WO2016121423A1 - Ozone generator - Google Patents

Ozone generator Download PDF

Info

Publication number
WO2016121423A1
WO2016121423A1 PCT/JP2016/050182 JP2016050182W WO2016121423A1 WO 2016121423 A1 WO2016121423 A1 WO 2016121423A1 JP 2016050182 W JP2016050182 W JP 2016050182W WO 2016121423 A1 WO2016121423 A1 WO 2016121423A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
ozone generator
dielectric
ozone
portions
Prior art date
Application number
PCT/JP2016/050182
Other languages
French (fr)
Japanese (ja)
Inventor
近川修
川田秋一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680005482.7A priority Critical patent/CN107108208B/en
Priority to DE112016000283.1T priority patent/DE112016000283T5/en
Priority to JP2016571884A priority patent/JP6350680B2/en
Publication of WO2016121423A1 publication Critical patent/WO2016121423A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/60Feed streams for electrical dischargers
    • C01B2201/64Oxygen

Definitions

  • the present invention relates to an ozone generator that generates creeping discharge along a dielectric surface and generates ozone from oxygen in a space facing the discharge surface.
  • FIG. 8 is a diagram illustrating a configuration of a conventional ozone generator 100 (see, for example, Patent Document 1).
  • the ozone generating apparatus 100 includes a flat plate portion 101, a first planar conductor 104, and a second planar conductor 105.
  • the flat plate portion 101 includes a base layer 102 and a surface layer 103 that are stacked on each other.
  • the base layer 102 is made of a ceramic dielectric material such as alumina.
  • the surface layer 103 is made of a dielectric material such as glass.
  • the first planar conductor 104 and the second planar conductor 105 are provided at the interface between the base layer 102 and the surface layer 103.
  • the first planar conductor 104 has a comb shape in plan view and includes a plurality of discharge portions 106 that are parallel to each other.
  • the second planar conductor 105 has a comb shape like the first planar conductor 104 and includes a plurality of discharge portions 107 parallel to each other.
  • the discharge unit 106 and the discharge unit 107 are alternately arranged with an interval.
  • a creeping discharge is generated along the surface (discharge surface) of the surface layer 103 made of a dielectric material by applying an alternating electric field between the discharge unit 106 and the discharge unit 107.
  • ozone is generated from oxygen in the space facing the discharge surface.
  • the electric field strength can be increased by narrowing the interval between the discharge portions, and the drive voltage can be lowered.
  • creeping discharge occurs in each adjacent pair of discharge parts, so the ozone generation efficiency can be improved by increasing the number of discharge parts that can be arranged per unit area by narrowing the width of the discharge part and the adjacent interval. Can be high.
  • an object of the present invention is to provide an ozone generator that can suppress power consumption and heat generation even if the width of the discharge part is narrowed.
  • the ozone generator of the present invention comprises a dielectric part having a discharge surface that causes creeping discharge, and a conductor provided in the dielectric part, and has a discharge end that is close to and faces the discharge surface, and the discharge A plurality of discharge portions arranged at intervals along the surface, wherein the discharge portion is La in the direction of the discharge surface facing the discharge surface, and is arranged along the discharge surface If Lb is its own dimension, La ⁇ Lb.
  • the dielectric part includes a plurality of dielectric layers stacked in the arrangement direction, and the plurality of discharge parts are each composed of a planar conductor provided between the dielectric layers.
  • This configuration can be manufactured by simply forming a planar conductor as a discharge portion on a dielectric sheet as a dielectric layer and stacking a plurality of dielectric sheets. Therefore, even a discharge portion whose dimension in the discharge surface direction is larger than that in the arrangement direction can be formed using a method such as screen printing.
  • a method with low processing accuracy such as screen printing
  • the width and interval of the discharge parts cannot be reduced so much, and the short circuit between the discharge parts due to the processing accuracy, Problems such as breakage and damage due to arc discharge at places where the interval between the discharge portions becomes narrow may occur.
  • the width and interval of the discharge part can be set with high accuracy according to the thickness of the dielectric sheet and the planar conductor, and the width and interval of the discharge part are extremely narrow and variation is reduced. Can do. Therefore, the problems that have occurred in the above-described conventional configuration hardly occur.
  • the discharge surface is preferably composed of end surfaces of the plurality of dielectric layers.
  • the distance between the discharge surface and the discharge end is preferably narrower than the distance between the plurality of discharge portions.
  • the dielectric portion has a plurality of outer surfaces including one discharge surface, the discharge portion has a plurality of end portions including one discharge end, and the discharge end and the discharge surface face each other.
  • the interval may be narrower than the interval between the other end and the other outer surface.
  • the dielectric portion has a plurality of outer surfaces including two or more discharge surfaces
  • the discharge portion has a plurality of end portions including two or more discharge ends, each discharge end, each discharge surface, May be configured such that the intervals at which they face each other are equal.
  • the total area of the discharge surface can be increased using two or more outer surfaces of the dielectric portion as the discharge surface, and the amount of ozone generated can be increased.
  • the dielectric portion may have a peripheral surface corresponding to the discharge surface, and the discharge end may extend while maintaining a constant distance from the peripheral surface of the dielectric portion.
  • the total area of the discharge surface can be increased using the entire peripheral surface of the dielectric portion as the discharge surface, and the amount of ozone generated can also be increased.
  • the ozone generating device includes a driving voltage source that outputs a driving voltage of N (N ⁇ 3) phase having a repetitive pattern and a circulating phase difference, and the plurality of discharge units are arranged in the order n. It is preferable that the driving voltage of the (1 ⁇ n ⁇ N) phase is input from the driving voltage source.
  • the electric field intensity distribution near the discharge surface changes so as to circulate along the arrangement direction.
  • the gas in the space moves near the discharge surface along the arrangement direction under the influence of the electric field strength. For this reason, the supply of oxygen to the discharge surface and the detachment of ozone from the discharge surface are promoted, and the amount of ozone generated can be increased. Further, the generation of gas flow makes it difficult for dust and the like to be adsorbed on the discharge surface, and the reliability of the ozone generator is improved.
  • the drive voltage is preferably a rectangular wave signal or a pulse wave signal. As a result, the voltage at which discharge is started can be reduced compared to when the alternating signal is a sine wave signal.
  • the ozone generating apparatus of the present invention even when the discharge part is thinned in the arrangement direction, the dimension of the discharge part can be sufficiently secured in the discharge surface direction, and an increase in the conductor resistance can be suppressed. . Therefore, an increase in power consumption and heat generation in the ozone generator can be suppressed, and even if a large number of discharge parts are provided to increase the ozone generation efficiency, the ozone decomposition reaction can be prevented from being accelerated by heat.
  • FIG. 1 is a perspective view of an ozone generator according to a first embodiment of the present invention. It is the left view, top view, right view, and bottom view of the ozone generator which concerns on the 1st Embodiment of this invention. It is a figure explaining the manufacturing method of the ozone generator which concerns on the 1st Embodiment of this invention. It is the left view and front view of the ozone generator which concern on the 2nd Embodiment of this invention. It is the left view and top view of an ozone generator which concern on the 3rd Embodiment of this invention. It is the left view and top view of an ozone generator which concern on the 4th Embodiment of this invention. It is the wiring diagram of the ozone generator which concerns on the 5th Embodiment of this invention, and the time waveform figure of a drive signal. It is a perspective view of the conventional ozone generator.
  • FIG. 1 is a perspective view of an ozone generator 10 according to the first embodiment of the present invention.
  • the ozone generator 10 includes a dielectric part 11, internal planar conductors 12 and 13, a terminal electrode 14, a terminal electrode 15, and a drive voltage source 16.
  • the dielectric portion 11 has a rectangular parallelepiped shape including a top surface 11A, a bottom surface 11B, a left side surface 11C, a right side surface 11D, a front surface 11E, and a back surface 11F.
  • a plurality of inner planar conductors 12 and 13 are provided, and are arranged alternately in the dielectric portion 11 from the left side surface 11C side to the right side surface 11D side.
  • the inner planar conductor 12 has a shape extending from the front surface 11E side to the back surface 11F side near the top surface 11A and extending from the top surface 11A side to the bottom surface 11B side close to the back surface 11F inside the dielectric portion 11.
  • the inner planar conductor 13 has a shape extending in the vicinity of the top surface 11A from the back surface 11F side to the front surface 11E side and close to the front surface 11E from the top surface 11A side to the bottom surface 11B side inside the dielectric portion 11. .
  • the terminal electrodes 14 and 15 are provided on the bottom surface 11B and are formed of a strip-shaped planar conductor extending from the left side surface 11C side to the right side surface 11D side.
  • the terminal electrode 14 is provided so as to be close to the side of the bottom surface 11 ⁇ / b> B on the front surface 11 ⁇ / b> E side, and is connected to the plurality of internal planar conductors 13.
  • the terminal electrode 15 is provided so as to be close to the side of the bottom surface 11B on the back surface 11F side, and is connected to the plurality of internal planar conductors 12.
  • the driving voltage source 16 applies a driving voltage between the terminal electrode 14 and the terminal electrode 15 to generate an alternating electric field between the inner planar conductor 12 and the inner planar conductor 13.
  • the inner planar conductor 12 and the inner planar conductor 13 are both close to the top surface 11A of the dielectric part 11; Creeping discharge occurs along the direction connecting the left side surface 11C and the right side surface 11D. Owing to the creeping discharge, ozone is generated from oxygen contained in the gas in the space facing the top surface 11A on the top surface 11A of the dielectric portion 11.
  • the top surface 11A is a discharge surface in the present invention.
  • the direction from the left side surface 11C of the dielectric portion 11 toward the right side surface 11D is referred to as an arrangement direction.
  • a direction from the front surface 11E to the back surface 11F is referred to as a stretching direction.
  • the direction from the bottom surface 11B toward the top surface 11A is referred to as a discharge surface direction.
  • the length of the dielectric portions 11 in the arrangement direction is, for example, 3.2 mm
  • the length in the extending direction is, for example, 2.5 mm
  • the length in the discharge surface direction is, for example, 2.5 mm.
  • FIG. 2 (A) is a left side view of the ozone generator 10.
  • FIG. 2B is a plan view of the ozone generator 10.
  • FIG. 2C is a right side view of the ozone generator 10.
  • FIG. 2D is a front view of the ozone generator 10.
  • the dielectric part 11 includes a plurality of dielectric layers 21.
  • Each of the plurality of dielectric layers 21 is a thin flat film having a main surface that faces the left side surface 11C and the right side surface 11D, and is laminated from the left side surface 11C to the right side surface 11D of the dielectric portion 11, The dielectric part 11 is configured.
  • the thickness of the dielectric layer 21 is, for example, 20 ⁇ m.
  • the thickness of the dielectric layer 21 is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the inner planar conductors 12 and 13 are alternately arranged on the main surface of each dielectric layer 21, that is, one laminated surface between the dielectric layers 21, and adjacent laminated surfaces inside the dielectric portion 11. ing.
  • the inner planar conductors 12 and 13 include discharge portions 12A and 13A and lead portions 12B and 13B.
  • the discharge parts 12A and 13A are rectangular parallelepiped plate-like pattern portions extending in the extending direction.
  • the lead portions 12B and 13B are band-shaped pattern portions extending in the discharge surface direction.
  • the edges on the top surface 11A side of the discharge parts 12A and 13A are separated from the top surface 11A by a certain dimension Lc and face the top surface 11A.
  • the dimension Lc is, for example, 10 ⁇ m.
  • the edges on the front surface 11E side and the back surface 11F side of the discharge parts 12A and 13A are opposed to the front surface 11E or the back surface 11F by a predetermined dimension Le.
  • the dimension Lc is smaller than the dimension Le. That is, in the discharge portions 12A and 13A, the edge on the top surface 11A side is closer to the outer surface of the dielectric portion 11 than the edge on the front surface 11E side and the back surface 11F side.
  • the electric field generated between the discharge parts 12A and 13A tends to leak to the outer surface of the dielectric part 11 that is the closest to the discharge parts 12A and 13A. For this reason, in this dielectric part 11, creeping discharge arises not on the front surface 11E or the back surface 11F but on the top surface 11A. Accordingly, the top surface 11A of the dielectric portion 11 functions as a discharge surface that generates ozone, and the edges of the discharge portions 12A and 13A on the top surface 11A side function as discharge ends 12C and 13C. In this embodiment, there is no discharge other than the top surface 11A.
  • the arrangement interval between the discharge part 12A and the discharge part 13A is the dimension Ld.
  • the dimension Ld is, for example, 20 ⁇ m. This dimension Ld is determined by the thickness of the dielectric layer 21.
  • the first planar conductor 104 and the second planar conductor 105 are formed by fine line printing, a portion where the distance between the first planar conductor and the second planar conductor is narrow is short. It was difficult to form the dimension Ld to be 50 ⁇ m or less.
  • the ozone generator 10 according to the present embodiment is configured as described above, the arrangement interval between the discharge unit 12A and the discharge unit 13A can be sufficiently narrowed compared to the conventional configuration.
  • the discharge start voltage of the ozone generator 10 can be lowered. Further, the electric field strength of the alternating electric field generated between the discharge part 12A and the discharge part 13A can be increased as compared with the conventional configuration. Therefore, in the ozone generating apparatus 10 according to the present embodiment, creeping discharge can be stably generated on the top surface 11A of the dielectric portion 11 even if the driving voltage of the driving voltage source 16 is lower than that of the conventional one.
  • the discharge parts 12A and 13A have a dimension Lb in the arrangement direction.
  • the dimension Lb is, for example, 5 ⁇ m.
  • the dimension Lb is almost equal to the thickness of the inner planar conductors 12 and 13, and the discharge portions 12A and 13A can sufficiently narrow the width in the arrangement direction even when compared with the conventional configuration.
  • the ozone generator 10 according to the present embodiment is opposed to the discharge surface (top surface 11A) of the dielectric part 11.
  • the number of discharge parts 12A and 13A per unit area that can be arranged can be greatly increased.
  • the ozone generation efficiency per unit area on the discharge surface (top surface 11A) can be increased.
  • the discharge parts 12A and 13A have a dimension La in the discharge surface direction.
  • the dimension La is, for example, 50 ⁇ m.
  • the dimension La is equal to or larger than the dimension Lb in the arrangement direction of the discharge parts 12A and 13A. That is, La ⁇ Lb. Therefore, in the discharge parts 12A and 13A, even if the dimension Lb in the arrangement direction is extremely small, the dimension La in the discharge surface direction can be secured more than that. For this reason, the conductor resistances of the discharge portions 12A and 13A do not increase remarkably.
  • the ozone generation device 10 can be used even if the dimension Lb in the arrangement direction of the discharge portions 12A and 13A is significantly reduced in order to increase the ozone generation efficiency per unit area in the discharge portion. Power consumption and heat generation can be suppressed. By this, progress of the ozonolysis reaction in a discharge surface (top surface 11A) can be suppressed, and it can prevent that ozone generation efficiency falls by the influence of a heat
  • the dimension Ld of the arrangement interval between the discharge part 12A and the discharge part 13A is larger than the dimension Lc between the discharge surface (top surface 11A) and the discharge parts 12A, 13A. That is, since the discharge portions 12A and 13A are closer to the top surface 11A than the distance between the discharge portions 12A and 13A, the electric field generated between the discharge portions 12A and 13A is likely to leak to the top surface 11A. It becomes a state. Also by this, in the ozone generating apparatus 10 according to the present embodiment, the driving voltage (discharge start voltage) necessary for causing creeping discharge on the top surface 11A of the dielectric part 11 can be lowered, Creeping discharge can be stably generated on the top surface 11A of the dielectric portion 11.
  • the discharge portions 12A and 13A and the dielectric layer 21 can set the thicknesses (dimensions in the arrangement direction) with high accuracy. Therefore, the dimension Lb in the arrangement direction of the discharge parts 12A and 13A and the dimension Ld of the arrangement interval of the discharge parts 12A and 13A can be made substantially uniform in the discharge surface direction. For this reason, in the ozone production
  • FIG. 3 is a flowchart illustrating an example of the manufacturing process of the ozone generator 10.
  • a dielectric sheet forming step is performed (S1).
  • a glass ceramic slurry is obtained by mixing glass powder, filler powder, crystallinity adjusting agent, solvent, dispersant, organic binder, plasticizer, and the like.
  • the glass ceramic green sheet used as the dielectric material layer 21 later is produced from a glass ceramic slurry using a doctor blade etc.
  • the glass ceramic green sheet is desirably formed larger than the size of the dielectric layer 21 of the single ozone generator 10.
  • a planar conductor forming step is performed (S2).
  • a metal paste such as silver, copper, and tungsten, a solvent, an organic binder, and the like are mixed and dispersed using a roll mill or the like to obtain a conductor paste.
  • the pattern of the conductor paste which becomes the internal plane conductor 12 or the internal plane conductor 13 later is screen-printed on the glass ceramic green sheet.
  • the pattern of the conductor paste that becomes the inner planar conductors 12 and 13 of the single ozone generator 10 is a large glass. It is desirable to print on a ceramic green sheet.
  • a lamination process is performed (S3).
  • a lamination process for example, a plurality of glass ceramic green sheets on which planar conductors are formed are stacked and a pressure is applied to produce a laminate in which unfired planar conductor patterns and glass ceramic green sheets are laminated over a plurality of layers.
  • a firing step is performed (S4).
  • the unfired laminate is fired in an oxidizing atmosphere so as to have a predetermined temperature profile.
  • the laminated body (ozone generator 10) of the dielectric part 11 and the internal plane conductors 12 and 13 is produced.
  • the ozone generator 10 of this embodiment can be manufactured by the above manufacturing method.
  • individual pieces to be a plurality of ozone generators 10 are cut from a large-sized ceramic green sheet laminate in any step before or after the firing step. It is desirable to perform a brewing process.
  • the discharge portions 12A and 13A having special cross-sectional shapes having dimensions larger in the discharge surface direction than in the arrangement direction are obtained simply by stacking the sheets of the dielectric layer 21 on which the planar conductor is formed. Even the ozone generator 10 can be easily manufactured.
  • the thickness of the planar conductor formed on the dielectric sheet is extremely thin compared to the dimension in the planar direction even in a method with low processing accuracy such as a screen printing method.
  • the width in the arrangement direction of 12A and 13A can be made extremely narrow.
  • the arrangement interval between the discharge portions 12A and 13A can be extremely narrowed. Therefore, in the ozone generation apparatus 10 of the present embodiment, the ozone generation efficiency can be remarkably increased even when a method with low processing accuracy such as a screen printing method is used.
  • the thickness of the dielectric sheet and the planar conductor becomes uniform with extremely high accuracy, so the width of the discharge portions 12A and 13A in the arrangement direction of the discharge portions 12A and 13A and the discharge portions 12A, Variation in the arrangement interval of 13A can be remarkably suppressed. For this reason, in the ozone generation apparatus 10 of this embodiment, the discharge part 12A, 13A is disconnected, a short circuit occurs between the discharge parts 12A, 13A, or the arc discharge between the discharge parts 12A, 13A. , 13A can be prevented from being damaged.
  • FIG. 4 (A) is a left side view of the ozone generator 30.
  • FIG. 4B is a front view of the ozone generator 30.
  • the ozone generator 30 unlike the first embodiment described above, not only the top surface of the dielectric part but also the bottom surface functions as a discharge surface.
  • the ozone generator 30 according to the second embodiment of the present invention is different from the first embodiment in that the inner plane conductor 32 is replaced with the inner plane conductors 12 and 13 and the terminal electrodes 14 and 15. , 33 and terminal electrodes 34, 35. Since other configurations are the same, the same reference numerals as those in the first embodiment are given, and the description of the configurations is omitted.
  • a plurality of internal planar conductors 32 and 33 are provided, and are provided alternately in the dielectric portion 11 from the left side surface 11C side to the right side surface 11D side.
  • the inner plane conductors 32 and 33 include rectangular parallelepiped plate-like discharge portions 32A and 33A and line-shaped lead portions 32B and 33B extending from the discharge portions 32A and 33A to the front side or the back side.
  • the terminal electrode 34 is provided so as to cover the front surface 11 ⁇ / b> E, and is connected to the plurality of internal planar conductors 32.
  • the terminal electrode 35 is provided so as to cover the back surface 11 ⁇ / b> F, and is connected to the plurality of internal planar conductors 33.
  • the inner planar conductors 32 and 33 are opposed to the top surface 11A and the bottom surface 11B of the dielectric part 11 at the same interval. Therefore, the edge on the top surface 11A side and the edge on the bottom surface 11B side of the inner planar conductors 32 and 33 both function as discharge ends 32C and 33C, and both the top surface 11A and the bottom surface 11B of the dielectric part 11 It will function as a discharge surface.
  • FIG. 5 (A) is a left side view of the ozone generator 40.
  • FIG. 5B is a plan view of the ozone generator 40.
  • the top surface, bottom surface, front surface, and back surface of the dielectric portion are configured as discharge surfaces.
  • the ozone generator 40 according to the third embodiment of the present invention is different from the first embodiment in that the inner planar conductor 42 is replaced with the inner planar conductors 12 and 13 and the terminal electrodes 14 and 15. , 43 and terminal electrodes 44, 45. Since other configurations are the same, the same reference numerals as those in the first embodiment are given, and the description of the configurations is omitted.
  • a plurality of inner planar conductors 42 and 43 are provided, and are arranged alternately in the dielectric portion 11 from the left side surface 11C side to the right side surface 11D side.
  • the inner planar conductors 42 and 43 include rectangular annular discharge portions 42A and 43A, and line-shaped lead portions 42B and 43B extending to the inner openings of the discharge portions 42A and 43A.
  • interlayer connection conductors 42D and 43D are provided in the inner openings of the discharge portions 42A and 43A so as to be connected to the lead portions 42B and 43B.
  • the terminal electrode 44 is provided so as to cover the left side surface 11C, and is connected to the plurality of internal planar conductors 42 via the interlayer connection conductor 42D.
  • the terminal electrode 45 is provided so as to cover the right side surface 11D, and is connected to the plurality of internal planar conductors 43 through the interlayer connection conductor 43D.
  • the inner planar conductors 42 and 43 are opposed to the top surface 11A, the bottom surface 11B, the front surface 11E, and the back surface 11F of the dielectric part 11 at the same interval.
  • the outer peripheral edge of the inner planar conductors 42, 43 that is, the edge on the top surface 11A side, the edge on the bottom surface 11B side, the edge on the front surface 11E side, and the edge on the back surface 11F side are all discharged.
  • the top surface 11A, the bottom surface 11B, the front surface 11E, and the back surface 11F of the dielectric portion 11 function as discharge surfaces.
  • FIG. 6A is a left side view of the ozone generator 50.
  • FIG. 6B is a plan view of the ozone generator 50.
  • the dielectric portion has a cylindrical shape having a peripheral surface, and the entire peripheral surface is configured as a discharge surface.
  • the ozone generation device 50 according to the fourth embodiment of the present invention is different from the first embodiment in that it replaces the dielectric portion 11, the inner planar conductors 12 and 13, and the terminal electrodes 14 and 15.
  • the dielectric portion 51, the inner planar conductors 52 and 53, and the terminal electrodes 54 and 55 are provided. Since other configurations are the same, the same reference numerals as those in the first embodiment are given, and the description of the configurations is omitted.
  • the dielectric portion 51 has a columnar shape with a column axis extending along the arrangement direction, and has a peripheral surface 51A, a left side surface 11C, and a right side surface 11D (not shown) as outer surfaces.
  • a plurality of internal planar conductors 52 and 53 are provided, and are provided alternately inside the dielectric portion 51 from the left side surface 11C side to the right side surface 11D side.
  • the inner planar conductors 52 and 53 include annular discharge portions 52A and 53A, and line-shaped lead portions 52B and 53B extending to the inner openings of the discharge portions 52A and 53A.
  • interlayer connection conductors 52D and 53D are provided in the inner openings of the discharge parts 52A and 53A so as to be connected to the lead parts 52B and 53B.
  • the terminal electrode 54 is provided so as to cover the left side surface 11C, and is connected to the plurality of internal planar conductors 52 via the interlayer connection conductor 52D.
  • the terminal electrode 55 is provided so as to cover the right side surface 11D, and is connected to the plurality of internal planar conductors 53 via the interlayer connection conductor 53D.
  • the inner planar conductors 52 and 53 face the entire surface of the peripheral surface 51A of the dielectric part 51 at the same interval. Therefore, the outer peripheral edges of the inner planar conductors 52 and 53 function as the discharge ends 52C and 53C, and the entire peripheral surface 51A of the dielectric portion 51 functions as the discharge surface.
  • the ozone generating apparatus 50 can also increase the discharge surface, and therefore, the ozone generation amount per unit time can also be increased.
  • FIG. 7A is an electrical connection diagram of the ozone generator 60.
  • the ozone generator 60 has the same general configuration as that of the above-described embodiment, and includes a dielectric unit 61, a plurality of discharge units 62, and a drive voltage source 63.
  • the plurality of discharge parts 62 are grouped into four groups, and the discharge parts 62 of each group are arranged in order.
  • the drive voltage source 63 is configured to output the same four-phase drive voltages V 1 to V 4 as the number of sets.
  • the discharge units 62 of each set are configured to receive drive voltages V 1 to V 4 having phase numbers corresponding to the set numbers.
  • FIG. 7B is a time waveform diagram of the drive voltages V 1 to V 4 .
  • the drive voltages V 1 to V 4 have the same repeating pattern and a phase difference of 90 ° in the order of the phase numbers. Therefore, the drive voltages V 1 to V 4 have a relationship in which the phase difference circulates in the order of the phase numbers.
  • the distribution of the electric field intensity near the discharge surface changes so as to circulate along the arrangement direction of the discharge portions 62.
  • the gas in the space near the discharge surface moves along the arrangement direction under the influence of the electric field strength.
  • the supply of oxygen to the discharge surface and the detachment of ozone from the discharge surface are promoted, and the amount of ozone generated can be increased.
  • the gas flow is generated, dust and the like are hardly adsorbed on the discharge surface, and the reliability of the ozone generator 60 is improved.
  • the drive voltage V 1 ⁇ V 4 is also possible to use a sine wave signal or a rectangular wave signal to other It is. If a pulse wave signal or a rectangular wave signal is used, the voltage at which discharge is started can be lowered compared with the case where a sine wave signal is used, which is more preferable.
  • the number of phases of the driving voltage is four is shown, but any integer can be adopted as long as the number of phases of the driving voltage is three or more.
  • the pattern waveform of each drive voltage may not be the same. For example, driving voltages having different amplitudes and repetition cycles can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Provided is an ozone generator which is able to consume less power and generate less heat despite the discharge parts thereof being thin in width. The ozone generator (10) comprises: a dielectric part (11) having a top surface (11A) that generates surface discharge; and a plurality of discharge parts (12A, 13A) which comprise conductors disposed in the dielectric part (11), have discharge ends (12C,13C) in proximity to and facing the top surface (11A), and are disposed side by side along the top surface (11A) with spaces therebetween, wherein the discharge parts (12A, 13A) satisfy La≥Lb where La is the size thereof in the discharge plane direction and Lb is the size thereof in the array direction.

Description

オゾン生成装置Ozone generator
 本発明は、誘電体表面に沿って沿面放電を生じさせ、放電面に対向する空間中の酸素からオゾンを生成するオゾン生成装置に関するものである。 The present invention relates to an ozone generator that generates creeping discharge along a dielectric surface and generates ozone from oxygen in a space facing the discharge surface.
 図8は、従来のオゾン生成装置100(例えば特許文献1参照。)の構成を説明する図である。オゾン生成装置100は、平板部101と、第1の平面導体104と、第2の平面導体105と、を備える。平板部101は、互いに積層して設けられた基層102と表層103とを有する。基層102は、アルミナなどのセラミック系の誘電体材料で構成される。表層103は、ガラスなどの誘電体材料で構成される。第1の平面導体104および第2の平面導体105は、基層102と表層103との界面に設けられている。また、第1の平面導体104は、平面視して櫛形であり、互いに平行する複数の放電部106を備える。第2の平面導体105は、第1の平面導体104と同様に櫛形であり、互いに平行する複数の放電部107を備える。放電部106と放電部107とは、間隔を開けて交互に並べられている。 FIG. 8 is a diagram illustrating a configuration of a conventional ozone generator 100 (see, for example, Patent Document 1). The ozone generating apparatus 100 includes a flat plate portion 101, a first planar conductor 104, and a second planar conductor 105. The flat plate portion 101 includes a base layer 102 and a surface layer 103 that are stacked on each other. The base layer 102 is made of a ceramic dielectric material such as alumina. The surface layer 103 is made of a dielectric material such as glass. The first planar conductor 104 and the second planar conductor 105 are provided at the interface between the base layer 102 and the surface layer 103. The first planar conductor 104 has a comb shape in plan view and includes a plurality of discharge portions 106 that are parallel to each other. The second planar conductor 105 has a comb shape like the first planar conductor 104 and includes a plurality of discharge portions 107 parallel to each other. The discharge unit 106 and the discharge unit 107 are alternately arranged with an interval.
 このオゾン生成装置100では、放電部106と放電部107との間に交番電界が印加されることで、誘電体からなる表層103の表面(放電面)に沿って沿面放電が生じる。この沿面放電により、放電面に対向する空間中の酸素からオゾンが生成される。 In the ozone generating apparatus 100, a creeping discharge is generated along the surface (discharge surface) of the surface layer 103 made of a dielectric material by applying an alternating electric field between the discharge unit 106 and the discharge unit 107. By this creeping discharge, ozone is generated from oxygen in the space facing the discharge surface.
特開2001-220113号公報JP 2001-220113 A
 上記のように構成されたオゾン生成装置では、放電部の間隔を狭くすることで電界強度を高めることができ、駆動電圧の低電圧化が可能になる。また、放電部の隣接する対毎に沿面放電が生じるので、放電部の幅と隣接間隔とを狭くして単位面積当たりに配置することができる放電部の本数を増やすことで、オゾン生成効率を高くすることができる。 In the ozone generator configured as described above, the electric field strength can be increased by narrowing the interval between the discharge portions, and the drive voltage can be lowered. In addition, creeping discharge occurs in each adjacent pair of discharge parts, so the ozone generation efficiency can be improved by increasing the number of discharge parts that can be arranged per unit area by narrowing the width of the discharge part and the adjacent interval. Can be high.
 しかしながら、放電部の幅を細くすると放電部における導体抵抗が増加し、オゾン生成装置の消費電力と発熱とが大きくなってしまう。すると、発熱によってオゾンの分解反応が促進され、多数の放電部を設けることによるオゾン生成効率の改善効果が抑制されてしまうという問題があった。 However, if the width of the discharge part is narrowed, the conductor resistance in the discharge part increases, and the power consumption and heat generation of the ozone generator increase. Then, the decomposition reaction of ozone was accelerated by heat generation, and there was a problem that the effect of improving the ozone generation efficiency by providing a large number of discharge parts was suppressed.
 そこで、本発明は、放電部の幅を細くしても消費電力と発熱を抑制できる、オゾン生成装置の提供を目的とする。 Therefore, an object of the present invention is to provide an ozone generator that can suppress power consumption and heat generation even if the width of the discharge part is narrowed.
 本発明のオゾン生成装置は、沿面放電を生じさせる放電面を有する誘電体部と、前記誘電体部に設けた導体からなり、前記放電面に近接して対向する放電端を有し、前記放電面に沿って間隔をあけて並ぶ複数の放電部と、を備え、前記放電部は、前記放電面と対向する放電面方向での自らの寸法をLaとし、前記放電面に沿って並ぶ配列方向での自らの寸法をLbとすると、La≧Lbである。 The ozone generator of the present invention comprises a dielectric part having a discharge surface that causes creeping discharge, and a conductor provided in the dielectric part, and has a discharge end that is close to and faces the discharge surface, and the discharge A plurality of discharge portions arranged at intervals along the surface, wherein the discharge portion is La in the direction of the discharge surface facing the discharge surface, and is arranged along the discharge surface If Lb is its own dimension, La ≧ Lb.
 この構成では、放電部の配列方向での寸法を細くしても、それ以上の寸法が放電面方向に確保されるので、放電部における導体抵抗の増加が抑制される。このことにより、オゾン生成装置における消費電力と発熱を抑制することができる。 In this configuration, even if the dimensions in the arrangement direction of the discharge parts are reduced, a larger dimension is ensured in the discharge surface direction, so that an increase in conductor resistance in the discharge part is suppressed. This can suppress power consumption and heat generation in the ozone generator.
 前記誘電体部は、前記配列方向に積層した複数の誘電体層を備え、前記複数の放電部は、それぞれ誘電体層間に設けた平面導体からなることが好ましい。 Preferably, the dielectric part includes a plurality of dielectric layers stacked in the arrangement direction, and the plurality of discharge parts are each composed of a planar conductor provided between the dielectric layers.
 この構成は、誘電体層となる誘電体シートに放電部となる平面導体を形成し、複数の誘電体シートを積み重ねるだけで製造することができる。したがって、放電面方向での寸法が配列方向よりも大きい放電部であっても、スクリーン印刷のような工法を利用して形成することができる。従来の構成では、スクリーン印刷のような加工精度が低い工法を利用すると、放電部の幅や間隔をあまり狭くすることができず、また加工精度の影響で放電部間のショートや、放電部の断線、放電部間の間隔が狭くなる箇所でのアーク放電による損傷等の問題が生じることがあった。しかしながら、上記本願構成では、放電部の幅や間隔を、誘電体シートや平面導体の厚みに応じて高精度に設定することができ、放電部の幅や間隔を極めて狭く、ばらつきも少なくすることができる。したがって、上記の従来構成で生じていた問題が殆ど発生しない。 This configuration can be manufactured by simply forming a planar conductor as a discharge portion on a dielectric sheet as a dielectric layer and stacking a plurality of dielectric sheets. Therefore, even a discharge portion whose dimension in the discharge surface direction is larger than that in the arrangement direction can be formed using a method such as screen printing. In the conventional configuration, if a method with low processing accuracy such as screen printing is used, the width and interval of the discharge parts cannot be reduced so much, and the short circuit between the discharge parts due to the processing accuracy, Problems such as breakage and damage due to arc discharge at places where the interval between the discharge portions becomes narrow may occur. However, in the configuration of the present application, the width and interval of the discharge part can be set with high accuracy according to the thickness of the dielectric sheet and the planar conductor, and the width and interval of the discharge part are extremely narrow and variation is reduced. Can do. Therefore, the problems that have occurred in the above-described conventional configuration hardly occur.
 前記放電面は前記複数の誘電体層の端面で構成されていることが好ましい。これにより、放電端を覆うように誘電体層を設けて放電面を構成する従来構成よりも、オゾン生成装置の製造が容易になる。 The discharge surface is preferably composed of end surfaces of the plurality of dielectric layers. Thereby, manufacture of an ozone generator becomes easier than the conventional structure which provides a dielectric layer so that a discharge end may be covered, and comprises a discharge surface.
 前記放電面と前記放電端との間隔は、前記複数の放電部が隣接する間隔よりも狭いことが好ましい。これにより、低い駆動電圧であっても沿面放電を安定して生じさせることができる。 The distance between the discharge surface and the discharge end is preferably narrower than the distance between the plurality of discharge portions. Thereby, even if it is a low drive voltage, creeping discharge can be produced stably.
 前記誘電体部は、1つの前記放電面を含む複数の外面を有し、前記放電部は、1つの前記放電端を含む複数の端部を有し、前記放電端と前記放電面とが対向する間隔が、他の端部と他の外面とが対向する間隔よりも狭い構成であってもよい。 The dielectric portion has a plurality of outer surfaces including one discharge surface, the discharge portion has a plurality of end portions including one discharge end, and the discharge end and the discharge surface face each other. The interval may be narrower than the interval between the other end and the other outer surface.
 また、前記誘電体部は、2以上の放電面を含む複数の外面を有し、前記放電部は、2以上の放電端を含む複数の端部を有し、各放電端と各放電面とが対向する間隔がいずれも等しい構成であってもよい。この場合には、誘電体部の2以上の外面を放電面として放電面の総面積を増やすことができ、オゾン生成量を増やすことができる。 In addition, the dielectric portion has a plurality of outer surfaces including two or more discharge surfaces, the discharge portion has a plurality of end portions including two or more discharge ends, each discharge end, each discharge surface, May be configured such that the intervals at which they face each other are equal. In this case, the total area of the discharge surface can be increased using two or more outer surfaces of the dielectric portion as the discharge surface, and the amount of ozone generated can be increased.
 また、前記誘電体部は、前記放電面にあたる周面を有し、前記放電端は、前記誘電体部の周面と一定の間を保ちながら延びる構成であってもよい。この場合には、誘電体部の周面全面を放電面として放電面の総面積を増やすことができ、やはりオゾン生成量を増やすことができる。 Further, the dielectric portion may have a peripheral surface corresponding to the discharge surface, and the discharge end may extend while maintaining a constant distance from the peripheral surface of the dielectric portion. In this case, the total area of the discharge surface can be increased using the entire peripheral surface of the dielectric portion as the discharge surface, and the amount of ozone generated can also be increased.
 前記オゾン生成装置は、繰り返しのパターンと循環する位相差とを有するN(N≧3)相の駆動電圧を出力する駆動電圧源を備え、前記複数の放電部は、それらの並び順に従い第n(1≦n≦N)相目の駆動電圧が前記駆動電圧源から入力されることが好ましい。この構成では、放電面近傍の電界強度の分布が配列方向に沿って循環するように変化する。これにより、放電面近傍で空間中の気体が電界強度の影響を受けて配列方向に沿って移動する。このため、放電面への酸素の供給と放電面からのオゾンの離脱が促進され、オゾン生成量を増やすことができる。また、気体の流れが生じることで、ほこり等が放電面に吸着しにくくなり、オゾン生成装置の信頼性も向上する。 The ozone generating device includes a driving voltage source that outputs a driving voltage of N (N ≧ 3) phase having a repetitive pattern and a circulating phase difference, and the plurality of discharge units are arranged in the order n. It is preferable that the driving voltage of the (1 ≦ n ≦ N) phase is input from the driving voltage source. In this configuration, the electric field intensity distribution near the discharge surface changes so as to circulate along the arrangement direction. As a result, the gas in the space moves near the discharge surface along the arrangement direction under the influence of the electric field strength. For this reason, the supply of oxygen to the discharge surface and the detachment of ozone from the discharge surface are promoted, and the amount of ozone generated can be increased. Further, the generation of gas flow makes it difficult for dust and the like to be adsorbed on the discharge surface, and the reliability of the ozone generator is improved.
 前記駆動電圧は矩形波信号またはパルス波信号であることが好ましい。このことにより、交番信号が正弦波信号である場合よりも、放電が開始される電圧を低電圧化できる。 The drive voltage is preferably a rectangular wave signal or a pulse wave signal. As a result, the voltage at which discharge is started can be reduced compared to when the alternating signal is a sine wave signal.
 本発明のオゾン生成装置によれば、放電部を配列方向に細くするような場合でも、放電部の寸法を放電面方向で十分に確保することができ、導体抵抗の増加を抑制することができる。したがって、オゾン生成装置における消費電力と発熱の増加を抑制することができ、多数の放電部を設けてオゾン生成効率を高めても、熱によってオゾン分解反応が促進されることを防ぐことができる。 According to the ozone generating apparatus of the present invention, even when the discharge part is thinned in the arrangement direction, the dimension of the discharge part can be sufficiently secured in the discharge surface direction, and an increase in the conductor resistance can be suppressed. . Therefore, an increase in power consumption and heat generation in the ozone generator can be suppressed, and even if a large number of discharge parts are provided to increase the ozone generation efficiency, the ozone decomposition reaction can be prevented from being accelerated by heat.
本発明の第1の実施形態に係るオゾン生成装置の斜視図である。1 is a perspective view of an ozone generator according to a first embodiment of the present invention. 本発明の第1の実施形態に係るオゾン生成装置の左側面図、平面図、右側面図、および、底面図である。It is the left view, top view, right view, and bottom view of the ozone generator which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るオゾン生成装置の製造方法を説明する図である。It is a figure explaining the manufacturing method of the ozone generator which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るオゾン生成装置の左側面図および正面図である。It is the left view and front view of the ozone generator which concern on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るオゾン生成装置の左側面図および平面図である。It is the left view and top view of an ozone generator which concern on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るオゾン生成装置の左側面図および平面図である。It is the left view and top view of an ozone generator which concern on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るオゾン生成装置の配線図および駆動信号の時間波形図である。It is the wiring diagram of the ozone generator which concerns on the 5th Embodiment of this invention, and the time waveform figure of a drive signal. 従来のオゾン生成装置の斜視図である。It is a perspective view of the conventional ozone generator.
≪第1の実施形態≫
 図1は本発明の第1の実施形態に係るオゾン生成装置10の斜視図である。
<< First Embodiment >>
FIG. 1 is a perspective view of an ozone generator 10 according to the first embodiment of the present invention.
 オゾン生成装置10は、誘電体部11と、内部平面導体12,13と、端子電極14と、端子電極15と、駆動電圧源16と、を備える。 The ozone generator 10 includes a dielectric part 11, internal planar conductors 12 and 13, a terminal electrode 14, a terminal electrode 15, and a drive voltage source 16.
 誘電体部11は、天面11Aと底面11Bと左側面11Cと右側面11Dと正面11Eと背面11Fとを備える直方体形状である。 The dielectric portion 11 has a rectangular parallelepiped shape including a top surface 11A, a bottom surface 11B, a left side surface 11C, a right side surface 11D, a front surface 11E, and a back surface 11F.
 内部平面導体12,13は、それぞれ複数設けられており、誘電体部11の内部で、左側面11C側から右側面11D側にかけて交互に並べて設けられる。内部平面導体12は、誘電体部11の内部で、天面11Aに近接して正面11E側から背面11F側に延び、背面11Fに近接して天面11A側から底面11B側に延びる形状である。内部平面導体13は、誘電体部11の内部で、天面11Aに近接して背面11F側から正面11E側に延び、正面11Eに近接して天面11A側から底面11B側に延びる形状である。 A plurality of inner planar conductors 12 and 13 are provided, and are arranged alternately in the dielectric portion 11 from the left side surface 11C side to the right side surface 11D side. The inner planar conductor 12 has a shape extending from the front surface 11E side to the back surface 11F side near the top surface 11A and extending from the top surface 11A side to the bottom surface 11B side close to the back surface 11F inside the dielectric portion 11. . The inner planar conductor 13 has a shape extending in the vicinity of the top surface 11A from the back surface 11F side to the front surface 11E side and close to the front surface 11E from the top surface 11A side to the bottom surface 11B side inside the dielectric portion 11. .
 端子電極14,15は、底面11Bに設けられ、左側面11C側から右側面11D側に延びる帯状の平面導体からなる。端子電極14は、底面11Bにおける正面11E側の辺に近接するように設け、複数の内部平面導体13と接続している。端子電極15は、底面11Bにおける背面11F側の辺に近接するように設け、複数の内部平面導体12と接続している。 The terminal electrodes 14 and 15 are provided on the bottom surface 11B and are formed of a strip-shaped planar conductor extending from the left side surface 11C side to the right side surface 11D side. The terminal electrode 14 is provided so as to be close to the side of the bottom surface 11 </ b> B on the front surface 11 </ b> E side, and is connected to the plurality of internal planar conductors 13. The terminal electrode 15 is provided so as to be close to the side of the bottom surface 11B on the back surface 11F side, and is connected to the plurality of internal planar conductors 12.
 駆動電圧源16は、端子電極14と端子電極15との間に駆動電圧を印加し、内部平面導体12と内部平面導体13との間に交番電界を生じさせる。 The driving voltage source 16 applies a driving voltage between the terminal electrode 14 and the terminal electrode 15 to generate an alternating electric field between the inner planar conductor 12 and the inner planar conductor 13.
 この構成では、駆動電圧源16から端子電極14と端子電極15との間に駆動電圧を印加すると、内部平面導体12と内部平面導体13とが共に近接する誘電体部11の天面11Aに、左側面11Cと右側面11Dとの間を結ぶ方向に沿って沿面放電が生じる。この沿面放電により、誘電体部11の天面11Aでは、天面11Aに対向する空間中の気体に含まれる酸素からオゾンが生成される。天面11Aが本発明における放電面である。 In this configuration, when a driving voltage is applied between the terminal electrode 14 and the terminal electrode 15 from the driving voltage source 16, the inner planar conductor 12 and the inner planar conductor 13 are both close to the top surface 11A of the dielectric part 11; Creeping discharge occurs along the direction connecting the left side surface 11C and the right side surface 11D. Owing to the creeping discharge, ozone is generated from oxygen contained in the gas in the space facing the top surface 11A on the top surface 11A of the dielectric portion 11. The top surface 11A is a discharge surface in the present invention.
 ここで、誘電体部11の内部構造の詳細について説明する。以下、誘電体部11の左側面11Cから右側面11Dに向かう方向を配列方向と称する。また、正面11Eから背面11Fに向かう方向を延伸方向と称する。また、底面11Bから天面11Aに向かう方向を放電面方向と称する。誘電体部11の配列方向の長さは例えば3.2mm、延伸方向の長さは例えば2.5mm、放電面方向の長さは例えば2.5mmである。 Here, the details of the internal structure of the dielectric portion 11 will be described. Hereinafter, the direction from the left side surface 11C of the dielectric portion 11 toward the right side surface 11D is referred to as an arrangement direction. A direction from the front surface 11E to the back surface 11F is referred to as a stretching direction. The direction from the bottom surface 11B toward the top surface 11A is referred to as a discharge surface direction. The length of the dielectric portions 11 in the arrangement direction is, for example, 3.2 mm, the length in the extending direction is, for example, 2.5 mm, and the length in the discharge surface direction is, for example, 2.5 mm.
 図2(A)は、オゾン生成装置10の左側面図である。図2(B)は、オゾン生成装置10の平面図である。図2(C)は、オゾン生成装置10の右側面図である。図2(D)は、オゾン生成装置10の正面図である。 FIG. 2 (A) is a left side view of the ozone generator 10. FIG. 2B is a plan view of the ozone generator 10. FIG. 2C is a right side view of the ozone generator 10. FIG. 2D is a front view of the ozone generator 10.
 誘電体部11は、複数の誘電体層21を備える。複数の誘電体層21は、それぞれ、左側面11Cおよび右側面11Dに対向する面を主面とする薄い平膜状であり、誘電体部11の左側面11Cから右側面11Dにかけて積層されて、誘電体部11を構成している。誘電体層21の厚みは、例えば20μmである。なお、誘電体層21の厚みは1μm以上20μm以下の厚みであることが好ましい。 The dielectric part 11 includes a plurality of dielectric layers 21. Each of the plurality of dielectric layers 21 is a thin flat film having a main surface that faces the left side surface 11C and the right side surface 11D, and is laminated from the left side surface 11C to the right side surface 11D of the dielectric portion 11, The dielectric part 11 is configured. The thickness of the dielectric layer 21 is, for example, 20 μm. The thickness of the dielectric layer 21 is preferably 1 μm or more and 20 μm or less.
 各内部平面導体12,13は、誘電体部11の内部において、各誘電体層21の主面、すなわち誘電体層21間の積層面に1つずつ、隣接する積層面毎に交互に配置されている。 The inner planar conductors 12 and 13 are alternately arranged on the main surface of each dielectric layer 21, that is, one laminated surface between the dielectric layers 21, and adjacent laminated surfaces inside the dielectric portion 11. ing.
 内部平面導体12,13は、放電部12A,13Aと引出部12B,13Bとを備える。放電部12A,13Aは、延伸方向に延びる直方体板状のパターン部分である。引出部12B,13Bは、放電面方向に延びる帯状のパターン部分である。 The inner planar conductors 12 and 13 include discharge portions 12A and 13A and lead portions 12B and 13B. The discharge parts 12A and 13A are rectangular parallelepiped plate-like pattern portions extending in the extending direction. The lead portions 12B and 13B are band-shaped pattern portions extending in the discharge surface direction.
 放電部12A,13Aの天面11A側の縁は、天面11Aから一定の寸法Lcだけ離れて、天面11Aと対向している。寸法Lcは、例えば10μmである。放電部12A,13Aの正面11E側および背面11F側の縁は、正面11Eまたは背面11Fから一定の寸法Leだけ離れて対向している。ここで、寸法Lcは寸法Leより小さい。すなわち、放電部12A,13Aは、正面11E側および背面11F側の縁よりも、天面11A側の縁のほうが、誘電体部11の外面に近づいている。放電部12A,13A間に生じる電界は放電部12A,13Aから最も距離が近い誘電体部11の外面に漏れ出やすい。このため、この誘電体部11では、正面11Eや背面11Fでは無く天面11Aに沿面放電が生じる。したがって、誘電体部11の天面11Aは、オゾンを生じさせる放電面として機能し、放電部12A,13Aの天面11A側の縁は、放電端12C,13Cとして機能する。なお、本実施形態では天面11A以外で放電することはない。 The edges on the top surface 11A side of the discharge parts 12A and 13A are separated from the top surface 11A by a certain dimension Lc and face the top surface 11A. The dimension Lc is, for example, 10 μm. The edges on the front surface 11E side and the back surface 11F side of the discharge parts 12A and 13A are opposed to the front surface 11E or the back surface 11F by a predetermined dimension Le. Here, the dimension Lc is smaller than the dimension Le. That is, in the discharge portions 12A and 13A, the edge on the top surface 11A side is closer to the outer surface of the dielectric portion 11 than the edge on the front surface 11E side and the back surface 11F side. The electric field generated between the discharge parts 12A and 13A tends to leak to the outer surface of the dielectric part 11 that is the closest to the discharge parts 12A and 13A. For this reason, in this dielectric part 11, creeping discharge arises not on the front surface 11E or the back surface 11F but on the top surface 11A. Accordingly, the top surface 11A of the dielectric portion 11 functions as a discharge surface that generates ozone, and the edges of the discharge portions 12A and 13A on the top surface 11A side function as discharge ends 12C and 13C. In this embodiment, there is no discharge other than the top surface 11A.
 また、放電部12Aと放電部13Aとの配置間隔は、寸法Ldである。寸法Ldは、例えば20μmである。この寸法Ldは、誘電体層21の厚みによって定められている。従来のオゾン生成装置100では、第1の平面導体104および第2の平面導体105をファインライン印刷によって形成していたため、第1の平面導体と第2の平面導体との間隔が狭い箇所はショートしやすく、寸法Ldを50μm以下に形成することが困難であった。ところが、本実施形態にかかるオゾン生成装置10は、上述のように構成しているので、放電部12Aと放電部13Aとの配置間隔を従来構成と比較しても十分に狭くすることができる。寸法Ldが狭いほどオゾン生成装置10の放電開始電圧を下げることができる。また、放電部12Aと放電部13Aとの間に生じる交番電界の電界強度を従来構成と比較して高めることができる。したがって、本実施形態に係るオゾン生成装置10では、駆動電圧源16の駆動電圧を従来よりも低電圧化しても、誘電体部11の天面11Aに沿面放電を安定して生じさせられる。 Further, the arrangement interval between the discharge part 12A and the discharge part 13A is the dimension Ld. The dimension Ld is, for example, 20 μm. This dimension Ld is determined by the thickness of the dielectric layer 21. In the conventional ozone generating apparatus 100, since the first planar conductor 104 and the second planar conductor 105 are formed by fine line printing, a portion where the distance between the first planar conductor and the second planar conductor is narrow is short. It was difficult to form the dimension Ld to be 50 μm or less. However, since the ozone generator 10 according to the present embodiment is configured as described above, the arrangement interval between the discharge unit 12A and the discharge unit 13A can be sufficiently narrowed compared to the conventional configuration. As the dimension Ld is narrower, the discharge start voltage of the ozone generator 10 can be lowered. Further, the electric field strength of the alternating electric field generated between the discharge part 12A and the discharge part 13A can be increased as compared with the conventional configuration. Therefore, in the ozone generating apparatus 10 according to the present embodiment, creeping discharge can be stably generated on the top surface 11A of the dielectric portion 11 even if the driving voltage of the driving voltage source 16 is lower than that of the conventional one.
 また、放電部12A,13Aは、配列方向に寸法Lbを有している。寸法Lbは、例えば5μmである。この寸法Lbは、内部平面導体12,13の厚みと殆ど等しく、放電部12A,13Aは従来構成と比較しても配列方向の幅を十分に狭くすることができる。このように、放電部12A,13Aの幅と配置間隔とを十分に狭くすることができるので、本実施形態に係るオゾン生成装置10では、誘電体部11の放電面(天面11A)に対向させて配置することができる単位面積当たりの放電部12A,13Aの本数を極めて多くすることができる。このことにより、放電面(天面11A)における単位面積当たりのオゾン生成効率を高いものにすることができる。 Moreover, the discharge parts 12A and 13A have a dimension Lb in the arrangement direction. The dimension Lb is, for example, 5 μm. The dimension Lb is almost equal to the thickness of the inner planar conductors 12 and 13, and the discharge portions 12A and 13A can sufficiently narrow the width in the arrangement direction even when compared with the conventional configuration. As described above, since the width and the arrangement interval of the discharge parts 12A and 13A can be sufficiently narrowed, the ozone generator 10 according to the present embodiment is opposed to the discharge surface (top surface 11A) of the dielectric part 11. Thus, the number of discharge parts 12A and 13A per unit area that can be arranged can be greatly increased. As a result, the ozone generation efficiency per unit area on the discharge surface (top surface 11A) can be increased.
 また、放電部12A,13Aは、放電面方向に寸法Laを有している。寸法Laは、例えば50μmである。ここで、この寸法Laは、前述の放電部12A,13Aの配列方向の寸法Lb以上である。すなわち、La≧Lbである。したがって、放電部12A,13Aでは、配列方向の寸法Lbが著しく小さくても、放電面方向の寸法Laをそれ以上に確保することができる。このため、放電部12A,13Aは、導体抵抗が著しく大きくなることがない。したがって、本実施形態に係るオゾン生成装置10では、放電部における単位面積当たりのオゾン生成効率を高めるために、放電部12A,13Aの配列方向の寸法Lbを著しく小さくしても、オゾン生成装置10における消費電力と発熱を抑制できる。このことによって、放電面(天面11A)におけるオゾン分解反応の進展を抑制し、オゾン生成効率が熱の影響で低下することを防ぐことができる。 Moreover, the discharge parts 12A and 13A have a dimension La in the discharge surface direction. The dimension La is, for example, 50 μm. Here, the dimension La is equal to or larger than the dimension Lb in the arrangement direction of the discharge parts 12A and 13A. That is, La ≧ Lb. Therefore, in the discharge parts 12A and 13A, even if the dimension Lb in the arrangement direction is extremely small, the dimension La in the discharge surface direction can be secured more than that. For this reason, the conductor resistances of the discharge portions 12A and 13A do not increase remarkably. Therefore, in the ozone generation device 10 according to the present embodiment, the ozone generation device 10 can be used even if the dimension Lb in the arrangement direction of the discharge portions 12A and 13A is significantly reduced in order to increase the ozone generation efficiency per unit area in the discharge portion. Power consumption and heat generation can be suppressed. By this, progress of the ozonolysis reaction in a discharge surface (top surface 11A) can be suppressed, and it can prevent that ozone generation efficiency falls by the influence of a heat | fever.
 また、放電部12Aと放電部13Aとの配置間隔の寸法Ldは、前述の放電面(天面11A)と放電部12A,13Aとの間隔の寸法Lcよりも大きい。すなわち、放電部12A,13Aは、互いに隣接する間隔よりも、放電部12A,13Aと天面11Aとの距離のほうが近いので、放電部12A,13A間に生じる電界は天面11Aに漏れ出やすい状態になる。このことによっても、本実施形態に係るオゾン生成装置10では、誘電体部11の天面11Aに沿面放電を生じさせるために必要な駆動電圧(放電開始電圧)を低くすることができ、また、誘電体部11の天面11Aに沿面放電を安定的に生じさせることができる。 Moreover, the dimension Ld of the arrangement interval between the discharge part 12A and the discharge part 13A is larger than the dimension Lc between the discharge surface (top surface 11A) and the discharge parts 12A, 13A. That is, since the discharge portions 12A and 13A are closer to the top surface 11A than the distance between the discharge portions 12A and 13A, the electric field generated between the discharge portions 12A and 13A is likely to leak to the top surface 11A. It becomes a state. Also by this, in the ozone generating apparatus 10 according to the present embodiment, the driving voltage (discharge start voltage) necessary for causing creeping discharge on the top surface 11A of the dielectric part 11 can be lowered, Creeping discharge can be stably generated on the top surface 11A of the dielectric portion 11.
 更には、放電部12A,13Aと誘電体層21とは、それぞれの厚み(配列方向の寸法)を高精度に設定することができる。したがって、放電部12A,13Aの配列方向の寸法Lb、および、放電部12A,13Aの配置間隔の寸法Ldは、放電面方向にほぼ均一にすることができる。このため、本実施形態に係るオゾン生成装置10では、従来構成で生じていた、加工ばらつきに起因する各種問題が殆ど発生することが無い。具体的には、本実施形態に係るオゾン生成装置10では、放電部12A,13A間のショートや、放電部12A,13Aの断線、放電部12A,13A間でのアーク放電の発生がほとんど生じない。したがって、オゾン生成装置10は高い信頼性を有することになる。 Furthermore, the discharge portions 12A and 13A and the dielectric layer 21 can set the thicknesses (dimensions in the arrangement direction) with high accuracy. Therefore, the dimension Lb in the arrangement direction of the discharge parts 12A and 13A and the dimension Ld of the arrangement interval of the discharge parts 12A and 13A can be made substantially uniform in the discharge surface direction. For this reason, in the ozone production | generation apparatus 10 which concerns on this embodiment, the various problems resulting from the process variation which had arisen by the conventional structure hardly occur. Specifically, in the ozone generation apparatus 10 according to the present embodiment, short-circuit between the discharge parts 12A and 13A, disconnection of the discharge parts 12A and 13A, and occurrence of arc discharge between the discharge parts 12A and 13A hardly occur. . Therefore, the ozone generator 10 has high reliability.
 次に、オゾン生成装置10の製造方法の一例として、誘電体部11を低温焼成セラミック基板で構成する場合の製造方法について説明する。なお、誘電体部11は、その他の誘電体材料、例えばアルミナなどで構成することもできる。図3は、オゾン生成装置10の製造工程の一例のフローチャートを示す図である。 Next, as an example of a manufacturing method of the ozone generator 10, a manufacturing method in the case where the dielectric portion 11 is formed of a low-temperature fired ceramic substrate will be described. In addition, the dielectric part 11 can also be comprised with another dielectric material, for example, an alumina. FIG. 3 is a flowchart illustrating an example of the manufacturing process of the ozone generator 10.
 オゾン生成装置10の製造では、まず、誘電体シート形成工程を行う(S1)。誘電体シート形成工程では、例えば、ガラス粉体、フィラー粉末、結晶化度調整剤、溶剤、分散剤、有機バインダ、可塑剤等を混合することによって、ガラスセラミックスラリーを得る。そして、後に誘電体層21となるガラスセラミックグリーンシートを、ドクターブレード等を用いてガラスセラミックスラリーから作製する。なお、一度に複数のオゾン生成装置10を製造するために、ガラスセラミックグリーンシートは、単体のオゾン生成装置10の誘電体層21となるサイズよりも大判に形成することが望ましい。 In the production of the ozone generator 10, first, a dielectric sheet forming step is performed (S1). In the dielectric sheet forming step, for example, a glass ceramic slurry is obtained by mixing glass powder, filler powder, crystallinity adjusting agent, solvent, dispersant, organic binder, plasticizer, and the like. And the glass ceramic green sheet used as the dielectric material layer 21 later is produced from a glass ceramic slurry using a doctor blade etc. In order to manufacture a plurality of ozone generators 10 at a time, the glass ceramic green sheet is desirably formed larger than the size of the dielectric layer 21 of the single ozone generator 10.
 次に、オゾン生成装置10の製造では、平面導体形成工程を行う(S2)。平面導体形成工程では、銀や銅、タングステンなどの金属粉末、溶剤、有機バインダ等を混合し、ロールミル等を用いて分散処理することにより、導体ペーストを得る。そして、後に内部平面導体12または内部平面導体13となる導体ペーストのパターンを、ガラスセラミックグリーンシート上にスクリーン印刷する。なお、一度に複数のオゾン生成装置10を製造するために、単体のオゾン生成装置10の内部平面導体12,13となる導体ペーストのパターンだけでなく、複数の導体ペーストのパターンを、大判のガラスセラミックグリーンシートに印刷することが望ましい。 Next, in the production of the ozone generator 10, a planar conductor forming step is performed (S2). In the planar conductor forming step, a metal paste such as silver, copper, and tungsten, a solvent, an organic binder, and the like are mixed and dispersed using a roll mill or the like to obtain a conductor paste. And the pattern of the conductor paste which becomes the internal plane conductor 12 or the internal plane conductor 13 later is screen-printed on the glass ceramic green sheet. In order to manufacture a plurality of ozone generators 10 at a time, not only the pattern of the conductor paste that becomes the inner planar conductors 12 and 13 of the single ozone generator 10 but also the pattern of the plurality of conductor pastes is a large glass. It is desirable to print on a ceramic green sheet.
 次に、オゾン生成装置10の製造では、積層工程を行う(S3)。積層工程では、例えば、平面導体を形成したガラスセラミックグリーンシートを複数枚積み重ね、圧力をかけることで、未焼成の平面導体パターンとガラスセラミックグリーンシートとを複数層にわたって積層した積層体を作製する。 Next, in the production of the ozone generator 10, a lamination process is performed (S3). In the laminating step, for example, a plurality of glass ceramic green sheets on which planar conductors are formed are stacked and a pressure is applied to produce a laminate in which unfired planar conductor patterns and glass ceramic green sheets are laminated over a plurality of layers.
 次に、オゾン生成装置10の製造では、焼成工程を行う(S4)。焼成工程では、例えば、未焼成の積層体を酸化雰囲気化で、所定の温度プロファイルとなるように焼成する。これにより、誘電体部11と内部平面導体12,13との積層体(オゾン生成装置10)を作製する。 Next, in the production of the ozone generator 10, a firing step is performed (S4). In the firing step, for example, the unfired laminate is fired in an oxidizing atmosphere so as to have a predetermined temperature profile. Thereby, the laminated body (ozone generator 10) of the dielectric part 11 and the internal plane conductors 12 and 13 is produced.
 以上の製造方法により、本実施形態のオゾン生成装置10は製造することができる。なお、一度に複数のオゾン生成装置10を製造するためには、焼成工程の前後のいずれかの工程で、大判のセラミックグリーンシートの積層体から、複数のオゾン生成装置10となる個片を切りだす工程を行うことが望ましい。 The ozone generator 10 of this embodiment can be manufactured by the above manufacturing method. In order to manufacture a plurality of ozone generators 10 at a time, individual pieces to be a plurality of ozone generators 10 are cut from a large-sized ceramic green sheet laminate in any step before or after the firing step. It is desirable to perform a brewing process.
 このような製造方法を採用することにより、平面導体を形成した誘電体層21のシートを積み重ねるだけで、配列方向より放電面方向で寸法がより大きい特殊な断面形状の放電部12A,13Aを有するオゾン生成装置10であっても、容易に製造することができる。 By adopting such a manufacturing method, the discharge portions 12A and 13A having special cross-sectional shapes having dimensions larger in the discharge surface direction than in the arrangement direction are obtained simply by stacking the sheets of the dielectric layer 21 on which the planar conductor is formed. Even the ozone generator 10 can be easily manufactured.
 すなわち、この製造方法によれば、スクリーン印刷工法のような加工精度の低い工法であっても、誘電体シートに形成する平面導体の厚みは、平面方向の寸法に比べて極めて薄いので、放電部12A,13Aの配列方向での幅を極めて狭くすることができる。また、誘電体シートの厚みも平面方向の寸法に比べて極めて薄いので、放電部12A,13Aの配置間隔も極めて狭くすることができる。したがって、本実施形態のオゾン生成装置10では、スクリーン印刷工法のような加工精度の低い工法を用いても、オゾン生成効率を著しく高めることができる。 That is, according to this manufacturing method, the thickness of the planar conductor formed on the dielectric sheet is extremely thin compared to the dimension in the planar direction even in a method with low processing accuracy such as a screen printing method. The width in the arrangement direction of 12A and 13A can be made extremely narrow. Further, since the thickness of the dielectric sheet is extremely thin as compared with the dimension in the planar direction, the arrangement interval between the discharge portions 12A and 13A can be extremely narrowed. Therefore, in the ozone generation apparatus 10 of the present embodiment, the ozone generation efficiency can be remarkably increased even when a method with low processing accuracy such as a screen printing method is used.
 更には、この製造方法によれば、誘電体シートや平面導体の厚みは極めて高精度に均一になるので、放電部12A,13Aの配列方向での放電部12A,13Aの幅や放電部12A,13Aの配置間隔のばらつきを格段に抑制することができる。このため、本実施形態のオゾン生成装置10では、放電部12A,13Aに断線が生じることや、放電部12A,13A間にショートが生じること、放電部12A,13A間のアーク放電によって放電部12A,13Aに破損が生じることなどを防ぐことができる。 Further, according to this manufacturing method, the thickness of the dielectric sheet and the planar conductor becomes uniform with extremely high accuracy, so the width of the discharge portions 12A and 13A in the arrangement direction of the discharge portions 12A and 13A and the discharge portions 12A, Variation in the arrangement interval of 13A can be remarkably suppressed. For this reason, in the ozone generation apparatus 10 of this embodiment, the discharge part 12A, 13A is disconnected, a short circuit occurs between the discharge parts 12A, 13A, or the arc discharge between the discharge parts 12A, 13A. , 13A can be prevented from being damaged.
≪第2の実施形態≫
 次に、本発明の第2の実施形態に係るオゾン生成装置30について説明する。
<< Second Embodiment >>
Next, an ozone generator 30 according to the second embodiment of the present invention will be described.
 図4(A)は、オゾン生成装置30の左側面図である。図4(B)は、オゾン生成装置30の正面図である。 FIG. 4 (A) is a left side view of the ozone generator 30. FIG. 4B is a front view of the ozone generator 30.
 オゾン生成装置30においては、前述の第1の実施形態とは異なり、誘電体部の天面だけでなく底面も放電面として機能する。 In the ozone generator 30, unlike the first embodiment described above, not only the top surface of the dielectric part but also the bottom surface functions as a discharge surface.
 具体的には、本発明の第2の実施形態に係るオゾン生成装置30が第1の実施形態と異なる点は、内部平面導体12,13及び端子電極14,15に代えて、内部平面導体32,33と、端子電極34,35と、を備えている点である。その他の構成については同一であるので第1の実施形態と同一符号を付して構成説明を省略する。 Specifically, the ozone generator 30 according to the second embodiment of the present invention is different from the first embodiment in that the inner plane conductor 32 is replaced with the inner plane conductors 12 and 13 and the terminal electrodes 14 and 15. , 33 and terminal electrodes 34, 35. Since other configurations are the same, the same reference numerals as those in the first embodiment are given, and the description of the configurations is omitted.
 内部平面導体32,33は、それぞれ複数設けられており、誘電体部11の内部で、左側面11C側から右側面11D側にかけて交互に並べて設けられる。内部平面導体32,33は、直方体板状の放電部32A,33Aと、放電部32A,33Aから正面側または背面側に延びる線路状の引出部32B,33Bと、を備えている。 A plurality of internal planar conductors 32 and 33 are provided, and are provided alternately in the dielectric portion 11 from the left side surface 11C side to the right side surface 11D side. The inner plane conductors 32 and 33 include rectangular parallelepiped plate- like discharge portions 32A and 33A and line-shaped lead portions 32B and 33B extending from the discharge portions 32A and 33A to the front side or the back side.
 端子電極34は、正面11Eを覆うように設けていて、複数の内部平面導体32と接続されている。端子電極35は、背面11Fを覆うように設けていて、複数の内部平面導体33と接続されている。 The terminal electrode 34 is provided so as to cover the front surface 11 </ b> E, and is connected to the plurality of internal planar conductors 32. The terminal electrode 35 is provided so as to cover the back surface 11 </ b> F, and is connected to the plurality of internal planar conductors 33.
 この構成において、内部平面導体32,33は、誘電体部11の天面11Aと底面11Bとに対して、同じ間隔で対向している。このため、内部平面導体32,33の天面11A側の縁と底面11B側の縁とが、ともに放電端32C,33Cとして機能し、誘電体部11の天面11Aと底面11Bとは、ともに放電面として機能することになる。 In this configuration, the inner planar conductors 32 and 33 are opposed to the top surface 11A and the bottom surface 11B of the dielectric part 11 at the same interval. Therefore, the edge on the top surface 11A side and the edge on the bottom surface 11B side of the inner planar conductors 32 and 33 both function as discharge ends 32C and 33C, and both the top surface 11A and the bottom surface 11B of the dielectric part 11 It will function as a discharge surface.
 したがって、端子電極34と端子電極35との間に駆動電圧が印加されると、内部平面導体32,33間に交番電界が生じ、内部平面導体32,33の放電端32C,33Cに近接対向する誘電体部11の天面11Aと底面11Bとの双方に沿面放電が生じる。この沿面放電により、天面11Aと底面11Bとにおいて、対向する空間中の気体に含まれる酸素からオゾンを生成することができる。このように、本実施形態に係るオゾン生成装置30によれば、放電面を増すことができ、このため、単位時間当たりのオゾン生成量を増すことができる。 Therefore, when a drive voltage is applied between the terminal electrode 34 and the terminal electrode 35, an alternating electric field is generated between the inner planar conductors 32 and 33, and the discharge terminals 32C and 33C of the inner planar conductors 32 and 33 are in close proximity to each other. Creeping discharge occurs on both the top surface 11A and the bottom surface 11B of the dielectric portion 11. By this creeping discharge, ozone can be generated from oxygen contained in the gas in the facing space on the top surface 11A and the bottom surface 11B. As described above, according to the ozone generator 30 according to the present embodiment, the discharge surface can be increased, and therefore, the amount of ozone generated per unit time can be increased.
≪第3の実施形態≫
 次に、本発明の第3の実施形態に係るオゾン生成装置40について説明する。
<< Third Embodiment >>
Next, an ozone generator 40 according to a third embodiment of the present invention will be described.
 図5(A)は、オゾン生成装置40の左側面図である。図5(B)は、オゾン生成装置40の平面図である。 FIG. 5 (A) is a left side view of the ozone generator 40. FIG. 5B is a plan view of the ozone generator 40.
 オゾン生成装置40においては、前述の第1の実施形態や第2の実施形態とは異なり、誘電体部の天面、底面、正面、および、背面を放電面として構成している。 In the ozone generator 40, unlike the first and second embodiments described above, the top surface, bottom surface, front surface, and back surface of the dielectric portion are configured as discharge surfaces.
 具体的には、本発明の第3の実施形態に係るオゾン生成装置40が第1の実施形態と異なる点は、内部平面導体12,13及び端子電極14,15に代えて、内部平面導体42,43と、端子電極44,45と、を備えている点である。その他の構成については同一であるので第1の実施形態と同一符号を付して構成説明を省略する。 Specifically, the ozone generator 40 according to the third embodiment of the present invention is different from the first embodiment in that the inner planar conductor 42 is replaced with the inner planar conductors 12 and 13 and the terminal electrodes 14 and 15. , 43 and terminal electrodes 44, 45. Since other configurations are the same, the same reference numerals as those in the first embodiment are given, and the description of the configurations is omitted.
 内部平面導体42,43は、それぞれ複数設けられており、誘電体部11の内部で、左側面11C側から右側面11D側にかけて交互に並べて設けられる。内部平面導体42,43は、矩形環状の放電部42A,43Aと、放電部42A,43Aの内側開口に延びる線路状の引出部42B,43Bと、を備えている。そして、放電部42A,43Aの内側開口に、引出部42B,43Bと接続して層間接続導体42D,43Dが設けられている。 A plurality of inner planar conductors 42 and 43 are provided, and are arranged alternately in the dielectric portion 11 from the left side surface 11C side to the right side surface 11D side. The inner planar conductors 42 and 43 include rectangular annular discharge portions 42A and 43A, and line-shaped lead portions 42B and 43B extending to the inner openings of the discharge portions 42A and 43A. In addition, interlayer connection conductors 42D and 43D are provided in the inner openings of the discharge portions 42A and 43A so as to be connected to the lead portions 42B and 43B.
 端子電極44は、左側面11Cを覆うように設けていて、層間接続導体42Dを介して、複数の内部平面導体42と接続されている。端子電極45は、右側面11Dを覆うように設けていて、層間接続導体43Dを介して、複数の内部平面導体43と接続されている。 The terminal electrode 44 is provided so as to cover the left side surface 11C, and is connected to the plurality of internal planar conductors 42 via the interlayer connection conductor 42D. The terminal electrode 45 is provided so as to cover the right side surface 11D, and is connected to the plurality of internal planar conductors 43 through the interlayer connection conductor 43D.
 この構成において、内部平面導体42,43は、誘電体部11の天面11Aと底面11Bと正面11Eと背面11Fとのそれぞれに対して、同じ間隔で対向している。このため、内部平面導体42,43の外周側の縁、すなわち、天面11A側の縁と、底面11B側の縁と、正面11E側の縁と、背面11F側の縁とが、いずれも放電端42C,43Cとして機能し、誘電体部11の天面11Aと底面11Bと正面11Eと背面11Fとは、いずれも放電面として機能することになる。 In this configuration, the inner planar conductors 42 and 43 are opposed to the top surface 11A, the bottom surface 11B, the front surface 11E, and the back surface 11F of the dielectric part 11 at the same interval. For this reason, the outer peripheral edge of the inner planar conductors 42, 43, that is, the edge on the top surface 11A side, the edge on the bottom surface 11B side, the edge on the front surface 11E side, and the edge on the back surface 11F side are all discharged. The top surface 11A, the bottom surface 11B, the front surface 11E, and the back surface 11F of the dielectric portion 11 function as discharge surfaces.
 したがって、端子電極44と端子電極45との間に駆動電圧が印加されると、内部平面導体42,43間に交番電界が生じ、内部平面導体42,43の放電端42C,43Cに近接対向する誘電体部11の天面11Aと底面11Bと正面11Eと背面11Fとのいずれにも沿面放電が生じる。この沿面放電により、天面11Aと底面11Bと正面11Eと背面11Fとにおいて、対向する空間中の気体に含まれる酸素からオゾンを生成することができる。このように、本実施形態に係るオゾン生成装置40によれば、放電面を更に増すことができ、このため、やはり単位時間当たりのオゾン生成量を増すことができる。 Therefore, when a drive voltage is applied between the terminal electrode 44 and the terminal electrode 45, an alternating electric field is generated between the inner planar conductors 42 and 43, and the discharge terminals 42C and 43C of the inner planar conductors 42 and 43 are close to and opposed to each other. Creeping discharge occurs on any of the top surface 11A, bottom surface 11B, front surface 11E, and back surface 11F of the dielectric part 11. Owing to this creeping discharge, ozone can be generated from oxygen contained in the gas in the space on the top surface 11A, bottom surface 11B, front surface 11E, and back surface 11F. As described above, according to the ozone generator 40 according to the present embodiment, the discharge surface can be further increased, and therefore, the amount of ozone generated per unit time can be increased.
≪第4の実施形態≫
 次に、本発明の第4の実施形態に係るオゾン生成装置50について説明する。
<< Fourth Embodiment >>
Next, an ozone generator 50 according to a fourth embodiment of the present invention will be described.
 図6(A)は、オゾン生成装置50の左側面図である。図6(B)は、オゾン生成装置50の平面図である。 FIG. 6A is a left side view of the ozone generator 50. FIG. 6B is a plan view of the ozone generator 50.
 オゾン生成装置50においては、前述の第1乃至第3の実施形態とは異なり、誘電体部が周面を有する円柱状であり、周面の全面を放電面として構成している。 In the ozone generating apparatus 50, unlike the first to third embodiments described above, the dielectric portion has a cylindrical shape having a peripheral surface, and the entire peripheral surface is configured as a discharge surface.
 具体的には、本発明の第4の実施形態に係るオゾン生成装置50が第1の実施形態と異なる点は、誘電体部11、内部平面導体12,13及び端子電極14,15に代えて、誘電体部51と内部平面導体52,53と、端子電極54,55と、を備えている点である。その他の構成については同一であるので第1の実施形態と同一符号を付して構成説明を省略する。 Specifically, the ozone generation device 50 according to the fourth embodiment of the present invention is different from the first embodiment in that it replaces the dielectric portion 11, the inner planar conductors 12 and 13, and the terminal electrodes 14 and 15. The dielectric portion 51, the inner planar conductors 52 and 53, and the terminal electrodes 54 and 55 are provided. Since other configurations are the same, the same reference numerals as those in the first embodiment are given, and the description of the configurations is omitted.
 誘電体部51は、配列方向に沿って柱軸が延びる円柱状であり、周面51Aと左側面11Cと右側面11D(不図示)とを外面として有している。 The dielectric portion 51 has a columnar shape with a column axis extending along the arrangement direction, and has a peripheral surface 51A, a left side surface 11C, and a right side surface 11D (not shown) as outer surfaces.
 内部平面導体52,53は、それぞれ複数設けられており、誘電体部51の内部で、左側面11C側から右側面11D側にかけて交互に並べて設けられる。内部平面導体52,53は、円環状の放電部52A,53Aと、放電部52A,53Aの内側開口に延びる線路状の引出部52B,53Bと、を備えている。そして、放電部52A,53Aの内側開口に、引出部52B,53Bと接続して層間接続導体52D,53Dが設けられている。 A plurality of internal planar conductors 52 and 53 are provided, and are provided alternately inside the dielectric portion 51 from the left side surface 11C side to the right side surface 11D side. The inner planar conductors 52 and 53 include annular discharge portions 52A and 53A, and line-shaped lead portions 52B and 53B extending to the inner openings of the discharge portions 52A and 53A. In addition, interlayer connection conductors 52D and 53D are provided in the inner openings of the discharge parts 52A and 53A so as to be connected to the lead parts 52B and 53B.
 端子電極54は、左側面11Cを覆うように設けていて、層間接続導体52Dを介して、複数の内部平面導体52と接続されている。端子電極55は、右側面11Dを覆うように設けていて、層間接続導体53Dを介して、複数の内部平面導体53と接続されている。 The terminal electrode 54 is provided so as to cover the left side surface 11C, and is connected to the plurality of internal planar conductors 52 via the interlayer connection conductor 52D. The terminal electrode 55 is provided so as to cover the right side surface 11D, and is connected to the plurality of internal planar conductors 53 via the interlayer connection conductor 53D.
 この構成において、内部平面導体52,53は、誘電体部51の周面51Aの全面に対して、同じ間隔で対向している。このため、内部平面導体52,53の外周側の縁が放電端52C,53Cとして機能し、誘電体部51の周面51Aの全面が放電面として機能することになる。 In this configuration, the inner planar conductors 52 and 53 face the entire surface of the peripheral surface 51A of the dielectric part 51 at the same interval. Therefore, the outer peripheral edges of the inner planar conductors 52 and 53 function as the discharge ends 52C and 53C, and the entire peripheral surface 51A of the dielectric portion 51 functions as the discharge surface.
 したがって、端子電極54と端子電極55との間に駆動電圧が印加されると、内部平面導体52,53間に交番電界が生じ、内部平面導体52,53の放電端52C,53Cに近接対向する誘電体部51の周面51Aの全面で沿面放電が生じる。この沿面放電により、周面51Aにおいて、対向する空間中の気体に含まれる酸素からオゾンを生成することができる。このように、本実施形態に係るオゾン生成装置50によっても、放電面を増すことができ、このため、やはり単位時間当たりのオゾン生成量を増すことができる。 Therefore, when a driving voltage is applied between the terminal electrode 54 and the terminal electrode 55, an alternating electric field is generated between the inner planar conductors 52 and 53, and the discharge terminals 52C and 53C of the inner planar conductors 52 and 53 are in close proximity to each other. Creeping discharge occurs on the entire surface of the peripheral surface 51A of the dielectric part 51. By this creeping discharge, ozone can be generated from oxygen contained in the gas in the facing space on the peripheral surface 51A. Thus, the ozone generating apparatus 50 according to the present embodiment can also increase the discharge surface, and therefore, the ozone generation amount per unit time can also be increased.
≪第5の実施形態≫
 次に、本発明の第5の実施形態に係るオゾン生成装置60について説明する。
<< Fifth Embodiment >>
Next, an ozone generator 60 according to a fifth embodiment of the present invention will be described.
 図7(A)は、オゾン生成装置60の電気接続図である。 FIG. 7A is an electrical connection diagram of the ozone generator 60.
 本実施形態に係るオゾン生成装置60は、概要構成については前述の実施形態の構成と同じであり、誘電体部61と複数の放電部62と駆動電圧源63とを備えている。複数の放電部62は、4組に組み分けされており、各組の放電部62は順に並べられている。そして、駆動電圧源63は、組数と同じ4相の駆動電圧V~Vを出力するよう構成している。各組の放電部62には、組番号に対応する相番号の駆動電圧V~Vが入力されるよう構成している。 The ozone generator 60 according to the present embodiment has the same general configuration as that of the above-described embodiment, and includes a dielectric unit 61, a plurality of discharge units 62, and a drive voltage source 63. The plurality of discharge parts 62 are grouped into four groups, and the discharge parts 62 of each group are arranged in order. The drive voltage source 63 is configured to output the same four-phase drive voltages V 1 to V 4 as the number of sets. The discharge units 62 of each set are configured to receive drive voltages V 1 to V 4 having phase numbers corresponding to the set numbers.
 図7(B)は、駆動電圧V~Vの時間波形図である。駆動電圧V~Vは、それぞれ同じ繰り返しパターンと、相番号の順に位相差90°を有している。したがって、駆動電圧V~Vは、相番号の順に位相差が循環する関係になっている。 FIG. 7B is a time waveform diagram of the drive voltages V 1 to V 4 . The drive voltages V 1 to V 4 have the same repeating pattern and a phase difference of 90 ° in the order of the phase numbers. Therefore, the drive voltages V 1 to V 4 have a relationship in which the phase difference circulates in the order of the phase numbers.
 このように構成されているために本実施形態に係るオゾン生成装置においては、放電面近傍の電界強度の分布が放電部62の配列方向に沿って循環するように変化する。これにより、放電面近傍で空間中の気体が電界強度の影響を受けて配列方向に沿って移動することになる。このため、放電面への酸素の供給と放電面からのオゾンの離脱が促進され、オゾン生成量を増やすことができる。また、気体の流れが生じることで、ほこり等が放電面に吸着しにくくなり、オゾン生成装置60の信頼性も向上する。 Since it is configured in this manner, in the ozone generator according to the present embodiment, the distribution of the electric field intensity near the discharge surface changes so as to circulate along the arrangement direction of the discharge portions 62. As a result, the gas in the space near the discharge surface moves along the arrangement direction under the influence of the electric field strength. For this reason, the supply of oxygen to the discharge surface and the detachment of ozone from the discharge surface are promoted, and the amount of ozone generated can be increased. Further, since the gas flow is generated, dust and the like are hardly adsorbed on the discharge surface, and the reliability of the ozone generator 60 is improved.
 なお、本実施形態では、駆動電圧V~Vとしてパルス波信号を用いる例を示したが、駆動電圧V~Vは、その他にも正弦波信号や矩形波信号を用いることも可能である。パルス波信号や矩形波信号を用いれば、正弦波信号を用いる場合よりも、放電が開始される電圧を低電圧化することができ、より好ましい。また、本実施形態では、駆動電圧の相数を4とする例を示したが、駆動電圧の相数は3以上であれば任意の整数を採用することができる。また、本実施形態では、各駆動電圧で同じパターン波形となる例を示したが、各駆動電圧のパターン波形は同じでなくても良い。例えば振幅や繰り返しの周期が相違する駆動電圧を用いるようなこともできる。 In the present embodiment, although an example of using the pulse wave signal as the drive voltage V 1 ~ V 4, the drive voltage V 1 ~ V 4 is also possible to use a sine wave signal or a rectangular wave signal to other It is. If a pulse wave signal or a rectangular wave signal is used, the voltage at which discharge is started can be lowered compared with the case where a sine wave signal is used, which is more preferable. In the present embodiment, an example in which the number of phases of the driving voltage is four is shown, but any integer can be adopted as long as the number of phases of the driving voltage is three or more. In the present embodiment, an example in which the same pattern waveform is obtained for each drive voltage has been described. However, the pattern waveform of each drive voltage may not be the same. For example, driving voltages having different amplitudes and repetition cycles can be used.
 なお、上記した各実施形態はあくまで例示であり、本発明の作用効果は特許請求の範囲の構成であれば、どのような構成であっても得ることができる。また、各実施形態に開示した構成は、どのように組み合わせてもよい。 Each embodiment described above is merely an example, and the effects of the present invention can be obtained in any configuration as long as the configuration is within the scope of the claims. The configurations disclosed in the embodiments may be combined in any way.
10…オゾン生成装置
11…誘電体部
11A…天面
11B…底面
11C…左側面
11D…右側面
11E…正面
11F…背面
12,13…内部平面導体
12A,13A…放電部
12B,13B…引出部
12C,13C…放電端
14,15…端子電極
16…駆動電圧源
21…誘電体層
DESCRIPTION OF SYMBOLS 10 ... Ozone generator 11 ... Dielectric part 11A ... Top surface 11B ... Bottom 11C ... Left side 11D ... Right side 11E ... Front 11F ... Back surface 12, 13 ... Internal plane conductors 12A, 13A ... Discharge part 12B, 13B ... Lead-out part 12C, 13C ... discharge terminals 14, 15 ... terminal electrode 16 ... drive voltage source 21 ... dielectric layer

Claims (9)

  1.  沿面放電を生じさせる放電面を有する誘電体部と、
     前記誘電体部に設けた導体からなり、前記放電面に近接して対向する放電端を有し、前記放電面に沿って間隔をあけて並ぶ複数の放電部と、
     を備え、
     前記放電部は、前記放電面と対向する放電面方向での自らの寸法をLaとし、前記放電面に沿って並ぶ配列方向での自らの寸法をLbとすると、La≧Lbである、
     オゾン生成装置。
    A dielectric portion having a discharge surface that causes creeping discharge;
    A plurality of discharge portions comprising a conductor provided in the dielectric portion, having discharge ends that are close to and opposed to the discharge surface, and arranged at intervals along the discharge surface;
    With
    The discharge part is La ≧ Lb, where La is the dimension in the direction of the discharge surface facing the discharge surface, and Lb is the dimension in the direction of alignment along the discharge surface.
    Ozone generator.
  2.  前記誘電体部は、前記配列方向に積層した複数の誘電体層を備え、前記複数の放電部は、それぞれ誘電体層間に設けた平面導体からなる、
     請求項1に記載のオゾン生成装置。
    The dielectric portion includes a plurality of dielectric layers stacked in the arrangement direction, and the plurality of discharge portions are each composed of a planar conductor provided between the dielectric layers.
    The ozone generator according to claim 1.
  3.  前記放電面は前記複数の誘電体層の端面で構成されている、
     請求項2に記載のオゾン生成装置。
    The discharge surface is composed of end surfaces of the plurality of dielectric layers,
    The ozone generator according to claim 2.
  4.  前記放電面と前記放電端との間隔は、前記複数の放電部が隣接する間隔よりも狭い、
     請求項1乃至請求項3のいずれかに記載のオゾン生成装置。
    The interval between the discharge surface and the discharge end is narrower than the interval between the plurality of discharge portions,
    The ozone generator in any one of Claim 1 thru | or 3.
  5.  前記誘電体部は、1つの前記放電面を含む複数の外面を有し、
     前記放電部は、1つの前記放電端を含む複数の端部を有し、
     前記放電端と前記放電面とが対向する間隔が、他の端部と他の外面とが対向する間隔よりも狭い、
     請求項1乃至請求項4のいずれかに記載のオゾン生成装置。
    The dielectric portion has a plurality of outer surfaces including the one discharge surface,
    The discharge part has a plurality of ends including one discharge end,
    The interval between the discharge end and the discharge surface is narrower than the interval between the other end and the other outer surface,
    The ozone generator in any one of Claim 1 thru | or 4.
  6.  前記誘電体部は、2以上の放電面を含む複数の外面を有し、
     前記放電部は、2以上の放電端を含む複数の端部を有し、
     各放電端と各放電面とが対向する間隔がいずれも等しい、
     請求項1乃至請求項4のいずれかに記載のオゾン生成装置。
    The dielectric portion has a plurality of outer surfaces including two or more discharge surfaces,
    The discharge part has a plurality of ends including two or more discharge ends,
    The intervals at which each discharge end and each discharge surface face are equal,
    The ozone generator in any one of Claim 1 thru | or 4.
  7.  前記誘電体部は、前記放電面にあたる周面を有し、
     前記放電端は、前記誘電体部の周面と一定の間を保ちながら延びる、
     請求項1乃至請求項4のいずれかに記載のオゾン生成装置。
    The dielectric part has a peripheral surface corresponding to the discharge surface,
    The discharge end extends while maintaining a constant gap with the peripheral surface of the dielectric part,
    The ozone generator in any one of Claim 1 thru | or 4.
  8.  前記オゾン生成装置は、繰り返しのパターンと循環する位相差とを有するN(N≧3)相の駆動電圧を出力する駆動電圧源を備え、前記複数の放電部は、それらの並び順に従い第n(1≦n≦N)相目の駆動電圧が前記駆動電圧源から入力される、
     請求項1乃至請求項7のいずれかに記載のオゾン生成装置。
    The ozone generating device includes a driving voltage source that outputs a driving voltage of N (N ≧ 3) phase having a repetitive pattern and a circulating phase difference, and the plurality of discharge units are arranged in the order n. (1 ≦ n ≦ N) phase driving voltage is input from the driving voltage source;
    The ozone generator in any one of Claim 1 thru | or 7.
  9.  前記駆動電圧は矩形波信号またはパルス波信号である、
     請求項8に記載のオゾン生成装置。
    The driving voltage is a rectangular wave signal or a pulse wave signal.
    The ozone generator of Claim 8.
PCT/JP2016/050182 2015-01-30 2016-01-06 Ozone generator WO2016121423A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680005482.7A CN107108208B (en) 2015-01-30 2016-01-06 Ozone generator
DE112016000283.1T DE112016000283T5 (en) 2015-01-30 2016-01-06 OZONE GENERATING DEVICE
JP2016571884A JP6350680B2 (en) 2015-01-30 2016-01-06 Ozone generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015016360 2015-01-30
JP2015-016360 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121423A1 true WO2016121423A1 (en) 2016-08-04

Family

ID=56543045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050182 WO2016121423A1 (en) 2015-01-30 2016-01-06 Ozone generator

Country Status (4)

Country Link
JP (1) JP6350680B2 (en)
CN (1) CN107108208B (en)
DE (1) DE112016000283T5 (en)
WO (1) WO2016121423A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410040U (en) * 1987-07-04 1989-01-19
JP2000036369A (en) * 1998-07-21 2000-02-02 Takuma Co Ltd Creep discharge electrode
JP2001019409A (en) * 1999-07-02 2001-01-23 Toshiaki Akimoto High voltage ozone generator
WO2015008559A1 (en) * 2013-07-19 2015-01-22 株式会社村田製作所 Airflow generator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201442867U (en) * 2009-07-13 2010-04-28 安丘奥宗麦克斯设备有限公司 Creeping discharge tube
CN201709354U (en) * 2010-07-13 2011-01-19 洪昆喨 Dielectric discharge-based sterilizing device
US8663569B2 (en) * 2010-12-21 2014-03-04 Kabushiki Kaisha Toshiba Ozone generating apparatus
US9039985B2 (en) * 2011-06-06 2015-05-26 Mks Instruments, Inc. Ozone generator
JP2013166660A (en) * 2012-02-14 2013-08-29 Murata Mfg Co Ltd Ozone generating element and method for manufacturing ozone generating element
JP5983529B2 (en) * 2013-05-16 2016-08-31 株式会社村田製作所 Discharge element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410040U (en) * 1987-07-04 1989-01-19
JP2000036369A (en) * 1998-07-21 2000-02-02 Takuma Co Ltd Creep discharge electrode
JP2001019409A (en) * 1999-07-02 2001-01-23 Toshiaki Akimoto High voltage ozone generator
WO2015008559A1 (en) * 2013-07-19 2015-01-22 株式会社村田製作所 Airflow generator

Also Published As

Publication number Publication date
CN107108208A (en) 2017-08-29
JPWO2016121423A1 (en) 2017-08-31
DE112016000283T5 (en) 2017-10-12
CN107108208B (en) 2019-01-08
JP6350680B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP5775932B2 (en) Plasma generator and plasma generator
WO2012057271A1 (en) Ion wind generator and ion wind generating device
US9386678B2 (en) Plasma generator and plasma generating device
JP5481567B2 (en) Ion wind generator and ion wind generator
JP5774960B2 (en) Plasma generator and plasma generator
JP5491632B2 (en) Ion wind generator and ion wind generator
JP2006013383A (en) Laminated capacitor
JP2017107717A (en) Plasma reactor and plasma electrode plate
JP6350680B2 (en) Ozone generator
JP5983529B2 (en) Discharge element
JP6167445B2 (en) Plasma generator and plasma generator
JP5668134B2 (en) Ion wind generator and ion wind generator
JP6033651B2 (en) Plasma generator and plasma generator
JP2011009047A (en) Ceramic-coated electrode for and plasma treatment apparatus, and the plasma treatment apparatus
WO2016129327A1 (en) Ozone generating device
JP2006245027A (en) Multilayer piezoelectric element
CN218071336U (en) Piezoelectric driver unit array and deformable mirror
JP2007266468A (en) Laminated piezoelectric element
JP2008078833A (en) Emi filter
JP2002314160A (en) Laminated piezoelectric transformer
CN115242120A (en) Method for manufacturing piezoelectric actuator array and piezoelectric actuator array
JP2018060904A (en) Substrate with built-in coil and module
JP2004303922A (en) Method of manufacturing laminated electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571884

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000283

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743027

Country of ref document: EP

Kind code of ref document: A1