WO2015010249A1 - 一种大型料仓的进出料方法及其料仓 - Google Patents

一种大型料仓的进出料方法及其料仓 Download PDF

Info

Publication number
WO2015010249A1
WO2015010249A1 PCT/CN2013/079899 CN2013079899W WO2015010249A1 WO 2015010249 A1 WO2015010249 A1 WO 2015010249A1 CN 2013079899 W CN2013079899 W CN 2013079899W WO 2015010249 A1 WO2015010249 A1 WO 2015010249A1
Authority
WO
WIPO (PCT)
Prior art keywords
silo
grading
discharging
silos
feeding
Prior art date
Application number
PCT/CN2013/079899
Other languages
English (en)
French (fr)
Inventor
车战斌
Original Assignee
Che Zhanbin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Che Zhanbin filed Critical Che Zhanbin
Priority to PCT/CN2013/079899 priority Critical patent/WO2015010249A1/zh
Publication of WO2015010249A1 publication Critical patent/WO2015010249A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/26Hoppers, i.e. containers having funnel-shaped discharge sections
    • B65D88/32Hoppers, i.e. containers having funnel-shaped discharge sections in multiple arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • B65D88/64Large containers characterised by means facilitating filling or emptying preventing bridge formation
    • B65D88/66Large containers characterised by means facilitating filling or emptying preventing bridge formation using vibrating or knocking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • B65D88/64Large containers characterised by means facilitating filling or emptying preventing bridge formation
    • B65D88/68Large containers characterised by means facilitating filling or emptying preventing bridge formation using rotating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • B65G65/44Devices for emptying otherwise than from the top using reciprocating conveyors, e.g. jigging conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • B65G65/46Devices for emptying otherwise than from the top using screw conveyors

Definitions

  • the present invention relates to a method for grading, feeding and discharging a large container, in particular, a bulk silo.
  • a bulk silo in particular, a bulk silo.
  • it is a large-scale bulk silo feeding and discharging method and its silo. Background technique
  • the bulk silo is used to store bulk materials such as grain, fertilizer, biomass materials, coal powder, etc., and is widely used in industrial and agricultural production. In all production processes, the storage of raw materials and the continuous supply of materials are a very important part of the material processing and logistics industry. In the form of mass production, silos also need to be large and mechanized.
  • the general silo management method is to first inject the bulk material into the silo through the feeding system for storage for a certain period of time. When the demand for production links, or other needs. The material is then discharged from the silo through the discharge port. In order to ensure the uniform storage time of the materials in the silo as much as possible, it is common practice to first inject all the materials in the silo into the new batch of materials. For small silos, maximum storage efficiency can be achieved by rapid turnover of material in and out. However, for large and even very large silos, because of the large amount of material stored, the time of each feeding and discharging is relatively long. Therefore, in the process of discharging, the silo is often in the middle. The position of a warehouse or a small warehouse. It is not difficult to conclude that in large silos, the use of the above-mentioned silo feeding and discharging methods will undoubtedly greatly reduce the storage efficiency of the silo due to the dissatisfied state in a relatively long period of time.
  • the simplest method is to inject the material into the silo at any time, that is, when there is a dissatisfied state in the silo, it is ready to be in the silo at any time. Feeding.
  • this method solves the problem of low storage efficiency of the silo, it is difficult to realize the controllability of the storage time of the materials in the silo, and some materials may not be discharged in time, resulting in the storage time of some materials being too long. .
  • the main problem with the long storage time of the material is that the material is compacted, and the longer the storage time, the more severe the compaction.
  • the material When the material is compacted to a certain extent, it will affect the fluidity of the material, which in turn will cause arching.
  • some materials may change during storage due to factors such as moisture content or temperature. Therefore, when storing different materials, there are certain requirements on the storage time of the materials. If the design storage time is exceeded, the quality of the materials will be adversely changed, which will affect the storage quality of the materials.
  • the object of the present invention is to provide an inlet and discharge method for the classification control of a bulk silo and a silo thereof, and the large-scale realization of the bulk silo by the stepwise control of the inlet and discharge of the bulk silo Mechanized.
  • Another object of the present invention is to provide a staged control inlet and discharge method and a silo for a bulk silo, which can control the volume state of each graded silo in the silo, thereby improving the storage efficiency of the large silo.
  • the third object of the present invention is to provide a grading control feeding and discharging method for a bulk silo and a silo, which can conveniently and effectively realize the feeding and discharging control of local materials in a large silo, thereby realizing the material. Effective control of storage time and storage quality.
  • the fourth object of the present invention is to provide a method for controlling the classification and discharge of a bulk silo and a silo, so that the inlet and outlet of the bulk material can be easily controlled in a closed environment, which is beneficial to the control of the working environment.
  • the present invention provides a method for feeding and discharging a large-scale silo, wherein at least two or more stages of silos are connected into one large-sized silo; at least in a large silo.
  • the upper part of each of the grading silos is in a through state, forming a through portion between each of the grading silos; feeding the material into the silo through a feeding port located at an upper portion of the silo, and passing through at least one propelling mechanism
  • the through-section between the grading silos is injected into the grading silo in the state of being empty or not full; the bottom of each grading silo is provided with at least one discharging port, and correspondingly corresponding to the discharging port is capable of independent control
  • the discharging mechanism starts the discharging mechanism corresponding to the grading silo at the time of discharging, and empties the material in the grading silo; and selects the discharging of each grading
  • the invention also provides a silo adopting the above method, wherein the silo is connected by at least two stages of each graded silo to form a whole large silo, at least for each of the graded materials constituting the large silo
  • the upper part of the silo is in a through state, forming a through portion between the graded silos; the upper part of the silo is provided with at least one feed port to feed into the silo, and each feed port is connected to at least one propulsion mechanism, and the propulsion mechanism runs through
  • the through-section between each of the grading silos pushes the material into a grading silo in a state of being empty or not full, realizing controlled to a grading silo in any of the large silos that is empty or not full.
  • At least one discharge port is provided at the bottom of each stage of the grading silo, and a discharge mechanism capable of independent control is provided corresponding to the discharge port, and a discharge mechanism corresponding to the grading silo is started at the time of discharging,
  • the material in the grading silo is emptied; the discharge time of each grading silo is selected by the storage state of the materials in the grading silo, so that the material discharging time in the large silo can be controlled.
  • the present invention has the following features and advantages:
  • the invention can effectively improve the storage volume efficiency of large and even large-scale bulk silos, and makes it possible to promote the enlargement and mechanization of the bulk silos.
  • the present invention by separately controlling the discharge of the grading silo, it is possible to realize the grading of the silo area
  • the discharge of the materials is separately carried out, thereby realizing the effective control of the storage time of the materials in the large-scale bulk silo, and realizing the quality assurance of the material storage by controlling the storage time of the materials.
  • the material is injected into the silo through one or a few inlets, and the natural volume state in the silo is utilized, and the material is introduced into the grading silo that has been emptied through the propulsion mechanism, which is beneficial to realize Full mechanization of large warehouses and discharges.
  • the invention does not need to separately set the feed port for each section of the silo, so that the inlet and outlet of the bulk silo can be controlled in a substantially closed space, which is beneficial to environmental protection.
  • Figure 1 is a perspective view of a silo of the present invention
  • Figure 2 is a partial enlarged view of a portion A in Figure 1;
  • Figure 3 is a front cross-sectional view of the silo of the present invention.
  • Figure 4 is a side cross-sectional view of the silo of the present invention.
  • Figure 5 is a partial enlarged view of the skip arm of the present invention.
  • Figure 6 is a side cross-sectional view showing a second embodiment of the present invention.
  • Figure 7 is a side cross-sectional view showing a third embodiment of the present invention.
  • Figure 8 is a plan view of a fourth embodiment of the present invention.
  • Figure 9 is a plan view showing another embodiment of the fourth embodiment of the present invention.
  • Figure 10 is a cross-sectional view taken along line B-B of Figure 7;
  • Figure 11 is a plan view of Embodiment 5 of the present invention.
  • Figure 12 is a plan view showing another embodiment of the fifth embodiment of the present invention.
  • Fig. 1 is a perspective view of a silo of the present invention
  • Fig. 2 is a partial enlarged view of a portion of Fig. 1
  • Fig. 3 is a front sectional view of the silo of the present invention.
  • the method for feeding and discharging the grading control of a large silo according to the present invention is to connect at least two or more grading silos 110 into a whole large silo 100, at least in composition.
  • each of the grading silos 110 in the large silo 100 is in a penetrating state, forming a through portion between the grading silos 110; and feeding into the silo through the feeding port 120 located at the upper portion of the silo 100 at the time of feeding, And using at least one propulsion mechanism 130 to feed the grading silo 110 in the state of being empty or not full through the through-section between the grading silos 110, thereby realizing the grading of any empty or unsatisfactory warehouse in the large silo.
  • the discharging mechanism corresponding to the silo 110 unloads the material in the grading silo 110; and selects the discharging time of the grading silo 110 by storing the material in the grading silo 110, thereby realizing the large silo 100
  • the material discharge time can be controlled.
  • the silo 100 is a small-sized silo of at least two stages or more connected to form an integral large silo, and each of the small-volume silos constitutes each graded silo 110 of the large silo; at least in the upper part of each graded silo 110 In a state, a through portion between the grading silos 110 is formed; at least one inlet port 120 is provided in the upper portion of the silo 100 to feed into the silo 100, and a feeding mechanism 130 is at least electrically connected to the feeding port 120, and the propelling mechanism 130 runs through In the through portion 111 of each grading silo 110, the material is pushed into the grading silo 110 in the state of being empty or not full, and the grading material controlled to any empty or unfilled state in the large silo 100 is realized.
  • the main working principle of the invention is to divide the large-scale bulk silo 100 into a plurality of graded silos 110, each graded material
  • the discharge of the silo 110 is controlled separately, and the materials stored in the area of the silo silo 110 can be discharged as quickly as possible.
  • the feed port 120 is injected into the silo 100, and the propulsion mechanism 130 advances the material in the upper portion of the silo 100 until it is empty.
  • the material falls into the grading silo 110 area by gravity and fills the grading silo 110 area.
  • the method of the present invention allows the bin 100 to remain in a full state at all times without the need to feed the bin 100 all or substantially. Therefore, the invention can effectively improve the storage volume efficiency of large and even large-scale bulk silos, and makes it possible to promote the enlargement and mechanization of the bulk silos.
  • the discharge of the materials in the area of the graded silo 110 can be separately performed, thereby realizing the effective storage time of the materials in the large-scale bulk silo 100. Control, and achieve material storage quality assurance by controlling the storage time of materials.
  • the material is injected into the silo 100 through one or a few feed ports 120, and the material is introduced into the empty space by the propulsion mechanism 130 by utilizing the natural volume state in the silo 100.
  • the grading silo 110 it is advantageous to realize all mechanization of large-scale loading and discharging.
  • the present invention does not need to separately set the feed port for each stage of the grading silo 110, so that the inlet and outlet of the bulk silo can be controlled in a substantially closed space, which is beneficial to environmental protection.
  • Feeding feeding into the silo 100 through the feeding port 120 at the upper end of the silo 100; starting the propulsion mechanism 130, at this time, since the graded silos 110 in the silo 100 are all vacant, the materials first enter the vicinity according to their gravity
  • the feeding port 120 is in the area of the grading silo 110; as the propulsion mechanism 130 advances, the material first fills the grading silo 110 area, and at this time, the material entering the silo of the propulsion mechanism 130 enters the next grading material.
  • the area of the silo 110 is gradually filled; the process is repeated until all the silos 100 are filled or the number of graded silos 110 located in the preceding section are filled according to the amount of material; the process may be completed once or in batches. The completion is performed; the feeding time and material characteristics of each graded silo 110 are recorded at the time of feeding.
  • Discharge According to the storage time of each graded silo 110, or the material status, determine the graded silo 110 that needs to be discharged, start the discharge mechanism, and classify some or all of the materials in the silo 110 area according to requirements.
  • Replenishment When the material in the silo 110 area is empty at any end of the silo 100, or in the other volume state of the warehouse, the replenishment can be made according to the demand; when the replenishment is completed, the inlet 120 of the upper part of the silo 100 is still fed. And actuating the propulsion mechanism 130, when the material is pushed forward by the propulsion mechanism 130 to the grading silo 110 to be replenished, the material falls into the grading silo 110 area by its own gravity, and gradually fills the area; This process is repeated over and over again.
  • each of the grading silos 110 is in a through state, and may be in a spaced state between the lower portions of the grading silos 110, and only in the upper portion of each of the grading silos 110; or It may be in a fully penetrating state in which the upper and lower portions are not spaced apart; or each of the classifying silos 110 may be intervened in the middle or in a peripherally penetrating state.
  • the method for introducing and discharging the hierarchical control of the bulk silo proposed by the present invention realizes the enlargement and mechanization of the bulk silo by hierarchically controlling the feeding and discharging of the bulk silo.
  • the volume state of each graded silo in the silo the storage efficiency of the large silo is improved.
  • the inlet and outlet of the bulk material can be easily controlled in a closed environment, which is beneficial to the control of the working environment.
  • the silo 100 may be formed by a square or a circular silo, as shown in FIG. 3, specifically, in the present embodiment, the graded silo 110 is a square bin, and the inner wall surface of the bottom of the graded silo 110 is tapered surface. Each of the graded silos 110 can be fully penetrated without gaps.
  • the upper portion of the silo 100 is provided with a feed port 120 through which the propulsion mechanism 130 corresponding to the feed port 120 passes through all of the graded silos 110 to direct the material into the graded silo of the desired feed.
  • the propulsion mechanism 130 can be a screw propulsion mechanism or a belt propulsion mechanism, with the propulsion direction being from the feed port 120 toward the graded silo 110.
  • the feed port 120 is disposed above the graded silo 110 at the end of the silo 100, and the propulsion mechanism 130 is a screw propulsion mechanism and along the length of the silo 100. Throughout each of the graded silos 110, the direction of advancement is the other end of the silo 100.
  • the advancement mechanism 130 may be disposed within the feed cylinder, and the bottom surface of the feed cylinder is provided with an opening corresponding to each of the graded silos 110.
  • the feed cylinder is connected in series by two or more grading feed cylinders, and each of the grading feed cylinders corresponds to one grading silo 110.
  • the discharge mechanism may be a controlled open door or a broken arch mechanism 150 combined with the discharge opening.
  • FIG. 4 a side cross-sectional view of the silo of the present invention is shown in FIG. 2 and FIG. 4.
  • the discharging mechanism is a breaking mechanism 150 corresponding to the discharging port 140.
  • the arching mechanism 150 includes a driving mechanism 151 and a breaking unit 152.
  • the breaking unit 152 is disposed in the classifying silo 110, and the driving structure 151 drives the breaking unit 152 along the classifying bin 110.
  • the wall 112 is reciprocated; the arch unit 152 includes a connecting rod 153 and at least one pad 154.
  • the connecting rod 153 is disposed along the inner wall surface 112. One end of the connecting rod 153 is an input end and is connected to the driving mechanism 151, and is driven by the driving mechanism 151.
  • the rod 153 reciprocates, and the material 154 is angularly connected to the connecting rod 153 and reciprocates along with the connecting rod 153, and the material in the grading silo 110 is discharged along the inner wall surface 112 toward the material discharge opening 140.
  • the material in the graded silo 110 located above the arching mechanism 150 is agitated, and the material arch accumulated above the discharge port 140 of the graded silo 110 is destroyed, so that the material can be smoothly discharged from the material.
  • the port 140 is unloaded; and the material in other areas of the silo 100 is still in an arched state and cannot be discharged.
  • the storage time of the materials in the large-scale bulk silo 100 can be effectively controlled, and the quality of material storage can be ensured by controlling the storage time of the materials.
  • a guide mechanism 155 is provided on the inner wall surface 112 of the classifying silo 110, and the arch unit 152 reciprocates along the guide mechanism 140.
  • the guiding mechanism 155 includes a guiding groove 156 disposed on the inner wall surface 112 and a guide rail 157 disposed on the skip arm 154.
  • the guiding groove 156 has the same direction as the axial direction of the connecting rod 153.
  • the 157 cooperates with the guide groove 156 to ensure that the skip arm 154 slides back and forth along the guide groove 156.
  • the driving mechanism 151 includes at least a motor and an eccentric mechanism, and the eccentric mechanism is coupled to the arching unit 152 to drive the arching unit 152 to reciprocate.
  • At least one arching unit 152 is arranged on the tapered surface above the discharge opening 140 of each of the graded silos 110, and the skip arm 154 of the arching unit 152 is a flat dial. Material arm.
  • the feed port 120 is connected to two propulsion mechanisms 130, and each propulsion mechanism 130 runs through each of the classifying silos 110 along the length direction of the silo 100, and
  • the propulsion mechanism 130 is a screw propulsion mechanism, and the direction of advancement is the other end of the silo 100.
  • FIG. 6 a side cross-sectional view of a second embodiment of the present invention is shown. As shown in FIG. 6, in the present embodiment, the lower portions of the grading silos 110 are separated by a space 113, and only the upper portion passes through the through portion 111.
  • each of the grading silos 110 is provided with a hopper 131 that can be individually controlled to be pressed, and the top of the material injected into the grading silo 110 is flattened and compacted.
  • the storage efficiency of each stage of the silo 110 is ensured and the uneven distribution of materials is prevented from affecting storage and discharge.
  • the distributor 131 may be formed by a splitting cage disposed at an angle to the propulsion mechanism 130. Further, the distributor 131 may be formed by spacing two or more split cages. The distribution pitch of each distribution cage is set according to the material characteristics.
  • Embodiment 3 For the description of other structural features of this embodiment, please refer to the first embodiment. Embodiment 3
  • FIG. 7 is a side cross-sectional view of a third embodiment of the present invention.
  • the difference between the embodiment and the second embodiment is that, in the embodiment, the arching unit 152 is disposed in the classifying silo 110, and is driven.
  • the structure 151 is disposed on the outer wall of each of the grading silos 110, and drives the rupture unit 152 to reciprocate along the inner wall surface 112 of the grading silo 110.
  • One end of the arch unit 152 is an input end and is connected to the driving mechanism 151, and is driven by the driving mechanism 151.
  • the arching unit 152 reciprocates, and the material in the grading silo 110 is discharged along the inner wall surface 112 toward the material discharge port 140.
  • a discharge door 141 that can be controlled to open is provided at the discharge port 140 of each of the grading bins 110.
  • the discharge bin door 141 of the corresponding grading bin 110 is opened and the hopper door 141 is activated.
  • the arching unit 152, the material in the grading silo 110 is discharged.
  • FIG. 8 is a plan view of a third embodiment of the present invention
  • FIG. 10 is a cross-sectional view taken along line BB of FIG. 8.
  • the silo 100 is The inner wall surface 112 at the bottom of the grading silo 110 is a conical surface, which is formed by connecting the grading silos 110 in a round silo in series.
  • the lower part of each of the graded silos 110 is in a spaced state, and is only penetrated at the upper portion.
  • the graded silos 110 in a round bin are arranged in a cross shape, and each of the graded silos 110 is in a state of being penetrated in the middle.
  • each of the grading silos 110 may be arranged in a "7" shape to be in a peripheral through state.
  • the silo 100 is provided with a feed port 120 to which the propulsion mechanism 130 is coupled, and the material is introduced into the staging bin 110 by the propulsion mechanism 130.
  • the propulsion mechanism 130 is a belt conveyor, and a one-way thrust mechanism 132 is provided on the belt conveyor.
  • the advancing mechanism 130 is disposed in the feeding cylinder 133.
  • the bottom surface of the feeding cylinder 133 is provided with an opening 134 with respect to each of the classifying silos 110, and the one-way pushing mechanism is downward.
  • At least one arching unit 152 is arranged on the tapered surface above the discharge opening 140 of each of the graded silos 110, and the skip arm 154 of the arching unit 152 is An arc-shaped draw arm that cooperates with the conical surface of the graded silo 110.
  • the skip arms 154 on the same connecting rod 153 are arranged in a fan shape from the small to the large taper surface from the discharge port by the length.
  • Embodiment 5 For the description of other structural features of this embodiment, please refer to the first embodiment. Embodiment 5
  • FIG. 11 is a top view of Embodiment 5 of the present invention.
  • the silo is formed by connecting the graded silos 110 in a square warehouse in series, and the graded silos 110 in the square bin are arranged in a "7" shape, and each grade silo 110 It is in a state of being connected to the periphery.
  • the feed port 120 is connected to two propulsion mechanisms 130.
  • the propulsion mechanism 130 is a screw propulsion mechanism, and the propulsion directions of the two propulsion mechanisms are respectively advanced from the inlet port 120 to the two end points of the silo, Two propulsion mechanisms direct the material into the graded silo 110.
  • each of the classifying silos 110 may be arranged in a cross shape, and each of the classifying silos 110 is in a state of being penetrated in the middle.
  • the feeding port 120 is disposed at the center of the silo, and is connected with four propulsion mechanisms 130.
  • the advancing directions of the four propelling mechanisms are respectively from the feeding port 120 to the four end points of the silo, through the above four propelling mechanisms.
  • the material is introduced into each of the graded silos 110.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

公开了一种大型料仓的分级控制的进、出料方法,将至少两段以上的分级料仓(110)串接构成一个整体大型料仓(100),至少于各分级料仓(110)的上部呈贯通状态,形成各分级料仓(110)间的贯通部(111);进料时通过料仓上部的进料口(120)向料仓(100)内进料,并利用一个推进机构(130)通过贯通部(111)向呈空仓或不满仓状态的分级料仓(110)内注料,每一个分级料仓(110)的底部至少设有一个出料口(140),与该出料口(140)对应设有能够独立控制的出料机构,出料时启动与分级料仓对应的出料机构,将分级料仓(110)内的物料卸空,通过对分级料仓(110)中物料的存贮状态来选择各分级料仓(110)的出料时间,实现大型料仓内物料出料时间的可控。还公开了一种采用该方法的料仓。

Description

一种大型料仓的进出料方法及其料仓
技术领域
本发明涉及一种用于大型容器的, 特别是一种散体料仓的分级进、 出料方法及其 料仓。 特别是一种大型的散体料仓的进、 出料方法及其料仓。 背景技术
散体料仓是用来储藏粮食、 化肥、 生物质原料、 煤粉等散体物料, 在工农业生产 中被极广泛的应用。在所有的生产过程中, 原料的仓储及物料的连续供应是物料加工和 物流业中非常重要的一个环节。 在大规模生产的形式下, 料仓也需要大型化、 机械化。
目前, 一般料仓的管理办法是首先通过进料系统将散体的物料注入料仓内, 进行 一定时间的存贮。 当生产环节的需求, 或者其它需求时。再通过出料口将物料从料仓内 卸出。在尽可能保证料仓内物料存贮时间的均匀的需求下, 通常的做法是先将仓内物料 全部或者基本卸空后再注入新一批物料。对于小型料仓而言, 由于可以通过物料进、 出 的快速周转, 实现最大限度的存贮效率。 但是, 对于大型、 甚至特大型料仓而言, 由于 其存贮的物料量很大, 每次的进、 出料的时间也比较长, 因此, 在出料的过程中, 料仓 经常处于半仓或者少半仓的状态。不难得出的结论是, 在大型料仓中, 采用上述料仓的 进、 出料方法无疑会因在相当长的时间内的不满仓状态而大大地降低料仓的存贮效率。
为解决上述料仓进、 出料方法中存贮效率低的问题, 最简单的方法是随时向料仓 内注料的方式, 即在料仓内出现不满仓状态时, 即随时向料仓内进料。这种方式尽管解 决了料仓的存贮效率低的问题, 但是很难实现料仓内物料的存贮时间的可控性, 一些物 料因不能及时卸出而导致部分物料存在存贮时间过长。
众所周知的原因, 物料的存贮时间过长存在的主要问题是会导致物料被压实, 而 随着储存时间越长久压实越严重。 当物料被压实一定程度时, 会影响到物料的流动性, 继而产生结拱的现象。 另外, 有些物料在储存过程中, 会因储存的环境, 例如水分含量 或者温度等因素而发生的变化。 因此在对不同的物料进行储存时, 对物料的储存时间有 一定的要求, 如果超出设计储存时间, 会使物料品质发生不利的变化, 影响物料的储存 质量。 发明内容
本发明的目的在于提供一种散体料仓的分级控制的进、 出料方法及其料仓, 通过 对散体料仓进、 出料的分级控制, 实现的散体料仓的大型化和机械化。
本发明的另一目的在于提供一种散体料仓的分级控制进、 出料方法及料仓, 可以 控制料仓内各分级料仓的容积状态, 从而提高大型料仓的储存效率。
本发明的目的之三在于提供一种散体料仓的分级控制进、 出料方法及料仓, 方便 并有效地实现对大型料仓内局部物料的进料和出料控制,从而实现对物料存贮时间及贮 存质量的有效控制。
本发明的目的之四在于提供一种散体料仓的分级进、 出料控制方法及料仓, 使得 散体物料的进、 出料容易控制在封闭环境内, 有利于作业环境的控制。
为达到上述目的, 本发明提出一种大型料仓的分级控制的进、 出料方法, 其中, 将至少两段以上的分级料仓连接成一个整体大型料仓;至少于构成大型料仓内的各所述 分级料仓的上部呈贯通状态, 形成各所述分级料仓间的贯通部; 进料时通过位于料仓上 部的进料口向料仓内进料,并利用至少一个推进机构通过各分级料仓间的贯通部向呈空 仓或不满仓状态的分级料仓内注料; 每一个分级料仓的底部至少设有一个出料口, 与该 出料口对应设有能够独立控制的出料机构, 出料时启动与分级料仓对应的的出料机构, 将该分级料仓内的物料卸空;通过对分级料仓中物料的存贮状态来选择各分级料仓的出 料时间, 实现大型料仓内物料出料时间的可控。本发明还提供了一种采用上述方法的料 仓, 其中, 所述料仓是至少两段以上的各分级料仓连接构成一个整体大型料仓, 至少于 构成大型料仓的各所述分级料仓的上部呈贯通状态, 形成分级料仓间的贯通部; 料仓上 部至少设有一个进料口向料仓内进料, 每个进料口至少导通一个推进机构, 该推进机构 贯穿于各所述分级料仓间的贯通部, 将物料推向呈空仓或不满仓状态的分级料仓内, 实 现受控向大型料仓内的任意一个呈空仓或不满仓状态的分级料仓内的进料;每一段分级 料仓的底部至少设有一个出料口, 与该出料口对应设有能够独立控制的出料机构, 出料 时启动与分级料仓对应的出料机构, 将该分级料仓内的物料卸空; 通过对分级料仓中物 料的存贮状态来选择各分级料仓的出料时间, 实现大型料仓内物料出料时间的可控。
与现有技术相比, 本发明具有以下特点和优点:
1、 本发明能有效地提高了大型、 甚至特大型散体料仓时贮存容积效率, 使得散体 料仓的大型化和机械化的推广成为可能。
2、 在本发明中, 通过对分级料仓的出料的单独控制, 可以实现对分级料仓区域内 的物料的出料分别进行, 从而实现大型散体料仓内物料的贮存时间的有效控制, 并通过 对物料的贮存时间的控制实现物料贮存质量保证。
3、 在本发明中, 物料是通过一个或者少数个进料口注入料仓内, 并利用料仓内的 自然容积状态,通过推进机构将物料导入已经排空的分级料仓内,有利于实现大型仓进、 出料的全部机械化。
4、 本发明无需就每段分级料仓单独设置进料口, 使得散体料仓的进、 出料可以控 制在一个基本封闭的空间内, 有利于环境保护。 附图说明
在此描述的附图仅用于解释目的, 而不意图以任何方式来限制本发明公开的范围。 另外, 图中的各部件的形状和比例尺寸等仅为示意性的, 用于帮助对本发明的理解, 并 不是具体限定本发明各部件的形状和比例尺寸。 本领域的技术人员在本发明的教导下, 可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。
图 1为本发明料仓的立体图;
图 2为图 1中 A处的局部放大图;
图 3为本发明料仓的主剖视图;
图 4为本发明料仓的侧剖视图;
图 5为本发明拨料臂的局部放大图;
图 6为本发明实施例二的侧剖视图;
图 7为本发明实施例三的侧剖视图;
图 8为本发明实施例四的俯视图;
图 9为本发明实施例四另一实施方式的俯视图;
图 10为图 7中沿 B-B线的剖视图;
图 11为本发明实施例五的俯视图;
图 12为本发明实施例五另一实施方式的俯视图。
附图标记说明:
100-料仓; 110-分级料仓; 111-贯通部; 112-内壁面; 113-间隔; 120-进料口; 130-推进机构, 131-分料器; 132-单向推挡; 133-进料筒; 134-开孔; 140-出料口; 141- 出料仓门; 150-破拱机构; 151-驱动机构; 152-破拱单元; 153-连接杆; 154-拨料臂; 155-导向机构; 156-导槽; 157-导轨。 具体实施方式
结合附图和本发明具体实施方式的描述, 能够更加清楚地了解本发明的细节。 但 是, 在此描述的本发明的具体实施方式, 仅用于解释本发明的目的, 而不能以任何方式 理解成是对本发明的限制。在本发明的教导下, 技术人员可以构想基于本发明的任意可 能的变形, 这些都应被视为属于本发明的范围。
实施例一
请参考图 1、 图 2和图 3, 图 1为本发明料仓的立体图, 图 2为图 1中 A处的局部 放大图, 图 3为本发明料仓的主剖视图。 如图 1、 图 2所示, 本发明提出的一种大型料 仓的分级控制的进、出料方法为将至少两段以上的分级料仓 110连接成一个整体大型料 仓 100, 至少于构成该大型料仓 100内的各分级料仓 110的上部呈贯通状态, 形成各分 级料仓 110间的贯通部; 进料时通过位于料仓 100上部的进料口 120向料仓内进料, 并 利用至少一个推进机构 130通过各分级料仓 110间的贯通部向呈空仓或不满仓状态的分 级料仓 110内注料,实现受控向大型料仓内的任意一段空仓或不满仓的分级料仓 110内 进料的操作; 每一段分级料仓 110底部至少设有一个出料口 140, 与该出料口 140对应 设有可以独立控制的出料机构 150, 出料时启动与该分级料仓 110对应的出料机构, 将 该分级料仓 110内的物料卸空;通过对分级料仓 110中物料的存贮状态来选择分级料仓 110的出料时间, 实现大型料仓 100内物料出料时间的可控。
用以实现本发明的分级进、 出料方法的料仓, 请参见图 1、 图 2和图 3。
料仓 100是至少两段以上的小容积料仓串接构成一个整体大型料仓, 每个小容积 料仓构成大型料仓的各分级料仓 110; 至少于各分级料仓 110的上部呈贯通状态, 形成 分级料仓 110间的贯通部; 料仓 100上部至少设有一个进料口 120向料仓 100内进料, 进料口 120至少导通的一个推进机构 130, 该推进机构 130贯穿于各分级料仓间 110的 贯通部 111, 将物料推向呈空仓或不满仓状态的分级料仓 110内, 实现受控向大型料仓 100内的任意一段呈空仓或不满仓状态的分级料仓 110内的进料; 每一段分级料仓 110 底部至少设有一个出料口 140, 与该出料口 140对应设有可以独立控制的出料机构, 出 料时启动对应的分级料仓 110的该出料机构, 将该分级料仓 110内的物料卸空; 通过对 分级料仓 110中物料的存贮状态来选择各分级料仓 110的出料时间,实现大型料仓内物 料出料时间的可控。
本发明的主要工作原理是将大型散体料仓 100区分为数段分级料仓 110,各分级料 仓 110的出料采用单独控制, 可以将贮存于分级料仓 110的区域内的物料尽快卸出。 当 料仓 100内任意分级料仓 110的区域内的物料基本卸空后, 由进料口 120向料仓 100内 注料,推进机构 130在料仓 100的上部将物料向前推进直至较空的分级料仓 110区域时, 物料在重力作用下落入该分级料仓 110区域内, 并将该分级料仓 110区域填满。本发明 的方法使得料仓 100内始终保持满仓状态,而无需待料仓 100全部或者基本排后才能进 料。 因此本发明能有效地提高了大型、 甚至特大型散体料仓时贮存容积效率, 使得散体 料仓的大型化和机械化的推广成为可能。
在本发明中, 通过对分级料仓 110 的出料的单独控制, 可以实现对分级料仓 110 区域内的物料的出料分别进行,从而实现大型散体料仓 100内物料的贮存时间的有效控 制, 并通过对物料的贮存时间的控制实现物料贮存质量保证。
如图 3所示, 在本发明中, 物料是通过一个或者少数个进料口 120注入料仓 100 内, 并利用料仓 100内的自然容积状态, 通过推进机构 130将物料导入已经排空的分级 料仓 110内, 有利于实现大型仓进、 出料的全部机械化。 另外本发明无需就每段分级料 仓 110单独设置进料口, 使得散体料仓的进、 出料可以控制在一个基本封闭的空间内, 有利于环境保护。
如图 1、 图 3所示, 本发明的工作过程如下:
进料: 通过料仓 100上端的进料口 120向料仓 100内注料; 启动推进机构 130, 此 时由于料仓 100内的分级料仓 110均呈空置状态,物料依其重力首先进入邻近进料口 120 的分级料仓 110的区域内; 随着推进机构 130的推进, 物料先将该分级料仓 110区域填 满, 此时随着推进机构 130入料仓的物料进入下一段分级料仓 110的区域, 并逐渐将其 注满; 依此过程重复, 直至全部填满料仓 100或者依据物料量注满位于前段的数段分级 料仓 110; 本过程可以一次完成, 也可以分批次完成; 在进料时记录各分级料仓 110的 进料时间及物料特性。
出料: 依据各分级料仓 110 的贮存时间, 或者物料状态确定需要出料的分级料仓 110, 启动出料机构, 依需求将该分级料仓 110区域内的部分或全部物料。
补仓: 当料仓 100内任意一端分级料仓 110区域内的物料卸空、 或者在其它不满 仓的容积状态下,可以依需求进行补仓;补仓时仍通过料仓 100上部的进料口 120进料, 并启动推进机构 130, 物料由推进机构 130向前推动至需补仓的分级料仓 110时, 物料 在其自身重力作用下落入该分级料仓 110区域内, 并逐渐将该区域填满; 此过程周而复 始进行。 在本发明中, 至少各分级料仓 110上部呈贯通状态, 可以是各分级料仓 110间下 部呈间隔状态, 仅在各分级料仓 110的上部呈贯通状态; 或者是各分级料仓 110间可呈 上部下部均无间隔的全贯通状态; 也可以是各分级料仓 110间可呈中间贯通, 或者周边 贯通状态。
综上所述, 本发明提出的散体料仓的分级控制的进、 出料方法通过对散体料仓进、 出料的分级控制, 实现了的散体料仓的大型化和机械化。 同时通过控制料仓内各分级料 仓的容积状态, 从而提高了大型料仓的储存效率。并且能够方便并有效地实现对大型料 仓内局部物料的进料和出料控制, 从而实现对物料存贮时间及贮存质量的有效控制。 同 时也实现了使得散体物料的进、 出料容易控制在封闭环境内, 有利于作业环境的控制。
在本发明中, 料仓 100可以由方仓或圆仓串接而成, 如图 3所示, 具体在本实施 例中分级料仓 110是方仓, 且分级料仓 110底部的内壁面为锥面。各分级料仓 110间可 呈无间隔的全贯通状态。 料仓 100的上部设有一个进料口 120, 与该进料口 120对应的 推进机构 130贯穿所有的分级料仓 110, 将物料导入所需进料的分级料仓内。 推进机构 130可以为螺旋推进机构或者皮带推进机构, 推进方向是由进料口 120向分级料仓 110 方向。
如图 3所示, 具体在本实施例中, 进料口 120设置于位于料仓 100—端部的分级 料仓 110的上方, 推进机构 130为螺旋推进机构, 且沿料仓 100的长度方向贯穿各分级 料仓 110, 推进的方向是料仓 100的另一端。
在本发明中, 推进机构 130可以设置于进料筒之内, 该进料筒的底面对应于每段 分级料仓 110均设有开孔。
进一步的, 进料筒由 2个以上分级进料筒串接, 每个分级进料筒对应一个分级料 仓 110。
在本发明中, 出料机构可以为受控打开的仓门或是与出料口所结合的一个破拱机 构 150。
请参考图 4, 为本发明料仓的侧剖视图, 如图 2、 图 4所示, 具体在本实施例中, 出料机构为一个对应于该出料口 140的破拱机构 150。
如图 2、图 4所示,破拱机构 150包括驱动机构 151和破拱单元 152,破拱单元 152 设置于分级料仓 110内, 驱动结构 151驱动破拱单元 152沿分级料仓 110的内壁面 112 往复移动; 破拱单元 152包括连接杆 153和至少一个拨料臂 154, 连接杆 153沿内壁面 112设置, 连接杆 153的一端为输入端并连接于驱动机构 151, 由驱动机构 151驱动连 接杆 153往复移动, 拨料臂 154呈角度连接于连接杆 153上并随连接杆 153往复移动, 将该分级料仓 110内的物料沿内壁面 112拨向料出料口 140卸出。
破拱机构 150运行时, 位于该破拱机构 150上方的分级料仓 110内的物料受到搅 动, 堆积于该分级料仓 110出料口 140上方的料拱被破坏, 使得物料可以顺利从出料口 140卸出; 而料仓 100其他区域内的物料依然处于结拱的状态并无法卸出。 这样通过对 分级料仓 110的出料的单独控制,从而实现大型散体料仓 100内物料的贮存时间的有效 控制, 并通过对物料的贮存时间的控制实现物料贮存质量保证。
如图 4所示,在本实施例中,在分级料仓 110的内壁面 112上设置有导向机构 155, 破拱单元 152沿导向机构 140往复移动。
其中, 如图 5所示, 导向机构 155包括设置于内壁面 112上的导槽 156和设置于 拨料臂 154上的导轨 157, 导槽 156的方向与连接杆 153轴向的方向相同, 导轨 157与 导槽 156配合, 以确保拨料臂 154沿导槽 156往复滑动。
如图 4所示, 在本发明中, 驱动机构 151至少包括电机和偏心机构, 偏心机构连 接于破拱单元 152, 带动破拱单元 152往复移动。
如图 2所示, 在本实施例中, 各分级料仓 110的出料口 140上方的锥面上至少排 列有一个破拱单元 152, 破拱单元 152的拨料臂 154为平直形拨料臂。
实施例二
本实施例的工作原理与效果与实施例一基本相同。
本实施例与实施例一的区别在于,在本实施例中,进料口 120与两个推进机构 130 相连接, 每个推进机构 130沿料仓 100的长度方向贯穿各分级料仓 110, 并且推进机构 130为的螺旋推进机构, 推进的方向是料仓 100的另一端。
请参考图 6为本发明实施例二的侧剖视图, 如图 6所示, 在本实施例中, 各分级 料仓 110间下部通过间隔 113隔离开, 仅在上部通过贯通部 111相互贯通。
在本实施例中, 如图 6所示, 每一分级料仓 110的上部对应设有能单独控制启动 的分料器 131, 将注入该分级料仓 110内的物料的顶部推平压实, 进而保证每段分级料 仓 110的仓储效率及防止物料分布不均匀影响贮存和出料。
如图 6所示, 分料器 131可以是由与推进机构 130呈角度设置的分料绞笼构成, 进一步的, 分料器 131可以是由 2个以上的分料绞笼间隔设置而构成, 各分料绞笼分布 设置间距依据物料特性设置。
本实施例的其他结构特征的说明, 请参考实施例一。 实施例三
本实施例的工作原理与效果与实施例二基本相同。
请参考图 7为本发明实施例三的侧剖视图, 如图 7所示, 本实施例与实施例二的 区别在于, 在本实施例中, 破拱单元 152设置于分级料仓 110内, 驱动结构 151设置于 各分级料仓 110的外壁, 驱动破拱单元 152沿分级料仓 110的内壁面 112往复移动; 破 拱单元 152的一端为输入端并连接于驱动机构 151, 由驱动机构 151驱动破拱单元 152 往复移动, 将该分级料仓 110内的物料沿内壁面 112拨向料出料口 140卸出。并且在每 个分级料仓 110的出料口 140处设置有可受控打开的出料仓门 141, 当需要出料时, 打 开相应分级料仓 110的出料仓门 141并启动与其配合的破拱单元 152, 该分级料仓 110 内的物料即被卸出。
本实施例的其他结构特征的说明, 请参考实施例二。
实施例四
本实施例的工作原理与效果与实施例一基本相同。
请参考图 8、 图 10, 图 8为本发明实施例三的俯视图, 图 10为图 8中沿 B-B方向 的剖视图, 如图 8、 图 10所示, 在本实施例中, 料仓 100是由呈圆仓的分级料仓 110 串联而成的, 分级料仓 110底部的内壁面 112为圆锥面。各分级料仓 110间下部呈间隔 状态, 仅在上部呈贯通。
如图 8所示, 在本实施例中, 呈圆仓的分级料仓 110呈十字形排列, 各分级料仓 间 110呈中间贯通的状态。 作为本实施例的另一种可选则的实施的方式, 如图 9所示, 各分级料仓 110也可以排列呈 "7"字形, 呈周边贯通状态。
在本实施例中, 料仓 100设有进料口 120, 进料口 120连接有推进机构 130, 通过 推进机构 130将物料导入分级料仓 110内。
如图 10所示, 在本实施例中, 推进机构 130为带式传输机, 并在该带式传输机上 设有单向推挡机构 132。 具体的, 推进机构 130设置于进料筒 133内, 进料筒 133的底 面相对于每个分级料仓 110设有开孔 134, 单向推挡机构向下。
如图 8、 图 10所示, 在本实施例中, 各分级料仓 110的出料口 140上方的锥面上 至少排列有一个破拱单元 152, 破拱单元 152的拨料臂 154为为与该分级料仓 110的圆 锥面相配合的弧形拨料臂。在本实施例中, 同一连接杆 153上的拨料臂 154按长度由小 到大沿锥面自出料口向上排列成扇形。
本实施例的其他结构特征的说明, 请参考实施例一。 实施例五
本实施例的工作原理与效果与实施例一基本相同。
请参考图 11, 为本发明实施例五的俯视图。如图 10所示, 在本实施例中, 料仓是 由呈方仓的分级料仓 110串联而成的, 呈方仓的分级料仓 110呈 "7"字形排列, 各分 级料仓间 110呈周边贯通的状态。 进料口 120连接有两个推进机构 130, 在本实施例中 推进机构 130为螺旋推进机构,两个推进机构的推进方向分别是由进料口 120向料仓的 两个端点推进, 通过上述两个推进机构将物料导入分级料仓 110内。
作为本实施例的另一实施方式,如图 12所示,各分级料仓 110也可呈十字形排列, 各分级料仓 110呈中间贯通的状态。进料口 120设置于料仓的中心处, 并连接有四个推 进机构 130, 上述四个推进机构的推进方向分别是由进料口 120向料仓的四个端点, 通 过上述四个推进机构将物料导入各分级料仓 110内。
本实施例的其他结构特征的说明, 请参考实施例一。
针对上述各实施方式的详细解释, 其目的仅在于对本发明进行解释, 以便于能够 更好地理解本发明,但是,这些描述不能以任何理由解释成是对本发明的限制,特别是, 在不同的实施方式中描述的各个特征也可以相互任意组合, 从而组成其他实施方式, 除 了有明确相反的描述, 这些特征应被理解为能够应用于任何一个实施方式中, 而并不仅 局限于所描述的实施方式。

Claims

权利要求书
1、 一种大型料仓的分级控制的进、 出料方法, 其特征在于, 将至少两段以上的分 级料仓连接成一个整体大型料仓;至少于构成大型料仓内的各所述分级料仓的上部呈贯 通状态, 形成各所述分级料仓间的贯通部; 进料时通过位于料仓上部的进料口向料仓内 进料,并利用至少一个推进机构通过各分级料仓间的贯通部向呈空仓或不满仓状态的分 级料仓内注料; 每一个分级料仓的底部至少设有一个出料口, 与该出料口对应设有能够 独立控制的出料机构, 出料时启动与分级料仓对应的出料机构, 将该分级料仓内的物料 卸空; 通过对分级料仓中物料的存贮状态来选择各分级料仓的出料时间, 实现大型料仓 内物料出料时间的可控。
2、 如权利要求 1所述的大型料仓的分级控制的进、 出料方法, 其特征在于, 各分 级料仓间下部呈间隔状态, 仅上部贯通。
3、 如权利要求 1所述的大型料仓的分级控制的进、 出料方法, 其特征在于, 各分 级料仓间呈无间隔的全贯通状态。
4、 如权利要求 1所述的大型料仓的分级控制的进、 出料方法, 其特征在于, 各分 级料仓间呈中间贯通或者周边贯通状态。
5、 如权利要求 1所述的大型料仓的分级控制的进、 出料方法, 其特征在于, 料仓 的上部设有一个进料口, 与该进料口对应的推进机构贯穿所有的分级料仓, 将物料导入 所需进料的分级料仓内。
6、 如权利要求 1所述的大型料仓的分级控制的进、 出料方法, 其特征在于, 料仓 的上部设有两个以上的进料口, 每段分级料仓至少贯穿有一个与进料口对应的推进机 构, 通过推进机构将物料导入分级料仓内。
7、 如权利要求 1所述的大型料仓的分级控制的进、 出料方法, 其特征在于, 所述 推进机构为螺旋推进机构或者带式推进机构, 推进方向为由进料口向分级料仓方向。
8、 如权利要求 1所述的大型料仓的分级控制的进、 出料方法, 其特征在于, 所述 的出料机构为受控打开的出料仓门。
9、 如权利要求 1所述的大型料仓的分级控制的进、 出料方法, 其特征在于, 所述 的出料机构为对应于出料口的破拱机构。
10、一种采用权利要求 1至 9所述方法的料仓, 其特征在于, 所述料仓是至少两段 以上的各分级料仓连接构成一个整体大型料仓,至少于构成大型料仓的各所述分级料仓 的上部呈贯通状态, 形成分级料仓间的贯通部; 料仓上部至少设有一个进料口向料仓内 进料, 每个进料口至少导通一个推进机构, 该推进机构贯穿于各所述分级料仓间的贯通 部, 将物料推向呈空仓或不满仓状态的分级料仓内, 实现受控向大型料仓内的任意一个 呈空仓或不满仓状态的分级料仓内的进料; 每一段分级料仓的底部至少设有一个出料 口, 与该出料口对应设有能够独立控制的出料机构, 出料时启动与分级料仓对应的出料 机构, 将该分级料仓内的物料卸空; 通过对分级料仓中物料的存贮状态来选择各分级料 仓的出料时间, 实现大型料仓内物料出料时间的可控。
11、 如权利要求 10所述的料仓, 其特征在于, 各分级料仓间下部呈间隔状态, 仅 在上部贯通。
12、 如权利要求 10所述的料仓, 其特征在于, 各分级料仓间呈无间隔的全贯通状 态。
13、 如权利要求 10所述的料仓, 其特征在于, 各分级料仓间呈中间贯通状态或者 周边贯通状态。
14、 如权利要求 10至 13所述的料仓, 其特征在于, 分级料仓是方仓。
15、 如权利要求 10至 13所述的料仓, 其特征在于, 分级料仓是圆仓。
16、 如权利要求 10所述的料仓, 其特征在于, 料仓的上部设有一个进料口, 与该 进料口对应至少设有一个推进机构,该推进机构通过料仓上部各分级料仓的贯通部贯穿 所有的分级料仓, 将物料导入所需进料的分级料仓内。
17、 如权利要求 10所述料仓, 其特征在于, 料仓上部设有两个以上的进料口, 每 段分级料仓至少贯穿有一个与进料口对应的推进机构,通过该推进机构将物料导入分级 料仓内。
18、 如权利要求 10或 16或 17所述的料仓, 其特征在于, 所述的推进机构为螺旋 推进机构, 推进方向为由进料口向分级料仓的方向。
19、 如权利要求 18所述的料仓, 其特征在于, 所述的螺旋推进机构设置于进料筒 之内, 该进料筒的底面对应于每段分级料仓设有开孔。
20、 如权利要求 10或 16或 17所述的料仓, 其特征在于, 所述的推进机构为带式 传输机, 该带式传输机上间隔设有单向推档机构。
21、 如权利要求 20所述的料仓, 其特征在于, 所述带式传输机设于进料筒内, 该 进料筒的底面对应于每段分级料仓设有开孔; 所述带式传输机上的单向推档机构向下。
22、如权利要求 19或 21所述的料仓, 其特征在于, 所述的进料筒由两个以上的分 级进料筒串接, 每段分级料仓至少对应一个分级进料筒。
23、 如权利要求 10所述的料仓, 其特征在于, 每段分级料仓上部对应设有能单独 控制启动的分料器, 将注入该分级料仓内的物料顶部推平。
24、 如权利要求 23所述的料仓, 其特征在于, 所述分料器由与推进机构呈角度设 置的分料绞笼构成。
25、如权利要求 23或 24所述的料仓, 其特征在于, 所述分料器由两个以上的分料 绞笼构成, 各分料绞笼分布的间距依据物料的特性设置。
26、如权利要求 10所述的料仓, 其特征在于 , 在所述料仓对应于所述出料口的位 置设置有破拱机构。
27、如权利要求 10或 26所述的料仓, 其特征在于, 所述的出料机构为受控打开的 出料仓门。
28、 如权利要求 10所述的料仓, 其特征在于, 所述的出料机构为对应于出料口的 破拱机构。
29、如权利要求 26或 28所述的料仓, 其特征在于, 所述破拱机构包括驱动机构和 设置于所述分级料仓内的至少一个破拱单元,所述驱动机构驱动所述破拱单元沿所述分 级料仓的底部的内壁面往复移动;
所述破拱单元包括连接杆和至少一个拨料臂, 所述连接杆沿所述内壁面设置, 所述 连接杆的一端为输入端并连接于所述驱动机构,并由所述驱动机构驱动所述连接杆往复 移动, 所述拨料臂呈角度连接于所述连接杆上并随所述连接杆往复移动, 将分级料仓内 的物料沿所述内壁面拨向对应的出料口。
30、 如权利要求 29所述的料仓, 其特征在于, 所述分级料仓的底部的内壁面上设 有导向机构, 所述破拱机构的破拱单元沿所述导向机构往复移动, 将物料拨向对应的出 料口。
31、 如权利要求 30所述的料仓, 其特征在, 所述导向机构为沿所述内壁面设置的 导槽, 所述破拱单元的拨料臂上设置有与该导槽相配合的导轨, 沿所述导槽往复滑动。
32、 如权利要求 29所述的料仓, 其特征在于, 所述驱动机构至少包括电机和偏心 机构, 所述偏心机构连接于所述破拱单元, 带动破拱单元往复移动。
33、 如权利要求 32所述的料仓, 其特征在于, 所述偏心机构为至少一个曲柄或偏 心轮, 曲柄或偏心轮对应连接破拱单元, 所述破拱单元的连接杆连接于曲柄或偏心轮的 偏心输出端。
34、 如权利要求 29所述的料仓, 其特征在于, 各分级料仓为方仓, 各分级料仓底 部的内壁面为锥面, 各分级料仓的出料口上方的锥面上至少排列有一个破拱单元, 所述 破拱单元的拨料臂为平直形拨料臂。
35、 如权利要求 29所述的料仓, 其特征在于, 各分级料仓为圆仓, 各分级料仓底 部的内壁面为圆锥面, 各分级料仓的出料口上方的圆锥面上至少排列有一个破拱单元, 所述破拱单元的拨料臂为与所述圆锥面相配合的弧形拨料臂。
36、如权利要求 35所述的料仓, 其特征在于 , 同一连接杆上的拨料臂按长度由小 到大沿锥面自出料口向上排列成扇形。
37、 如权利要求 29所述的料仓, 其特征在于, 所述驱动机构设置于料仓内部。
38、 如权利要求 29所述的料仓, 其特征在于, 所述驱动机构设置于料仓的外部。
PCT/CN2013/079899 2013-07-23 2013-07-23 一种大型料仓的进出料方法及其料仓 WO2015010249A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/079899 WO2015010249A1 (zh) 2013-07-23 2013-07-23 一种大型料仓的进出料方法及其料仓

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/079899 WO2015010249A1 (zh) 2013-07-23 2013-07-23 一种大型料仓的进出料方法及其料仓

Publications (1)

Publication Number Publication Date
WO2015010249A1 true WO2015010249A1 (zh) 2015-01-29

Family

ID=52392570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079899 WO2015010249A1 (zh) 2013-07-23 2013-07-23 一种大型料仓的进出料方法及其料仓

Country Status (1)

Country Link
WO (1) WO2015010249A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135378A1 (en) * 2013-06-17 2016-05-19 David Leroy Rowling Demountable silo

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818687Y2 (ja) * 1978-11-30 1983-04-15 三菱農機株式会社 穀粒タンク
JPS6074531U (ja) * 1983-10-28 1985-05-25 井関農機株式会社 作業機の警報装置
GB2356627A (en) * 1999-03-18 2001-05-30 William Curle Materials transportation and storage apparatus
US6609543B2 (en) * 2001-07-25 2003-08-26 Seabulk Systems Inc. Vessel for storage and distribution of material
CN201419932Y (zh) * 2009-05-14 2010-03-10 华电重工装备有限公司 一种料仓贯通式卸料装置
CN102234027A (zh) * 2010-04-22 2011-11-09 中集车辆(集团)有限公司 智能卸料系统、多料仓罐箱及多料仓罐车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818687Y2 (ja) * 1978-11-30 1983-04-15 三菱農機株式会社 穀粒タンク
JPS6074531U (ja) * 1983-10-28 1985-05-25 井関農機株式会社 作業機の警報装置
GB2356627A (en) * 1999-03-18 2001-05-30 William Curle Materials transportation and storage apparatus
US6609543B2 (en) * 2001-07-25 2003-08-26 Seabulk Systems Inc. Vessel for storage and distribution of material
CN201419932Y (zh) * 2009-05-14 2010-03-10 华电重工装备有限公司 一种料仓贯通式卸料装置
CN102234027A (zh) * 2010-04-22 2011-11-09 中集车辆(集团)有限公司 智能卸料系统、多料仓罐箱及多料仓罐车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160135378A1 (en) * 2013-06-17 2016-05-19 David Leroy Rowling Demountable silo
US9930837B2 (en) * 2013-06-17 2018-04-03 David Leroy Rowling Demountable silo

Similar Documents

Publication Publication Date Title
EP2959055B1 (en) Screw conveyor for lignocellulose containing material
CN202481702U (zh) 一种多仓均匀布料出料的螺旋输送机
CN104816893A (zh) 料仓底部结构及料仓出料装置
WO2015010249A1 (zh) 一种大型料仓的进出料方法及其料仓
CN106553264A (zh) 带有搅拌装置的制砖布料机
CN106395410B (zh) 生物质加压进料装置
CN210593453U (zh) 一种用于秸秆、农林废弃物炭化处理的料仓
CN207242535U (zh) 一种倒棱台给料仓
CN202229215U (zh) 锅炉上料装置
CN215666016U (zh) 一种高精度双螺旋下料器
CN113603519B (zh) 一种便于人工操作加工的好氧堆肥反应器均匀出料装置
CN206367077U (zh) 带有搅拌装置的制砖布料机
CN106360779B (zh) 一种水产养殖饲料专用快速配料装置
KR101218539B1 (ko) 우드칩을 보일러로 투입하는 이송 시스템
CN201484964U (zh) 物料仓防分级装置
US379704A (en) Conveyer
RU2214708C1 (ru) Измельчитель-смеситель-раздатчик кормов
CN219500189U (zh) 一种防卡粮的宠物喂食器
CN202575309U (zh) 一种污泥输送装置
CN220264126U (zh) 一种陶瓷干粒材料螺旋运输装置
CN219810248U (zh) 回转窑用堆料打散装置
CN105836485B (zh) 圆形煤场卸料机
CN205634246U (zh) 一种圆形煤场卸料机
CN217708045U (zh) 一种用于楼房建筑工程残渣输送装置
US1867462A (en) Discharge chute for storage bins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889929

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889929

Country of ref document: EP

Kind code of ref document: A1