WO2015007927A1 - Método de calibración para mejorar la velocidad de autoenfoque en cámaras digitales - Google Patents

Método de calibración para mejorar la velocidad de autoenfoque en cámaras digitales Download PDF

Info

Publication number
WO2015007927A1
WO2015007927A1 PCT/ES2014/000109 ES2014000109W WO2015007927A1 WO 2015007927 A1 WO2015007927 A1 WO 2015007927A1 ES 2014000109 W ES2014000109 W ES 2014000109W WO 2015007927 A1 WO2015007927 A1 WO 2015007927A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
focus
value
calibration
equation
Prior art date
Application number
PCT/ES2014/000109
Other languages
English (en)
French (fr)
Other versions
WO2015007927A8 (es
Inventor
Said David PERTUTZ ARROYO
Domènec Savi PUIG VALLS
Miguel Ángel GARCíA GARCíA
Original Assignee
Universitat Rovira I Virgili
Universidad Autónoma de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Rovira I Virgili, Universidad Autónoma de Madrid filed Critical Universitat Rovira I Virgili
Publication of WO2015007927A1 publication Critical patent/WO2015007927A1/es
Publication of WO2015007927A8 publication Critical patent/WO2015007927A8/es

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the present invention consists of a calibration method which aims to reduce the duration of the search time in the autofocus of digital cameras, that is to say that said method allows to accelerate the autofocus or focus sampling process (focus sampling) solving it in a very efficient way.
  • the invention allows the camera constant to be found by means of a simple and robust calibration process, without the need to know the physical parameters of the camera such as focal length, lens diameter and pixel size.
  • the camera model is used to determine the approximate size of the blur circle as a function of the sensor size and the actual number of pixels.
  • US8339463B2 patent involves a specially designed calibration platform and is intended for use with lenses (not with cameras already assembled). The objective is to calibrate the image quality along the field of view and is not intended to facilitate or accelerate the focusing process.
  • the camera-lens assembly parameters are implicitly obtained, allowing a precise description of the limits of the depth of field DOF (deptf of field) without any explicit knowledge of the camera parameters.
  • this parameter is applied to perform an efficient sampling of the focus range (focus sampling), in operations such as autofocus and generation of multi-focal images
  • focus sampling minimizes the number of shots needed to cover a certain range or range of focus.
  • the method is to capture a sequence of images from a calibration pattern by changing the focus of the camera on each image captured while the pattern and the camera are held in the same position. From the captured images, it is possible to estimate a constant that characterizes the camera and allows to predict the behavior of the focus for the camera that is subject to calibration. With this constant it is possible to restrict the search space within the focus range thus reducing the number of positions in which it is necessary to search for the ideal focus. In this way, it is possible to reduce the autofocus time in any of the aforementioned techniques (active, passive or hybrid) without explicit knowledge of the camera's physical parameters (such as focal length, aperture, pixel size, etc. .) based only on the result of the calibration. In addition to autofocus, the proposed calibration method can also be exploited for efficient capture of image sequences for the generation of extended depth-of-field images.
  • Fig. 1 is a perspective view of the assembly for camera calibration
  • Fig. 2 is a sequence of images of the calibration pattern with different levels of focus
  • Fig. 3 is a view of the profiles corresponding to each image of the sequence
  • Fig. 4 is a graph of the camera constant obtained by adjusting the r vs. curve. or; Y
  • Fig. 5 is a graph about the method of limiting the allowable focal positions (vertical bars).
  • Fig. 6 illustrates the principles of the thin lens model. Detailed description of an embodiment example
  • the blur width should not depend on internal geometric parameters (such as position sensor v); instead it must depend on external measurable parameters such as the focus position u;
  • Fig. 6 is a descriptive figure of the elements used in the thin lens model.
  • the measurement of the radiance of a point P at a particular distance u x is extended by the effect of the lens in a circle of blurring (blurring cicle) of radius p.
  • the maximum focusing distance u for a given blur circle of radius p can be computed as: fv
  • This last equation p does not depend on the position of the lens v but on the focus position u. In conventional digital cameras the thickness of the lens can be neglected when compared to the position of the focus being much lower. Consequently the last equation can also be applied to a thick lens.
  • This equation is valid for u ⁇ u x and the units of the blur circle correspond to those of u, u x and f, for example millimeters. This equation is also valid for u> u x simply by taking the absolute value.
  • the blur circle can be scaled with the resolution of the camera sensor s (measured in pixels per millimeter) in order to measure the blur radius in pixels:
  • pl uels - -
  • the calibration method consists of the following steps: 1) Place the calibration pattern at a fixed distance u * in front and parallel to the camera, as illustrated in Figure 1.
  • the calibration pattern consists of a plane with at least two high contrast regions separated by a straight line
  • the application of the method for focus sampling (capturing images from the same scene with different focus settings) efficiently consists in restricting the number of possible focus positions to perform the search.
  • different autofocus techniques move the camera's focus to certain positions based on some search strategy.
  • the key to the proposed method is to limit the number of possible positions to a certain set of positions in such a way that if the search strategy suggests going to a position that is not within this set, then the focus is forced to go to the closest focal position that is within the set. This avoids unnecessarily exploring positions that are very close to each other or that are not expected to induce a change in the level of focus sufficiently appreciable. This principle is illustrated in Figure 5.
  • Figure 5 shows two curves corresponding to the focus level of two objects.
  • the autofocus is to find the peak of the curve of the object that interests us (either the first or the second).
  • this search is restricted to the positions that are within a given set U (vertical bars on the x-axis). If necessary, the search can be refined by a fine search once the optimal focus point within the set U has been determined.
  • the first position of the set, for k 1, corresponds to the minimum focusing distance of the camera and the suggested parameter for max is determined by equation (5):

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

Método caracterizado por comprender una primera etapa de colocar un patrón de calibración enfrente de la cámara; en un segunda etapa capturar una secuencia de imágenes enfocando la cámara a diferentes distancias alrededor de la posición del patrón; extraer de cada imagen del patrón de calibración un perfil de intensidad de los niveles de gris; para cada perfil, l(x) obtenido se estima un valor del radio de desenfoque ρ ajustando la ecuación (1) al perfil correspondiente: (1) en donde erf es la función error:(II) y obtener el valor de la constante de la cámara ajustando la curva de los valores del radio de desenfoque ρ en función los valores de u, según la siguiente ecuación:(III)

Description

Método de calibración para mejorar la velocidad de autoenfoque en cámaras digitales
Campo de la técnica La presente invención consiste en un método de calibración que tiene como objetivo reducir la duración del tiempo de búsqueda en el autoenfoque de cámaras digitales, es decir que dicho método permite acelerar el proceso de autoenfoque o muestreado de foco (focus sampling) resolviéndolo de una manera muy eficiente.
La invención permite encontrar la constante de la cámara por medio de un proceso de calibración simple y robusto, sin necesidad de conocer parámetros físicos de la cámara tales como longitud focal, diámetro de la lente y tamaño de pixel.
Antecedentes de la invención
Según el modelo de la lente fino existe un intervalo para determinar la profundidad de campo de cámaras convencionales de lente gruesa. Así en A.Hornberg en Wiley-VCH "Handbook of machine visión" de publicado el año 2006 utilizando la variable v que es la distancia entre el dispositivo sensor (CCD) y el primer punto nodal de la lente.
En fotografía y a partir del modelo de lente fino y de las ecuaciones de estimación de la profundidad de campo DOF, es posible determinar aproximadamente los límites próximo y lejano del DOF, y en consecuencia generar unas tablas de consulta que dependen del modelo de cámara. El modelo de cámara se utiliza para determinar el tamaño aproximado del círculo de desenfoque como una función del tamaño del sensor y del número real de píxeles.
En M.Muhammad i T.S. Choi "Sampling for shape from focus in optical microscopy" en IEEE Trans. Image Process., vol.34 no. 3, pp.564-573 publicado el año 2012 se desarrolló un criterio de enfoque a partir de forma, aplicable a microscopía.
Sin embargo estos métodos requieren conocer de forma exacta algunos parámetros de la cámara, tales como la longitud focal, la apertura numérica, el tamaño real del píxel y el círculo de confusión Existen mecanismos para la calibración manual exhaustiva que requieren la realización de cuidadosas medidas en todo el rango de enfoque de la cámara (http://www.edmundoptics.com/technical-resources-center/testing-targets/gauging- depth-of-field-in-your-imaging-system/). En la práctica éstos métodos son de aplicación muy limitada en cámaras de foco variable. La ventaja del método de calibración propuesto, respecto al citado, es que permite realizar la calibración de todo el rango de enfoque de forma rápida y eficiente. Por otro lado el desenfoque máximo admisible pmax es un parámetro empírico definido de acuerdo con las dimensiones en pixeles reales y la resolución del sistema. Como resultado de ello se han diseñado algunos métodos para estimar los límites del DOF y el círculo de desenfoque experimentalmente, pudiendo citar por ejemplo M. Subbarao et al. "Depth recovery from blurred edges" ¡n proc. IEEE Conference on "Computer Vision and Pattern Recognition Jun 1998, pp. 498-503.
En la solicitud US2009202235A1 cambia la estrategia de búsqueda de foco dependiendo de si la escena a capturar consiste en una escena interior (indoor) o exterior (outdoor). No se hace ninguna estimación de los parámetros de foco de la cámara ni de su comportamiento.
La patente US8339463B2 involucra una plataforma de calibración especialmente diseñada y está pensada para utilizarse con lentes (no con cámaras ya ensambladas). El objetivo es calibrar la calidad de la imagen a lo largo del campo de visión y no tiene como objetivo facilitar o acelerar el proceso de enfoque.
Son conocidas también las estrategias descritas en las patentes US8366001 B2 y US8416317B2 que implican la utilización de elementos activos para la estimación de la distancia del objeto de interés.
Es evidente la necesidad de un método de calibración que sea independiente del conocimiento de los parámetros de la cámara, y tal es la finalidad de la propuesta de esta invención.
Exposición de la invención
En el método de calibración de esta invención se obtienen los parámetros del conjunto cámara-lente implícitamente, permitiendo una precisa descripción de los límites de la profundidad de campo DOF (deptf of field) sin ningún conocimiento explícito de los parámetros de la cámara. A partir de la obtención de la constante de la cámara se aplica dicho parámetro para realizar un eficiente muestreo del rango de enfoque (focus sampling), en operaciones tales como autofoco y generación de imágenes multi-focales. En particular el muestreo de enfoque minimiza el número de tomas necesarias para cubrir un cierto rango o intervalo de enfoque.
El método consiste en capturar una secuencia de imágenes de un patrón de calibración cambiando el foco de la cámara en cada imagen capturada mientras el patrón y la cámara se mantienen en una misma posición. A partir de las imágenes capturadas, es posible estimar una constante que caracteriza a la cámara y permite predecir el comportamiento del foco para la cámara que es objeto de la calibración. Con esta constante es posible restringir el espacio de búsqueda dentro del rango de enfoque reduciendo así el número de posiciones en las que es necesario hacer la búsqueda del foco ideal. De esta forma, es posible reducir el tiempo de autoenfoque en cualquiera de las técnicas anteriormente mencionadas (activas, pasivas o híbridas) sin conocimiento explícito de parámetros físicos de la cámara (tales como la longitud focal, la apertura, el tamaño del píxel, etc.) basados solo en el resultado de la calibración. Además del autoenfoque, el método de calibración propuesto también se puede explotar para la captura eficiente de secuencias de imágenes para la generación de imágenes de campo de profundidad extendido (extended depth-of-field images).
Breve descripción de los dibujos
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de un ejemplo de realización con referencia a los dibujos adjuntos, en los que:
la Fig. 1 es una vista en perspectiva del montaje para la calibración de la cámara;
la Fig. 2 es una secuencia de imágenes del patrón de calibración con diferentes niveles de enfoque;
la Fig. 3 es una vista de los perfiles correspondientes a cada imagen de la secuencia;
la Fig. 4 es un gráfico sobre la constante de cámara se obtiene ajustando la curva r vs. u; y
la Fig. 5 es un gráfico sobre el método que consiste en limitar las posiciones focales (barras verticales) admisibles.
la Fig. 6 ilustra los principios del modelo de lente delgada (thin lens model). Descripción detallada de un ejemplo de realización
Con el fin de desarrollar el método de calibración de esta invención se ha partido del modelo teórico de la lente delgada (thin lens model) que es el modelo teórico de cámara más común, adaptándolo para que cumpla dos condiciones:
- la amplitud de desenfoque (blur width) no debe depender de parámetros internos geométricos (tales como el sensor de posición v); en su lugar debe de depender de parámetros externos medibles tales como la posición de foco u;
- el modelo tiene en cuenta implícitamente los efectos de los parámetros del sistema (longitud focal y número f [f-number]) sin necesidad de conocer o estimarlos explícitamente, permitiendo así inmediatamente una eficiente calibración a lo largo de todo el rango de enfoque.
La Fig. 6 es una figura descriptiva de los elementos utilizados en el modelo de lente delgada (thin lens). La medida de la radiancia de un punto P a una distancia particular ux se extiende por el efecto de la lente en un círculo de desenfoque (blurring cicle) de radio p. La máxima distancia de enfoque u para un círculo de desenfoque dado de radio p se puede computar como: fv
11 = v - f t - ΐ'Λ V
La posición interna de la lente v es a menudo desconocida o difícil de determinar en sistemas de lentes compuestas. En consecuencia es preferible tratar con la distancia entre el objeto y la posición de enfoque (ux - u). A partir de la ecuación anterior y despejando, resulta:
P = ( «·· - /) -—
N U r
De acuerdo con la ecuación de la ecuación de lente delgada (thin lens equation) se conoce que 1/f = 1/v + 1/u. En consecuencia: r = u f / i u - / ) v v - f = f2/( - Reemplazando el valor de v en la ecuación anterior resulta:
Figure imgf000007_0001
Esta última ecuación p no depende de la posición de la lente v sino de la posición de enfoque u. En cámaras digitales convencionales el grosor de la lente se puede despreciar cuando se compara con la posición del foco al ser muy inferior. En consecuencia la última ecuación también se puede aplicar a una lente gruesa. Dicha ecuación es válida para u < ux y las unidades del círculo de desenfoque se corresponden con aquellas de u, ux y f, por ejemplo milímetros. Esta ecuación también es válida para u > ux simplemente tomando el valor absoluto. Además por razones prácticas, el círculo de desenfoque se puede escalar con la resolución del sensor de la cámara s (medido en pixeles por milímetro) con el fin de medir el radio de desenfoque en pixeles:
pl uels =— —
Λ U, ( ll - f)
La diferencia entre las dos últimas ecuaciones que expresan p, son las unidades de medida del círculo de desenfoque (unidades métricas y pixeles, respectivamente debido al facto de escala s. Esta fórmula se puede simplificar toda vía más asumiendo que u es muy superior a f. Esto es válido en particular para cámaras convencionales puesto que, debido a limitaciones mecánicas el sistema de cámara-lente, la mínima distancia de enfoque resulta incrementada con longitudes focales mayores. Por último el radio de desenfoque se puede computar como: ju - ux \
¡> n .
UX U que como se verá será la ecuación utilizada en el método de calibración para calcular la constante de cámara, despejando de la expresión.
El método de calibración consiste en los siguientes pasos: 1 ) Colocar el patrón de calibración a una distancia fija u* en frente y de forma paralela a la cámara, tal como se ilustra en la figura 1. El patrón de calibración consiste en un plano con al menos dos regiones de alto contraste separadas por una línea recta.
2) Capturar una secuencia ordenada de imágenes enfocando la cámara a diferentes distancias alrededor de la posición del patrón. En la secuencia de imágenes, el patrón se observa con diferentes niveles de enfoque tal como se ilustra en la figura 2. Cada una de las imágenes capturadas tendrá asociada una posición de foco determinada. Así, la imagen 1 corresponde a la posición focal W | , la imagen 2, corresponde a la posición focal Ul , y así sucesivamente.
3) De cada imagen del patrón de calibración se extrae un perfil de intensidad de los niveles de gris, tal como se ilustra en la figura 3.
4) Para cada perfil, l(x) , obtenido se estima un valor del radío de desenfoque
(blur radius) ajusfando la ecuación (1 ) al perfil correspondiente. De esta forma se obtiene un valor de radio de desenfoque para cada posición de focal de la cámara. Así, el radio Pl corresponde a la posición focal W| , el radio Pz corresponde a la posición focal "2 , y así sucesivamente.
Ecuación (1 )
Figure imgf000008_0001
Donde erf es la función de error. erííxj =
Figure imgf000008_0002
5) El valor de la constante de cámara, k, se obtiene ajusfando la curva de los valores de r vs. u según la ecuación (2), tal como se ilustra en la figura 4.
\ U—HX \
p -_ _ Ecuación (2)
La aplicación del método para un muestreado de foco (captura de imágenes de una misma escena con diferentes ajustes de enfoque) eficiente consiste en restringir el número de posiciones de foco posibles para realizar la búsqueda. Normalmente, las diferentes técnicas de autoenfoque mueven el foco de la cámara a determinadas posiciones basadas en alguna estrategia de búsqueda. La clave del método propuesto consiste en limitar el número de posiciones posibles a un conjunto determinado de posiciones de tal forma que si la estrategia de búsqueda sugiere ir a una posición que no se encuentre dentro de éste conjunto, entonces el foco es forzado a ir a la posición focal más cercana que sí se encuentre dentro del conjunto. Esto evita que se exploren innecesariamente posiciones que estén muy cerca entre sí o de las que no se espera que induzcan un cambio en el nivel de foco lo suficientemente apreciable. Este principio se ilustra en la figura 5.
En la figura 5 se muestran dos curvas correspondientes al nivel de foco de dos objetos. El primero colocado a 2.1 m de la cámara y el segundo colocado a 6.1 m. Dependiendo de la estrategia de búsqueda utilizada, el autoenfoque consisten en encontrar el pico de la curva del objeto que nos interese (ya sea el primero o el segundo). Según el método propuesto, en lugar de buscar los máximos en cualquier posición de foco, ésta búsqueda se restringe a las posiciones que se encuentran dentro de un determinado conjunto U (barras verticales en el eje x). Si es necesario, la búsqueda se puede perfeccionar mediante una búsqueda fina una vez se ha determinado el punto de enfoque óptimo dentro del conjunto U.
El conjunto de posiciones permitidas:
Figure imgf000009_0001
se calcula de forma iterativa mediante las ecuaciones (3) y (4).
Ecuación (3)
A¿ = Ecuación (4)
Figure imgf000009_0002
La primera posición del conjunto, para k = 1 , corresponde a la distancia mínima de enfoque de la cámara y el parámetro sugerido para max viene determinado por la ecuación (5):
Ecuación (5)
Figure imgf000009_0003

Claims

REIVINDICACIONES
1- Método de calibración para mejorar la velocidad de autoenfoque en cámaras digitales, caracterizado por comprender las siguientes etapas: a) colocar un patrón de calibración a una distancia fija ux enfrente y de forma paralela a la cámara;
b) capturar una secuencia ordenada de imágenes enfocando la cámara a diferentes distancias alrededor de la posición del patrón, de manera que cada una de las imágenes capturadas, observada con un diferente nivel de enfoque, tiene asociada una posición de foco u determinada;
c) extraer de cada imagen del patrón de calibración un perfil de intensidad de los niveles de gris;
d) para cada perfil, l(x) obtenido se estima un valor del radio de desenfoque p ajusfando la ecuación (1 ) al perfil correspondiente:
, 1 .Y 1
en donde erf () es la función error:
2
erfu- j =— ~—
\ 7r e) obtener el valor de la constante de la cámara ajustando la curva de los valores del radio de desenfoque p en función los valores de u, según la siguiente ecuación: —
p -K
«1 » (2)
2. - Método según la reivindicación 1 , caracterizado porque dicho patrón de calibración comprende un plano con al menos dos regiones de alto contraste.
3. - Método según la reivindicación 2, caracterizado por que dichas dos regiones de alto contraste están separadas por una línea recta.
4.- Método según la reivindicación 1 , caracterizado por que dicho ajuste de la curva de los valores de p en función de u se realiza por un método de regresión no lineal.
5.- Método según la reivindicación 1 , caracterizado por que para reducir el tiempo de búsqueda se propone limitar el número de posiciones de enfoque posibles a un conjunto determinado y por que el conjunto de posiciones permitidas U = uk I k= 0 1 , 2, 3,.. se calcula de forma iterativa mediante las ecuaciones:
(3)
2
r' mmaaxx k
(4) correspondiendo la primera posición del conjunto, para k = 1 a la distancia mínima de p
enfoque de la cámara y max es el radio de desenfoque máximo.
6.- Método según reivindicación 5 caracterizado por que comprende calcular el valor de
P múX mediante la siguiente equacion:
Figure imgf000011_0001
7.- Método según reivindicación 5 caracterizado por que comprende introducir el valor p
de max manualmente por parte del usuario.
PCT/ES2014/000109 2013-07-16 2014-06-30 Método de calibración para mejorar la velocidad de autoenfoque en cámaras digitales WO2015007927A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201300678A ES2529068B1 (es) 2013-07-16 2013-07-16 Método de calibración para mejorar la velocidad de autoenfoque en cámaras digitales
ESP201300678 2013-07-16

Publications (2)

Publication Number Publication Date
WO2015007927A1 true WO2015007927A1 (es) 2015-01-22
WO2015007927A8 WO2015007927A8 (es) 2015-04-09

Family

ID=52345771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/000109 WO2015007927A1 (es) 2013-07-16 2014-06-30 Método de calibración para mejorar la velocidad de autoenfoque en cámaras digitales

Country Status (2)

Country Link
ES (1) ES2529068B1 (es)
WO (1) WO2015007927A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507102A (zh) * 2016-11-18 2017-03-15 浙江宇视科技有限公司 一种镜头校正方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105701809B (zh) * 2016-01-11 2018-09-14 宁波江丰生物信息技术有限公司 一种基于线阵相机扫描的平场校正方法
CN112270718B (zh) * 2020-11-13 2022-11-15 苏州智加科技有限公司 摄像头标定方法、装置、系统及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877809A (en) * 1996-04-15 1999-03-02 Eastman Kodak Company Method of automatic object detection in image
US6067114A (en) * 1996-03-05 2000-05-23 Eastman Kodak Company Detecting compositional change in image
US20030150973A1 (en) * 2002-02-08 2003-08-14 Fuji Photo Film Co., Ltd. Focusing apparatus
US20050024606A1 (en) * 2003-07-29 2005-02-03 Baoxin Li Projection system
US20050168705A1 (en) * 2004-02-02 2005-08-04 Baoxin Li Projection system
US20090202235A1 (en) * 2008-02-13 2009-08-13 Qualcomm Incorporated Auto-focus calibration for image capture device
US20100040355A1 (en) * 2008-08-14 2010-02-18 Varioptic S.A. Calibration methods for imaging systems and imaging systems using such
US20120169885A1 (en) * 2010-12-31 2012-07-05 Altek Corporation Camera Lens Calibration System

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067114A (en) * 1996-03-05 2000-05-23 Eastman Kodak Company Detecting compositional change in image
US5877809A (en) * 1996-04-15 1999-03-02 Eastman Kodak Company Method of automatic object detection in image
US20030150973A1 (en) * 2002-02-08 2003-08-14 Fuji Photo Film Co., Ltd. Focusing apparatus
US20050024606A1 (en) * 2003-07-29 2005-02-03 Baoxin Li Projection system
US20050168705A1 (en) * 2004-02-02 2005-08-04 Baoxin Li Projection system
US20090202235A1 (en) * 2008-02-13 2009-08-13 Qualcomm Incorporated Auto-focus calibration for image capture device
US20100040355A1 (en) * 2008-08-14 2010-02-18 Varioptic S.A. Calibration methods for imaging systems and imaging systems using such
US20120169885A1 (en) * 2010-12-31 2012-07-05 Altek Corporation Camera Lens Calibration System

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507102A (zh) * 2016-11-18 2017-03-15 浙江宇视科技有限公司 一种镜头校正方法及装置

Also Published As

Publication number Publication date
ES2529068A1 (es) 2015-02-16
ES2529068B1 (es) 2015-12-22
WO2015007927A8 (es) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6663040B2 (ja) 奥行き情報取得方法および装置、ならびに画像取得デバイス
US10129455B2 (en) Auto-focus method and apparatus and electronic device
RU2016103197A (ru) Система и способ моделирования и калибровки устройства формирования изображения
EP2378760A3 (en) Four-dimensional polynomial model for depth estimation based on two-picture matching
WO2018077218A1 (zh) 一种深度测量方法及系统
US8411195B2 (en) Focus direction detection confidence system and method
RU2014153519A (ru) Способ управления фотографированием, устройство и терминал
KR101784787B1 (ko) 이미징 기기 및 이미징 기기에서의 자동 초점맞춤 방법과 대응하는 컴퓨터 프로그램
ES2954885T3 (es) Dispositivo de medición de cuerdas de alambre y dispositivo de medición de cuerdas de alambre
JP2014513319A5 (es)
TWI587060B (zh) 多鏡頭攝像裝置
RU2013141224A (ru) Способ и система калибровки камеры
JP2012058352A5 (es)
JP2016129289A5 (es)
TW201541141A (zh) 使用多鏡頭的自動對焦系統及其方法
CN105184784A (zh) 基于运动信息的单目相机获取深度信息的方法
WO2015007927A1 (es) Método de calibración para mejorar la velocidad de autoenfoque en cámaras digitales
JP2012039591A (ja) 撮像装置
JP2017090711A5 (es)
JP5822492B2 (ja) 撮像装置及び制御方法
TW201541143A (zh) 使用多鏡頭的自動對焦系統及其方法
JP2007047415A5 (es)
IL260034B (en) Plenoptic zoom with optimal range
JP2016140962A5 (es)
Marrugo et al. Implementation of an image based focusing algorithm for non-mydriatic retinal imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826474

Country of ref document: EP

Kind code of ref document: A1