WO2015008383A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2015008383A1
WO2015008383A1 PCT/JP2013/069652 JP2013069652W WO2015008383A1 WO 2015008383 A1 WO2015008383 A1 WO 2015008383A1 JP 2013069652 W JP2013069652 W JP 2013069652W WO 2015008383 A1 WO2015008383 A1 WO 2015008383A1
Authority
WO
WIPO (PCT)
Prior art keywords
visible light
light
pixel
infrared light
infrared
Prior art date
Application number
PCT/JP2013/069652
Other languages
French (fr)
Japanese (ja)
Inventor
朋和 石原
西澤 明仁
吉田 大輔
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2013/069652 priority Critical patent/WO2015008383A1/en
Publication of WO2015008383A1 publication Critical patent/WO2015008383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals

Definitions

  • the present invention relates to an imaging apparatus.
  • Patent Document 1 As background art in this technical field.
  • exposure exposure control device that controls the exposure amount when photographing with visible light and infrared light simultaneously is performed, and a preferable exposure for both visible light system and infrared light system is achieved with a simple configuration.
  • a visible light imaging unit that receives visible light separated from incident light that enters through a diaphragm mechanism, and infrared light that is separated from incident light are used.
  • An exposure condition determination unit that determines an appropriate exposure condition for each infrared imaging unit that receives light, an aperture value setting unit that sets an aperture value of an aperture mechanism based on each appropriate exposure condition, and an appropriateness of a visible light imaging unit Based on the exposure condition and the set aperture value, based on the visible light system shutter speed setting unit for setting the exposure time in the visible light imaging unit, the appropriate exposure condition of the infrared light imaging unit and the set aperture value, Infrared light And a infrared optics shutter speed setting unit that sets the exposure time in the image section.
  • the visible light irradiated by the vehicle with a moderate brightness in the front and slightly downward is received by receiving the reflected light of the near-infrared light emitted by the car in front of the front with high brightness.
  • an imaging device that receives the reflected light of the night and captures the situation in the vicinity of the night. Since high-luminance visible light is not irradiated in front of the front, there is a feature that the driver of the oncoming vehicle is not put in a dangerous state even when it is desired to clearly capture a distant situation.
  • the image pickup device of the image pickup device has a total of four pixels, that is, a pixel of three primary color signals of R, G, and B and a pixel of an IR signal (near infrared signal; hereinafter also referred to as I signal), or a near infrared signal.
  • the pixel group includes a total of four pixels including the three primary color signals R + IR, G + IR, and B + IR and the IR signal.
  • the primary color signal or the IR signal at the output of the imaging device may be saturated depending on the intensity of the reflected light. For example, if any of the primary color signals is saturated, it is a matter of course that good colors cannot be reproduced. On the other hand, if the IR signal is saturated, there is a big problem that whiteout occurs in the luminance signal. With the configuration shown in Patent Document 1, there is a method of improving these problems by separately processing the IR signal and the three primary color signals that are visible light.
  • Patent Document 1 has an imaging unit that receives visible light and an imaging unit that receives infrared light, there is room for improvement in terms of practical cost.
  • An object of the present invention is to provide an imaging device in which, for example, brightness signal whiteout is reduced in view of the above-described problems.
  • an imaging device with reduced whiteness of the luminance signal which can contribute to the improvement of the basic performance of the imaging device.
  • FIG. 1 is a configuration diagram of an imaging device in Embodiment 1.
  • FIG. FIG. 4 is a diagram illustrating an example of an arrangement of pixels of an imaging unit in Embodiments 1 to 3.
  • FIG. 4 is a diagram illustrating an example of spectral characteristics of pixels of an imaging unit in Embodiments 1 to 3.
  • FIG. 4 is a diagram illustrating an example of spectral characteristics of pixels of an imaging unit in Embodiments 1 to 3.
  • FIG. 4 is a diagram illustrating an example of an arrangement of pixels of an imaging unit in Embodiments 1 to 3.
  • FIG. 4 is a diagram illustrating an example of spectral characteristics of pixels of an imaging unit in Embodiments 1 to 3.
  • FIG. 4 is a diagram illustrating an example of spectral characteristics of pixels of an imaging unit in Embodiments 1 to 3.
  • FIG. 4 is a diagram illustrating an example of spectral characteristics of pixels of an imaging unit in Embodiments 1 to 3.
  • FIG. 6 is a configuration diagram of an imaging unit in Embodiment 2.
  • FIG. 9 is a configuration diagram of an imaging unit in Embodiment 3.
  • FIG. 1 is a configuration diagram of an imaging apparatus 100 according to the first embodiment.
  • the imaging device 100 is an imaging device according to the present invention.
  • Reference numeral 101 denotes an imaging unit, which is a lens that forms an image of light coming from a subject, a diaphragm, and a pixel having sensitivity in both the visible region and the near-infrared region on the same element, and a red region + near-infrared region (hereinafter referred to as R + I).
  • G + I green region + near infrared region
  • B + I blue region + near infrared region
  • I pixel that is a pixel having sensitivity in the near infrared region
  • Reference numeral 102 denotes a color signal processing circuit, which performs demosaicing using signals obtained from the positions of (R + I) pixel (G + I) pixel, (B + I) pixel, and I pixel, and mixes them in accordance with the spectral characteristics of the image sensor 102.
  • the red, green, and blue signals in each pixel are generated based on the ratio, and further, white balance processing is performed to generate R, G, and B signals that are final color signals.
  • a gamma processing circuit 103 performs gamma correction processing on the R, G, and B signals generated by the color signal processing circuit 104. As is well known, gamma correction is performed to correct response characteristics of an external display device.
  • a color difference signal processing circuit 104 generates an image color difference signal from the output of the gamma processing circuit 103.
  • a luminance signal processing circuit 105 performs demosaicing on the (R + I) pixel, (G + I) pixel, (B + I) pixel, and I pixel signals of the imaging unit 101 in order to generate a luminance signal.
  • a luminance signal is generated with a mixing ratio that matches the spectral characteristics of the image sensor 102.
  • Reference numeral 111 denotes a visible light amount detection circuit that detects signal amounts of (R + I) pixels, (G + I) pixels, and (B + I) pixels of the imaging unit 101.
  • a near-infrared luminance signal processing circuit 106 generates a luminance signal obtained from the near-infrared signal from the signal of the I pixel of the imaging unit 101.
  • Reference numeral 112 denotes a near-infrared light amount detection circuit that detects the amount of near-infrared light from the output of the invisible light luminance signal processing circuit.
  • An image synthesis processing circuit 107 synthesizes the outputs of the luminance signal processing circuit 105 and the near infrared luminance signal processing circuit 106.
  • a luminance gamma processing circuit 108 performs gamma correction processing on the output of the image composition processing circuit 107.
  • An image output processing unit 109 outputs the luminance signal output of the luminance gamma processing circuit 108 and the color difference signal output of the color difference signal processing circuit 104 in a predetermined signal format (for example, HDMI: High Definition Multimedia Interface).
  • Reference numeral 110 denotes a control unit that controls the exposure amount of the imaging unit based on the detection output from each component of the imaging device 100.
  • the signal output of each pixel of visible light and near-infrared light received by the imaging unit 101 is converted into a color signal by the color signal processing circuit 102 and further subjected to gamma correction processing by the gamma processing circuit 103 to generate a color difference.
  • the circuit 104 processes the color difference signal of the color video signal.
  • the luminance signal processing circuit 105 generates a luminance signal of a visible light component based on the signal output of each pixel of visible light and near infrared light received by the imaging unit 101, and the near infrared luminance signal processing circuit 106.
  • the luminance signal of the near infrared signal component is generated.
  • the luminance signal generated from the visible light component by the luminance signal processing circuit 105 and the luminance signal component generated from the near infrared signal component by the near infrared luminance signal processing circuit 106 are combined. . Therefore, in the imaging apparatus 100, unlike a camera having sensitivity only to normal visible light, in order to generate a luminance signal that also includes a near-infrared component, an object having a small amount of visible light but a near-infrared component is selected. It can be captured as a video.
  • the output of the image composition processing circuit 107 is a video luminance signal that has been gamma corrected by the luminance gamma processing circuit 108.
  • the color difference signal of the color video signal processed by the color difference generation circuit 104 and the luminance signal processed by the luminance gamma processing circuit 108 are output in a predetermined video output signal form by the image output processing unit 109.
  • the signal amount of the luminance signal of the visible light component processed by the luminance signal processing circuit 105 is detected by the visible light amount detection circuit 111, and the light amount of the near infrared light processed by the near infrared luminance signal processing circuit 106 is near. Detection is performed by the infrared light amount detection circuit 112.
  • the control unit 110 keeps the light amount of the visible light and the light amount of the near infrared light in the imaging unit 101 optimally according to the outputs of the visible light amount detection circuit 111 and the near infrared light amount detection circuit 112. At this time, the light amount of visible light and the light amount of near-infrared light are independently controlled in accordance with the signal amount photoelectrically converted by the image sensor of the imaging unit 101.
  • the amount of light is controlled by an electronic shutter that controls the charge accumulation time in the image sensor, or by an optical diaphragm mechanism such as a diaphragm blade.
  • FIG. 2 is a diagram illustrating an example of an arrangement of pixels of the imaging unit in the first to third embodiments, and illustrates an example of a pixel arrangement of visible light + near infrared sensor.
  • a pixel 201 having a main sensitivity for R, a pixel 202 having a main sensitivity for G, a pixel 203 having a main sensitivity for B, and a pixel 204 having a main sensitivity for I are arranged on the same image sensor. These are arranged in a grid as an example. With the arrangement of the pixels 201 to 204, pixels are repeatedly formed on the image sensor. Further, the exposure time of each pixel can be controlled by an electronic shutter by setting from the outside (for example, the control unit in FIG. 1).
  • FIG. 3 is a diagram illustrating an example of the spectral characteristics of the pixels of the imaging unit according to the first to third embodiments.
  • the sensitivity characteristics that is, spectral characteristics, of the pixels 201 to 204 shown in FIG. Is.
  • 301 is the spectral characteristic of the pixel 203 (FIG. 2)
  • 302 is the spectral characteristic of the pixel 202 (FIG. 2)
  • 303 is the spectral characteristic of the pixel 201 (FIG. 2)
  • 304 is the pixel 204 (FIG. 2).
  • FIG. 2) is a spectral characteristic.
  • each has sensitivity in the wavelength region of I in addition to the wavelength region of visible light of R, G, and B.
  • a normal camera with only visible light range is composed of pixels with these spectral characteristics.
  • an optical filter that blocks the wavelength region of the near-infrared light region (I) is light between the image sensor and the lens. Inserted on the axis and used.
  • the spectral characteristic 304 has sensitivity only in the wavelength region of I, and by having this pixel together with the pixel having sensitivity in the visible light region, the color component and luminance component of the visible light region (R, G, B), A luminance component by the near-infrared light region (I) is generated at the same time.
  • the image pickup device having this pixel configuration has a feature that the sensitivity of near infrared light can be increased in addition to visible light sensitivity because each pixel has sensitivity to near infrared light.
  • FIG. 4 is a diagram illustrating an example of the spectral characteristics of the pixels of the imaging unit according to the first to third embodiments.
  • FIG. 3 illustrates sensitivity characteristics, that is, spectral characteristics, of the pixels 201 to 204 shown in FIG. An example different from FIG.
  • 401 is a spectral characteristic of a different example of the pixel 203 (FIG. 2)
  • 402 is a spectral characteristic of a different example of the pixel 202 (FIG. 2)
  • 403 is a spectral characteristic of a different example of the pixel 201 (FIG. 2).
  • 404 is a spectral characteristic of a different example of the pixel 204 (FIG. 2).
  • each has sensitivity only in the wavelength range that is visible light of R, G, and B.
  • the spectral characteristic 404 is sensitive only to I.
  • the sensitivity of a color image can be increased using a near-infrared light component while using a signal processing method for processing a signal obtained by cutting off near-infrared light.
  • a color image faithful to the color of the subject can be visually generated using a signal processing method that processes a signal obtained by cutting off near-infrared light.
  • FIG. 5 is a diagram illustrating an example of an arrangement of pixels of the imaging unit in the first to third embodiments, and illustrates an example of a pixel arrangement of visible light + near infrared sensor, which is different from FIG.
  • a pixel 501 having a main sensitivity for R, a pixel 502 ⁇ ⁇ ⁇ having a main sensitivity for G, a pixel 503 having a main sensitivity for B, and a pixel 504 having all the sensitivities R, G, B, and I Are arranged in a grid pattern. Repeated pixels are formed on the image sensor with the arrangement of the pixels 501 to 504.
  • FIG. 6 is a diagram illustrating an example of the spectral characteristics of the pixels of the imaging unit according to the first to third embodiments.
  • the sensitivity characteristics that is, the spectral characteristics, of the pixels 501 to 504 illustrated in FIG. 5 with respect to the wavelength of light are illustrated.
  • 601 is the spectral characteristic of the pixel 503 (FIG. 5)
  • 602 is the spectral characteristic of the pixel 502 (FIG. 2)
  • 603 is the spectral characteristic of the pixel 501 (FIG. 5)
  • 604 is the pixel 604 ( FIG. 2) is a spectral characteristic.
  • the spectral characteristics 601, 602, and 603 have sensitivity in the wavelength range of I in addition to the wavelength range of visible light of R, G, and B, respectively.
  • a normal camera with only a visible light region is composed of pixels having these spectral characteristics.
  • an optical filter that blocks the I wavelength region is inserted and used on the optical axis between the image sensor and the lens.
  • the spectral characteristic 604 has sensitivity to all of R, G, B, and I.
  • FIG. 7 is a diagram illustrating an example of spectral characteristics of the pixels of the imaging unit according to the first to third embodiments.
  • FIG. 6 illustrates sensitivity characteristics, that is, spectral characteristics, of the pixels 501 to 504 illustrated in FIG.
  • reference numeral 701 denotes a different spectral characteristic of the pixel 503 (FIG. 5)
  • reference numeral 702 denotes a different spectral characteristic of the pixel 502 (FIG. 5)
  • reference numeral 703 denotes a different spectral characteristic of the pixel 501 (FIG. 5)
  • 704 is a spectral characteristic of a different example of the pixel 504 (FIG. 5).
  • Spectral characteristics 701 to 703 have sensitivity only in the wavelength range of visible light of R, G, and B, respectively.
  • the spectral characteristic 704 has sensitivity to all of R, G, B, and I.
  • the color component of the visible light region (R, G, B) and A luminance component and a luminance component due to the near-infrared light region (I) are generated simultaneously.
  • the R, G, and B pixels have only visible light components and have pixels that are sensitive to all visible light and near infrared.
  • a signal processing method for processing a signal obtained by increasing the sensitivity of infrared light or cutting off near-infrared light it is suitable for use in generating a color image faithful to the color of a subject visually.
  • FIG. 8 is a configuration diagram of the imaging unit in the second embodiment, and shows details of the imaging unit 101 shown in FIG.
  • reference numeral 801 denotes a lens
  • reference numeral 802 denotes a stop.
  • the stop 802 is driven and controlled by the control unit 110 (FIG. 1) via a drive circuit 804.
  • Reference numeral 803 denotes an image sensor having, for example, the configuration shown in FIGS.
  • the control unit 110 controls the exposure time of the image sensor 803, that is, the shutter time set for the electronic shutter so that the shutter time of all the pixels is the same.
  • the diaphragm 802 is made of a material that transmits visible light and blocks near-infrared light.
  • a diaphragm blade made of the same material as an IR blocking filter for blocking near-infrared light is used. Have.
  • FIG. 9 is a configuration diagram of the image pickup unit in the third embodiment, and shows details of the image pickup unit 101 shown in FIG.
  • a lens 801, an image sensor 803, and a drive circuit 804 are the same as those shown in FIG.
  • Reference numeral 901 denotes a diaphragm, which is driven and controlled by the control unit 110 (FIG. 1) via the drive circuit 804.
  • the diaphragm 901 is made of a material that transmits near-infrared light and cuts visible light.
  • the diaphragm 901 has diaphragm blades made of the same material as a visible light blocking filter for blocking visible light. is doing.
  • near infrared light is controlled by the electronic shutter of the image sensor 803, and visible light is controlled individually by the control unit 110 (FIG. 1) in a balanced manner by the diaphragm 901. Therefore, it is possible to obtain a good image without overexposure on a subject that is irradiated with visible light, for example, outdoors at night.
  • the near-infrared light is controlled by the electronic shutter, and the visible light is controlled by the aperture control that has a better light shielding performance than the electronic shutter. It is possible to obtain a more suitable image in an imaging environment in which imaging is performed by effectively using these components.
  • Example 2 and Example 3 the electronic shutter of the image sensor and the lens aperture can be referred to as a gain setting unit for changing the photoelectric conversion gain with respect to the amount of light incident on the pixel.
  • the visible light region and the near red region are used. It is possible to provide an imaging apparatus that individually and suitably controls the exposure amounts of both the outer regions. Although the most visually obvious effect is reduction of whiteout, it has an effect of obtaining a good image, for example, a color image faithful to the color of the subject can be visually generated. Furthermore, unlike the above-mentioned patent documents, there is no need for a separate imaging unit that receives visible light and an imaging unit that receives infrared light, so there are few practical problems related to cost.
  • lens 801 In only one lens 801 is shown, but as is well known, it generally has a plurality of lenses including a convex lens and a concave lens, and these lenses are positioned inside the lens barrel. ing.
  • the diaphragms 802 and 901 may be positioned so as to be sandwiched between the plurality of lenses.
  • a mechanical shutter for reinforcing the function of the electronic shutter of the imaging apparatus may be provided in the lens barrel.
  • the diaphragms 802 and 901 in each embodiment may be provided in a lens gap different from the mechanical shutter in the gap between a plurality of lenses, or may be provided in the same gap.
  • both the diaphragm 802 by the IR blocking filter in the second embodiment and the diaphragm 901 by the visible light blocking filter in the third embodiment are provided, and the light amounts of both near infrared light and visible light are individually controlled. Also good.
  • embodiments in which various modifications are made to the embodiments disclosed so far can be considered, and all are within the scope of the present invention.
  • DESCRIPTION OF SYMBOLS 100 Imaging device, 101: Imaging part, 102: Color signal processing circuit, 103: Gamma processing circuit, 104: Color difference generation processing circuit, 105: Luminance signal processing circuit, 106: Near-infrared luminance signal processing circuit, 107: Image Synthesis processing circuit, 108: luminance gamma processing circuit, 109: image output processing unit, 110: control unit, 111: visible light amount detection circuit, 112: near infrared light amount detection circuit, 801: lens, 802: diaphragm, 803: imaging Element, 804: drive circuit, 901: aperture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

Provided is an imaging device that obtains a suitable video signal by using an imaging unit that has pixels which have sensitivity in the visible light region and the near-infrared region, and pixels which have sensitivity in the near-infrared region. This image device has: an imaging unit having the aforementioned two types of pixels; a visible light gain setting unit that changes the photoelectric conversion gain with respect to the amount of light incident to the aforementioned visible light region pixels; a near-infrared light gain setting unit that changes the photoelectric conversion gain with respect to the amount of light incident to the aforementioned near-infrared light region pixels; a control unit that controls the aforementioned two variable light gain units; and a signal generation unit that generates a video signal from the outputs of the two types of pixels. For example, the near-infrared light gain setting unit is an aperture mechanism having a filter that prevents the transmission of near-infrared light.

Description

撮像装置Imaging device
 本発明は、撮像装置に関する。 The present invention relates to an imaging apparatus.
 本技術分野の背景技術として、下記の特許文献1がある。該公報の要約には、課題として「可視光および赤外光での撮影を同時に行う際の露光量を制御する露光量制御装置において、簡易な構成で可視光系、赤外光系とも好ましい露出を得られるようにする。」と記載され、解決手段として「絞り機構を介して入射する入射光から分光された可視光を受光する可視光撮像部、および入射光から分光された赤外光を受光する赤外光撮像部それぞれについて適正露出条件を判定する露出条件判定部と、それぞれの適正露出条件に基づいて、絞り機構の絞り値を設定する絞り値設定部と、可視光撮像部の適正露出条件および設定された絞り値に基づいて、可視光撮像部における露光時間を設定する可視光系シャッター速度設定部と、赤外光撮像部の適正露出条件および設定された絞り値に基づいて、赤外光撮像部における露光時間を設定する赤外光系シャッター速度設定部とを備える。」と記載されている。 There is the following Patent Document 1 as background art in this technical field. In the summary of the publication, as a subject, “exposure exposure control device that controls the exposure amount when photographing with visible light and infrared light simultaneously is performed, and a preferable exposure for both visible light system and infrared light system is achieved with a simple configuration. As a means for solving the problem, “a visible light imaging unit that receives visible light separated from incident light that enters through a diaphragm mechanism, and infrared light that is separated from incident light are used. An exposure condition determination unit that determines an appropriate exposure condition for each infrared imaging unit that receives light, an aperture value setting unit that sets an aperture value of an aperture mechanism based on each appropriate exposure condition, and an appropriateness of a visible light imaging unit Based on the exposure condition and the set aperture value, based on the visible light system shutter speed setting unit for setting the exposure time in the visible light imaging unit, the appropriate exposure condition of the infrared light imaging unit and the set aperture value, Infrared light And a infrared optics shutter speed setting unit that sets the exposure time in the image section. Has been described as ".
特開2010-183191号公報JP 2010-183191 A
 例えば車載用の撮像装置においては、車が正面前方に高い輝度で照射した近赤外光の反射光を受光して夜間の遠方の状況を捉え、正面やや下向きに適度な輝度で照射した可視光の反射光を受光して夜間の近傍の状況を捉える撮像装置がある。正面前方に高い輝度の可視光を照射することがないので、遠方の状況を明瞭に捉えたい場合でも対向車の運転手を危険な状態にしないという特徴がある。このための前記撮像装置の撮像素子は、R、G、Bの三原色信号の画素とIR信号(近赤外信号;以下ではI信号とも呼ぶ)の画素の計4画素、または近赤外信号を含むR+IR、G+IR、B+IRの三原色信号とIR信号の計4画素を一組とした画素群を有している。 For example, in an in-vehicle imaging device, the visible light irradiated by the vehicle with a moderate brightness in the front and slightly downward is received by receiving the reflected light of the near-infrared light emitted by the car in front of the front with high brightness. There is an imaging device that receives the reflected light of the night and captures the situation in the vicinity of the night. Since high-luminance visible light is not irradiated in front of the front, there is a feature that the driver of the oncoming vehicle is not put in a dangerous state even when it is desired to clearly capture a distant situation. For this purpose, the image pickup device of the image pickup device has a total of four pixels, that is, a pixel of three primary color signals of R, G, and B and a pixel of an IR signal (near infrared signal; hereinafter also referred to as I signal), or a near infrared signal. The pixel group includes a total of four pixels including the three primary color signals R + IR, G + IR, and B + IR and the IR signal.
 前記した撮像装置では反射光の強度によっては、撮像素子の出力における原色信号またはIR信号が飽和することがある。例えば、原色信号のいずれかが飽和すれば良好な色の再現ができないことはもちろんであるが、一方でIR信号が飽和すれば輝度信号に白飛びが発生するという大きな問題がある。特許文献1で示される構成により、IR信号と可視光である三原色信号とを別に処理することで、これらの課題を改善する方法がある。 In the imaging device described above, the primary color signal or the IR signal at the output of the imaging device may be saturated depending on the intensity of the reflected light. For example, if any of the primary color signals is saturated, it is a matter of course that good colors cannot be reproduced. On the other hand, if the IR signal is saturated, there is a big problem that whiteout occurs in the luminance signal. With the configuration shown in Patent Document 1, there is a method of improving these problems by separately processing the IR signal and the three primary color signals that are visible light.
 しかしながら特許文献1では、可視光を受光する撮像部と赤外光を受光する撮像部とを個別に持っているため、実用上コストの点に関して改善の余地がある。 However, since Patent Document 1 has an imaging unit that receives visible light and an imaging unit that receives infrared light, there is room for improvement in terms of practical cost.
 本発明の目的は、前記した課題に鑑み、例えば輝度信号の白飛びを低減した撮像装置を提供することにある。 An object of the present invention is to provide an imaging device in which, for example, brightness signal whiteout is reduced in view of the above-described problems.
 上記目的を達成するために、特許請求の範囲に記載の構成を採用する。 In order to achieve the above object, the configuration described in the claims is adopted.
 本発明によれば、輝度信号の白飛びを低減した撮像装置を提供することができ、撮像装置の基本性能の向上に寄与することができる。 According to the present invention, it is possible to provide an imaging device with reduced whiteness of the luminance signal, which can contribute to the improvement of the basic performance of the imaging device.
 この他、実施形態に応じた効果については、以下で説明する。 Other effects according to the embodiment will be described below.
実施例1における撮像装置の構成図。1 is a configuration diagram of an imaging device in Embodiment 1. FIG. 実施例1乃至3における撮像部の画素の並びの例を示す図。FIG. 4 is a diagram illustrating an example of an arrangement of pixels of an imaging unit in Embodiments 1 to 3. 実施例1乃至3における撮像部の画素の分光特性の一例を示す図。FIG. 4 is a diagram illustrating an example of spectral characteristics of pixels of an imaging unit in Embodiments 1 to 3. 実施例1乃至3における撮像部の画素の分光特性の一例を示す図。FIG. 4 is a diagram illustrating an example of spectral characteristics of pixels of an imaging unit in Embodiments 1 to 3. 実施例1乃至3における撮像部の画素の並びの例を示す図。FIG. 4 is a diagram illustrating an example of an arrangement of pixels of an imaging unit in Embodiments 1 to 3. 実施例1乃至3における撮像部の画素の分光特性の一例を示す図。FIG. 4 is a diagram illustrating an example of spectral characteristics of pixels of an imaging unit in Embodiments 1 to 3. 実施例1乃至3における撮像部の画素の分光特性の一例を示す図。FIG. 4 is a diagram illustrating an example of spectral characteristics of pixels of an imaging unit in Embodiments 1 to 3. 実施例2における撮像部の構成図。FIG. 6 is a configuration diagram of an imaging unit in Embodiment 2. 実施例3における撮像部の構成図。FIG. 9 is a configuration diagram of an imaging unit in Embodiment 3.
 以下、本発明の実施形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、実施例1における撮像装置100の構成図である。
  撮像装置100は、本発明に係る撮像装置である。
FIG. 1 is a configuration diagram of an imaging apparatus 100 according to the first embodiment.
The imaging device 100 is an imaging device according to the present invention.
 101は撮像部であり、被写体から来る光を結像するレンズ、絞り、同一素子上に可視領域及び近赤外領域の両方に感度を持つ画素である赤色領域+近赤外領域(以下R+Iという)画素、緑色領域+近赤外領域(以下G+Iという)画素、青色領域+近赤外領域(以下B+Iという)画素、及び、近赤外領域に感度を持つ画素であるI画素を含む撮像素子を有する。当該の撮像素子の各画素は、光電変換のための電荷蓄積時間を設定する電子シャッタで前記光の露光時間を設定することができる。各画素出力は、レンズ101により結像される光の光量に応じて光電変換及びA/D変換を施され、デジタルデータとして出力される。なお、撮像部102の撮像素子の画素構成などの詳細は後述する。 Reference numeral 101 denotes an imaging unit, which is a lens that forms an image of light coming from a subject, a diaphragm, and a pixel having sensitivity in both the visible region and the near-infrared region on the same element, and a red region + near-infrared region (hereinafter referred to as R + I). ) Pixel, green region + near infrared region (hereinafter referred to as G + I) pixel, blue region + near infrared region (hereinafter referred to as B + I) pixel, and I pixel that is a pixel having sensitivity in the near infrared region Have Each pixel of the imaging element can set the exposure time of the light with an electronic shutter that sets a charge accumulation time for photoelectric conversion. Each pixel output is subjected to photoelectric conversion and A / D conversion in accordance with the amount of light imaged by the lens 101, and is output as digital data. Details of the pixel configuration of the image sensor of the imaging unit 102 will be described later.
 102は色信号処理回路であり、(R+I)画素(G+I)画素、(B+I)画素、及びI画素の位置から得られる信号を用いてデモザイキングを施し、撮像素子102の分光特性に合わせた混合比で各々の画素における赤、緑、青信号を生成し、さらにホワイトバランス処理を行い最終的な映像の色信号であるR、G、B信号を生成する。 Reference numeral 102 denotes a color signal processing circuit, which performs demosaicing using signals obtained from the positions of (R + I) pixel (G + I) pixel, (B + I) pixel, and I pixel, and mixes them in accordance with the spectral characteristics of the image sensor 102. The red, green, and blue signals in each pixel are generated based on the ratio, and further, white balance processing is performed to generate R, G, and B signals that are final color signals.
 103はガンマ処理回路であり、色信号処理回路104で生成したR、G、B信号にガンマ補正の処理を施す。周知のとおりガンマ補正とは、外部の表示装置の応答特性を補正するために行われる。
  104は色差信号処理回路であり、ガンマ処理回路103の出力より映像の色差信号を生成する。
A gamma processing circuit 103 performs gamma correction processing on the R, G, and B signals generated by the color signal processing circuit 104. As is well known, gamma correction is performed to correct response characteristics of an external display device.
A color difference signal processing circuit 104 generates an image color difference signal from the output of the gamma processing circuit 103.
 105は輝度信号処理回路であり、輝度信号を生成するために撮像部101の(R+I)画素、(G+I)画素、(B+I)画素、及びI画素の各信号に対してデモザイキングを施し、さらに撮像素子102の分光特性に合わせた混合比で輝度信号を生成する。
  111は可視光量検波回路であり、撮像部101の(R+I)画素、(G+I)画素、(B+I)画素の信号量を検波する。
A luminance signal processing circuit 105 performs demosaicing on the (R + I) pixel, (G + I) pixel, (B + I) pixel, and I pixel signals of the imaging unit 101 in order to generate a luminance signal. A luminance signal is generated with a mixing ratio that matches the spectral characteristics of the image sensor 102.
Reference numeral 111 denotes a visible light amount detection circuit that detects signal amounts of (R + I) pixels, (G + I) pixels, and (B + I) pixels of the imaging unit 101.
 106は近赤外輝度信号処理回路であり、撮像部101のI画素の信号より近赤外信号から得られる輝度信号を生成する。
  112は近赤外光量検波回路であり、非可視光輝度信号処理回路の出力より近赤外光の信号量を検波する。
A near-infrared luminance signal processing circuit 106 generates a luminance signal obtained from the near-infrared signal from the signal of the I pixel of the imaging unit 101.
Reference numeral 112 denotes a near-infrared light amount detection circuit that detects the amount of near-infrared light from the output of the invisible light luminance signal processing circuit.
 107は画像合成処理回路であり、輝度信号処理回路105と近赤外輝度信号処理回路106の出力を合成する。
  108は輝度ガンマ処理回路であり、画像合成処理回路107の出力にガンマ補正の処理を施す。
An image synthesis processing circuit 107 synthesizes the outputs of the luminance signal processing circuit 105 and the near infrared luminance signal processing circuit 106.
A luminance gamma processing circuit 108 performs gamma correction processing on the output of the image composition processing circuit 107.
 109は画像出力処理部であり、輝度ガンマ処理回路108の輝度信号出力と色差信号処理回路104の色差信号出力とを、所定の信号形態(たとえばHDMI:High Definition Multimedia Interface)で出力する。
  110は制御部であり、撮像装置100の各構成要素からの検波出力を元に撮像部の露光量を制御する。
An image output processing unit 109 outputs the luminance signal output of the luminance gamma processing circuit 108 and the color difference signal output of the color difference signal processing circuit 104 in a predetermined signal format (for example, HDMI: High Definition Multimedia Interface).
Reference numeral 110 denotes a control unit that controls the exposure amount of the imaging unit based on the detection output from each component of the imaging device 100.
 撮像部101で受光した可視光及び近赤外光の各画素の信号出力は、色信号処理回路102にて色信号に変換され、さらにガンマ処理回路103にてガンマ補正の処理がなされ、色差生成回路104にてカラー映像信号の色差信号に処理される。 The signal output of each pixel of visible light and near-infrared light received by the imaging unit 101 is converted into a color signal by the color signal processing circuit 102 and further subjected to gamma correction processing by the gamma processing circuit 103 to generate a color difference. The circuit 104 processes the color difference signal of the color video signal.
 また同時に撮像部101で受光した可視光及び近赤外光の各画素の信号出力に基づき、輝度信号処理回路105にて可視光成分の輝度信号が生成され、かつ近赤外輝度信号処理回路106で近赤外信号成分の輝度信号が生成される。 At the same time, the luminance signal processing circuit 105 generates a luminance signal of a visible light component based on the signal output of each pixel of visible light and near infrared light received by the imaging unit 101, and the near infrared luminance signal processing circuit 106. Thus, the luminance signal of the near infrared signal component is generated.
 画像合成処理部107では、輝度信号処理回路105で可視光成分より生成された輝度信号と近赤外輝度信号処理回路106で近赤外信号成分より生成された輝度信号成分の合成処理がなされる。このため撮像装置100では、通常の可視光のみに対して感度を持つカメラと異なり、近赤外成分も合わせて輝度信号を生成するために、可視光が少ないが近赤外成分がある被写体を映像として捉えることが可能となる。画像合成処理回路107の出力は、輝度ガンマ処理回路108にてガンマ補正された映像輝度信号とされる。 In the image composition processing unit 107, the luminance signal generated from the visible light component by the luminance signal processing circuit 105 and the luminance signal component generated from the near infrared signal component by the near infrared luminance signal processing circuit 106 are combined. . Therefore, in the imaging apparatus 100, unlike a camera having sensitivity only to normal visible light, in order to generate a luminance signal that also includes a near-infrared component, an object having a small amount of visible light but a near-infrared component is selected. It can be captured as a video. The output of the image composition processing circuit 107 is a video luminance signal that has been gamma corrected by the luminance gamma processing circuit 108.
 色差生成回路104にて処理されたカラー映像信号の色差信号と、輝度ガンマ処理回路108にて処理された輝度信号は、画像出力処理部109にて所定の映像出力の信号形態で出力される。 The color difference signal of the color video signal processed by the color difference generation circuit 104 and the luminance signal processed by the luminance gamma processing circuit 108 are output in a predetermined video output signal form by the image output processing unit 109.
 一方輝度信号処理回路105で処理された可視光成分の輝度信号の信号量は、可視光量検波回路111によって検波され、近赤外輝度信号処理回路106で処理された近赤外光の光量は近赤外光量検波回路112にて検波される。制御部110は可視光量検波回路111と近赤外光量検波回路112の出力に応じて、撮像部101における可視光の光量と近赤外光の光量を最適に保つようする。この際に、撮像部101の撮像素子にて光電変換された信号量に応じて、可視光の光量と近赤外光の光量を独立に制御する。 On the other hand, the signal amount of the luminance signal of the visible light component processed by the luminance signal processing circuit 105 is detected by the visible light amount detection circuit 111, and the light amount of the near infrared light processed by the near infrared luminance signal processing circuit 106 is near. Detection is performed by the infrared light amount detection circuit 112. The control unit 110 keeps the light amount of the visible light and the light amount of the near infrared light in the imaging unit 101 optimally according to the outputs of the visible light amount detection circuit 111 and the near infrared light amount detection circuit 112. At this time, the light amount of visible light and the light amount of near-infrared light are independently controlled in accordance with the signal amount photoelectrically converted by the image sensor of the imaging unit 101.
 このため、被写体の可視光と近赤外光の光量分布の違いによる影響が低減され、常に可視光と近赤外光とのバランスの良い視認性の良い画像信号を得ることができる。なお、後記するように光量の制御は、撮像素子における電荷の蓄積時間を制御する電子シャッタによって行われ、または、絞り羽根のような光学的な絞り機構によって行われる。 For this reason, the influence of the difference in the light amount distribution between the visible light and the near infrared light of the subject is reduced, and an image signal having a good balance between the visible light and the near infrared light can be obtained. As will be described later, the amount of light is controlled by an electronic shutter that controls the charge accumulation time in the image sensor, or by an optical diaphragm mechanism such as a diaphragm blade.
 次に、本実施例における撮像部101について説明する。
  図2は、実施例1乃至3における撮像部の画素の並びの例を示す図であり、可視光+近赤外センサの画素配置の一例を示したものである。
Next, the imaging unit 101 in the present embodiment will be described.
FIG. 2 is a diagram illustrating an example of an arrangement of pixels of the imaging unit in the first to third embodiments, and illustrates an example of a pixel arrangement of visible light + near infrared sensor.
 同一の撮像素子上にRに主な感度を持つ画素201、 Gに主な感度を持つ画素202、Bに主な感度を持つ画素203、Iに主な感度を持つ画素204を配置しており、これらは一例として格子状に並べられている。画素201乃至画素204の配置で撮像素子上に繰り返し画素が構成されている。また各画素は、外部(例えば図1の制御部)からの設定により、電子シャッタにより露光時間を制御できる。 A pixel 201 having a main sensitivity for R, a pixel 202 having a main sensitivity for G, a pixel 203 having a main sensitivity for B, and a pixel 204 having a main sensitivity for I are arranged on the same image sensor. These are arranged in a grid as an example. With the arrangement of the pixels 201 to 204, pixels are repeatedly formed on the image sensor. Further, the exposure time of each pixel can be controlled by an electronic shutter by setting from the outside (for example, the control unit in FIG. 1).
 図3は、実施例1乃至3における撮像部の画素の分光特性の一例を示す図であり、図2で示した各画素201乃至画素204の光の波長に対する感度特性、すなわち分光特性を示したものである。同図において301は画素203(図2)の分光特性であり、302は画素202(図2)の分光特性であり、303は画素201(図2)の分光特性であり、304は画素204(図2)の分光特性である。分光特性301乃至303が示すように各々は、R、G、Bの可視光である波長域に加えて、Iの波長域にも感度を持つ。 FIG. 3 is a diagram illustrating an example of the spectral characteristics of the pixels of the imaging unit according to the first to third embodiments. The sensitivity characteristics, that is, spectral characteristics, of the pixels 201 to 204 shown in FIG. Is. In the figure, 301 is the spectral characteristic of the pixel 203 (FIG. 2), 302 is the spectral characteristic of the pixel 202 (FIG. 2), 303 is the spectral characteristic of the pixel 201 (FIG. 2), and 304 is the pixel 204 (FIG. 2). FIG. 2) is a spectral characteristic. As shown by the spectral characteristics 301 to 303, each has sensitivity in the wavelength region of I in addition to the wavelength region of visible light of R, G, and B.
 通常の可視光域のみのカメラはこれらの分光特性を持つ画素で構成されている。通常は可視光域のみを撮像するため、即ちI部分の影響をなくすために、近赤外光域(I)の波長域を遮断する光学的なフィルタが、撮像素子とレンズとの間の光軸上に挿入され使用されている。分光特性304はIの波長域のみに感度を持ち、この画素を上記可視光域の感度を持つ画素とともに持たせることにより、可視光域(R、G、B)の色成分及び輝度成分と、近赤外光域(I)による輝度成分とが同時に生成される。この画素構成の撮像素子は、それぞれの画素が近赤外光に対して感度を持っているため、可視光感度に加えて近赤外光の感度を上げることができるという特徴がある。 A normal camera with only visible light range is composed of pixels with these spectral characteristics. Usually, in order to image only the visible light region, that is, to eliminate the influence of the I portion, an optical filter that blocks the wavelength region of the near-infrared light region (I) is light between the image sensor and the lens. Inserted on the axis and used. The spectral characteristic 304 has sensitivity only in the wavelength region of I, and by having this pixel together with the pixel having sensitivity in the visible light region, the color component and luminance component of the visible light region (R, G, B), A luminance component by the near-infrared light region (I) is generated at the same time. The image pickup device having this pixel configuration has a feature that the sensitivity of near infrared light can be increased in addition to visible light sensitivity because each pixel has sensitivity to near infrared light.
 図4は、実施例1乃至3における撮像部の画素の分光特性の一例を示す図であり、図2で示した各画素201乃至画素204の光の波長に対する感度特性すなわち分光特性の、図3とは異なる一例を示したものである。同図において401は画素203(図2)の異なる一例の分光特性であり、402は画素202(図2)の異なる一例の分光特性であり、 403は画素201(図2)の異なる一例の分光特性であり、 404は画素204(図2)の異なる一例の分光特性である。分光特性401乃至403が示すように各々は、R、G、Bの可視光である波長域のみに感度を持つ。 FIG. 4 is a diagram illustrating an example of the spectral characteristics of the pixels of the imaging unit according to the first to third embodiments. FIG. 3 illustrates sensitivity characteristics, that is, spectral characteristics, of the pixels 201 to 204 shown in FIG. An example different from FIG. In the figure, 401 is a spectral characteristic of a different example of the pixel 203 (FIG. 2), 402 is a spectral characteristic of a different example of the pixel 202 (FIG. 2), and 403 is a spectral characteristic of a different example of the pixel 201 (FIG. 2). 404 is a spectral characteristic of a different example of the pixel 204 (FIG. 2). As indicated by the spectral characteristics 401 to 403, each has sensitivity only in the wavelength range that is visible light of R, G, and B.
 分光特性404はIのみに感度を持つものであり、この画素を上記可視光域の感度を持つ画素とともに持たせることにより、可視光域(R、G、B)の色成分及び輝度成分と、近赤外光域(I)による輝度成分とが同時に生成される。この画素構成の撮像素子は、R、G、B画素の出力が可視光成分となっている。このため、これまでの近赤外光をカットオフした信号を処理する信号処理方法を用いながら、近赤外光成分を利用してカラー画像の感度を上げることができるという特徴がある。或いは近赤外光をカットオフした信号を処理する信号処理方法を用いて、視覚上で被写体の色に忠実なカラー画像を生成できるという特徴がある。 The spectral characteristic 404 is sensitive only to I. By providing this pixel together with the pixel having the sensitivity of the visible light region, the color component and the luminance component of the visible light region (R, G, B), A luminance component by the near-infrared light region (I) is generated at the same time. In the image sensor with this pixel configuration, the output of the R, G, and B pixels is a visible light component. For this reason, there is a feature that the sensitivity of a color image can be increased using a near-infrared light component while using a signal processing method for processing a signal obtained by cutting off near-infrared light. Alternatively, a color image faithful to the color of the subject can be visually generated using a signal processing method that processes a signal obtained by cutting off near-infrared light.
 図5は、実施例1乃至3における撮像部の画素の並びの例を示す図であり、可視光+近赤外センサの画素配置の、図2とは異なる一例を示したものである。同一の撮像素子上にRに主な感度を持つ画素501、Gに主な感度を持つ画素502 、Bに主な感度を持つ画素503、R、G、B、Iのすべて感度を持つ画素504 を配置しており、格子状に並べた一例である。画素501乃至画素504の配置で撮像素子上に繰り返し画素が構成されている。 FIG. 5 is a diagram illustrating an example of an arrangement of pixels of the imaging unit in the first to third embodiments, and illustrates an example of a pixel arrangement of visible light + near infrared sensor, which is different from FIG. On the same image sensor, a pixel 501 having a main sensitivity for R, a pixel 502 を 持 つ having a main sensitivity for G, a pixel 503 having a main sensitivity for B, and a pixel 504 having all the sensitivities R, G, B, and I Are arranged in a grid pattern. Repeated pixels are formed on the image sensor with the arrangement of the pixels 501 to 504.
 図6は、実施例1乃至3における撮像部の画素の分光特性の一例を示す図であり、図5で示した各画素501乃至画素504の光の波長に対する感度特性、すなわち分光特性を示したものである。同図において601は画素503(図5)の分光特性であり、602は画素502(図2)の分光特性であり、 603は画素501(図5)の分光特性であり、 604は画素604(図2)の分光特性である。分光特性601、602、603はそれぞれR、G、Bの可視光である波長域に加えて、Iの波長域にも感度を持つ。 FIG. 6 is a diagram illustrating an example of the spectral characteristics of the pixels of the imaging unit according to the first to third embodiments. The sensitivity characteristics, that is, the spectral characteristics, of the pixels 501 to 504 illustrated in FIG. 5 with respect to the wavelength of light are illustrated. Is. In the drawing, 601 is the spectral characteristic of the pixel 503 (FIG. 5), 602 is the spectral characteristic of the pixel 502 (FIG. 2), 603 is the spectral characteristic of the pixel 501 (FIG. 5), and 604 is the pixel 604 ( FIG. 2) is a spectral characteristic. The spectral characteristics 601, 602, and 603 have sensitivity in the wavelength range of I in addition to the wavelength range of visible light of R, G, and B, respectively.
 通常の可視光域のみのカメラはこれらの分光特性をもつ画素で構成されている。通常は可視光域のみを撮像するため、即ちI部分の影響をなくすために、Iの波長域を遮断する光学的なフィルタが、撮像素子とレンズの間の光軸上に挿入され使用されている。分光特性604はR、G、B、Iのすべてに感度を持つものであり、この画素を上記可視光域の感度を持つ画素を持たせることにより、可視光域(R、G、B) の色成分及び輝度成分と、Iによる輝度成分とが同時に生成される。この画素構成の撮像素子は、可視光が少ない撮像時の可視光感度を特に重視した用途に適している。 A normal camera with only a visible light region is composed of pixels having these spectral characteristics. Normally, in order to image only the visible light region, that is, to eliminate the influence of the I portion, an optical filter that blocks the I wavelength region is inserted and used on the optical axis between the image sensor and the lens. Yes. The spectral characteristic 604 has sensitivity to all of R, G, B, and I. By providing this pixel with the above-mentioned sensitivity of the visible light region, the visible light region (R, G, B) A color component, a luminance component, and a luminance component due to I are generated simultaneously. An image sensor with this pixel configuration is suitable for applications that place particular emphasis on visible light sensitivity during imaging with little visible light.
 図7は、実施例1乃至3における撮像部の画素の分光特性の一例を示す図であり、図5で示した各画素501乃至画素504の光の波長に対する感度特性すなわち分光特性の、図6とは異なる一例を示したものである。同図において701は画素503(図5)の異なる一例の分光特性であり、702は画素502(図5)の異なる一例の分光特性であり、 703は画素501(図5)の異なる一例の分光特性であり、 704は画素504(図5)の異なる一例の分光特性である。分光特性701乃至703は それぞれR、G、Bの可視光である波長域のみに感度を持つ。 FIG. 7 is a diagram illustrating an example of spectral characteristics of the pixels of the imaging unit according to the first to third embodiments. FIG. 6 illustrates sensitivity characteristics, that is, spectral characteristics, of the pixels 501 to 504 illustrated in FIG. An example different from FIG. In the figure, reference numeral 701 denotes a different spectral characteristic of the pixel 503 (FIG. 5), reference numeral 702 denotes a different spectral characteristic of the pixel 502 (FIG. 5), and reference numeral 703 denotes a different spectral characteristic of the pixel 501 (FIG. 5). 704 is a spectral characteristic of a different example of the pixel 504 (FIG. 5). Spectral characteristics 701 to 703 have sensitivity only in the wavelength range of visible light of R, G, and B, respectively.
 分光特性704はR、G、B、Iのすべてに感度を持ち、この画素を上記可視光域に感度を持つ画素とともに持たせることにより、可視光域(R、G、B)の色成分及び輝度成分と、近赤外光域(I)による輝度成分とが同時に生成される。この画素構成の撮像素子は、R、G、B画素が可視光成分のみとなっており、かつ可視光、近赤外すべてに感度を持つ画素をもっているため、可視光感度を上げて、さらに近赤外の感度を高め、或いは近赤外光をカットオフした信号を処理する信号処理方法を用いて、視覚上で被写体の色に忠実なカラー画像を生成する用途に適している。 The spectral characteristic 704 has sensitivity to all of R, G, B, and I. By providing this pixel together with the pixel having sensitivity in the visible light region, the color component of the visible light region (R, G, B) and A luminance component and a luminance component due to the near-infrared light region (I) are generated simultaneously. In the image pickup device having this pixel configuration, the R, G, and B pixels have only visible light components and have pixels that are sensitive to all visible light and near infrared. Using a signal processing method for processing a signal obtained by increasing the sensitivity of infrared light or cutting off near-infrared light, it is suitable for use in generating a color image faithful to the color of a subject visually.
 図8は、実施例2における撮像部の構成図であり、図1に示した撮像部101の詳細を示したものである。同図において801はレンズ、802は絞りであり、絞り802は制御部110(図1)より駆動回路804を介して駆動制御される。803は撮像素子で、例えば先に図2から図7で示した構成を有する。制御部110は、撮像素子803の露光時間、即ち電子シャッタに設定されるシャッタ時間を、全画素のシャッタ時間が同一であるように制御する。ここで絞り802は、可視光を通過させて近赤外光を遮断する材料で構成されており、例えば近赤外光を遮断するためのIR阻止フィルタと同様の材料で構成された絞り羽根を有している。 FIG. 8 is a configuration diagram of the imaging unit in the second embodiment, and shows details of the imaging unit 101 shown in FIG. In the figure, reference numeral 801 denotes a lens, and reference numeral 802 denotes a stop. The stop 802 is driven and controlled by the control unit 110 (FIG. 1) via a drive circuit 804. Reference numeral 803 denotes an image sensor having, for example, the configuration shown in FIGS. The control unit 110 controls the exposure time of the image sensor 803, that is, the shutter time set for the electronic shutter so that the shutter time of all the pixels is the same. Here, the diaphragm 802 is made of a material that transmits visible light and blocks near-infrared light. For example, a diaphragm blade made of the same material as an IR blocking filter for blocking near-infrared light is used. Have.
 このように構成することにより、可視光は撮像素子803の電子シャッタにより、また近赤外光は絞り802にて、それぞれ個別にバランスよく制御部110(図1)により制御される。したがって、例えば夜の屋外で、近赤外光を照射されているような被写体に対して、白とびをすることのない良好な画像を得ることができる。なお、この構成は、可視光は電子シャッタ制御で、近赤外光は電子シャッタよりも遮光性能のよい絞り制御により光量制御が行われるので、可視光による撮像を主としたいにも関わらず近赤外光の光量が多い撮像環境で、より好適な画像を得ることができる。 With this configuration, visible light is controlled by the electronic shutter of the image sensor 803, and near-infrared light is controlled individually by the control unit 110 (FIG. 1) in a well-balanced manner. Therefore, it is possible to obtain a good image without overexposure on a subject that is irradiated with near infrared light, for example, outdoors at night. In this configuration, the amount of light is controlled by electronic shutter control for visible light, and the amount of light for near infrared light is controlled by aperture control, which has better light-shielding performance than the electronic shutter. A more suitable image can be obtained in an imaging environment with a large amount of infrared light.
 図9は、実施例3における撮像部の構成図であり、図1に示した撮像部101の詳細を示したものである。同図においてレンズ801、撮像素子803、駆動回路804は図8に示したものと同様である。 FIG. 9 is a configuration diagram of the image pickup unit in the third embodiment, and shows details of the image pickup unit 101 shown in FIG. In the figure, a lens 801, an image sensor 803, and a drive circuit 804 are the same as those shown in FIG.
 901は絞りで、制御部110(図1)より駆動回路804を介して駆動制御される。ここで絞り901は、近赤外光を通過させて可視光をカットする材料で構成されており、例えば可視光を遮断するための可視光阻止フィルタと同様の材料で構成された絞り羽根を有している。 Reference numeral 901 denotes a diaphragm, which is driven and controlled by the control unit 110 (FIG. 1) via the drive circuit 804. Here, the diaphragm 901 is made of a material that transmits near-infrared light and cuts visible light. For example, the diaphragm 901 has diaphragm blades made of the same material as a visible light blocking filter for blocking visible light. is doing.
 このように構成することにより、近赤外光は撮像素子803の電子シャッタにより、また可視光は絞り901にて、それぞれ個別にバランスよく制御部110(図1)により制御される。したがって、例えば夜の屋外で、可視光を照射されているような被写体に対して、白とびをすることのない良好な画像を得ることができる。なお、この構成は、近赤外光は電子シャッタ制御で、可視光は電子シャッタよりも遮光性能のよい絞り制御により光量制御が行われるので、可視光が非常に強い露光状態で近赤外光の成分を有効に利用して画像化する撮像環境で、より好適な画像を得ることができる。 With this configuration, near infrared light is controlled by the electronic shutter of the image sensor 803, and visible light is controlled individually by the control unit 110 (FIG. 1) in a balanced manner by the diaphragm 901. Therefore, it is possible to obtain a good image without overexposure on a subject that is irradiated with visible light, for example, outdoors at night. In this configuration, the near-infrared light is controlled by the electronic shutter, and the visible light is controlled by the aperture control that has a better light shielding performance than the electronic shutter. It is possible to obtain a more suitable image in an imaging environment in which imaging is performed by effectively using these components.
 実施例2及び実施例3において、撮像素子の電子シャッタ及びレンズの絞りは、画素への入射光量に対する光電変換利得を変化させるための利得設定部と称することができる。 In Example 2 and Example 3, the electronic shutter of the image sensor and the lens aperture can be referred to as a gain setting unit for changing the photoelectric conversion gain with respect to the amount of light incident on the pixel.
 また、いずれの実施例においても、可視光領域に感度を持つ画素と、近赤外領域に感度を持つ画素を有する撮像部を用いてカラー画像を撮像する場合において、可視光領域、及び近赤外領域の双方の露光量を個別かつ好適に制御する撮像装置を提供することができる。最も視覚上でわかり易い効果は白飛びの低減であるが、例えば視覚上で被写体の色に忠実なカラー画像を生成することができるなど、良好な画像を得る効果を有している。さらには前記特許文献とは異なり、可視光を受光する撮像部と赤外光を受光する撮像部とを個別に持つ必要がないため、実用上コストの点に関する問題は少ない。 In any of the embodiments, when a color image is captured using an imaging unit having a pixel having sensitivity in the visible light region and a pixel having sensitivity in the near infrared region, the visible light region and the near red region are used. It is possible to provide an imaging apparatus that individually and suitably controls the exposure amounts of both the outer regions. Although the most visually obvious effect is reduction of whiteout, it has an effect of obtaining a good image, for example, a color image faithful to the color of the subject can be visually generated. Furthermore, unlike the above-mentioned patent documents, there is no need for a separate imaging unit that receives visible light and an imaging unit that receives infrared light, so there are few practical problems related to cost.
 図8と図9においては、レンズ801を一枚のみ示しているが、周知のとおり、一般には凸レンズと凹レンズによる複数のレンズを有しており、これらのレンズはレンズ鏡筒の内部に位置決めされている。絞り802、901は、これら複数のレンズに挟まれるように位置しても良い。また、従来の撮像装置において、撮像装置の電子シャッタの働きを補強するための機構的なシャッタが、レンズ鏡筒内に設けられる場合がある。各実施例における絞り802、901は、複数のレンズの間隙において、当該の機構的なシャッタとは別なレンズの間隙に設けられても良く、同じ間隙に設けられても良い。 8 and 9, only one lens 801 is shown, but as is well known, it generally has a plurality of lenses including a convex lens and a concave lens, and these lenses are positioned inside the lens barrel. ing. The diaphragms 802 and 901 may be positioned so as to be sandwiched between the plurality of lenses. Further, in a conventional imaging apparatus, a mechanical shutter for reinforcing the function of the electronic shutter of the imaging apparatus may be provided in the lens barrel. The diaphragms 802 and 901 in each embodiment may be provided in a lens gap different from the mechanical shutter in the gap between a plurality of lenses, or may be provided in the same gap.
 以上述べた実施例は、本発明を限定するものではない。例えば、実施例2におけるIR阻止フィルタによる絞り802と、実施例3における可視光阻止フィルタによる絞り901との双方を設けて、近赤外光と可視光との双方の光量が個別に制御されても良い。このように、これまで開示された実施例に対して多様な変更を施した実施例を考えることができるが、いずれも本発明の範疇にある。 The embodiments described above do not limit the present invention. For example, both the diaphragm 802 by the IR blocking filter in the second embodiment and the diaphragm 901 by the visible light blocking filter in the third embodiment are provided, and the light amounts of both near infrared light and visible light are individually controlled. Also good. As described above, embodiments in which various modifications are made to the embodiments disclosed so far can be considered, and all are within the scope of the present invention.
 100:撮像装置、101:撮像部、102:色信号処理回路、103:ガンマ処理回路、104:色差生成処理回路、105:輝度信号処理回路、106:近赤外輝度信号処理回路、107:画像合成処理回路、108:輝度ガンマ処理回路、109:画像出力処理部、110:制御部、111:可視光量検波回路、112:近赤外光量検波回路、801:レンズ、802:絞り、803:撮像素子、804:駆動回路、901:絞り。 DESCRIPTION OF SYMBOLS 100: Imaging device, 101: Imaging part, 102: Color signal processing circuit, 103: Gamma processing circuit, 104: Color difference generation processing circuit, 105: Luminance signal processing circuit, 106: Near-infrared luminance signal processing circuit, 107: Image Synthesis processing circuit, 108: luminance gamma processing circuit, 109: image output processing unit, 110: control unit, 111: visible light amount detection circuit, 112: near infrared light amount detection circuit, 801: lens, 802: diaphragm, 803: imaging Element, 804: drive circuit, 901: aperture.

Claims (7)

  1.  被写体より入射された入射光に基づき前記被写体を撮像して映像信号を生成する撮像装置であって、
     入射された可視光を変換して可視光の光量に応じた信号を出力する可視光画素と入射された近赤外光を変換して近赤外光の光量に応じた信号を出力する近赤外光画素とを備えた撮像部と、
     前記可視光画素における入射された前記可視光の光量に対する光電変換利得を設定する可視光利得設定部と、
     前記近赤外光画素における入射された前記近赤外光の光量に対する光電変換利得を設定する近赤外光利得設定部と、
     前記可視光画素が出力した信号に基づき前記可視光利得設定部における前記光電変換利得を制御し、前記近赤外光画素が出力した信号に基づき前記近赤外光利得設定部における前記光電変換利得を制御する制御部と、
     前記可視光画素が出力した信号と前記近赤外光画素が出力した信号を処理して前記映像信号を生成する信号処理部
     を有することを特徴とする撮像装置。
    An imaging device that images the subject based on incident light incident from the subject and generates a video signal,
    A visible light pixel that converts incident visible light and outputs a signal according to the amount of visible light and a near red that converts incident near infrared light and outputs a signal according to the amount of near infrared light An imaging unit including external light pixels;
    A visible light gain setting unit for setting a photoelectric conversion gain with respect to the amount of incident visible light in the visible light pixel;
    A near-infrared light gain setting unit for setting a photoelectric conversion gain for the amount of incident near-infrared light in the near-infrared light pixel;
    The photoelectric conversion gain in the visible light gain setting unit is controlled based on a signal output from the visible light pixel, and the photoelectric conversion gain in the near infrared light gain setting unit is controlled based on a signal output from the near infrared light pixel. A control unit for controlling
    An imaging apparatus comprising: a signal processing unit that processes the signal output from the visible light pixel and the signal output from the near-infrared light pixel to generate the video signal.
  2.  請求項1に記載の撮像装置において、
     前記可視光画素は、入射された近赤外光の光量に応じた信号を前記可視光の光量に応じた信号とともに出力する
     ことを特徴とする撮像装置。
    The imaging device according to claim 1,
    The said visible light pixel outputs the signal according to the light quantity of the incident near infrared light with the signal according to the light quantity of the said visible light. The imaging device characterized by the above-mentioned.
  3.  請求項1に記載の撮像装置において、
     前記近赤外光画素は、入射された可視光の光量に応じた信号を前記近赤外光の光量に応じた信号とともに出力する
     ことを特徴とする撮像装置。
    The imaging device according to claim 1,
    The said near-infrared light pixel outputs the signal according to the light quantity of the incident visible light with the signal according to the light quantity of the said near-infrared light. The imaging device characterized by the above-mentioned.
  4.  請求項3に記載の撮像装置において、
     前記可視光画素は、入射された近赤外光の光量に応じた信号を前記可視光の光量に応じた信号とともに出力する
     ことを特徴とする撮像装置。
    The imaging device according to claim 3.
    The said visible light pixel outputs the signal according to the light quantity of the incident near infrared light with the signal according to the light quantity of the said visible light. The imaging device characterized by the above-mentioned.
  5.  請求項1に記載の撮像装置において、
     前記可視光利得設定部は、前記可視光画素における光電変換のための電荷蓄積時間を設定する電子シャッタを有し、
     前記近赤外光利得設定部は、前記近赤外光画素に入射する近赤外光の光量を制限するための光学的な絞りを有する
     ことを特徴とする撮像装置。
    The imaging device according to claim 1,
    The visible light gain setting unit has an electronic shutter for setting a charge accumulation time for photoelectric conversion in the visible light pixel,
    The near-infrared light gain setting unit has an optical stop for limiting the amount of near-infrared light incident on the near-infrared light pixel.
  6.  請求項1に記載の撮像装置において、
     前記可視光利得設定部は、前記可視光画素に入射する光の光量を制限するための光学的な絞りを有し、
     前記近赤外光利得設定部は、前記近赤外光画素における光電変換のための電荷蓄積時間を設定する電子シャッタを有する
     ことを特徴とする撮像装置。
    The imaging device according to claim 1,
    The visible light gain setting unit has an optical aperture for limiting the amount of light incident on the visible light pixel,
    The near-infrared light gain setting unit includes an electronic shutter that sets a charge accumulation time for photoelectric conversion in the near-infrared light pixel.
  7.  請求項5に記載の撮像装置において、
     前記可視光利得設定部は、前記可視光画素に入射する光の光量を制限するための光学的な絞りを有する
     ことを特徴とする撮像装置。
    The imaging apparatus according to claim 5,
    The visible light gain setting unit has an optical aperture for limiting the amount of light incident on the visible light pixel.
PCT/JP2013/069652 2013-07-19 2013-07-19 Imaging device WO2015008383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069652 WO2015008383A1 (en) 2013-07-19 2013-07-19 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069652 WO2015008383A1 (en) 2013-07-19 2013-07-19 Imaging device

Publications (1)

Publication Number Publication Date
WO2015008383A1 true WO2015008383A1 (en) 2015-01-22

Family

ID=52345874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069652 WO2015008383A1 (en) 2013-07-19 2013-07-19 Imaging device

Country Status (1)

Country Link
WO (1) WO2015008383A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201722A (en) * 2015-04-13 2016-12-01 株式会社 日立産業制御ソリューションズ Imaging apparatus
JP2017135493A (en) * 2016-01-26 2017-08-03 池上通信機株式会社 Imaging apparatus for outdoor monitoring
WO2023047825A1 (en) * 2021-09-27 2023-03-30 富士フイルム株式会社 Imaging device and imaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369049A (en) * 2001-06-08 2002-12-20 Pentax Corp Image detector and aperture device
JP2008306379A (en) * 2007-06-06 2008-12-18 Toshiba Corp Solid-state imaging element
WO2010041375A1 (en) * 2008-10-07 2010-04-15 パナソニック株式会社 Imaging device and signal processing circuit for the imaging device
JP2010183191A (en) * 2009-02-03 2010-08-19 Victor Co Of Japan Ltd Exposure amount control device and exposure amount control method
WO2013027340A1 (en) * 2011-08-24 2013-02-28 パナソニック株式会社 Imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369049A (en) * 2001-06-08 2002-12-20 Pentax Corp Image detector and aperture device
JP2008306379A (en) * 2007-06-06 2008-12-18 Toshiba Corp Solid-state imaging element
WO2010041375A1 (en) * 2008-10-07 2010-04-15 パナソニック株式会社 Imaging device and signal processing circuit for the imaging device
JP2010183191A (en) * 2009-02-03 2010-08-19 Victor Co Of Japan Ltd Exposure amount control device and exposure amount control method
WO2013027340A1 (en) * 2011-08-24 2013-02-28 パナソニック株式会社 Imaging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016201722A (en) * 2015-04-13 2016-12-01 株式会社 日立産業制御ソリューションズ Imaging apparatus
JP2017135493A (en) * 2016-01-26 2017-08-03 池上通信機株式会社 Imaging apparatus for outdoor monitoring
WO2023047825A1 (en) * 2021-09-27 2023-03-30 富士フイルム株式会社 Imaging device and imaging method

Similar Documents

Publication Publication Date Title
JP6725613B2 (en) Imaging device and imaging processing method
US8842194B2 (en) Imaging element and imaging apparatus
EP2471258B1 (en) Reducing noise in a color image
US10630920B2 (en) Image processing apparatus
US8508633B2 (en) Image device with color and brightness signal processing
WO2010053029A1 (en) Image inputting apparatus
US8411176B2 (en) Image input device
JP6732726B2 (en) Imaging device, imaging method, and program
US10638056B2 (en) Imaging device, imaging method, program, and non-transitory recording medium
US9813687B1 (en) Image-capturing device, image-processing device, image-processing method, and image-processing program
JP6348254B2 (en) Imaging device
EP3133811A1 (en) Image sensor and monitoring system
JP6000133B2 (en) Imaging apparatus, imaging system, and imaging method
WO2015008383A1 (en) Imaging device
JP2012010141A (en) Image processing apparatus
JP2012008845A (en) Image processor
JP4530149B2 (en) High dynamic range camera system
TWI543631B (en) Image processing system adaptable to a dual-mode image device
JP2012244533A (en) Imaging apparatus and image signal processing method
JP2010252077A (en) Imaging apparatus
JP6725105B2 (en) Imaging device and image processing method
JP5359330B2 (en) EXPOSURE CONTROL DEVICE AND EXPOSURE CONTROL METHOD
JP2010161452A (en) Infrared radiation imaging device
JP5920144B2 (en) Imaging apparatus and imaging method
JPWO2020017638A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP