WO2015007019A1 - 直冷冰箱 - Google Patents

直冷冰箱 Download PDF

Info

Publication number
WO2015007019A1
WO2015007019A1 PCT/CN2013/084675 CN2013084675W WO2015007019A1 WO 2015007019 A1 WO2015007019 A1 WO 2015007019A1 CN 2013084675 W CN2013084675 W CN 2013084675W WO 2015007019 A1 WO2015007019 A1 WO 2015007019A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
evaporation tube
tube
direct
cooling refrigerator
Prior art date
Application number
PCT/CN2013/084675
Other languages
English (en)
French (fr)
Inventor
吴贤栋
刘建如
吴淑娟
李书琦
任宪伟
Original Assignee
海尔集团公司
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团公司, 青岛海尔股份有限公司 filed Critical 海尔集团公司
Publication of WO2015007019A1 publication Critical patent/WO2015007019A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/023Evaporators consisting of one or several sheets on one face of which is fixed a refrigerant carrying coil

Definitions

  • the invention relates to a direct cooling refrigerator, in particular to an energy-saving direct cooling refrigerator.
  • a refrigerator is a device that uses a refrigerant in a refrigeration circuit to compress, condense, expand, and evaporate a refrigerant to maintain the interior of the refrigerator at a low temperature to store food.
  • the direct-cooling refrigerator maintains the temperature inside the tank at a low temperature by continuously driving the refrigeration circuit.
  • the existing refrigerating evaporator of the direct-cooling refrigerator basically adopts a plate tube type or a wire tube type design, so that when the existing direct-cooling type refrigerator is used, the surface of the refrigerating evaporator and the interior of the freezing compartment are The hot and humid air is in direct contact. Since the density of the hot air is lower than that of the cold air, a large amount of hot and humid air is collected in the front upper portion of the freezing compartment, resulting in local frosting. As the service life increases, the temperature in the freezer will be easily increased due to the excessive thickness of the frost layer, which will not only cause the cooling performance of the direct-cooling refrigerator to decrease, but also cause high power consumption, which seriously affects Normal use of the user.
  • the present invention provides a direct cooling refrigerator including a liner and an evaporation tube set disposed on the inner liner, the evaporation tube group being entangled and the evaporation tube group having at least two Heat transfer coefficient.
  • the evaporation tube group includes a first evaporation tube wound on the inner liner and a second evaporation tube disposed on the inner liner.
  • the heat transfer coefficient of the first evaporation tube is different from the heat transfer coefficient of the second evaporation tube.
  • the first evaporation tube is made of aluminum, and the surface of the second evaporation tube is formed with a copper plating layer.
  • the evaporation tube group includes an evaporation tube including a first evaporation portion and a second evaporation portion having different heat transfer coefficients.
  • the material of the first evaporation portion is aluminum, and the surface of the second evaporation portion is formed with a copper plating layer.
  • the first evaporation tube is connected to a compressor
  • the second evaporation tube is disposed between the first evaporation tube and the compressor so that the refrigerant is discharged from the compressor outlet Flowing through the second evaporation tube and flowing into the first evaporation tube.
  • a return air pipe is further disposed between the first evaporation pipe and the compressor, so that refrigerant flows from the first evaporation pipe outlet through the return gas pipe and then flows into the compressor.
  • the inner tank includes a freezing inner tank and a refrigerating inner tank, and the first evaporation tube and the second evaporation tube are both disposed on the freezing inner tank, and the evaporation tube group further includes a third evaporation tube disposed between the compressor and the second evaporation tube to refrigerate the refrigerating inner tank, such that refrigerant flows from the compressor outlet through the third evaporation tube and then flows into the chamber
  • the second evaporation tube is described.
  • the evaporation tube group further includes a fourth evaporation tube disposed between the first evaporation tube and the return air tube to refrigerate the refrigerating inner tank, so that the refrigerant is from the first The outlet of the evaporation tube first flows through the fourth evaporation tube and then flows into the return air tube.
  • the present invention has an advantage in that the direct cooling refrigerator of the present invention is provided with a entangled evaporation tube group, and the evaporation tube group has at least two heat transfer coefficients, thereby direct cooling of the present invention.
  • the refrigerator not only can effectively control the frosting part, but also save energy.
  • FIG. 1 is a schematic view showing the main internal structure of a direct cooling refrigerator of the present invention.
  • Figure 2 is a plan view showing the flow direction of the refrigerant in Figure 1.
  • Figure 3 is a schematic cross-sectional view of the second evaporation tube of Figure 2 in the A-A direction.
  • the direct cooling refrigerator of the present invention includes a refrigerator case (not shown) having a partition wall (not shown) formed in the horizontal direction in the middle of the refrigerator case, and the refrigerator case A refrigerating chamber (not shown) and a freezing chamber (not shown) are formed in the vertical direction around the partition wall.
  • the refrigerating compartment and the front opening of the freezing compartment have a refrigerating compartment door body (not shown) and a freezing compartment door body (not shown) joined by a hinge, the refrigerating compartment door body and the freezing compartment door The body is rotated to open and close the refrigerator compartment and the freezer compartment of the refrigerator cabinet.
  • the freezing compartment includes a freezing inner tank 20 provided inside the freezing compartment, and the freezing inner tank 20 is provided with a first evaporation tube 30 and a second evaporation tube 40 that cool the freezing inner tank 20.
  • the freezing inner tank 20 includes an opening side 21 corresponding to the freezing chamber door body, four side walls 22 adjacent to the opening side 21, and a rear wall 23 opposite to the opening side 21.
  • the first evaporation tube 30 is uniformly wound on the four side walls 22 of the freezing inner tank 20 in a coil type, and is from the rear of the freezing inner tank 20 to the front part of the freezing inner tank 20 Entangled.
  • the first evaporation tube 30 is connected to a compressor (not shown).
  • the second evaporation tube 40 is disposed between the compressor and the first evaporation tube 30 such that refrigerant flows from the compressor outlet first through the second evaporation tube 40 and then into the first evaporation Tube 30.
  • an energy-saving member 4 is disposed above the rear wall 23 of the freezing inner tank 20, and the second evaporation tube 40 is attached to the energy-saving member 4 and located behind the first evaporation tube 30.
  • the energy saving member 4 may not be disposed above the rear wall 23 of the freezing inner tank 20 , and the second evaporation tube 40 is directly fixed to the rear wall 23 of the freezing inner tank 20 .
  • the second evaporation tube 40 is a D-shaped tube (but not limited to a D-type tube, but may be other types of tubes), and is plate-fedly attached to the rear wall of the freezing liner 20. 23; in other embodiments, the attachment position of the second evaporation tube 40 can be adjusted according to actual needs, and the second evaporation tube 40 can also be disposed to be embedded in the rear wall of the freezing tank 20. 23 on the upper side of the inflation type.
  • the thermal conductivity is measured by the thermal conductivity, and the thermal conductivity itself is related to parameters such as material, density, moisture content, and temperature.
  • the freezing bladder 20 of the present invention is provided with a heat exchange zone, and the heat exchange zone includes at least two heat transfer coefficients.
  • the heat exchange zone in the present invention has two embodiments, which will be described in detail below.
  • the first evaporation tube 30 and the second evaporation tube 40 are both disposed in the heat exchange region, and the second evaporation tube 40 has a material with high thermal conductivity so that the second The heat transfer coefficient of the evaporation tube 40 is higher than the heat transfer coefficient of other portions in the freezing chamber (including the freezing inner tank 20 and the first evaporation tube 30), so that the temperature of the surface of the second evaporation tube 40 is low.
  • the temperature of other parts in the freezing compartment, and further the hot humid air inside the freezing compartment preferentially frosts at a portion corresponding to the second evaporation tube 40.
  • the material of the first evaporation tube 30 is aluminum
  • the second evaporation tube 40 includes an aluminum tube and a copper plating layer formed on the surface of the aluminum tube, so that the heat transfer coefficient of the second evaporation tube 40 is higher than The heat transfer coefficient of the first evaporation tube 30.
  • the second evaporation tube 40 is disposed in the heat exchange area, and the second evaporation tube 40 includes a first evaporation portion and a second evaporation portion connected to the first evaporation portion.
  • the second evaporation portion has a material having a high thermal conductivity such that a heat transfer coefficient of the second evaporation portion is higher than the first evaporation portion and other portions in the freezing chamber (including the freezing inner tank 20 and the a heat transfer coefficient of the first evaporation tube 30), so that the temperature of the surface of the second evaporation portion is lower than the temperature of other portions of the freezing chamber, and the hot humid air inside the freezing chamber may correspond to the second
  • the area of the evaporation section is preferentially frosted.
  • the first evaporation portion is made of aluminum
  • the second evaporation portion includes an aluminum tube and a copper plating layer formed on the surface of the aluminum tube, so that the heat transfer coefficient of the second evaporation portion is higher than the first portion The heat transfer coefficient of an evaporation section.
  • the direct-cooling refrigerator of the present invention when the direct-cooling refrigerator of the present invention is cooled, the hot and humid air inside the freezing compartment is preferentially accumulated in a portion having a high heat transfer coefficient corresponding to the heat exchange zone, and frost is formed at the portion, thereby reducing the freezing.
  • the amount of frost in other parts of the room has reached the effect of attracting frost, and has also achieved the purpose of energy saving.
  • the refrigerating compartment includes a refrigerating inner tank (not shown) provided inside the refrigerating compartment and a third evaporating tube 11 and a fourth evaporating tube 12 that refrigerate the refrigerating inner tank.
  • the third evaporation tube 11 and the fourth evaporation tube 12 are both aluminum tubes, and the third evaporation tube 11 and the fourth evaporation tube 12 are both plate-and-tube-mounted.
  • the third evaporation tube 11 and the fourth evaporation tube 12 may also be disposed to be inflated in the refrigerator interior.
  • the first evaporation tube 30, the second evaporation tube 40, the third evaporation tube 11, the fourth evaporation tube 12, and the energy-saving member 4 are connected in combination to form an evaporation tube group.
  • the third evaporation tube 11 is disposed between the compressor and the second evaporation tube 40 such that refrigerant flows from the compressor outlet first through the third evaporation tube 11 and then into the second evaporation Tube 40.
  • a return air pipe 50 is further disposed between the first evaporation pipe 30 and the compressor such that refrigerant flows from the outlet pipe 31 of the first evaporation pipe 30 through the return pipe 50 and then flows into the compressor.
  • the air return pipe 50 is disposed on one side of the freezing inner tank 20 in an S shape, and in other embodiments, the air return pipe 50 may be disposed in a straight line or a spiral shape or other shapes. One side of the frozen bladder 20.
  • the fourth evaporation tube 12 is disposed between the first evaporation tube 30 and the return air tube 50 such that the refrigerant flows from the first evaporation tube 30 outlet 31 through the fourth evaporation tube 12 and then flows in.
  • the return air pipe 50 The return air pipe 50.
  • the refrigerant flows out of the compressor outlet and flows into the third evaporation pipe 11, and then flows into the second evaporation pipe 40, and then flows into the refrigerator.
  • the body of the direct-cooling refrigerator of the present invention forms a temperature field from the back to the top and from the top to the bottom, so that the hot and humid air entering the interior of the refrigerator can be automatically circulated to the corresponding state under the action of the temperature field.
  • the part of the frost plays a role in energy saving.
  • the direct cooling refrigerator of the present invention has a heat exchange zone and an evaporation pipe set on the freezing inner tank 20, and the evaporation pipe group has at least two heat transfer coefficients in the heat exchange zone. Therefore, the hot and humid air inside the freezing chamber preferentially gathers with the eddy current of the temperature field to a portion corresponding to the heat transfer coefficient in the heat exchange region and frosts at the portion, so that not only the system cooling performance is required but also The amount of frosting inside the freezing chamber is significantly reduced, the frosting portion is effectively controlled, and the energy saving effect is also achieved.

Abstract

一种直冷冰箱,包括内胆(20)和设置在内胆(20)上的蒸发管组(30,40,11,12,4),蒸发管组(30,40,11,12,4)为缠胆式且具有至少两种传热系数,从而该直冷冰箱不仅能够对结霜部位进行有效控制,同时还能起到节能的作用。

Description

直冷冰箱
本申请要求了申请日为2013年07月19日,申请号为201310304254.8,发明名称为“直冷冰箱”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及一种直冷冰箱,尤其涉及一种节能的直冷冰箱。
【背景技术】
电冰箱是一种利用制冷回路中的冷媒压缩、冷凝、膨胀和蒸发时的制冷作用将电冰箱内部维持在低温状态,从而保存食物的装置。
直冷式电冰箱是通过持续驱动制冷回路的方法将箱体内的温度维持在低温状态下的。现有的直冷式电冰箱的冷冻蒸发器基本采用板管式或丝管式设计,从而,在使用现有的直冷式电冰箱时,冷冻蒸发器的表面就会与冷冻间室内部的湿热空气直接接触,由于热空气密度较冷空气密度小,从而在冷冻间室的前上部会聚集大量的湿热空气,造成局部结霜明显。随着使用周期的增长,冷冻室内会很容易因霜层过厚而导致温度升高,从而不仅会造成直冷式电冰箱的制冷性能下降,同时还会导致耗电量较高,严重影响了用户的正常使用。
有鉴于此,有必要对现有的直冷式电冰箱予以改进,以解决上述问题。
【发明内容】
本发明的目的在于提供一种新型的直冷冰箱,该直冷冰箱具有节能的作用。
为实现上述发明目的,本发明提供了一种直冷冰箱,包括内胆和设置在所述内胆上的蒸发管组,所述蒸发管组为缠胆式且所述蒸发管组具有至少两种传热系数。
作为本发明的进一步改进,所述蒸发管组包括缠绕在所述内胆上的第一蒸发管和设置在所述内胆上的第二蒸发管。
作为本发明的进一步改进,所述第一蒸发管的传热系数与所述第二蒸发管的传热系数不同。
作为本发明的进一步改进,所述第一蒸发管的材质为铝,所述第二蒸发管的表面形成有铜镀层。
作为本发明的进一步改进,所述蒸发管组包括蒸发管,所述蒸发管包括传热系数不同的第一蒸发部和第二蒸发部。
作为本发明的进一步改进,所述第一蒸发部的材质为铝,所述第二蒸发部的表面形成有铜镀层。
作为本发明的进一步改进,所述第一蒸发管与一压缩机相连,所述第二蒸发管设置在所述第一蒸发管与所述压缩机之间,以使得制冷剂从压缩机出口先流经所述第二蒸发管再流进所述第一蒸发管。
作为本发明的进一步改进,所述第一蒸发管与所述压缩机之间还设置有回气管,以使得制冷剂从第一蒸发管出口先流经所述回气管再流进所述压缩机。
作为本发明的进一步改进,所述内胆包括冷冻内胆和冷藏内胆,所述第一蒸发管和所述第二蒸发管均设置在所述冷冻内胆上,所述蒸发管组还包括设置在所述压缩机与所述第二蒸发管之间以对所述冷藏内胆制冷的第三蒸发管,以使得制冷剂从压缩机出口先流经所述第三蒸发管再流进所述第二蒸发管。
作为本发明的进一步改进,所述蒸发管组还包括设置在所述第一蒸发管与所述回气管之间以对所述冷藏内胆制冷的第四蒸发管,以使得制冷剂从第一蒸发管出口先流经所述第四蒸发管再流进所述回气管。
与现有技术相比,本发明的优势在于:本发明的直冷冰箱通过设置有缠胆式的蒸发管组,同时所述蒸发管组具有至少两种传热系数,从而本发明的直冷冰箱不仅能够对结霜部位进行有效控制,同时还能起到节能的作用。
【附图说明】
图1是本发明的直冷冰箱的主要内部结构示意图。
图2是图1中制冷剂流向的平面示意图。
图3是图2中第二蒸发管于A-A方向的截面示意图。
【具体实施方式】
为了使本发明的目的、技术方案和优点更加清楚,下面结合附图和具体实施例对本发明进行详细描述。
如图1至图3所示,本发明的直冷冰箱包括冰箱箱体(未图示),所述冰箱箱体的中间有水平方向形成的隔壁(未图示),且所述冰箱箱体以所述隔壁为中心沿着上下方向各自形成冷藏室(未图示)和冷冻室(未图示)。所述冷藏室和所述冷冻室的前面开口处有由铰链结合的冷藏室门体(未图示)和冷冻室门体(未图示),所述冷藏室门体和所述冷冻室门体进行旋转,以开闭所述冰箱箱体的冷藏室和冷冻室。
所述冷冻室包括设置在所述冷冻室内部的冷冻内胆20,所述冷冻内胆20上设置有对所述冷冻内胆20进行制冷的第一蒸发管30和第二蒸发管40。所述冷冻内胆20包括对应所述冷冻室门体的开口侧21、与所述开口侧21相邻的四个侧壁22及与所述开口侧21相对的后壁23。所述第一蒸发管30呈盘管式均匀缠绕在所述冷冻内胆20的四个侧壁22上,且是自所述冷冻内胆20的后部向所述冷冻内胆20的前部缠绕的。
所述第一蒸发管30与一压缩机(未图示)相连。所述第二蒸发管40设置在所述压缩机与所述第一蒸发管30之间,以使得制冷剂从压缩机出口先流经所述第二蒸发管40再流进所述第一蒸发管30。本实施方式中,所述冷冻内胆20的后壁23上方设置有节能件4,所述第二蒸发管40贴覆在所述节能件4上,且位于所述第一蒸发管30的后方;而在其他实施方式中,所述冷冻内胆20的后壁23上方可不设置所述节能件4,所述第二蒸发管40直接固定在所述冷冻内胆20的后壁23上。
本实施方式中,所述第二蒸发管40为D型管(但不仅限于D型管,也可为其他类型的管),且呈板管式贴覆在所述冷冻内胆20的后壁23上方;而在其他实施方式中,所述第二蒸发管40的贴覆位置可以根据实际需要进行调整,另外所述第二蒸发管40也可设置成嵌入在所述冷冻内胆20后壁23上侧的吹胀式。
目前,传热有3种基本方式:导热、对流换热、辐射换热。其中导热能力用导热系数来衡量,而导热系数本身与材质、密度、含湿量、温度等参数有关。本发明的所述冷冻内胆20上设置有热交换区,且所述热交换区内包括有至少两种传热系数。本发明中的所述热交换区具有两种实施方式,以下将对该两种实施方式分别进行详细说明。
实施方式一、所述第一蒸发管30和所述第二蒸发管40均设置在所述热交换区内,且所述第二蒸发管40具有高导热系数的材质,以使得所述第二蒸发管40的传热系数高于所述冷冻室内其他部位(包括所述冷冻内胆20和所述第一蒸发管30)的传热系数,从而所述第二蒸发管40表面的温度会低于所述冷冻室内其他部位的温度,进而所述冷冻室内部的湿热空气会在对应所述第二蒸发管40的部位优先结霜。具体来说,所述第一蒸发管30的材质为铝,所述第二蒸发管40包括铝管和形成在铝管表面的铜镀层,从而所述第二蒸发管40的传热系数高于所述第一蒸发管30的传热系数。
实施方式二、所述第二蒸发管40设置在所述热交换区内,且所述第二蒸发管40包括第一蒸发部和与所述第一蒸发部相连接的第二蒸发部。所述第二蒸发部具有高导热系数的材质,以使得所述第二蒸发部的传热系数高于所述第一蒸发部和所述冷冻室内其他部位(包括所述冷冻内胆20和所述第一蒸发管30)的传热系数,从而所述第二蒸发部表面的温度会低于所述冷冻室内其他部位的温度,进而所述冷冻室内部的湿热空气会在对应所述第二蒸发部的部位优先结霜。具体来说,所述第一蒸发部的材质为铝,所述第二蒸发部包括铝管和形成在铝管表面的铜镀层,从而所述第二蒸发部的传热系数高于所述第一蒸发部的传热系数。
进而,本发明的直冷冰箱在制冷时,所述冷冻室内部的湿热空气会优先积聚在对应所述热交换区内传热系数较高的部位并在该部位结霜,减少了所述冷冻室内其他部位的结霜量,达到了诱霜的效果,也达到了节能的目的。
所述冷藏室包括设置在所述冷藏室内部的冷藏内胆(未图示)以及对所述冷藏内胆进行制冷的第三蒸发管11和第四蒸发管12。本实施方式中,所述第三蒸发管11和所述第四蒸发管12均为铝管,且所述第三蒸发管11和所述第四蒸发管12均呈板管式贴覆在所述冷藏内胆上;而在其他实施方式中,所述第三蒸发管11和所述第四蒸发管12也可设置成嵌入在所述冷藏内胆内的吹胀式。
所述第一蒸发管30、所述第二蒸发管40、所述第三蒸发管11、所述第四蒸发管12及所述节能件4共同连接组合形成一蒸发管组。
所述第三蒸发管11设置在所述压缩机与所述第二蒸发管40之间,以使得制冷剂从压缩机出口先流经所述第三蒸发管11再流进所述第二蒸发管40。
所述第一蒸发管30与所述压缩机之间还设置有回气管50,以使得制冷剂从第一蒸发管30出口31先流经所述回气管50再流进所述压缩机。本实施方式中,所述回气管50呈S型设置在所述冷冻内胆20的一侧,而在其他实施方式中,所述回气管50也可呈直线形或螺旋状或其他形状设置在所述冷冻内胆20的一侧。
所述第四蒸发管12设置在所述第一蒸发管30与所述回气管50之间,以使得制冷剂从第一蒸发管30出口31先流经所述第四蒸发管12再流进所述回气管50。
这样,本发明的直冷冰箱在制冷循环系统正常运行时,首先制冷剂从压缩机出口流出并流入所述第三蒸发管11,接着再流入所述第二蒸发管40,然后再流入所述第一蒸发管30,再接着,制冷剂从所述第一蒸发管30出口31流出后先流入所述第四蒸发管12再流经所述回气管50,最后流回所述压缩机中,以供下次循环使用。
本发明的直冷冰箱箱体内形成了一个自后向前、自上而下的温度场,从而进入到所述冰箱箱体内部的湿热空气可在上述温度场的作用下自动循环至对应所述热交换区内传热系数较高的部位并优先在该部位结霜,以进一步使得所述冷冻室内除该部位以外的其他部位的结霜量减少,进而控制了所述直冷冰箱冷冻室内结霜的部位,起到了节能的作用。
综上所述,本发明的直冷冰箱通过在所述冷冻内胆20上设置热交换区和蒸发管组,且在所述热交换区内,所述蒸发管组具有至少两种传热系数,从而所述冷冻室内部的湿热空气会随温度场的涡流优先聚集到对应所述热交换区内传热系数较高的部位并在该部位结霜,因而在系统制冷性能达到要求的同时不仅实现了冷冻室内部的结霜量明显减少,结霜部位得到了有效的控制,同时还起到了节能的作用。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种直冷冰箱,包括内胆和设置在所述内胆上的蒸发管组,其特征在于:所述蒸发管组为缠胆式且所述蒸发管组具有至少两种传热系数。
  2. 根据权利要求1所述的直冷冰箱,其特征在于:所述蒸发管组包括缠绕在所述内胆上的第一蒸发管和设置在所述内胆上的第二蒸发管。
  3. 根据权利要求2所述的直冷冰箱,其特征在于:所述第一蒸发管的传热系数与所述第二蒸发管的传热系数不同。
  4. 根据权利要求3所述的直冷冰箱,其特征在于:所述第一蒸发管的材质为铝,所述第二蒸发管的表面形成有铜镀层。
  5. 根据权利要求1所述的直冷冰箱,其特征在于:所述蒸发管组包括蒸发管,所述蒸发管包括传热系数不同的第一蒸发部和第二蒸发部。
  6. 根据权利要求5所述的直冷冰箱,其特征在于:所述第一蒸发部的材质为铝,所述第二蒸发部的表面形成有铜镀层。
  7. 根据权利要求2所述的直冷冰箱,其特征在于:所述第一蒸发管与一压缩机相连,所述第二蒸发管设置在所述第一蒸发管与所述压缩机之间,以使得制冷剂从压缩机出口先流经所述第二蒸发管再流进所述第一蒸发管。
  8. 根据权利要求7所述的直冷冰箱,其特征在于:所述第一蒸发管与所述压缩机之间还设置有回气管,以使得制冷剂从第一蒸发管出口先流经所述回气管再流进所述压缩机。
  9. 根据权利要求8所述的直冷冰箱,其特征在于:所述内胆包括冷冻内胆和冷藏内胆,所述第一蒸发管和所述第二蒸发管均设置在所述冷冻内胆上,所述蒸发管组还包括设置在所述压缩机与所述第二蒸发管之间以对所述冷藏内胆制冷的第三蒸发管,以使得制冷剂从压缩机出口先流经所述第三蒸发管再流进所述第二蒸发管。
  10. 根据权利要求9所述的直冷冰箱,其特征在于:所述蒸发管组还包括设置在所述第一蒸发管与所述回气管之间以对所述冷藏内胆制冷的第四蒸发管,以使得制冷剂从第一蒸发管出口先流经所述第四蒸发管再流进所述回气管。
PCT/CN2013/084675 2013-07-19 2013-09-30 直冷冰箱 WO2015007019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310304254.8A CN104034113B (zh) 2013-03-18 2013-07-19 直冷冰箱
CN201310304254.8 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015007019A1 true WO2015007019A1 (zh) 2015-01-22

Family

ID=52346995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084675 WO2015007019A1 (zh) 2013-07-19 2013-09-30 直冷冰箱

Country Status (2)

Country Link
CN (1) CN104034113B (zh)
WO (1) WO2015007019A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2913984Y (zh) * 2006-03-04 2007-06-20 海尔集团公司 冰箱蒸发器内胆盖板的固定结构
CN101091095A (zh) * 2004-12-28 2007-12-19 利勃海尔-家用电器奥克森豪森有限责任公司 冷藏和冷冻单元
CN201129899Y (zh) * 2007-12-04 2008-10-08 海尔集团公司 三门冰箱
JP2009168280A (ja) * 2008-01-11 2009-07-30 Hoshizaki Electric Co Ltd 冷却貯蔵庫
CN103185435A (zh) * 2013-03-18 2013-07-03 海尔集团公司 直冷冰箱

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227379A (en) * 1978-02-23 1980-10-14 Tokyo Shibaura Denki Kabushiki Kaisha Cooling apparatus
JPS54145049A (en) * 1978-05-02 1979-11-12 Toshiba Corp Refrigerat0r
CN2188731Y (zh) * 1994-01-27 1995-02-01 成都集翔电子电器公司 冰箱蒸发器
KR100451221B1 (ko) * 2001-11-16 2004-10-02 엘지전자 주식회사 가연성 냉매를 이용한 직냉식 냉장고
CN2540609Y (zh) * 2002-04-23 2003-03-19 广东科龙电器股份有限公司 带抽屉的直冷电冰箱
CN2563529Y (zh) * 2002-08-30 2003-07-30 广东科龙电器股份有限公司 电冰箱内胆组合结构
CN2711648Y (zh) * 2004-06-22 2005-07-20 河南新飞电器有限公司 冰箱的蒸发器
CN101566415B (zh) * 2009-05-19 2010-12-29 广东奥马电器股份有限公司 一种节能电冰箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091095A (zh) * 2004-12-28 2007-12-19 利勃海尔-家用电器奥克森豪森有限责任公司 冷藏和冷冻单元
CN2913984Y (zh) * 2006-03-04 2007-06-20 海尔集团公司 冰箱蒸发器内胆盖板的固定结构
CN201129899Y (zh) * 2007-12-04 2008-10-08 海尔集团公司 三门冰箱
JP2009168280A (ja) * 2008-01-11 2009-07-30 Hoshizaki Electric Co Ltd 冷却貯蔵庫
CN103185435A (zh) * 2013-03-18 2013-07-03 海尔集团公司 直冷冰箱

Also Published As

Publication number Publication date
CN104034113B (zh) 2017-01-18
CN104034113A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2012034299A1 (zh) 一种冰箱除霜控制系统及其控制方法
CN102997552B (zh) 多维制冷节能冰箱
US20190360737A1 (en) Refrigerator
WO2015010405A1 (zh) 冰箱
WO2018032607A1 (zh) 一种风冷冰箱及其控制方法
JP2013210180A (ja) 冷蔵庫
WO2019047564A1 (zh) 带风门的多温区制冷结构、及其控制方法
CN107131705A (zh) 卧式风冷冷柜
CN207487220U (zh) 一种卧式无霜双温冷柜
WO2015007018A1 (zh) 直冷冰箱
WO2015007026A1 (zh) 直冷冰箱
WO2015007025A1 (zh) 直冷冰箱
CN112856907A (zh) 节能型冰柜的换热装置和控制方法
CN202304230U (zh) 节能冷暖冰箱
WO2015007019A1 (zh) 直冷冰箱
CN204806791U (zh) 一种直冷式电冰箱冷藏室防结霜装置
CN106839575A (zh) 一种风冷无霜卧式冷柜及其制造方法
CN109084506A (zh) 卧式风冷冷柜
WO2015007017A1 (zh) 直冷冰箱及其制冷方法
CN212157779U (zh) 一种冷柜
CN209295520U (zh) 一种采用单个斯特林制冷机作为冷源的冰箱
CN107091551A (zh) 蓄冷式风冷卧柜
WO2014079128A1 (zh) 冰箱用蒸发器及具有其的冰箱
CN1869557A (zh) 上置式电冰箱
CN212057870U (zh) 一种可控温的冰箱用冷风循环系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889587

Country of ref document: EP

Kind code of ref document: A1