WO2015008559A1 - Airflow generator - Google Patents

Airflow generator Download PDF

Info

Publication number
WO2015008559A1
WO2015008559A1 PCT/JP2014/065532 JP2014065532W WO2015008559A1 WO 2015008559 A1 WO2015008559 A1 WO 2015008559A1 JP 2014065532 W JP2014065532 W JP 2014065532W WO 2015008559 A1 WO2015008559 A1 WO 2015008559A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
linear
external electrode
pulse voltage
electrodes
Prior art date
Application number
PCT/JP2014/065532
Other languages
French (fr)
Japanese (ja)
Inventor
古樋知重
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201480040424.9A priority Critical patent/CN105409331B/en
Priority to JP2015527221A priority patent/JP5874863B2/en
Publication of WO2015008559A1 publication Critical patent/WO2015008559A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/14Filtering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0815Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving stationary electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/0828Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/20Electrodes used for obtaining electrical discharge
    • C01B2201/24Composition of the electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/62Air

Definitions

  • the present invention relates to an airflow generation device that generates an airflow by applying a voltage to an electrode.
  • Patent Document 1 discloses an apparatus that generates an air flow by applying a periodic pulse voltage to a plurality of linear electrodes arranged in parallel.
  • FIG. 13A is a diagram illustrating a configuration of a plurality of linear electrodes and a power source that applies a voltage to them
  • FIG. 13B is a cross-sectional view of the insulating substrate in FIG. is there.
  • FIG. 14 is a voltage waveform diagram output from the periodic pulse power supply 40 shown in FIG.
  • a plurality of linear electrodes 52 are arranged on the upper surface of the insulating base 51 in parallel and at regular intervals.
  • the periodic pulse power supply 40 outputs four-phase pulse voltages V1 to V4.
  • the linear electrodes 52 are connected in common in every four in the arrangement order, and are connected to the periodic pulse power supply 40, respectively.
  • a dielectric film 54 is formed on the entire surface of the insulating base 51 so as to cover the linear electrode 52.
  • the four waveforms shown in FIG. 14 are four-phase pulse voltage waveforms output from the periodic pulse power supply 40 shown in FIG.
  • the drive voltage of each phase is repeatedly generated in the + V volt interval across the 0 V interval. Adjacent phases are shifted by 1 ⁇ 4 period. In this way, the time waveform of the four-phase pulse voltage is sequentially and cyclically output as step pulses each of which lasts for a fixed time.
  • the linear electrodes 52 are commonly connected every four in the arrangement order, and are connected to four sets of lead electrodes 53 respectively.
  • wiring intersections occur at a plurality of locations in the middle of the linear electrode 52 or the extraction electrode 53.
  • the linear electrode and the extraction electrode cannot be configured with a single-layer electrode pattern. As a result, there is a problem that the manufacturing cost increases.
  • the airflow generation device needs to have a phase number n of 3 or more.
  • the above problem similarly occurs when the number of phases is other than 4.
  • an object of the present invention is to provide an airflow generation device in which the linear electrode and the extraction electrode can be configured by a single layer electrode pattern.
  • the airflow generator of the present invention is configured as follows.
  • a wall charge forming pulse voltage is applied to the first external electrode once per predetermined period, and a two-phase pulse voltage is applied to the second external electrode and the third external electrode at a plurality of times per predetermined period.
  • a periodic pulse power supply to be applied respectively; It is provided with.
  • the linear electrode to which the first external electrode is connected is, for example, a linear electrode disposed at the first end of the array. Thereby, the wiring from the first external electrode to the linear electrode to which it is connected does not intersect with the other linear electrodes and the second and third external electrodes.
  • a fourth external electrode connected to the linear electrode disposed at the second end of the array among the plurality of linear electrodes is provided, and the periodic pulse power source includes the first external electrode or the first external electrode. It is preferable to include means for selectively applying the wall charge forming pulse voltage to four external electrodes and means for inverting the phase of the two-phase pulse voltage. That is, with this configuration, an air flow is generated from the first end of the plurality of arranged linear electrodes to the arrangement direction of the other linear electrodes, and conversely, the arrangement direction of the other linear electrodes from the second end. It is possible to select a state in which an airflow is generated.
  • the two-phase pulse voltage is a rectangular wave with a duty ratio of 50%, and the rise and fall times of each other coincide. That is, this simplifies the circuit configuration of the periodic pulse power supply. In addition, wall charges can be generated and transferred with high efficiency.
  • the two-phase pulse voltage is generated at a rate of twice per predetermined period. That is, since the generation frequency of wall charges can be kept high, it is easy to ensure the flow rate of the generated airflow.
  • a peak value of the wall charge forming pulse voltage is higher than a peak value of the two-phase pulse voltage. In other words, this makes it possible to achieve high wall charge formation efficiency and low power consumption.
  • the linear electrode and the extraction electrode can be constituted by a single layer electrode pattern. For this reason, reduction of manufacturing cost, thinning, improvement of non-defective product rate, reduction of failure rate, and the like are expected.
  • FIGS. 1A and 1B are diagrams showing a configuration of an airflow generation device according to the first embodiment, and FIG. 1A shows an array electrode substrate 2 on which linear electrodes are formed and a periodic pulse power source corresponding thereto.
  • FIG. 1B is a cross-sectional view of the array electrode substrate 2.
  • FIG. 2 is a block diagram showing the configuration of the periodic pulse power supply 1.
  • FIG. 3 is a waveform diagram of each pulse voltage generated by the periodic pulse power supply 1.
  • FIG. 4 is an exploded perspective view of each layer of the array electrode substrate 2 shown in FIG.
  • FIG. 5 is a plan view of the electrode layer 25 shown in FIG.
  • FIG. 6 (A) is a voltage V C is applied to the linear electrodes E F, drawing linear electrodes E 1 is (1) shows a state of being kept at a ground potential state
  • FIG. 6 (B) both FIG. 6C shows a state in which a positive wall charge 28 and a negative wall charge 29 are formed between the electrodes.
  • FIG. 6C shows a region 30 between the linear electrode E 1 (1) and its adjacent electrodes.
  • FIG. 6 (D) is a diagram showing the state of creeping discharge
  • FIG. 6 (D) is a diagram showing the state of wall charges after the creeping discharge is stopped
  • FIG. 6 (E) is after creeping discharge is stopped at a timing later than FIG. FIG.
  • FIGS. 7A and 7B are diagrams showing a configuration of an airflow generation device according to the second embodiment, and FIG. 7A shows an array electrode substrate 2 on which linear electrodes are formed and a periodic pulse power source corresponding thereto.
  • FIG. 7B is a cross-sectional view of the array electrode substrate 2.
  • 8A and 8B are waveform diagrams of each pulse voltage generated by the periodic pulse power supply 1
  • FIG. 8A is a waveform diagram of each pulse voltage in the forward direction mode
  • FIG. 8B is a reverse direction. It is a wave form diagram of each pulse voltage in a mode.
  • FIG. 9 is an exploded perspective view of each layer of the array electrode substrate 2 shown in FIG.
  • FIG. 10 is a plan view of the electrode layer 25 shown in FIG.
  • FIG. 11A is a waveform diagram of pulse voltages V F , V 1 , V 2 , and V R according to the third embodiment.
  • FIG. 11B is a waveform diagram of further pulse voltages V F , V 1 , V 2 and V R according to the third embodiment.
  • FIG. 12 is a waveform diagram of each pulse voltage generated by the periodic pulse power supply according to the fourth embodiment.
  • FIG. 13A is a diagram illustrating a configuration of a plurality of linear electrodes and a power source that applies a voltage to them
  • FIG. 13B is a cross-sectional view of the insulating substrate in FIG. is there.
  • FIG. 14 is a waveform diagram of a pulse voltage output from the periodic pulse power supply 40 shown in FIG.
  • FIGS. 1A and 1B are diagrams showing a configuration of an airflow generation device according to the first embodiment, and FIG. 1A shows an array electrode substrate 2 on which linear electrodes are formed and a periodic pulse power source corresponding thereto.
  • FIG. 1B is a cross-sectional view of the array electrode substrate 2.
  • the array electrode substrate 2 includes an insulating base 21 such as a dielectric substrate and a plurality of linear electrodes 22 formed on the insulating base 21.
  • a plurality of linear electrodes 22 are arranged in parallel and at regular intervals on the upper surface of the insulating substrate 21.
  • the first external electrode 23F are connected to one linear electrode E F of the plurality of linear electrodes 22. Further, among the plurality of linear electrode 22, the odd-numbered linear electrodes in order away from the connected linear electrode E F to the first external electrode 23F (order of the x-direction in FIG. 1 (A)) 2 External electrode 23A is connected. Further, the third external electrode 23B is connected to the even-numbered linear electrodes.
  • a dielectric film 24 such as a resin film or a silicate glass film is formed on the entire surface of the insulating substrate 21 so as to cover the linear electrode 22.
  • Periodic pulse power supply 1 applies a wall charge forming pulse voltage V F of once per predetermined cycle to the first external electrode 23F, the second outer electrode 23A and the third outer electrode 23B, a plurality of times per a predetermined period Two-phase pulse voltages V1 and V2 are applied at a ratio.
  • FIG. 2 is a block diagram showing the configuration of the periodic pulse power supply 1.
  • the periodic pulse power supply 1 includes a constant voltage DC power supply circuit 12, a gate driver circuit 13, and a timing signal generation circuit 11.
  • Timing signal generating circuit 11 provides a timing signal for generating a pulse voltage, the gate driver circuit 13 in accordance with the timing signal, the voltage 0 to the input from the constant-voltage DC power supply circuit 12, Vc, the pulse voltage V is switched to V T Outputs F , V1, and V2.
  • This gate driver circuit can be configured with, for example, a power MOS-FET as a main element.
  • FIG. 3 is a waveform diagram of each pulse voltage generated by the periodic pulse power supply 1.
  • the wall charge forming pulse voltage V F is a rectangular wave voltage having a cycle T and a duty ratio of 25%, which takes a binary value of 0 or V C.
  • the wall charge forming pulse voltage V F rises at time t1, and falls at time t2 after T / 4. That is, the voltage Vc is from time t1 to t2, and is 0 from time t2 to t5.
  • the voltage Vc is 700 V and the period T is 0.5 ms.
  • the pulse voltages V1 and V2 are rectangular wave voltages having a cycle of T / 2 and a duty ratio of 50%, which are binary values of 0 or V T.
  • the pulse voltage V1 rises at a pulse voltage V F time from the rising time t1 after T / 4 of t2, falls then standing still at the time t3 after T / 4.
  • the pulse voltage V2 rises at the falling time t3 of the pulse voltage V1, and then falls at time t4 after T / 4. That is, the rising time t3 of the pulse voltage V2 coincides with the falling time of the pulse voltage V1.
  • Voltage V T is, for example, 400V.
  • the wall charge forming pulse voltage V F is applied to the first external electrode 23F once per period T, and the second external electrode 23A and the third external electrode 23B are applied to the first external electrode 23F.
  • Two-phase pulse voltages are applied at a rate of twice per period T.
  • FIG. 4 is an exploded perspective view of each layer of the array electrode substrate 2 shown in FIG.
  • the array electrode substrate 2 includes an insulating base 21, an electrode layer 25, and a dielectric film 24, which are stacked in this order from the bottom layer.
  • FIG. 4 is an exploded view for explaining the configuration to the last, and does not necessarily correspond to the manufacturing process.
  • FIG. 5 is a plan view of the electrode layer 25 shown in FIG.
  • a plurality of linear electrodes 22 are arranged in parallel and at regular intervals.
  • the width and interval of the linear electrodes 22 are both 50 ⁇ m, for example.
  • the linear electrode E F is positioned at one end.
  • This linear electrode E F have first external electrode 23F is turned on, the end of the first external electrode 23F are connected to the external connection terminal P F.
  • odd-numbered linear electrodes and even-numbered linear electrodes are commonly connected in the arrangement order (order in the x direction in FIG. 5).
  • a linear electrode with an odd subscript number i is connected to the second external electrode 23A, and a linear electrode with an even subscript number i is connected to the third external electrode 23B.
  • the end of the second external electrode 23A is connected to the external connection terminal P1, and the end of the third external electrode 23B is connected to the external connection terminal P2.
  • the uppermost dielectric film 24 shown in FIG. 4 covers the electrode layer 25. However, three portions corresponding to the external connection electrodes P1, P F and P2 of the electrode layer 25 is opened.
  • V TH Threshold voltage required to cause creeping discharge between two adjacent linear electrodes
  • V TH ' Two adjacent lines at positions adjacent to the adjacent area when there is creeping discharge in the adjacent area
  • Threshold voltage Q required to induce creeping discharge between the linear electrodes Q: formed on the dielectric film 24 of one linear electrode when creeping discharge occurs between two adjacent linear electrodes
  • C WC Capacitance obtained from a potential difference generated when it is assumed that a wall charge is placed on the dielectric film 24 covering two adjacent linear electrodes.
  • the charged particles that remain on the surface of the dielectric film 24 are referred to as “wall charges” in the present invention.
  • FIG. 6B shows a state where positive wall charges 28 and negative wall charges 29 are formed on the dielectric film 24.
  • the effective potential difference (wall potential) created by the wall charge is opposite in polarity to the potential difference between the two electrodes. Therefore, the sum of the potential difference between the two electrodes is reduced by the formation of the wall charge, and the discharge continues.
  • the potential difference becomes lower than the threshold value of the potential difference required. For this reason, the discharge between both electrodes stops in a very short time (generally several tens of ns).
  • the wall charges formed in the vicinity of the linear electrodes E F and the linear electrodes E 1 (1) the magnitude of the sum, respectively, and -Q and + Q.
  • V T voltage V T is applied to linear electrodes E 1 (j) (j is a natural number; hereinafter the same unless otherwise specified) and E 3 (j) .
  • the other linear electrodes are placed in the ground potential state.
  • E 1 except E 1 a (1) (j), and in E 3 (j) the potential difference between adjacent linear electrodes respectively is V T. From Equation (1), this potential difference V T is lower than the threshold voltage V TH . Therefore, creeping discharge does not occur in the linear electrode that is not adjacent to the linear electrode E 1 (1) .
  • V total 1 (1) -2 (1) of the potential difference between the linear electrode E 1 (1) and the linear electrode E 2 (1) adjacent to the right is similarly expressed as follows:
  • creeping discharge is generated by the sum of the potential difference between the electrodes between the linear electrodes E 1 (1) and the linear electrode E F.
  • the creeping discharge is not directly caused between the linear electrode E 1 (1) and the linear electrode E 2 (1 ) by the formula (6), but is induced by the creeping discharge in the adjacent region. Creeping discharge occurs.
  • the wall charge distribution in FIG. 6D is equivalent to a state in which the wall charge distribution in FIG. 6B is translated by one electrode in the + x direction.
  • the pulse voltage V 2 applied at time t3 causes the phenomenon generated at time t2 to be translated by one electrode in the + x direction. Therefore, the wall charges after the creeping discharge is stopped are as shown in FIG.
  • the voltage applied to the linear electrodes E i (j) despite having a spatial periodicity of every two, forming wall charges by applying a pulse voltage V F for the wall charge formed Since it is performed only every T and is shifted in the + x direction while the wall charge history is preserved, the spatial period is every four linear electrodes E i (j) . For this reason, although the voltage applied to the linear electrode E i (j) is two-phase, it is possible to have a spatial direction with respect to the discharge generated on the surface and the formation of wall charges.
  • the generated positive and negative charged particles are subjected to Coulomb force from the strong electric field between the two electrodes, and the charged particles charged with positive electricity move in the + x direction and are charged with negative electricity.
  • Charged particles move in the -x direction.
  • many kinds of charged particles are generated.
  • many charged particles with positive electricity are positive ions of nitrogen molecules, and charged particles with negative electricity. Many of them are electrons.
  • positive and negative ions have the same valence, they have the same energy from the same potential difference, but since the momentum is proportional to the square root of mass, positive ions have an overwhelmingly large momentum compared to electrons. Positive and negative ions repeatedly collide with neutral molecules that make up the air during movement and give momentum to the air.
  • the volume force received by the air is the momentum of the positive ions. Is controlled in the + x direction.
  • the volume force in the + x direction received by the air generates an air flow in the + x direction.
  • the pulse voltage V2 is set to 0 V from time t1 to t2, but a voltage indicated by a broken line in FIG. 3 may be generated. That is, in FIG. 6A, a positive voltage may be applied to the linear electrode E 2 (1) . Even then, the linear electrode E F, so causing creeping discharge between the linear electrodes E 1 adjacent thereto (1), even if the pulse voltage V2 is generated at the t1-t2, unchanged the above operation .
  • the voltage applied to the linear electrodes E 1 (j) to E 4 (j) is only two phases, and the same voltage is applied to every two electrodes in the arrangement order of the linear electrodes.
  • the period in the x direction related to the charge behavior is not a two-electrode period but a four-electrode period. This is one of the features of the present invention. Therefore, as is apparent from FIGS. 4 and 5, the linear electrode 22 and the extraction electrodes 23A and 23B can be configured without intersecting at any location, and can be configured by, for example, a single electrode pattern.
  • the two-phase pulse voltage is a rectangular wave with a duty ratio of 50%, and the rise and fall times of each other coincide with each other, so that the circuit configuration of the periodic pulse power supply is simplified.
  • wall charges can be generated and transferred with high efficiency.
  • the peak value (700V) of the wall charge forming pulse voltage is higher than the peak value (400V) of the two-phase pulse voltage, so that the wall charge forming efficiency is high and the peak voltage is relatively low. Since it is transferred, the power consumption can be reduced.
  • the discharge start voltage is a function of the product of the atmospheric pressure and the distance between the electrodes.
  • the minimum value of the discharge start voltage is realized when the product of the atmospheric pressure and the distance between the electrodes is around 0.57 mmHg ⁇ cm, and the discharge start voltage at this time is 330V.
  • a drain-source voltage with an absolute rating value of 1000 V or less, such as 2SK2613 is relatively easily available. It is. Considering 5% as a margin for use, if the discharge start voltage is 950 V or less, the configuration of the apparatus is easy. Therefore, the pulse voltage applied to the linear electrode is suitable as a gas transport device if it is a value within the range of 330V to 950V.
  • the range of the repetition frequency of the pulse voltages V1 and V2 is preferably in the range of 1 kHz to 1 MHz. This is because a practical wind speed can be obtained at a frequency of 1 kHz or higher, and the circuit configuration of the periodic pulse power supply 1 is facilitated at a frequency of 1 MHz or lower.
  • FIGS. 7A and 7B are diagrams showing a configuration of an airflow generation device according to the second embodiment, and FIG. 7A shows an array electrode substrate 2 on which linear electrodes are formed and a periodic pulse power source corresponding thereto.
  • FIG. 7B is a cross-sectional view of the array electrode substrate 2.
  • the array electrode substrate 2 includes an insulating base 21 and a plurality of linear electrodes 22 formed on the insulating base 21.
  • a plurality of linear electrodes 22 are arranged in parallel and at regular intervals on the upper surface of the insulating substrate 21.
  • the first external electrode 23F are connected to one linear electrode E F disposed on the first end.
  • the fourth external electrode 23R is connected to one linear electrode E R which is arranged on the second end.
  • the electrode 23A is connected.
  • the third external electrode 23B is connected to the even-numbered linear electrodes.
  • the other structure of the array electrode substrate 2 is as shown in FIGS.
  • the periodic pulse power supply 1 applies the wall charge forming pulse voltages V F and V R once per predetermined period to the first external electrode 23F and the fourth external electrode 23R, and the second external electrode 23A and the third external electrode Two-phase pulse voltages V1 and V2 are respectively applied to 23B at a rate of a plurality of times per predetermined period.
  • the periodic pulse power source includes means for selectively applying a wall charge forming pulse voltage to the first external electrode or the fourth external electrode and means for inverting the phase of the two-phase pulse voltage. .
  • FIGS. 8A and 8B are waveform diagrams of each pulse voltage generated by the periodic pulse power supply 1.
  • the periodic pulse power source 1 has a mode for generating each pulse voltage in FIG. 8A (forward direction mode) and a mode for generating each pulse voltage in FIG. 8B (reverse direction mode).
  • the forward direction mode is a mode for generating an air flow in the x direction shown in FIG. 7A
  • the reverse direction mode is an air flow in the ⁇ x direction (opposite to the x direction) shown in FIG. This is the mode to be generated.
  • the wall charge forming pulse voltages V F and V R are rectangular wave voltages having a cycle T and a duty ratio of 25%, which are binary values of 0 or V C.
  • the wall charge forming pulse voltage V F rises at time t1, and falls at time t2 after T / 4. That is, the voltage Vc is from time t1 to time t2, and 0 at other times.
  • the wall charge forming pulse voltage V R rises at time t1 and falls at time t2 after T / 4. That is, the voltage Vc is from time t1 to time t2, and 0 at other times.
  • the pulse voltages V1 and V2 are rectangular wave voltages having a cycle of T / 2 and a duty ratio of 50%, which are binary values of 0 or V T.
  • the pulse voltage V1 rises at a pulse voltage V F time from the rising time t1 after T / 4 of t2, falls then standing still at the time t3 after T / 4.
  • the pulse voltage V2 rises at the falling time t3 of the pulse voltage V1, and then falls at time t4 after T / 4.
  • the pulse voltage V2 rises at a pulse voltage V time from the rising time t1 after T / 4 of the R t2, falls then standing still at the time t3 after T / 4.
  • the pulse voltage V1 rises at the falling time t3 of the pulse voltage V1, and then falls at time t4 after T / 4.
  • Periodic pulse power supply 1 the forward mode, to generate a pulse voltage V F for the wall charge formed in the reverse mode, to generate a pulse voltage V R wall charges formed. Further, the phases of the two-phase pulse voltages V1 and V2 are reversed in the forward direction mode and the reverse direction mode.
  • a voltage indicated by a broken line may be generated. That is, as described with reference to FIGS. 3 and 6, the operation described above does not change even when a voltage indicated by a broken line is generated in FIGS. 8A and 8B.
  • FIG. 9 is an exploded perspective view of each layer of the array electrode substrate 2 shown in FIG.
  • the array electrode substrate 2 includes an insulating base 21, an electrode layer 25, and a dielectric film 24, which are stacked in this order from the bottom layer.
  • FIG. 10 is a plan view of the electrode layer 25 shown in FIG.
  • a plurality of linear electrodes 22 are arranged in parallel and at regular intervals.
  • the linear electrode E R, the fourth external electrode 23R and the external connection terminals P R are formed.
  • the operation in the positive direction mode is the same as that shown in FIGS. 6A to 6G, and airflow is generated in the x direction.
  • FIGS. 8A and 8B and FIG. 10 in the forward mode and the reverse mode, the geometric order of the arrangement positions of the linear electrodes and the time order of the pulse voltage are opposite to each other. Therefore, the airflow is generated in the ⁇ x direction according to the same principle in the reverse mode.
  • the pulse voltage V2 in FIG. 8 (A) may be a voltage V T at time t1 ⁇ t2.
  • the pulse voltage V1 may be the voltage V T at times t1 to t2.
  • FIG. 11A is a waveform diagram of pulse voltages V F , V 1 , V 2 , and V R according to the third embodiment.
  • FIG. 11B is a waveform diagram of further pulse voltages V F , V 1 , V 2 and V R according to the third embodiment.
  • the pulse width of the wall charge forming pulse voltages V F and V R may be shorter than 1 ⁇ 4 of one cycle T.
  • the pulse widths of the two-phase pulse voltages V1 and V2 may be smaller than the duty ratio of 50%. If such a pulse voltage is used, there is an effect that the degree of freedom of the configuration method of the power supply circuit is increased.
  • the pulse voltage may be a blunt waveform with suppressed harmonic components.
  • noise radiation to the outside can be suppressed without significantly affecting the generation of airflow.
  • the voltage shown with a broken line may generate
  • FIG. 12 is a waveform diagram of each pulse voltage generated by the periodic pulse power supply according to the fourth embodiment.
  • the two-phase pulse voltage is a pulse generated at a rate of twice per period T.
  • the generation frequency of the wall charges can be kept high, it is easy to ensure the flow rate of the generated airflow.
  • the present invention is not limited to this.
  • the two-phase pulse voltages V1 and V2 are generated at a rate of three times per period T. That is, in the example shown in FIG. 12, wall charges are generated from time t1 to t2, and the wall charges are transferred from time t2 to t7.
  • the two-phase pulse voltage is generated at a rate of three times (or more) per period T, the history of wall charges generated by the wall charge forming pulse voltage is preserved. It is shifted while being done.
  • a voltage indicated by a broken line may be generated. That is, as described with reference to FIGS. 3 and 6, the operation described above does not change even when a voltage indicated by a broken line is generated in FIG.
  • this airflow generation device can also be used as a device that generates an airflow containing ozone. Since ozone can be used for deodorization, sterilization, and the like, when it is necessary to diffuse air containing ozone, it is possible to reduce costs and size by eliminating the need for a separate fan.
  • E 1 to E 4 ... Linear electrode E F , E R ... Linear electrode P1, P2, P F, P R ... external connection terminal V1, V2 ... Two-phase pulse voltage V F , V R ... wall charge forming pulse voltage 1 ... periodic pulse power supply 2 ... array electrode substrate 11 ... timing signal generation circuit 12 ... constant voltage DC power supply circuit 13 ... gate driver circuit 21 ... insulating substrate 22 ... linear electrode 23F ... first external electrode 23A ... second external electrode 23B ... third external electrode 23R ... fourth external electrode 24 ... dielectric film 25 ... electrode layers 26, 27 ... charged particles 28, 29 ... wall charges 30A, 30B ... region 40: Periodic pulse power supply 51 ... Insulating substrate 52 ... Linear electrode 53 ... Extraction electrode 54 ... Dielectric film

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Plasma Technology (AREA)
  • Electrostatic Separation (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Formed over an insulating base body (21) are a plurality of linear electrodes (22), a first external electrode (23F), a second external electrode (23A), and a third external electrode (23B), the surface thereof being covered by a dielectric film (24). The first external electrode (23F) is connected to one linear electrode (EF) among the plurality of linear electrodes (22). The second external electrode (23A) is connected to odd-numbered linear electrodes among the plurality of linear electrodes (22) in an order counting away from the linear electrode (EF). The third external electrode (23B) is connected to even-numbered linear electrodes among the plurality of linear electrodes (22) in the order counting away from the linear electrode (EF). A periodic pulse power source (1) applies a wall-charge-forming pulse voltage (VF) to the first external electrode (23F) once per a prescribed period while applying two-phase pulse voltages (V1,V2) respectively to the second external electrode (23A) and the third external electrode (23B) at a rate of multiple times per the prescribed period.

Description

気流発生装置Airflow generator
 この発明は、電極に対する電圧印加によって気流を発生させる気流発生装置に関するものである。 The present invention relates to an airflow generation device that generates an airflow by applying a voltage to an electrode.
 平行に配列された複数の線状電極に対して周期パルス電圧を印加することにより気流を発生させる装置が特許文献1に示されている。 Patent Document 1 discloses an apparatus that generates an air flow by applying a periodic pulse voltage to a plurality of linear electrodes arranged in parallel.
 特許文献1に示されている気流発生装置の構成例を、図13および図14を参照して説明する。図13(A)は、複数の線状電極とそれらに対して電圧を印加する電源の構成を示す図であり、図13(B)は、図13(A)における絶縁性基体の断面図である。図14は図13(A)に示す周期パルス電源40から出力される電圧波形図である。 A configuration example of an airflow generation device disclosed in Patent Document 1 will be described with reference to FIGS. 13 and 14. FIG. 13A is a diagram illustrating a configuration of a plurality of linear electrodes and a power source that applies a voltage to them, and FIG. 13B is a cross-sectional view of the insulating substrate in FIG. is there. FIG. 14 is a voltage waveform diagram output from the periodic pulse power supply 40 shown in FIG.
 図13(A)(B)に示すように、絶縁性基体51の上面には複数の線状電極52が平行且つ一定間隔に配列形成されている。周期パルス電源40は4相のパルス電圧V1~V4を出力する。線状電極52は、その並び順に4本ごとに共通接続されるとともに周期パルス電源40にそれぞれ接続されている。絶縁性基体51の表面の全面には、線状電極52を覆うように誘電体膜54が形成されている。 As shown in FIGS. 13A and 13B, a plurality of linear electrodes 52 are arranged on the upper surface of the insulating base 51 in parallel and at regular intervals. The periodic pulse power supply 40 outputs four-phase pulse voltages V1 to V4. The linear electrodes 52 are connected in common in every four in the arrangement order, and are connected to the periodic pulse power supply 40, respectively. A dielectric film 54 is formed on the entire surface of the insulating base 51 so as to cover the linear electrode 52.
 図14に示す4つの波形は、図13(A)に示した周期パルス電源40から出力される4相のパルス電圧波形である。各相の駆動電圧は、0Vの区間を挟んで+Vボルトの区間が繰り返し発生する。隣接する相は1/4周期ずつずれている。このように4相のパルス電圧の時間波形を、各々が一定時間持続するステップパルスとして順次循環的に出力される。 The four waveforms shown in FIG. 14 are four-phase pulse voltage waveforms output from the periodic pulse power supply 40 shown in FIG. The drive voltage of each phase is repeatedly generated in the + V volt interval across the 0 V interval. Adjacent phases are shifted by ¼ period. In this way, the time waveform of the four-phase pulse voltage is sequentially and cyclically output as step pulses each of which lasts for a fixed time.
特開2011-26096号公報JP 2011-26096 A
 図13に示す気流発生装置において、線状電極52はその並び順に4本ごとに共通接続され、4組の引き出し電極53にそれぞれ接続されている。この構成を実現するためには、線状電極52または引き出し電極53の途中の複数箇所に配線の交差部が生じる。そのため、例えば線状電極52と引き出し電極53との形成層を分離して層間接続導体(ビア導体)を設けた多層基板を用いたり、絶縁体で被覆した導線を用いたりして、立体交差させなければならない。すなわち、線状電極および引き出し電極を単層の電極パターンで構成することができない。その結果、製造コストが嵩むという課題があった。 In the airflow generation device shown in FIG. 13, the linear electrodes 52 are commonly connected every four in the arrangement order, and are connected to four sets of lead electrodes 53 respectively. In order to realize this configuration, wiring intersections occur at a plurality of locations in the middle of the linear electrode 52 or the extraction electrode 53. For this reason, for example, a multilayer substrate in which the formation layers of the linear electrode 52 and the extraction electrode 53 are separated and an interlayer connection conductor (via conductor) is provided, or a conductive wire covered with an insulator is used to make a three-dimensional intersection. There must be. That is, the linear electrode and the extraction electrode cannot be configured with a single-layer electrode pattern. As a result, there is a problem that the manufacturing cost increases.
 なお、上記気流発生装置は、一方向に気流を発生させるために、相数nは3以上であることが必要であるが、上記課題は相数が4以外の場合にも同様に生じる。 In addition, in order to generate an airflow in one direction, the airflow generation device needs to have a phase number n of 3 or more. However, the above problem similarly occurs when the number of phases is other than 4.
 そこで、本発明の目的は、線状電極および引き出し電極を単層の電極パターンで構成できるようにした気流発生装置を提供することにある。 Therefore, an object of the present invention is to provide an airflow generation device in which the linear electrode and the extraction electrode can be configured by a single layer electrode pattern.
 本発明の気流発生装置は次のように構成する。 The airflow generator of the present invention is configured as follows.
(1)絶縁性基体と、
 前記絶縁性基体の上に配列され、誘電体膜で覆われた複数の線状電極と、
 前記複数の線状電極のうちの1本の線状電極に接続された第1外部電極と、
 前記複数の線状電極のうち、前記第1外部電極に接続された線状電極から遠ざかる順で奇数番目の線状電極に接続された第2外部電極および偶数番目に接続された第3外部電極と、
 前記第1外部電極に所定周期当たり1回の壁電荷形成用パルス電圧を印加し、前記第2外部電極および前記第3外部電極に、前記所定周期当たり複数回の割合で2相のパルス電圧をそれぞれ印加する周期パルス電源と、
を備えたことを特徴とする。
(1) an insulating substrate;
A plurality of linear electrodes arranged on the insulating substrate and covered with a dielectric film;
A first external electrode connected to one of the plurality of linear electrodes;
Among the plurality of linear electrodes, a second external electrode connected to the odd-numbered linear electrodes and a third external electrode connected to the even-numbered electrodes in order away from the linear electrode connected to the first external electrode. When,
A wall charge forming pulse voltage is applied to the first external electrode once per predetermined period, and a two-phase pulse voltage is applied to the second external electrode and the third external electrode at a plurality of times per predetermined period. A periodic pulse power supply to be applied respectively;
It is provided with.
 後に示す、動作に関する詳細な説明で明らかとなるが、上記構成により、線状電極に印加される電圧が2相であるにも拘わらず、定方向の気流が生じる。したがって、複数の線状電極のうち、奇数番目の線状電極および偶数番目の線状電極に対して互いに対向する方向から第2外部電極および第3外部電極を接続することによって、立体交差させることなく、線状電極および外部電極を配線できる。 As will be apparent from the detailed description of the operation, which will be described later, in the above configuration, although the voltage applied to the linear electrode is two-phase, air flow in a fixed direction is generated. Therefore, three-dimensional crossing is performed by connecting the second external electrode and the third external electrode from the opposite direction to the odd-numbered linear electrode and the even-numbered linear electrode among the plurality of linear electrodes. In addition, the linear electrode and the external electrode can be wired.
(2)前記第1外部電極が接続された線状電極は、例えば前記配列の第1端に配置された線状電極である。これにより、第1外部電極から、それが接続される線状電極までの配線が、他の線状電極および第2・第3の外部電極と交差することもない。 (2) The linear electrode to which the first external electrode is connected is, for example, a linear electrode disposed at the first end of the array. Thereby, the wiring from the first external electrode to the linear electrode to which it is connected does not intersect with the other linear electrodes and the second and third external electrodes.
(3)前記複数の線状電極のうち、前記配列の第2端に配置された線状電極に接続された第4外部電極を備え、前記周期パルス電源は、前記第1外部電極または前記第4外部電極に前記壁電荷形成用パルス電圧を選択的に印加する手段と、前記2相のパルス電圧の位相を反転する手段を備えることが好ましい。すなわちこの構成により、配列された複数の線状電極の第1端からその他の線状電極の配列方向への気流を発生させる状態と、逆に、第2端からその他の線状電極の配列方向への気流を発生させる状態とを選択することができる。 (3) A fourth external electrode connected to the linear electrode disposed at the second end of the array among the plurality of linear electrodes is provided, and the periodic pulse power source includes the first external electrode or the first external electrode. It is preferable to include means for selectively applying the wall charge forming pulse voltage to four external electrodes and means for inverting the phase of the two-phase pulse voltage. That is, with this configuration, an air flow is generated from the first end of the plurality of arranged linear electrodes to the arrangement direction of the other linear electrodes, and conversely, the arrangement direction of the other linear electrodes from the second end. It is possible to select a state in which an airflow is generated.
(4)前記2相のパルス電圧はデューティ比50%の矩形波であり、互いの立ち上がりと立下りの時刻が一致していることが好ましい。すなわちこれにより、周期パルス電源の回路構成が簡素化される。また、高効率のもとで壁電荷の生成および移送ができる。 (4) Preferably, the two-phase pulse voltage is a rectangular wave with a duty ratio of 50%, and the rise and fall times of each other coincide. That is, this simplifies the circuit configuration of the periodic pulse power supply. In addition, wall charges can be generated and transferred with high efficiency.
(5)前記2相のパルス電圧は、前記所定周期当たり2回の割合で発生される。すなわちこれにより、壁電荷の生成頻度が高く保てるので、発生する気流の流量を確保しやすい。 (5) The two-phase pulse voltage is generated at a rate of twice per predetermined period. That is, since the generation frequency of wall charges can be kept high, it is easy to ensure the flow rate of the generated airflow.
(6)前記壁電荷形成用パルス電圧の波高値は、前記2相のパルス電圧の波高値より高いことが好ましい。すなわち、これにより、壁電荷の形成効率が高く、且つ低消費電力化が図れる。 (6) It is preferable that a peak value of the wall charge forming pulse voltage is higher than a peak value of the two-phase pulse voltage. In other words, this makes it possible to achieve high wall charge formation efficiency and low power consumption.
 この発明によれば、線状電極および引き出し電極を単層の電極パターンで構成できる。そのため、製造コストの低減、薄型化、製造上の良品率の向上、故障率の低減などが期待される。 According to the present invention, the linear electrode and the extraction electrode can be constituted by a single layer electrode pattern. For this reason, reduction of manufacturing cost, thinning, improvement of non-defective product rate, reduction of failure rate, and the like are expected.
図1(A)(B)は、第1の実施形態に係る気流発生装置の構成を示す図であり、図1(A)は線状電極を形成した配列電極基板2およびそれに対する周期パルス電源1の接続構成を示す図、図1(B)は配列電極基板2の断面図である。FIGS. 1A and 1B are diagrams showing a configuration of an airflow generation device according to the first embodiment, and FIG. 1A shows an array electrode substrate 2 on which linear electrodes are formed and a periodic pulse power source corresponding thereto. FIG. 1B is a cross-sectional view of the array electrode substrate 2. 図2は周期パルス電源1の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the periodic pulse power supply 1. 図3は周期パルス電源1の発生する各パルス電圧の波形図である。FIG. 3 is a waveform diagram of each pulse voltage generated by the periodic pulse power supply 1. 図4は、図1に示した配列電極基板2の層毎の分解斜視図である。FIG. 4 is an exploded perspective view of each layer of the array electrode substrate 2 shown in FIG. 図5は、図4に示した電極層25の平面図である。FIG. 5 is a plan view of the electrode layer 25 shown in FIG. 図6(A)は、線状電極EFに電圧VCが印加され、線状電極E1 (1)が接地電位状態に保たれている状態を示す図、図6(B)は、両電極間に正の壁電荷28と負の壁電荷29が形成された様子を示す図、図6(C)は、線状電極E1 (1)とその両隣の電極との間の領域30で沿面放電が生じる様子を示す図、図6(D)は、沿面放電停止後の壁電荷の様子を示す図、図6(E)は、図6(D)より後のタイミングにおける沿面放電停止後の壁電荷の様子を示す図、図6(F)は、図6(E)より後のタイミングにおける沿面放電停止後の壁電荷の様子を示す図、図6(G)は、図6(F)より後のタイミングにおける沿面放電停止後の壁電荷の様子を示す図である。6 (A) is a voltage V C is applied to the linear electrodes E F, drawing linear electrodes E 1 is (1) shows a state of being kept at a ground potential state, FIG. 6 (B) both FIG. 6C shows a state in which a positive wall charge 28 and a negative wall charge 29 are formed between the electrodes. FIG. 6C shows a region 30 between the linear electrode E 1 (1) and its adjacent electrodes. FIG. 6 (D) is a diagram showing the state of creeping discharge, FIG. 6 (D) is a diagram showing the state of wall charges after the creeping discharge is stopped, and FIG. 6 (E) is after creeping discharge is stopped at a timing later than FIG. FIG. 6F is a diagram illustrating the state of wall charges after the creeping discharge is stopped at a timing later than FIG. 6E, and FIG. 6G is a diagram illustrating the state of wall charges. It is a figure which shows the mode of the wall charge after the creeping discharge stop in the later timing. 図7(A)(B)は、第2の実施形態に係る気流発生装置の構成を示す図であり、図7(A)は線状電極を形成した配列電極基板2およびそれに対する周期パルス電源1の接続構成を示す図、図7(B)は配列電極基板2の断面図である。FIGS. 7A and 7B are diagrams showing a configuration of an airflow generation device according to the second embodiment, and FIG. 7A shows an array electrode substrate 2 on which linear electrodes are formed and a periodic pulse power source corresponding thereto. FIG. 7B is a cross-sectional view of the array electrode substrate 2. 図8(A)(B)は周期パルス電源1の発生する各パルス電圧の波形図であり、図8(A)は正方向モードにおける各パルス電圧の波形図、図8(B)は逆方向モードにおける各パルス電圧の波形図である。8A and 8B are waveform diagrams of each pulse voltage generated by the periodic pulse power supply 1, FIG. 8A is a waveform diagram of each pulse voltage in the forward direction mode, and FIG. 8B is a reverse direction. It is a wave form diagram of each pulse voltage in a mode. 図9は、図7に示した配列電極基板2の層毎の分解斜視図である。FIG. 9 is an exploded perspective view of each layer of the array electrode substrate 2 shown in FIG. 図10は、図9に示した電極層25の平面図である。FIG. 10 is a plan view of the electrode layer 25 shown in FIG. 図11(A)は第3の実施形態に係るパルス電圧VF,V1,V2,VRの波形図である。図11(B)は第3の実施形態に係るさらに別のパルス電圧VF,V1,V2,VRの波形図である。FIG. 11A is a waveform diagram of pulse voltages V F , V 1 , V 2 , and V R according to the third embodiment. FIG. 11B is a waveform diagram of further pulse voltages V F , V 1 , V 2 and V R according to the third embodiment. 図12は第4の実施形態に係る周期パルス電源が発生する各パルス電圧の波形図である。FIG. 12 is a waveform diagram of each pulse voltage generated by the periodic pulse power supply according to the fourth embodiment. 図13(A)は、複数の線状電極とそれらに対して電圧を印加する電源の構成を示す図であり、図13(B)は、図13(A)における絶縁性基体の断面図である。FIG. 13A is a diagram illustrating a configuration of a plurality of linear electrodes and a power source that applies a voltage to them, and FIG. 13B is a cross-sectional view of the insulating substrate in FIG. is there. 図14は図13(A)に示す周期パルス電源40から出力されるパルス電圧の波形図である。FIG. 14 is a waveform diagram of a pulse voltage output from the periodic pulse power supply 40 shown in FIG.
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。 Hereinafter, several specific examples will be given with reference to the drawings to show a plurality of modes for carrying out the present invention. In each figure, the same reference numerals are assigned to the same portions. Each embodiment is an exemplification, and needless to say, partial replacement or combination of configurations shown in different embodiments is possible.
 《第1の実施形態》
 図1(A)(B)は、第1の実施形態に係る気流発生装置の構成を示す図であり、図1(A)は線状電極を形成した配列電極基板2およびそれに対する周期パルス電源1の接続構成を示す図、図1(B)は配列電極基板2の断面図である。
<< First Embodiment >>
FIGS. 1A and 1B are diagrams showing a configuration of an airflow generation device according to the first embodiment, and FIG. 1A shows an array electrode substrate 2 on which linear electrodes are formed and a periodic pulse power source corresponding thereto. FIG. 1B is a cross-sectional view of the array electrode substrate 2.
 配列電極基板2は、誘電体基板等の絶縁性基体21と、この絶縁性基体21に形成された複数の線状電極22とを備えている。絶縁性基体21の上面には複数の線状電極22が平行且つ一定間隔に配列形成されている。これら複数の線状電極22のうちの1本の線状電極EFに第1外部電極23Fが接続されている。また、複数の線状電極22のうち、第1外部電極23Fに接続された線状電極EFから遠ざかる順(図1(A)においてx方向への順)で奇数番目の線状電極に第2外部電極23Aが接続されている。さらに、偶数番目の線状電極に第3外部電極23Bが接続されている。 The array electrode substrate 2 includes an insulating base 21 such as a dielectric substrate and a plurality of linear electrodes 22 formed on the insulating base 21. A plurality of linear electrodes 22 are arranged in parallel and at regular intervals on the upper surface of the insulating substrate 21. The first external electrode 23F are connected to one linear electrode E F of the plurality of linear electrodes 22. Further, among the plurality of linear electrode 22, the odd-numbered linear electrodes in order away from the connected linear electrode E F to the first external electrode 23F (order of the x-direction in FIG. 1 (A)) 2 External electrode 23A is connected. Further, the third external electrode 23B is connected to the even-numbered linear electrodes.
 絶縁性基体21の表面の全面には、線状電極22を覆うように、樹脂被膜や珪酸ガラス被膜などの誘電体膜24が形成されている。この構成により、電極の酸化や硫化が抑制されて長期に亘って安定した特性が維持できる。 A dielectric film 24 such as a resin film or a silicate glass film is formed on the entire surface of the insulating substrate 21 so as to cover the linear electrode 22. With this configuration, oxidation and sulfurization of the electrode are suppressed, and stable characteristics can be maintained over a long period of time.
 周期パルス電源1は、第1外部電極23Fに所定周期当たり1回の壁電荷形成用パルス電圧VFを印加するとともに、第2外部電極23Aおよび第3外部電極23Bに、所定周期当たり複数回の割合で2相のパルス電圧V1,V2をそれぞれ印加する。 Periodic pulse power supply 1 applies a wall charge forming pulse voltage V F of once per predetermined cycle to the first external electrode 23F, the second outer electrode 23A and the third outer electrode 23B, a plurality of times per a predetermined period Two-phase pulse voltages V1 and V2 are applied at a ratio.
 図2は周期パルス電源1の構成を示すブロック図である。図2に示すように、周期パルス電源1は定電圧直流電源回路12、ゲートドライバ回路13及びタイミング信号発生回路11で構成されている。タイミング信号発生回路11はパルス電圧を発生するタイミング信号を与え、ゲートドライバ回路13はそのタイミング信号に応じて、定電圧直流電源回路12から入力する電圧0,Vc,VTを切り替えてパルス電圧VF,V1,V2を出力する。このゲートドライバ回路は、例えばパワーMOS-FETを主たる素子として構成することができる。 FIG. 2 is a block diagram showing the configuration of the periodic pulse power supply 1. As shown in FIG. 2, the periodic pulse power supply 1 includes a constant voltage DC power supply circuit 12, a gate driver circuit 13, and a timing signal generation circuit 11. Timing signal generating circuit 11 provides a timing signal for generating a pulse voltage, the gate driver circuit 13 in accordance with the timing signal, the voltage 0 to the input from the constant-voltage DC power supply circuit 12, Vc, the pulse voltage V is switched to V T Outputs F , V1, and V2. This gate driver circuit can be configured with, for example, a power MOS-FET as a main element.
 図3は周期パルス電源1の発生する各パルス電圧の波形図である。壁電荷形成用パルス電圧VFは、0またはVCの2値をとる、周期T、デューティ比25%の矩形波電圧である。図3に示した例では、壁電荷形成用パルス電圧VFは、時刻t1で立ち上がり、T/4後の時刻t2で立ち下がる。すなわち、時間t1~t2で電圧Vc、時間t2~t5で0である。例えば、電圧Vcは700V、周期Tは0.5msである。 FIG. 3 is a waveform diagram of each pulse voltage generated by the periodic pulse power supply 1. The wall charge forming pulse voltage V F is a rectangular wave voltage having a cycle T and a duty ratio of 25%, which takes a binary value of 0 or V C. In the example shown in FIG. 3, the wall charge forming pulse voltage V F rises at time t1, and falls at time t2 after T / 4. That is, the voltage Vc is from time t1 to t2, and is 0 from time t2 to t5. For example, the voltage Vc is 700 V and the period T is 0.5 ms.
 パルス電圧V1およびV2は、0またはVTの2値をとる、周期T/2、デューティ比50%の矩形波電圧である。図3に示した例では、パルス電圧V1は、パルス電圧VFの立ち上がりの時刻t1からT/4後の時刻t2で立ち上がり、その後さらにT/4後の時刻t3で立ち下がる。また、パルス電圧V2は、パルス電圧V1の立ち下がり時刻t3で立ち上がり、その後さらにT/4後の時刻t4で立ち下がる。すなわち、パルス電圧V2の立ち上がりの時刻t3はパルス電圧V1の立ち下りの時刻に一致する。電圧VTは例えば400Vである。 The pulse voltages V1 and V2 are rectangular wave voltages having a cycle of T / 2 and a duty ratio of 50%, which are binary values of 0 or V T. In the example shown in FIG. 3, the pulse voltage V1 rises at a pulse voltage V F time from the rising time t1 after T / 4 of t2, falls then standing still at the time t3 after T / 4. The pulse voltage V2 rises at the falling time t3 of the pulse voltage V1, and then falls at time t4 after T / 4. That is, the rising time t3 of the pulse voltage V2 coincides with the falling time of the pulse voltage V1. Voltage V T is, for example, 400V.
 以上のパルス電圧を繰り返し出力することによって、第1外部電極23Fに、周期T当たり1回の壁電荷形成用パルス電圧VFを印加するとともに、第2外部電極23Aおよび第3外部電極23Bに、周期T当たり2回の割合で2相のパルス電圧をそれぞれ印加する。 By repeatedly outputting the above pulse voltage, the wall charge forming pulse voltage V F is applied to the first external electrode 23F once per period T, and the second external electrode 23A and the third external electrode 23B are applied to the first external electrode 23F. Two-phase pulse voltages are applied at a rate of twice per period T.
 図4は、図1に示した配列電極基板2の層毎の分解斜視図である。配列電極基板2は、下層から順に、絶縁性基体21、電極層25、および誘電体膜24が、この順に積層構成されている。但し、図4はあくまで構成を説明するための分解図であり、必ずしも製造工程に対応するものではない。 FIG. 4 is an exploded perspective view of each layer of the array electrode substrate 2 shown in FIG. The array electrode substrate 2 includes an insulating base 21, an electrode layer 25, and a dielectric film 24, which are stacked in this order from the bottom layer. However, FIG. 4 is an exploded view for explaining the configuration to the last, and does not necessarily correspond to the manufacturing process.
 図5は、図4に示した電極層25の平面図である。電極層25において、複数の線状電極22が平行且つ一定間隔に配列形成されている。線状電極22の幅と間隔は例えばいずれも50μmである。 FIG. 5 is a plan view of the electrode layer 25 shown in FIG. In the electrode layer 25, a plurality of linear electrodes 22 are arranged in parallel and at regular intervals. The width and interval of the linear electrodes 22 are both 50 μm, for example.
 複数の線状電極22のうち、一方の端に線状電極EFが配置されている。この線状電極EFに第1外部電極23Fが導通していて、この第1外部電極23Fの端部が外部接続端子PFに繋がっている。また、他の線状電極Ei (j)は、その並び順(図5においてx方向への順)で奇数番目の線状電極および偶数番目の線状電極がそれぞれ共通接続されている。下付き数字iが奇数の線状電極は第2外部電極23Aに導通していて、下付き数字iが偶数の線状電極は第3外部電極23Bに導通している。第2外部電極23Aの端部は外部接続端子P1に繋がっていて、第3外部電極23Bの端部は外部接続端子P2に繋がっている。 Among the plurality of linear electrode 22, the linear electrode E F is positioned at one end. This linear electrode E F have first external electrode 23F is turned on, the end of the first external electrode 23F are connected to the external connection terminal P F. In addition, in the other linear electrodes E i (j) , odd-numbered linear electrodes and even-numbered linear electrodes are commonly connected in the arrangement order (order in the x direction in FIG. 5). A linear electrode with an odd subscript number i is connected to the second external electrode 23A, and a linear electrode with an even subscript number i is connected to the third external electrode 23B. The end of the second external electrode 23A is connected to the external connection terminal P1, and the end of the third external electrode 23B is connected to the external connection terminal P2.
 図4に示した最上層の誘電体膜24は、電極層25を被覆する。但し、電極層25の3つの外部接続電極P1,PFおよびP2に対応する部位は開口している。 The uppermost dielectric film 24 shown in FIG. 4 covers the electrode layer 25. However, three portions corresponding to the external connection electrodes P1, P F and P2 of the electrode layer 25 is opened.
 なお、上記の電圧VTおよびVCは、 The above voltages V T and V C are
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
を満たすものとする。ここで、
 VTH:隣接する2本の線状電極間で沿面放電を起こすのに必要な閾値電圧
 VTH’:隣接域で沿面放電があるときに、その隣接域に接する位置の隣接する2本の線状電極間で沿面放電が誘起されるのに必要な閾値電圧
 Q:隣接する2本の線状電極間で沿面放電が生じたときに、一方の線状電極の誘電体膜24の上に形成される表面電荷の絶対値
 CWC:隣接する2本の線状電極を覆う誘電体膜24の上に壁電荷が置かれたと想定した場合に生じる電位差から求められる静電容量
である。
Shall be satisfied. here,
V TH : Threshold voltage required to cause creeping discharge between two adjacent linear electrodes V TH ': Two adjacent lines at positions adjacent to the adjacent area when there is creeping discharge in the adjacent area Threshold voltage Q required to induce creeping discharge between the linear electrodes Q: formed on the dielectric film 24 of one linear electrode when creeping discharge occurs between two adjacent linear electrodes Absolute value of surface charge C WC : Capacitance obtained from a potential difference generated when it is assumed that a wall charge is placed on the dielectric film 24 covering two adjacent linear electrodes.
 本気流発生装置の作用について、図3および図6(A)~図6(G)を参照して説明する。 The operation of the airflow generation device will be described with reference to FIG. 3 and FIGS. 6 (A) to 6 (G).
 まず、時刻t1以前においては、誘電体膜24の表面に真電荷は無いか十分に少ないものとする。 First, before the time t1, it is assumed that the surface of the dielectric film 24 has no true charge or is sufficiently small.
 時刻t1において、図6(A)に示すように、線状電極EFに電圧VCが印加され、線状電極E1 (1)が接地電位状態に保たれる。線状電極EとE1 (1)  との間の電位差VCは、式(2)から、線状電極EFと線状電極E1 (1)との間で沿面放電を起こすのに必要な閾値電圧VTHを上回る。このとき、図6(A)に示すように、線状電極EFと線状電極E1 (1)との間の気体の領域30Aで沿面放電が起きる。この沿面放電で生じた正負の荷電粒子は、両電極間の強電界によってクーロン力を受け、正の電気を帯びた荷電粒子26は+x方向へ運動して線状電極E1 (1)へ向かい、負の電気を帯びた荷電粒子27は-x方向へ運動して線状電極EFへ向かう。いずれの電極も誘電体膜24で被覆されているため、荷電粒子は誘電体膜24の表面に到達して運動を停止し、電極に達することはない。この誘電体膜24の表面に留まる荷電粒子を、本発明において「壁電荷」と呼ぶ。 At time t1, as shown in FIG. 6 (A), voltage V C is applied to the linear electrodes E F, linear electrodes E 1 (1) is kept at a ground potential state. Linear electrodes E F and E 1 (1)   The potential difference V C between the above formulas (2), the threshold voltage V TH required to cause the creeping discharge between the linear electrodes E F and the linear electrodes E 1 (1). At this time, as shown in FIG. 6 (A), creeping discharge occurs in the gas region 30A between the linear electrode E F and the linear electrodes E 1 (1). The positive and negative charged particles generated by the creeping discharge are subjected to Coulomb force by the strong electric field between the two electrodes, and the charged particles 26 charged with positive electricity move in the + x direction toward the linear electrode E 1 (1) . , the charged particles 27 charged with negative electricity toward exercising the -x direction to the linear electrodes E F. Since any electrode is covered with the dielectric film 24, the charged particles reach the surface of the dielectric film 24, stop moving, and do not reach the electrode. The charged particles that remain on the surface of the dielectric film 24 are referred to as “wall charges” in the present invention.
 図6(B)は、誘電体膜24上に正の壁電荷28と負の壁電荷29が形成された様子を示す。壁電荷によって作られる実効的な電位差(壁電位)は、両電極間の電位差とは逆極性であるため、壁電荷が形成されることで両電極間の電位差の総和は小さくなり、放電の継続に必要な電位差の閾値を下回るようになる。このため、両電極間の放電はごく短時間(おおむね数十ns)で停止する。ここで、線状電極EFおよび線状電極E1 (1)の近傍に形成された壁電荷の大きさの総和をそれぞれ-Qおよび+Qとする。 FIG. 6B shows a state where positive wall charges 28 and negative wall charges 29 are formed on the dielectric film 24. The effective potential difference (wall potential) created by the wall charge is opposite in polarity to the potential difference between the two electrodes. Therefore, the sum of the potential difference between the two electrodes is reduced by the formation of the wall charge, and the discharge continues. The potential difference becomes lower than the threshold value of the potential difference required. For this reason, the discharge between both electrodes stops in a very short time (generally several tens of ns). Here, the wall charges formed in the vicinity of the linear electrodes E F and the linear electrodes E 1 (1) the magnitude of the sum, respectively, and -Q and + Q.
 次に、時刻t2においては、線状電極E1 (j)(jは自然数。以下、特に説明のない限り同じ。)およびE3 (j)に電圧VTが印加される。他の線状電極は接地電位状態におかれる。まず、E1 (1)を除くE1 (j)、およびE3 (j)においては、それぞれ隣接する線状電極間の電位差はVTである。式(1)より、この電位差VTは、閾値電圧VTHを下回る。したがって、線状電極E1 (1)に隣接しない線状電極においては沿面放電は生じない。 Next, at time t2, voltage V T is applied to linear electrodes E 1 (j) (j is a natural number; hereinafter the same unless otherwise specified) and E 3 (j) . The other linear electrodes are placed in the ground potential state. First, E 1 except E 1 a (1) (j), and in E 3 (j), the potential difference between adjacent linear electrodes respectively is V T. From Equation (1), this potential difference V T is lower than the threshold voltage V TH . Therefore, creeping discharge does not occur in the linear electrode that is not adjacent to the linear electrode E 1 (1) .
 次に、線状電極E1 (1)とこれに隣接する線状電極に着目する。まず、図6(B)に示したように、線状電極EFと線状電極E1 (1)には、その近傍にそれぞれ+Qと-Qの壁電荷28,29が存在する。ここで、この壁電荷による両電極間の電位差(壁電位)VWCは、 Next, attention is paid to the linear electrode E 1 (1) and the linear electrode adjacent thereto. First, as shown in FIG. 6 (B), the linear electrodes E F and the linear electrodes E 1 (1), each + Q and -Q wall charges 28, 29 are present in the vicinity thereof. Here, the potential difference (wall potential) V WC between the two electrodes due to this wall charge is
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
と表せる。このため、線状電極E1 (1)と線状電極EFとの間の電位差の総和Vtotal 1(1)-Fは、 It can be expressed. Therefore, the sum of a potential difference between the linear electrodes E 1 (1) and the linear electrode E F V total 1 (1) -F is
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
である。また、線状電極E1 (1)と、その右に隣接する線状電極E2 (1)との間の電位差の総和Vtotal 1(1)-2(1)は、同様に、 It is. Further, the sum V total 1 (1) -2 (1) of the potential difference between the linear electrode E 1 (1) and the linear electrode E 2 (1) adjacent to the right is similarly expressed as follows:
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
と表せる。ここで、式(4)および式(5)で表された電圧は、式(1)より、 It can be expressed. Here, the voltages expressed by the equations (4) and (5) are obtained from the equation (1):
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
を満たす。 Meet.
 このとき、まず、線状電極E1 (1)と線状電極EFとの間で両電極間の電位差の総和により沿面放電が生じる。一方、線状電極E1 (1)と線状電極E2 (1)との間においては、式(6)により直接は沿面放電が惹き起こされないものの、隣接する領域での沿面放電により誘起される沿面放電が生じる。 In this case, first, creeping discharge is generated by the sum of the potential difference between the electrodes between the linear electrodes E 1 (1) and the linear electrode E F. On the other hand, the creeping discharge is not directly caused between the linear electrode E 1 (1) and the linear electrode E 2 (1 ) by the formula (6), but is induced by the creeping discharge in the adjacent region. Creeping discharge occurs.
 このように、時刻t2においては、図6(C)に示すように、線状電極E1 (1)とその両隣の電極との間の領域30Bで沿面放電が生じる。図6(C)に示すように、線状電極E1 (1)と線状電極EFとの間で生じた荷電粒子により、それぞれ-Qと+Qの壁電荷が形成され、また、線状電極E1 (1)と線状電極E2 (1)との間で生じた荷電粒子によっても、それぞれ-Qと+Qの壁電荷が形成されるとすると、沿面放電の停止した後の壁電荷は、図6(D)に示すようになる。すなわち、線状電極EFの近傍には、壁電荷の-Qに対して新たな荷電粒子の+Qが加わるため、電荷は失われる。線状電極E1 (1)の近傍には、壁電荷の+Qに対して、両隣の電極から共に荷電粒子の-Qが加わるため、新たな電荷量は-Qとなる。線状電極E2 (1)の近傍には、線状電極E1 (1)と線状電極E2 (1)との間で生じた荷電粒子によって+Qの壁電荷が形成される。 Thus, at time t2, creeping discharge occurs in the region 30B between the linear electrode E 1 (1) and its adjacent electrodes, as shown in FIG. 6C. As shown in FIG. 6 (C), the charged particles generated between the linear electrodes E 1 (1) and the linear electrode E F, the wall charges of -Q and + Q, respectively are formed, also, the line If the charged particles generated between the electrode E 1 (1) and the linear electrode E 2 (1) also form -Q and + Q wall charges, respectively, The wall charges are as shown in FIG. That is, in the vicinity of the linear electrodes E F, to join the + Q new charged particles with respect -Q wall charges, charge is lost. In the vicinity of the linear electrode E 1 (1) , -Q of charged particles is added from both adjacent electrodes to + Q of the wall charge, so that a new charge amount becomes -Q. In the vicinity of the linear electrode E 2 (1), the wall charges of + Q by the charged particles generated between the linear electrodes E 1 (1) and the linear electrode E 2 (1) is formed.
 次に、時刻t3において印加されるパルス電圧V2により生じる現象について説明する。図6(D)における壁電荷の分布は、図6(B)における壁電荷の分布を+x方向へ1電極分だけ平行移動した状態に等しい。そのため、時刻t3において印加されるパルス電圧V2により、時刻t2において生じた現象を+x方向へ1電極分だけ平行移動したものが生じる。したがって、沿面放電の停止した後の壁電荷は、図6(E)に示すようになる。 Next, the phenomenon will be described caused by the pulse voltage V 2 applied at time t3. The wall charge distribution in FIG. 6D is equivalent to a state in which the wall charge distribution in FIG. 6B is translated by one electrode in the + x direction. For this reason, the pulse voltage V 2 applied at time t3 causes the phenomenon generated at time t2 to be translated by one electrode in the + x direction. Therefore, the wall charges after the creeping discharge is stopped are as shown in FIG.
 同様に、時刻t4において印加されるパルス電圧V1により生じる現象についても説明され、沿面放電の停止した後の壁電荷は、図6(F)に示すようになる。 Similarly, also described phenomenon caused by the pulse voltage V 1 applied at time t4, the wall charges after the stop of the creeping discharge is as shown in FIG. 6 (F).
 次に、時刻t5において印加されるパルス電圧VFおよびV2により生じる現象について説明する。線状電極EFとそれに隣接する線状電極における印加電圧と壁電荷の状態は、時刻t1における場合と同じであるから、生じる現象も同じである。また、線状電極E4 (1)とそれに隣接する線状電極E1 (2) における印加電圧と壁電荷の状態は、時刻t4における場合に対して+x方向へ1電極分だけ平行移動したものとなっている。そのため、線状電極E4 (1)とそれに隣接する線状電極E1 (2) に生じる現象も時刻t4における場合に対して+x方向へ1電極分だけ平行移動したものとなる。したがって、沿面放電の停止した後の壁電荷は、図6(G)に示すようになる。 Next, the phenomenon will be described caused by pulsed voltage V F and V 2 is applied at time t5. State of the applied voltage and the wall charge at the linear electrode E F and the linear electrodes adjacent thereto, since it is the same as at time t1, phenomenon occurs is the same. In addition, the applied voltage and wall charge state of the linear electrode E 4 (1) and the adjacent linear electrode E 1 (2) are translated by one electrode in the + x direction with respect to the case at time t4. It has become. Therefore, the phenomenon that occurs in the linear electrode E 4 (1) and the adjacent linear electrode E 1 (2) is also translated by one electrode in the + x direction with respect to the case at time t4. Therefore, the wall charge after the creeping discharge is stopped is as shown in FIG.
 図3において、時刻t6以降は時刻t2以降と同じ波形を繰り返す。以上の説明から明らかなように、時刻t6以降においても、図3に示した電圧セットを印加するとき、壁電荷形成用パルス電圧VFの印加によって、線状電極EFと線状電極E1 (1)との近傍の誘電体膜24の表面に新たな壁電荷を生じる。また、パルス電圧V1およびV2を交互に印加することにより、その壁電荷があたかも+x方向へ移送されるような振る舞いを示す。 In FIG. 3, after time t6, the same waveform as that after time t2 is repeated. As is clear from the above description, even after time t6, when the voltage set shown in FIG. 3 is applied, the linear electrode E F and the linear electrode E 1 are applied by applying the wall charge forming pulse voltage V F. New wall charges are generated on the surface of the dielectric film 24 in the vicinity of (1) . In addition, by alternately applying the pulse voltages V1 and V2, the behavior is as if the wall charges are transferred in the + x direction.
 このように、線状電極Ei (j)に印加される電圧は、2本ごとの空間周期性を持つにもかかわらず、壁電荷の形成が壁電荷形成用パルス電圧VFの印加によって周期Tごとにしか行われず、かつ壁電荷の履歴が保存されたまま+x方向へシフトされていくので、空間周期は線状電極Ei (j)の4本ごとの周期となる。このため、線状電極Ei (j)に印加される電圧は、2相であるにもかかわらず、表面に生じる放電および壁電荷の形成に関しては空間的な方向性を持たせることができる。 Periodically Thus, the voltage applied to the linear electrodes E i (j), despite having a spatial periodicity of every two, forming wall charges by applying a pulse voltage V F for the wall charge formed Since it is performed only every T and is shifted in the + x direction while the wall charge history is preserved, the spatial period is every four linear electrodes E i (j) . For this reason, although the voltage applied to the linear electrode E i (j) is two-phase, it is possible to have a spatial direction with respect to the discharge generated on the surface and the formation of wall charges.
 上記いずれの沿面放電の過程においても、生じた正負の荷電粒子は、両電極間の強電界からクーロン力を受け、正の電気を帯びた荷電粒子は+x方向へ運動し、負の電気を帯びた荷電粒子は-x方向へ運動する。ここで、多くの種類の荷電粒子が生じるが、例えば、標準状態の空気中においては、正の電気を帯びた荷電粒子の多くは窒素分子の正イオンであり、負の電気を帯びた荷電粒子の多くは電子である。正負のイオンは価数が等しい場合、同じ電位差からは同じエネルギーを持つが、運動量は質量の平方根に比例するため、正イオンは電子に比べると圧倒的に大きな運動量を持つ。正負のイオンは運動時に空気を構成する中性の分子と衝突を繰り返し、運動量を空気へ与えるが、正イオンと電子とで運動量に大きな差があるため、空気が受ける体積力は正イオンの運動量に支配され、+x方向へ向かう向きとなる。この空気が受ける+x方向の体積力は、+x方向の気流を発生する。 In any of the above creeping discharge processes, the generated positive and negative charged particles are subjected to Coulomb force from the strong electric field between the two electrodes, and the charged particles charged with positive electricity move in the + x direction and are charged with negative electricity. Charged particles move in the -x direction. Here, many kinds of charged particles are generated. For example, in standard air, many charged particles with positive electricity are positive ions of nitrogen molecules, and charged particles with negative electricity. Many of them are electrons. When positive and negative ions have the same valence, they have the same energy from the same potential difference, but since the momentum is proportional to the square root of mass, positive ions have an overwhelmingly large momentum compared to electrons. Positive and negative ions repeatedly collide with neutral molecules that make up the air during movement and give momentum to the air. However, since there is a large difference in momentum between positive ions and electrons, the volume force received by the air is the momentum of the positive ions. Is controlled in the + x direction. The volume force in the + x direction received by the air generates an air flow in the + x direction.
 以上に示した動作説明では、時間t1~t2においてパルス電圧V2は0Vとしたが、図3において破線で示す電圧が発生してもよい。すなわち、図6(A)において線状電極E2 (1)に正電圧が印加されていてもよい。その場合でも、線状電極EFと、それに隣接する線状電極E1 (1)の間で沿面放電を起こすので、t1-t2においてパルス電圧V2が発生しても、上述の動作は変わらない。 In the above description of the operation, the pulse voltage V2 is set to 0 V from time t1 to t2, but a voltage indicated by a broken line in FIG. 3 may be generated. That is, in FIG. 6A, a positive voltage may be applied to the linear electrode E 2 (1) . Even then, the linear electrode E F, so causing creeping discharge between the linear electrodes E 1 adjacent thereto (1), even if the pulse voltage V2 is generated at the t1-t2, unchanged the above operation .
 本構成は、線状電極E1 (j)~E4 (j)に印加される電圧は2相のみであり、線状電極の並び順に2本ごとに同じ電圧が印加されるにもかかわらず、壁電荷の履歴性を利用することにより、電荷の振る舞いに関するx方向の周期は2電極周期ではなく4電極周期である。これが本発明の特徴の1つである。そのため、図4・図5から明らかなように、線状電極22と引き出し電極23A,23Bはいずれの場所においても交差することなく構成でき、例えば一層の電極パターンによって構成することが可能である。 In this configuration, the voltage applied to the linear electrodes E 1 (j) to E 4 (j) is only two phases, and the same voltage is applied to every two electrodes in the arrangement order of the linear electrodes. By utilizing the hysteresis of the wall charge, the period in the x direction related to the charge behavior is not a two-electrode period but a four-electrode period. This is one of the features of the present invention. Therefore, as is apparent from FIGS. 4 and 5, the linear electrode 22 and the extraction electrodes 23A and 23B can be configured without intersecting at any location, and can be configured by, for example, a single electrode pattern.
 このように、交差しない電極によって容易に構成できることにより、低コスト化、薄型化、製造上の良品率の向上、故障率の低減などが期待される。 As described above, since it can be easily configured with electrodes that do not intersect, it is expected to reduce the cost, reduce the thickness, improve the yield of non-defective products, and reduce the failure rate.
 また、本発明によれば、2相のパルス電圧はデューティ比50%の矩形波であり、互いの立ち上がりと立下りの時刻が一致しているので、周期パルス電源の回路構成が簡素化される。また、高効率のもとで壁電荷の生成および移送ができる。 In addition, according to the present invention, the two-phase pulse voltage is a rectangular wave with a duty ratio of 50%, and the rise and fall times of each other coincide with each other, so that the circuit configuration of the periodic pulse power supply is simplified. . In addition, wall charges can be generated and transferred with high efficiency.
 また、壁電荷形成用パルス電圧の波高値(700V)は、前記2相のパルス電圧の波高値(400V)より高いことにより、壁電荷の形成効率が高く、且つそれを相対的に低い電圧で移送することになるので、低消費電力化が図れる。 Further, the peak value (700V) of the wall charge forming pulse voltage is higher than the peak value (400V) of the two-phase pulse voltage, so that the wall charge forming efficiency is high and the peak voltage is relatively low. Since it is transferred, the power consumption can be reduced.
 なお、パッシェンの法則によれば、放電開始電圧は、気圧と電極間距離との積の関数である。空気において、放電開始電圧の最小値は、気圧と電極間距離との積が0.57mmHg・cm付近において実現され、このときの放電開始電圧は330Vである。また、本発明の応用上、高電圧パルスの発生にパワーMOS-FETを用いるものとすると、例えば2SK2613のように、ドレイン・ソース間電圧の絶対定格値が1000V以下のものは比較的入手が容易である。使用上のマージンとして5%を考えると、放電開始電圧が950V以下であれば装置の構成が容易である。したがって、線状電極に印加されるパルス電圧は、330V乃至950Vの範囲内の値であると、気体搬送装置として好適である。 In addition, according to Paschen's law, the discharge start voltage is a function of the product of the atmospheric pressure and the distance between the electrodes. In air, the minimum value of the discharge start voltage is realized when the product of the atmospheric pressure and the distance between the electrodes is around 0.57 mmHg · cm, and the discharge start voltage at this time is 330V. Also, for the application of the present invention, if a power MOS-FET is used to generate a high voltage pulse, a drain-source voltage with an absolute rating value of 1000 V or less, such as 2SK2613, is relatively easily available. It is. Considering 5% as a margin for use, if the discharge start voltage is 950 V or less, the configuration of the apparatus is easy. Therefore, the pulse voltage applied to the linear electrode is suitable as a gas transport device if it is a value within the range of 330V to 950V.
 上記パルス電圧V1,V2の繰り返し周波数の範囲としては1kHz乃至1MHzの範囲であることが好ましい。これは、周波数が1kHz以上で実用的な風速が得られ、1MHz以下の周波数で周期パルス電源1の回路構成が容易になるからである。 The range of the repetition frequency of the pulse voltages V1 and V2 is preferably in the range of 1 kHz to 1 MHz. This is because a practical wind speed can be obtained at a frequency of 1 kHz or higher, and the circuit configuration of the periodic pulse power supply 1 is facilitated at a frequency of 1 MHz or lower.
《第2の実施形態》
 図7(A)(B)は、第2の実施形態に係る気流発生装置の構成を示す図であり、図7(A)は線状電極を形成した配列電極基板2およびそれに対する周期パルス電源1の接続構成を示す図、図7(B)は配列電極基板2の断面図である。
<< Second Embodiment >>
FIGS. 7A and 7B are diagrams showing a configuration of an airflow generation device according to the second embodiment, and FIG. 7A shows an array electrode substrate 2 on which linear electrodes are formed and a periodic pulse power source corresponding thereto. FIG. 7B is a cross-sectional view of the array electrode substrate 2.
 配列電極基板2は、絶縁性基体21とこの絶縁性基体21に形成された複数の線状電極22を備えている。絶縁性基体21の上面には複数の線状電極22が平行且つ一定間隔に配列形成されている。これら複数の線状電極22のうち、第1端に配置された1本の線状電極EFに第1外部電極23Fが接続されている。また、第2端に配置された1本の線状電極ERに第4外部電極23Rが接続されている。複数の線状電極22のうち、第1外部電極23Fに接続された線状電極EFから遠ざかる順(図7(A)においてx方向への順)で奇数番目の線状電極に第2外部電極23Aが接続されている。さらに、偶数番目の線状電極に第3外部電極23Bが接続されている。配列電極基板2のその他の構成は図1(A)(B)に示したとおりである。 The array electrode substrate 2 includes an insulating base 21 and a plurality of linear electrodes 22 formed on the insulating base 21. A plurality of linear electrodes 22 are arranged in parallel and at regular intervals on the upper surface of the insulating substrate 21. Among the plurality of linear electrode 22, the first external electrode 23F are connected to one linear electrode E F disposed on the first end. The fourth external electrode 23R is connected to one linear electrode E R which is arranged on the second end. Among the plurality of linear electrode 22, the second external to the odd-numbered linear electrodes in order away from the connected linear electrode E F to the first external electrode 23F (order of the x-direction in FIG. 7 (A)) The electrode 23A is connected. Further, the third external electrode 23B is connected to the even-numbered linear electrodes. The other structure of the array electrode substrate 2 is as shown in FIGS.
 周期パルス電源1は、第1外部電極23Fおよび第4外部電極23Rに所定周期当たり1回の壁電荷形成用パルス電圧VF,VRを印加するとともに、第2外部電極23Aおよび第3外部電極23Bに、所定周期当たり複数回の割合で2相のパルス電圧V1,V2をそれぞれ印加する。この周期パルス電源は、以降に示すように、第1外部電極または第4外部電極に壁電荷形成用パルス電圧を選択的に印加する手段と、2相のパルス電圧の位相を反転する手段を備える。 The periodic pulse power supply 1 applies the wall charge forming pulse voltages V F and V R once per predetermined period to the first external electrode 23F and the fourth external electrode 23R, and the second external electrode 23A and the third external electrode Two-phase pulse voltages V1 and V2 are respectively applied to 23B at a rate of a plurality of times per predetermined period. As will be described later, the periodic pulse power source includes means for selectively applying a wall charge forming pulse voltage to the first external electrode or the fourth external electrode and means for inverting the phase of the two-phase pulse voltage. .
 図8(A)(B)は周期パルス電源1の発生する各パルス電圧の波形図である。周期パルス電源1は、図8(A)の各パルス電圧を発生するモード(正方向モード)と、図8(B)の各パルス電圧を発生するモード(逆方向モード)とを有する。正方向モードは、図7(A)に示したx方向へ気流を発生させるモードであり、逆方向モードは、図7(A)に示した-x方向(x方向の反対方向)へ気流を発生させるモードである。 FIGS. 8A and 8B are waveform diagrams of each pulse voltage generated by the periodic pulse power supply 1. The periodic pulse power source 1 has a mode for generating each pulse voltage in FIG. 8A (forward direction mode) and a mode for generating each pulse voltage in FIG. 8B (reverse direction mode). The forward direction mode is a mode for generating an air flow in the x direction shown in FIG. 7A, and the reverse direction mode is an air flow in the −x direction (opposite to the x direction) shown in FIG. This is the mode to be generated.
 壁電荷形成用パルス電圧VF,VRは、0またはVCの2値をとる、周期T、デューティ比25%の矩形波電圧である。図8(A)に示した例では、壁電荷形成用パルス電圧VFは、時刻t1で立ち上がり、T/4後の時刻t2で立ち下がる。すなわち、時間t1~t2で電圧Vc、それ以外の時刻で0である。また、図8(B)に示した例では、壁電荷形成用パルス電圧VRは、時刻t1で立ち上がり、T/4後の時刻t2で立ち下がる。すなわち、時間t1~t2で電圧Vc、それ以外の時刻で0である。 The wall charge forming pulse voltages V F and V R are rectangular wave voltages having a cycle T and a duty ratio of 25%, which are binary values of 0 or V C. In the example shown in FIG. 8 (A), the wall charge forming pulse voltage V F rises at time t1, and falls at time t2 after T / 4. That is, the voltage Vc is from time t1 to time t2, and 0 at other times. In the example shown in FIG. 8B, the wall charge forming pulse voltage V R rises at time t1 and falls at time t2 after T / 4. That is, the voltage Vc is from time t1 to time t2, and 0 at other times.
 パルス電圧V1およびV2は、0またはVTの2値をとる、周期T/2、デューティ比50%の矩形波電圧である。図8(A)に示した例では、パルス電圧V1は、パルス電圧VFの立ち上がりの時刻t1からT/4後の時刻t2で立ち上がり、その後さらにT/4後の時刻t3で立ち下がる。また、パルス電圧V2は、パルス電圧V1の立ち下がり時刻t3で立ち上がり、その後さらにT/4後の時刻t4で立ち下がる。図8(B)に示した例では、パルス電圧V2は、パルス電圧VRの立ち上がりの時刻t1からT/4後の時刻t2で立ち上がり、その後さらにT/4後の時刻t3で立ち下がる。また、パルス電圧V1は、パルス電圧V1の立ち下がり時刻t3で立ち上がり、その後さらにT/4後の時刻t4で立ち下がる。 The pulse voltages V1 and V2 are rectangular wave voltages having a cycle of T / 2 and a duty ratio of 50%, which are binary values of 0 or V T. In the example shown in FIG. 8 (A), the pulse voltage V1 rises at a pulse voltage V F time from the rising time t1 after T / 4 of t2, falls then standing still at the time t3 after T / 4. The pulse voltage V2 rises at the falling time t3 of the pulse voltage V1, and then falls at time t4 after T / 4. In the example shown in FIG. 8 (B), the pulse voltage V2 rises at a pulse voltage V time from the rising time t1 after T / 4 of the R t2, falls then standing still at the time t3 after T / 4. The pulse voltage V1 rises at the falling time t3 of the pulse voltage V1, and then falls at time t4 after T / 4.
 周期パルス電源1は、正方向モードでは、壁電荷形成用パルス電圧VFを発生させ、逆方向モードでは、壁電荷形成用パルス電圧VRを発生させる。また、正方向モードと逆方向モードとで、2相のパルス電圧V1,V2の位相を反転させる。 Periodic pulse power supply 1, the forward mode, to generate a pulse voltage V F for the wall charge formed in the reverse mode, to generate a pulse voltage V R wall charges formed. Further, the phases of the two-phase pulse voltages V1 and V2 are reversed in the forward direction mode and the reverse direction mode.
 なお、図8(A)、図8(B)において、破線で示す電圧が発生してもよい。すなわち図3および図6を用いて説明したことと同様に、図8(A)、図8(B)において、破線で示す電圧が発生しても上述の動作は変わらない。 Note that in FIGS. 8A and 8B, a voltage indicated by a broken line may be generated. That is, as described with reference to FIGS. 3 and 6, the operation described above does not change even when a voltage indicated by a broken line is generated in FIGS. 8A and 8B.
 図9は、図7に示した配列電極基板2の層毎の分解斜視図である。配列電極基板2は、下層から順に、絶縁性基体21、電極層25、および誘電体膜24が、この順に積層構成されている。 FIG. 9 is an exploded perspective view of each layer of the array electrode substrate 2 shown in FIG. The array electrode substrate 2 includes an insulating base 21, an electrode layer 25, and a dielectric film 24, which are stacked in this order from the bottom layer.
 図10は、図9に示した電極層25の平面図である。電極層25において、複数の線状電極22が平行且つ一定間隔に配列形成されている。図5に示した各種電極以外に、線状電極ER、第4外部電極23Rおよび外部接続端子PRが形成されている。 FIG. 10 is a plan view of the electrode layer 25 shown in FIG. In the electrode layer 25, a plurality of linear electrodes 22 are arranged in parallel and at regular intervals. Besides various electrodes shown in FIG. 5, the linear electrode E R, the fourth external electrode 23R and the external connection terminals P R are formed.
 上記正方向モードにおける動作は図6(A)~図6(G)に示した動作と同じであり、x方向へ気流が発生する。図8(A)(B)、図10から明らかなように、正方向モードと逆方向モードとでは、線状電極の配置位置の幾何学的順序およびパルス電圧の時間順序が逆の関係であるので、逆方向モードについても同じ原理により、-x方向に気流が発生する。 The operation in the positive direction mode is the same as that shown in FIGS. 6A to 6G, and airflow is generated in the x direction. As is clear from FIGS. 8A and 8B and FIG. 10, in the forward mode and the reverse mode, the geometric order of the arrangement positions of the linear electrodes and the time order of the pulse voltage are opposite to each other. Therefore, the airflow is generated in the −x direction according to the same principle in the reverse mode.
 なお、第1の実施形態の場合と同様に、図8(A)においてパルス電圧V2は時間t1~t2で電圧VTであってもよい。同様に、図8(B)においてパルス電圧V1は時間t1~t2で電圧VTであってもよい。 As in the case of the first embodiment, the pulse voltage V2 in FIG. 8 (A) may be a voltage V T at time t1 ~ t2. Similarly, in FIG. 8B, the pulse voltage V1 may be the voltage V T at times t1 to t2.
《第3の実施形態》
 第3の実施形態では、周期パルス電源が発生する各パルス電圧の別の波形例について示す。図11(A)は第3の実施形態に係るパルス電圧VF,V1,V2,VRの波形図である。図11(B)は第3の実施形態に係るさらに別のパルス電圧VF,V1,V2,VRの波形図である。
<< Third Embodiment >>
In the third embodiment, another waveform example of each pulse voltage generated by the periodic pulse power supply is shown. FIG. 11A is a waveform diagram of pulse voltages V F , V 1 , V 2 , and V R according to the third embodiment. FIG. 11B is a waveform diagram of further pulse voltages V F , V 1 , V 2 and V R according to the third embodiment.
 図11(A)に示すように、壁電荷形成用パルス電圧VF,VRのパルス幅は1周期Tの1/4より短くてもよい。また、2相のパルス電圧V1,V2のパルス幅はデューティ比50%より小さくてもよい。このようなパルス電圧を用いれば電源回路の構成方法の自由度が増すという効果を奏する。 As shown in FIG. 11A, the pulse width of the wall charge forming pulse voltages V F and V R may be shorter than ¼ of one cycle T. The pulse widths of the two-phase pulse voltages V1 and V2 may be smaller than the duty ratio of 50%. If such a pulse voltage is used, there is an effect that the degree of freedom of the configuration method of the power supply circuit is increased.
 また、図11(B)に示すように、高調波成分の抑制された、鈍った、波形のパルス電圧であってもよい。このようなパルス電圧を用いれば、気流発生にあまり影響を与えることなく外部へのノイズ輻射を抑制できる。 Further, as shown in FIG. 11B, the pulse voltage may be a blunt waveform with suppressed harmonic components. When such a pulse voltage is used, noise radiation to the outside can be suppressed without significantly affecting the generation of airflow.
 なお、図11(A)、図11(B)において、破線で示す電圧が発生してもよい。すなわち図3および図6を用いて説明したことと同様に、図11(A)、図11(B)において、破線で示す電圧が発生しても上述の動作は変わらない。 In addition, the voltage shown with a broken line may generate | occur | produce in FIG. 11 (A) and FIG. 11 (B). That is, as described with reference to FIGS. 3 and 6, the operation described above does not change even when a voltage indicated by a broken line is generated in FIGS. 11A and 11B.
《第4の実施形態》
 図12は第4の実施形態に係る周期パルス電源が発生する各パルス電圧の波形図である。第1~第3の実施形態では、2相のパルス電圧は、周期T当たり2回の割合で発生されるパルスであった。これにより、壁電荷の生成頻度が高く保てるので、発生する気流の流量を確保しやすい。しかし、本発明はこれに限られるものではない。図12に示す例では、2相のパルス電圧V1,V2は、周期T当たり3回の割合で発生される。すなわち、図12に示す例では、時刻t1~t2で壁電荷が生成され、その壁電荷が時刻t2~t7で移送される。
<< Fourth Embodiment >>
FIG. 12 is a waveform diagram of each pulse voltage generated by the periodic pulse power supply according to the fourth embodiment. In the first to third embodiments, the two-phase pulse voltage is a pulse generated at a rate of twice per period T. Thereby, since the generation frequency of the wall charges can be kept high, it is easy to ensure the flow rate of the generated airflow. However, the present invention is not limited to this. In the example shown in FIG. 12, the two-phase pulse voltages V1 and V2 are generated at a rate of three times per period T. That is, in the example shown in FIG. 12, wall charges are generated from time t1 to t2, and the wall charges are transferred from time t2 to t7.
 このように、2相のパルス電圧は、周期T当たり3回(またはそれ以上)の割合で発生されるように構成しても、壁電荷形成用パルス電圧で発生された壁電荷の履歴が保存されたままシフトされていく。 As described above, even if the two-phase pulse voltage is generated at a rate of three times (or more) per period T, the history of wall charges generated by the wall charge forming pulse voltage is preserved. It is shifted while being done.
 なお、図12において、破線で示す電圧が発生してもよい。すなわち図3および図6を用いて説明したことと同様に、図12において、破線で示す電圧が発生しても上述の動作は変わらない。 In FIG. 12, a voltage indicated by a broken line may be generated. That is, as described with reference to FIGS. 3 and 6, the operation described above does not change even when a voltage indicated by a broken line is generated in FIG.
 なお、以上に示した各実施形態で示した気流発生装置を空気などの酸素を含む雰囲気中で作動させると、多くの場合、沿面放電に伴ってオゾンが生じる。そのため、本気流発生装置はオゾンを含む空気流を発生する装置としても使用することができる。オゾンは消臭や殺菌などに用いることができるので、オゾンを含む空気を拡散させる必要がある場合において、別にファンを設ける必要がないことにより低コスト化や小型化を図ることができる。 In addition, when the airflow generation device shown in each of the embodiments described above is operated in an atmosphere containing oxygen such as air, ozone is often generated along with creeping discharge. Therefore, this airflow generation device can also be used as a device that generates an airflow containing ozone. Since ozone can be used for deodorization, sterilization, and the like, when it is necessary to diffuse air containing ozone, it is possible to reduce costs and size by eliminating the need for a separate fan.
E1~E4…線状電極
EF,ER…線状電極
P1,P2,PF,PR…外部接続端子
V1,V2…2相パルス電圧
VF,VR…壁電荷形成用パルス電圧
1…周期パルス電源
2…配列電極基板
11…タイミング信号発生回路
12…定電圧直流電源回路
13…ゲートドライバ回路
21…絶縁性基体
22…線状電極
23F…第1外部電極
23A…第2外部電極
23B…第3外部電極
23R…第4外部電極
24…誘電体膜
25…電極層
26,27…荷電粒子
28,29…壁電荷
30A,30B…領域
40…周期パルス電源
51…絶縁性基体
52…線状電極
53…引き出し電極
54…誘電体膜
E 1 to E 4 ... Linear electrode
E F , E R ... Linear electrode
P1, P2, P F, P R ... external connection terminal
V1, V2 ... Two-phase pulse voltage
V F , V R ... wall charge forming pulse voltage 1 ... periodic pulse power supply 2 ... array electrode substrate 11 ... timing signal generation circuit 12 ... constant voltage DC power supply circuit 13 ... gate driver circuit 21 ... insulating substrate 22 ... linear electrode 23F ... first external electrode 23A ... second external electrode 23B ... third external electrode 23R ... fourth external electrode 24 ... dielectric film 25 ... electrode layers 26, 27 ... charged particles 28, 29 ... wall charges 30A, 30B ... region 40: Periodic pulse power supply 51 ... Insulating substrate 52 ... Linear electrode 53 ... Extraction electrode 54 ... Dielectric film

Claims (6)

  1.  絶縁性基体と、
     前記絶縁性基体の上に配列され、誘電体膜で覆われた複数の線状電極と、
     前記複数の線状電極のうちの1本の線状電極に接続された第1外部電極と、
     前記複数の線状電極のうち、前記第1外部電極に接続された線状電極から遠ざかる順で奇数番目の線状電極に接続された第2外部電極および偶数番目に接続された第3外部電極と、
     前記第1外部電極に所定周期当たり1回の壁電荷形成用パルス電圧を印加し、前記第2外部電極および前記第3外部電極に、前記所定周期当たり複数回の割合で2相のパルス電圧をそれぞれ印加する周期パルス電源と、
    を備えた気流発生装置。
    An insulating substrate;
    A plurality of linear electrodes arranged on the insulating substrate and covered with a dielectric film;
    A first external electrode connected to one of the plurality of linear electrodes;
    Among the plurality of linear electrodes, a second external electrode connected to the odd-numbered linear electrodes and a third external electrode connected to the even-numbered electrodes in order away from the linear electrode connected to the first external electrode. When,
    A wall charge forming pulse voltage is applied to the first external electrode once per predetermined period, and a two-phase pulse voltage is applied to the second external electrode and the third external electrode at a plurality of times per predetermined period. A periodic pulse power supply to be applied respectively;
    An airflow generation device comprising:
  2.  前記第1外部電極が接続された線状電極は、前記配列の第1端に配置された線状電極である、請求項1に記載の気流発生装置。 The airflow generation device according to claim 1, wherein the linear electrode to which the first external electrode is connected is a linear electrode disposed at a first end of the array.
  3.  前記複数の線状電極のうち、前記配列の第2端に配置された線状電極に接続された第4外部電極を備え、
     前記周期パルス電源は、前記第1外部電極または前記第4外部電極に前記壁電荷形成用パルス電圧を選択的に印加する手段と、前記2相のパルス電圧の位相を反転する手段を備えた、請求項2に記載の気流発生装置。
    Of the plurality of linear electrodes, comprising a fourth external electrode connected to the linear electrode disposed at the second end of the array,
    The periodic pulse power source includes means for selectively applying the wall charge forming pulse voltage to the first external electrode or the fourth external electrode, and means for inverting the phase of the two-phase pulse voltage. The airflow generation device according to claim 2.
  4.  前記2相のパルス電圧はデューティ比50%の矩形波であり、互いの立ち上がりと立下りの時刻が一致している、請求項1~3のいずれかに記載の気流発生装置。 The airflow generation device according to any one of claims 1 to 3, wherein the two-phase pulse voltage is a rectangular wave having a duty ratio of 50%, and the rise and fall times of each other coincide.
  5.  前記2相のパルス電圧は、前記所定周期当たり2回の割合で発生される、請求項1~4のいずれかに記載の気流発生装置。 The airflow generation device according to any one of claims 1 to 4, wherein the two-phase pulse voltage is generated at a rate of twice per predetermined period.
  6.  前記壁電荷形成用パルス電圧の波高値は、前記2相のパルス電圧の波高値より高い、請求項1~5のいずれかに記載の気流発生装置。 The airflow generation device according to any one of claims 1 to 5, wherein a peak value of the wall charge forming pulse voltage is higher than a peak value of the two-phase pulse voltage.
PCT/JP2014/065532 2013-07-19 2014-06-12 Airflow generator WO2015008559A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480040424.9A CN105409331B (en) 2013-07-19 2014-06-12 Air flow-producing device
JP2015527221A JP5874863B2 (en) 2013-07-19 2014-06-12 Airflow generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013150006 2013-07-19
JP2013-150006 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015008559A1 true WO2015008559A1 (en) 2015-01-22

Family

ID=52346032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065532 WO2015008559A1 (en) 2013-07-19 2014-06-12 Airflow generator

Country Status (3)

Country Link
JP (1) JP5874863B2 (en)
CN (1) CN105409331B (en)
WO (1) WO2015008559A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121423A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Ozone generator
WO2016199625A1 (en) * 2015-06-08 2016-12-15 株式会社村田製作所 Ozone generation device
CN107207250A (en) * 2015-02-13 2017-09-26 株式会社村田制作所 Ozone generator
CN108601196A (en) * 2018-04-29 2018-09-28 航天慧能(江苏)环境工程有限公司 The matrix plasma apparatus of fresh air system based on Internet of Things
WO2019172034A1 (en) * 2018-03-05 2019-09-12 株式会社村田製作所 Antimicrobial device and electric apparatus
WO2022185797A1 (en) * 2021-03-03 2022-09-09 株式会社Screenホールディングス Plasma generation device and substrate processing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418483A (en) * 2019-05-14 2019-11-05 深圳市普瑞艾尔科技有限公司 A kind of plasma generator, device, implementation method
JP7393171B2 (en) * 2019-09-30 2023-12-06 株式会社Subaru rectifier
CN112218418A (en) * 2020-11-30 2021-01-12 清华大学 Dielectric barrier surface discharge unit and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271850A (en) * 1997-03-26 1998-10-09 Oki Electric Ind Co Ltd Medium carrying device
JP2009284574A (en) * 2008-05-19 2009-12-03 Dainippon Printing Co Ltd Two-phase driven static actuator
JP2010148207A (en) * 2008-12-17 2010-07-01 Dainippon Printing Co Ltd Electrostatic actuator and manufacturing method therefor
JP2011026096A (en) * 2009-07-28 2011-02-10 Murata Mfg Co Ltd Gas conveyance apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0108738D0 (en) * 2001-04-06 2001-05-30 Bae Systems Plc Turbulent flow drag reduction
CN100433263C (en) * 2003-06-25 2008-11-12 积水化学工业株式会社 Device and method for surface treatment such as plasma treatment
US20120156091A1 (en) * 2009-03-16 2012-06-21 Drexel University Methods and devices for treating surfaces with surface plasma`
CN101920031B (en) * 2009-12-31 2013-04-17 周云正 Plasma air sterilization and purification device and air sterilization and purification method thereof
CN102307425A (en) * 2011-06-24 2012-01-04 北京大学 Combinable array plasma generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271850A (en) * 1997-03-26 1998-10-09 Oki Electric Ind Co Ltd Medium carrying device
JP2009284574A (en) * 2008-05-19 2009-12-03 Dainippon Printing Co Ltd Two-phase driven static actuator
JP2010148207A (en) * 2008-12-17 2010-07-01 Dainippon Printing Co Ltd Electrostatic actuator and manufacturing method therefor
JP2011026096A (en) * 2009-07-28 2011-02-10 Murata Mfg Co Ltd Gas conveyance apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121423A1 (en) * 2015-01-30 2016-08-04 株式会社村田製作所 Ozone generator
CN107108208A (en) * 2015-01-30 2017-08-29 株式会社村田制作所 Ozone generator
JPWO2016121423A1 (en) * 2015-01-30 2017-08-31 株式会社村田製作所 Ozone generator
CN107108208B (en) * 2015-01-30 2019-01-08 株式会社村田制作所 Ozone generator
CN107207250A (en) * 2015-02-13 2017-09-26 株式会社村田制作所 Ozone generator
WO2016199625A1 (en) * 2015-06-08 2016-12-15 株式会社村田製作所 Ozone generation device
JPWO2016199625A1 (en) * 2015-06-08 2018-01-18 株式会社村田製作所 Ozone generator
WO2019172034A1 (en) * 2018-03-05 2019-09-12 株式会社村田製作所 Antimicrobial device and electric apparatus
JPWO2019172034A1 (en) * 2018-03-05 2020-04-16 株式会社村田製作所 Antibacterial device and electrical equipment
US11464884B2 (en) 2018-03-05 2022-10-11 Murata Manufacturing Co., Ltd. Antibacterial device and electrical apparatus
CN108601196A (en) * 2018-04-29 2018-09-28 航天慧能(江苏)环境工程有限公司 The matrix plasma apparatus of fresh air system based on Internet of Things
WO2022185797A1 (en) * 2021-03-03 2022-09-09 株式会社Screenホールディングス Plasma generation device and substrate processing device

Also Published As

Publication number Publication date
JPWO2015008559A1 (en) 2017-03-02
JP5874863B2 (en) 2016-03-02
CN105409331A (en) 2016-03-16
CN105409331B (en) 2017-06-23

Similar Documents

Publication Publication Date Title
JP5874863B2 (en) Airflow generator
JP6277493B2 (en) Plasma generator
US7262564B2 (en) Electrostatic fluid accelerator for and a method of controlling fluid flow
US7532451B2 (en) Electrostatic fluid acclerator for and a method of controlling fluid flow
JP5440718B2 (en) Gas transfer device and vehicle
JP2011233447A (en) Air current generator and sensation presentation device
JP5205352B2 (en) Booster circuit
JP2011026096A (en) Gas conveyance apparatus
WO2018164005A1 (en) Air purifier
JP5505107B2 (en) Gas transfer device
JP5633373B2 (en) Gas transfer device
JP2002305070A (en) Corona discharge equipment
JP2009059590A (en) Static eliminator
JP5225959B2 (en) Ion generator
WO2004093118A1 (en) Plasma display panel aging method and aging device
JP2004335454A (en) Method and device for aging plasma display panel
JP5387023B2 (en) Particle transport equipment
JP6015287B2 (en) Ozone generator
JP5650768B2 (en) Ion generator
JP2006353065A (en) Inverter device
JP5326397B2 (en) Particle transport equipment
TW201347631A (en) A device for drilling a substrate and a method for drilling a substrate
Low et al. A compact low inductance pulse energy driver system for pulse power applications
JP2004273441A (en) Aging method of plasma display panel
JP2002047004A (en) Ozone generator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040424.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527221

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826796

Country of ref document: EP

Kind code of ref document: A1