WO2015010366A1 - 一种基于生物电阻抗的急迫性尿失禁识别方法 - Google Patents

一种基于生物电阻抗的急迫性尿失禁识别方法 Download PDF

Info

Publication number
WO2015010366A1
WO2015010366A1 PCT/CN2013/084342 CN2013084342W WO2015010366A1 WO 2015010366 A1 WO2015010366 A1 WO 2015010366A1 CN 2013084342 W CN2013084342 W CN 2013084342W WO 2015010366 A1 WO2015010366 A1 WO 2015010366A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical impedance
time
amplitude curve
digital signal
impedance
Prior art date
Application number
PCT/CN2013/084342
Other languages
English (en)
French (fr)
Inventor
蒋庆
王倩
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2015010366A1 publication Critical patent/WO2015010366A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • A61B5/202Assessing bladder functions, e.g. incontinence assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition

Definitions

  • the invention relates to the technical field of urinary incontinence detection, in particular to a method for identifying urinary incontinence based on bioelectrical impedance.
  • Urinary incontinence is caused by loss of urinary self-control ability due to bladder sphincter injury or neurological dysfunction, causing urine to flow involuntarily; and urge incontinence can be strongly localized by partial upper motor neuron lesions or acute cystitis.
  • urinary incontinence occurs due to the strong non-inhibitory contraction of the detrusor. A serious infection usually secondary to the bladder.
  • the prior art proposes a portable bladder urine volume detecting device which measures the electrical impedance amplitude, phase angle, real part, imaginary part of the human body tissue by performing bioelectrical impedance detection on a body part of the body, and through these
  • the relevant parameters are derived from the equivalent circuit model parameters of the human body to determine whether the bladder urine volume is within a safe value range or whether the urine accumulation is exhausted, but the device fails to quantitatively or qualitatively detect the human body characteristics of the urgent urinary incontinence. Therefore, it is not timely to find out whether the subject is a patient with urgent urinary incontinence or if the patient is detected in real time. Whether there is urgency incontinence.
  • the invention provides a method for identifying urinary incontinence based on bioelectrical impedance, which measures the electrical impedance signal of the human body through a bioelectrical impedance measuring device, and establishes a reference model of an urgent urinary incontinence condition by using a host computer, and according to the bioelectrical impedance
  • the electrical impedance signal collected by the measuring device in real time determines whether the patient has an urgent urinary incontinence disorder.
  • Embodiments of the present invention provide a method for identifying urinary incontinence based on bioelectrical impedance, including:
  • a pair of excitation electrodes and a pair of measurement electrodes are closely attached to the test site of the patient, and are calculated according to the excitation current output by the excitation electrode and the measurement voltage obtained by the measurement electrode in real time, and are calculated by the bioelectrical impedance measurement device. Out of the bladder electrical impedance signal;
  • the bioelectrical impedance measuring device performs analog-to-digital conversion on the electrical impedance signal to obtain an electrical impedance digital signal
  • the bioelectrical impedance measuring device filters the electrical impedance digital signal to remove the interference signal, and sends the filtered electrical impedance digital signal to the upper computer;
  • S4 the upper computer performs a down-sample processing on the electrical impedance digital signal by using a time-distance expansion method to obtain data values of a plurality of sampling points;
  • S5 the upper computer performs curve fitting on the data values of the plurality of sampling points, obtains an electrical impedance amplitude curve, and extracts characteristic parameters of the electrical impedance amplitude curve;
  • the reference model is:
  • the electrical impedance amplitude curve exhibits a minimum value, and within a time TO after the occurrence of the minimum value, the slope value of the electrical impedance amplitude curve is less than zero, wherein the time TO > 0.
  • the bioelectrical impedance measuring device comprises: a main control module, and a voltage controlled constant current Source, intermediate frequency sine wave generator, signal conditioner, amplitude and phase measurement module, and power management module;
  • the intermediate frequency sine wave generator is connected to the voltage controlled constant current source for providing a stable excitation current under the control of the main control module, and passing the excitation current through the current output positive terminal and current output.
  • the negative end is output to the patient test site;
  • the intermediate frequency sine wave generator is configured to generate a sine wave of a fixed frequency; the signal conditioner is configured to filter the electrical impedance digital signal to remove an interference signal; and the amplitude and phase measurement module is provided with two voltage inputs End, used to collect the measured voltage of the patient's test site, and calculate the amplitude and phase of the measured voltage.
  • the bioelectrical impedance measuring device performs data communication with the upper computer through a serial interface and/or a Zigbee wireless network.
  • step S3 includes:
  • S32 Perform analysis on the spectrum according to characteristics of human physiological signals, perform digital low-pass filtering on the spectrum, and remove interference signals in a low frequency band.
  • step S4 includes:
  • S42 Calculate an average value of the electrical impedance digital signals in each of the times T; S43: use the average value as a data value of a sampling point corresponding to the time T.
  • the time T is 1 minute.
  • step S5 includes:
  • S51 Perform line matching on data values of two adjacent sampling points according to data values of the plurality of sampling points to obtain a plurality of linear functions;
  • S52 Combining the plurality of linear functions to obtain an electrical impedance amplitude curve;
  • S53 extracting a slope value of each of the linear functions as a characteristic parameter of the electrical impedance amplitude curve.
  • step S6 includes:
  • S62 determining, according to the slope value of each of the linear functions, whether the electrical impedance amplitude curve has a minimum value, including: if the product of the slope values of the two adjacent linear functions is less than zero, and the previous one If the slope value of the linear function is less than zero, it is determined that the time connection point of the two adjacent linear functions has a minimum value; otherwise, it is determined that the electrical impedance amplitude curve does not exhibit a minimum value;
  • S63 determining, when the electrical impedance amplitude curve has a minimum value, whether the slope value of the electrical impedance amplitude curve is less than zero in the time TO after the next sampling point after the occurrence of the minimum value; If it is less than zero, it is determined that the characteristic parameter of the electrical impedance amplitude curve conforms to the reference model; otherwise, the characteristic parameter of the electrical impedance amplitude curve is determined not to conform to the reference model.
  • the time T0 5*T;
  • the slope value of the electrical impedance amplitude curve is: within the time TO after the next sampling point after the occurrence of the minimum value
  • the invention provides a method for identifying urinary incontinence based on bioelectrical impedance
  • the bioelectrical impedance measuring device measures the electrical impedance signal of the human body, and uses the upper computer to establish a reference model of the urgent urinary incontinence condition, and characterizes the physiological and pathological information of the patient according to the electrical impedance signal collected by the bioelectrical impedance measuring device in real time.
  • the test determines whether the patient has an urgent urinary incontinence condition and achieves non-invasive monitoring of urge urinary incontinence.
  • the invention provides a method for identifying urinary incontinence based on bioelectrical impedance, which has the advantages of non-invasive, non-destructive, easy to detect and low cost.
  • FIG. 1 is a flow chart of a method for identifying a first embodiment of a bioelectrical impedance-resistant urinary incontinence according to the present invention
  • FIG. 2 is a schematic view showing a mounting position of an excitation electrode and a measuring electrode to a human body according to an embodiment of the present invention
  • 3 is a schematic structural view of a bioelectrical impedance device according to a first embodiment of the present invention
  • FIG. 4 is a schematic structural view of data communication between the bioelectrical impedance measuring device of the present invention and a host computer;
  • FIG. 5 is a flow chart of an implementation method for downsampling an electrical impedance digital signal according to the present invention
  • Figure 6 is a flow chart showing a method for fitting and extracting characteristic parameters of an electrical impedance amplitude curve according to a second embodiment of the invention
  • FIG. 7 is a schematic diagram of an electrical impedance amplitude curve fitted by the present invention.
  • Fig. 8 is a flow chart showing a method of treating a patient with an urgent urinary incontinence condition in the second embodiment of the invention. detailed description
  • the embodiment of the invention is based on bioelectrical impedance technology for identification of urge incontinence. Human tissues and organs have unique electrical properties, and changes in the state or function of tissues and organs will be accompanied by changes in electrical properties.
  • the embodiment of the present invention establishes a reference model for detecting and judging, and applies the bioelectrical impedance technology to the method for identifying bladder urgency incontinence, thereby realizing non-invasive monitoring of the patient.
  • 1 is a flow chart of a method of a first embodiment of a method for identifying a urgency incontinence based on bioelectrical impedance provided by the present invention.
  • the method for identifying a urinary incontinence based on bioelectrical impedance includes the following steps:
  • Step S1 a pair of excitation electrodes and a pair of measurement electrodes are closely attached to the test site of the patient, and the measurement voltage generated in real time according to the excitation current output by the excitation electrode and the measurement electrode is calculated by using a bioelectrical impedance measurement device.
  • the electrical impedance of the bladder is specifically implemented, since the bladder is usually 19 cm below the navel of the human body, the excitation electrode and the measuring electrode are placed under the patient's navel when testing the patient. The position on the left and right sides at 19 cm.
  • FIG. 2 it is a schematic diagram of a mounting position of the excitation electrode and the measuring electrode to the human body in the embodiment of the present invention.
  • the electrodes IL and IR are energized to the same level as the measuring electrodes VL and VR according to anatomical and physical circuit principles.
  • the center position at 19 cm below the navel is first found, and then the two excitation electrodes IL and IR for outputting a current signal to the human body are respectively placed at positions 8 cm each of the left and right sides of the center position;
  • Two measuring electrodes VL and VR for collecting the human body voltage signals are respectively placed at positions 3 cm each of the left and right sides of the center position; the excitation electrodes and the measuring electrodes are at the same horizontal line.
  • the bioelectrical impedance measuring device comprises: a main control module, a voltage controlled constant current source, an intermediate frequency sine wave generator, a signal conditioner, an amplitude and phase measurement module, and a power management system.
  • a main control module a voltage controlled constant current source
  • an intermediate frequency sine wave generator a signal conditioner
  • an amplitude and phase measurement module a power management system.
  • the intermediate frequency sine wave generator is connected to the voltage controlled constant current source for providing a stable excitation current under the control of the main control module, and passing the excitation current through the current output positive terminal and current output.
  • the negative end is output to the patient test site;
  • the intermediate frequency sine wave generator is configured to generate a sine wave of a fixed frequency;
  • the signal conditioner is configured to filter the electrical impedance digital signal to remove an interference signal;
  • the amplitude and phase measurement module is provided with two voltage input terminals for collecting the measured voltage of the patient test site and calculating the amplitude and phase of the measured voltage.
  • the bioelectrical impedance measuring device is used to supply an excitation current to the pair of excitation electrodes, and after receiving the voltage signal collected by the measurement electrode, the electrical impedance signal of the human bladder is calculated according to Ohm's law. Since the excitation current signal input to the bladder and the voltage signal collected from the bladder are analog signals, the calculated electrical impedance signal is also an analog signal.
  • Step S2 The bioelectrical impedance measuring device performs analog-to-digital conversion on the electrical impedance signal to obtain an electrical impedance digital signal.
  • the data is analyzed by converting the electrical impedance signal into an electrical impedance digital signal for the bioelectrical impedance measuring device or computer.
  • Step S3 The bioelectrical impedance measuring device filters the electrical impedance digital signal to remove the interference signal, and sends the filtered electrical impedance digital signal to the upper computer.
  • the collected electrical impedance signal and the analog-to-digital converted electrical impedance digital signal are mixed with interference signals, to a certain extent.
  • the accuracy of the measurement is affected. Therefore, the electrical impedance digital signal needs to be filtered to remove the interference signal, and the filtered electrical impedance digital signal is sent to the upper computer, and the upper computer performs data processing and analysis.
  • the interference signal in the bladder range of the test site is a high frequency signal. Therefore, when the electrical impedance digital signal is filtered, the bioelectrical impedance test can be used.
  • step S3 can be implemented by using step S31 and step S32: Step S31: performing fast Fourier transform on the electrical impedance digital signal to obtain a spectrum of the electrical impedance digital signal; Step S32 : analyzing the spectrum according to human physiological signal characteristics, performing digital low-pass filtering on the spectrum to remove interference signals in a low frequency band.
  • Step S31 performing fast Fourier transform on the electrical impedance digital signal to obtain a spectrum of the electrical impedance digital signal
  • Step S32 analyzing the spectrum according to human physiological signal characteristics, performing digital low-pass filtering on the spectrum to remove interference signals in a low frequency band.
  • the bioelectrical impedance measuring device digitally filters the electrical impedance digital signal, it is sent to the upper computer, and the upper computer executes step S4.
  • the bioelectrical impedance measuring device performs data communication with the upper computer through a serial interface and/or a Zigbee wireless network.
  • Fig. 4 it is a structural diagram of data communication between the bioelectrical impedance measuring device and the host computer.
  • the serial interface cartridge is called serial port, also called serial communication interface, and is an expansion interface adopting serial communication mode.
  • the serial interface includes RS232, RS422, RS485, etc. according to electrical standards and protocols, but does not involve connectors, cables or protocols.
  • a serial interface of the RS232 type is preferably employed.
  • Zigbee ⁇ is a short-range, low-power wireless communication technology based on the IEEE802.15.4 standard low-power personal area network protocol. Zigbee is characterized by close proximity, low complexity, self-organization, low power consumption, low data rate and low cost. It is suitable for automatic control and remote control and can be embedded in various devices.
  • Step S4 The upper computer performs down-sampling processing on the electrical impedance digital signal by using a time-distance expansion method to obtain data values of a plurality of sampling points.
  • the time-distance expansion method refers to the appropriate combination of the values of each period in the original time series to obtain the value of the longer time interval (time distance), forming a new method of expanding the time series of the time interval, thereby eliminating the time Fluctuations caused by short-term effects caused by accidental factors, and the trend of development and change of certain phenomena are clearly revealed.
  • the electrical impedance digital signal is processed by the time-distance expansion method, one sampling point is collected from each unit time, and the data value of each sampling point is determined by the corresponding electrical impedance digital signal per unit time. Combining the data values of multiple sampling points can obtain the time trend of the electrical impedance digital signals within a certain time distance.
  • Step S5 The upper computer performs curve fitting on the data values of the plurality of sampling points to obtain an electrical impedance amplitude curve, and extracts characteristic parameters of the electrical impedance amplitude curve.
  • Step S6 If the characteristic parameter of the electrical impedance amplitude curve conforms to the reference model when the patient laughs, coughs, and sneezes, the upper computer determines that the patient has an emergency urinary incontinence condition and issues a warning signal. .
  • the reference model is: the electrical impedance amplitude curve exhibits a minimum value, and the electrical impedance amplitude is within a time TO after the minimum value occurs.
  • the slope value of the curve is less than zero, where time T0 > 0.
  • the electrical impedance amplitude curve appears to be minimal at the corresponding moment when the patient simulates the experimental action (including laughter, cough and sneeze). And; by tracking and analyzing the electrical impedance amplitude curve after the time, it is found that the electrical impedance amplitude is within a period of time after the TO (the unit time at which the electrical impedance sampling point where the minimum value occurs) If the slope value of the curve is less than zero, the patient is considered to have an emergency urinary incontinence condition and an alarm signal is activated.
  • the present invention also provides a second embodiment of a method for identifying urinary incontinence based on bioelectrical impedance.
  • a pair of excitation electrodes and a pair of measurement electrodes Very closely attached to the test site of the patient, and according to the excitation current output by the excitation electrode and the measurement voltage obtained by the measurement electrode in real time, the electrical impedance measurement device is used to calculate the electrical impedance signal of the bladder;
  • the measuring device performs analog-to-digital conversion on the electrical impedance signal to obtain an electrical impedance digital signal; the bioelectrical impedance measuring device filters the electrical impedance digital signal to remove the interference signal, and the filtered electrical impedance digital signal Send to the host computer.
  • the implementation principles of the above three steps are the same as steps S1 to S3 of the first embodiment, respectively.
  • This embodiment provides a specific implementation manner for steps S4 to S6 of the first embodiment on the basis of the first embodiment. Referring to FIG. 5, it is a flow chart of an implementation method for downsampling an electrical impedance digital signal according to the present invention.
  • the upper computer uses the time-distance expansion method to down-sample the electrical impedance digital signal to obtain data values of a plurality of sampling points, including:
  • Step S41 Perform time division of the electrical impedance digital signal in units of time T, and collect a sampling point for the electrical impedance digital signal in each time T, wherein time T > 0.
  • Step S42 Calculate the average value of the electrical impedance digital signals in each of the time slots.
  • Step S43 The average value is taken as the data value of the sampling point corresponding to the time ⁇ .
  • the time ⁇ is 1 minute.
  • the electrical impedance digital signal is time-divided every other time. Therefore, a sampling point of an electrical impedance digital signal is acquired in each time ⁇ , and each sampling point is assigned a data value.
  • the data value of each sampling point is the average of the electrical impedance digital signals within the corresponding time T. For example, when the time T is 1 minute, the electrical impedance digital signal is sampled every 1 minute, and the data value of the first sampling point is the average of all electrical impedance digital signals in the first minute; The data value of the two sampling points is the average of all the electrical impedance digital signals in the second minute; and so on.
  • the host computer performs curve fitting on the data values of the plurality of sampling points to obtain an electrical impedance amplitude curve and characteristic parameters thereof.
  • FIG. 6 there is shown a flow chart of a method for fitting and extracting characteristic parameters of an electrical impedance amplitude curve according to a second embodiment of the invention.
  • the method for performing curve fitting on the data values of the plurality of sampling points by the host computer to obtain an electrical impedance amplitude curve, and extracting characteristic parameters of the electrical impedance amplitude curve includes:
  • Step S51 Perform line fitting on the data values of two adjacent sampling points according to the data values of the plurality of sampling points to obtain a plurality of linear functions.
  • Step S52 Combine and combine the plurality of linear functions to obtain an electrical impedance amplitude Curve. Specifically, the coordinate points where two adjacent sampling points are located are connected in a plane rectangular coordinate system. Referring to Figure 7, there is shown a schematic diagram of the electrical impedance amplitude curve fitted by the present invention.
  • the multi-segment linear function obtained in the step S51 is combined, and the obtained piecewise function is a mathematical representation of the electrical impedance amplitude curve, so as to facilitate the upper machine to the electrical impedance sampling point.
  • the data values are analyzed and processed.
  • the constants al, a2, and a3 are the slope values of the linear functions of each segment
  • the constants bl, b2, and b3 are the intercepts of the linear functions of each segment on the vertical axis.
  • the bioelectrical impedance measuring device performs real-time detection on the patient. Therefore, the characteristic parameters of the electrical impedance amplitude curve obtained by the upper computer are also obtained in real time.
  • Fig. 8 there is shown a flow chart of a method for inventing a patient with an urgent urinary incontinence condition in the second embodiment of the invention.
  • the upper computer determines that the patient has urgent urinary incontinence. a symptom, and an alarm signal; preferably, the performing process specifically includes the following steps:
  • Step S61 When the patient laughs, coughs, and sneezes, the slope values of the respective linear functions constituting the electric impedance amplitude curve are extracted.
  • Step S62 determining, according to the slope value of each of the linear functions, whether the electrical impedance amplitude curve has a minimum value, including: if the product of the slope values of the two linear functions adjacent to each other is less than zero, and before If the slope value of a linear function is less than zero, it is determined that the time connection points of the two adjacent linear functions appear to have a minimum value; otherwise, it is determined that the electrical impedance amplitude curve does not exhibit a minimum value. As shown in Fig. 7, the electrical impedance amplitude curve shows a minimum value at time t0.
  • Step S63 determining, when the electrical impedance amplitude curve has a minimum value, determining whether the slope value of the electrical impedance amplitude curve is less than zero within a time TO after the next sampling point after the occurrence of the minimum value; If it is less than zero, it is determined that the characteristic parameter of the electrical impedance amplitude curve conforms to the reference model; otherwise, the characteristic parameter of the electrical impedance amplitude curve is determined not to conform to the reference model.
  • the time T0 5 * T.
  • the slope value of the electrical impedance amplitude curve is: within the time TO after the next sampling point after the occurrence of the minimum value
  • slope values of the five linear functions are all less than zero, it is determined that the slope value of the electrical impedance amplitude curve is less than zero within the time TO after the next sampling point after the occurrence of the minimum value; Then, it is determined that the slope value of the electrical impedance amplitude curve is not less than zero within the time TO after the next sampling point after the occurrence of the minimum value.
  • the host computer is within 5 minutes after the time t0 (time t0+1) at which the minimum value occurs (time t0+1 ⁇ time) tO+6)
  • Five linear functions are processed to obtain the time period [t0+l, t0+2], time period [t0+2, t0+3], time period [t0+3, t0+4], time period [t0+4, t0+5] and time period
  • the slope values of the five linear functions corresponding to [t0+5, t0+6] are a1, a2, a3, a4, and a5.
  • the slope values a1, a2, a3, a4, and a5 are all less than zero, it is considered that the slope value of the electrical impedance amplitude curve is less than zero in the next sampling point time TO after the occurrence of the minimum value, thereby determining the The characteristic parameters of the electrical impedance amplitude curve are in accordance with the reference model, and it is concluded that the patient has acute urinary incontinence, and the upper computer immediately starts an alarm to notify the patient to seek medical treatment in time.
  • the electrical impedance amplitude signal of the test patient does not conform to the established reference model, it is determined to be a non-urgent urinary incontinence patient.
  • the method for identifying urinary incontinence based on bioelectrical impedance is based on the principle that a sudden increase in bladder pressure causes a change in the bioelectrical impedance signal of the muscle during the process of urinary incontinence in the bladder.
  • the electrical impedance technique is applied in the identification method of bladder urgent urinary incontinence.
  • the electrical impedance signal of real-time data collected by the bioelectrical impedance measuring device is used to qualitatively detect the physiological and pathological information of the patient, and the reference model for establishing the judgment of urgent urinary incontinence is established. , achieved non-invasive monitoring of urge incontinence conditions.
  • the invention provides a method for identifying urinary incontinence based on bioelectrical impedance, which has the advantages of non-invasive, non-destructive, easy to detect and low cost.

Abstract

一种基于生物电阻抗的急迫性尿失禁识别方法。该方法包括利用生物电阻抗测量装置计算出膀胱的电阻抗信号(S1),对所述电阻抗信号进行模数转换(S2)和数字滤波后发送至上位机(S3);上位机采用时距扩大法对所述电阻抗数字信号进行降采样处理,获得多个采样点的数据值(S4),拟合出电阻抗幅值曲线和提取出所述电阻抗幅值曲线的特性参数(S5);上位机判断电阻抗幅值曲线的特性参数符合参考模型,则所述上位机判定所述患者出现了急迫性尿失禁的病症,并发出警报信号(S6)。本发明提供的基于生物电阻抗的急迫性尿失禁识别方法,通过建立急迫性尿失禁检测判断的参考模型,实现了对急迫性尿失禁病症的无创监测,具有无创、无损、便于检测及低成本的优点。

Description

说 明 书
一种基于生物电阻抗的急迫性尿失禁识别方法 技术领域
本发明涉及尿失禁检测技术领域,尤其涉及一种基于生物电阻抗 的急迫性尿失禁识别方法。 背景技术 尿失禁,是由于膀胱括约肌损伤或神经功能障碍而丧失排尿自控 能力,使尿液不自主地流出; 而急迫性尿失禁可由部分性上运动神经 元病变或急性膀胱炎等强烈的局部刺激引起, 患者有十分严重的尿 频、 尿急症状, 是由于强烈的逼尿肌的无抑制性收缩而发生尿失禁。 通常继发于膀胱的严重感染。对于急迫性尿失禁的患者来说, 需要及 时、有效地检测出患者的急迫性尿失禁症状,以便患者能够及时就医, 为患者制定有效的治疗以及评估治疗方案。 目前, 医学临床上在对患者的急迫性尿失禁情况进行检查时, 多 采用尿动力检测仪进行测试, 但该设备笨重, 操作复杂, 且需要对患 者进行侵入式检查,除了不方便随身携带,也对患者造成很大的伤害。 现有技术提出了一种便携式膀胱尿量检测装置,其通过对身体病患部 位进行生物电阻抗检测, 测量得到的人体组织的电阻抗幅值、 相角、 实部、虚部, 以及通过这些所述相关参数推导得到的人体组织等效电 路模型参数, 来判断膀胱尿量是否在安全值范围或积尿是否排尽,但 该装置未能针对急迫性尿失禁的人体特征进行定量或定性检测,因此 未能及时发现受试者是否为急迫性尿失禁患者或实时检测出患者是 否出现急迫性尿失禁情况。
发明内容
本发明提出一种基于生物电阻抗的急迫性尿失禁识别方法,通过 生物电阻抗测量装置测量出人体的电阻抗信号,和利用上位机建立急 迫性尿失禁病症的参考模型,并根据生物电阻抗测量装置实时采集的 电阻抗信号, 判断出患者是否出现了急迫性尿失禁病症。
本发明实施例提供一种基于生物电阻抗的急迫性尿失禁识别方 法, 包括:
S 1: 将一对激励电极以及一对测量电极紧贴在患者的测试部位, 并根据所述激励电极输出的激励电流与所述测量电极实时采集得到 的测量电压, 利用生物电阻抗测量装置计算出膀胱的电阻抗信号;
S2: 所述生物电阻抗测量装置对所述电阻抗信号进行模数转换, 获得电阻抗数字信号;
S3 : 所述生物电阻抗测量装置对所述电阻抗数字信号进行滤波, 以去除干扰信号, 并将滤波后的电阻抗数字信号发送至上位机;
S4:所述上位机采用时距扩大法对所述电阻抗数字信号进行降采 样处理, 获得多个采样点的数据值;
S5: 所述上位机对所述多个采样点的数据值进行曲线拟合, 获得 电阻抗幅值曲线, 并提取出所述电阻抗幅值曲线的特性参数;
S6: 若在患者大笑、 咳嗽和喷嚏时, 所述电阻抗幅值曲线的特性 参数符合参考模型,则所述上位机判定所述患者出现了急迫性尿失禁 的病症, 并发出警报信号。
在一种可实现方式中, 所述参考模型为:
所述电阻抗幅值曲线出现极小值,且在所述极小值出现后的时间 TO内, 所述电阻抗幅值曲线的斜率值小于零, 其中, 时间 TO > 0。
进一步地, 所述生物电阻抗测量装置包括: 主控模块、 压控恒流 源、 中频正弦波发生器、 信号调理器、 幅值与相位测量模块以及电源 管理模块;
其中, 所述中频正弦波发生器与所述压控恒流源连接, 用于在所 述主控模块的控制下提供稳定的激励电流,并将所示激励电流通过电 流输出正端和电流输出负端输出到患者测试部位;
所述中频正弦波发生器用于产生固定频率的正弦波; 所述信号调理器用于对所述电阻抗数字信号进行滤波,以去除干 扰信号; 所述幅值与相位测量模块设置有两个电压输入端,用于采集患者 测试部位的测量电压, 并计算出测量电压的幅值与相位。
优选地, 所述生物电阻抗测量装置通过串行接口和 /或 Zigbee无 线网络与所述上位机进行数据通信。
在一种可实现方式中, 所述步骤 S3包括:
S31 : 对所述电阻抗数字信号进行快速傅里叶变换, 获得所述电 阻抗数字信号的频谱;
S32: 根据人体生理信号特征对所述频谱进行分析, 对所述频谱 进行数字低通滤波, 去除处于低频段的干扰信号。
进一步地, 所述步骤 S4包括:
S41 : 以时间 T为单位, 对所述电阻抗数字信号进行时距划分, 每个时间 T内对所述电阻抗数字信号采集一个采样点, 其中, 时间 T > 0;
S42: 计算出各个所述时间 T内的所述电阻抗数字信号的均值; S43 : 将所述均值作为与所述时间 T对应的采样点的数据值。 优选地, 所述时间 T为 1分钟。
再进一步地, 所述步骤 S5包括:
S51 : 根据所述多个采样点的数据值, 对相邻的两个采样点的数 据值分别进行直线拟合, 获得多个线性函数; S52: 将所述多个线性函数进行连接组合, 获得电阻抗幅值曲线; S53 : 提取出各个所述线性函数的斜率值, 作为所述电阻抗幅值 曲线的特征参数。
更进一步地, 所述步骤 S6包括:
S61 : 在患者大笑、 咳嗽和喷嚏时, 提取组成所述电阻抗幅值曲 线的各个所述线性函数的斜率值;
S62: 根据各个所述线性函数的斜率值, 判断所述电阻抗幅值曲 线是否出现极小值, 包括: 若前后相邻的两个所述线性函数的斜率值 之乘积小于零, 且前一线性函数的斜率值小于零, 则判定所述前后相 邻的两个所述线性函数的时间连接点出现了极小值; 反之, 判定所述 电阻抗幅值曲线未出现极小值;
S63 : 在所述电阻抗幅值曲线出现极小值时, 判断在所述极小值 出现后的下一个采样点之后时间 TO内, 所述电阻抗幅值曲线的斜率 值是否小于零; 若小于零, 则判定所述电阻抗幅值曲线的特性参数符 合参考模型; 反之, 则判定所述电阻抗幅值曲线的特性参数不符合参 考模型。
优选地, 所述时间 T0=5*T;
则所述在所述极小值出现后的下一个采样点之后时间 TO内, 所 述电阻抗幅值曲线的斜率值为:在所述极小值出现后的下一个采样点 之后时间 TO内的五个线性函数的斜率值;
所述判断在所述极小值出现后的下一个采样点之后时间 TO内, 所述电阻抗幅值曲线的斜率值是否小于零, 具体为:
若所述的五个线性函数的斜率值均小于零时,则判定在所述极小 值出现后的下一个采样点之后时间 TO内, 所述电阻抗幅值曲线的斜 率值小于零; 反之, 则判定在所述极小值出现后的下一个采样点之后 时间 TO内, 所述电阻抗幅值曲线的斜率值不小于零。 实施本发明实施例, 具有如下有益效果:
本发明提供的一种基于生物电阻抗的急迫性尿失禁识别方法,通 过生物电阻抗测量装置测量出人体的电阻抗信号,并利用上位机建立 急迫性尿失禁病症的参考模型,根据生物电阻抗测量装置实时采集的 电阻抗信号对患者的人体生理与病理信息进行定性检测,判断出患者 是否出现了急迫性尿失禁病症,实现了对急迫性尿失禁病症的无创监 测。本发明提供基于生物电阻抗的急迫性尿失禁识别方法,具有无创、 无损、 便于检测及低成本的优点。
附图说明
图 1 是本发明提供的基于生物电阻抗的急迫性尿失禁识别方法 的第一实施例的方法流程图; 图 2是本发明实施例激励电极与测量电极对人体测试时的安装 位置示意图; 图 3是本发明第一实施例的生物电阻抗装置的结构示意图; 图 4是本发明生物电阻抗测量装置与上位机进数据通信的结构 示意图;
图 5 是本发明对电阻抗数字信号进行降采样的一种实现方法流 程图;
图 6是被发明第二实施例对电阻抗幅值曲线进行拟合和提取特 征参数的一种方法流程图;
图 7是本发明拟合的电阻抗幅值曲线示意图;
图 8 是被发明第二实施例对患者是否出现急迫性尿失禁病症的 一种方法流程图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方 案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普 通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 本发明实施例基于生物电阻抗技术进行急迫性尿失禁的识别。人 体组织与器官具有独特的电特性,组织与器官的状态或功能变化将伴 随相应的电特性改变。 而膀胱在发生急迫性尿失禁的过程中,膀胱压 力突然升高会造成肌肉的生物电阻抗信号发生变化。本发明实施例基 于这种关联关系, 建立检测判断的参考模型, 将生物电阻抗技术应用 在膀胱急迫性尿失禁识别方法之中, 实现了对患者的无创无损的监 测。 参见图 1 , 是本发明提供的基于生物电阻抗的急迫性尿失禁识别 方法的第一实施例的方法流程图。 在本实施例中,所述的基于生物电阻抗的急迫性尿失禁识别方法 包括以下步骤:
步骤 S1 : 将一对激励电极以及一对测量电极紧贴在患者的测试 部位,并根据所述激励电极输出的激励电流与所述测量电极实时采集 得到的测量电压, 利用生物电阻抗测量装置计算出膀胱的电阻抗信 具体实施时, 由于膀胱通常处于人体肚脐下方 19厘米处, 因此, 在对患者进行测试时, 将激励电极和测量电极紧贴在患者肚脐下方 19厘米处的左右两边的位置。 参看图 2, 是本发明实施例激励电极与测量电极对人体测试时的 安装位置示意图。
在对患者进行测试时,根据解剖学和物理电路原理,激励电极 IL 和 IR, 与测量电极 VL和 VR处于同一水平线。 优选地, 先找出在肚 脐下方 19厘米处的中心位置, 然后将两个用于向人体输出电流信号 的激励电极 IL和 IR分别紧贴在该中心位置左右两边各 8厘米处的位 置; 将两个用于采集人体电压信号的测量电极 VL和 VR分别紧贴在 该中心位置左右两边各 3厘米处的位置;激励电极和测量电极处于同 一水平线。 需要说明的是, 考虑到膀胱周围组织的复杂性、 电流在人 体器官中流向的不确性和膀胱位置的个体差异,具体实施时可采用膀 胱附近的不同位置进行实验比较, 以找到最佳的电极安装位置, 最大 化减小人体固有干扰, 提高信号噪比。 参看图 3 ,是本发明第一实施例的生物电阻抗装置的结构示意图。 作为优选的实施例, 在本实施例中, 所述生物电阻抗测量装置包 括: 主控模块、 压控恒流源、 中频正弦波发生器、 信号调理器、 幅值 与相位测量模块以及电源管理模块;
其中, 所述中频正弦波发生器与所述压控恒流源连接, 用于在所 述主控模块的控制下提供稳定的激励电流,并将所示激励电流通过电 流输出正端和电流输出负端输出到患者测试部位;
所述中频正弦波发生器用于产生固定频率的正弦波; 所述信号调理器用于对所述电阻抗数字信号进行滤波,以去除干 扰信号;
所述幅值与相位测量模块设置有两个电压输入端,用于采集患者 测试部位的测量电压, 并计算出测量电压的幅值与相位。
具体实施时,利用生物电阻抗测量装置向所述的一对激励电极提 供激励电流, 并接收由测量电极采集得到的电压信号后, 根据欧姆定 律, 计算获得人体膀胱的电阻抗信号。 由于向膀胱输入的激励电流信 号和从膀胱采集的电压信号均为模拟信号,因此计算得到的电阻抗信 号亦为模拟信号。
步骤 S2: 所述生物电阻抗测量装置对所述电阻抗信号进行模数 转换, 获得电阻抗数字信号。通过对电阻抗信号转换为电阻抗数字信 号, 以便于所述生物电阻抗测量装置或计算机对其进行数据分析处 理。
步骤 S3 : 所述生物电阻抗测量装置对所述电阻抗数字信号进行 滤波,以去除干扰信号,并将滤波后的电阻抗数字信号发送至上位机。
在对患者进行测试的过程中,由于人体的一些生理特征,如呼吸、 心跳、脉动等会造成采集得到的电阻抗信号以及模数转换后的电阻抗 数字信号参杂有干扰信号, 在一定程度上影响测量的精度, 因此需要 对电阻抗数字信号进行滤波, 以去除干扰信号, 并将滤波后的电阻抗 数字信号发送至上位机, 由上位机对其进行数据处理和分析。 需要说 明的是, 在具体实践过程中, 测试部位膀胱范围内的干扰信号为高频 信号, 因此, 在对电阻抗数字信号进行滤波时, 可采用生物电阻抗测 量装置对其进行数字低通滤波, 滤除干扰信号。 在一种可实现的方式中, 步骤 S3可通过步骤 S31和步骤 S32来 实现: 步骤 S31 : 对所述电阻抗数字信号进行快速傅里叶变换, 获得所 述电阻抗数字信号的频谱; 步骤 S32: 根据人体生理信号特征对所述频谱进行分析, 对所述 频谱进行数字低通滤波, 去除处于低频段的干扰信号。 当生物电阻抗测量装置对电阻抗数字信号进行数字滤波后,将其 发送至上位机, 由上位机执行步骤 S4。
优选地, 在本实施例中, 所述生物电阻抗测量装置通过串行接口 和 /或 Zigbee无线网络与所述上位机进行数据通信。 参看图 4, 是生 物电阻抗测量装置与上位机进数据通信的结构示意图。
其中, 串行接口筒称串口, 也称串行通信接口, 是采用串行通 信方式的扩展接口。 串行接口按电气标准及协议来分包括 RS232、 RS422、 RS485等, 但不涉及接插件、 电缆或协议。 在本实施例中, 优选采用 RS232类型的串行接口。 Zigbee ^^于 IEEE802.15.4标准 的低功耗个域网协议,是一种短距离、低功耗的无线通信技术。 Zigbee 的特点是近距离、低复杂度、 自组织、低功耗、低数据速率和低成本, 适用于自动控制和远程控制领域, 可以嵌入各种设备。 步骤 S4: 所述上位机采用时距扩大法对所述电阻抗数字信号进 行降采样处理, 获得多个采样点的数据值。
时距扩大法是指把原时间数列中各个时期的数值加以适当合并, 得出较长时距(时间距离)的数值, 形成一个新的扩大了时距的时间 数列的方法, 从而消除由于时距较短而受偶然因素影响所引起的波 动,并使某种现象的发展变化的趋势明显地表露出来。在本实施例中, 采用时距扩大法对电阻抗数字信号进处理时,从每个单位时间里采集 一个采样点,且每个采样点的数据值由其对应的单位时间内的电阻抗 数字信号决定。 将多个采样点的数据值加以合并, 可得到一定时间距 离内的电阻抗数字信号的时间走线趋势。
步骤 S5: 所述上位机对所述多个采样点的数据值进行曲线拟合, 获得电阻抗幅值曲线, 并提取出所述电阻抗幅值曲线的特性参数。 步骤 S6: 若在患者大笑、 咳嗽和喷嚏时, 所述电阻抗幅值曲线 的特性参数符合参考模型,则所述上位机判定所述患者出现了急迫性 尿失禁的病症, 并发出警报信号。
作为优选的实施方式, 在本实施例中, 所述参考模型为: 所述电阻抗幅值曲线出现极小值,且在所述极小值出现后的时间 TO内, 所述电阻抗幅值曲线的斜率值小于零, 其中, 时间 T0 > 0。
具体实施时, 当上位机对所述电阻抗幅值曲线进行数学分析时, 检测出患者在模拟实验动作(包括大笑、 咳嗽和喷嚏)时, 电阻抗幅 值曲线在相应时刻出现了极小值; 并且, 通过对该时刻之后的电阻抗 幅值曲线进行跟踪和分析发现, 在该时刻(出现极小值的电阻抗采样 点所在的单位时间)之后的一段时间 TO内, 电阻抗幅值曲线的斜率 值均小于零, 则认为患者具备急迫性尿失禁的病症, 启动警报信号。 本发明还提供了基于生物电阻抗的急迫性尿失禁识别方法的第 二实施例。 在第二实施例中, 具体实施时, 将一对激励电极以及一对测量电 极紧贴在患者的测试部位,并根据所述激励电极输出的激励电流与所 述测量电极实时采集得到的测量电压,利用生物电阻抗测量装置计算 出膀胱的电阻抗信号;所述生物电阻抗测量装置对所述电阻抗信号进 行模数转换, 获得电阻抗数字信号; 所述生物电阻抗测量装置对所述 电阻抗数字信号进行滤波, 以去除干扰信号, 并将滤波后的电阻抗数 字信号发送至上位机。 以上三个步骤的实现原理分别与第一实施例的步骤 S1〜步骤 S3 相同。 本实施例在第一实施例的基础上, 进一步对第一实施例的步骤 S4〜步骤 S6提供了一种具体实施方式。 参看图 5 , 是本发明对电阻抗数字信号进行降采样的一种实现方 法流程图。
上位机采用时距扩大法对所述电阻抗数字信号进行降采样处理, 获得多个采样点的数据值, 具体包括:
步骤 S41 : 以时间 T为单位, 对所述电阻抗数字信号进行时距划 分, 每个时间 T内对所述电阻抗数字信号采集一个采样点, 其中, 时 间 T > 0。
步骤 S42:计算出各个所述时间 Τ内的所述电阻抗数字信号的均 值。
步骤 S43:将所述均值作为与所述时间 Τ对应的采样点的数据值。 优选地, 所述时间 Τ为 1分钟。
具体实施时, 每隔时间 Τ对所述电阻抗数字信号进行时距划分, 因此,每个时间 τ内均采集到一个电阻抗数字信号的采样点,且每一 个采样点赋予一个数据值。为了体现出实时输出的电阻抗数字信号的 原始特征,各个采样点的数据值为与其对应的时间 T内的电阻抗数字 信号的均值。 譬如, 在所述时间 T为 1分钟时, 则每隔 1分钟就对电 阻抗数字信号进行采样,且第一个采样点的数据值为第一分钟内的所 有电阻抗数字信号的均值;第二采样点的数据值为第二分钟内的所有 电阻抗数字信号的均值; 如此类推。 在本实施例中, 进一步地, 上位机对所述多个采样点的数据值进 行曲线拟合, 获得电阻抗幅值曲线及其特征参数。
参看图 6, 是被发明第二实施例对电阻抗幅值曲线进行拟合和提 取特征参数的一种方法流程图。
具体地, 上位机对所述多个采样点的数据值进行曲线拟合, 获得 电阻抗幅值曲线,并提取出所述电阻抗幅值曲线的特性参数的方法步 骤包括:
步骤 S51 : 根据所述多个采样点的数据值, 对相邻的两个采样点 的数据值分别进行直线拟合,获得多个线性函数。根据线性数学原理, 通过两个不同点的数据值可拟合一条直线, 获得线性函数 y=a*t+b, 其中, a为线性函数的斜率值, b为线性函数的在 y轴上的截距。 因 此, 在本实施例中, 将电阻抗幅值作为纵轴, 时间 t作为横轴, 建立 平面直角坐标系;再将相邻的两个采样点的数据值所在的坐标点连接 起来, 即可获得多段线段, 每一段线段为一个线性函数。
步骤 S52: 将所述多个线性函数进行连接组合, 获得电阻抗幅值 曲线。 具体地, 在平面直角坐标系中将两两相邻的采样点所在的坐标 点进行连接。 参看图 7, 是本发明拟合的电阻抗幅值曲线示意图。
如图 7所示, 在拟合人体膀胱的的电阻抗幅值曲线时,每隔时间 T采集一个采样点, 每个采样点赋予一个数据值, 且电阻抗幅值曲线 在时刻 to获得极小值。
在对电阻抗幅值曲线进行数学表示时,将所述步骤 S51获得的多 段线性函数进行组合,所得的分段函数即为电阻抗幅值曲线的数学表 示, 以便于上位机对电阻抗采样点的数据值进行分析处理。
具体地, 在以时间 T=l 分钟对电阻抗数字信号进行采样时, 对 第一个采样点与第二个采样点的数据值进行线性拟合,获得线性函数 yl=al*t+bl, 0<t<l;对第二个采样点与第三个采样点的数据值进行 线性拟合, 获得线性函数 y2=a2*t+b2, Kt<2; 对第三个采样点与 第四个采样点的数据值进行线性拟合, 获得线性函数 y3=a3*t+b3, 2 <t<3;如此类推,可将所述电阻抗幅值曲线的数学表示为分段函数: y={al*t+bl, 0<t< 1;
a2*t+b2, Kt<2;
a3*t+b3, 2<t<3;
…… }
其中, 常数 al、 a2、 a3 为各段线性函数的斜率值, 常数 bl、 b2、 b3 为各段线性函数在纵轴上的截距。
步骤 S53: 提取出各个所述线性函数的斜率值, 作为所述电阻抗 幅值曲线的特征参数。 具体地, 当时间 T=l 分钟时, 将以上所述的 各段线性函数的斜率值 al、 a2、 a3 提取为电阻抗幅值曲线的特 征参数。 具体实施时, 生物电阻抗测量装置对患者进行实时检测, 因 此, 上位机获得的电阻抗幅值曲线的特征参数也为实时获得。
在本实施例中, 在获得电阻抗幅值曲线的特征参数后, 即可应用 其进行检测, 以获得对患者的测试结果。 参看图 8, 是被发明第二实施例对患者是否出现急迫性尿失禁病 症的一种方法流程图。
进一步地, 在本实施例中, 若在患者大笑、 咳嗽和喷嚏时, 所述 电阻抗幅值曲线的特性参数符合参考模型,则所述上位机判定所述患 者出现了急迫性尿失禁的病症, 并发出警报信号; 优选地, 该执行过 程具体包括以下步骤:
步骤 S61 : 在患者大笑、 咳嗽和喷嚏时, 提取组成所述电阻抗幅 值曲线的各个所述线性函数的斜率值。
步骤 S62: 根据各个所述线性函数的斜率值, 判断所述电阻抗幅 值曲线是否出现极小值, 包括: 若前后相邻的两个所述线性函数的斜 率值之乘积小于零, 且前一线性函数的斜率值小于零, 则判定所述前 后相邻的两个所述线性函数的时间连接点出现了极小值; 反之, 判定 所述电阻抗幅值曲线未出现极小值。如图 7所示, 所述电阻抗幅值曲 线在时刻 t0时出现了极小值。
譬如, 当 T=l 分钟对电阻抗数字信号进行采样时, 上位机检测 到组成电阻抗幅值曲线的第一个线性函数的斜率值 al 小于零, 且该 斜率值 al与第二个线性函数的斜率值 a2的乘积小于零, 即 al < 0, 且 al*a2 < 0时, 则判定该电阻抗幅值曲线在第一个线性函数与第二 个线性函数的时间连接点 t=l (分钟) 时出现了极小值。
步骤 S63: 在所述电阻抗幅值曲线出现极小值时, 判断在所述极 小值出现后的下一个采样点之后时间 TO内, 所述电阻抗幅值曲线的 斜率值是否小于零; 若小于零, 则判定所述电阻抗幅值曲线的特性参 数符合参考模型; 反之, 则判定所述电阻抗幅值曲线的特性参数不符 合参考模型。 在一种可实现的方式中, 所述时间 T0=5*T。
则所述在所述极小值出现后的下一个采样点之后时间 TO内, 所 述电阻抗幅值曲线的斜率值为:在所述极小值出现后的下一个采样点 之后时间 TO内的五个线性函数的斜率值。
所述判断在所述极小值出现后的下一个采样点之后时间 TO内, 所述电阻抗幅值曲线的斜率值是否小于零, 具体为:
若所述的五个线性函数的斜率值均小于零时,则判定在所述极小 值出现后的下一个采样点之后时间 TO内, 所述电阻抗幅值曲线的斜 率值小于零; 反之, 则判定在所述极小值出现后的下一个采样点之后 时间 TO内, 所述电阻抗幅值曲线的斜率值不小于零。
譬如, 当时间 T=l分钟, 且在时刻 to出现极小值时, 上位机对 极小值出现的时刻 t0的 1分钟之后 (时刻 tO+1 ) 的 5分钟内 (时刻 tO+1〜时刻 tO+6 )五个线性函数进行处理, 获得时间段 [t0+l,t0+2]、 时 间段 [t0+2,t0+3]、 时间段 [t0+3,t0+4]、 时间段 [t0+4,t0+5]以及时间段 [t0+5,t0+6]所分别对应的五个线性函数的斜率值 al、 a2、 a3、 a4和 a5。 当斜率值 al、 a2、 a3、 a4和 a5均小于零时, 则认为所述电阻抗幅值 曲线的斜率值在极小值出现后的下一个采样点时间 TO内为小于零, 从而判定所述电阻抗幅值曲线的特性参数符合参考模型,推断出受试 患者出现了急迫性尿失禁的病症, 所述上位机立刻启动报警, 通知患 者及时就医。 具体实施时, 若受试患者的电阻抗幅值信号不符合所建 立的参考模型, 则判定其为非急迫性尿失禁患者。
本发明实施例提供的基于生物电阻抗的急迫性尿失禁识别方 法,基于膀胱在发生急迫性尿失禁的过程中, 膀胱压力突然升高会造 成肌肉的生物电阻抗信号发生变化的原理,将生物电阻抗技术应用在 膀胱急迫性尿失禁识别方法之中,通过生物电阻抗测量装置实时采集 的电阻抗信号对患者的人体生理与病理信息进行定性检测, 以及建立 急迫性尿失禁检测判断的参考模型,实现了对急迫性尿失禁病症的无 创监测。 本发明提供基于生物电阻抗的急迫性尿失禁识别方法, 具有 无创、 无损、 便于检测及低成本的优点。
以上所述是本发明的优选实施方式,应当指出, 对于本技术领域 的普通技术人员来说, 在不脱离本发明原理的前提下,还可以做出若 干改进和润饰, 这些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求 书
1、 一种基于生物电阻抗的急迫性尿失禁识别方法, 其特征在于, 包括:
S1 : 将一对激励电极以及一对测量电极紧贴在患者的测试部位, 并根据所述激励电极输出的激励电流与所述测量电极实时采集得到 的测量电压, 利用生物电阻抗测量装置计算出膀胱的电阻抗信号;
S2: 所述生物电阻抗测量装置对所述电阻抗信号进行模数转换, 获得电阻抗数字信号;
S3 : 所述生物电阻抗测量装置对所述电阻抗数字信号进行滤波, 以去除干扰信号, 并将滤波后的电阻抗数字信号发送至上位机;
S4:所述上位机采用时距扩大法对所述电阻抗数字信号进行降采 样处理, 获得多个采样点的数据值;
S5: 所述上位机对所述多个采样点的数据值进行曲线拟合, 获得 电阻抗幅值曲线, 并提取出所述电阻抗幅值曲线的特性参数;
S6: 若在患者大笑、 咳嗽和喷嚏时, 所述电阻抗幅值曲线的特性 参数符合参考模型,则所述上位机判定所述患者出现了急迫性尿失禁 的病症, 并发出警报信号。
2、 如权利要求 1所述的基于生物电阻抗的急迫性尿失禁识别方 法, 其特征在于, 所述参考模型为:
所述电阻抗幅值曲线出现极小值,且在所述极小值出现后的时间 TO内, 所述电阻抗幅值曲线的斜率值小于零, 其中, 时间 T0 > 0。
3、 如权利要求 2所述的基于生物电阻抗的急迫性尿失禁识别方 法, 其特征在于, 所述生物电阻抗测量装置包括: 主控模块、 压控恒 流源、 中频正弦波发生器、 信号调理器、 幅值与相位测量模块以及电 源管理模块; 其中, 所述中频正弦波发生器与所述压控恒流源连接, 用于在所 述主控模块的控制下提供稳定的激励电流,并将所示激励电流通过电 流输出正端和电流输出负端输出到患者测试部位;所述中频正弦波发 生器用于产生固定频率的正弦波;
所述信号调理器用于对所述电阻抗数字信号进行滤波,以去除干 扰信号;
所述幅值与相位测量模块设置有两个电压输入端,用于采集患者 测试部位的测量电压, 并计算出测量电压的幅值与相位。
4、 如权利要求 1所述的基于生物电阻抗的急迫性尿失禁识别方 法,其特征在于,所述生物电阻抗测量装置通过串行接口和 /或 Zigbee 无线网络与所述上位机进行数据通信。
5、 如权利要求 1~4任一项所述的基于生物电阻抗的急迫性尿失 禁识别方法, 其特征在于, 所述步骤 S3包括:
S31 : 对所述电阻抗数字信号进行快速傅里叶变换, 获得所述电 阻抗数字信号的频谱;
S32: 根据人体生理信号特征对所述频谱进行分析, 对所述频谱 进行数字低通滤波, 去除处于低频段的干扰信号。
6、 如权利要求 1~4任一项所述的基于生物电阻抗的急迫性尿失 禁识别方法, 其特征在于, 所述步骤 S4包括:
S41 : 以时间 T为单位, 对所述电阻抗数字信号进行时距划分, 每个时间 T内对所述电阻抗数字信号采集一个采样点, 其中, 时间 T > 0;
S42: 计算出各个所述时间 T内的所述电阻抗数字信号的均值; S43 : 将所述均值作为与所述时间 T对应的采样点的数据值。
7、 如权利要求 6所述的基于生物电阻抗的急迫性尿失禁识别方 法, 其特征在于, 所述时间 T为 1分钟。
8、 如权利要求 1~4任一项所述的基于生物电阻抗的急迫性尿失 禁识别方法, 其特征在于, 所述步骤 S5包括:
S51 : 根据所述多个采样点的数据值, 对相邻的两个采样点的数 据值分别进行直线拟合, 获得多个线性函数;
S52: 将所述多个线性函数进行连接组合, 获得电阻抗幅值曲线; S53 : 提取出各个所述线性函数的斜率值, 作为所述电阻抗幅值 曲线的特征参数。
9、 如权利要求 1~4任一项所述的基于生物电阻抗的急迫性尿失 禁识别方法, 其特征在于, 所述步骤 S6包括:
S61 : 在患者大笑、 咳嗽和喷嚏时, 提取组成所述电阻抗幅值曲 线的各个所述线性函数的斜率值;
S62: 根据各个所述线性函数的斜率值, 判断所述电阻抗幅值曲 线是否出现极小值, 包括: 若前后相邻的两个所述线性函数的斜率值 之乘积小于零, 且前一线性函数的斜率值小于零, 则判定所述前后相 邻的两个所述线性函数的时间连接点出现了极小值; 反之, 判定所述 电阻抗幅值曲线未出现极小值;
S63 : 在所述电阻抗幅值曲线出现极小值时, 判断在所述极小值 出现后的下一个采样点之后时间 TO内, 所述电阻抗幅值曲线的斜率 值是否小于零; 若小于零, 则判定所述电阻抗幅值曲线的特性参数符 合参考模型; 反之, 则判定所述电阻抗幅值曲线的特性参数不符合参 考模型。
10、如权利要求 9所述的基于生物电阻抗的急迫性尿失禁识别方 法, 其特征在于, 所述时间 T0=5*T;
则所述在所述极小值出现后的下一个采样点之后时间 TO内, 所 述电阻抗幅值曲线的斜率值为:在所述极小值出现后的下一个采样点 之后时间 TO内的五个线性函数的斜率值;
所述判断在所述极小值出现后的下一个采样点之后时间 TO内, 所述电阻抗幅值曲线的斜率值是否小于零, 具体为:
若所述的五个线性函数的斜率值均小于零时,则判定在所述极小 值出现后的下一个采样点之后时间 TO内, 所述电阻抗幅值曲线的斜 率值小于零; 反之, 则判定在所述极小值出现后的下一个采样点之后 时间 TO内, 所述电阻抗幅值曲线的斜率值不小于零。
PCT/CN2013/084342 2013-07-26 2013-09-26 一种基于生物电阻抗的急迫性尿失禁识别方法 WO2015010366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310321044XA CN103340639A (zh) 2013-07-26 2013-07-26 一种基于生物电阻抗的急迫性尿失禁识别方法
CN201310321044.X 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015010366A1 true WO2015010366A1 (zh) 2015-01-29

Family

ID=49275506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084342 WO2015010366A1 (zh) 2013-07-26 2013-09-26 一种基于生物电阻抗的急迫性尿失禁识别方法

Country Status (2)

Country Link
CN (1) CN103340639A (zh)
WO (1) WO2015010366A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103598886B (zh) * 2013-11-28 2015-10-28 中山大学 基于模型补偿法监测积尿过程中动态尿量的方法
GB201513208D0 (en) * 2015-07-27 2015-09-09 Univ Central Lancashire Methods and apparatuses for estimating bladder status
US11083392B2 (en) * 2017-07-13 2021-08-10 Samsung Electronics Co., Ltd. Bio-processor, bio-signal detecting system, and operation method of bio-processor
CN110840457B (zh) * 2019-12-12 2020-11-13 北京航空航天大学 一种基于边缘场检测的二维eit电极阵列结构优化方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538346A (ja) * 1991-08-06 1993-02-19 Akio Yamada 尿失禁予防モニタ装置
CN101940469A (zh) * 2010-06-29 2011-01-12 中山大学 一种便携式膀胱尿量检测方法及装置
JP2011078791A (ja) * 2010-10-27 2011-04-21 Kao Corp 排泄検知装置
JP2011182954A (ja) * 2010-03-09 2011-09-22 Panasonic Corp 排尿障害治療器
EP1940510B1 (en) * 2005-10-28 2012-03-28 Medtronic, Inc. Systems for impedance-based bladder sensing
CN102551712A (zh) * 2011-06-13 2012-07-11 广州安德生物科技有限公司 基于生物电阻抗的非侵入式排尿报警装置及监测方法
US20120197336A1 (en) * 2011-01-28 2012-08-02 Medtronic, Inc. Intra-burst pulse variation for stimulation therapy
CN102961152A (zh) * 2012-11-01 2013-03-13 中山大学 低负荷膀胱尿量实时监测与自动报警方法
CN103126672A (zh) * 2013-03-13 2013-06-05 中山大学 基于生物电阻抗的膀胱积尿实时监测方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526315B1 (en) * 2000-03-17 2003-02-25 Tanita Corporation Portable bioelectrical impedance measuring instrument

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538346A (ja) * 1991-08-06 1993-02-19 Akio Yamada 尿失禁予防モニタ装置
EP1940510B1 (en) * 2005-10-28 2012-03-28 Medtronic, Inc. Systems for impedance-based bladder sensing
JP2011182954A (ja) * 2010-03-09 2011-09-22 Panasonic Corp 排尿障害治療器
CN101940469A (zh) * 2010-06-29 2011-01-12 中山大学 一种便携式膀胱尿量检测方法及装置
JP2011078791A (ja) * 2010-10-27 2011-04-21 Kao Corp 排泄検知装置
US20120197336A1 (en) * 2011-01-28 2012-08-02 Medtronic, Inc. Intra-burst pulse variation for stimulation therapy
CN102551712A (zh) * 2011-06-13 2012-07-11 广州安德生物科技有限公司 基于生物电阻抗的非侵入式排尿报警装置及监测方法
CN102961152A (zh) * 2012-11-01 2013-03-13 中山大学 低负荷膀胱尿量实时监测与自动报警方法
CN103126672A (zh) * 2013-03-13 2013-06-05 中山大学 基于生物电阻抗的膀胱积尿实时监测方法及装置

Also Published As

Publication number Publication date
CN103340639A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
CN101940469B (zh) 一种便携式膀胱尿量检测装置
CN102368951B (zh) 电外科手术中的神经监视
TWI362253B (en) Non-contact apparatus for monitoring heart-lung activities and method for acquiring the same
WO2014094415A1 (zh) 基于生物电阻抗的睡眠呼吸模式识别方法及装置
WO2014139143A1 (zh) 基于生物电阻抗的膀胱积尿实时监测方法及装置
DK178263B1 (en) Method and system of detecting seizures
WO2014067248A1 (zh) 低负荷膀胱尿量实时监测与自动报警方法
WO2015010366A1 (zh) 一种基于生物电阻抗的急迫性尿失禁识别方法
CN109793516B (zh) 一种皮肤电阻抗柔性检测装置及皮肤电阻抗检测方法
CN111436919B (zh) 一种具有健康检测功能的马桶座圈及健康检测方法
CN105050496B (zh) 具有可植入部件的eeg监测器中的电极和泄漏电流测试
WO2015027544A1 (zh) 排尿感知检测方法及装置
JP2014519915A (ja) 差動入力リードを選択する方法及び装置
WO2019080728A1 (zh) 一种基于WiFi信号的心率异常检测方法
CN209032422U (zh) 一种心音信号检测设备
CN115844340A (zh) 一种辅助训练用人员身体指标监测方法、系统及电子设备
US20140371550A1 (en) Electrolytic biosensor
CN209770372U (zh) 一种细胞外液电阻抗和总体水分电阻抗的测量装置
CN105232041A (zh) 人体体表电特性分布的测量装置、数据终端及方法
CN109222934B (zh) 用于生物电阻抗一致性测量的系统及方法
CN106913335A (zh) 一种呼吸暂停检测系统的检测方法
EP3957240A1 (en) Non-invasive method and system for detecting feature information of in vivo tissue
CN208447575U (zh) 生命体征检测系统
CN115153580A (zh) 一种用于胎儿心电监测的皮肤阻抗测量方法和系统
CN114041775A (zh) 一种基于生物阻抗的人体腹部脂肪含量评估装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889775

Country of ref document: EP

Kind code of ref document: A1