WO2023047825A1 - Imaging device and imaging method - Google Patents

Imaging device and imaging method Download PDF

Info

Publication number
WO2023047825A1
WO2023047825A1 PCT/JP2022/030411 JP2022030411W WO2023047825A1 WO 2023047825 A1 WO2023047825 A1 WO 2023047825A1 JP 2022030411 W JP2022030411 W JP 2022030411W WO 2023047825 A1 WO2023047825 A1 WO 2023047825A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
imaging
filter
infrared
Prior art date
Application number
PCT/JP2022/030411
Other languages
French (fr)
Japanese (ja)
Inventor
臣一 下津
智行 河合
哲也 藤川
智大 島田
敏浩 青井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023047825A1 publication Critical patent/WO2023047825A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes

Definitions

  • the present invention relates to an imaging device and an imaging method, and more particularly to technology of an imaging device and an imaging method for capturing a near-infrared image and a visible image.
  • Patent Document 1 describes an imaging device capable of imaging with visible light and imaging with near-infrared light.
  • One embodiment according to the technology of the present disclosure is an imaging device that can capture an image in which a heat source that radiates near-infrared light and its surroundings that reflect visible light are used as subjects, and the subject can be visually recognized well. and an imaging method.
  • An imaging device is an imaging device that captures a near-infrared image and a visible image, and is imaging optics having transmission characteristics in the wavelength band of near-infrared light and the wavelength band of visible light.
  • a system an image sensor that acquires an image by receiving light that has passed through the imaging optical system, a light amount adjustment optical element that attenuates the amount of near-infrared light and/or the amount of visible light that passes through the imaging optical system, and the light amount adjusting optical element adjusts the light amount balance between the light amount of near-infrared light and the light amount of visible light received by the image sensor.
  • the light amount adjusting optical element constitutes a first filter that attenuates near-infrared light and/or a second filter that attenuates visible light.
  • the first filter is composed of a plurality of light amount adjusting optical elements.
  • the second filter is composed of a plurality of light amount adjusting optical elements.
  • the first filter and/or the second filter are held by a filter holding mechanism that holds the light amount adjusting optical element removably into the optical path of the imaging optical system.
  • the filter holding mechanism is configured with a turret having a first filter and/or a second filter.
  • the second filter can attenuate visible light by 30 dB or more.
  • the image sensor acquires a superimposed image in which the near-infrared image and the visible image are superimposed.
  • the diameter of the near-infrared light source image of the point light source image when the visible image is in focus is 0.2 mm or more and 0.9 mm or less.
  • the imaging device includes a control section, and the control section causes the light amount adjustment optical element to adjust the balance of the light amount based on the image acquired by the image sensor.
  • An imaging method which is another aspect of the present invention, is an imaging apparatus for imaging a near-infrared image and a visible image, and is imaging optics having transmission characteristics in the wavelength band of near-infrared light and the wavelength band of visible light. and an image sensor that acquires an image by receiving light that has passed through the imaging optical system, wherein near-infrared light that passes through the imaging optical system is detected by a light amount adjusting optical element. and/or an attenuation step of attenuating the amount of light and/or the amount of visible light, wherein the attenuation step adjusts the light amount balance between the amount of near-infrared light and the amount of visible light received by the image sensor.
  • FIG. 1 is a schematic configuration diagram of an imaging device.
  • FIG. 2 is a schematic diagram of the optical filter switching section viewed from the AA direction of FIG.
  • FIG. 3 is a diagram showing transmission spectrum data of the first filter.
  • FIG. 4 is a diagram showing transmission spectrum data of the second filter.
  • FIG. 5 is a schematic block diagram of the imaging device.
  • FIG. 6 is a schematic configuration diagram of a computer.
  • FIG. 7 shows a profile of light transmittance of the imaging optical system.
  • FIG. 8 is a diagram showing a thermal radiation spectrum generated from a heat source.
  • FIG. 9 is a diagram showing light intensity at each wavelength of a 400° C. heat source and a 200° C. heat source.
  • FIG. 1 is a schematic configuration diagram of an imaging device.
  • FIG. 2 is a schematic diagram of the optical filter switching section viewed from the AA direction of FIG.
  • FIG. 3 is a diagram showing transmission spectrum data of the first filter.
  • FIG. 4 is a diagram showing
  • FIG. 10 is a diagram showing a superimposed image of a visible image and a near-infrared image of a soldering iron whose tip is heated to 400° C. and its periphery as an object.
  • FIG. 11 is a diagram showing a superimposed image of a visible image and a near-infrared image of a soldering iron whose tip is heated to 400° C. and its periphery as an object.
  • FIG. 12 is a diagram showing the relationship between the focal length and the diameter of the blurred image.
  • FIG. 13 is a diagram showing focal length and focal position difference.
  • FIG. 14 is a diagram showing a simulation of defocus and the diameter of a blurred image.
  • FIG. 15 is a flow chart showing an imaging method of the imaging device.
  • FIG. 16 is a schematic diagram of an optical filter switching unit.
  • FIG. 17 is a flow chart showing an imaging method of the imaging device.
  • FIG. 18 is a schematic configuration diagram of an imaging device.
  • FIG. 1 is a schematic configuration diagram of an imaging apparatus of the present invention.
  • the imaging device 1 includes an imaging optical system 100 and an imaging section 130 .
  • the imaging unit 130 has an image sensor 132 .
  • the image sensor 132 receives light transmitted through the imaging optical system 100, converts an optical image of an imaging target into an electrical signal, and obtains an image.
  • the imaging device 1 is a thermal camera capable of imaging a near-infrared light image (near-infrared image) and a visible light image (visible image), for example, with a heat source and its surroundings as subjects.
  • the imaging optical system 100 has a plurality of lenses.
  • the imaging optical system 100 includes a focus lens 12, a zoom lens 14, an aperture 30, an optical filter switching unit 50, and an adjustment lens 16 from the object side to the imaging side.
  • the object side is the side on which the object to be imaged is located
  • the imaging side is the side on which an optical image of the object to be imaged is formed, that is, the side on which the image sensor 132 is located.
  • An “imaging optical system” as used in the present disclosure means, for example, an optical system for forming an optical image of an imaging target on the imaging surface 132A of the image sensor 132 using a plurality of lenses.
  • the “imaging optical system” may include not only lenses but also optical elements such as diaphragms, optical filters, half mirrors, and/or deflection elements.
  • the focus lens 12 is an optical system that adjusts the focus position of the image to be captured.
  • the zoom lens 14 is an optical system that adjusts zoom magnification.
  • the focus lens 12 and the zoom lens 14 move back and forth along the optical axis OP of the imaging optical system 100 in conjunction with each other by a cam mechanism (not shown).
  • the magnification is changed and the focal position is adjusted so that the imaging surface 132A of the image sensor 132 is in focus.
  • the optical axis OP is also called an optical path OP.
  • the focus lens 12 and the zoom lens 14 are driven by rotating a zoom cam (not shown) by a zoom lens driving mechanism 20 .
  • the zoom lens driving mechanism 20 is controlled by the control section 110 according to instructions given to the imaging device 1 by the user.
  • An objective lens for condensing light from an imaging target may be provided on the objective side of the zoom lens 14 .
  • the diaphragm 30 is an optical element that blocks unnecessary light such as stray light and narrows down the luminous flux.
  • the diaphragm 30 is arranged between the zoom lens 14 and the optical filter switching unit 50, but the position of the diaphragm 30 is not limited to this. You may arrange
  • the optical filter switching unit 50 includes a filter holding mechanism that holds a first filter composed of a light amount adjustment optical element that attenuates near-infrared light and a second filter composed of a light amount adjustment optical element that attenuates visible light. .
  • FIG. 2 is a schematic diagram of the optical filter switching section 50 viewed from the AA direction in FIG.
  • the optical filter switching unit 50 is a turret switching device in which four optical filters 52, 54, 56 and 58 are arranged on a disc. This switching device rotates a disk by a turret drive mechanism 22 such as a motor, and holds each optical filter so that it can be extracted onto the optical path OP. Note that the rotation of the disk may be clockwise or counterclockwise.
  • the optical filter switching unit 50 has a sensor (not shown) for detecting the filter arranged on the optical path OP.
  • the sensor may be installed at the turret driving mechanism 22 instead of the optical filter switching section 50 .
  • the turret driving mechanism 22 is controlled by the control section 110 in accordance with instructions given to the imaging apparatus 1 by the user.
  • optical filter switching section 50 is arranged between the zoom lens 14 and the adjustment lens 16 in FIG. 1, the position of the optical filter switching section 50 is not limited to this.
  • the optical filter switching unit 50 can be arranged between the object side of the focus lens 12 and the imaging side of the adjustment lens 16 .
  • the optical filter switching section 50 may be arranged between the adjustment lens 16 and the image sensor 132 .
  • the imaging device 1 may have a configuration in which the housing 90 that houses the imaging optical system 100 and the imaging unit 130 can be separated.
  • the imaging device 1 may be configured such that the housing 90 is an interchangeable lens unit, the imaging unit 130 is a camera unit, and any one of a plurality of types of lens units can be attached to one camera unit. good.
  • the optical filter switching section 50 may be arranged in the imaging section 130, that is, in the camera section.
  • the optical filter 52 is a first filter composed of one light amount adjusting optical element that attenuates the light amount of near-infrared light.
  • the optical filter 52 is a bandpass filter that reduces the light transmittance of at least part of the wavelength band of near-infrared light.
  • At least a part of the wavelength band of the near-infrared light means the wavelength band of the near-infrared light that passes through the imaging optical system 100 .
  • at least a part of the wavelength band of the near-infrared light refers to, for example, a wavelength band of 1100 nm or more in the wavelength band of the near-infrared light.
  • a part of the wavelength band of near-infrared light refers to, for example, a near-infrared light peak wavelength band described later.
  • the optical filter 52 is an example of a first filter according to the technology of the present disclosure.
  • the optical filter 52 is used, for example, to attenuate near-infrared light emitted from a high-temperature heat source (for example, 1500° C.) when the amount of light is extremely high.
  • FIG. 3 is a diagram showing transmission spectrum data of a first filter composed of one light amount adjusting optical element.
  • the vertical axis indicates transmittance, and the horizontal axis indicates wavelength.
  • FIG. 3A shows the transmittance in the range of 0 to 100%
  • FIG. 3B is an enlarged view showing the transmittance in the range of 0 to 10%.
  • the first filter is composed of, for example, a multilayer filter.
  • the first filter has a transmittance of approximately 80% or more in the visible light wavelength band, whereas the transmittance of the near-infrared light wavelength band (for example, wavelengths of 1500 ⁇ 100 nm) is approximately 1% or less. Therefore, the first filter can selectively attenuate only the amount of near-infrared light, and can balance the amount of visible light and the amount of near-infrared light.
  • the first filter can further attenuate the amount of near-infrared light by providing multiple stages.
  • the first filter is composed of one light amount adjusting optical element, the light amount of near-infrared light can be attenuated by 20 dB.
  • the first filter When the first filter is composed of two light amount adjusting optical elements, it can attenuate the light amount of near-infrared light by 40 dB. It should be noted that the illustrated transmission spectrum data of the first filter is an example, and the present invention is not limited to this.
  • the optical filter 54 is a second filter composed of one light amount adjusting optical element that attenuates the amount of visible light.
  • the optical filter 54 is a bandpass filter that reduces the light transmittance of at least part of the wavelength band of visible light.
  • the wavelength band of at least part of visible light means the wavelength band of visible light that passes through the imaging optical system 100 .
  • at least a part of the wavelength band of visible light refers to, for example, a wavelength band of 800 nm or less.
  • the partial wavelength band of the visible light wavelength band refers to, for example, the visible light peak wavelength band described later.
  • the optical filter 54 is an example of a second filter according to the technology of the present disclosure.
  • the optical filter 54 has a very strong visible light such as illumination, and when the heat source is relatively low temperature (for example, 200° C. to 300° C.), the amount of near-infrared light radiated from the heat source is relatively low. get weaker. In such a case, the second filter is used to attenuate the amount of visible light.
  • FIG. 4 is a diagram showing transmission spectrum data of a second filter composed of one light amount adjusting optical element.
  • the vertical axis indicates transmittance, and the horizontal axis indicates wavelength.
  • FIG. 4A shows the transmittance in the range of 0 to 100%
  • FIG. 4B is an enlarged view showing the transmittance in the range of 0 to 1%.
  • the second filter is composed of, for example, a multilayer filter.
  • the second filter has a transmittance of 90% or more for light in the wavelength band of near-infrared light (for example, a wavelength of 1500 ⁇ 100 nm), whereas it transmits light in the wavelength band of visible light (for example, a wavelength of 400 to 600 nm).
  • the transmittance is approximately 1% or less. Therefore, the second filter can selectively attenuate only the amount of visible light, and can balance the amount of visible light and the amount of near-infrared light. In addition, the second filter can attenuate the light amount of the near-infrared light more by making it multistage.
  • the second filter When the second filter is composed of one light amount adjusting optical element, it can attenuate the light amount of visible light by 30 dB.
  • the second filter can attenuate the amount of visible light by 60 dB when it is composed of two light amount adjusting optical elements.
  • the illustrated transmission spectrum data of the second filter is an example, and the present invention is not limited to this.
  • the optical filter 56 is a transparent glass plate having a refractive index close to that of the other optical filters 52, 54 and 58.
  • the optical filter 56 is an optical path length adjustment filter for not changing the optical path length as much as possible from the optical path length when the optical filters 52, 54 and 58 are used when the other optical filters 52, 54 and 58 are not used. is.
  • the optical filter 58 is an ND (Neutral Density) filter for adjusting the amount of light.
  • the adjustment lens 16 is a lens for adjusting the difference between the focal length for visible light and the focal length for near-infrared light.
  • the focal length of near-infrared light which has a longer wavelength than that of visible light, is longer than that of visible light.
  • the focus lens 12 and the zoom lens 14 are configured to move in conjunction with each other so that the focal position during zooming with visible light is aligned with the imaging surface 132A of the image sensor 132 . Therefore, it is impossible to adjust the focus position with near-infrared light. Therefore, the near-infrared image can be focused by moving the adjusting lens 16 along the optical path OP.
  • the adjustment lens 16 is driven by an adjustment lens driving mechanism 24.
  • the adjustment lens drive mechanism 24 is controlled by the control section 110 according to instructions from the user. Specifically, the control unit 110 controls the adjusting lens drive mechanism 24 so that the position of the adjusting lens 16 is adjusted to the in-focus position according to the imaging conditions instructed by the user.
  • the imaging condition refers to, for example, selection of focusing on a visible image or a near-infrared image and selection of zoom magnification according to a user's instruction.
  • the focus position of the adjustment lens 16 refers to the position of the adjustment lens 16 for forming an image of light (visible light or near-infrared light) on the imaging surface 132A of the image sensor 132 in a focused state.
  • the control unit 110 adjusts the position of the adjustment lens 16 based on instructions from the user. Specifically, when a command to focus on the visible image is input, the adjustment lens 16 is moved to the in-focus position in the visible image, and when a command to focus on the near-infrared image is input, the adjustment lens 16 is moved. to the in-focus position in the near-infrared image.
  • each of the focus lens 12, the zoom lens 14, and the adjustment lens 16 is composed of one or more lens groups.
  • the imaging optical system 100 is composed of several to several tens of lenses as a whole.
  • Each lens of the imaging optical system 100 is coated so as to have high light transmittance in a specific wavelength band of visible light and near-infrared light. Coatings may be applied to only some of the total lenses. However, it is more preferable to apply the coating to all lenses.
  • the configuration of the imaging lens 100 is not limited to the above aspect. For example, various types of lens configurations are known for the zoom lens 14 and the focus lens 12, and configurations for zoom control and focus control (extend the entire lens group, extend a part of the lens group, etc.). ) are also known, and their constructions can also be employed in the present invention.
  • FIG. 5 is a schematic block configuration diagram of the imaging device 1.
  • FIG. 6 is a schematic block diagram of the computer shown in FIG.
  • the imaging device 1 is controlled by the control unit 110 .
  • the control unit 110 has a computer 200 .
  • the computer 200 includes a CPU (Central Processing Unit) 202, a RAM (RAM: random access memory) 204, and a ROM (ROM: read only memory) 206, which are connected to each other via a bus line 112. have.
  • the CPU 202 controls the imaging device 1 as a whole.
  • a RAM 204 is, for example, a volatile memory that is used as a work area or the like when executing an imaging apparatus control program.
  • the ROM 206 is, for example, a non-volatile memory that stores an imaging device control program 210 that controls the imaging device 1, focus position data 212, and the like.
  • the CPU 202 is exemplified in this embodiment, it is also possible to use a plurality of CPUs instead of the CPU 202 .
  • the CPU 202 reads the imaging device control program 210 from the ROM 206 and develops the read imaging device control program 210 in the RAM 204 . Then, the CPU 202 executes the imaging apparatus control program 210 to control the zoom lens driving section 114, the turret driving section 116, and the adjustment lens driving section 118 shown in FIG. 5 as an example.
  • the focus position data 212 is data on the position of the adjusting lens 16 when focusing on a visible image and the position of the adjusting lens 16 when focusing on a near-infrared image.
  • the focus position data 212 is stored as position data of the adjustment lens 16 for each magnification of visible light and near-infrared light, for example.
  • a known mechanism can be used for the zoom lens drive mechanism 20, the turret drive mechanism 22, and the adjustment lens drive mechanism 24.
  • FIG. 1 shows the case where these mechanisms are inside the housing 90 , they may be arranged outside the housing 90 .
  • the image sensor 132 is composed of, for example, an InGaAs imaging element capable of imaging a subject with both visible light and near-infrared light wavelengths.
  • An imaging surface 132A of the image sensor 132 is provided with a filter, specifically, a filter that selectively receives visible light and near-infrared light. Note that the image sensor 132 can acquire a visible image as a color image or as a monochrome image.
  • An image obtained by the image sensor 132 is, for example, a superimposed image in which a near-infrared image and a visible image are superimposed.
  • An optical image formed by the imaging optical system 100 is converted into an electrical signal by the image sensor 132 of the imaging unit 130, and after various image processing is performed, it is displayed as an image on the image display unit 26, which will be described later. Also, an image that has undergone image processing may be transmitted to the outside by wire or wirelessly.
  • control unit 110 includes a zoom lens driving unit 114, a turret driving unit 116, an adjusting lens driving unit 118, an output I/F (I/F: interface) 120, an input I/F 122, an image processing unit 126, and computer 200. These are connected by a bus line 112 .
  • Control unit 110 also includes an external I/F 124 .
  • the zoom lens driving section 114 is connected to the zoom lens driving mechanism 20 .
  • the turret driving section 116 is connected to the turret driving mechanism 22 .
  • the adjustment lens drive section 118 is connected to the adjustment lens drive mechanism 24 .
  • the output I/F 120 is connected to the image display section 26 .
  • the input I/F 122 is connected to the image sensor 132 and the input section 28 .
  • the image display unit 26 displays images based on image signals input via the output I/F 120 .
  • the input unit 28 accepts instructions given by the user.
  • the input I/F 122 is an interface for receiving an electric signal from the image sensor 132 and an instruction input by the user via the input unit and sending the same to the computer 200 .
  • the external I/F 124 is an interface for receiving an instruction from a user, for example, through wireless communication, and transmitting an image that has undergone image processing through wireless communication.
  • the image processing unit 126 processes the image acquired by the image sensor 132 .
  • the zoom lens drive unit 114 adjusts the positions of the focus lens 12 and the zoom lens 14 by controlling the zoom lens drive mechanism 20 according to instructions from the computer 200 .
  • the turret driving section 116 switches the filters of the optical filter switching section 50 by controlling the turret driving mechanism 22 according to instructions from the control section 110 .
  • the adjusting lens driving section 118 adjusts the position of the adjusting lens 16 by controlling the adjusting lens driving mechanism 24 according to the instruction from the control section 110 .
  • the output I/F 120 is an interface for sending to the image display section 26 a captured image obtained by performing image processing by the image processing section 126 .
  • FIG. 7 is a diagram showing a profile of light transmittance of the imaging optical system 100.
  • FIG. The horizontal axis of FIG. 7 is the wavelength, and the vertical axis is the light transmittance of the imaging optical system 100 .
  • the imaging optical system 100 has transmission characteristics in the wavelength band of near-infrared light and the wavelength band of visible light.
  • the optical transmittance profile of the imaging optical system 100 has a first transmittance peak PK1 in the near-infrared light peak wavelength band NIR (NIR: Near InfraRed) from 1450 nm to 1650 nm.
  • NIR Near InfraRed
  • the light transmittance on the short wavelength side of the near-infrared light peak wavelength band NIR decreases as the wavelength becomes shorter from the light transmittance at the short wavelength end (1450 nm) of the near-infrared light peak wavelength band NIR.
  • the light transmittance on the longer wavelength side than the near-infrared light peak wavelength band NIR decreases as the wavelength increases from the light transmittance at the long wavelength end (1650 nm) of the near-infrared light peak wavelength band NIR. .
  • the light transmittance of the first transmittance peak PK1 is about 92% at a wavelength of 1520 nm. Moreover, the light transmittance in the wavelength range from 1490 nm to 1560 nm is 90% or more.
  • the first filter described above reduces the light transmittance in the wavelength band of the near-infrared light peak wavelength band NIR to attenuate the light amount of the near-infrared light.
  • the optical transmittance profile of the imaging optical system 100 has a second transmittance peak PK2 in the visible light peak wavelength band VIS (VIS: Visible) from 450 nm to 700 nm. That is, the light transmittance on the shorter wavelength side than the visible light peak wavelength band VIS decreases as the wavelength shortens from the light transmittance at the short wavelength end (450 nm) of the visible light peak wavelength band VIS. Further, the light transmittance on the longer wavelength side than the visible light peak wavelength band VIS decreases as the wavelength increases from the light transmittance at the long wavelength end (700 nm) of the visible light peak wavelength band VIS.
  • VIS visible light peak wavelength band
  • the light transmittance of the second transmittance peak PK2 is about 96% at wavelengths from 570 nm to 580 nm. Moreover, the light transmittance in the wavelength range of 480 nm to 660 nm is 90% or more.
  • the second filter described above reduces the light transmittance of the wavelength band of the visible light peak wavelength band VIS to attenuate the amount of visible light.
  • the light transmittance of the wavelength band on the short wavelength side of the blue wavelength band included in the wavelength band of visible light is lower than the light transmittance of the wavelength band on the long wavelength side of the wavelength band of blue light.
  • the light transmittance in the wavelength band of 450 nm or less in the blue wavelength band is smaller than the light transmittance in the wavelength band longer than 450 nm.
  • the light transmittance at wavelengths from 400 nm to 430 nm is 50% or less.
  • the light transmittance in the wavelength range of 400 nm to 430 nm is more than 50%
  • the light transmittance in the wavelength range of 1200 nm to 1290 nm which is the peak third harmonic of the near-infrared wavelength band
  • the peak of the wavelength band of near-infrared light is widened, and there is a possibility that the light transmittance in the vicinity of the wavelength of 1550 nm is lowered, or the characteristics are deteriorated such as residual ripples.
  • the imaging optical system 100 has a higher light transmittance than the near-infrared peak wavelength band and the visible peak wavelength band over a wavelength range of 900 nm to 1100 nm between the near-infrared peak wavelength band and the visible peak wavelength band. It has a small, low light transmittance region LOW.
  • the light transmittance of the low light transmittance area LOW is preferably 5% or less.
  • the low light transmittance region LOW forms a light transmittance peak in the near-infrared light region in the near-infrared light peak wavelength band NIR, and forms a light transmittance peak in the visible light region in the visible light peak wavelength band VIS. This is the area that arises as a result of doing so.
  • the wavelength of the low light transmittance region LOW is a wavelength band that does not contribute to imaging with visible light or near-infrared light, the light transmittance of the low light transmittance region LOW is low. is not a problem.
  • the light transmittance profile shown in FIG. 7 has one light transmittance peak PK1 in the near-infrared light peak wavelength band NIR and one light transmittance peak PK2 in the visible light peak wavelength band VIS. .
  • the light transmittance profile of the present disclosure is not limited to this. It may have a waveform shape (ripple) due to a plurality of light transmittance peaks in the near-infrared light peak wavelength band NIR. Moreover, it may have a ripple in the visible light peak wavelength band VIS. Ripple is a shape that exhibits one characteristic of variations in light transmission. Thus, any profile having a light transmittance peak in the near-infrared light peak wavelength band NIR and a light transmittance peak in the visible light peak wavelength band VIS may be sufficient. The number is not limited.
  • the first transmittance peak PK1 formed in the near-infrared light peak wavelength band NIR should have a half width as narrow as possible. Near-infrared light, which has a longer wavelength than visible light, is more prone to chromatic aberration than visible light when the wavelength range is widened. Therefore, it is preferable that the imaging wavelength range be as narrow as possible.
  • the profile of light transmittance as shown in FIG. 7 shows that the light transmittance peak at one-third wavelength of the fundamental wave caused by the interference caused by the coating of the fundamental wave having the light transmittance peak in the near-infrared light peak wavelength band is visible. Obtained by coating to lie in the optical peak wavelength band.
  • the fundamental wave preferably has a peak near 1550 nm.
  • a light transmittance profile that satisfies the above conditions can be obtained by constructing the coating so that the light transmission peak at 1/3 wavelength of the fundamental wave is suppressed and the light transmission peak at 1/3 wavelength is increased. can get. It is possible by conventional techniques to design and form a coating that provides a light transmission profile that satisfies the above conditions.
  • ⁇ Light balance adjustment> Next, the adjustment of the light amount balance between the light amount of near-infrared light and the light amount of visible light will be described.
  • adjustment of the light amount balance is performed by a first filter (optical filter 52) or a second filter (optical filter 54) configured by a light amount adjusting optical element.
  • FIG. 8 is a diagram showing a thermal radiation spectrum generated from a heat source.
  • the vertical axis indicates the light intensity (au), and the horizontal axis indicates the wavelength ( ⁇ m).
  • FIG. 8 shows the light intensity at each wavelength of a 10°C heat source, a 200°C heat source, and a 1500°C heat source. Also shown is the limit value LD of the light intensity observable by the InGaAs imaging device.
  • the temperature of flames at fire sites reaches around 1500°C.
  • the near-infrared image part is blown out in the obtained image, and the object is cannot be seen well.
  • the practical observation width is about 25 dB (indicated by arrow W2). Therefore, in such a case, the above-described first filter is inserted in the optical path OP to attenuate the light amount of the near-infrared light and adjust the light amount balance between the light amount of the near-infrared light and the light amount of the visible light. it becomes necessary to
  • FIG. 9 is a diagram showing the light intensity at each wavelength of a 400° C. heat source and a 200° C. heat source.
  • the vertical axis indicates the light intensity (au), and the horizontal axis indicates the wavelength ( ⁇ m).
  • the light intensity of the near-infrared light radiated from the 400° C. heat source is point F1.
  • the light intensity of the near-infrared light is attenuated to point F2.
  • the light intensity level becomes approximately the same as that of the visible light, as shown in the figure.
  • FIG. 10 is a diagram showing a superimposed image of a visible image and a near-infrared image of a soldering iron whose tip is heated to 400° C. and its periphery as an object.
  • FIG. 10A is a superimposed image when imaging without attenuating the amount of near-infrared light
  • FIG. 10B is a superimposed image when imaging with the amount of near-infrared light attenuated by the first filter.
  • FIG. 4 is a diagram showing an image;
  • the tip of the soldering iron is a heat source of 400°C, and near-infrared light (wavelength 1550 nm) is radiated from the tip of the soldering iron.
  • a near-infrared image corresponding to this near-infrared light has a larger amount of light than the surrounding visible image. Therefore, in the superimposed image, the portion of the near-infrared image is blown out, and the tip of the soldering iron and its peripheral portion cannot be visually recognized (see arrow E1).
  • the first filter into the optical path OP, the amount of near-infrared light can be suppressed.
  • the near-infrared light (wavelength 1550 nm) is attenuated by 20 dB.
  • the first filter in the optical path OP and adjusting the light amount of the near-infrared light and the light amount of the visible light, it is possible to suppress overexposure at the portion of the near-infrared image in the superimposed image. .
  • the imaging device 1 can obtain a superimposed image in which the near-infrared image is focused by moving the adjustment lens 16, for example.
  • FIG. 11 is a diagram showing a superimposed image of a soldering iron whose tip is heated to 400° C. and a visible image and a near-infrared image of its surroundings, as in FIG. Whereas in FIG. 10 the visible image was focused, in FIG. 11 the near-infrared image is focused.
  • FIG. 11A shows a superimposed image when an image is captured without attenuating the amount of near-infrared light
  • FIG. 11B shows the amount of near-infrared light using the first filter.
  • a superimposed image is shown when imaged with attenuation.
  • the tip of the soldering iron near-infrared image
  • the tip of the soldering iron is overexposed because the amount of light is larger than that of the visible image around it. cannot be verified (see arrow G1).
  • FIG. 11(A) the tip of the soldering iron (near-infrared image) is overexposed because the amount of light is larger than that of the visible image around it. cannot be verified (see arrow G1).
  • the near-infrared light (wavelength: 1550 nm) is attenuated by 20 dB, and the tip of the soldering iron and its peripheral portion can be checked.
  • a possible superimposed image can be obtained (see arrow G2). Note that in the superimposed image shown in FIG. 11, the visible image is in a defocused state, but the object can be visually recognized roughly.
  • the imaging device 1 can focus on the near-infrared image or the visible image when acquiring a superimposed image of the near-infrared image and the visible image.
  • the superimposed image is focused on the visible image, it can be confirmed that the portion of the blurred image is a near-infrared image and has a high temperature.
  • the radiation image from the heat source can be clearly visually recognized.
  • FIG. 12 is a diagram showing the relationship between the focal length and the diameter of the blurred image
  • FIG. 13 is a diagram showing the focal length and the focal position difference.
  • the vertical axis indicates the diameter (mm) of the blurred image
  • the horizontal axis indicates the focal length (mm).
  • the diameters of blurred images are shown for D-line (wavelength 587.56 nm) as visible light and wavelengths 1500 nm, 1550 nm and 1600 nm as near-infrared light. Since the visible image is focused, the diameter of the blurred image is 0 at the wavelength of 587.56 nm. Since the near-infrared image is focused on the visible image, it is a blurred image, and the diameter of the blurred image increases as the focal length increases.
  • the vertical axis indicates the focal position difference (mm), and the horizontal axis indicates the focal length (mm).
  • the focal position difference shows the focal position difference with respect to the image (visible image) of the light of the D line (wavelength 587.56) with the image direction being positive.
  • the focal position difference is shown for D line (wavelength 587.56 nm) as visible light and wavelengths 1500 nm, 1550 nm and 1600 nm as near-infrared light.
  • the focal position difference between the visible image and the near-infrared image increases as the focal length increases.
  • the diameter of the blurred image of the near-infrared image increases as the focal length increases, and the focal position difference increases as the focal length increases.
  • FIG. 14 is a diagram showing a simulation of the defocus and the diameter of the blurred image.
  • Reference H1 indicates an image with a defocus of 0 mm and a blurred image with a diameter of 0 mm.
  • Symbol H2 indicates an image with a defocus of 1 mm and a blurred image with a diameter of 0.2 mm.
  • Symbol H3 indicates an image with a defocus of 3 mm and a blurred image diameter of 0.5 mm.
  • Reference H4 indicates an image with a defocus of 6 mm and a blurred image with a diameter of 0.6 mm.
  • Symbol H5 indicates an image with a defocus of 9 mm and a blurred image diameter of 0.9 mm.
  • Reference H6 indicates an image with a defocus of 12 mm.
  • Reference H7 indicates an image with a 15 mm defocus.
  • the image of the cross shown up to symbol H5 can be visually recognized well.
  • the diameter of the blurred image of the near-infrared image is preferably 0.2 mm or more and 0.9 mm or less in order to visually recognize the subject with the blurred image.
  • the diameter of the blurred image is measured, for example, by the diameter of the near-infrared light image (bokeh image) of the point light source image in visible light.
  • FIG. 15 is a flowchart showing the imaging method of the imaging device 1.
  • FIG. Note that the imaging method is performed by the CPU 202 executing an imaging device control program (imaging method execution program) stored in the computer of the imaging device 1 .
  • imaging device control program imaging method execution program
  • the first filter or the second filter is inserted into the optical path OP (attenuation step: step S10) to attenuate the amount of near-infrared light or the amount of visible light to adjust the light amount balance of the resulting superimposed image.
  • the imaging device 1 moves the adjustment lens 16 to focus on the near-infrared image or the visible image (step S11).
  • the imaging device 1 moves the adjusting lens 16 to focus on the visible image.
  • the imaging device 1 captures a superimposed image of the near-infrared image and the visible image (step S12).
  • the imaging device 1 when imaging a subject having a high-temperature heat source (for example, 1500° C.) using a near-infrared image and a visible image, the first filter is placed in the optical path OP. It is inserted to attenuate the light quantity of the near-infrared image to adjust the light quantity balance between the light quantity of the visible light and the light quantity of the near-infrared light. Thereby, the imaging device 1 can obtain a superimposed image in which the subject of the visible image and the near-infrared image can be visually recognized well.
  • a high-temperature heat source for example, 1500° C.
  • the technology of the present disclosure is not limited to this.
  • the amount of visible light is strong due to illumination or the like
  • the amount of near-infrared light radiated from a heat source at 200° C. to 300° C. is relatively low.
  • the second filter in the optical path OP to attenuate the amount of visible light, it is possible to acquire a superimposed image in which the subject can be visually recognized well, with overexposure suppressed.
  • control unit 110 replaces the optical filters based on the image acquired by the image sensor 132 to adjust the light amount balance between the near-infrared light amount and the visible light amount.
  • FIG. 16 is a schematic diagram of the optical filter switching section 50 of this example. It should be noted that FIG. 16 shows the optical filter switching section 50 viewed from the direction AA in FIG. 1, as in FIG.
  • the optical filter switching unit 50 of this example is a turret switching device in which four optical filters 62, 64, 66, 68 are arranged on a disc. It should be noted that the provided optical filters are different from those of the optical filter switching section 50 already explained with reference to FIG.
  • the optical filter 62 is a first filter composed of one light amount adjusting optical element. This first filter can attenuate the amount of near-infrared light by 20 dB.
  • the optical filter 64 is a first filter composed of two light amount adjusting optical elements. This first filter can attenuate the amount of near-infrared light by 40 dB.
  • the optical filter 66 is a first filter composed of three light quantity adjusting optical elements. This first filter can attenuate the amount of near-infrared light by 60 dB.
  • the optical filter 68 is a second filter composed of one light amount adjusting optical element.
  • the second filter can attenuate the amount of visible light by 30 dB.
  • the optical filter switching unit 50 included in the imaging device 1 of this example is configured with optical filters that stepwisely attenuate the amount of near-infrared light.
  • the optical filter switching section 50 is driven by the control section 110 to obtain a superimposed image with the light amount balance adjusted.
  • FIG. 17 is a flowchart showing the imaging method of the imaging device 1 of this example. Note that the imaging method is performed by the CPU 202 executing an imaging device control program (imaging method execution program) stored in the computer of the imaging device 1 .
  • an imaging device control program imaging method execution program
  • the control unit 110 of the imaging device 1 inserts the optical filter 62 into the optical path OP (step S20). After that, the imaging device 1 captures a superimposed image of the near-infrared image and the visible image (step S21). After that, the captured superimposed image is input to the image processing unit 126 of the imaging apparatus 1 of this example, and the image processing unit 126 determines whether or not the overexposed area in the superimposed image is equal to or larger than a threshold value (step S22).
  • the control unit 110 determines that the attenuation of the near-infrared light amount by the optical filter 62 is insufficient, drives the optical filter switching unit 50, The optical filter 62 is retracted and the optical filter 64 is inserted into the optical path OP.
  • the optical filter 64 is a first filter configured by stacking two light amount adjusting optical elements, and can attenuate the amount of near-infrared light from the optical filter 62 .
  • the imaging device 1 captures a superimposed image of the near-infrared image and the visible image, and the image processing unit 126 determines whether the overexposed area is equal to or greater than the threshold. In this manner, the imaging apparatus 1 drives the optical filter switching unit 50 to change the optical filter until the overexposed area becomes less than the threshold value.
  • the imaging device 1 records the superimposed image as the main captured image (step S23).
  • the size of the overexposed area is determined based on the superimposed image captured by the control unit 110 . Then, based on the determination result, the optical filter switching unit 50 is operated to change the optical filter, thereby adjusting the light amount balance between the near-infrared light amount and the visible light amount in the superimposed image. As a result, it is possible to obtain a superimposed image in which the near-infrared image and the visible image can be satisfactorily visually recognized.
  • the optical filter switching unit 50 of the imaging apparatus 1 of this example is not the turret switching device described with reference to FIGS. filter holding mechanism).
  • FIG. 18 is a schematic configuration diagram of the imaging device 1 of this example.
  • symbol is attached
  • the imaging device 1 shown in FIG. 18 is composed of a filter insertion/extraction mechanism 72 and a filter insertion/extraction mechanism 74 .
  • a first filter is held by the filter insertion/extraction mechanism 72
  • a second filter is held by the filter insertion/extraction mechanism 74 .
  • the first filter held by the filter inserting/removing mechanism 72 is driven by the inserting/removing driving mechanism 70 to move in the direction indicated by the arrow in the figure, and is inserted onto or retracted from the optical path OP.
  • the second filter held by the filter inserting/removing mechanism 74 is driven by the inserting/removing driving mechanism 70 to move in the direction indicated by the arrow in the drawing, and is inserted onto or retracted from the optical path OP.
  • the insertion/extraction driving mechanism 70 and the insertion/extraction driving section for driving the insertion/extraction driving mechanism 70 are replaced with the turret driving mechanism 22 and the turret driving section 116 described with reference to FIG.
  • the first filter and the second filter are held by the filter insertion/removal mechanism 72 and the filter insertion/removal mechanism 74, respectively, so that the first filter and the second filter are held by the turret.
  • the actuation mechanism can be simplified rather than
  • the hardware structure of the processing unit (control unit 110) (processing unit) that executes various processes is various processors as shown below.
  • the circuit configuration can be changed after manufacturing such as CPU (Central Processing Unit), which is a general-purpose processor that executes software (program) and functions as various processing units, FPGA (Field Programmable Gate Array), etc.
  • Programmable Logic Device PLD
  • ASIC Application Specific Integrated Circuit
  • One processing unit may be composed of one of these various processors, or composed of two or more processors of the same type or different types (for example, a plurality of FPGAs, or a combination of a CPU and an FPGA).
  • a plurality of processing units may be configured by one processor.
  • a processor functions as multiple processing units.
  • SoC System On Chip
  • SoC System On Chip
  • the hardware structure of these various processors is, more specifically, an electrical circuit that combines circuit elements such as semiconductor elements.
  • Imaging device 12 Focus lens 14: Zoom lens 16: Adjustment lens 20: Zoom lens drive mechanism 22: Turret drive mechanism 24: Adjustment lens drive mechanism 26: Image display unit 28: Input unit 30: Aperture 50: Optical filter switching Unit 90: housing 100: imaging optical system 110: control unit 112: bus line 114: zoom lens driving unit 116: turret driving unit 118: adjustment lens driving unit 120: output I/F 122: Input I/F 126: Image processing unit 130: Imaging unit 132: Image sensor 132A: Imaging surface 200: Computer 202: CPU 204: RAM 206: ROM 210: Imaging device control program 212: In-focus position data

Abstract

Provided are an imaging device and an imaging method with which it is possible to obtain an image that allows good visual recognition of subjects, said subjects being a heat source that radiates infrared light and the surroundings of the heat source which reflect visible light. An imaging device (1) captures a near-infrared image and a visible image, and comprises: an imaging optical system (100) that has transmissive characteristics in the near-infrared light wavelength band and the visible light wavelength band; an image sensor (132) that receives light transmitted through the imaging optical system (100) and acquires an image; and a light amount adjustment optical element that attenuates the light amount of near-infrared light and/or the light amount of visible light being transmitted through the imaging optical system (100). The light amount adjustment optical element adjusts the light amount balance between the light amount of near-infrared light and the light amount of visible light received by the image sensor (132).

Description

撮像装置および撮像方法Imaging device and imaging method
 本発明は、撮像装置および撮像方法に関し、特に近赤外像と可視像とを撮像する撮像装置および撮像方法の技術に関する。 The present invention relates to an imaging device and an imaging method, and more particularly to technology of an imaging device and an imaging method for capturing a near-infrared image and a visible image.
 従来、可視光および可視光以外の波長帯域を有する光の像を撮像する技術が提案されている。 Conventionally, techniques for capturing images of light having wavelength bands other than visible light and visible light have been proposed.
 特許文献1では、可視光での撮像と近赤外光での撮像を行うことができる撮像装置が記載されている。 Patent Document 1 describes an imaging device capable of imaging with visible light and imaging with near-infrared light.
国際公開第2020/095513号公報International Publication No. 2020/095513
 本開示の技術にかかる一つの実施形態は、近赤外光を輻射する熱源と可視光を反射するその周辺とを被写体とし、その被写体を良好に視認可能な画像を撮像することができる撮像装置および撮像方法を提供する。 One embodiment according to the technology of the present disclosure is an imaging device that can capture an image in which a heat source that radiates near-infrared light and its surroundings that reflect visible light are used as subjects, and the subject can be visually recognized well. and an imaging method.
 本発明の一の態様である撮像装置は、近赤外像と可視像を撮像する撮像装置であって、近赤外光の波長帯域と可視光の波長帯域とに透過特性を有する撮像光学系と、撮像光学系を透過した光を受光して、画像を取得するイメージセンサと、撮像光学系を透過する近赤外光の光量および又は可視光の光量を減衰させる光量調整光学素子と、を備え、光量調整光学素子により、イメージセンサが受光する近赤外光の光量と可視光の光量との光量バランスを調整する。 An imaging device according to one aspect of the present invention is an imaging device that captures a near-infrared image and a visible image, and is imaging optics having transmission characteristics in the wavelength band of near-infrared light and the wavelength band of visible light. a system, an image sensor that acquires an image by receiving light that has passed through the imaging optical system, a light amount adjustment optical element that attenuates the amount of near-infrared light and/or the amount of visible light that passes through the imaging optical system, and the light amount adjusting optical element adjusts the light amount balance between the light amount of near-infrared light and the light amount of visible light received by the image sensor.
 好ましくは、光量調整光学素子は、近赤外光を減衰させる第1フィルタおよび又は可視光を減衰させる第2フィルタを構成する。 Preferably, the light amount adjusting optical element constitutes a first filter that attenuates near-infrared light and/or a second filter that attenuates visible light.
 好ましくは、第1フィルタは、複数枚の光量調整光学素子により構成されている。 Preferably, the first filter is composed of a plurality of light amount adjusting optical elements.
 好ましくは、第2フィルタは、複数枚の光量調整光学素子により構成されている。 Preferably, the second filter is composed of a plurality of light amount adjusting optical elements.
 好ましくは、第1フィルタおよび又は第2フィルタは、光量調整光学素子を撮像光学系の光路に挿抜可能に保持するフィルタ保持機構により保持されている。 Preferably, the first filter and/or the second filter are held by a filter holding mechanism that holds the light amount adjusting optical element removably into the optical path of the imaging optical system.
 好ましくは、フィルタ保持機構は、第1フィルタおよび又は第2フィルタを有するターレットで構成される。 Preferably, the filter holding mechanism is configured with a turret having a first filter and/or a second filter.
 好ましくは、第2フィルタは、可視光を30dB以上減衰することができる。 Preferably, the second filter can attenuate visible light by 30 dB or more.
 好ましくは、イメージセンサは、近赤外像と可視像とが重畳した重畳画像を取得する。 Preferably, the image sensor acquires a superimposed image in which the near-infrared image and the visible image are superimposed.
 好ましくは、撮像光学系は、可視像が合焦状態での点光源像の、近赤外光の光源像の径が、0.2mm以上0.9mm以下である。 Preferably, in the imaging optical system, the diameter of the near-infrared light source image of the point light source image when the visible image is in focus is 0.2 mm or more and 0.9 mm or less.
 好ましくは、撮像装置は制御部を備え、制御部は、イメージセンサで取得される画像に基づいて、光量調整光学素子に光量のバランスを調整させる。 Preferably, the imaging device includes a control section, and the control section causes the light amount adjustment optical element to adjust the balance of the light amount based on the image acquired by the image sensor.
 本発明の他の態様である撮像方法は、近赤外像と可視像を撮像する撮像装置であって、近赤外光の波長帯域と可視光の波長帯域とに透過特性を有する撮像光学系と、撮像光学系を透過した光を受光して、画像を取得するイメージセンサと、を備える撮像装置の撮像方法であって、光量調整光学素子により、撮像光学系を透過する近赤外光の光量および又は可視光の光量を減衰させる減衰工程、を含み、減衰工程では、イメージセンサが受光する近赤外光の光量と可視光の光量との光量バランスを調整する。 An imaging method, which is another aspect of the present invention, is an imaging apparatus for imaging a near-infrared image and a visible image, and is imaging optics having transmission characteristics in the wavelength band of near-infrared light and the wavelength band of visible light. and an image sensor that acquires an image by receiving light that has passed through the imaging optical system, wherein near-infrared light that passes through the imaging optical system is detected by a light amount adjusting optical element. and/or an attenuation step of attenuating the amount of light and/or the amount of visible light, wherein the attenuation step adjusts the light amount balance between the amount of near-infrared light and the amount of visible light received by the image sensor.
図1は、撮像装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an imaging device. 図2は、図1のA-A方向から見た光学フィルタ切替部の概略図である。FIG. 2 is a schematic diagram of the optical filter switching section viewed from the AA direction of FIG. 図3は、第1フィルタの透過スペクトルデータを示す図である。FIG. 3 is a diagram showing transmission spectrum data of the first filter. 図4は、第2フィルタの透過スペクトルデータを示す図である。FIG. 4 is a diagram showing transmission spectrum data of the second filter. 図5は、撮像装置の概略ブロック構成図である。FIG. 5 is a schematic block diagram of the imaging device. 図6は、コンピュータの概略構成図である。FIG. 6 is a schematic configuration diagram of a computer. 図7は、撮像光学系の光透過率のプロファイルを示す。FIG. 7 shows a profile of light transmittance of the imaging optical system. 図8は、熱源から発生する熱輻射スペクトルを示す図である。FIG. 8 is a diagram showing a thermal radiation spectrum generated from a heat source. 図9は、400℃の熱源および200℃の熱源の各波長における光強度を示す図である。FIG. 9 is a diagram showing light intensity at each wavelength of a 400° C. heat source and a 200° C. heat source. 図10は、先端部を400℃に熱した半田ゴテとその周辺を被写体とした可視像と近赤外像との重畳画像を示す図である。FIG. 10 is a diagram showing a superimposed image of a visible image and a near-infrared image of a soldering iron whose tip is heated to 400° C. and its periphery as an object. 図11は、先端部を400℃に熱した半田ゴテとその周辺を被写体とした可視像と近赤外像との重畳画像を示す図である。FIG. 11 is a diagram showing a superimposed image of a visible image and a near-infrared image of a soldering iron whose tip is heated to 400° C. and its periphery as an object. 図12は、焦点距離とボケ像の径との関係を示す図である。FIG. 12 is a diagram showing the relationship between the focal length and the diameter of the blurred image. 図13は、焦点距離と焦点位置差を示す図である。FIG. 13 is a diagram showing focal length and focal position difference. 図14は、焦点ズレとボケ像の径のシミュレーションを示す図である。FIG. 14 is a diagram showing a simulation of defocus and the diameter of a blurred image. 図15は、撮像装置の撮像方法を示すフローチャートである。FIG. 15 is a flow chart showing an imaging method of the imaging device. 図16は、光学フィルタ切替部の概略図である。FIG. 16 is a schematic diagram of an optical filter switching unit. 図17は、撮像装置の撮像方法を示すフローチャートである。FIG. 17 is a flow chart showing an imaging method of the imaging device. 図18は、撮像装置の概略構成図である。FIG. 18 is a schematic configuration diagram of an imaging device.
 以下、添付図面にしたがって本発明に係る撮像装置および撮像方法の好ましい実施の形態について説明する。 Preferred embodiments of an imaging device and an imaging method according to the present invention will be described below with reference to the accompanying drawings.
 <撮像装置>
 図1は、本発明の撮像装置の概略構成図である。
<Imaging device>
FIG. 1 is a schematic configuration diagram of an imaging apparatus of the present invention.
 図1に示すように、撮像装置1は、撮像光学系100と撮像部130とを備えている。撮像部130は、イメージセンサ132を備えている。イメージセンサ132は、撮像光学系100を透過した光を受光し、撮像対象の光学像を電気信号に変換し画像を取得する。撮像装置1は、例えば熱源とその周辺とを被写体として近赤外光の像(近赤外像)および可視光の像(可視像)を撮像することができるサーマルカメラである。 As shown in FIG. 1 , the imaging device 1 includes an imaging optical system 100 and an imaging section 130 . The imaging unit 130 has an image sensor 132 . The image sensor 132 receives light transmitted through the imaging optical system 100, converts an optical image of an imaging target into an electrical signal, and obtains an image. The imaging device 1 is a thermal camera capable of imaging a near-infrared light image (near-infrared image) and a visible light image (visible image), for example, with a heat source and its surroundings as subjects.
 撮像光学系100は、複数のレンズを有する。撮像光学系100は、対物側から結像側に向かって、フォーカスレンズ12、ズームレンズ14、絞り30、光学フィルタ切替部50、および調整レンズ16を備えている。対物側とは、撮像対象がある側であり、結像側とは、撮像対象の光学像が結像される側、つまりイメージセンサ132がある側である。本開示でいう「撮像光学系」とは、例えば、複数のレンズによってイメージセンサ132の撮像面132Aに撮像対象の光学像を結像させるための光学系を意味する。「撮像光学系」は、レンズだけではなく、絞り、光学フィルタ、ハーフミラー、および/又は偏向素子等の光学素子を含んでいてもよい。 The imaging optical system 100 has a plurality of lenses. The imaging optical system 100 includes a focus lens 12, a zoom lens 14, an aperture 30, an optical filter switching unit 50, and an adjustment lens 16 from the object side to the imaging side. The object side is the side on which the object to be imaged is located, and the imaging side is the side on which an optical image of the object to be imaged is formed, that is, the side on which the image sensor 132 is located. An “imaging optical system” as used in the present disclosure means, for example, an optical system for forming an optical image of an imaging target on the imaging surface 132A of the image sensor 132 using a plurality of lenses. The “imaging optical system” may include not only lenses but also optical elements such as diaphragms, optical filters, half mirrors, and/or deflection elements.
 フォーカスレンズ12は、撮像対象像の合焦位置を調節する光学系である。ズームレンズ14は、ズーム倍率を調節する光学系である。フォーカスレンズ12およびズームレンズ14は、カム機構(図示省略)により互いに連動して撮像光学系100の光軸OPに沿って前後に移動する。これにより、倍率を変更し、かつイメージセンサ132の撮像面132Aに合焦位置が来るように合焦位置が調節される。なお、光軸OPは光路OPとも称する。フォーカスレンズ12およびズームレンズ14は、ズームレンズ駆動機構20によりズームカム(図示省略)を回転させることにより駆動される。ズームレンズ駆動機構20は、ユーザから撮像装置1に対して与えられた指示に応じて、制御部110により制御される。なお、ズームレンズ14の対物側に、撮像対象からの光を集光する対物レンズを設けてもよい。 The focus lens 12 is an optical system that adjusts the focus position of the image to be captured. The zoom lens 14 is an optical system that adjusts zoom magnification. The focus lens 12 and the zoom lens 14 move back and forth along the optical axis OP of the imaging optical system 100 in conjunction with each other by a cam mechanism (not shown). As a result, the magnification is changed and the focal position is adjusted so that the imaging surface 132A of the image sensor 132 is in focus. Note that the optical axis OP is also called an optical path OP. The focus lens 12 and the zoom lens 14 are driven by rotating a zoom cam (not shown) by a zoom lens driving mechanism 20 . The zoom lens driving mechanism 20 is controlled by the control section 110 according to instructions given to the imaging device 1 by the user. An objective lens for condensing light from an imaging target may be provided on the objective side of the zoom lens 14 .
 絞り30は、迷光等の不要光を遮光し、光束を絞る光学素子である。図1では、絞り30はズームレンズ14と光学フィルタ切替部50との間に配置されているが、絞り30の位置はこれに限定されず、例えば、フォーカスレンズ12とズームレンズ14との間に移動可能に配置されていてもよい。 The diaphragm 30 is an optical element that blocks unnecessary light such as stray light and narrows down the luminous flux. In FIG. 1, the diaphragm 30 is arranged between the zoom lens 14 and the optical filter switching unit 50, but the position of the diaphragm 30 is not limited to this. You may arrange|position so that a movement is possible.
 光学フィルタ切替部50は、近赤外光を減衰させる光量調整光学素子で構成される第1フィルタおよび可視光を減衰させる光量調整光学素子で構成される第2フィルタを保持するフィルタ保持機構を備える。 The optical filter switching unit 50 includes a filter holding mechanism that holds a first filter composed of a light amount adjustment optical element that attenuates near-infrared light and a second filter composed of a light amount adjustment optical element that attenuates visible light. .
 図2は、図1のA-A方向から見た光学フィルタ切替部50の概略図である。 FIG. 2 is a schematic diagram of the optical filter switching section 50 viewed from the AA direction in FIG.
 光学フィルタ切替部50は、円板に4つの光学フィルタ52、54、56および58を配置した、ターレットの切替装置である。この切替装置は、円板をモータ等のターレット駆動機構22により回転させてそれぞれの光学フィルタを光路OP上に抜粋可能に保持している。なお、円板の回転は、時計回りでもよいし、反時計回りでもよい。 The optical filter switching unit 50 is a turret switching device in which four optical filters 52, 54, 56 and 58 are arranged on a disc. This switching device rotates a disk by a turret drive mechanism 22 such as a motor, and holds each optical filter so that it can be extracted onto the optical path OP. Note that the rotation of the disk may be clockwise or counterclockwise.
 光学フィルタ切替部50は、光路OP上に配置されているフィルタを検知するための図示しないセンサを備えている。センサの設置箇所は、光学フィルタ切替部50ではなく、ターレット駆動機構22であってもよい。ターレット駆動機構22は、ユーザから撮像装置1に対して与えられた指示に応じて、制御部110により制御される。 The optical filter switching unit 50 has a sensor (not shown) for detecting the filter arranged on the optical path OP. The sensor may be installed at the turret driving mechanism 22 instead of the optical filter switching section 50 . The turret driving mechanism 22 is controlled by the control section 110 in accordance with instructions given to the imaging apparatus 1 by the user.
 なお、図1では光学フィルタ切替部50は、ズームレンズ14と調整レンズ16との間に配されているが、光学フィルタ切替部50の位置はこれに限定されない。光学フィルタ切替部50は、フォーカスレンズ12よりも対象物側から調整レンズ16よりも結像側までの間に配置可能である。例えば、光学フィルタ切替部50は、調整レンズ16とイメージセンサ132との間に配置してもよい。 Although the optical filter switching section 50 is arranged between the zoom lens 14 and the adjustment lens 16 in FIG. 1, the position of the optical filter switching section 50 is not limited to this. The optical filter switching unit 50 can be arranged between the object side of the focus lens 12 and the imaging side of the adjustment lens 16 . For example, the optical filter switching section 50 may be arranged between the adjustment lens 16 and the image sensor 132 .
 また、撮像装置1は、撮像光学系100を収容する筐体90と撮像部130とが分離可能な構成であってもよい。例えば、撮像装置1は、筐体90を交換可能なレンズ部とし、撮像部130をカメラ部とし、複数種類のレンズ部のいずれかを1つのカメラ部に取り付け可能に構成されるようにしてもよい。この場合、光学フィルタ切替部50は、撮像部130、つまりカメラ部に配置されていてもよい。 Further, the imaging device 1 may have a configuration in which the housing 90 that houses the imaging optical system 100 and the imaging unit 130 can be separated. For example, the imaging device 1 may be configured such that the housing 90 is an interchangeable lens unit, the imaging unit 130 is a camera unit, and any one of a plurality of types of lens units can be attached to one camera unit. good. In this case, the optical filter switching section 50 may be arranged in the imaging section 130, that is, in the camera section.
 光学フィルタ52は、近赤外光の光量を減衰させる光量調整光学素子が1枚で構成される第1フィルタである。光学フィルタ52は、近赤外光のうちの少なくとも一部の波長帯域の光透過率を下げるバンドパスフィルタである。近赤外光の波長帯域うち少なくとも一部の波長帯域とは、撮像光学系100を透過する近赤外光の波長帯域を意味する。ここで、近赤外光の波長帯域のうち少なくとも一部の波長帯域とは、例えば、近赤外光の波長帯域のうちの1100nm以上の波長帯域を指す。また、近赤外光の波長帯域のうちの一部の波長帯域とは、例えば後述の近赤外光ピーク波長帯域を指す。光学フィルタ52は、本開示の技術に係る第1フィルタの一例である。光学フィルタ52は、例えば高温の熱源(例えば1500℃)から輻射される近赤外光の光量が非常に高い場合にこれを減衰するために用いられる。 The optical filter 52 is a first filter composed of one light amount adjusting optical element that attenuates the light amount of near-infrared light. The optical filter 52 is a bandpass filter that reduces the light transmittance of at least part of the wavelength band of near-infrared light. At least a part of the wavelength band of the near-infrared light means the wavelength band of the near-infrared light that passes through the imaging optical system 100 . Here, at least a part of the wavelength band of the near-infrared light refers to, for example, a wavelength band of 1100 nm or more in the wavelength band of the near-infrared light. A part of the wavelength band of near-infrared light refers to, for example, a near-infrared light peak wavelength band described later. The optical filter 52 is an example of a first filter according to the technology of the present disclosure. The optical filter 52 is used, for example, to attenuate near-infrared light emitted from a high-temperature heat source (for example, 1500° C.) when the amount of light is extremely high.
 図3は、光量調整光学素子が1枚で構成される第1フィルタの透過スペクトルデータを示す図である。縦軸は透過率を示し、横軸は波長を示す。図3(A)では透過率が0~100%の範囲で示されており、図3(B)は拡大図であり透過率が0~10%の範囲で示されている。 FIG. 3 is a diagram showing transmission spectrum data of a first filter composed of one light amount adjusting optical element. The vertical axis indicates transmittance, and the horizontal axis indicates wavelength. FIG. 3A shows the transmittance in the range of 0 to 100%, and FIG. 3B is an enlarged view showing the transmittance in the range of 0 to 10%.
 第1フィルタは例えば多層膜フィルタで構成されている。第1フィルタは、可視光の波長帯域の透過率はおおよそ80%以上であるのに対して、近赤外光の波長帯域(例えば波長1500±100nm)の透過率はおおよそ1%以下である。したがって、第1フィルタは、近赤外光の光量のみを選択的に減衰させることができ、可視光の光量と近赤外光の光量との光量バランスをとることができる。なお、第1フィルタは多段化することで、より近赤外光の光量を減衰させることができる。第1フィルタは1枚の光量調整光学素子で構成される場合には、近赤外光の光量を20dB減衰させることができる。第1フィルタは、2枚の光量調整光学素子で構成される場合には、近赤外光の光量を40dB減衰させることができる。なお、図示した第1フィルタの透過スペクトルデータは一例であり、これに限定されるものではない。 The first filter is composed of, for example, a multilayer filter. The first filter has a transmittance of approximately 80% or more in the visible light wavelength band, whereas the transmittance of the near-infrared light wavelength band (for example, wavelengths of 1500±100 nm) is approximately 1% or less. Therefore, the first filter can selectively attenuate only the amount of near-infrared light, and can balance the amount of visible light and the amount of near-infrared light. The first filter can further attenuate the amount of near-infrared light by providing multiple stages. When the first filter is composed of one light amount adjusting optical element, the light amount of near-infrared light can be attenuated by 20 dB. When the first filter is composed of two light amount adjusting optical elements, it can attenuate the light amount of near-infrared light by 40 dB. It should be noted that the illustrated transmission spectrum data of the first filter is an example, and the present invention is not limited to this.
 光学フィルタ54は、可視光の光量を減衰させる光量調整光学素子が1枚で構成される第2フィルタである。光学フィルタ54は、可視光のうちの少なくとも一部の波長帯域の光透過率を下げるバンドパスフィルタである。可視光のうちの少なくとも一部の波長帯域とは、撮像光学系100を透過する可視光の波長帯域を意味する。ここで、可視光の波長帯域のうち少なくとも一部の波長帯域とは、例えば800nm以下の波長帯域を指す。また、可視光の波長帯域のうちの一部の波長帯域とは、例えば後述の可視光ピーク波長帯域を指す。光学フィルタ54は、本開示の技術に係る第2フィルタの一例である。光学フィルタ54は、例えば照明などの可視光が非常に強く、熱源が比較的低温(例えば200℃~300℃)である場合には、相対的に熱源から輻射される近赤外光の光量が弱くなってしまう。このような場合に、第2フィルタを用いて、可視光の光量を減衰する。 The optical filter 54 is a second filter composed of one light amount adjusting optical element that attenuates the amount of visible light. The optical filter 54 is a bandpass filter that reduces the light transmittance of at least part of the wavelength band of visible light. The wavelength band of at least part of visible light means the wavelength band of visible light that passes through the imaging optical system 100 . Here, at least a part of the wavelength band of visible light refers to, for example, a wavelength band of 800 nm or less. Further, the partial wavelength band of the visible light wavelength band refers to, for example, the visible light peak wavelength band described later. The optical filter 54 is an example of a second filter according to the technology of the present disclosure. For example, the optical filter 54 has a very strong visible light such as illumination, and when the heat source is relatively low temperature (for example, 200° C. to 300° C.), the amount of near-infrared light radiated from the heat source is relatively low. get weaker. In such a case, the second filter is used to attenuate the amount of visible light.
 図4は、光量調整光学素子が1枚で構成される第2フィルタの透過スペクトルデータを示す図である。縦軸は透過率を示し、横軸は波長を示す。図4(A)では透過率が0~100%の範囲で示されており、図4(B)は拡大図であり透過率が0~1%の範囲で示されている。 FIG. 4 is a diagram showing transmission spectrum data of a second filter composed of one light amount adjusting optical element. The vertical axis indicates transmittance, and the horizontal axis indicates wavelength. FIG. 4A shows the transmittance in the range of 0 to 100%, and FIG. 4B is an enlarged view showing the transmittance in the range of 0 to 1%.
 第2フィルタは例えば多層膜フィルタで構成されている。第2フィルタは、近赤外光の波長帯域(例えば波長1500±100nm)の光の透過率は90%以上であるのに対して、可視光の波長帯域(例えば波長400~600nm)の光の透過率はおおよそ1%以下となる。したがって、第2フィルタは、可視光の光量のみを選択的に減衰させることができ、可視光の光量と近赤外光の光量との光量バランスをとることができる。なお、第2フィルタは多段化することで、より近赤外光の光量を減衰させることができる。第2フィルタは1枚の光量調整光学素子で構成される場合には、可視光の光量を30dB減衰させることができる。第2フィルタは、2枚の光量調整光学素子で構成される場合には、可視光の光量を60dB減衰させることができる。なお、図示した第2フィルタの透過スペクトルデータは一例であり、これに限定されるものではない。 The second filter is composed of, for example, a multilayer filter. The second filter has a transmittance of 90% or more for light in the wavelength band of near-infrared light (for example, a wavelength of 1500±100 nm), whereas it transmits light in the wavelength band of visible light (for example, a wavelength of 400 to 600 nm). The transmittance is approximately 1% or less. Therefore, the second filter can selectively attenuate only the amount of visible light, and can balance the amount of visible light and the amount of near-infrared light. In addition, the second filter can attenuate the light amount of the near-infrared light more by making it multistage. When the second filter is composed of one light amount adjusting optical element, it can attenuate the light amount of visible light by 30 dB. The second filter can attenuate the amount of visible light by 60 dB when it is composed of two light amount adjusting optical elements. The illustrated transmission spectrum data of the second filter is an example, and the present invention is not limited to this.
 光学フィルタ56は、他の光学フィルタ52、54および58と近い屈折率を有する透明なガラス板である。光学フィルタ56は、他の光学フィルタ52、54および58を使用しない場合に、光路長を光学フィルタ52,54および58を用いた場合の光路長からできるだけ変えないようにするための光路長調整フィルタである。 The optical filter 56 is a transparent glass plate having a refractive index close to that of the other optical filters 52, 54 and 58. The optical filter 56 is an optical path length adjustment filter for not changing the optical path length as much as possible from the optical path length when the optical filters 52, 54 and 58 are used when the other optical filters 52, 54 and 58 are not used. is.
 光学フィルタ58は、光量調整用のND(Nuetral Density)フィルタである。 The optical filter 58 is an ND (Neutral Density) filter for adjusting the amount of light.
 図1に戻って、調整レンズ16は、可視光での焦点距離と近赤外光での焦点距離との違いを調整するためのレンズである。可視光よりも波長の長い近赤外光の焦点距離は、可視光の焦点距離よりも長い。フォーカスレンズ12およびズームレンズ14は、可視光での変倍時の合焦位置をイメージセンサ132の撮像面132Aに合わせるように連動して移動するように構成されている。したがって、近赤外光での合焦位置を調整することができない。したがって、調整レンズ16を光路OPに沿って移動させることにより、近赤外像に合焦させることができる。 Returning to FIG. 1, the adjustment lens 16 is a lens for adjusting the difference between the focal length for visible light and the focal length for near-infrared light. The focal length of near-infrared light, which has a longer wavelength than that of visible light, is longer than that of visible light. The focus lens 12 and the zoom lens 14 are configured to move in conjunction with each other so that the focal position during zooming with visible light is aligned with the imaging surface 132A of the image sensor 132 . Therefore, it is impossible to adjust the focus position with near-infrared light. Therefore, the near-infrared image can be focused by moving the adjusting lens 16 along the optical path OP.
 調整レンズ16は、調整レンズ駆動機構24により駆動される。調整レンズ駆動機構24は、ユーザからの指示に応じて、制御部110により制御される。具体的には、制御部110は、ユーザによって指示された撮像条件に応じて、調整レンズ16の位置が合焦位置に調整されるように調整レンズ駆動機構24を制御する。ここで、撮像条件とは、例えば、ユーザの指示による可視像又は近赤外像に合焦させるかの選択とズーム倍率の選択とを指す。なお、調整レンズ16の合焦位置とは、イメージセンサ132の撮像面132Aに対して光(可視光又は近赤外光)を合焦状態で結像させるための調整レンズ16の位置を指す。 The adjustment lens 16 is driven by an adjustment lens driving mechanism 24. The adjustment lens drive mechanism 24 is controlled by the control section 110 according to instructions from the user. Specifically, the control unit 110 controls the adjusting lens drive mechanism 24 so that the position of the adjusting lens 16 is adjusted to the in-focus position according to the imaging conditions instructed by the user. Here, the imaging condition refers to, for example, selection of focusing on a visible image or a near-infrared image and selection of zoom magnification according to a user's instruction. Note that the focus position of the adjustment lens 16 refers to the position of the adjustment lens 16 for forming an image of light (visible light or near-infrared light) on the imaging surface 132A of the image sensor 132 in a focused state.
 制御部110は、ユーザからの指令に基づいて、調整レンズ16の位置を調整する。具体的には、可視像に合焦させる指令が入力されると調整レンズ16を可視像における合焦位置に移動させ、近赤外像に合焦させる指令が入力されると調整レンズ16を近赤外像における合焦位置に移動させる。 The control unit 110 adjusts the position of the adjustment lens 16 based on instructions from the user. Specifically, when a command to focus on the visible image is input, the adjustment lens 16 is moved to the in-focus position in the visible image, and when a command to focus on the near-infrared image is input, the adjustment lens 16 is moved. to the in-focus position in the near-infrared image.
 なお、図1では簡略化して描いているが、フォーカスレンズ12、ズームレンズ14、および調整レンズ16は、それぞれが1枚以上のレンズ群から構成される。撮像光学系100は、全体として、数枚から数十枚のレンズから構成される。撮像光学系100の各レンズは、可視光と近赤外光のうち、特定の波長帯域に高い光透過率を有するようにコーティングされている。コーティングは、全部のレンズのうち一部だけに施してもよい。しかしコーティングは全部のレンズに施すことがより好ましい。なお、撮像レンズ100の構成は上記態様に限定されるものではない。例えば、ズームレンズ14やフォーカスレンズ12のレンズ構成は種々の形式が知られており、またズーム制御やフォーカス制御のための構成(レンズ群の全体を繰り出す、あるいはレンズ群の一部を繰り出す、等)も種々知られていて、本発明においてもそれらの構成を採用することができる。 Although illustrated in FIG. 1 in a simplified manner, each of the focus lens 12, the zoom lens 14, and the adjustment lens 16 is composed of one or more lens groups. The imaging optical system 100 is composed of several to several tens of lenses as a whole. Each lens of the imaging optical system 100 is coated so as to have high light transmittance in a specific wavelength band of visible light and near-infrared light. Coatings may be applied to only some of the total lenses. However, it is more preferable to apply the coating to all lenses. Note that the configuration of the imaging lens 100 is not limited to the above aspect. For example, various types of lens configurations are known for the zoom lens 14 and the focus lens 12, and configurations for zoom control and focus control (extend the entire lens group, extend a part of the lens group, etc.). ) are also known, and their constructions can also be employed in the present invention.
 図5は、撮像装置1の概略ブロック構成図である。また図6は、図5中に示されるコンピュータの概略構成図である。 FIG. 5 is a schematic block configuration diagram of the imaging device 1. FIG. 6 is a schematic block diagram of the computer shown in FIG.
 撮像装置1は、制御部110によって制御される。制御部110は、コンピュータ200を備えている。コンピュータ200は、一例として図6に示すように、互いにバスライン112で接続されたCPU(Central Processing Unit)202、RAM(RAM:random access memory)204、およびROM(ROM:read only memory)206を有する。CPU202は、撮像装置1の全体を制御する。RAM204は、撮像装置制御プログラムの実行時のワークエリア等として用いられる例えば揮発性のメモリである。ROM206は、撮像装置1を制御する撮像装置制御プログラム210および合焦位置データ212等を記憶する例えば不揮発性のメモリである。なお、本実施形態では、CPU202を例示しているが、CPU202に代えて、複数のCPUを用いることも可能である。 The imaging device 1 is controlled by the control unit 110 . The control unit 110 has a computer 200 . As shown in FIG. 6 as an example, the computer 200 includes a CPU (Central Processing Unit) 202, a RAM (RAM: random access memory) 204, and a ROM (ROM: read only memory) 206, which are connected to each other via a bus line 112. have. The CPU 202 controls the imaging device 1 as a whole. A RAM 204 is, for example, a volatile memory that is used as a work area or the like when executing an imaging apparatus control program. The ROM 206 is, for example, a non-volatile memory that stores an imaging device control program 210 that controls the imaging device 1, focus position data 212, and the like. Although the CPU 202 is exemplified in this embodiment, it is also possible to use a plurality of CPUs instead of the CPU 202 .
 CPU202は、ROM206から撮像装置制御プログラム210を読み出し、読み出した撮像装置制御プログラム210をRAM204に展開する。そして、CPU202は、撮像装置制御プログラム210を実行することで、一例として図5に示すズームレンズ駆動部114、ターレット駆動部116、および調整レンズ駆動部118を制御する。 The CPU 202 reads the imaging device control program 210 from the ROM 206 and develops the read imaging device control program 210 in the RAM 204 . Then, the CPU 202 executes the imaging apparatus control program 210 to control the zoom lens driving section 114, the turret driving section 116, and the adjustment lens driving section 118 shown in FIG. 5 as an example.
 合焦位置データ212は、可視像に合焦させる場合の調整レンズ16の位置と、近赤外像に合焦させる場合の調整レンズ16の位置のデータである。合焦位置データ212は、例えば可視光および近赤外光での倍率ごとに調整レンズ16の位置データとして記憶されている。 The focus position data 212 is data on the position of the adjusting lens 16 when focusing on a visible image and the position of the adjusting lens 16 when focusing on a near-infrared image. The focus position data 212 is stored as position data of the adjustment lens 16 for each magnification of visible light and near-infrared light, for example.
 ズームレンズ駆動機構20、ターレット駆動機構22、および調整レンズ駆動機構24は公知の機構を用いることができる。図1では、これらの機構が筐体90の内側にある場合を示しているが、筐体90の外側に配置されていてもよい。 A known mechanism can be used for the zoom lens drive mechanism 20, the turret drive mechanism 22, and the adjustment lens drive mechanism 24. Although FIG. 1 shows the case where these mechanisms are inside the housing 90 , they may be arranged outside the housing 90 .
 イメージセンサ132は、例えば可視光と近赤外光との両方の光の波長で被写体を撮像可能なInGaAs撮像素子で構成される。イメージセンサ132の撮像面132Aにはフィルタが設けられており、具体的には可視光と近赤外光とを選択的に受光するフィルタが設けられている。なおイメージセンサ132は、可視像をカラー画像として又はモノクロ画像として取得することができる。イメージセンサ132で得られる画像は、例えば近赤外像と可視像とが重畳した重畳画像である。 The image sensor 132 is composed of, for example, an InGaAs imaging element capable of imaging a subject with both visible light and near-infrared light wavelengths. An imaging surface 132A of the image sensor 132 is provided with a filter, specifically, a filter that selectively receives visible light and near-infrared light. Note that the image sensor 132 can acquire a visible image as a color image or as a monochrome image. An image obtained by the image sensor 132 is, for example, a superimposed image in which a near-infrared image and a visible image are superimposed.
 撮像光学系100によって結像される光学像は、撮像部130のイメージセンサ132によって電気信号に変換され、各種の画像処理が行われてから、後述の画像表示部26に画像として表示される。また、画像処理された画像は有線又は無線で外部へ送信してもよい。 An optical image formed by the imaging optical system 100 is converted into an electrical signal by the image sensor 132 of the imaging unit 130, and after various image processing is performed, it is displayed as an image on the image display unit 26, which will be described later. Also, an image that has undergone image processing may be transmitted to the outside by wire or wirelessly.
 図5に示すように、制御部110は、ズームレンズ駆動部114、ターレット駆動部116、調整レンズ駆動部118、出力I/F(I/F:interface)120、入力I/F122、画像処理部126、およびコンピュータ200を含む。これらは、バスライン112によって接続されている。また、制御部110は、外部I/F124を含む。 As shown in FIG. 5, the control unit 110 includes a zoom lens driving unit 114, a turret driving unit 116, an adjusting lens driving unit 118, an output I/F (I/F: interface) 120, an input I/F 122, an image processing unit 126, and computer 200. These are connected by a bus line 112 . Control unit 110 also includes an external I/F 124 .
 ズームレンズ駆動部114は、ズームレンズ駆動機構20に接続されている。ターレット駆動部116は、ターレット駆動機構22に接続されている。調整レンズ駆動部118は、調整レンズ駆動機構24に接続されている。出力I/F120は、画像表示部26に接続されている。入力I/F122は、イメージセンサ132および入力部28に接続されている。 The zoom lens driving section 114 is connected to the zoom lens driving mechanism 20 . The turret driving section 116 is connected to the turret driving mechanism 22 . The adjustment lens drive section 118 is connected to the adjustment lens drive mechanism 24 . The output I/F 120 is connected to the image display section 26 . The input I/F 122 is connected to the image sensor 132 and the input section 28 .
 画像表示部26は、出力I/F120を介して入力された画像信号に基づいて、画像を表示する。入力部28は、ユーザから与えられた指示を受け付ける。入力I/F122は、イメージセンサ132からの電気信号、および入力部を介してユーザから入力された指示を受け取ってコンピュータ200に送るためのインターフェースである。外部I/F124は、例えば無線通信によりユーザからの指示を受け取り、また、画像処理された画像を無線通信により送信するためのインターフェースである。画像処理部126は、イメージセンサ132によって取得された画像を画像処理する。 The image display unit 26 displays images based on image signals input via the output I/F 120 . The input unit 28 accepts instructions given by the user. The input I/F 122 is an interface for receiving an electric signal from the image sensor 132 and an instruction input by the user via the input unit and sending the same to the computer 200 . The external I/F 124 is an interface for receiving an instruction from a user, for example, through wireless communication, and transmitting an image that has undergone image processing through wireless communication. The image processing unit 126 processes the image acquired by the image sensor 132 .
 ズームレンズ駆動部114は、コンピュータ200の指示にしたがって、ズームレンズ駆動機構20を制御することにより、フォーカスレンズ12の位置とズームレンズ14の位置とを調整する。ターレット駆動部116は、制御部110の指示にしたがって、ターレット駆動機構22を制御することにより、光学フィルタ切替部50のフィルタを切り替える。調整レンズ駆動部118は、制御部110の指示にしたがって、調整レンズ駆動機構24を制御することにより、調整レンズ16の位置を調整する。出力I/F120は、画像処理部126によって画像処理が行われることにより得られた撮像画像を画像表示部26に送るためのインターフェースである。 The zoom lens drive unit 114 adjusts the positions of the focus lens 12 and the zoom lens 14 by controlling the zoom lens drive mechanism 20 according to instructions from the computer 200 . The turret driving section 116 switches the filters of the optical filter switching section 50 by controlling the turret driving mechanism 22 according to instructions from the control section 110 . The adjusting lens driving section 118 adjusts the position of the adjusting lens 16 by controlling the adjusting lens driving mechanism 24 according to the instruction from the control section 110 . The output I/F 120 is an interface for sending to the image display section 26 a captured image obtained by performing image processing by the image processing section 126 .
 図7は、撮像光学系100の光透過率のプロファイルを示す図である。図7の横軸が波長、縦軸が撮像光学系100の光透過率である。撮像光学系100は、近赤外光の波長帯域と可視光の波長帯域とに透過特性を有する。図7に示すように、撮像光学系100の光透過率のプロファイルは、1450nmから1650nmの近赤外光ピーク波長帯域NIR(NIR:Near InfraRed)に第1の透過率ピークPK1を有する。つまり、近赤外光ピーク波長帯域NIRよりも短波長側の光透過率は、近赤外光ピーク波長帯域NIRの短波長端(1450nm)の光透過率から波長が短くなるにつれて減少している。また、近赤外光ピーク波長帯域NIRよりも長波長側の光透過率は、近赤外光ピーク波長帯域NIRの長波長端(1650nm)の光透過率から波長が長くなるにつれて減少している。 FIG. 7 is a diagram showing a profile of light transmittance of the imaging optical system 100. FIG. The horizontal axis of FIG. 7 is the wavelength, and the vertical axis is the light transmittance of the imaging optical system 100 . The imaging optical system 100 has transmission characteristics in the wavelength band of near-infrared light and the wavelength band of visible light. As shown in FIG. 7, the optical transmittance profile of the imaging optical system 100 has a first transmittance peak PK1 in the near-infrared light peak wavelength band NIR (NIR: Near InfraRed) from 1450 nm to 1650 nm. That is, the light transmittance on the short wavelength side of the near-infrared light peak wavelength band NIR decreases as the wavelength becomes shorter from the light transmittance at the short wavelength end (1450 nm) of the near-infrared light peak wavelength band NIR. . In addition, the light transmittance on the longer wavelength side than the near-infrared light peak wavelength band NIR decreases as the wavelength increases from the light transmittance at the long wavelength end (1650 nm) of the near-infrared light peak wavelength band NIR. .
 図7からわかるように、第1の透過率ピークPK1の光透過率は、1520nmの波長で約92%である。また、波長1490nmから1560nmの範囲の光透過率は90%以上である。なお、上述した第1フィルタは、近赤外光ピーク波長帯域NIRの波長帯域の光透過率を下げて、近赤外光の光量を減衰させる。 As can be seen from FIG. 7, the light transmittance of the first transmittance peak PK1 is about 92% at a wavelength of 1520 nm. Moreover, the light transmittance in the wavelength range from 1490 nm to 1560 nm is 90% or more. The first filter described above reduces the light transmittance in the wavelength band of the near-infrared light peak wavelength band NIR to attenuate the light amount of the near-infrared light.
 また、撮像光学系100の光透過率のプロファイルは、450nmから700nmの可視光ピーク波長帯域VIS(VIS:Visible)に第2の透過率ピークPK2を有する。つまり、可視光ピーク波長帯域VISよりも短波長側の光透過率は、可視光ピーク波長帯域VISの短波長端(450nm)の光透過率から波長が短くなるにつれて減少している。また、可視光ピーク波長帯域VISよりも長波長側の光透過率は、可視光ピーク波長帯域VISの長波長端(700nm)の光透過率から波長が長くなるにつれて減少している。 In addition, the optical transmittance profile of the imaging optical system 100 has a second transmittance peak PK2 in the visible light peak wavelength band VIS (VIS: Visible) from 450 nm to 700 nm. That is, the light transmittance on the shorter wavelength side than the visible light peak wavelength band VIS decreases as the wavelength shortens from the light transmittance at the short wavelength end (450 nm) of the visible light peak wavelength band VIS. Further, the light transmittance on the longer wavelength side than the visible light peak wavelength band VIS decreases as the wavelength increases from the light transmittance at the long wavelength end (700 nm) of the visible light peak wavelength band VIS.
 図7からわかるように、第2の透過率ピークPK2の光透過率は、570nmから580nmの波長で約96%である。また、波長480nmから660nmの範囲の光透過率は90%以上である。なお、上述した第2フィルタは、可視光ピーク波長帯域VISの波長帯域の光透過率を下げて、可視光の光量を減衰させる。 As can be seen from FIG. 7, the light transmittance of the second transmittance peak PK2 is about 96% at wavelengths from 570 nm to 580 nm. Moreover, the light transmittance in the wavelength range of 480 nm to 660 nm is 90% or more. The second filter described above reduces the light transmittance of the wavelength band of the visible light peak wavelength band VIS to attenuate the amount of visible light.
 また、可視光の波長帯域に含まれる青色の波長帯域のうちの短波長側の波長帯域の光透過率は、青色の波長帯域のうちの長波長側の波長帯域の光透過率よりも低い。具体的には、青色の波長帯域の450nm以下の波長帯域の光透過率は、450nmより長い波長帯域の光透過率より小さい。また、波長400nmから430nmの光透過率は、50%以下である。波長400nmから430nmまでの光透過率を50%より大きくすると、近赤外波長帯のピークとなる3倍波である波長1200nmから1290nmまでの光透過率も大きくなる。これは近赤外光の波長帯域のピークが広がることを意味し、波長1550nm付近の光透過率が低下する、又はリップルが残留するなどの特性低下を生じる可能性がある。 In addition, the light transmittance of the wavelength band on the short wavelength side of the blue wavelength band included in the wavelength band of visible light is lower than the light transmittance of the wavelength band on the long wavelength side of the wavelength band of blue light. Specifically, the light transmittance in the wavelength band of 450 nm or less in the blue wavelength band is smaller than the light transmittance in the wavelength band longer than 450 nm. Moreover, the light transmittance at wavelengths from 400 nm to 430 nm is 50% or less. If the light transmittance in the wavelength range of 400 nm to 430 nm is more than 50%, the light transmittance in the wavelength range of 1200 nm to 1290 nm, which is the peak third harmonic of the near-infrared wavelength band, also increases. This means that the peak of the wavelength band of near-infrared light is widened, and there is a possibility that the light transmittance in the vicinity of the wavelength of 1550 nm is lowered, or the characteristics are deteriorated such as residual ripples.
 さらに、撮像光学系100は、近赤外光ピーク波長帯域と可視光ピーク波長帯域との間の波長900nmから1100nmにわたって、近赤外光ピーク波長帯域と可視光ピーク波長帯域よりも光透過率が小さい、低光透過率領域LOWを有する。低光透過率領域LOWの光透過率は5%以下であることが好ましい。低光透過率領域LOWは、近赤外光ピーク波長帯域NIRに近赤外光域での光透過率ピークを形成し、可視光ピーク波長帯域VISに可視光域での光透過率ピークを形成したことに伴い生じる領域である。しかし、低光透過率領域LOWの波長は、可視光での撮像および近赤外光での撮像のいずれにも寄与しない波長帯域であるので、低光透過率領域LOWの光透過率が低いことは問題とはならない。 Furthermore, the imaging optical system 100 has a higher light transmittance than the near-infrared peak wavelength band and the visible peak wavelength band over a wavelength range of 900 nm to 1100 nm between the near-infrared peak wavelength band and the visible peak wavelength band. It has a small, low light transmittance region LOW. The light transmittance of the low light transmittance area LOW is preferably 5% or less. The low light transmittance region LOW forms a light transmittance peak in the near-infrared light region in the near-infrared light peak wavelength band NIR, and forms a light transmittance peak in the visible light region in the visible light peak wavelength band VIS. This is the area that arises as a result of doing so. However, since the wavelength of the low light transmittance region LOW is a wavelength band that does not contribute to imaging with visible light or near-infrared light, the light transmittance of the low light transmittance region LOW is low. is not a problem.
 図7に示す光透過率のプロファイルは、近赤外光ピーク波長帯域NIRに1つの光透過率ピークPK1を有し、可視光ピーク波長帯域VISに1つの光透過率ピークPK2を有している。しかし、本開示の光透過率のプロファイルはこれに限られない。近赤外光ピーク波長帯域NIRに複数の光透過率ピークによる波形の形状(リップル)を有していてもよい。また、可視光ピーク波長帯域VISにリップルを有していてもよい。リップルは、光透過率の変動の1つの特性を示す形状である。このように、近赤外光ピーク波長帯域NIRに光透過率ピークを有し、可視光ピーク波長帯域VISに光透過率ピークを有するプロファイルであればよく、リップルの有無、つまり光透過率ピークの数は限定されない。 The light transmittance profile shown in FIG. 7 has one light transmittance peak PK1 in the near-infrared light peak wavelength band NIR and one light transmittance peak PK2 in the visible light peak wavelength band VIS. . However, the light transmittance profile of the present disclosure is not limited to this. It may have a waveform shape (ripple) due to a plurality of light transmittance peaks in the near-infrared light peak wavelength band NIR. Moreover, it may have a ripple in the visible light peak wavelength band VIS. Ripple is a shape that exhibits one characteristic of variations in light transmission. Thus, any profile having a light transmittance peak in the near-infrared light peak wavelength band NIR and a light transmittance peak in the visible light peak wavelength band VIS may be sufficient. The number is not limited.
 近赤外光ピーク波長帯域NIRに形成される第1の透過率ピークPK1は、できるだけ半値幅が狭いほうがよい。可視光に比較して波長の長い近赤外光は、波長範囲が広がると色収差が可視光に比べて出やすい。したがって、撮像する波長範囲はできるだけ狭いほうが好ましい。 The first transmittance peak PK1 formed in the near-infrared light peak wavelength band NIR should have a half width as narrow as possible. Near-infrared light, which has a longer wavelength than visible light, is more prone to chromatic aberration than visible light when the wavelength range is widened. Therefore, it is preferable that the imaging wavelength range be as narrow as possible.
 図7に示すような光透過率のプロファイルは、近赤外光ピーク波長帯域に光透過率ピークを有する基本波のコーティングによる干渉によって生じる基本波の3分の1波長の光透過率ピークが可視光ピーク波長帯域に存在するようにコーティングすることによって得られる。基本波は、1550nm付近にピークを有することが好ましい。この基本波の2分の1波長の光透過ピークが出ないようにし、3分の1波長の光透過ピークが大きくなるようにコーティングを構成することにより、上述の条件を満たす光透過率プロファイルが得られる。上述の条件を満たす光透過率プロファイルが得られるコーティングを設計し、形成することは従来技術によって可能である。 The profile of light transmittance as shown in FIG. 7 shows that the light transmittance peak at one-third wavelength of the fundamental wave caused by the interference caused by the coating of the fundamental wave having the light transmittance peak in the near-infrared light peak wavelength band is visible. Obtained by coating to lie in the optical peak wavelength band. The fundamental wave preferably has a peak near 1550 nm. A light transmittance profile that satisfies the above conditions can be obtained by constructing the coating so that the light transmission peak at 1/3 wavelength of the fundamental wave is suppressed and the light transmission peak at 1/3 wavelength is increased. can get. It is possible by conventional techniques to design and form a coating that provides a light transmission profile that satisfies the above conditions.
 <光量バランス調整>
 次に、近赤外光の光量と可視光の光量との光量バランスの調整に関して説明する。撮像装置1において、光量バランスの調整は光量調整光学素子で構成される第1フィルタ(光学フィルタ52)又は第2フィルタ(光学フィルタ54)で行われる。
<Light balance adjustment>
Next, the adjustment of the light amount balance between the light amount of near-infrared light and the light amount of visible light will be described. In the imaging apparatus 1, adjustment of the light amount balance is performed by a first filter (optical filter 52) or a second filter (optical filter 54) configured by a light amount adjusting optical element.
 図8は、熱源から発生する熱輻射スペクトルを示す図である。縦軸は光強度(a.u.)を示し、横軸は波長(μm)が示されている。 FIG. 8 is a diagram showing a thermal radiation spectrum generated from a heat source. The vertical axis indicates the light intensity (au), and the horizontal axis indicates the wavelength (μm).
 図8には、10℃の熱源、200℃の熱源、1500℃の熱源の各波長における光強度が示されている。また、InGaAs撮像素子で観察可能な光強度の限界値LDが示されている。 FIG. 8 shows the light intensity at each wavelength of a 10°C heat source, a 200°C heat source, and a 1500°C heat source. Also shown is the limit value LD of the light intensity observable by the InGaAs imaging device.
 一般的に、火災現場などの炎の温度は1500℃程度に達する。図8に示すように、1500℃の熱源から輻射される近赤外光(波長=1.5μm付近)の光強度は、1.00E+11以上であり、可視光(波長=0.5μm付近)での光強度に比べて5桁以上(矢印W1で示す)異なる。そうすると、火災現場の炎とその周辺部を被写体として、近赤外光と可視光とを用いて撮像した場合には、得られた画像では近赤外像の部分は白飛びしてしまい、被写体を上手く視認できない。例えば、イメージセンサ132で取得した画像では、実用的な観察幅としては25dB程度(矢印W2で示す)である。したがって、このような場合には、上述した第1フィルタを光路OPに挿入して、近赤外光の光量を減衰させて、近赤外光の光量と可視光の光量との光量バランスを調整することが必要になる。 Generally, the temperature of flames at fire sites reaches around 1500°C. As shown in FIG. 8, the light intensity of near-infrared light (wavelength = around 1.5 μm) radiated from a heat source at 1500° C. is 1.00E+11 or more, and visible light (wavelength = around 0.5 μm) 5 or more orders of magnitude (indicated by arrow W1) compared to the light intensity of . Then, when the flames and their surroundings at the fire site are taken as an object using near-infrared light and visible light, the near-infrared image part is blown out in the obtained image, and the object is cannot be seen well. For example, in the image acquired by the image sensor 132, the practical observation width is about 25 dB (indicated by arrow W2). Therefore, in such a case, the above-described first filter is inserted in the optical path OP to attenuate the light amount of the near-infrared light and adjust the light amount balance between the light amount of the near-infrared light and the light amount of the visible light. it becomes necessary to
 以下に半田ゴテの先端部を400℃に熱して熱源とし、近赤外像と可視像との重畳画像を撮像する具体例について説明する。 A specific example of capturing a superimposed image of a near-infrared image and a visible image by heating the tip of a soldering iron to 400°C as a heat source will be described below.
 図9は、400℃の熱源および200℃の熱源の各波長における光強度を示す図である。縦軸は光強度(a.u.)を示し、横軸は波長(μm)が示されている。 FIG. 9 is a diagram showing the light intensity at each wavelength of a 400° C. heat source and a 200° C. heat source. The vertical axis indicates the light intensity (au), and the horizontal axis indicates the wavelength (μm).
 第1フィルタが光路OPに挿入されていない状態では、400℃の熱源から輻射される近赤外光の光強度は点F1である。一方、第1フィルタが光路OPに挿入されることにより、近赤外光の光強度は点F2まで減衰させられる。このように、近赤外光の光強度を減衰させることにより、図示するように可視光の光強度レベルと同程度となる。これにより、近赤外像の領域が白飛びすることなく、被写体を良好に視認することができる重畳画像が得られる。 In the state where the first filter is not inserted in the optical path OP, the light intensity of the near-infrared light radiated from the 400° C. heat source is point F1. On the other hand, by inserting the first filter into the optical path OP, the light intensity of the near-infrared light is attenuated to point F2. By attenuating the light intensity of the near-infrared light in this manner, the light intensity level becomes approximately the same as that of the visible light, as shown in the figure. As a result, a superimposed image in which the subject can be visually recognized well can be obtained without overexposure in the near-infrared image region.
 図10は、先端部を400℃に熱した半田ゴテとその周辺を被写体とした可視像と近赤外像との重畳画像を示す図である。図10(A)は近赤外光の光量を減衰させないまま撮像した場合の重畳画像であり、図10(B)は近赤外光の光量を第1フィルタにより減衰させて撮像した場合の重畳画像を示す図である。 FIG. 10 is a diagram showing a superimposed image of a visible image and a near-infrared image of a soldering iron whose tip is heated to 400° C. and its periphery as an object. FIG. 10A is a superimposed image when imaging without attenuating the amount of near-infrared light, and FIG. 10B is a superimposed image when imaging with the amount of near-infrared light attenuated by the first filter. FIG. 4 is a diagram showing an image;
 図10(A)に示した場合では、半田ゴテの先端は400℃の熱源であり、半田ゴテの先端から近赤外光(波長1550nm)が輻射される。この近赤外光に対応する近赤外像は、その周辺の可視像に比べて光量が大きい。したがって、重畳画像では近赤外像の箇所は白飛びしており、半田ゴテの先端およびその周辺部を視認することができない(矢印E1を参照)。一方、第1フィルタを光路OPに挿入することにより、近赤外光の光量を抑制することができる。具体的には、第1フィルタを光路OPに挿入することにより、近赤外光(波長1550nm)を20dB減衰させる。このように、第1フィルタを光路OPに挿入し、近赤外光の光量と可視光の光量とを調整することにより、重畳画像において近赤外像の箇所の白飛びを抑制することができる。これにより、半田ゴテの先端およびその周辺部を良好に視認することができる重畳画像を得ることができる。 In the case shown in FIG. 10(A), the tip of the soldering iron is a heat source of 400°C, and near-infrared light (wavelength 1550 nm) is radiated from the tip of the soldering iron. A near-infrared image corresponding to this near-infrared light has a larger amount of light than the surrounding visible image. Therefore, in the superimposed image, the portion of the near-infrared image is blown out, and the tip of the soldering iron and its peripheral portion cannot be visually recognized (see arrow E1). On the other hand, by inserting the first filter into the optical path OP, the amount of near-infrared light can be suppressed. Specifically, by inserting the first filter into the optical path OP, the near-infrared light (wavelength 1550 nm) is attenuated by 20 dB. In this way, by inserting the first filter in the optical path OP and adjusting the light amount of the near-infrared light and the light amount of the visible light, it is possible to suppress overexposure at the portion of the near-infrared image in the superimposed image. . As a result, it is possible to obtain a superimposed image in which the tip of the soldering iron and its peripheral portion can be visually recognized well.
 ここで、図10に示した重畳画像では、可視像が合焦するように撮像が行われている。したがって、近赤外像は、合焦されていなくボケ像となる。これにより、ボケ像の箇所(矢印E2で示す)は、熱輻射の近赤外光に対応する像であり熱源又は熱源付近と推定することができる。一方で、撮像装置1は、同じ被写体で重畳画像を取得する場合に、例えば調整レンズ16を移動させることにより、近赤外像が合焦させられた重畳画像を得ることができる。 Here, in the superimposed image shown in FIG. 10, imaging is performed so that the visible image is in focus. Therefore, the near-infrared image is out of focus and becomes a blurred image. As a result, the location of the blurred image (indicated by arrow E2) is an image corresponding to the near-infrared light of thermal radiation, and can be estimated to be the heat source or the vicinity of the heat source. On the other hand, when acquiring a superimposed image of the same subject, the imaging device 1 can obtain a superimposed image in which the near-infrared image is focused by moving the adjustment lens 16, for example.
 図11は、図10と同様に先端部を400℃に熱した半田ゴテとその周辺の可視像と近赤外像との重畳画像を示す図である。図10では可視像に合焦されていたが、図11では近赤外像に合焦されている。 FIG. 11 is a diagram showing a superimposed image of a soldering iron whose tip is heated to 400° C. and a visible image and a near-infrared image of its surroundings, as in FIG. Whereas in FIG. 10 the visible image was focused, in FIG. 11 the near-infrared image is focused.
 図11(A)では、近赤外光の光量を減衰させないまま撮像した場合の重畳画像が示されており、図11(B)では、第1フィルタを使用して近赤外光の光量を減衰させて撮像した場合の重畳画像が示されている。図11(A)に示した場合では、半田ゴテの先端(近赤外像)は、その周辺の可視像に比べて光量が大きいので白飛びしており、半田ゴテの先端およびその周辺部を確認することができない(矢印G1を参照)。一方、図11(B)に示すように、第1フィルタを光路OPに挿入することにより、近赤外光(波長1550nm)を20dB減衰させ、半田ゴテの先端およびその周辺部を確認することができる重畳画像を取得することができる(矢印G2を参照)。なお、図11に示す重畳画像では、可視像はデフォーカス状態であるが、大まかに対象物を視認することができる。 FIG. 11A shows a superimposed image when an image is captured without attenuating the amount of near-infrared light, and FIG. 11B shows the amount of near-infrared light using the first filter. A superimposed image is shown when imaged with attenuation. In the case shown in FIG. 11(A), the tip of the soldering iron (near-infrared image) is overexposed because the amount of light is larger than that of the visible image around it. cannot be verified (see arrow G1). On the other hand, as shown in FIG. 11B, by inserting the first filter into the optical path OP, the near-infrared light (wavelength: 1550 nm) is attenuated by 20 dB, and the tip of the soldering iron and its peripheral portion can be checked. A possible superimposed image can be obtained (see arrow G2). Note that in the superimposed image shown in FIG. 11, the visible image is in a defocused state, but the object can be visually recognized roughly.
 以上で説明したように、撮像装置1は、近赤外像および可視像の重畳画像を取得する場合に、近赤外像又は可視像に合焦させることができる。重畳画像において可視像に合焦させた場合には、ボケ像の箇所は近赤外像であり高温であることを確認することができる。一方で、重畳画像において近赤外像に合焦させた場合には、熱源からの輻射像を明確に視認することができる。 As described above, the imaging device 1 can focus on the near-infrared image or the visible image when acquiring a superimposed image of the near-infrared image and the visible image. When the superimposed image is focused on the visible image, it can be confirmed that the portion of the blurred image is a near-infrared image and has a high temperature. On the other hand, when the superimposed image is focused on the near-infrared image, the radiation image from the heat source can be clearly visually recognized.
 <可視像又は近赤外像の合焦およびボケ像>
 次に、撮像装置1で取得する重畳画像において、可視像または近赤外像の合焦およびボケ像に関して説明する。
<Focus and blurred image of visible image or near-infrared image>
Next, in the superimposed image acquired by the imaging device 1, the focused and blurred images of the visible image or the near-infrared image will be described.
 図12は、焦点距離とボケ像の径との関係を示す図であり、図13は、焦点距離と焦点位置差を示す図である。 FIG. 12 is a diagram showing the relationship between the focal length and the diameter of the blurred image, and FIG. 13 is a diagram showing the focal length and the focal position difference.
 図12では、縦軸にボケ像の径(mm)、横軸に焦点距離(mm)が示されている。可視光としてD線(波長587.56nm)、近赤外光として、波長1500nm、1550nm、1600nmのボケ像の径が示されている。可視像に合焦させているので、波長587.56nmではボケ像の径は0である。近赤外像は可視像に合焦しているためにボケ像であり、焦点距離が長くなるのに伴って、ボケ像の径が大きくなる。 In FIG. 12, the vertical axis indicates the diameter (mm) of the blurred image, and the horizontal axis indicates the focal length (mm). The diameters of blurred images are shown for D-line (wavelength 587.56 nm) as visible light and wavelengths 1500 nm, 1550 nm and 1600 nm as near-infrared light. Since the visible image is focused, the diameter of the blurred image is 0 at the wavelength of 587.56 nm. Since the near-infrared image is focused on the visible image, it is a blurred image, and the diameter of the blurred image increases as the focal length increases.
 図13では、縦軸に焦点位置差(mm)、横軸に焦点距離(mm)が示されている。なお、焦点位置差は像方向を正としてD線(波長587.56)の光の像(可視像)に対する焦点位置差が示されている。可視光としてD線(波長587.56nm)、近赤外光として、波長1500nm、1550nm、1600nmの焦点位置差が示されている。可視像と近赤外像との焦点位置差は、焦点距離が長くなるのに伴って長くなる。 In FIG. 13, the vertical axis indicates the focal position difference (mm), and the horizontal axis indicates the focal length (mm). It should be noted that the focal position difference shows the focal position difference with respect to the image (visible image) of the light of the D line (wavelength 587.56) with the image direction being positive. The focal position difference is shown for D line (wavelength 587.56 nm) as visible light and wavelengths 1500 nm, 1550 nm and 1600 nm as near-infrared light. The focal position difference between the visible image and the near-infrared image increases as the focal length increases.
 以上で説明したように、撮像装置1で重畳画像を取得する場合には、焦点距離が大きくなると近赤外像のボケ像の径が大きくなり、焦点距離が大きくなると焦点位置差も長くなる。 As described above, when acquiring a superimposed image with the imaging device 1, the diameter of the blurred image of the near-infrared image increases as the focal length increases, and the focal position difference increases as the focal length increases.
 図14は、焦点ズレとボケ像の径のシミュレーションを示す図である。 FIG. 14 is a diagram showing a simulation of the defocus and the diameter of the blurred image.
 符号H1では、焦点ズレ0mm、ボケ像の径0mmの像が示されている。符号H2では、焦点ズレ1mm、ボケ像の径0.2mmの像が示されている。符号H3では、焦点ズレ3mm、ボケ像の径0.5mmの像が示されている。符号H4では、焦点ズレ6mm、ボケ像の径0.6mmの像が示されている。符号H5では、焦点ズレ9mm、ボケ像の径0.9mmの像が示されている。符号H6では、焦点ズレ12mmの像が示されている。符号H7では、焦点ズレ15mmの像が示されている。 Reference H1 indicates an image with a defocus of 0 mm and a blurred image with a diameter of 0 mm. Symbol H2 indicates an image with a defocus of 1 mm and a blurred image with a diameter of 0.2 mm. Symbol H3 indicates an image with a defocus of 3 mm and a blurred image diameter of 0.5 mm. Reference H4 indicates an image with a defocus of 6 mm and a blurred image with a diameter of 0.6 mm. Symbol H5 indicates an image with a defocus of 9 mm and a blurred image diameter of 0.9 mm. Reference H6 indicates an image with a defocus of 12 mm. Reference H7 indicates an image with a 15 mm defocus.
 符号H5までに示された十字の像は良好に視認することができる。一方で、符号H6および符号H7で示された像は十字を良好に視認することができない。したがって、例えば、可視像に合焦されている場合に、近赤外像のボケ像の径が0.2mm以上0.9mm以下であることが、ボケ像により被写体を視認するためには好ましい。なお、ボケ像の径は、例えば可視光での点光源像の近赤外光での像(ボケ像)の径で測定される。 The image of the cross shown up to symbol H5 can be visually recognized well. On the other hand, in the images indicated by H6 and H7, the cross cannot be seen well. Therefore, for example, when the visible image is focused, the diameter of the blurred image of the near-infrared image is preferably 0.2 mm or more and 0.9 mm or less in order to visually recognize the subject with the blurred image. . The diameter of the blurred image is measured, for example, by the diameter of the near-infrared light image (bokeh image) of the point light source image in visible light.
 <撮像方法>
 次に、撮像装置1を用いた撮像方法に関して説明する。
<Imaging method>
Next, an imaging method using the imaging device 1 will be described.
 図15は、撮像装置1の撮像方法を示すフローチャートである。なお、撮像方法は、撮像装置1のコンピュータに記憶されている撮像装置制御プログラム(撮像方法実行プログラム)をCPU202が実行することにより行われる。 FIG. 15 is a flowchart showing the imaging method of the imaging device 1. FIG. Note that the imaging method is performed by the CPU 202 executing an imaging device control program (imaging method execution program) stored in the computer of the imaging device 1 .
 先ず、第1フィルタ又は第2フィルタを光路OPに挿入し(減衰工程:ステップS10)、近赤外光の光量又は可視光の光量を減衰させて、得られる重畳画像の光量バランスを調整する。例えば、光学フィルタ切替部50を回転させて、第1フィルタ(光学フィルタ52)を光路OPに挿入することにより、近赤外光の光量を減衰させて、近赤外光の光量と可視光の光量との光量バランスを調整する。その後、撮像装置1は、調整レンズ16を移動させて、近赤外像又は可視像に合焦させる(ステップS11)。例えば、ユーザの指令に基づいて撮像装置1は、調整レンズ16を移動させて可視像に合焦させる。その後、撮像装置1は、近赤外像と可視像との重畳画像を撮像する(ステップS12)。 First, the first filter or the second filter is inserted into the optical path OP (attenuation step: step S10) to attenuate the amount of near-infrared light or the amount of visible light to adjust the light amount balance of the resulting superimposed image. For example, by rotating the optical filter switching unit 50 and inserting the first filter (optical filter 52) into the optical path OP, the light amount of the near-infrared light is attenuated, and the light amount of the near-infrared light and the visible light are attenuated. Adjust the light intensity balance with the light intensity. After that, the imaging device 1 moves the adjustment lens 16 to focus on the near-infrared image or the visible image (step S11). For example, based on a user's command, the imaging device 1 moves the adjusting lens 16 to focus on the visible image. After that, the imaging device 1 captures a superimposed image of the near-infrared image and the visible image (step S12).
 以上で説明したように、撮像装置1によれば、高温の熱源(例えば1500℃)を有する被写体を近赤外像と可視像と使用して撮像する場合に、第1フィルタを光路OPに挿入し、近赤外像の光量を減衰させて、可視光の光量と近赤外光の光量との光量バランスを調整する。これにより、撮像装置1は、可視像と近赤外像との被写体を良好に視認することができる重畳画像を得ることができる。 As described above, according to the imaging device 1, when imaging a subject having a high-temperature heat source (for example, 1500° C.) using a near-infrared image and a visible image, the first filter is placed in the optical path OP. It is inserted to attenuate the light quantity of the near-infrared image to adjust the light quantity balance between the light quantity of the visible light and the light quantity of the near-infrared light. Thereby, the imaging device 1 can obtain a superimposed image in which the subject of the visible image and the near-infrared image can be visually recognized well.
 なお、上述した例では第1フィルタを使用して近赤外光の光量を減衰させる場合の例について説明したが本開示の技術はこれに限定されない。例えば、照明などにより可視光の光量が強い場合には、200℃~300℃の熱源から輻射される近赤外光の光量が相対的に低くなる。このような場合には、第2フィルタを光路OPに挿入して、可視光の光量を減衰させることにより、白飛びが抑制された被写体を良好に視認できる重畳画像を取得することができる。 In the above example, an example in which the first filter is used to attenuate the amount of near-infrared light is described, but the technology of the present disclosure is not limited to this. For example, when the amount of visible light is strong due to illumination or the like, the amount of near-infrared light radiated from a heat source at 200° C. to 300° C. is relatively low. In such a case, by inserting the second filter in the optical path OP to attenuate the amount of visible light, it is possible to acquire a superimposed image in which the subject can be visually recognized well, with overexposure suppressed.
 <変形例1>
 次に、変形例1に関して説明する。本例の撮像装置1では、制御部110により、イメージセンサ132で取得される画像に基づいて、光学フィルタを入れ替えて、近赤外光の光量と可視光の光量との光量バランスを調整する。
<Modification 1>
Next, modification 1 will be described. In the imaging apparatus 1 of this example, the control unit 110 replaces the optical filters based on the image acquired by the image sensor 132 to adjust the light amount balance between the near-infrared light amount and the visible light amount.
 図16は、本例の光学フィルタ切替部50の概略図である。なお、図16では図2と同様に図1のA-A方向から見た光学フィルタ切替部50が示されている。 FIG. 16 is a schematic diagram of the optical filter switching section 50 of this example. It should be noted that FIG. 16 shows the optical filter switching section 50 viewed from the direction AA in FIG. 1, as in FIG.
 本例の光学フィルタ切替部50は、円板に4つの光学フィルタ62、64、66、68を配置した、ターレットの切替装置である。なお、図2で既に説明を行った光学フィルタ切替部50とは、設けられる光学フィルタが異なっている。 The optical filter switching unit 50 of this example is a turret switching device in which four optical filters 62, 64, 66, 68 are arranged on a disc. It should be noted that the provided optical filters are different from those of the optical filter switching section 50 already explained with reference to FIG.
 光学フィルタ62は、1枚の光量調整光学素子で構成された第1フィルタである。この第1フィルタは近赤外光の光量を20dB減衰させることができる。 The optical filter 62 is a first filter composed of one light amount adjusting optical element. This first filter can attenuate the amount of near-infrared light by 20 dB.
 光学フィルタ64は、2枚の光量調整光学素子で構成された第1フィルタである。この第1フィルタは、近赤外光の光量を40dB減衰させることができる。 The optical filter 64 is a first filter composed of two light amount adjusting optical elements. This first filter can attenuate the amount of near-infrared light by 40 dB.
 光学フィルタ66は、3枚の光量調整光学素子で構成された第1フィルタである。この第1フィルタは、近赤外光の光量を60dB減衰させることができる。 The optical filter 66 is a first filter composed of three light quantity adjusting optical elements. This first filter can attenuate the amount of near-infrared light by 60 dB.
 光学フィルタ68は、1枚の光量調整光学素子で構成される第2フィルタである。第2フィルタは、可視光の光量を30dB減衰させることができる。 The optical filter 68 is a second filter composed of one light amount adjusting optical element. The second filter can attenuate the amount of visible light by 30 dB.
 このように、本例の撮像装置1が備える光学フィルタ切替部50は、段階的に近赤外光の光量を減衰させる程度が異なる光学フィルタで構成されている。本例の撮像装置1では、この光学フィルタ切替部50を制御部110で駆動させることにより、光量バランスが調整された重畳画像を取得する。 Thus, the optical filter switching unit 50 included in the imaging device 1 of this example is configured with optical filters that stepwisely attenuate the amount of near-infrared light. In the imaging apparatus 1 of this example, the optical filter switching section 50 is driven by the control section 110 to obtain a superimposed image with the light amount balance adjusted.
 図17は、本例の撮像装置1の撮像方法を示すフローチャートである。なお、撮像方法は、撮像装置1のコンピュータに記憶されている撮像装置制御プログラム(撮像方法実行プログラム)をCPU202が実行することにより行われる。 FIG. 17 is a flowchart showing the imaging method of the imaging device 1 of this example. Note that the imaging method is performed by the CPU 202 executing an imaging device control program (imaging method execution program) stored in the computer of the imaging device 1 .
 先ず、撮像装置1の制御部110により、光学フィルタ62を光路OPに挿入する(ステップS20)。その後、撮像装置1は、近赤外像と可視像との重畳画像を撮像する(ステップS21)。その後、撮像した重畳画像が本例の撮像装置1の画像処理部126に入力され、画像処理部126により重畳画像において白飛びしている領域が閾値以上あるかを判定する(ステップS22)。白飛びしている領域が閾値以上ある場合には、制御部110は、光学フィルタ62による近赤外光の光量の減衰が不十分であると判定し、光学フィルタ切替部50を駆動させて、光学フィルタ62を退避させ光学フィルタ64を光路OPに挿入する。ここで上述したように、光学フィルタ64は、光量調整光学素子を2枚重ねて構成された第1フィルタであり、光学フィルタ62より近赤外光の光量を減衰させることができる。その後、撮像装置1は、近赤外像と可視像との重畳画像を撮像し、画像処理部126により白飛びしている領域が閾値以上であるかの判定が行われる。このように、撮像装置1では、白飛びしている領域が閾値未満となるまで、光学フィルタ切替部50を駆動させて光学フィルタを変更する。 First, the control unit 110 of the imaging device 1 inserts the optical filter 62 into the optical path OP (step S20). After that, the imaging device 1 captures a superimposed image of the near-infrared image and the visible image (step S21). After that, the captured superimposed image is input to the image processing unit 126 of the imaging apparatus 1 of this example, and the image processing unit 126 determines whether or not the overexposed area in the superimposed image is equal to or larger than a threshold value (step S22). When the overexposed area is equal to or greater than the threshold, the control unit 110 determines that the attenuation of the near-infrared light amount by the optical filter 62 is insufficient, drives the optical filter switching unit 50, The optical filter 62 is retracted and the optical filter 64 is inserted into the optical path OP. As described above, the optical filter 64 is a first filter configured by stacking two light amount adjusting optical elements, and can attenuate the amount of near-infrared light from the optical filter 62 . Thereafter, the imaging device 1 captures a superimposed image of the near-infrared image and the visible image, and the image processing unit 126 determines whether the overexposed area is equal to or greater than the threshold. In this manner, the imaging apparatus 1 drives the optical filter switching unit 50 to change the optical filter until the overexposed area becomes less than the threshold value.
 一方、撮像装置1は、重畳画像において白飛びしている領域が閾値未満となっている場合には、その重畳画像を本撮像画像として記録する(ステップS23)。 On the other hand, if the whiteout area in the superimposed image is less than the threshold, the imaging device 1 records the superimposed image as the main captured image (step S23).
 以上で説明したように、本例の撮像装置1では、制御部110により撮像した重畳画像に基づいて、白飛びしている領域の大きさが判定される。そして、その判定結果に基づいて、光学フィルタ切替部50が作動され光学フィルタが変更させることにより、重畳画像における近赤外光の光量と可視光の光量との光量バランスを調整する。これにより、良好に近赤外像と可視像とを視認可能な重畳画像を得ることができる。 As described above, in the imaging device 1 of this example, the size of the overexposed area is determined based on the superimposed image captured by the control unit 110 . Then, based on the determination result, the optical filter switching unit 50 is operated to change the optical filter, thereby adjusting the light amount balance between the near-infrared light amount and the visible light amount in the superimposed image. As a result, it is possible to obtain a superimposed image in which the near-infrared image and the visible image can be satisfactorily visually recognized.
 <変形例2>
 次に、変形例2に関して説明する。本例の撮像装置1の光学フィルタ切替部50は、図2および図16で説明したターレットの切替装置ではなく、第1フィルタと第2フィルタとの各々が挿抜される多段構成のフィルタ挿抜機構(フィルタ保持機構)で構成される。
<Modification 2>
Next, modification 2 will be described. The optical filter switching unit 50 of the imaging apparatus 1 of this example is not the turret switching device described with reference to FIGS. filter holding mechanism).
 図18は、本例の撮像装置1の概略構成図である。なお、図1で既に説明を行った箇所は同じ符号を付し説明は省略する。 FIG. 18 is a schematic configuration diagram of the imaging device 1 of this example. In addition, the same code|symbol is attached|subjected to the location which already demonstrated in FIG. 1, and description is abbreviate|omitted.
 図18に示した撮像装置1は、フィルタ挿抜機構72およびフィルタ挿抜機構74で構成される。フィルタ挿抜機構72には第1フィルタが保持されており、フィルタ挿抜機構74には第2フィルタが保持されている。フィルタ挿抜機構72に保持されている第1フィルタは、挿抜駆動機構70に駆動されて図中の矢印で示す方向に移動し、光路OP上に挿入又は光路OP上から退避する。フィルタ挿抜機構74に保持されている第2フィルタは、挿抜駆動機構70に駆動されて図中の矢印で示す方向に移動し、光路OP上に挿入又は光路OP上から退避する。なお、本例の撮像装置1においては、挿抜駆動機構70および挿抜駆動機構70を駆動させる挿抜駆動部は、図5で説明を行ったターレット駆動機構22およびターレット駆動部116と置換される。 The imaging device 1 shown in FIG. 18 is composed of a filter insertion/extraction mechanism 72 and a filter insertion/extraction mechanism 74 . A first filter is held by the filter insertion/extraction mechanism 72 , and a second filter is held by the filter insertion/extraction mechanism 74 . The first filter held by the filter inserting/removing mechanism 72 is driven by the inserting/removing driving mechanism 70 to move in the direction indicated by the arrow in the figure, and is inserted onto or retracted from the optical path OP. The second filter held by the filter inserting/removing mechanism 74 is driven by the inserting/removing driving mechanism 70 to move in the direction indicated by the arrow in the drawing, and is inserted onto or retracted from the optical path OP. Note that in the imaging apparatus 1 of this example, the insertion/extraction driving mechanism 70 and the insertion/extraction driving section for driving the insertion/extraction driving mechanism 70 are replaced with the turret driving mechanism 22 and the turret driving section 116 described with reference to FIG.
 以上で説明した本例の撮像装置1によれば、第1フィルタおよび第2フィルタがそれぞれフィルタ挿抜機構72およびフィルタ挿抜機構74により保持されるので、第1フィルタおよび第2フィルタがターレットで保持されるよりも、作動機構を単純化することができる。 According to the imaging apparatus 1 of this example described above, the first filter and the second filter are held by the filter insertion/removal mechanism 72 and the filter insertion/removal mechanism 74, respectively, so that the first filter and the second filter are held by the turret. The actuation mechanism can be simplified rather than
 <その他>
 上記実施形態において、各種の処理を実行する処理部(制御部110)(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
<Others>
In the above embodiment, the hardware structure of the processing unit (control unit 110) (processing unit) that executes various processes is various processors as shown below. For various processors, the circuit configuration can be changed after manufacturing such as CPU (Central Processing Unit), which is a general-purpose processor that executes software (program) and functions as various processing units, FPGA (Field Programmable Gate Array), etc. Programmable Logic Device (PLD), which is a processor, ASIC (Application Specific Integrated Circuit), etc. be
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be composed of one of these various processors, or composed of two or more processors of the same type or different types (for example, a plurality of FPGAs, or a combination of a CPU and an FPGA). may Also, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units in a single processor, first, as represented by a computer such as a client or server, a single processor is configured by combining one or more CPUs and software. There is a form in which a processor functions as multiple processing units. Second, as typified by System On Chip (SoC), etc., there is a form of using a processor that realizes the function of the entire system including multiple processing units with a single IC (Integrated Circuit) chip. be. In this way, the various processing units are configured using one or more of the above various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。 Furthermore, the hardware structure of these various processors is, more specifically, an electrical circuit that combines circuit elements such as semiconductor elements.
 上述の各構成および機能は、任意のハードウェア、ソフトウェア、或いは両者の組み合わせによって適宜実現可能である。例えば、上述の処理ステップ(処理手順)をコンピュータに実行させるプログラム、そのようなプログラムを記録したコンピュータ読み取り可能な記録媒体(非一時的記録媒体)、或いはそのようなプログラムをインストール可能なコンピュータに対しても本発明を適用することが可能である。 Each configuration and function described above can be appropriately realized by arbitrary hardware, software, or a combination of both. For example, a program that causes a computer to execute the above-described processing steps (procedures), a computer-readable recording medium (non-temporary recording medium) recording such a program, or a computer capable of installing such a program However, it is possible to apply the present invention.
 以上で本発明の例に関して説明してきたが、本発明は上述した実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。 Although the examples of the present invention have been described above, it goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications are possible without departing from the gist of the present invention.
1    :撮像装置
12   :フォーカスレンズ
14   :ズームレンズ
16   :調整レンズ
20   :ズームレンズ駆動機構
22   :ターレット駆動機構
24   :調整レンズ駆動機構
26   :画像表示部
28   :入力部
30   :絞り
50   :光学フィルタ切替部
90   :筐体
100  :撮像光学系
110  :制御部
112  :バスライン
114  :ズームレンズ駆動部
116  :ターレット駆動部
118  :調整レンズ駆動部
120  :出力I/F
122  :入力I/F
126  :画像処理部
130  :撮像部
132  :イメージセンサ
132A :撮像面
200  :コンピュータ
202  :CPU
204  :RAM
206  :ROM
210  :撮像装置制御プログラム
212  :合焦位置データ
1: Imaging device 12: Focus lens 14: Zoom lens 16: Adjustment lens 20: Zoom lens drive mechanism 22: Turret drive mechanism 24: Adjustment lens drive mechanism 26: Image display unit 28: Input unit 30: Aperture 50: Optical filter switching Unit 90: housing 100: imaging optical system 110: control unit 112: bus line 114: zoom lens driving unit 116: turret driving unit 118: adjustment lens driving unit 120: output I/F
122: Input I/F
126: Image processing unit 130: Imaging unit 132: Image sensor 132A: Imaging surface 200: Computer 202: CPU
204: RAM
206: ROM
210: Imaging device control program 212: In-focus position data

Claims (11)

  1.  近赤外像と可視像を撮像する撮像装置であって、
     近赤外光の波長帯域と可視光の波長帯域とに透過特性を有する撮像光学系と、
     前記撮像光学系を透過した光を受光して、画像を取得するイメージセンサと、
     前記撮像光学系を透過する前記近赤外光の光量および又は前記可視光の光量を減衰させる光量調整光学素子と、
     を備え、
     前記光量調整光学素子により、前記イメージセンサが受光する前記近赤外光の光量と前記可視光の光量との光量バランスを調整する撮像装置。
    An imaging device that captures a near-infrared image and a visible image,
    an imaging optical system having transmission characteristics in the wavelength band of near-infrared light and the wavelength band of visible light;
    an image sensor that acquires an image by receiving light that has passed through the imaging optical system;
    a light amount adjusting optical element that attenuates the light amount of the near-infrared light and/or the light amount of the visible light that is transmitted through the imaging optical system;
    with
    An imaging apparatus that adjusts the light amount balance between the light amount of the near-infrared light and the light amount of the visible light received by the image sensor by the light amount adjusting optical element.
  2.  前記光量調整光学素子は、前記近赤外光を減衰させる第1フィルタおよび又は前記可視光を減衰させる第2フィルタを構成する請求項1に記載の撮像装置。 The imaging apparatus according to claim 1, wherein the light amount adjusting optical element constitutes a first filter that attenuates the near-infrared light and/or a second filter that attenuates the visible light.
  3.  前記第1フィルタは、複数枚の前記光量調整光学素子により構成されている請求項2に記載の撮像装置。 The imaging device according to claim 2, wherein the first filter is composed of a plurality of the light amount adjusting optical elements.
  4.  前記第2フィルタは、複数枚の前記光量調整光学素子により構成されている請求項2又は3に記載の撮像装置。 The imaging device according to claim 2 or 3, wherein the second filter is composed of a plurality of the light quantity adjusting optical elements.
  5.  前記第1フィルタおよび又は前記第2フィルタは、前記光量調整光学素子を前記撮像光学系の光路に挿抜可能に保持するフィルタ保持機構により保持されている請求項2から4のいずれか1項に記載の撮像装置。 5. The first filter and/or the second filter according to any one of claims 2 to 4, wherein the light quantity adjusting optical element is held by a filter holding mechanism that holds the light quantity adjusting optical element in an insertable/removable manner in an optical path of the imaging optical system. imaging device.
  6.  前記フィルタ保持機構は、前記第1フィルタおよび又は前記第2フィルタを有するターレットで構成される請求項5に記載の撮像装置。 The imaging device according to claim 5, wherein the filter holding mechanism is configured by a turret having the first filter and/or the second filter.
  7.  前記第2フィルタは、前記可視光を30dB以上減衰することができる請求項4から6のいずれか1項に記載の撮像装置。 The imaging device according to any one of claims 4 to 6, wherein the second filter can attenuate the visible light by 30 dB or more.
  8.  前記イメージセンサは、前記近赤外像と前記可視像とが重畳した重畳画像を取得する請求項1から7のいずれか1項に記載の撮像装置。 The imaging device according to any one of claims 1 to 7, wherein the image sensor acquires a superimposed image in which the near-infrared image and the visible image are superimposed.
  9.  前記撮像光学系は、前記可視像が合焦状態での点光源像の、前記近赤外光の光源像の径が、0.2mm以上0.9mm以下である、請求項1から8のいずれか1項に記載の撮像装置。 9. The imaging optical system according to any one of claims 1 to 8, wherein the diameter of the near-infrared light source image of the point light source image when the visible image is in focus is 0.2 mm or more and 0.9 mm or less. The imaging device according to any one of items 1 and 2.
  10.  制御部を備え、
     前記制御部は、前記イメージセンサで取得される前記画像に基づいて、前記光量調整光学素子に前記光量のバランスを調整させる請求項1から9のいずれか1項に記載の撮像装置。
    Equipped with a control unit,
    The imaging apparatus according to any one of claims 1 to 9, wherein the control section causes the light amount adjusting optical element to adjust the light amount balance based on the image acquired by the image sensor.
  11.  近赤外像と可視像を撮像する撮像装置であって、近赤外光の波長帯域と可視光の波長帯域とに透過特性を有する撮像光学系と、前記撮像光学系を透過した光を受光して、画像を取得するイメージセンサと、を備える撮像装置の撮像方法であって、
     光量調整光学素子により、前記撮像光学系を透過する前記近赤外光の光量および又は前記可視光の光量を減衰させる減衰工程、
     を含み、
     前記減衰工程では、前記イメージセンサが受光する前記近赤外光の光量と前記可視光の光量との光量バランスを調整する撮像方法。
    An imaging device for capturing a near-infrared image and a visible image, comprising: an imaging optical system having transmission characteristics in a wavelength band of near-infrared light and a wavelength band of visible light; and light transmitted through the imaging optical system. An imaging method for an imaging device comprising an image sensor that receives light and acquires an image,
    an attenuation step of attenuating the light amount of the near-infrared light and/or the light amount of the visible light transmitted through the imaging optical system by a light amount adjusting optical element;
    including
    In the attenuating step, the imaging method adjusts the light amount balance between the light amount of the near-infrared light and the light amount of the visible light received by the image sensor.
PCT/JP2022/030411 2021-09-27 2022-08-09 Imaging device and imaging method WO2023047825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021156881 2021-09-27
JP2021-156881 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023047825A1 true WO2023047825A1 (en) 2023-03-30

Family

ID=85719450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030411 WO2023047825A1 (en) 2021-09-27 2022-08-09 Imaging device and imaging method

Country Status (1)

Country Link
WO (1) WO2023047825A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008383A1 (en) * 2013-07-19 2015-01-22 日立マクセル株式会社 Imaging device
WO2015152423A1 (en) * 2014-04-04 2015-10-08 株式会社ニコン Image pickup element, image pickup device, and image processing device
JP2016052115A (en) * 2014-08-29 2016-04-11 株式会社 日立産業制御ソリューションズ Imaging method and imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008383A1 (en) * 2013-07-19 2015-01-22 日立マクセル株式会社 Imaging device
WO2015152423A1 (en) * 2014-04-04 2015-10-08 株式会社ニコン Image pickup element, image pickup device, and image processing device
JP2016052115A (en) * 2014-08-29 2016-04-11 株式会社 日立産業制御ソリューションズ Imaging method and imaging apparatus

Similar Documents

Publication Publication Date Title
JP4136011B2 (en) Depth of focus extension device
CN103608714B (en) Optical unit and endoscope
CN113261909A (en) Multispectral fluorescence microscope and illumination filter system and observation system thereof
US11675204B2 (en) Scope optical system, imaging apparatus, and endoscope system
JP6608884B2 (en) Observation device for visual enhancement of observation object and operation method of observation device
US20220038613A1 (en) Imaging device
JP2001083400A (en) Image pickup optical system
US10642012B2 (en) Laser scanning microscope, and laser scanning microscope control method
JP7443309B2 (en) Imaging lens and imaging device
US20170085789A1 (en) Image processing apparatus, image processing program, image processing method, microscopic system
WO2023047825A1 (en) Imaging device and imaging method
JP5460152B2 (en) Ophthalmic equipment
EP4041055A1 (en) Eye-imaging system and apparatus
JP2018056799A (en) Projector system and imaging apparatus
JP4982300B2 (en) Object photographing method and apparatus
CN103799962A (en) Ophthalmic apparatus, imaging control apparatus, and imaging control method
JP2009063679A (en) Microscope system
JP4493119B2 (en) UV microscope
JP7334325B2 (en) Imaging device
JP2010175713A (en) Imaging optical system and imaging device
EP2919056B1 (en) Imaging system with an extended depth of field
WO2023047826A1 (en) Image processing device, imaging device, image processing method, and image processing program
WO2022209125A1 (en) Image capture control device, image capture device, image capture control method, and program
JP2017217056A (en) Endoscope system
JP5679718B2 (en) Imaging device