雾器雾状喷洒水 10次左右;
7 ) 10-15天,月季幼苗在切口上部开始生出 3-5条自生根;到 50天左右时, 月季幼苗已经长出 5-8条自生根, 能独立生长;
8 ) 将妁药幼苗切口两侧 5cm处剪断, 将剪下的一截妁药茎连同月季幼苗和 切口周围土壤一起挖出, 移栽到准备好的育苗田地, 继续进行养护性生长。
当年月季幼苗长大开花, 与未诱变月季相比, 花瓣增多, 颜色艳丽; 作为种 子, 第二年扦插育苗开花, 与未诱变月季相比, 发生明显变异, 花型变大, 花瓣 更密, 颜色呈彩虹, 长势旺盛。 实验证明, 植入成活率 90%以上, 诱变率 30%以 上, 变异理想率 10%以上, 育种成功率 90%以上。

Claims

权利要求书
1、 一种植物诱导育种目标植物变异的育种方法, 其特征在于, 包括以下步 骤:
1 ) 培育诱导植物幼苗, 将诱导植物幼苗上的芽点或者节点, 作为植入切口 点;
2 ) 选取育种目标植物幼苗, 待用;
3 ) 在植入切口点切口;
4) 将育种目标植物幼苗下部削成与切口吻合的形状, 然后植入切口中;
5 ) 将育种目标植物和诱导植物固定, 湿土覆盖, 压实;
6 ) 遮阴养护, 每日洒水;
7 ) 45-60天后, 将诱导植物切口两侧 5-lOcm处剪断, 将剪下的一截诱导植 物茎连同育种目标植物和切口周围土壤一起挖出, 移栽即得。
2、 根据权利要求 1所述的一种植物诱导育种目标植物变异的育种方法, 其 特征在于, 步骤 1 ) 的植入切口点为距离诱导植物幼苗根部 3-lOcm处的芽点或 节点。
3、 根据权利要求 1所述的一种植物诱导育种目标植物变异的育种方法, 其 特征在于, 步骤 2 ) 的育种目标植物幼苗高度为 3-10cm。
4、 根据权利要求 1所述的一种植物诱导育种目标植物变异的育种方法, 其 特征在于, 步骤 3 ) 在植入切口点顺着诱导植物茎的生长方向切口。
5、 根据权利要求 1所述的一种植物诱导育种目标植物变异的育种方法, 其 特征在于, 步骤 4) 的植入环境为温度 25-30°C, 相对湿度 75-85%。
6、 根据权利要求 1所述的一种植物诱导育种目标植物变异的育种方法, 其 特征在于, 步骤 4) 的植入时间为凌晨 1-3点、 上午 8-11点或下午 3-6点。
7、 根据权利要求 1所述的一种植物诱导育种目标植物变异的育种方法, 其 特征在于, 步骤 5 ) 的湿土含水量是 75-85%。
8、 根据权利要求 1所述的一种植物诱导育种目标植物变异的育种方法, 其 特征在于, 步骤 6 ) 的洒水为每日 8-15次。
PCT/CN2014/082344 2013-07-25 2014-07-16 一种植物诱导育种目标植物变异的育种方法 WO2015010562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/867,012 US20160014987A1 (en) 2013-07-25 2015-09-28 Breeding Method of Plant Induced Mutation of Breeding Target Plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310317334.7 2013-07-25
CN201310317334.7A CN103766142B (zh) 2013-07-25 2013-07-25 一种植物诱导育种目标植物变异的育种方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/867,012 Continuation-In-Part US20160014987A1 (en) 2013-07-25 2015-09-28 Breeding Method of Plant Induced Mutation of Breeding Target Plant

Publications (1)

Publication Number Publication Date
WO2015010562A1 true WO2015010562A1 (zh) 2015-01-29

Family

ID=50559276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082344 WO2015010562A1 (zh) 2013-07-25 2014-07-16 一种植物诱导育种目标植物变异的育种方法

Country Status (3)

Country Link
US (1) US20160014987A1 (zh)
CN (1) CN103766142B (zh)
WO (1) WO2015010562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108849481A (zh) * 2018-07-24 2018-11-23 福建农林大学 一种抗白粉病炮弹形白苦瓜品种的选育方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103766142B (zh) * 2013-07-25 2015-08-19 曹长义 一种植物诱导育种目标植物变异的育种方法
CN106879459A (zh) * 2017-03-01 2017-06-23 周口师范学院 一种植物诱导育种目标植物变异的育种方法
CN112293138A (zh) * 2020-12-04 2021-02-02 周云全 紫衣核桃新品种的培育方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101480163A (zh) * 2008-01-08 2009-07-15 曹长义 各种植物间融合远缘诱变培育新品种的方法
CN101584296A (zh) * 2008-05-19 2009-11-25 曹长义 采用马铃薯为砧木培育小麦新品种的方法
CN102132653A (zh) * 2010-12-21 2011-07-27 上海博琛生物科技有限公司 一种培育嫁接黄瓜强大根系的栽培方法
CN103766142A (zh) * 2013-07-25 2014-05-07 曹长义 一种植物诱导育种目标植物变异的育种方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1013919B (zh) * 1987-04-16 1991-09-18 黄河清 生物诱变育种方法
JP2007166973A (ja) * 2005-12-22 2007-07-05 Hidetoshi Satake 接木苗用の育苗トレイとそれを用いた栽培方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101480163A (zh) * 2008-01-08 2009-07-15 曹长义 各种植物间融合远缘诱变培育新品种的方法
CN101584296A (zh) * 2008-05-19 2009-11-25 曹长义 采用马铃薯为砧木培育小麦新品种的方法
CN102132653A (zh) * 2010-12-21 2011-07-27 上海博琛生物科技有限公司 一种培育嫁接黄瓜强大根系的栽培方法
CN103766142A (zh) * 2013-07-25 2014-05-07 曹长义 一种植物诱导育种目标植物变异的育种方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108849481A (zh) * 2018-07-24 2018-11-23 福建农林大学 一种抗白粉病炮弹形白苦瓜品种的选育方法

Also Published As

Publication number Publication date
CN103766142A (zh) 2014-05-07
CN103766142B (zh) 2015-08-19
US20160014987A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP2017018056A (ja) 温水ストレス栽培方法
CN103703974A (zh) 一种甘薯的栽培方法
JP6043117B2 (ja) 新規トマト多本仕立接木苗及びその作成方法
CN104718930A (zh) 一种苦瓜高产优质的栽培方法
CN103503657A (zh) 番茄侧枝扦插育苗方法
WO2015010562A1 (zh) 一种植物诱导育种目标植物变异的育种方法
CN105379520A (zh) 火龙果的栽培方法
Sharma et al. Performance of potato (Solanum tuberosum) clones under water stress
Umesha et al. Environmental conditions and type of cuttings on rooting and growth of vanilla (Vanilla planifolia Andrews)
Kumar et al. Scientific seed production techniques in moringa
CN103190265A (zh) 一种七叶树的种植方法
CN103340069B (zh) 不落粒金荞麦品种的选育方法及其种植方法
CN103563591A (zh) 一种草莓的快速育苗技术
Oliveira et al. Cactus pear and pitaya: Fruit production and orchard management
CN104541815A (zh) 一种辣椒高产栽培技术
KR101544321B1 (ko) 씨감자의 대량 생산방법
Wilkins Caladium× hortulanum
CN104472156A (zh) 日光温室内秋冬茬西红柿栽培的方法
CN103718950A (zh) 一种分蘖洋葱杂种一代的选育方法
CN105453847A (zh) 一种辣椒栽培方法
Karhu et al. Improving the performance of red and white currants in high latitude conditions by training methods
Mirzaeva et al. Getting Sprouts from Mulberry Trees in invitro conditions
RU2528212C1 (ru) Способ многократного использования ботвы при выращивании нескольких урожаев по девяткину в.д.
CN101019497A (zh) 一种人参果树的培育方法
Kruger et al. Enhancing seed germination of Ceratonia siliqua L. for large scale production in southern Africa

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829931

Country of ref document: EP

Kind code of ref document: A1