TWI543631B - Image processing system adaptable to a dual-mode image device - Google Patents
Image processing system adaptable to a dual-mode image device Download PDFInfo
- Publication number
- TWI543631B TWI543631B TW103140564A TW103140564A TWI543631B TW I543631 B TWI543631 B TW I543631B TW 103140564 A TW103140564 A TW 103140564A TW 103140564 A TW103140564 A TW 103140564A TW I543631 B TWI543631 B TW I543631B
- Authority
- TW
- Taiwan
- Prior art keywords
- color correction
- color
- correction matrix
- infrared light
- image
- Prior art date
Links
Landscapes
- Color Television Image Signal Generators (AREA)
- Image Processing (AREA)
Description
本發明係有關一種影像處理系統,特別是關於一種適用於雙模式影像裝置的可調適色彩校正系統。The present invention relates to an image processing system, and more particularly to an adaptable color correction system suitable for use in a dual mode image device.
於影像系統中,當像素陣列的所有像素受到相同的照射時,遠離中心的像素通常具較低的像素信號,此稱為鏡頭陰影(lens shading)現象。因此,影像亮度會從中心往角落降低。換句話說,最大亮度位於中心或其附近,並沿著像素陣列的半徑方向降低。形成鏡頭陰影現象的原因可為鏡頭機構、光學元件、感測器像素、光線行進距離、光圈效應或入射光角度。In the image system, when all the pixels of the pixel array are subjected to the same illumination, the pixels far from the center usually have a lower pixel signal, which is called a lens shading phenomenon. Therefore, the brightness of the image will decrease from the center to the corner. In other words, the maximum brightness is at or near the center and decreases along the radial direction of the pixel array. The cause of the lens shadow phenomenon may be the lens mechanism, the optical element, the sensor pixel, the light travel distance, the aperture effect, or the incident light angle.
鏡頭陰影校正(LSC)係使用不同的增益,用以補償亮度的降低,特別是對於遠離像素陣列之中心的像素。Lens Shading Correction (LSC) uses different gains to compensate for the reduction in brightness, especially for pixels that are far from the center of the pixel array.
互補金屬氧化物半導體(CMOS)影像感測器不但會感測到可見光頻帶,且會感測到近紅外光頻帶。紅外光截止(IR-cut)濾波片可通過可見光頻帶波長並阻隔紅外光頻帶波長,因此可避免紅外光頻帶波長所造成的變色(discoloration)。然而在監控的應用當中,會使用人為紅外光以增進低亮度狀況的可視性。若使用雙頻帶紅外光截止(dual-band IR-cut)濾波片,則可於低亮度時使用人為紅外光以接收紅外光頻帶信號,並於正常亮度時不使用紅外光以避免變色。A complementary metal oxide semiconductor (CMOS) image sensor not only senses the visible light band, but also senses the near-infrared band. The IR-cut filter can pass the wavelength of the visible light band and block the wavelength of the infrared light band, thus avoiding discoloration caused by the wavelength of the infrared light band. However, in monitoring applications, artificial infrared light is used to improve the visibility of low brightness conditions. If a dual-band IR-cut filter is used, artificial infrared light can be used at low brightness to receive the infrared light band signal, and infrared light is not used at normal brightness to avoid discoloration.
影像處理系統通常使用色彩校正以校正色彩失真。因此需要提出一種新穎的色彩校正機制,用以適用監控之類的應用。Image processing systems typically use color correction to correct for color distortion. Therefore, it is necessary to propose a novel color correction mechanism for applications such as monitoring.
鑑於上述,本發明實施例的目的之一在於提出一種適用於雙模式影像裝置的影像處理系統,其根據像素的主光線角度(chief ray angle, CRA)與光源的紅外光信號,用以對影像的像素進行校正。In view of the above, one of the objectives of the embodiments of the present invention is to provide an image processing system suitable for a dual mode image device, which is used for an image according to a chief ray angle (CRA) of a pixel and an infrared light signal of a light source. The pixels are corrected.
根據本發明實施例,適用於雙模式影像裝置的影像處理系統包含可調適色彩校正系統,其接收影像並根據影像之像素的主光線角度與雙模式影像裝置相關之光源的紅外光信號,用以調適地校正色彩失真。According to an embodiment of the invention, an image processing system suitable for a dual mode image device includes an adaptive color correction system that receives an image and uses the infrared light signal of the light source associated with the dual mode image device according to the chief ray angle of the pixel of the image. Correctly correct color distortion.
第一圖顯示本發明實施例之適用於雙模式影像裝置200的影像處理系統100之方塊圖。雙模式影像裝置200主要包含鏡頭20,用以通過(例如傳送及折射)光線。在本說明書中,“鏡頭”一詞可指單一鏡頭或鏡頭組合。The first figure shows a block diagram of an image processing system 100 suitable for dual mode video device 200 in accordance with an embodiment of the present invention. The dual mode imaging device 200 primarily includes a lens 20 for passing (eg, transmitting and refracting) light. In this specification, the term "lens" may refer to a single lens or combination of lenses.
雙模式影像裝置200還包含雙頻帶紅外光截止濾波片21,其藉由光學耦合以接收通過鏡頭20的光線,用以通過(第一頻帶的)可見光及(第二頻帶的)紅外光範圍。雙模式影像裝置200更包含濾波陣列22,其包含彩色濾波片(例如紅色(R)、綠色(G)及藍色(B)濾波片)與紅外光(IR)濾波片。濾波陣列22藉由光學耦合以接收通過雙頻帶紅外光截止濾波片21的光線,用以產生色彩訊息。第二A圖例示第一圖之濾波陣列22的彩色濾波片與紅外光濾波片。在此例子中,紅色光占25%,綠色光占25%,藍色光占25%,且紅外光占25%。第二B圖例示第一圖之雙頻帶紅外光截止濾波片21與濾波陣列22的光譜感度。The dual mode imaging device 200 also includes a dual band infrared light cut filter 21 that is optically coupled to receive light passing through the lens 20 for passing visible light (of the first frequency band) and infrared light range (of the second frequency band). The dual mode imaging device 200 further includes a filter array 22 that includes color filters (eg, red (R), green (G), and blue (B) filters) and infrared (IR) filters. The filter array 22 is optically coupled to receive light passing through the dual band infrared light cut filter 21 for generating a color message. The second A diagram illustrates the color filter and the infrared light filter of the filter array 22 of the first figure. In this example, red light accounts for 25%, green light accounts for 25%, blue light accounts for 25%, and infrared light accounts for 25%. The second B diagram illustrates the spectral sensitivity of the dual band infrared light cut filter 21 and filter array 22 of the first figure.
雙模式影像裝置200更包含影像感測器23,例如互補金屬氧化物半導體(CMOS)影像感測器,設於濾波陣列22底下,用以將光學色彩訊息轉換為電子信號,其再受到影像處理系統100的處理。在本說明書中,影像處理系統100的各組成方塊可指結構或功能個體,其可由電路(例如數位影像處理器)來執行。The dual mode image device 200 further includes an image sensor 23, such as a complementary metal oxide semiconductor (CMOS) image sensor, disposed under the filter array 22 for converting optical color information into an electronic signal, which is subjected to image processing. Processing of system 100. In this specification, each component block of image processing system 100 may refer to a structure or function individual that may be executed by circuitry, such as a digital image processor.
在本實施例中,影像處理系統100可包含鏡頭陰影校正(LSC)單元11,用以校正鏡頭陰影假影(artifact)。鏡頭陰影校正的細節可參閱美國專利第8,228,406號,發明人為Kuo等人,題為“可調適鏡頭陰影校正(Adaptive lens shading correction)”或者美國專利第8,130,292號,發明人為Lee,題為“影像裝置之場景照明可調適鏡頭陰影校正(Scene illumination adaptive lens shading correction for imaging devices)”。In the present embodiment, the image processing system 100 may include a lens shading correction (LSC) unit 11 for correcting lens shading artifacts. The details of the lens shading correction can be found in U.S. Patent No. 8,228,406, issued to Kuo et al., entitled "Adaptive lens shading correction" or U.S. Patent No. 8,130,292, to the inventor Lee, entitled "Video Device "Scene illumination adaptive lens shading correction for imaging devices".
影像處理系統100還可包含解馬賽克(demosaicking)單元12,其接收鏡頭陰影校正單元11的輸出,用以將覆蓋有濾波陣列22之影像顯測器23的非完整色彩取樣,重整為完整色彩影像。解馬賽克單元12通常可藉由內插技術來執行。The image processing system 100 can also include a demosaicking unit 12 that receives the output of the lens shading correction unit 11 for reforming the non-complete color samples of the image display 23 covered with the filter array 22 into a full color. image. The demosaicing unit 12 can typically be executed by interpolation techniques.
本實施例之影像處理系統100包含可調適色彩校正系統13,其接收解馬賽克單元12所重整的(全彩)影像,用以調適地校正色彩失真。根據本實施例的特徵之一,可調適色彩校正系統13根據像素的主光線角度(CRA)與(來自影像顯測器23之)光源的紅外光信號,以執行影像像素的校正。在另一實施例中,可調適色彩校正系統13根據像素的主光線角度(CRA)、光源的色溫及光源的紅外光信號,以執行影像像素的校正。在本說明書中,遠離鏡頭20中心的像素的主光線角度大於接近鏡頭21中心的像素的主光線角度。The image processing system 100 of the present embodiment includes an adaptive color correction system 13 that receives the (full color) image reconstructed by the demosaicing unit 12 for adaptively correcting color distortion. According to one of the features of the present embodiment, the adaptive color correction system 13 performs the correction of the image pixels based on the chief ray angle (CRA) of the pixel and the infrared light signal of the light source (from the image display 23). In another embodiment, the adaptive color correction system 13 performs correction of the image pixels based on the chief ray angle (CRA) of the pixel, the color temperature of the light source, and the infrared light signal of the light source. In the present specification, the chief ray angle of the pixel far from the center of the lens 20 is larger than the chief ray angle of the pixel near the center of the lens 21.
第三A圖顯示本發明第一特定實施例之可調適色彩校正系統13(第一圖)的細部方塊圖。在本實施例中,提供四個色彩校正矩陣CCM1、CCM2、CCM3及CCM4。其中,第一色彩校正矩陣CCM1代表高色溫光源與影像中心的色彩校正矩陣,第二色彩校正矩陣CCM2代表低色溫光源與影像中心的色彩校正矩陣,第三色彩校正矩陣CCM3代表低亮度紅外光信號光源與影像角落的色彩校正矩陣,且第四色彩校正矩陣CCM4代表高亮度紅外光信號光源與影像角落的色彩校正矩陣。在本說明書中,“高”與“低”係為相對比較而言。根據另一定義,高色溫係指色溫高於預設值,而低色溫則指色溫低於預設值。類似的情形,高亮度係指亮度高於預定值,而低亮度則指亮度低於預定值。Figure 3A shows a detailed block diagram of an adaptive color correction system 13 (first image) of a first particular embodiment of the present invention. In the present embodiment, four color correction matrices CCM1, CCM2, CCM3, and CCM4 are provided. The first color correction matrix CCM1 represents a color correction matrix of the high color temperature light source and the image center, the second color correction matrix CCM2 represents a color correction matrix of the low color temperature light source and the image center, and the third color correction matrix CCM3 represents a low brightness infrared light signal. The color correction matrix of the light source and the corner of the image, and the fourth color correction matrix CCM4 represents a color correction matrix of the high-intensity infrared light signal source and the image corner. In the present specification, "high" and "low" are relatively comparative. According to another definition, a high color temperature means that the color temperature is higher than a preset value, and a low color temperature means that the color temperature is lower than a preset value. In a similar situation, high brightness means that the brightness is higher than a predetermined value, and low brightness means that the brightness is lower than a predetermined value.
可調適色彩校正系統13可包含色溫(CT)權重產生器131,其接收色溫指數,該色溫指數可由色溫估計器14提供。色溫權重產生器131產生色溫權重,用以藉由第一混合單元132以混合第一色彩校正矩陣CCM1與第二色彩校正矩陣CCM2,因而產生第一混合色彩校正矩陣(CCM)。The tunable color correction system 13 can include a color temperature (CT) weight generator 131 that receives a color temperature index that can be provided by the color temperature estimator 14. The color temperature weight generator 131 generates color temperature weights for mixing the first color correction matrix CCM1 and the second color correction matrix CCM2 by the first mixing unit 132, thereby generating a first mixed color correction matrix (CCM).
可調適色彩校正系統13還可包含紅外光(IR)權重產生器133,其接收紅外光比值(亦即,紅外光信號與彩色信號的比值),該紅外光比值可由紅外光估計器15提供。紅外光權重產生器133產生紅外光權重,用以藉由第二混合單元134以混合第三色彩校正矩陣CCM3與第四色彩校正矩陣CCM4,因而產生第二混合色彩校正矩陣。The tunable color correction system 13 can also include an infrared light (IR) weight generator 133 that receives the infrared light ratio (i.e., the ratio of the infrared light signal to the color signal), which can be provided by the infrared light estimator 15. The infrared light weight generator 133 generates infrared light weights for mixing the third color correction matrix CCM3 and the fourth color correction matrix CCM4 by the second mixing unit 134, thereby generating a second mixed color correction matrix.
可調適色彩校正系統13更可包含主光線角度(CRA)權重產生器135,其根據影像的像素座標以產生主光線角度權重。主光線角度權重用以藉由第三混合單元136以混合第一混合色彩校正矩陣與第二混合色彩校正矩陣,因而產生第三(最終)混合色彩校正矩陣。第三混合色彩校正矩陣用以藉由色彩校正單元137對彩色信號(例如R、G與B)進行色彩校正,因而產生校正色彩信號。校正色彩信號可再進行其他的處理,例如第一圖例示的伽瑪(gamma)單元16所執行的伽瑪校正。The adaptive color correction system 13 may further include a chief ray angle (CRA) weight generator 135 that generates a chief ray angle weight based on the pixel coordinates of the image. The chief ray angle weight is used by the third blending unit 136 to blend the first blend color correction matrix with the second blend color correction matrix, thereby producing a third (final) blend color correction matrix. The third mixed color correction matrix is used to color correct the color signals (eg, R, G, and B) by the color correction unit 137, thereby generating a corrected color signal. The correction color signal may be subjected to other processing such as gamma correction performed by the gamma unit 16 illustrated in the first figure.
第三B圖顯示本發明第二特定實施例之可調適色彩校正系統13(第一圖)的細部方塊圖。第二特定實施例類似於第一特定實施例,不同的地方說明如下。如第三B圖所示,提供三個色彩校正矩陣CCM1、CCM2及CCM3。其中,第一色彩校正矩陣CCM1代表高色溫光源與影像中心的色彩校正矩陣,第二色彩校正矩陣CCM2代表低色溫光源與影像中心的色彩校正矩陣,且第三色彩校正矩陣CCM3代表高亮度紅外光信號光源與影像中心的色彩校正矩陣。色溫權重用以藉由第一混合單元132以混合第一色彩校正矩陣CCM1與第二色彩校正矩陣CCM2,因而產生第一混合色彩校正矩陣。紅外光權重用以藉由第二混合單元134以混合第一混合色彩校正矩陣與第三色彩校正矩陣CCM3,因而產生第二混合色彩校正矩陣。主光線角度權重用以藉由第三混合單元136以混合第一混合色彩校正矩陣與第二混合色彩校正矩陣,因而產生第三(最終)混合色彩校正矩陣。Figure 3B shows a detailed block diagram of an adaptive color correction system 13 (first image) of a second particular embodiment of the present invention. The second specific embodiment is similar to the first specific embodiment, and the different places are explained below. As shown in the third B diagram, three color correction matrices CCM1, CCM2, and CCM3 are provided. The first color correction matrix CCM1 represents a color correction matrix of the high color temperature light source and the image center, the second color correction matrix CCM2 represents a color correction matrix of the low color temperature light source and the image center, and the third color correction matrix CCM3 represents the high brightness infrared light. The color correction matrix of the signal source and the image center. The color temperature weights are used by the first mixing unit 132 to mix the first color correction matrix CCM1 with the second color correction matrix CCM2, thus producing a first mixed color correction matrix. The infrared light weight is used by the second mixing unit 134 to mix the first mixed color correction matrix with the third color correction matrix CCM3, thereby producing a second mixed color correction matrix. The chief ray angle weight is used by the third blending unit 136 to blend the first blend color correction matrix with the second blend color correction matrix, thereby producing a third (final) blend color correction matrix.
第三C圖顯示本發明第三特定實施例之可調適色彩校正系統13(第一圖)的細部方塊圖。第三特定實施例類似於第一特定實施例,不同的地方說明如下。如第三C圖所示,提供五個色彩校正矩陣CCM1、CCM2、CCM3、CCM4及CCM5。其中,第一色彩校正矩陣CCM1代表不具紅外光信號之高色溫光源的色彩校正矩陣,第二色彩校正矩陣CCM2代表不具紅外光信號之低色溫光源的色彩校正矩陣,第三色彩校正矩陣CCM3代表具紅外光信號之高色溫光源與影像中心的色彩校正矩陣,第四色彩校正矩陣CCM4代表具紅外光信號之低色溫光源與影像中心的色彩校正矩陣,且第五色彩校正矩陣CCM5代表高亮度紅外光信號與影像角落的色彩校正矩陣。色溫權重用以藉由第一混合單元132以混合第一色彩校正矩陣CCM1與第二色彩校正矩陣CCM2,因而產生第一混合色彩校正矩陣。色溫權重還用以藉由第二混合單元134以混合第三色彩校正矩陣CCM3與第四色彩校正矩陣CCM4,因而產生第二混合色彩校正矩陣。主光線角度權重用以藉由第三混合單元136以混合第二混合色彩校正矩陣與第五色彩校正矩陣CCM5,因而產生第三混合色彩校正矩陣。紅外光權重用以藉由第四混合單元138以混合第一混合色彩校正矩陣與第三混合色彩校正矩陣,因而產生第四(最終)混合色彩校正矩陣。Figure 3C shows a detailed block diagram of an adaptive color correction system 13 (first image) of a third particular embodiment of the present invention. The third specific embodiment is similar to the first specific embodiment, and the different places are explained below. As shown in the third C diagram, five color correction matrices CCM1, CCM2, CCM3, CCM4, and CCM5 are provided. The first color correction matrix CCM1 represents a color correction matrix of a high color temperature light source without an infrared light signal, and the second color correction matrix CCM2 represents a color correction matrix of a low color temperature light source without an infrared light signal, and the third color correction matrix CCM3 represents The color temperature correction matrix of the high color temperature light source of the infrared light signal and the image center, the fourth color correction matrix CCM4 represents the color correction matrix of the low color temperature light source with the infrared light signal and the image center, and the fifth color correction matrix CCM5 represents the high brightness infrared light. The color correction matrix of the signal and image corners. The color temperature weights are used by the first mixing unit 132 to mix the first color correction matrix CCM1 with the second color correction matrix CCM2, thus producing a first mixed color correction matrix. The color temperature weights are also used by the second mixing unit 134 to mix the third color correction matrix CCM3 with the fourth color correction matrix CCM4, thus producing a second mixed color correction matrix. The chief ray angle weight is used by the third mixing unit 136 to mix the second mixed color correction matrix with the fifth color correction matrix CCM5, thus producing a third mixed color correction matrix. The infrared light weight is used by the fourth mixing unit 138 to mix the first mixed color correction matrix with the third mixed color correction matrix, thereby producing a fourth (final) mixed color correction matrix.
第三A/三B/三C圖與第一圖的相關方塊之細節將於以下說明。第一圖之色溫估計器14根據增益(其可由白平衡單元(未顯示)來提供)以估計光源的色溫。第四A圖例示紅光增益與藍光增益的關係,其中高色溫光源包含較多短波長頻帶(亦即,藍光)的功率。因此,紅光通道需要較高增益,使得平衡後的白色物件具有相同的紅光、綠光與藍光值。相反的,低色溫光源包含較多長波長頻帶(亦即,紅光)的功率。因此,藍光通道需要較高增益,使得平衡後的白色物件具有相同的紅光、綠光與藍光值。藉此,色溫估計器14可根據增益(特別是紅光與藍光增益)以提供色溫指數,用以表示光源的估計色溫。在本實施例中,色溫指數為藍光與紅光的增益差值。Details of the third A/three B/three C diagram and the related blocks of the first diagram will be described below. The color temperature estimator 14 of the first figure is based on the gain (which may be provided by a white balance unit (not shown)) to estimate the color temperature of the light source. Figure 4A illustrates the relationship between red light gain and blue light gain, where the high color temperature source contains more power in the short wavelength band (i.e., blue light). Therefore, the red channel requires a higher gain such that the balanced white object has the same red, green, and blue values. Conversely, a low color temperature source contains more power in the long wavelength band (i.e., red light). Therefore, the blue channel requires a higher gain, so that the balanced white object has the same red, green, and blue values. Thereby, the color temperature estimator 14 can provide a color temperature index based on the gain (especially the red and blue gains) to represent the estimated color temperature of the light source. In this embodiment, the color temperature index is the difference in gain between blue light and red light.
接著,第三A/三B/三C圖的色溫權重產生器131根據色溫指數以產生色溫權重。第四B圖顯示色溫權重與藍光、紅光之增益差值的關係。如第四B圖所示,增益差值於低臨界點Th_l處的色溫權重為0,其線性增加至高臨界點Th_h處的色溫權重為1。當增益差值小於低臨界點Th_l,則色溫權重為0;當增益差值大於高臨界點Th_h,則色溫權重為1。Next, the color temperature weight generator 131 of the third A/three B/triple C map generates a color temperature weight based on the color temperature index. The fourth B graph shows the relationship between the color temperature weight and the gain difference between blue light and red light. As shown in the fourth B diagram, the color temperature weight at the low difference point Th_1 is 0, and the linear temperature weight is increased to 1 at the high critical point Th_h. When the gain difference is less than the low critical point Th_1, the color temperature weight is 0; when the gain difference is greater than the high critical point Th_h, the color temperature weight is 1.
第五A圖顯示第一圖之紅外光估計器15的方塊圖。(來自影像感測器23的)原始信號藉由解多工器151而分別傳送至紅光像素、綠光像素、藍光像素與紅外光像素的累加器152。(來自累加器152)累加的紅光像素、綠光像素、藍光像素與紅外光像素分別由除法器153除以個別的計數值,因而得到紅光像素、綠光像素、藍光像素與紅外光像素的平均信號(亦即,R_avg、G_avg、B_avg與IR_avg)。加法單元154將紅光像素、綠光像素、藍光像素的平均信號予以加總,所得到的和值藉由除法單元155除紅外光像素的平均信號。所得到的商值藉由限幅單元156限制幅度於0與1之間,因而產生紅外光比值。Figure 5A shows a block diagram of the infrared light estimator 15 of the first figure. The original signals (from image sensor 23) are transmitted to the accumulators 152 of red, green, blue, and infrared pixels by demultiplexer 151, respectively. The red light pixel, the green light pixel, the blue light pixel, and the infrared light pixel (from the accumulator 152) are respectively divided by the divider 153 by an individual count value, thereby obtaining a red pixel, a green pixel, a blue pixel, and an infrared pixel. Average signal (ie, R_avg, G_avg, B_avg, and IR_avg). The adding unit 154 sums the average signals of the red, green, and blue pixels, and the obtained sum is divided by the dividing unit 155 to remove the average signal of the infrared pixels. The resulting quotient is limited by the clipping unit 156 to a magnitude between 0 and 1, thus producing an infrared light ratio.
接著,第三A/三B/三C圖的紅外光權重產生器133根據紅外光比值以產生紅外光權重。第五B圖顯示紅外光權重與紅外光比值的關係。如第五B圖所示,紅外光比值於低臨界點Th_l處的紅外光權重為0,其線性增加至高臨界點Th_h處的紅外光權重為1。當紅外光比值小於低臨界點Th_l,則紅外光權重為0;當紅外光比值大於高臨界點Th_h,則紅外光權重為1。Next, the infrared light weight generator 133 of the third A/triple B/triple C map generates an infrared light weight based on the infrared light ratio. Figure 5B shows the relationship between the infrared light weight and the infrared light ratio. As shown in FIG. 5B, the infrared light weight at the low-threshold point Th_1 is 0, and the linear weight is increased to 1 at the high critical point Th_h. When the infrared light ratio is less than the low critical point Th_1, the infrared light weight is 0; when the infrared light ratio is greater than the high critical point Th_h, the infrared light weight is 1.
關於第三A/三B/三C圖的主光線角度權重產生器135,第六A圖顯示主光線角度權重與像素-影像中心之(比例調整)距離R的關係。如第六A圖所示,距離R於低臨界點Th_l處的主光線角度權重為0,其線性或非線性增加至高臨界點Th_h處的主光線角度權重為1。當距離R小於低臨界點Th_l,則主光線角度權重為0;當距離R大於高臨界點Th_h,則主光線角度權重為1。第六B圖顯示主光線角度權重與(比例調整)X座標、(比例調整)Y座標的關係。Regarding the chief ray angle weight generator 135 of the third A/three B/tripty C diagram, the sixth graph shows the relationship between the chief ray angle weight and the (proportional adjustment) distance R of the pixel-image center. As shown in FIG. 6A, the chief ray angle weight of the distance R at the low critical point Th_1 is 0, and the chief ray angle weight at which the linear or nonlinear increase to the high critical point Th_h is 1. When the distance R is smaller than the low critical point Th_1, the chief ray angle weight is 0; when the distance R is greater than the high critical point Th_h, the chief ray angle weight is 1. Figure 6B shows the relationship between the chief ray angle weight and the (proportional adjustment) X coordinate, (proportional adjustment) Y coordinate.
第三A/三B/三C圖之第一混合單元132、第二混合單元134、第三混合單元136與第四混合單元138的執行可表示如下: 其中alpha代表色溫權重、紅外光權重或主光線角度權重,[c 1… c 9]與[d 1… d 9]代表混合單元的色彩校正矩陣輸入,且[e 1… e 9]代表混合單元的色彩校正矩陣輸出。 The execution of the first mixing unit 132, the second mixing unit 134, the third mixing unit 136, and the fourth mixing unit 138 of the third A/three B/triple C diagram can be expressed as follows: Where alpha represents the color temperature weight, infrared light weight or chief ray angle weight, [c 1 ... c 9 ] and [d 1 ... d 9 ] represent the color correction matrix input of the mixing unit, and [e 1 ... e 9 ] represents the mixing unit Color correction matrix output.
在另一實施例中,可使用不同的主光線角度權重於第三混合單元136,表示如下: In another embodiment, different principal ray angles may be used to weight the third mixing unit 136, expressed as follows:
第三A/三B/三C圖之色彩校正單元137的執行可表示如下: 其中[ R i G iB i ]代表彩色(亦即,R、G與B)信號,[ R oG oB o ]代表校正彩色(亦即,R、G與B)信號,且[ c 1… c 9 ]代表最終混合色彩校正矩陣。 The execution of the color correction unit 137 of the third A/three B/tripty C diagram can be expressed as follows: Where [ R i G i B i ] represents the color (ie, R, G, and B) signals, [ R o G o B o ] represents the corrected color (ie, R, G, and B) signals, and [ c 1 ... c 9 ] represents the final mixed color correction matrix.
以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the invention should be included in the following Within the scope of the patent application.
100 影像處理系統 11 鏡頭陰影校正單元 12 解馬賽克單元 13 可調適色彩校正系統 131 色溫權重產生器 132 第一混合單元 133 紅外光權重產生器 134 第二混合單元 135 主光線角度權重產生器 136 第三混合單元 137 色彩校正單元 138 第四混合單元 14 色溫估計器 15 紅外光估計器 151 解多工器 152 累加器 153 除法器 154 加法單元 155 除法單元 156 限幅單元 16 伽瑪單元 200 雙模式影像裝置 20 鏡頭 21 雙頻帶紅外光截止濾波片 22 濾波陣列 23 影像感測器 CCM1 第一色彩校正矩陣 CCM2 第二色彩校正矩陣 CCM3 第三色彩校正矩陣 CCM4 第四色彩校正矩陣 CCM5 第五色彩校正矩陣 Th_l 低臨界點 Th_h 高臨界點 R_avg 紅光像素的平均信號 G_avg 綠光像素的平均信號 B_avg 藍光像素的平均信號 IR_avg 紅外光像素的平均信號 R 距離100 image processing system 11 lens shading correction unit 12 demosaicing unit 13 adaptive color correction system 131 color temperature weight generator 132 first mixing unit 133 infrared light weight generator 134 second mixing unit 135 main ray angle weight generator 136 third Mixing unit 137 Color correcting unit 138 Fourth mixing unit 14 Color temperature estimator 15 Infrared light estimator 151 Demultiplexer 152 Accumulator 153 Divider 154 Adding unit 155 Division unit 156 Amplitude unit 16 Gamma unit 200 Dual mode image device 20 Lens 21 Dual band infrared light cut filter 22 Filter array 23 Image sensor CCM1 First color correction matrix CCM2 Second color correction matrix CCM3 Third color correction matrix CCM4 Fourth Color correction matrix CCM5 Fifth color correction matrix Th_l Low critical point Th_h High critical point R_avg Average signal of red light pixels G_avg Average signal of green light pixels B_avg Average signal of blue light pixels IR_avg Average signal of infrared light pixels R Distance
第一圖顯示本發明實施例之適用於雙模式影像裝置的影像處理系統之方塊圖。 第二A圖例示第一圖之濾波陣列的彩色濾波片與紅外光濾波片。 第二B圖例示第一圖之雙頻帶紅外光截止濾波片與濾波陣列的光譜感度。 第三A圖顯示本發明第一特定實施例之可調適色彩校正系統(第一圖)的細部方塊圖。 第三B圖顯示本發明第二特定實施例之可調適色彩校正系統(第一圖)的細部方塊圖。 第三C圖顯示本發明第三特定實施例之可調適色彩校正系統(第一圖)的細部方塊圖。 第四A圖例示色溫、紅光增益與藍光增益的關係。 第四B圖顯示色溫權重與藍光、紅光之增益差值的關係。 第五A圖顯示第一圖之紅外光估計器的方塊圖。 第五B圖顯示紅外光權重與紅外光比值的關係。 第六A圖顯示主光線角度權重與像素-影像中心之距離的關係。 第六B圖顯示主光線角度權重與X座標、Y座標的另一關係。The first figure shows a block diagram of an image processing system suitable for a dual mode image device in accordance with an embodiment of the present invention. The second A diagram illustrates the color filter and the infrared light filter of the filter array of the first figure. The second B diagram illustrates the spectral sensitivity of the dual-band infrared cut-off filter and the filter array of the first figure. Figure 3A shows a detailed block diagram of an adaptive color correction system (first image) of a first particular embodiment of the present invention. Figure 3B shows a detailed block diagram of an adaptive color correction system (first image) of a second particular embodiment of the present invention. Figure 3C shows a detailed block diagram of an adaptive color correction system (first image) of a third particular embodiment of the present invention. Figure 4A illustrates the relationship between color temperature, red light gain, and blue light gain. The fourth B graph shows the relationship between the color temperature weight and the gain difference between blue light and red light. Figure 5A shows a block diagram of the infrared estimator of the first figure. Figure 5B shows the relationship between the infrared light weight and the infrared light ratio. Figure 6A shows the relationship between the chief ray angle weight and the distance from the pixel-image center. Figure 6B shows another relationship between the chief ray angle weight and the X coordinate and the Y coordinate.
100 影像處理系統 11 鏡頭陰影校正單元 12 解馬賽克單元 13 可調適色彩校正系統 14 色溫估計器 15 紅外光估計器 16 伽瑪單元 200 雙模式影像裝置 20 鏡頭 21 雙頻帶紅外光截止濾波片 22 濾波陣列 23 影像感測器100 Image Processing System 11 Lens Shading Correction Unit 12 De-mosaic Unit 13 Adjustable Color Correction System 14 Color Temperature Estimator 15 Infrared Light Estimator 16 Gamma Unit 200 Dual Mode Image Device 20 Lens 21 Dual Band Infrared Optical Cut Filter 22 Filter Array 23 image sensor
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103140564A TWI543631B (en) | 2014-11-21 | 2014-11-21 | Image processing system adaptable to a dual-mode image device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103140564A TWI543631B (en) | 2014-11-21 | 2014-11-21 | Image processing system adaptable to a dual-mode image device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201620298A TW201620298A (en) | 2016-06-01 |
TWI543631B true TWI543631B (en) | 2016-07-21 |
Family
ID=56755099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103140564A TWI543631B (en) | 2014-11-21 | 2014-11-21 | Image processing system adaptable to a dual-mode image device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI543631B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6879268B2 (en) * | 2018-06-18 | 2021-06-02 | 株式会社Jvcケンウッド | Color correction device |
CN113205568B (en) * | 2021-04-30 | 2024-03-19 | 北京达佳互联信息技术有限公司 | Image processing method, device, electronic equipment and storage medium |
-
2014
- 2014-11-21 TW TW103140564A patent/TWI543631B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201620298A (en) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5527448B2 (en) | Image input device | |
US20180338096A1 (en) | Image processing appartatus | |
US10887530B2 (en) | Signal processing apparatus, imaging pickup apparatus, and signal processing method | |
JP2004328140A (en) | Solid state imaging device and digital camera | |
US20160182837A1 (en) | Image pickup apparatus | |
WO2010116923A1 (en) | Image input device | |
JP2009100203A (en) | Signal processing device for solid-state imaging device, imaging apparatus having signal processing device, signal processing method, and program | |
US9307120B1 (en) | Image processing system adaptable to a dual-mode image device | |
JP5917048B2 (en) | Image processing apparatus, image processing method, and program | |
JP2015226299A (en) | Image input device | |
TWI543631B (en) | Image processing system adaptable to a dual-mode image device | |
KR20100082452A (en) | Apparatus for processing image signal and method for the same | |
WO2015008383A1 (en) | Imaging device | |
JP5121206B2 (en) | Image processing apparatus, image processing program, and image processing method | |
US11368655B2 (en) | Color correction device | |
US8804025B2 (en) | Signal processing device and imaging device | |
US11190713B2 (en) | Image processing apparatus and method, and imaging apparatus | |
JP2015211347A (en) | Image processing apparatus, imaging apparatus, image processing method and program | |
JP2015008391A (en) | Image processing apparatus, image processing method, and image processing program | |
TWI543145B (en) | Color processing system and apparatus | |
JP5920144B2 (en) | Imaging apparatus and imaging method | |
JP4724735B2 (en) | Solid-state imaging device and digital camera | |
JP2009055151A (en) | Color solid-state imaging apparatus |