WO2015010460A1 - 一种油液金属磨粒在线监测系统及其监测方法 - Google Patents

一种油液金属磨粒在线监测系统及其监测方法 Download PDF

Info

Publication number
WO2015010460A1
WO2015010460A1 PCT/CN2014/072172 CN2014072172W WO2015010460A1 WO 2015010460 A1 WO2015010460 A1 WO 2015010460A1 CN 2014072172 W CN2014072172 W CN 2014072172W WO 2015010460 A1 WO2015010460 A1 WO 2015010460A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
abrasive grains
metal
metal abrasive
magnetic field
Prior art date
Application number
PCT/CN2014/072172
Other languages
English (en)
French (fr)
Inventor
刘洪涛
刘宇航
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2015010460A1 publication Critical patent/WO2015010460A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0612Optical scan of the deposits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0294Particle shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2858Metal particles

Definitions

  • the invention relates to an oil monitoring technology, in particular to a system for online monitoring of oil metal abrasive grains and an online monitoring method thereof.
  • the wear debris carried in the oil reflects the wear state of the mechanical equipment. Sampling the lubricating oil, comprehensively using the abrasive particle analysis technology and oil analysis technology to analyze the concentration, size, shape and composition of the abrasive particles in the oil, and comprehensively understand the wear state of the equipment and the pollution status of the lubrication system. To evaluate the health of the machine and provide early warning of its possible failures, providing an important basis for machine condition monitoring and remaining life prediction.
  • the traditional oil monitoring technology mainly adopts the offline monitoring method, which requires expensive precision instruments (such as atomic emission spectrometer, near-infrared spectrometer and iron spectrum analyzer), and has a long detection time.
  • the results of off-line monitoring and analysis are not good enough for 50% of the equipment with severe wear due to poor representativeness of sampling, 45% indicates that the failure is about to occur, and only 5% detected serious problems.
  • This consumes a lot of manpower and material resources, and it is impossible to diagnose the fault in time.
  • the pollution of the oil is a process of quantitative change to qualitative change, and the time of occurrence of this process is unknown, so it is necessary to monitor the oil online at all times so as not to make the monitoring of the oil full of chance. Therefore, online pollution monitoring of the performance and state of lubricating oil, effective pollution control of oil, increase its service life, and ensure its safe and efficient work are of great significance to the national economic construction and the development of national defense.
  • On-line oil monitoring technology is a new analytical technology that should be developed according to the needs of large-scale mechanical equipment that is automated and multi-functional. It monitors the state of oil contamination and eliminates the fault of the equipment when the equipment is not shut down or disassembled. The reason is to carry out targeted maintenance and repair, and to increase the timeliness and convenience of mechanical equipment maintenance. Online oil monitoring technology, especially online abrasive particle monitoring technology, has become one of the current research hotspots and trends.
  • the sensor is installed in the lubricating oil circulating oil circuit of the equipment, and the lubricating oil sampling and abrasive grain analysis can be automatically and continuously performed in real time during the normal operation of the mechanical equipment, and the running state of the equipment can be obtained in time. This is of great significance for improving equipment wear monitoring and fault prediction levels, achieving equipment maintenance as appropriate, effectively reducing equipment maintenance costs, and improving economic efficiency.
  • the online oil particle monitoring methods mainly include: magnetic method, counting method, material characteristic method, etc., but each has its own shortcomings.
  • the magnetic method can only detect abrasive particles with ferromagnetism, and it is impossible to measure non-ferromagnetic abrasive particles and external pollutant particles.
  • the counting method cannot obtain information on the abrasive material at all.
  • the online monitoring of ultrasonic abrasive grains is foreign.
  • the present invention provides an online monitoring system for oil metal abrasive grains and a monitoring method thereof, and an online oil monitoring technique capable of analyzing particle size distribution, morphological characteristics and materials of abrasive grains.
  • An oil metal abrasive online monitoring system comprising an abrasive particle sensor and an oil circuit connected in parallel with the oil pool of the device, wherein the oil circuit is provided with a solenoid valve and an auxiliary oil pump; the abrasive particle sensor comprises an electromagnetic induction device and infrared thermal imaging The oil path is disposed in an alternating magnetic field region of the electromagnetic induction device, the focus point of the infrared thermal imager is located on a cross section of the oil path in the alternating magnetic field region, and the abrasive particle sensor transmits the monitored data signal To the industrial control system.
  • the method for using the metal abrasive grain online monitoring system comprises the following steps: adjusting the electromagnetic valve, opening the auxiliary oil pump, pumping the oil containing the metal abrasive grains from the equipment oil pool into the oil path and flowing through the alternating magnetic field region, the abrasive particle sensor The data information of the metal abrasive grains is monitored and transmitted to the industrial control system for analysis.
  • the data information of the metal abrasive particles monitored by the abrasive particle sensor is temperature field distribution image information
  • the temperature field distribution image information is transmitted to the industrial control system for analyzing the shape, granularity and material of the metal abrasive grains.
  • the particle size distribution, morphological characteristics and material characteristics of the abrasive particles can be monitored by an infrared thermal imager.
  • an induced potential is generated.
  • a eddy current is generated on the surface of the metal abrasive grains, and the eddy current heats the surface of the metal abrasive grains to increase the temperature and distinguish it from the oil background.
  • the infrared thermal imager can monitor the particle size distribution and morphological characteristics of the metal abrasive grains. Since the non-metal abrasive grains cannot generate eddy currents in the alternating magnetic field, the surface temperature does not rise, thereby distinguishing the metal abrasive grains in the oil.
  • the surface heating rate is different in a fixed time, and the difference in the surface temperature of the metal abrasive particles can be measured by an infrared thermal imager to distinguish the material of the abrasive particles.
  • the surface of the metal abrasive grain is first heated, and the shape and particle size of the abrasive grain can be clearly monitored by the microscopic infrared imaging system.
  • the temperature rise rate of the metal surface in a fixed time is different, and the abrasive grain material can be distinguished according to the difference in the surface temperature of the abrasive grains.
  • the invention overcomes the weakness of the prior art, the magnetic method online abrasive grain monitoring can not monitor the weakness of the non-ferromagnetic abrasive grains and the externally contaminated abrasive grains, and the information that the counting method can not obtain the information of the abrasive grain material by the online abrasive grain monitoring, and provides a kind of weakness.
  • Oil The metal abrasive online monitoring system and its monitoring method can accurately analyze the particle size distribution, morphological characteristics and material characteristics of the abrasive grains.
  • Figure 1 is a schematic view of the structure of the present invention.
  • FIG. 2 is a schematic view showing the structure of the abrasive grain sensor of the present invention.
  • an oil metal abrasive on-line monitoring system includes an abrasive particle sensor 3 and an oil circuit connected in parallel with the equipment oil pool 1, and the oil passage is provided with a solenoid valve 2 and an auxiliary oil pump 4;
  • the solenoid valve 2 is used to control the monitoring time of the pumped oil and the period of system monitoring.
  • the abrasive grain sensor 3 includes an electromagnetic induction device and an infrared thermal imager.
  • the oil passage is disposed in an alternating magnetic field region of the electromagnetic induction device, and the infrared thermal imager focuses on an alternating magnetic field.
  • the abrasive grain sensor 3 transmits the monitored data signal to the industrial control system 5 on the cross section of the oil passage in the area.
  • the method for using the metal abrasive grain online monitoring system comprises the steps of: adjusting the electromagnetic valve 2, opening the auxiliary oil pump 4, pumping the oil containing the metal abrasive grains from the equipment oil pool 1 into the oil path and flowing through the alternating magnetic field region,
  • the abrasive grain sensor 3 monitors the data information of the metal abrasive grains and transmits them to the industrial control system 5 for analysis.
  • the data information of the metal abrasive particles monitored by the abrasive particle sensor 3 is temperature field distribution image information, and the temperature field distribution image information is transmitted to the industrial control system 5 for analyzing the shape and granularity of the metal abrasive grains. And material.
  • the metal-containing abrasive oil to be tested enters the alternating magnetic field generated by the electromagnetic induction device, due to the action of the alternating magnetic field, an induced potential is generated inside the metal abrasive grains in the oil, and the induced potential is applied.
  • the surface of the lower metal abrasive grains will generate eddy currents, and the eddy current heats the surface of the metal abrasive grains to increase the temperature and distinguish them from the oil background. Due to the skin effect of the eddy current, the surface of the abrasive grains is first heated, and infrared thermal imaging is used. The instrument can clearly monitor the shape and particle size of the metal abrasive grain.
  • the temperature field distribution image information monitored by the infrared imager is transmitted to the industrial control system 5, and the shape and particle size of the metal abrasive grains are distinguished by the image processing software. Since the non-metal cannot generate eddy currents in the alternating magnetic field, the surface temperature does not rise, so that the metal abrasive grains and non-metal particles in the oil can be distinguished. Since the electrical resistivity of various metal abrasive grains is different, the surface temperature rises at a fixed time, and the material of the metal abrasive grains can be distinguished by testing the difference in surface temperature of the metal abrasive grains.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种油液金属磨粒在线监测系统及其监测方法,包括磨粒传感器(3)和与设备油池(1)并联的油路,该油路上设有电磁阀(2)和辅助油泵(4);磨粒传感器(3)包括电磁感应装置和红外热成像仪,油路设置在电磁感应装置的交变磁场区域,红外热成像仪聚焦点位于交变磁场区域内油路的截面上,磨粒传感器(3)将监测处的数据信号传输到工控系统(5)。该系统利用金属磨粒在交变磁场中会产生涡流并导致表面升温的特点,利用红外热成像仪采集油液中磨粒温度分布数据,得到金属磨粒的形态、粒度大小分布、材质等信息。

Description

一种油液金属磨粒在线监测系统及其监测方法 技术领域
本发明涉及一种油液监测技术, 尤其涉及一种可以在线监测油液金属磨粒的系统及 其在线监测方法。
背景技术
油液中携带的磨屑反映了机械设备的磨损状态。 对润滑油采样, 综合利用磨粒分析 技术和油液分析技术, 分析提取油液中磨粒的浓度、 大小、 形貌及成分等信息, 可全面 地了解设备的磨损状态和润滑系统的污染状况, 评价机器的运行状况并对其可能的故障 预警, 为机器状态监测和剩余寿命预测提供重要的依据。
传统的油液监测技术主要是采用离线监测的方法, 需要昂贵的精密仪器( 如原子发 射光谱仪、 近红外光谱仪和铁谱分析仪等) , 且检测时间长。 根据调查表明, 离线监测 分析的结果由于取样代表性差等缺点, 对于磨损严重的设备有 50%没有发现问题, 45%显 示失效即将发生, 仅 5%检测出严重问题。 这样消耗了大量的人力物力, 且无法及时地诊 断故障。 而油液的污染是一个量变到质变的过程, 而这个过程发生的时间是未知的, 所 以必须要时刻对油液进行在线监测, 才不会使得油液的监测充满偶然性。 因而, 对润滑 油的性能和状态进行在线污染监测, 对油液进行有效污染控制, 增加其使用寿命, 确保 其安全、 高效地工作, 对国民经济建设和国防事业发展都有着重要的意义。
在线油液监测技术是应自动化、 多功能化的大型机械设备需要而生的一种新的分析 技术, 是在设备不停机、 不解体的情况下监测油液污染状态, 诊断设备的故障及其原因, 从而有针对性地进行维护和修理, 增加机械设备维修的及时性和便捷性的有效地手段。 在线油液监测技术尤其在线磨粒监测技术开始成为当前的研究热点和趋势之一。 利用在 线磨粒监测技术, 将传感器安装到设备润滑油循环油路中, 可以在机械设备正常运行过 程中实时连续地自动进行润滑油取样及磨粒分析, 及时地获取设备运行状态。 这对提高 设备磨损监测和故障预测水平, 实现设备视情维护, 有效降低设备维护费用, 提高经济 效益有着重要的意义。
迄今为止, 在线油液磨粒监测方法主要有: 磁性法、 计数法、 材料特征法等, 但各 具缺点。 比如磁性法只能针对具有铁磁性的磨粒进行检测, 无法对非铁磁磨粒和外界污 染物颗粒进行测定, 而计数法则根本无法获得磨粒材质的信息, 超声波磨粒在线监测是 国外已有专利报道的一种利用材料物性实现磨损监测的方法, 这一方法利用传感器发射 超声波, 根据不同材质、 形状和尺寸的磨粒会对超声波有不同波形反馈的原理, 实现磨 粒的在线监测。 目前这种方法尚未见到实际应用的报道, 不同材质、 形状和尺寸的磨粒 对超声波会有不同反馈的理论分析还有待在实际监测中真正获取和实现。 目前, 开发一 种既能提取磨粒粒度分布、 形态特征, 又能提取磨粒成分特征的在线油液监测技术的是 工业界所企盼的。
发明内容
发明目的: 为了克服现有技术中存在的不足, 本发明提供一种油液金属磨粒在线监 测系统及其监测方法, 能分析磨粒粒度分布、 形态特征和材质的在线油液监测技术。
技术方案: 为实现上述目的, 本发明的技术方案如下:
一种油液金属磨粒在线监测系统, 包括磨粒传感器和与设备油池并联的油路, 所述 油路上设有电磁阀和辅助油泵; 所述磨粒传感器包括电磁感应装置和红外热成像仪, 所 述油路设置在电磁感应装置的交变磁场区域, 所述红外热成像仪聚焦点位于交变磁场区 域内油路的截面上, 所述的磨粒传感器将监测出的数据信号传输到工控系统。
使用金属磨粒在线监测系统的方法, 包括以下步骤: 调节电磁阀, 打开辅助油泵, 将含有金属磨粒的油液从设备油池中抽进油路并流经交变磁场区域, 磨粒传感器监测出 金属磨粒的数据信息并传输至工控系统中进行分析。
其中, 所述的磨粒传感器监测出的金属磨粒的数据信息为温度场分布图像信息, 所 述的温度场分布图像信息传输到工控系统中, 用于分析金属磨粒的形态、 粒度和材质。
对于经过交变磁场区域的磨粒, 可以通过红外热成像仪监测出磨粒粒度分布、 形态 特征和材质特征。
经过交变磁场区域的金属磨粒, 会产生感应电势, 在感应电势的作用下金属磨粒表 面会产生涡流, 涡流对金属磨粒表面加热, 使其温度升高而与油液背景区分开来, 红外 热成像仪可以监测出金属磨粒粒度分布和形态特征, 由于非金属磨粒在交变磁场区域内 不能产生涡流, 因此其表面温度不升高, 以此区分油液中的金属磨粒和非金属颗粒; 由 于各种金属磨粒的电阻率不同, 其表面在固定时间内的升温速度不同, 可以通过红外热 成像仪测量金属磨粒表面温度差别来区分磨粒的材质。
有益效果: 1、 由于机械装备中所用摩擦副材料绝大部分为金属, 因而油液中的磨粒 绝大部分为金属磨粒, 而且油液中也会有油液变质产生的其它颗粒, 以及一些外来非金 属杂质, 利用其他方法可能会使磨粒监测结果产生偏差。 而本发明在线监测能够清楚的 区分金属磨粒和非金属磨粒, 排除了非金属颗粒的影响, 所测结果较为精确。
2、 在交变磁场中, 由于涡流所具有的集肤效应, 金属磨粒表面首先加热, 用微观红 外成像系统可清晰监测出磨粒的形态轮廓和粒度。
3、 在交变磁场中, 由于各种金属的电阻率不同, 金属表面在固定时间内的升温速度 不同, 可以根据磨粒表面温度的差别来区分磨粒材质。
本发明克服了现有技术中, 磁性法在线磨粒监测无法监测非铁磁性磨粒和外界污染 磨粒的弱点以及计数法在线磨粒监测无法获得磨粒材质的信息的弱点, 提供了一种油液 金属磨粒在线监测系统及其监测方法, 能精确分析出磨粒粒度分布、 形态特征和材质特 征。
附图说明
附图 1为本发明的结构示意图。
附图 2为本发明的磨粒传感器的结构示意图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如附图 1所示,一种油液金属磨粒在线监测系统,包括磨粒传感器 3和与设备油池 1 并联的油路,所述油路上设有电磁阀 2和辅助油泵 4;所述的电磁阀 2用于控制抽出的油 液的监测时间和系统监测的周期。
如附图 2所示, 所述磨粒传感器 3包括电磁感应装置和红外热成像仪, 所述油路设 置在电磁感应装置的交变磁场区域, 所述红外热成像仪聚焦点位于交变磁场区域内油路 的截面上, 所述的磨粒传感器 3将监测出的数据信号传输到工控系统 5。
使用金属磨粒在线监测系统的方法,包括以下步骤:调节电磁阀 2,打开辅助油泵 4, 将含有金属磨粒的油液从设备油池 1中抽进油路并流经交变磁场区域, 磨粒传感器 3监 测出金属磨粒的数据信息并传输至工控系统 5中进行分析。
其中, 所述的磨粒传感器 3监测出的金属磨粒的数据信息为温度场分布图像信息, 所 述的温度场分布图像信息传输到工控系统 5中, 用于分析金属磨粒的形态、粒度和材质。
系统工作时, 当待测含金属磨粒油液进入由电磁感应装置产生的交变磁场时, 由于 交变磁场的作用, 油液中的金属磨粒内部会产生感应电势, 在感应电势的作用下金属磨 粒表面会产生涡流, 涡流对金属磨粒表面加热, 使其温度升高而与油液背景区分开来, 由于涡流所具有的集肤效应, 磨粒表面首先加热, 用红外热成像仪可清晰监测到金属磨 粒形态轮廓和粒度。 将红外成像仪监测到的温度场分布图像信息传输至工控系统 5中, 通过图像处理软件区分金属磨粒形态及粒度。 由于非金属在交变磁场内不能产生涡流, 因此其表面温度不升高, 以此可以区分出油液中的金属磨粒和非金属颗粒。 由于各种金 属磨粒的电阻率不同, 其表面在固定时间内的升温速度不同, 可以通过测试金属磨粒表 面温度差别来区分金属磨粒的材质。
以上所述仅是本发明的优选实施方式, 应当指出: 对于本技术领域的普通技术人员 来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也 应视为本发明的保护范围。

Claims

权利要求书
1、 一种油液金属磨粒在线监测系统, 其特征在于: 包括磨粒传感器 (3 ) 和与设备 油池 (1 ) 并联的油路, 所述油路上设有电磁阀 (2) 和辅助油泵 (4);
所述磨粒传感器 (3 ) 包括电磁感应装置和红外热成像仪, 所述油路设置在电磁感应 装置的交变磁场区域, 所述红外热成像仪聚焦点位于交变磁场区域内油路的截面上, 所 述的磨粒传感器 (3) 将监测出的数据信号传输到工控系统 (5)。
2、 使用权利要求 1 所述系统的油液金属磨粒在线监测方法, 其特征在于, 包括以下 步骤: 调节电磁阀 (2), 打开辅助油泵 (4), 将含有金属磨粒的油液从设备油池 (1 ) 中 抽进油路并流经交变磁场区域, 磨粒传感器 (3) 监测出金属磨粒的数据信息并传输至工 控系统 (5) 中进行分析。
3、 根据权利要求 2所述的油液金属磨粒在线监测方法, 其特征在于: 所述的磨粒传 感器 (3) 监测出的金属磨粒的数据信息为温度场分布图像信息, 所述的温度场分布图像 信息传输到工控系统 (5) 中, 用于分析金属磨粒的形态、 粒度和材质。
PCT/CN2014/072172 2013-07-24 2014-02-18 一种油液金属磨粒在线监测系统及其监测方法 WO2015010460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310314593.4A CN103398923B (zh) 2013-07-24 2013-07-24 一种油液金属磨粒在线监测系统及其监测方法
CN201310314593.4 2013-07-24

Publications (1)

Publication Number Publication Date
WO2015010460A1 true WO2015010460A1 (zh) 2015-01-29

Family

ID=49562591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072172 WO2015010460A1 (zh) 2013-07-24 2014-02-18 一种油液金属磨粒在线监测系统及其监测方法

Country Status (2)

Country Link
CN (1) CN103398923B (zh)
WO (1) WO2015010460A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738259A (zh) * 2016-04-11 2016-07-06 爱德森(厦门)电子有限公司 一种在线大口径回油管油液金属磨粒监测装置及方法
CN111024566A (zh) * 2019-10-16 2020-04-17 重庆邮电大学 一种基于频域分析的机械磨损程度标定方法及系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398923B (zh) * 2013-07-24 2016-03-23 中国矿业大学 一种油液金属磨粒在线监测系统及其监测方法
US9274041B2 (en) * 2014-04-15 2016-03-01 Spectro Scientific, Inc. Particle counter and classification system
CN104568516B (zh) * 2015-01-09 2017-06-06 西安交通大学 一种基于fpga的发动机尾气金属磨粒收集系统及方法
FR3032530B1 (fr) * 2015-02-06 2021-10-22 Total Marketing Services Installation et procede de suivi de l'evolution de la qualite d'un lubrifiant
CN105181534B (zh) * 2015-09-29 2018-02-16 桂林电子科技大学 输出振动信号的油液磨粒监测传感器及油液在线监测系统
CN105300863A (zh) * 2015-11-20 2016-02-03 北京至感传感器技术研究院有限公司 液体油中的铁磁磨粒的检测装置和检测方法
CN105571994B (zh) * 2015-12-11 2018-02-09 中国航空工业集团公司西安航空计算技术研究所 一种动力传动系统滑油金属屑参数检测方法
CN105864150A (zh) * 2016-05-12 2016-08-17 张国云 一种采用电击锤吸附和相邻电容的磨损微粒在线监测方法
FR3052261B1 (fr) * 2016-06-02 2021-12-31 Total Marketing Services Installation et procede de suivi de l'evolution de la qualite d'un lubrifiant, methode de suivi et utilisation d'une telle methode pour la determination de la teneur en fer d'un lubrifiant
JP7082516B2 (ja) * 2018-04-16 2022-06-08 株式会社小松製作所 機械装置の状態監視システム及び機械装置の状態監視方法
CN110470822A (zh) * 2019-08-21 2019-11-19 岭澳核电有限公司 一种核电站机械设备磨损监测系统及方法
CN110595958A (zh) * 2019-11-06 2019-12-20 合肥工业大学 一种在线观测磁场作用下流体中磁性颗粒运动的装置
CN111537402A (zh) * 2020-06-04 2020-08-14 爱德森(厦门)电子有限公司 一种推回式油液无损电磁检测方法及其装置
CN113370031A (zh) * 2021-06-25 2021-09-10 王雪珍 一种智能制造用可进行在线检测的螺旋加工设备
CN113916974A (zh) * 2021-09-26 2022-01-11 张凯 一种油液磨粒监测传感器的油路连接方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444367A (en) * 1992-04-06 1995-08-22 Minister Of National Defence Method and apparatus for detecting particles in a fluid having coils isolated from external vibrations
EP0984278A1 (en) * 1998-08-31 2000-03-08 Korea Institute Of Science And Technology On-line measurement of contaminant level in lubricating oil
JP2005083889A (ja) * 2003-09-08 2005-03-31 Marktec Corp 金属異物検出装置及び検出方法
CN101963570A (zh) * 2010-05-17 2011-02-02 深圳市亚泰光电技术有限公司 快速检测润滑油中铁磁磨粒的装置和检测方法以及信号处理电路
CN102305755A (zh) * 2011-07-26 2012-01-04 北京航空航天大学 一种基于径向磁场的在线磨粒监测传感器及其监测方法
CN102528664A (zh) * 2012-01-11 2012-07-04 上海理工大学 磨削砂轮表面磨粒温度测量装置
CN202517375U (zh) * 2012-01-11 2012-11-07 上海理工大学 磨削砂轮表面磨粒温度测量装置
CN102818754A (zh) * 2012-09-06 2012-12-12 爱德森(厦门)电子有限公司 一种提高发动机油液金属磨粒在线监测精度的方法及装置
CN103398923A (zh) * 2013-07-24 2013-11-20 中国矿业大学 一种油液金属磨粒在线监测系统及其监测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200999636Y (zh) * 2006-02-17 2008-01-02 四川交通职业技术学院 汽车润滑油磨粒监测器
CN102331389A (zh) * 2010-11-30 2012-01-25 蒋伟平 一种高灵敏度的油液磨粒在线监测传感器
CN202735335U (zh) * 2012-06-01 2013-02-13 广州机械科学研究院有限公司 一种润滑油在线监测集成装置
CN102707037B (zh) * 2012-06-01 2014-10-08 广州机械科学研究院有限公司 柴油机润滑油在线监测系统
CN102927971B (zh) * 2012-10-31 2014-10-01 中国矿业大学(北京) 近景摄影测量和红外热像仪测量矸石山表面温度场方法
CN102954968A (zh) * 2012-11-05 2013-03-06 西安交通大学 热障涂层部件电磁涡流热成像无损检测系统及检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444367A (en) * 1992-04-06 1995-08-22 Minister Of National Defence Method and apparatus for detecting particles in a fluid having coils isolated from external vibrations
EP0984278A1 (en) * 1998-08-31 2000-03-08 Korea Institute Of Science And Technology On-line measurement of contaminant level in lubricating oil
JP2005083889A (ja) * 2003-09-08 2005-03-31 Marktec Corp 金属異物検出装置及び検出方法
CN101963570A (zh) * 2010-05-17 2011-02-02 深圳市亚泰光电技术有限公司 快速检测润滑油中铁磁磨粒的装置和检测方法以及信号处理电路
CN102305755A (zh) * 2011-07-26 2012-01-04 北京航空航天大学 一种基于径向磁场的在线磨粒监测传感器及其监测方法
CN102528664A (zh) * 2012-01-11 2012-07-04 上海理工大学 磨削砂轮表面磨粒温度测量装置
CN202517375U (zh) * 2012-01-11 2012-11-07 上海理工大学 磨削砂轮表面磨粒温度测量装置
CN102818754A (zh) * 2012-09-06 2012-12-12 爱德森(厦门)电子有限公司 一种提高发动机油液金属磨粒在线监测精度的方法及装置
CN103398923A (zh) * 2013-07-24 2013-11-20 中国矿业大学 一种油液金属磨粒在线监测系统及其监测方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738259A (zh) * 2016-04-11 2016-07-06 爱德森(厦门)电子有限公司 一种在线大口径回油管油液金属磨粒监测装置及方法
CN111024566A (zh) * 2019-10-16 2020-04-17 重庆邮电大学 一种基于频域分析的机械磨损程度标定方法及系统
CN111024566B (zh) * 2019-10-16 2022-07-01 重庆邮电大学 一种基于频域分析的机械磨损程度标定方法及系统

Also Published As

Publication number Publication date
CN103398923A (zh) 2013-11-20
CN103398923B (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2015010460A1 (zh) 一种油液金属磨粒在线监测系统及其监测方法
Sun et al. Online oil debris monitoring of rotating machinery: A detailed review of more than three decades
CN106568691B (zh) 一种油液磨粒在线监测装置
CN102818754B (zh) 一种提高发动机油液金属磨粒在线监测精度的方法及装置
CN108519268B (zh) 一种润滑条件下磨损颗粒检测装置及方法
WO2020207211A1 (zh) 同轴电容传感器及发动机滑油磨粒在线监测与诊断方法
CN108152361B (zh) 在线发动机油液金属磨粒及温度集成监测装置及方法
CN102519851B (zh) 电容式在线铁谱检测仪
JP2011080814A (ja) 工作機械用潤滑油の劣化検出装置および劣化検出方法
Flanagan et al. Wear-debris detection and analysis techniques for lubricant-based condition monitoring
Zhao et al. Real time monitoring weld quality of small scale resistance spot welding for titanium alloy
CN103808911A (zh) 润滑油检测装置
CN111505726B (zh) 基于对称磁激励结构的管道液体磁异介质检测装置及方法
JPH0772262A (ja) 診断用フィルタ
He et al. Research on temperature distribution law around crack using the moving mode of eddy current thermography
CN102095765A (zh) 一种变压器油中微水含量的在线测量系统
Baskaran et al. Probability of detection modelling in eddy current NDE of flaws integrating multiple correlated variables
Xie et al. Automated identification of front/rear surface cracks in ferromagnetic metals based on eddy current pulsed thermography
Shi et al. A novel distinction method of metal debris material based on inductive sensor with multi-sensing units
CN110108454A (zh) 一种润滑油液金属颗粒传感器
CN108426822A (zh) 一种油液磨粒偏心灵敏度电磁检测装置及方法
CN111504857A (zh) 一种基于对称磁激励的磁异介质检测系统
CN106525668B (zh) 电磁微颗粒探测方法
Okhlopkov et al. Analysis of Existing Methods for Detecting the State and Defects of the Brush-Contact Device of a Turbine Generator
CN113029887B (zh) 一种油液铁磁性颗粒的检测方法及其检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WA Withdrawal of international application