WO2015007007A1 - 一种adc自动校正的方法及装置 - Google Patents

一种adc自动校正的方法及装置 Download PDF

Info

Publication number
WO2015007007A1
WO2015007007A1 PCT/CN2013/081903 CN2013081903W WO2015007007A1 WO 2015007007 A1 WO2015007007 A1 WO 2015007007A1 CN 2013081903 W CN2013081903 W CN 2013081903W WO 2015007007 A1 WO2015007007 A1 WO 2015007007A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
adc
channel type
coefficient value
module
Prior art date
Application number
PCT/CN2013/081903
Other languages
English (en)
French (fr)
Inventor
陈洪波
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Priority to RU2015118249A priority Critical patent/RU2619538C2/ru
Priority to AU2013392022A priority patent/AU2013392022B2/en
Priority to US14/411,108 priority patent/US9391629B2/en
Publication of WO2015007007A1 publication Critical patent/WO2015007007A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • H03M1/1057Calibration over the full range of the converter, e.g. for correcting differential non-linearity by trimming, i.e. by individually adjusting at least part of the quantisation value generators or stages to their nominal values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/069Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps
    • H03M1/0695Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps using less than the maximum number of output states per stage or step, e.g. 1.5 per stage or less than 1.5 bit per stage type

Definitions

  • the present invention relates to the field of television technologies, and in particular, to a method and an apparatus for automatically correcting an ADC.
  • the television set has a computer channel and a component channel, and the signals of the two channels are analog signals.
  • the TV system processes these two analog signals, three separate ADC devices are required.
  • three ADC devices are required to work together, and when processing the analog signals of the component channels, three are also required.
  • the ADC devices work together.
  • the analog signal to digital characteristics of each ADC device cannot be guaranteed to be completely consistent due to process reasons. Therefore, the characteristics of the analog signal to digital of the three independent ADC devices in the television system are also different. of.
  • the main object of the present invention is to provide a method and device for automatically correcting an ADC, which aims to solve the problem of manually correcting the ADC device by acquiring a voltage signal of a reference voltage source and automatically adjusting the ADC device based on the digital signal value of the reference voltage source. Low efficiency, high cost and other issues.
  • the present invention provides a method for automatically correcting an ADC, comprising the following steps:
  • the magnitude of the digital signal value and the target value are compared, and the magnitude of the conversion coefficient value is adjusted according to the comparison result such that the difference between the digital signal value and the target value is within the allowable error range value.
  • the method further includes:
  • the adjusted conversion coefficient value is stored in a designated position of the memory, and the conversion coefficient value of the specified position is used for direct extraction of the call in the digitizing conversion operation of the subsequent ADC device.
  • the step of converting the voltage signal value of the reference voltage source into a digital signal value according to the preset conversion coefficient value is specifically:
  • Offset coefficient value and gain coefficient value in the preset conversion coefficient value converting the voltage signal value of the reference voltage source into a digital signal value according to the bias coefficient value and the gain coefficient value, the digital signal value and the voltage signal value
  • the size of the conversion coefficient value is adjusted to adjust the size of the gain coefficient value.
  • the comparing the magnitude of the digital signal value with a target value, and adjusting the magnitude of the gain coefficient value according to the comparison result, so that the difference between the digital signal value and the target value is within an allowable error range includes the following steps:
  • the gain coefficient value is reduced, otherwise, the gain coefficient value is increased .
  • the method further comprises the steps of:
  • the channel type of the analog signal received by the ADC device is judged, and the correction state of the ADC device when the channel type analog signal is processed is determined.
  • the determining the channel type of the processed analog signal received by the ADC device, and determining that the calibration state of the ADC device when processing the channel type analog signal comprises the following specific steps:
  • Corresponding designated addresses are set in the memory for each channel type, and the value of 0 or 1 of the specified address is set as a data identifier, and the data identifiers respectively correspond to the states before and after the correction of the ADC device when processing the current channel type analog signal. ;
  • Reading a specified address of the memory determining a current channel type according to the read specified address; reading a data identifier on the specified address, and determining, according to the data identifier, that the ADC device is correct when processing the current channel type analog signal status.
  • the step of storing the adjusted conversion coefficient value in the designated position of the memory further comprises the steps of:
  • the data identifier on the specified address corresponding to the current channel type is regenerated, and the regenerated data identifier corresponds to the corrected state of the ADC device when processing the current channel type analog signal.
  • the step of storing the adjusted conversion coefficient value in a designated position of the memory is specifically:
  • Corresponding specified positions are respectively set on the memory for each channel type, and the adjusted gain coefficient value is stored in the corresponding designated position of the memory corresponding to the current channel type, and the gain coefficient value of the specified position is used for subsequent ADC device processing digital conversion
  • the call is fetched directly from the operation.
  • the present invention further provides an apparatus for automatically correcting an ADC, comprising a reference voltage source setting module and an ADC device, the ADC device comprising a parameter setting module, a signal conversion module and a parameter adjustment module, the reference voltage source setting module a parameter setting module, a signal conversion module, and a parameter adjustment module are sequentially connected;
  • the reference voltage source setting module is configured to provide a reference voltage source to the ADC device module
  • the parameter setting module is configured to preset a conversion coefficient value, a target value, and an allowable error range value
  • the signal conversion module is configured to acquire a voltage signal of the reference voltage source, and convert the voltage signal value of the reference voltage source into a digital signal value according to the preset conversion coefficient value;
  • the parameter adjustment module is configured to compare the digital signal value with a target value, and adjust the size of the conversion coefficient value according to the comparison result, so that the difference between the digital signal value and the target value is allowed Within the error range value.
  • the ADC automatic calibration device further includes a memory module, wherein the memory module is connected to the parameter adjustment module;
  • the memory module is configured to store the adjusted conversion coefficient value in a designated position of the memory, where the conversion coefficient value of the specified position is used for direct extraction of the call in the digitizing conversion operation of the subsequent ADC device.
  • the parameter adjustment module is configured to preset a bias coefficient value and a gain coefficient value in the conversion coefficient value
  • the parameter adjustment module adjusts the size of the conversion coefficient value to adjust the size of the gain coefficient value.
  • the parameter adjustment module is configured to obtain a difference between the digital signal value and the target value, and when the absolute value of the difference is greater than the allowable error range value, determine whether the difference is greater than the allowable value.
  • the maximum value of the error range value if it is, the gain coefficient value is turned down, otherwise, the gain coefficient value is increased.
  • the device for automatically correcting the ADC further includes a channel type identification module, wherein the channel type identification module is connected to the parameter setting module;
  • the channel type identification module is configured to determine a channel type of an analog signal received by the ADC device, and determine a calibration state of the ADC device when processing the channel type analog signal.
  • the memory module is connected to a channel type identification module; wherein
  • the memory module is configured to respectively set a corresponding designated address on the memory corresponding to each channel type, and set a value of 0 or 1 of the specified address as a data identifier, and the data identifier is respectively used by the ADC device when processing the current channel type analog signal Corresponding to the state before and after correction;
  • the channel type identification module is configured to read a specified address of the memory, determine a current channel type according to the read specified address, read a data identifier on the specified address, and determine a current channel according to the data identifier.
  • the memory module is further configured to regenerate the data identifier on the specified address corresponding to the current channel type, and the regenerated data identifier and the corrected ADC device when processing the current channel type analog signal The status corresponds.
  • the memory module is further configured to respectively set a corresponding designated position on the memory corresponding to each channel type, and store the adjusted gain coefficient value in a corresponding designated position of the memory corresponding to the current channel type, where the specified position
  • the gain coefficient value is used by the subsequent ADC device to process the direct fetch call in the digital conversion operation.
  • the invention provides a method for automatically correcting an ADC. After an adjustable reference voltage source is set inside the video chip, and the reference voltage source is connected with the ADC device, the system calculates a reference according to the default performance parameters of the ADC device. The voltage signal value of the voltage source is converted into a target value of the digital signal, and the voltage signal value is converted by the ADC device to obtain an actual digital signal value, and then the digital signal value and the target value are compared, and then the ADC device is The associated conversion coefficient value is adjusted such that the difference between the numerical signal value and the target value is within the error range value allowed by the ADC device, the magnitude of the conversion coefficient value at this time is determined, and the conversion coefficient value is stored to At the designated position of the memory, in addition, the state of the corrected ADC device is correspondingly recorded to the designated address of the memory.
  • the system When the ADC device is processing an analog signal of a different channel type, the system first reads the data identifier on the memory at a specified address corresponding to the signal channel, and determines whether the ADC device that processes the channel type analog signal has been determined according to the data identifier. Correction, if corrected, can directly call the conversion coefficient value corresponding to the corresponding signal channel from the specified position of the memory, and finally complete the conversion of the analog signal of the current channel type into a digital signal.
  • the calibration process of the ADC device of the present invention is completely automated, without the need for external calibration tools and professional calibration operations, which saves labor costs and man-hours, and the correction effect is accurate. Based on this, the present invention further provides an apparatus for automatically correcting the ADC corresponding to the above method for automatically correcting the ADC.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for automatically correcting an ADC of the present invention
  • FIG. 2 is a schematic flow chart of still another embodiment of a method for automatically correcting an ADC of the present invention
  • FIG. 3 is a schematic flow chart of still another embodiment of a method for automatically correcting an ADC of the present invention
  • FIG. 4 is a schematic flow chart of still another embodiment of a method for automatically correcting an ADC of the present invention
  • FIG. 5 is a schematic flow chart of still another embodiment of a method for automatically correcting an ADC of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for automatically correcting an ADC of the present invention.
  • FIG. 7 is a schematic structural diagram of still another embodiment of an apparatus for automatically correcting an ADC of the present invention.
  • FIG. 8 is a schematic structural diagram of still another embodiment of an apparatus for automatically correcting an ADC according to the present invention.
  • FIG. 9 is a schematic structural view of still another embodiment of an apparatus for automatically correcting an ADC of the present invention.
  • the solution of the embodiment of the present invention is mainly: a method for automatically correcting an ADC. After an adjustable reference voltage source is set inside the video chip, and the reference voltage source is connected to the ADC device, the system is based on the default components of the ADC device. The performance parameter calculates that the voltage signal value of the reference voltage source is converted into a target value of the digital signal, and the voltage signal value is converted by the ADC device to obtain an actual digital signal value, and then the digital signal value is compared with the target value.
  • the system first reads the data identifier on the memory at a specified address corresponding to the signal channel, and determines whether the ADC device that processes the channel type analog signal has been determined according to the data identifier.
  • Correction if corrected, can directly transfer the conversion coefficient value corresponding to the corresponding signal channel from the specified position of the memory, and finally complete the conversion of the analog signal of the current channel type into a digital signal.
  • the calibration process of the ADC device of the present invention is completely automated, without the need for external calibration tools and professional calibration operations, which saves labor costs and man-hours, and the correction effect is accurate.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for automatically correcting an ADC according to the present invention.
  • An embodiment of the invention provides a method for automatically correcting an ADC, comprising the following steps:
  • step S1 the reference voltage source is set inside the video chip and adjusted by the chip register.
  • a reference switch can be connected between the reference voltage source and the ADC device.
  • the switch can be turned on, so that the reference voltage source and the ADC device are connected. After the switch is turned on, the ADC device is turned on. Acquire the voltage signal to the reference voltage source.
  • the conversion coefficient value in the ADC device is essentially a conversion coefficient or a conversion relationship function that converts the voltage signal value of the reference voltage source into a digital signal value.
  • the value of the digital signal obtained by converting the voltage signal value of the reference voltage source by the ADC device according to its preset conversion coefficient value is the actual converted value.
  • step S3 the target value (ADC_Target) is a theoretical value obtained by digitally converting the voltage signal value of the reference voltage source through the ADC device.
  • the allowable error range value (ADC_Margin) is the tolerance or allowable value of the error between the actual value and the target value (ADC_Target) after the ADC device converts the voltage signal value into a digital signal value according to the conversion relationship of the conversion coefficient value.
  • ADC_Diff ADC_Value- ADC_Target
  • the conversion coefficient value and the allowable error range value (ADC_Margin) in the ADC device may be the default values set by the ADC device after being manufactured, or may be the value set by the system to the ADC itself, and the target value (ADC_Target) corresponds to
  • the voltage signal value of the reference voltage source is preset in the system, that is, when the voltage signal value of the set reference voltage source is determined, the ADC device automatically generates a target value (ADC_Target), and therefore, various parameter values in the ADC device are automatically Generate and set.
  • the voltage signal value of the reference voltage source is also preset in the system.
  • the ADC device When the ADC device needs to be calibrated, the ADC device can be automatically calibrated by simply connecting the reference voltage source to the ADC device. The operator no longer needs to manually correct the ADC device through the computer and signal generator. Not only the human and material cost is saved, but also the calibration efficiency of the ADC device is greatly improved.
  • FIG. 2 is a schematic flow chart of still another embodiment of the method for automatically correcting the ADC of the present invention.
  • the method further includes the following steps:
  • step S4 in order to prevent the conversion coefficient value in the corrected ADC device from being lost after power-off, the corrected conversion coefficient value is stored in a designated position in the memory, and the system setting program, after being powered on again, the ADC device Call the conversion coefficient value directly at the specified position in the memory.
  • step S2 is more specifically:
  • Offset coefficient value and gain coefficient value in the preset conversion coefficient value converting the voltage signal value of the reference voltage source into a digital signal value according to the bias coefficient value and the gain coefficient value, the digital signal value and the voltage signal value
  • the conversion coefficient value includes a bias coefficient value and a gain coefficient value
  • the value can also be the value set by the system to the ADC.
  • step S3 is more specifically:
  • the conversion coefficient value includes a bias coefficient value and a gain coefficient value.
  • one of the offset coefficient value and the gain coefficient value in the conversion coefficient value may be adjusted, or two All are adjusted.
  • the adjustment since the adjustment is performed only by controlling the gain coefficient value, the function between the voltage signal value and the digital signal value The simpler the conversion relationship, the easier it is to program the system and calculate the chip.
  • FIG. 3 is a schematic flow chart of still another embodiment of the method for automatically correcting the ADC of the present invention.
  • step S3 includes the following steps:
  • step S32 if it is judged that the absolute value of the difference is smaller than the absolute value of the allowable error range value, the adjustment of the gain coefficient value is stopped, and the correction is ended.
  • the target value is 5 and the digital signal value is 7, and the allowable error range is (-1, 1)
  • the difference is 2, and the absolute value of the difference is 2, and the absolute value of the difference is greater than The error range is allowed, and the difference is greater than the maximum value 1 of the allowable error range.
  • the gain coefficient value needs to be reduced so that the digital signal value 7 is close to the target value 5, thereby ensuring that the difference is within the allowable error range; when the above-mentioned target value is 5, the digital signal value is 3, when the above allowable error range is (-1, 1), the difference is -2, the absolute value of the difference is 2, and the absolute value of the difference is greater than the allowable error range, but the difference is The value is less than the maximum value of the allowable error range of 1, and the gain coefficient value needs to be increased to bring the digital signal value 3 close to the target value of 5, thereby ensuring that the difference is within the allowable error range.
  • the gain coefficient value is selected as the object of adjustment, so that the conversion calculation function relationship between the voltage signal value and the digital signal value is simpler, and the system program is optimized.
  • the method further includes the following steps:
  • the channel type may be one or more.
  • the ADC device when processing the current channel type analog signal may be one or a combination of multiple, and needs to be determined according to actual conditions.
  • the analog signals to be processed by the ADC device have different channel types, and the relevant parameters in the ADC device for each channel type also need to be corrected differently.
  • the television includes a computer channel and a component channel, and each channel needs to be processed by an ADC module composed of three independent ADC devices, each of which is an ADC module.
  • the ADC device needs to be connected to a reference voltage source respectively.
  • the ADC module processes the analog signal of the computer channel, it needs to correct the ADC devices in the ADC module, which is briefly described as the ADC correction of the computer channel;
  • the ADC module For the analog signal, it is also necessary to correct the ADC devices in the ADC module, which is briefly described as the ADC correction of the component channel.
  • the two corrections do not affect each other, but after two corrections, the ADC module processes the computer.
  • the analog signal of the channel and the analog signal of the component channel can ensure the consistency of the picture quality of the TV image in the computer channel and the component channel.
  • FIG. 4 is a schematic flow chart of still another embodiment of the method for automatically correcting the ADC of the present invention.
  • the step S10 includes the following specific steps:
  • S101 correspondingly setting a corresponding designated address on the memory corresponding to each channel type, and setting a value of 0 or 1 of the specified address as a data identifier, where the data identifier is respectively before and after the correction of the ADC device when processing the current channel type analog signal Status corresponding;
  • step S101 if the channel type includes the channel type 1 and the channel type 2, the corresponding designated position 1 and the specified position 2 are set in the memory, and when the ADC device processes the analog signal of the channel type 1, if the ADC device is not corrected, The system sets the data identifier to 0 at the specified position 1. If the ADC device has been corrected, the system sets the data identifier to 1 at the specified position 1. Similarly, when the ADC device processes the analog signal of channel type 2, if the ADC device Uncorrected, the system sets the data identifier to 0 at the specified position 2. If the ADC device has been corrected, the system sets the data identifier to 1 at the specified position 2.
  • S102 Read a specified address of the memory, determine a current channel type according to the read specified address, read a data identifier on the specified address, and determine, according to the data identifier, an ADC device according to the current channel type analog signal. Corrected state.
  • step S102 the system reads the specified address of the memory.
  • the system should read the specified address on the memory in order. For example, the system first reads the specified address 1 and reads the specified address 1 When the upper data identifier is 0, the system determines that the ADC device has not been corrected when processing the analog signal of channel type 1, and then, according to the determination result, proceeds to step S2 to complete the calibration of the ADC device.
  • the system reads the specified address 1 and reads the data identifier on the specified address 1 as 1
  • the system determines that the ADC device has been corrected when processing the analog signal of channel type 1, and then the system reads the next one. Specify the address 2, and read the data identifier on the specified address 2, and then make the same judgment steps and processing as the specified address 1, and will not be described here.
  • FIG. 5 is a schematic flow chart of still another embodiment of the method for automatically correcting the ADC of the present invention.
  • step S4 further includes the following steps:
  • step S41 if the ADC device at the time of processing the analog signal of channel type 1 has been corrected, the data identification at the designated address 1 is changed from 0 to 1.
  • the system reads the data identifier 1 on the specified address 1, it determines that the ADC device when processing the analog signal of channel type 1 has been corrected; the system continues to read the data identifier on the specified address 2, if the data identifier is 0, this It indicates that the ADC device when processing the analog signal of channel type 2 has not been corrected, the system performs steps S2 to S4, and after the ADC device corrects the analog signal of channel type 2, the system changes the data identifier at the specified address 2 to 1.
  • the step S4 is more specifically: correspondingly setting a corresponding designated position on the memory corresponding to each channel type, and storing the adjusted gain coefficient value in the corresponding designated position of the memory corresponding to the current channel type, the gain coefficient value of the specified position Used for subsequent extraction of calls directly from the ADC device processing digital conversion operations.
  • step S4 of the present embodiment since the ADC device achieves the purpose of correction by adjusting its gain coefficient value, it is only necessary to store the corrected gain coefficient value in a designated position of the memory.
  • the ADC device directly reads the gain coefficient value at the specified position of the memory, and performs digital signal conversion on the corresponding channel type according to the gain coefficient value.
  • the channel type may be one or more, and the corresponding designated address on the memory is also corresponding to one or more.
  • the television includes a component channel and a computer channel, and corresponding to the component channel, a corresponding designated address 1 is set on the memory, and the corresponding designated address is set on the memory corresponding to the computer channel.
  • the data identifiers formed by the values 0 and 1 on the specified address 1 respectively correspond to the uncorrected and corrected states of the ADC module when the component channel analog signals are processed, and the data identifiers formed by the values 0 and 1 on the designated address 2 correspond to the processing respectively.
  • the uncorrected and corrected state of the ADC module when the computer channel is analog.
  • the ADC's ADC automatic calibration process includes the following steps:
  • the ADC closes the connection switch between the reference voltage source and the ADC_Offset module, and changes the data identifier at the specified address 1 from the value 0 to the value 1, and stores the adjusted ADC_Gain value in In the specified position A of the memory, it should be noted that each of the three ADC devices in the ADC module has an ADC_Gain value set at the specified position A, or A1, A2, A3.
  • the present invention can automatically complete the correction of the ADC module of the computer channel, and change the data identifier on the specified address 2 from the value 0 to the value 1, and store the adjusted ADC_Gain value in the specified position B of the memory. .
  • the system reads the data 1 at the specified address 1 of the memory, determines that the ADC module of the component channel is corrected, and reads the ADC_Gain value stored in the specified position A of the memory.
  • the ADC module performs digital conversion of the analog signal of the component channel according to the ADC_Gain value; then, the system reads the data 1 at the specified address 2 of the memory, determines that the ADC module of the computer channel is corrected, and reads the specified position stored in the memory.
  • the ADC_Gain value on B the ADC module completes the digital conversion of the analog signal of the component channel according to the ADC_Gain value.
  • the present invention automatically completes the calibration of the ADC through the first boot of the TV without affecting the calibration performance of the ADC.
  • the system enters the component and the computer channel, and only needs to call the specified addresses A and B in the memory.
  • the gain factor value is sufficient, the correction is fully automated, no manual operation and external signal generators are provided, which improves efficiency, reduces cost, and ensures the consistency of TV image quality in computer channels and component channels.
  • Figure 6 is a block diagram showing an embodiment of an apparatus for automatically correcting an ADC of the present invention.
  • the present invention further provides an apparatus for automatically correcting an ADC, comprising a reference voltage source setting module 1 and an ADC device 2, the ADC device 2 comprising a parameter setting module 21, a signal conversion module 22, and a parameter adjustment module 23,
  • the reference voltage source setting module 1, the parameter setting module 21, the signal conversion module 22, and the parameter adjustment module 23 are sequentially connected;
  • the reference voltage source setting module 1 is configured to provide a reference voltage source to the ADC device module 2;
  • the parameter setting module 21 is configured to preset a conversion coefficient value, a target value, and an allowable error range value;
  • the signal conversion The module 22 is configured to obtain a voltage signal of the reference voltage source, and convert the voltage signal value of the reference voltage source into a digital signal value according to the preset conversion coefficient value;
  • the parameter adjustment module 23 is configured to compare the digital signal value with The size of the target value, and the size of the conversion coefficient value is adjusted according to the comparison result such that the difference between the digital signal value and the target value is within the allowable error range value.
  • the reference voltage source module 1 and the ADC device 2 can be connected by setting a switch 5.
  • the switch 5 can be turned on to make the reference voltage source module 1 and The ADC device 2 is in a connected state, and after the switch 5 is turned on, the ADC device 2 acquires a voltage signal to the reference voltage source module 1.
  • the preset conversion coefficient value in the parameter setting module 21 is essentially a conversion coefficient or a conversion relationship function for converting the voltage signal value of the reference voltage source module 1 into a digital signal value, and the signal conversion module 22 pre-modulates according to the parameter setting module 21.
  • the set conversion coefficient value converts the value of the voltage signal value of the reference voltage source to the actual converted value.
  • the preset target value (ADC_Target) in the parameter setting module 21 is a theoretical value obtained by digitally converting the voltage signal value of the reference voltage source module 1 through the signal conversion module 22.
  • the preset allowable error range value (ADC_Margin) in the parameter setting module 21 is the actual value and the target value (ADC_Target) obtained after the signal conversion module 22 converts the voltage signal value into a digital signal value according to the conversion relationship of the conversion coefficient value.
  • the preset conversion coefficient value and the allowable error range value (ADC_Margin) in the parameter setting module 21 may be default values set by the ADC device after being manufactured, or may be system pairs.
  • the value set by the ADC itself, the preset target value (ADC_Target) of the parameter setting module 21 corresponds to the voltage signal value of the reference voltage source module 1, that is, when the voltage signal value of the set reference voltage source is determined, the parameter setting module 21
  • the target value (ADC_Target) is automatically generated, so the various parameter values in the ADC unit are automatically generated and set.
  • the reference voltage source module 1 can be disposed inside the video chip and adjusted by the chip register, and the voltage signal value of the reference voltage source module 1 is also preset in the system.
  • the ADC device 2 can be automatically calibrated by simply connecting the reference voltage source module 1 to the ADC device 2. The operator no longer needs to use the computer and the signal generator to align the ADC. Manual correction of the device not only saves manpower and material costs, but also greatly improves the calibration efficiency of the ADC device 2.
  • Figure 7 is a block diagram showing an embodiment of an apparatus for automatically correcting an ADC of the present invention.
  • the ADC automatic calibration device further includes a memory module 3, and the memory module 3 is connected to the parameter adjustment module 23;
  • the memory module 3 is configured to store the adjusted conversion coefficient value in a designated position of the memory, where the conversion coefficient value of the specified position is used for directly extracting the call in the digitized conversion operation of the subsequent ADC device 2;
  • the conversion coefficient value includes a bias coefficient value and a gain coefficient value; wherein the parameter adjustment module 23 is configured to preset a bias coefficient value and a gain coefficient value in the conversion coefficient value;
  • the parameter adjustment module 23 is configured to compare the magnitude of the digital signal value with the target value, and adjust the magnitude of the gain coefficient value according to the comparison result, so as to determine the difference between the digital signal value and the target value. Within the allowable error range value.
  • the conversion coefficient value includes a bias coefficient value and a gain coefficient value
  • the value may also be a value set by the parameter setting module 21 itself.
  • one of the offset coefficient value and the gain coefficient value in the conversion coefficient value may be adjusted, and both may be adjusted.
  • the adjustment since the adjustment is performed only by controlling the gain coefficient value, the function between the voltage signal value and the digital signal value The simpler the conversion relationship, the easier it is to program the system and calculate the chip.
  • FIG. 8 is a schematic structural diagram of an embodiment of an apparatus for automatically correcting an ADC according to the present invention.
  • the parameter adjustment module 23 is configured to acquire a difference between the digital signal value and a target value, when an absolute value of the difference is greater than an allowable error range value, Further determining whether the difference is greater than a maximum value of the allowable error range value, and if so, reducing the gain coefficient value; otherwise, increasing the gain coefficient value;
  • the device for automatically correcting the ADC further includes a channel type identification module 4, and the channel type identification module 4 is connected to the parameter setting module 21;
  • the channel type identification module 4 is configured to determine a channel type of the analog signal received by the ADC device 2, and determine a correction state of the ADC device 2 when processing the channel type analog signal.
  • the adjustment of the gain coefficient value is stopped, and the correction is ended.
  • the target value is 5 and the digital signal value is 7, and the allowable error range is (-1, 1)
  • the difference is 2, and the absolute value of the difference is 2, and the absolute value of the difference is greater than The error range is allowed, and the difference is greater than the maximum value 1 of the allowable error range.
  • the gain coefficient value needs to be reduced so that the digital signal value 7 is close to the target value 5, thereby ensuring that the difference is within the allowable error range; when the above-mentioned target value is 5, the digital signal value is 3, when the above allowable error range is (-1, 1), the difference is -2, the absolute value of the difference is 2, and the absolute value of the difference is greater than the allowable error range, but the difference is The value is less than the maximum value of the allowable error range of 1, and the gain coefficient value needs to be increased to bring the digital signal value 3 close to the target value of 5, thereby ensuring that the difference is within the allowable error range.
  • the gain coefficient value is selected as the adjustment object, so that the conversion calculation function relationship between the voltage signal value and the digital signal value is simpler, and the system program is optimized.
  • the channel type may be one or more.
  • the ADC device when processing the current channel type analog signal may be one or a combination of multiple, and needs to be determined according to actual conditions.
  • the analog signals to be processed by the ADC device have different channel types, and the relevant parameters in the ADC device for each channel type also need to be corrected differently.
  • a television set includes a computer channel and a component channel, and each channel needs to be processed by an ADC module composed of three independent ADC devices, and each ADC device of the ADC module needs to be connected to a reference voltage source.
  • the ADC module processes the analog signal of the computer channel, it needs to correct the ADC devices in the ADC module, which is briefly described as the ADC correction of the computer channel; when processing the analog signal of the component channel, it is also necessary to Each ADC device in the ADC module performs calibration, which is briefly described as the ADC correction of the component channel.
  • the two corrections do not affect each other, but after two corrections, the ADC module processes the analog signal of the computer channel and processes the component channel. After the analog signal, the consistency of the image quality of the TV image in the computer channel and the component channel can be ensured.
  • Figure 9 is a block diagram showing an embodiment of an apparatus for automatically correcting an ADC of the present invention.
  • the memory module 3 is connected to the channel type identification module 4;
  • the memory module 3 is configured to respectively set a corresponding designated address on the memory corresponding to each channel type, and set a value of 0 or 1 of the specified address as a data identifier, and the data identifier is respectively used when processing the current channel type analog signal.
  • the state before and after the correction of 2 corresponds;
  • the channel type identification module 4 is configured to read a specified address of the memory, determine a current channel type according to the read specified address, read a data identifier on the specified address, and determine, according to the data identifier, a current processing
  • the channel type analog signal is the calibration state of the ADC device.
  • the corresponding designated position 1 and the designated position 2 are set in the memory, and when the ADC device 2 processes the analog signal of the channel type 1, if the ADC device 2 uncorrected, the system sets the data identifier to 0 at the specified position 1. If the ADC device 2 has been corrected, the system sets the data identifier to 1 at the specified position 1. Similarly, when the ADC device 2 processes the channel type 2 simulation In the case of signal, if the ADC device 2 is not corrected, the system sets the data flag to 0 at the specified position 2, and if the ADC device 2 has been corrected, the system sets the data flag to 1 at the specified position 2.
  • the system should read the specified address on the memory in order. For example, when the system first reads the specified address 1 and reads the data identifier on the specified address 1 to 0, the system judges The ADC device 2 has not been corrected while processing the analog signal of channel type 1, and then the ADC device 2 of the processing channel type 1 is corrected based on the result of the determination. When the system reads the specified address 1 and reads the data identifier on the specified address 1 as 1, the system determines that the ADC device 2 has been corrected when processing the analog signal of the channel type 1, and then the system is reading. The address 2 is specified, and the data identifier on the specified address 2 is read, and then the same judgment steps and processes as the specified address 1 are made, and details are not described herein again.
  • the memory module 3 is further configured to regenerate the data identifier on the specified address corresponding to the current channel type, and regenerate the data identifier and process the current channel type. Corresponding state of the ADC device at the time of analog signal;
  • the memory module 3 is further configured to respectively set a corresponding designated position on the memory corresponding to each channel type, and store the adjusted gain coefficient value in a corresponding designated position of the memory corresponding to the current channel type, and the gain coefficient of the specified position The value is used in subsequent ADC device processing direct conversion calls in the digital conversion operation.
  • the data identification at the designated address 1 is changed from 0 to 1.
  • the system reads the data identifier 1 on the specified address 1, it determines that the ADC device when processing the analog signal of channel type 1 has been corrected; the system continues to read the data identifier on the specified address 2, if the data identifier is 0, this It indicates that the ADC device when processing the analog signal of channel type 2 has not been corrected, the system performs steps S2 to S4, and after the ADC device corrects the analog signal of channel type 2, the system changes the data identifier at the specified address 2 to 1.
  • the ADC device achieves the purpose of correction by adjusting its gain coefficient value, it is only necessary to store the corrected gain coefficient value in a designated position of the memory.
  • the ADC device directly reads the gain coefficient value at the specified position of the memory, and performs digital signal conversion on the corresponding channel type according to the gain coefficient value.
  • the channel type may be one or more, and the corresponding designated address on the memory is also corresponding to one or more.
  • the television includes a component channel and a computer channel, and corresponding to the component channel, a corresponding designated address 1 is set on the memory, and the corresponding designated address is set on the memory corresponding to the computer channel.
  • the data identifiers formed by the values 0 and 1 on the specified address 1 respectively correspond to the uncorrected and corrected states of the ADC module when the component channel analog signals are processed, and the data identifiers formed by the values 0 and 1 on the designated address 2 correspond to the processing respectively.
  • the uncorrected and corrected state of the ADC module when the computer channel is analog.
  • the present invention Compared with the existing ADC device, which requires manual correction, the present invention has the following advantages:
  • the calibration process of the ADC automatic calibration method of the invention is completely automated, no manual correction by a professional operator, saving labor cost and improving work efficiency;
  • the ADC automatic correction method of the invention can deal with multi-channel type analog signals.
  • the ADC device performs calibration, and has a wider application range and more practicality.
  • the digital signal values obtained by the corrected ADC device processing analog signals of different channel types can ensure mutual consistency. The processing effect is prominently guaranteed; the device for automatically correcting the ADC of the present invention has a simple structure and is easy to manufacture.

Abstract

提供了一种ADC(模数转换器)自动校正的方法及装置。其中,ADC自动校正的方法通过在视频芯片内部设置可调节的参考电压源,将该参考电压源与ADC装置连接后,系统根据ADC装置的默认的各项性能参数计算出参考电压源的电压信号值转换为数字信号的目标值,并且,通过ADC装置将该电压信号值转换后获得实际的数字信号值,再通过比较数字信号值与目标值的大小后,对ADC装置内相关的转换系数值进行调整以达到自动校正的目的。该ADC装置的校正过程完全自动化,不需要借助外部的校正工具以及专业人员的校正操作,节约了人力成本和操作工时,并且校正效果准确。此外,该ADC自动校正的装置结构简单,易于生产制造。

Description

一种ADC自动校正的方法及装置
技术领域
本发明涉及电视技术领域,尤其涉及一种ADC自动校正的方法及装置。
背景技术
现有技术中,电视机都设有电脑通道和分量通道,这两个通道的信号都是模拟信号。电视机系统在处理这两个模拟信号时,需要三个独立的ADC装置,即处理电脑通道的模拟信号时,需要三个ADC装置共同工作,而在处理分量通道的模拟信号时,同样需要三个ADC装置共同工作。
在ADC装置制造过程中,因工艺原因无法保证每个ADC装置的模拟信号转数字的特性完全一致,所以,在电视机系统中的三个独立的ADC装置的模拟信号转数字的特性也是不相同的。
因此,在电视整机厂的生产线中还包括了对每台电视的ADC装置的模拟信号转数字的特性进行校正的工序。在校正过程中,需要操作人员手持电脑以及信号发生器进行,这导致以下不足:
(1)需要在电视整机厂的生产线上增加ADC装置校正操作人员;
(2)需要购买信号发生器;
(3)由于需要人工操作,需要对在处理电脑通道和分量通道的模拟信号时的ADC装置分别进行校正,校正操作繁琐耗时,使得整条流水线效率降低。
发明内容
本发明的主要目的在于提供一种ADC自动校正的方法及装置,旨在通过获取参考电压源的电压信号并以该参考电压源的数字信号值为基准自动调节ADC装置以达到解决人工校正ADC装置效率低、成本高等问题。
为了实现上述目的,本发明提供一种ADC自动校正的方法,包括以下步骤:
获取参考电压源的电压信号值;
根据预置的转换系数值将参考电压源的电压信号值转换为数字信号值;
比较所述数字信号值与目标值的大小,并根据比较结果对转换系数值的大小进行调整,以使所述数字信号值与目标值之间的差值在允许误差范围值内。
优选地,所述以使所述数字信号值与目标值之间的差值在允许误差范围值内的步骤之后还包括:
将调整后的转换系数值存储在存储器的指定位置,该指定位置的转换系数值用于后续ADC装置的数字化转换操作中直接提取调用。
优选地,所述根据预置的转换系数值将参考电压源的电压信号值转换为数字信号值的步骤具体为:
预置转换系数值中的偏置系数值、增益系数值,根据所述偏置系数值、增益系数值将参考电压源的电压信号值转换为数字信号值,所述数字信号值与电压信号值的转换关系为:数字信号值=电压信号值*增益系数值+偏置系数值;
对转换系数值的大小进行调整具体为对所述增益系数值的大小进行调整。
优选地,所述比较所述数字信号值与目标值的大小,并根据比较结果对增益系数值的大小进行调整,以使所述数字信号值与目标值之间的差值大小在允许误差范围值内具体包括以下步骤:
获取所述数字信号值与目标值之间的差值;
当所述差值的绝对值大于允许误差范围值时,再判断所述差值是否大于允许误差范围值的最大值,如果是,则将增益系数值调小,否则,将增益系数值调大。
优选地,所述获取参考电压源的电压信号之前还包括步骤:
判断ADC装置所接收处理的模拟信号的通道类型,并判断在处理该通道类型模拟信号时ADC装置的校正状态。
优选地,所述判断ADC装置所接收处理的模拟信号的通道类型,并判断在处理该通道类型模拟信号时ADC装置的校正状态包括以下具体步骤:
对应每个通道类型分别在存储器上设置相应的指定地址,将指定地址的0或1数值设为数据标识,该数据标识分别与处理当前通道类型模拟信号时ADC装置的校正前、后的状态对应;
读取所述存储器的指定地址,根据读取的指定地址判断当前通道类型;读取所述指定地址上的数据标识,并根据所述数据标识判断处理当前通道类型模拟信号时ADC装置所处校正状态。
优选地,所述将调整后的转换系数值存储在存储器的指定位置步骤之前还包括步骤:
将对应于当前通道类型的所述指定地址上的数据标识重新生成,且重新生成后的数据标识与处理当前通道类型模拟信号时的ADC装置的校正后的状态对应。
优选地,所述将调整后的转换系数值存储在存储器的指定位置的步骤具体为:
对应每个通道类型分别在存储器上设置相应的指定位置,对应当前通道类型将调整后的增益系数值存储在存储器相应的指定位置上,该指定位置的增益系数值用于后续ADC装置处理数字化转换操作中直接提取调用。
本发明进一步提供了一种ADC自动校正的装置,包括参考电压源设定模块和ADC装置,所述ADC装置包括参数设定模块、信号转换模块以及参数调节模块,所述参考电压源设定模块、参数设定模块、信号转换模块以及参数调节模块依次连接;其中,
所述参考电压源设定模块,用于给ADC装置模块提供参考电压源;
所述参数设定模块,用于预设转换系数值、目标值以及允许误差范围值;
所述信号转换模块,用于获取参考电压源的电压信号,根据预置的转换系数值将参考电压源的电压信号值转换为数字信号值;
所述参数调节模块,用于比较所述数字信号值与目标值的大小,并根据比较结果对转换系数值的大小进行调整,以使所述数字信号值与目标值之间的差值在允许误差范围值内。
优选地,所述ADC自动校正装置还包括存储器模块,所述存储器模块与参数调节模块连接;其中,
所述存储器模块,用于将调整后的转换系数值存储在存储器的指定位置,该指定位置的转换系数值用于后续ADC装置的数字化转换操作中直接提取调用。
优选地,所述参数调节模块,用于预置转换系数值中的偏置系数值、增益系数值;
所述信号转换模块,用于根据所述偏置系数值、增益系数值将参考电压源的电压信号值转换为数字信号值,所述数字信号值与电压信号值的转换关系为:数字信号值=电压信号值*增益系数值+偏置系数值;
所述参数调节模块对转换系数值的大小进行调整具体为对所述增益系数值的大小进行调整。
优选地,所述参数调节模块,用于获取所述数字信号值与目标值之间的差值,当所述差值的绝对值大于允许误差范围值时,再判断所述差值是否大于允许误差范围值的最大值,如果是,则将增益系数值调小,否则,将增益系数值调大。
优选地,所述ADC自动校正的装置还包括通道类型识别模块,所述通道类型识别模块与参数设定模块连接;其中,
所述通道类型识别模块,用于判断ADC装置所接收处理的模拟信号的通道类型,并判断在处理该通道类型模拟信号时ADC装置的校正状态。
优选地,所述存储器模块与通道类型识别模块连接;其中,
所述存储器模块,用于对应每个通道类型分别在存储器上设置相应的指定地址,将指定地址的0或1数值设为数据标识,该数据标识分别与处理当前通道类型模拟信号时ADC装置的校正前、后的状态对应;
所述通道类型识别模块,用于读取所述存储器的指定地址,根据读取的指定地址判断当前通道类型;读取所述指定地址上的数据标识,并根据所述数据标识判断处理当前通道类型模拟信号时ADC装置所处校正状态。
优选地,所述存储器模块,还用于将对应于当前通道类型的所述指定地址上的数据标识重新生成,且重新生成后的数据标识与处理当前通道类型模拟信号时的ADC装置的校正后的状态对应。
优选地,所述存储器模块,还用于对应每个通道类型分别在存储器上设置相应的指定位置,对应当前通道类型将调整后的增益系数值存储在存储器相应的指定位置上,该指定位置的增益系数值用于后续ADC装置处理数字化转换操作中直接提取调用。
本发明提出了一种ADC自动校正的方法,通过在视频芯片内部设置可调节的参考电压源,将该参考电压源与ADC装置连接后,系统根据ADC装置的默认的各项性能参数计算出参考电压源的电压信号值转换为数字信号的目标值,并且,通过ADC装置将该电压信号值转换后获得实际的数字信号值,再通过比较数字信号值与目标值的大小后,对ADC装置内相关的转换系数值进行调整,以使数值信号值与目标值之间的差值大小在ADC装置所允许的误差范围值之内,确定此时转换系数值的大小并将该转换系数值存储到存储器的指定位置上,此外,将校正后的ADC装置的状态相应记录到存储器的指定地址上。当ADC装置在处理不同通道类型的模拟信号时,系统先通过读取存储器上对应于该信号通道的指定地址上的数据标识,并根据该数据标识判断处理该通道类型模拟信号的ADC装置是否已经校正,如果校正,则可以直接从存储器的指定位置调用处对应于相应信号通道的转换系数值,并最终完成当前通道类型的模拟信号转换成数字信号。本发明的ADC装置的校正过程完全自动化,不需要借助外部的校正工具以及专业人员的校正操作,节约了人力成本和操作工时,并且校正效果准确。在此基础上,本发明进一步的提供了与上述ADC自动校正的方法对应的ADC自动校正的装置。
附图说明
图1是本发明的ADC自动校正的方法一实施例的流程示意图;
图2是本发明的ADC自动校正的方法又一实施例的流程示意图;
图3是本发明的ADC自动校正的方法又一实施例的流程示意图;
图4是本发明的ADC自动校正的方法又一实施例的流程示意图;
图5是本发明的ADC自动校正的方法又一实施例的流程示意图;
图6是本发明的ADC自动校正的装置一实施例的结构示意图;
图7是本发明的ADC自动校正的装置又一实施例的结构示意图;
图8是本发明的ADC自动校正的装置又一实施例的结构示意图;
图9是本发明的ADC自动校正的装置又一实施例的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例解决方案主要是:一种ADC自动校正的方法,通过在视频芯片内部设置可调节的参考电压源,将该参考电压源与ADC装置连接后,系统根据ADC装置的默认的各项性能参数计算出参考电压源的电压信号值转换为数字信号的目标值,并且,通过ADC装置将该电压信号值转换后获得实际的数字信号值,再通过比较数字信号值与目标值的大小后,对ADC装置内相关的转换系数值进行调整,以使数值信号值与目标值之间的差值大小在ADC装置所允许的误差范围值之内,确定此时转换系数值的大小并将该转换系数值存储到存储器的指定位置上,此外,将校正后的ADC装置的状态相应记录到存储器的指定地址上。当ADC装置在处理不同通道类型的模拟信号时,系统先通过读取存储器上对应于该信号通道的指定地址上的数据标识,并根据该数据标识判断处理该通道类型模拟信号的ADC装置是否已经校正,如果校正,则可以直接从存储器的指定位置调用对应于相应信号通道的转换系数值,并最终完成当前通道类型的模拟信号转换成数字信号。本发明的ADC装置的校正过程完全自动化,不需要借助外部的校正工具以及专业人员的校正操作,节约了人力成本和操作工时,并且校正效果准确。
参照图1,图1是本发明的ADC自动校正的方法一实施例的流程示意图。本发明一实施例提出一种ADC自动校正的方法,包括以下步骤:
S1、获取参考电压源的电压信号值;
在步骤S1中,所述参考电压源设置在视频芯片内部,并通过芯片寄存器进行调节。
此外,参考电压源和ADC装置之间可以通过设置一个开关连接,当ADC装置在未进行校正前,可以将开关导通,使参考电压源和ADC装置处于连接状态,开关导通后,ADC装置获取到参考电压源的电压信号。
S2、根据预置的转换系数值将参考电压源的电压信号值转换为数字信号值;
在步骤S2中,ADC装置内的转换系数值本质为将参考电压源的电压信号值转换为数字信号值的转换系数或者转换关系函数。ADC装置根据其预置的转换系数值将参考电压源的电压信号值转换得到的数值信号值为实际转换值。
S3、比较所述数字信号值与目标值的大小,并根据比较结果对转换系数值的大小进行调整,以使所述数字信号值与目标值之间的差值在允许误差范围值内。
在步骤S3中,目标值(ADC_Target)为参考电压源的电压信号值经过ADC装置的数字转换后得到的理论值。
允许误差范围值(ADC_Margin)即ADC装置将电压信号值按转换系数值的转换关系转换为数字信号值后,得到的实际值与目标值(ADC_Target)之间的误差的容忍值或者允许值。
将步骤S2中得到的数字信号值与目标值进行比较得到之间的差值(ADC_Diff),即ADC_Diff=ADC_Value- ADC_Target,将差值与允许误差范围值在进行大小比较后,系统判断差值是否在允许误差范围值的范围值内,如果是,则表明不再需要校正,如果不是,则通过自动调节转换系数值的大小或者其函数关系,使得再次得到的差值最终在允许误差范围值的范围值内为止。
在本发明的实际应用过程中, ADC装置内的转换系数值、允许误差范围值(ADC_Margin)均可以是ADC装置被制造后出厂时设定的默认值,也可以是系统对ADC自行设定的值,目标值(ADC_Target)对应于参考电压源的电压信号值在系统中预先设定,即设置的参考电压源的电压信号值确定时,ADC装置自动生成目标值(ADC_Target),因此,ADC装置内的各种参数值均为自动生成和设定。此外,参考电压源的电压信号值也在系统中预先设定。
当需要对ADC装置进行校正时,只需将参考电压源与ADC装置连接后,系统即能自动对ADC装置进行校正,操作人员不再需要通过电脑和信号发生器来对ADC装置进行人工校正,不仅节约了人力物力成本,而且使得ADC装置校正效率得到很大的提高。
参照图2,图2是本发明的ADC自动校正的方法又一实施例的流程示意图。
更具体的,在上述步骤S3之后还包括步骤:
S4、将调整后的转换系数值存储在存储器的指定位置,该指定位置的转换系数值用于后续ADC装置的数字化转换操作中直接提取调用。
在步骤S4中,为防止校正后的ADC装置中的转换系数值在断电后丢失,校正后的转换系数值存储在存储器中的指定位置,系统设定程序,在再次通电开机后,ADC装置直接将存储器指定位置上的转换系数值调用出来。
上述步骤S2更具体为:
预置转换系数值中的偏置系数值、增益系数值,根据所述偏置系数值、增益系数值将参考电压源的电压信号值转换为数字信号值,所述数字信号值与电压信号值的转换关系为:数字信号值=电压信号值*增益系数值+偏置系数值。
在本实施例步骤S2中,所述转换系数值包括偏置系数值以及增益系数值,所述数字信号值与电压信号值的转换关系为:数字信号值(ADC_Value) =电压信号值*增益系数值(ADC_Gain)+偏置系数值(ADC_Offset),偏置系数值以及增益系数值以及两者之间的函数关系均可以是ADC装置被制造后出厂时设定的默认值,也可以是系统对ADC自行设定的值。
此外,上述步骤S3更具体为:
比较所述数字信号值与目标值的大小,并根据比较结果对增益系数值的大小进行调整,以使所述数字信号值与目标值之间的差值大小在允许误差范围值内。
在本发明实施例中,转换系数值包括偏置系数值和增益系数值,在实际应用过程中,可以对转换系数值中的偏置系数值和增益系数值其中一个进行调节,也可以对两个均进行调节。为了减少ADC装置内芯片的数据计算强度或者降低系统内系统程序设置的复杂度,在本发明实施例中,由于仅通过控制增益系数值来进行调节,电压信号值与数字信号值之间的函数转换关系越简单,也越便于系统程序设定以及芯片的计算。
参照图3,图3是本发明的ADC自动校正的方法又一实施例的流程示意图。
更具体的,上述步骤S3包括以下步骤:
S31、获取所述数字信号值减去目标值之间的差值;
S32、当所述差值的绝对值大于允许误差范围值的绝对值时,再判断所述差值是否大于允许误差范围值的最大值,如果是,则将增益系数值调小,否则,将增益系数值调大;
在步骤S32中,如果判断所述差值的绝对值小于允许误差范围值的绝对值时,停止对增益系数值的调整,结束校正。例如,当上述目标值为5,数字信号值为7,上述允许误差范围为(-1,1)时,则差值为2,差值的绝对值为2,此时差值的绝对值大于允许误差范围,且差值大于允许误差范围的最大值1,需要将增益系数值调小,以使数字信号值7靠近目标值5,从而保证差值位于允许误差范围内;当上述目标值为5,数字信号值为3,上述允许误差范围为(-1,1)时,则差值为-2,差值的绝对值为2,此时差值的绝对值大于允许误差范围,但差值小于允许误差范围的最大值1,需要将增益系数值调大,以使数字信号值3靠近目标值5,从而保证差值位于允许误差范围内。此外,在本发明实施例中,选取增益系数值作为调节的对象,使得电压信号值与数字信号值之间的转换计算函数关系更简单,优化了系统程序。
更具体的,为了应对更加复杂情况下ADC装置的校正需求,在本发明实施例中,在上述步骤S1之前还包括步骤:
S10、判断ADC装置所接收处理的模拟信号的通道类型,并判断在处理该通道类型模拟信号时ADC装置的校正状态。
在步骤S10中,通道类型可以是一个,也可以是多个,此外,处理当前通道类型模拟信号时的ADC装置可以是一个,也可以是多个的组合,需要根据实际情况而定。
ADC装置所需要处理的模拟信号的通道类型不同,而针对每个通道类型的ADC装置内相关的参数也需要做不同的校正。
在步骤S10的实际应用过程中,例如,在电视机制造领域,电视机包括电脑通道以及分量通道,并且每个通道需要由三个独立ADC装置组成的ADC模组进行处理,ADC模组的各ADC装置需要分别连接一个参考电压源,即ADC模组在处理电脑通道的模拟信号时,需要对该ADC模组中各ADC装置进行校正,简述为电脑通道的ADC校正;而在处理分量通道的模拟信号时,还需要对该ADC模组中各ADC装置进行校正,简述为分量通道的ADC校正,其中,两次校正互相并不影响,但是经过两次校正后,ADC模组处理电脑通道的模拟信号以及处理分量通道的模拟信号后,能够保证电视图像在电脑通道和分量通道画质的一致性。
需要说明的是,在每一次的校正过程中,ADC模组中三个ADC装置分别连接一个参考电压源,即每一次校正过程中,ADC模组中三个ADC装置均需要同时进行校正,校正后的三个ADC装置中的各项参数并不是一定相同的,只要校正后的ADC模组能达到校正目标和效果即可。
参照图4,图4是本发明的ADC自动校正的方法又一实施例的流程示意图。
在进一步的实施过程中,为了使系统能够自动识别和判断ADC的校正状态,避免重复的自动校正,在本发明实施例中,所述步骤S10包括以下具体步骤:
S101、对应每个通道类型分别在存储器上设置相应的指定地址,将指定地址的0或1数值设为数据标识,该数据标识分别与处理当前通道类型模拟信号时ADC装置的校正前、后的状态对应;
在步骤S101中,如果通道类型包括通道类型1和者通道类型2,则在存储器设置相应的指定位置1和指定位置2,当ADC装置处理通道类型1的模拟信号时,如果ADC装置未校正,系统则在指定位置1上设置数据标识为0,如果ADC装置已经校正,系统则在指定位置1上设置数据标识为1;同理,当ADC装置处理通道类型2的模拟信号时,如果ADC装置未校正,系统则在指定位置2上设置数据标识为0,如果ADC装置已经校正,系统则在指定位置2上设置数据标识为1。
S102、读取所述存储器的指定地址,根据读取的指定地址判断当前通道类型;读取所述指定地址上的数据标识,并根据所述数据标识判断处理当前通道类型模拟信号时ADC装置所处校正状态。
在步骤S102中,系统读取存储器的指定地址,在实际应用过程中,系统应当按顺序对存储器上的指定地址进行读取,例如,系统先读取指定地址1,并读取到指定地址1上的数据标识为0时,系统判断出ADC装置在处理通道类型1的模拟信号时还没有被校正,然后,根据该判断结果,转到步骤S2中,以完成ADC装置的校正。而当系统读取指定地址1,并读取到指定地址1上的数据标识为1时,系统判断出ADC装置在处理通道类型1的模拟信号时已经被校正,然后,系统在读取下个指定地址2,并读取指定地址2上的数据标识,然后做出与指定地址1相同的判断步骤和处理,在此不再赘述。
参照图5,图5是本发明的ADC自动校正的方法又一实施例的流程示意图。
更具体的,所述步骤S4之前还包括步骤:
S41、将对应于当前通道类型的所述指定地址上的数据标识重新生成,且重新生成后的数据标识与处理当前通道类型模拟信号时的ADC装置的校正后的状态对应;
在步骤S41中,如果处理通道类型1的模拟信号时的ADC装置已经被校正,则将指定地址1上的数据标识从0变为1。当系统读取到指定地址1上的数据标识1时,判断处理通道类型1的模拟信号时的ADC装置已经校正;系统继续读取指定地址2上的数据标识,如果该数据标识为0,这表明处理通道类型2的模拟信号时的ADC装置还没有校正,系统执行步骤S2至S4,并在处理通道类型2的模拟信号时的ADC装置校正后,系统将指定地址2上的数据标识改为1。
当系统读取所有指定地址1和2上的数据标识均为1时,则表明ADC装置已经全部校正完毕。
所述步骤S4更具体为:对应每个通道类型分别在存储器上设置相应的指定位置,对应当前通道类型将调整后的增益系数值存储在存储器相应的指定位置上,该指定位置的增益系数值用于后续ADC装置处理数字化转换操作中直接提取调用。
在本实施例步骤S4中,由于ADC装置通过调整其增益系数值来达到校正的目的,因此,只需将校正后的增益系数值存储在存储器的指定位置。当系统读取到存储器上的指定地址及其数据标识,并判断该ADC装置已经得到校正后, ADC装置则直接读取存储器的指定位置上的增益系数值,并根据该增益系数值完成对相应通道类型的数字信号转换。
在本发明的实际应用过程中,通道类型可以是一个,也可以是多个,存储器上设置相应的指定地址也对应为一个或多个。
在本发明实施例中,以电视机为例,电视机包括分量通道和电脑通道,对应于分量通道在存储器上设置相应的指定地址1,对应于电脑通道在在存储器上设置相应的指定地址2,指定地址1上的数值0、1构成的数据标识分别对应于处理分量通道模拟信号时ADC模组的未校正和校正状态,指定地址2上的数值0、1构成的数据标识分别对应于处理电脑通道模拟信号时ADC模组的未校正和校正状态。
电视机的ADC自动校正过程,具体操作包括以下步骤:
(1)读取存储器上指定地址1上的数据标识,如果数值为0,判断分量通道的ADC模组还没有校正;
(2)系统通过芯片寄存器设置视频芯片内的三个参考电压源的电压值分别为525 mV 、262.5 mV 以及262.5 mV;
(3)将三个参考电压源分别与三个ADC装置的ADC_Offset模组的连接开关打开;
(4)将三个ADC装置的ADC_Offset值分别设置为16、128以及128将三个ADC装置的ADC_Target值分别设置为235、212以及212;将三个ADC装置的ADC_Gain值均设置为128;将三个ADC装置的ADC_Margin值设为±3;
(5)读出三个参考电压源经过三个ADC装置数字化转换后的三个ADC_Value值,对应于每个ADC装置比较ADC_Value与ADC_Target之间的差值ADC_Diff;
(6)分别判断每个ADC装置的ADC_Diff值的绝对值是否大于该ADC装置对应的ADC_Margin的绝对值,即是否大于3;如果是,继续判断ADC_Diff值是否大于ADC_Margin的最大值,如果是大于,则调低ADC_Gain值;如果小于,则调调高ADC_Gain值;然后重新读取ADC_Value,进行循环的比较;
(7)判断每个ADC装置的ADC_Diff值的绝对值小于该ADC装置对应的ADC_Margin的绝对值,停止对ADC_Gain值的调整,完成分量通道的ADC模组中三个ADC装置的校正;
(8)ADC在分量通道校正成功后,关闭参考电压源与ADC_Offset模组之间的连接开关,将指定地址1上的数据标识由数值0改为数值1,并且将调整后的ADC_Gain值存储在存储器的指定位置A上,其中,需要说明的是,ADC模组中三个ADC装置均分别有一个ADC_Gain值设于指定位置A,或者A1、A2、A3上。
同理,本发明可以自动完成对电脑通道的ADC模组的校正,并将指定地址2上的数据标识由数值0改为数值1,并且将调整后的ADC_Gain值存储在存储器的指定位置B上。
校正后的电视机在下一次开机后,系统读取到存储器指定地址1上的数据1,判断分量通道的ADC模组得到校正,读取存储在存储器的指定位置A上的ADC_Gain值, ADC模组根据该ADC_Gain值完成对分量通道模拟信号的数字化转换;然后,系统读取到存储器指定地址2上的数据1,判断电脑通道的ADC模组得到校正,读取存储在存储器的指定位置B上的ADC_Gain值,ADC模组根据该ADC_Gain值完成对分量通道模拟信号的数字化转换。
最终,本发明在不影响ADC校正性能的基础上,通过电视机第一次开机就自动完成了ADC的校正工作,以后开机后系统进入分量和电脑通道,只需要调用存储器中指定地址A和B的增益系数值就可以了,校正完全自动化,无需人工操作以及外置信号发生器的配备,提高了效率,降低了成本,并且保证了电视图像在电脑通道和分量通道画质的一致性。
参照图6,图6是本发明ADC自动校正的装置一实施例的结构示意图。
本发明进一步的提供了一种ADC自动校正的装置,包括参考电压源设定模块1和ADC装置2,所述ADC装置2包括参数设定模块21、信号转换模块22以及参数调节模块23,所述参考电压源设定模块1、参数设定模块21、信号转换模块22以及参数调节模块23依次连接;其中,
所述参考电压源设定模块1,用于给ADC装置模块2提供参考电压源;所述参数设定模块21,用于预设转换系数值、目标值以及允许误差范围值;所述信号转换模块22,用于获取参考电压源的电压信号,根据预置的转换系数值将参考电压源的电压信号值转换为数字信号值;所述参数调节模块23,用于比较所述数字信号值与目标值的大小,并根据比较结果对转换系数值的大小进行调整,以使所述数字信号值与目标值之间的差值在允许误差范围值内。
在本发明实施例中,参考电压源模块1和ADC装置2之间可以通过设置一个开关5连接,当ADC装置2在未进行校正前,可以将开关5导通,使参考电压源模块1和ADC装置2处于连接状态,开关5导通后,ADC装置2获取到参考电压源模块1的电压信号。
此外,参数设定模块21内预设的转换系数值本质为将参考电压源模块1的电压信号值转换为数字信号值的转换系数或者转换关系函数,信号转换模块22根据参数设定模块21预置的转换系数值将参考电压源的电压信号值转换得到的数值信号值为实际转换值。
参数设定模块21内预设的目标值(ADC_Target)为参考电压源模块1的电压信号值经过信号转换模块22的数字转换后得到的理论值。
参数设定模块21内预设的允许误差范围值(ADC_Margin)即经过信号转换模块22将电压信号值按转换系数值的转换关系转换为数字信号值后,得到的实际值与目标值(ADC_Target)之间的误差的容忍值或者允许值。
参数调节模块23 将信号转换模块22处理得到的数字信号值与目标值进行比较得到之间的差值(ADC_Diff),即ADC_Diff=ADC_Value- ADC_Target,将差值与允许误差范围值在进行大小比较后,系统判断差值是否在允许误差范围值的范围值内,如果是,则表明不再需要校正,如果不是,则通过自动调节转换系数值的大小或者其函数关系,使得再次得到的差值最终在允许误差范围值的范围值内为止。
在本发明的实际应用过程中,参数设定模块21内预设的转换系数值、允许误差范围值(ADC_Margin)均可以是ADC装置被制造后出厂时设定的默认值,也可以是系统对ADC自行设定的值,参数设定模块21预设的目标值(ADC_Target)对应于参考电压源模块1的电压信号值,即设置的参考电压源的电压信号值确定时,参数设定模块21自动生成目标值(ADC_Target),因此,ADC装置内的各种参数值均为自动生成和设定。此外,参考电压源模块1可以设置在视频芯片内部,并通过芯片寄存器进行调节,参考电压源模块1的电压信号值也在系统中预先设定。
当需要对ADC装置2进行校正时,只需将参考电压源模块1与ADC装置2连接后,系统即能自动对ADC装置2进行校正,操作人员不再需要通过电脑和信号发生器来对ADC装置进行人工校正,不仅节约了人力物力成本,而且使得ADC装置2校正效率得到很大的提高。
参照图7,图7是本发明ADC自动校正的装置一实施例的结构示意图。
在上述实施例中,更具体的,所述ADC自动校正装置还包括存储器模块3,所述存储器模块3与参数调节模块23连接;其中,
所述存储器模块3,用于将调整后的转换系数值存储在存储器的指定位置,该指定位置的转换系数值用于后续ADC装置2的数字化转换操作中直接提取调用;
所述转换系数值包括偏置系数值、增益系数值;其中,所述参数调节模块23,用于预置转换系数值中的偏置系数值、增益系数值;
所述信号转换模块22,用于根据所述偏置系数值、增益系数值将参考电压源模块1的电压信号值转换为数字信号值,其中,所述数字信号值与电压信号值的转换关系为:数字信号值=电压信号值*增益系数值+偏置系数值;
所述参数调节模块23,用于比较所述数字信号值与目标值的大小,并根据比较结果对增益系数值的大小进行调整,以使所述数字信号值与目标值之间的差值大小在允许误差范围值内。
在本发明实施例中,所述转换系数值包括偏置系数值以及增益系数值,所述数字信号值与电压信号值的转换关系为:数字信号值(ADC_Value) =电压信号值*增益系数值(ADC_Gain)+偏置系数值(ADC_Offset),偏置系数值以及增益系数值以及两者之间的函数关系均可以是ADC装置被制造后出厂时设定的默认值,也可以是参数设定模块21自行设定的值。
此外,在本发明实施例实际应用过程中,可以对转换系数值中的偏置系数值和增益系数值其中一个进行调节,也可以对两个均进行调节。为了减少ADC装置内芯片的数据计算强度或者降低系统内系统程序设置的复杂度,在本发明实施例中,由于仅通过控制增益系数值来进行调节,电压信号值与数字信号值之间的函数转换关系越简单,也越便于系统程序设定以及芯片的计算。
参照图8,图8是本发明ADC自动校正的装置一实施例的结构示意图。
在进一步的实施过程中,更具体的,所述参数调节模块23,用于获取所述数字信号值与目标值之间的差值,当所述差值的绝对值大于允许误差范围值时,再判断所述差值是否大于允许误差范围值的最大值,如果是,则将增益系数值调小,否则,将增益系数值调大;
所述ADC自动校正的装置还包括通道类型识别模块4,所述通道类型识别模块4与参数设定模块21连接;其中,
所述通道类型识别模块4,用于判断ADC装置2所接收处理的模拟信号的通道类型,并判断在处理该通道类型模拟信号时ADC装置2的校正状态。
在本发明实施例中,如果判断所述差值的绝对值小于允许误差范围值的绝对值时,停止对增益系数值的调整,结束校正。例如,当上述目标值为5,数字信号值为7,上述允许误差范围为(-1,1)时,则差值为2,差值的绝对值为2,此时差值的绝对值大于允许误差范围,且差值大于允许误差范围的最大值1,需要将增益系数值调小,以使数字信号值7靠近目标值5,从而保证差值位于允许误差范围内;当上述目标值为5,数字信号值为3,上述允许误差范围为(-1,1)时,则差值为-2,差值的绝对值为2,此时差值的绝对值大于允许误差范围,但差值小于允许误差范围的最大值1,需要将增益系数值调大,以使数字信号值3靠近目标值5,从而保证差值位于允许误差范围内。此外,选取增益系数值作为调节的对象,使得电压信号值与数字信号值之间的转换计算函数关系更简单,优化了系统程序。
在本发明实施例中,通道类型可以是一个,也可以是多个,此外,处理当前通道类型模拟信号时的ADC装置可以是一个,也可以是多个的组合,需要根据实际情况而定。
ADC装置所需要处理的模拟信号的通道类型不同,而针对每个通道类型的ADC装置内相关的参数也需要做不同的校正。
例如,在电视机制造领域,电视机包括电脑通道以及分量通道,并且每个通道需要由三个独立ADC装置组成的ADC模组进行处理,ADC模组的各ADC装置需要分别连接一个参考电压源,即ADC模组在处理电脑通道的模拟信号时,需要对该ADC模组中各ADC装置进行校正,简述为电脑通道的ADC校正;而在处理分量通道的模拟信号时,还需要对该ADC模组中各ADC装置进行校正,简述为分量通道的ADC校正,其中,两次校正互相并不影响,但是经过两次校正后,ADC模组处理电脑通道的模拟信号以及处理分量通道的模拟信号后,能够保证电视图像在电脑通道和分量通道画质的一致性。
需要说明的是,在每一次的校正过程中,ADC模组中三个ADC装置分别连接一个参考电压源,即每一次校正过程中,ADC模组中三个ADC装置均需要同时进行校正,校正后的三个ADC装置中的各项参数并不是一定相同的,只要校正后的ADC模组能达到校正目标和效果即可。
参照图9,图9是本发明ADC自动校正的装置一实施例的结构示意图。
在进一步的实施过程中,更具体的,所述存储器模块3与通道类型识别模块4连接;其中,
所述存储器模块3,用于对应每个通道类型分别在存储器上设置相应的指定地址,将指定地址的0或1数值设为数据标识,该数据标识分别与处理当前通道类型模拟信号时ADC装置2的校正前、后的状态对应;
所述通道类型识别模块4,用于读取所述存储器的指定地址,根据读取的指定地址判断当前通道类型;读取所述指定地址上的数据标识,并根据所述数据标识判断处理当前通道类型模拟信号时ADC装置所处校正状态。
在本发明实施例中,如果通道类型包括通道类型1和者通道类型2,则在存储器设置相应的指定位置1和指定位置2,当ADC装置2处理通道类型1的模拟信号时,如果ADC装置2未校正,系统则在指定位置1上设置数据标识为0,如果ADC装置2已经校正,系统则在指定位置1上设置数据标识为1;同理,当ADC装置2处理通道类型2的模拟信号时,如果ADC装置2未校正,系统则在指定位置2上设置数据标识为0,如果ADC装置2已经校正,系统则在指定位置2上设置数据标识为1。
在本实施例实际应用过程中,系统应当按顺序对存储器上的指定地址进行读取,例如,系统先读取指定地址1,并读取到指定地址1上的数据标识为0时,系统判断出ADC装置2在处理通道类型1的模拟信号时还没有被校正,然后,根据该判断结果对处理通道类型1的ADC装置2进行校正。而当系统读取指定地址1,并读取到指定地址1上的数据标识为1时,系统判断出ADC装置2在处理通道类型1的模拟信号时已经被校正,然后,系统在读取下个指定地址2,并读取指定地址2上的数据标识,然后做出与指定地址1相同的判断步骤和处理,在此不再赘述。
在进一步的实施过程中,更具体的,所述存储器模块3,还用于将对应于当前通道类型的所述指定地址上的数据标识重新生成,且重新生成后的数据标识与处理当前通道类型模拟信号时的ADC装置的校正后的状态对应;
所述存储器模块3,还用于对应每个通道类型分别在存储器上设置相应的指定位置,对应当前通道类型将调整后的增益系数值存储在存储器相应的指定位置上,该指定位置的增益系数值用于后续ADC装置处理数字化转换操作中直接提取调用。
在本发明实施例中,如果处理通道类型1的模拟信号时的ADC装置已经被校正,则将指定地址1上的数据标识从0变为1。当系统读取到指定地址1上的数据标识1时,判断处理通道类型1的模拟信号时的ADC装置已经校正;系统继续读取指定地址2上的数据标识,如果该数据标识为0,这表明处理通道类型2的模拟信号时的ADC装置还没有校正,系统执行步骤S2至S4,并在处理通道类型2的模拟信号时的ADC装置校正后,系统将指定地址2上的数据标识改为1。
当系统读取所有指定地址1和2上的数据标识均为1时,则表明ADC装置已经全部校正完毕。
此外,由于ADC装置通过调整其增益系数值来达到校正的目的,因此,只需将校正后的增益系数值存储在存储器的指定位置。当系统读取到存储器上的指定地址及其数据标识,并判断该ADC装置已经得到校正后, ADC装置则直接读取存储器的指定位置上的增益系数值,并根据该增益系数值完成对相应通道类型的数字信号转换。
在本发明的实际应用过程中,通道类型可以是一个,也可以是多个,存储器上设置相应的指定地址也对应为一个或多个。
在本发明实施例中,以电视机为例,电视机包括分量通道和电脑通道,对应于分量通道在存储器上设置相应的指定地址1,对应于电脑通道在在存储器上设置相应的指定地址2,指定地址1上的数值0、1构成的数据标识分别对应于处理分量通道模拟信号时ADC模组的未校正和校正状态,指定地址2上的数值0、1构成的数据标识分别对应于处理电脑通道模拟信号时ADC模组的未校正和校正状态。
相比现有的ADC装置需要人工校正的不足,本发明具有以下优点: 本发明的ADC自动校正的方法的校正过程完全自动化,无需专业操作人员手工校正,节约了人力成本,并且提高了工作效率;本发明的ADC自动校正的方法能对处理多通道类型的模拟信号的ADC装置进行校正,应用范围更广,实用性更强;本发明的ADC自动校正的方法中,校正后的ADC装置处理不同通道类型的模拟信号所得到的数字信号值能保证彼此的一致性,处理效果突出有保障;本发明的ADC自动校正的装置结构简单,易于生产制造。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种ADC自动校正的方法,其特征在于,包括以下步骤:
    获取参考电压源的电压信号值;
    根据预置的转换系数值将参考电压源的电压信号值转换为数字信号值;
    比较所述数字信号值与目标值的大小,并根据比较结果对转换系数值的大小进行调整,以使所述数字信号值与目标值之间的差值在允许误差范围值内。
  2. 如权利要求1所述的ADC自动校正的方法,其特征在于,所述以使所述数字信号值与目标值之间的差值在允许误差范围值内的步骤之后还包括:
    将调整后的转换系数值存储在存储器的指定位置,该指定位置的转换系数值用于后续ADC装置的数字化转换操作中直接提取调用。
  3. 如权利要求1所述的ADC自动校正的方法,其特征在于,所述根据预置的转换系数值将参考电压源的电压信号值转换为数字信号值的步骤具体为:
    预置转换系数值中的偏置系数值、增益系数值,根据所述偏置系数值、增益系数值将参考电压源的电压信号值转换为数字信号值,所述数字信号值与电压信号值的转换关系为:数字信号值=电压信号值*增益系数值+偏置系数值;
    对转换系数值的大小进行调整具体为对所述增益系数值的大小进行调整。
  4. 如权利要求3所述的ADC自动校正的方法,其特征在于,所述比较所述数字信号值与目标值的大小,并根据比较结果对增益系数值的大小进行调整,以使所述数字信号值与目标值之间的差值大小在允许误差范围值内具体包括以下步骤:
    获取所述数字信号值与目标值之间的差值;
    当所述差值的绝对值大于允许误差范围值时,再判断所述差值是否大于允许误差范围值的最大值,如果是,则将增益系数值调小,否则,将增益系数值调大。
  5. 如权利要求2所述的ADC自动校正的方法,其特征在于,所述获取参考电压源的电压信号之前还包括步骤:
    判断ADC装置所接收处理的模拟信号的通道类型,并判断在处理该通道类型模拟信号时ADC装置的校正状态。
  6. 如权利要求5所述的ADC自动校正的方法,其特征在于,所述判断ADC装置所接收处理的模拟信号的通道类型,并判断在处理该通道类型模拟信号时ADC装置的校正状态包括以下具体步骤:
    对应每个通道类型分别在存储器上设置相应的指定地址,将指定地址的0或1数值设为数据标识,该数据标识分别与处理当前通道类型模拟信号时ADC装置的校正前、后的状态对应;
    读取所述存储器的指定地址,根据读取的指定地址判断当前通道类型;读取所述指定地址上的数据标识,并根据所述数据标识判断处理当前通道类型模拟信号时ADC装置所处校正状态。
  7. 如权利要求5所述的ADC自动校正的方法,其特征在于,所述将调整后的转换系数值存储在存储器的指定位置步骤之前还包括步骤:
    将对应于当前通道类型的所述指定地址上的数据标识重新生成,且重新生成后的数据标识与处理当前通道类型模拟信号时的ADC装置的校正后的状态对应。
  8. 如权利要求5所述的ADC自动校正的方法,其特征在于,所述将调整后的转换系数值存储在存储器的指定位置的步骤具体为:
    对应每个通道类型分别在存储器上设置相应的指定位置,对应当前通道类型将调整后的增益系数值存储在存储器相应的指定位置上,该指定位置的增益系数值用于后续ADC装置处理数字化转换操作中直接提取调用。
  9. 一种ADC自动校正的装置,其特征在于,包括参考电压源设定模块和ADC装置,所述ADC装置包括参数设定模块、信号转换模块以及参数调节模块,所述参考电压源设定模块、参数设定模块、信号转换模块以及参数调节模块依次连接;其中,
    所述参考电压源设定模块,用于给ADC装置模块提供参考电压源;
    所述参数设定模块,用于预设转换系数值、目标值以及允许误差范围值;
    所述信号转换模块,用于获取参考电压源的电压信号,根据预置的转换系数值将参考电压源的电压信号值转换为数字信号值;
    所述参数调节模块,用于比较所述数字信号值与目标值的大小,并根据比较结果对转换系数值的大小进行调整,以使所述数字信号值与目标值之间的差值在允许误差范围值内。
  10. 如权利要求9所述的ADC自动校正的装置,其特征在于,所述ADC自动校正装置还包括存储器模块,所述存储器模块与参数调节模块连接;其中,
    所述存储器模块,用于将调整后的转换系数值存储在存储器的指定位置,该指定位置的转换系数值用于后续ADC装置的数字化转换操作中直接提取调用。
  11. 如权利要求9所述的ADC自动校正的装置,其特征在于,所述参数调节模块,用于预置转换系数值中的偏置系数值、增益系数值;
    所述信号转换模块,用于根据所述偏置系数值、增益系数值将参考电压源的电压信号值转换为数字信号值,所述数字信号值与电压信号值的转换关系为:数字信号值=电压信号值*增益系数值+偏置系数值;
    所述参数调节模块对转换系数值的大小进行调整具体为对所述增益系数值的大小进行调整。
  12. 如权利要求11所述的ADC自动校正的装置,其特征在于,所述参数调节模块,用于获取所述数字信号值与目标值之间的差值,当所述差值的绝对值大于允许误差范围值时,再判断所述差值是否大于允许误差范围值的最大值,如果是,则将增益系数值调小,否则,将增益系数值调大。
  13. 如权利要求10所述的ADC自动校正的装置,其特征在于,所述ADC自动校正的装置还包括通道类型识别模块,所述通道类型识别模块与参数设定模块连接;其中,
    所述通道类型识别模块,用于判断ADC装置所接收处理的模拟信号的通道类型,并判断在处理该通道类型模拟信号时ADC装置的校正状态。
  14. 如权利要求13所述的ADC自动校正的装置,其特征在于,所述存储器模块与通道类型识别模块连接;其中,
    所述存储器模块,用于对应每个通道类型分别在存储器上设置相应的指定地址,将指定地址的0或1数值设为数据标识,该数据标识分别与处理当前通道类型模拟信号时ADC装置的校正前、后的状态对应;
    所述通道类型识别模块,用于读取所述存储器的指定地址,根据读取的指定地址判断当前通道类型;读取所述指定地址上的数据标识,并根据所述数据标识判断处理当前通道类型模拟信号时ADC装置所处校正状态。
  15. 如权利要求13所述的ADC自动校正的装置,其特征在于,所述存储器模块,还用于将对应于当前通道类型的所述指定地址上的数据标识重新生成,且重新生成后的数据标识与处理当前通道类型模拟信号时的ADC装置的校正后的状态对应。
  16. 如权利要求13所述的ADC自动校正的装置,其特征在于,所述存储器模块,还用于对应每个通道类型分别在存储器上设置相应的指定位置,对应当前通道类型将调整后的增益系数值存储在存储器相应的指定位置上,该指定位置的增益系数值用于后续ADC装置处理数字化转换操作中直接提取调用。
PCT/CN2013/081903 2013-07-19 2013-08-20 一种adc自动校正的方法及装置 WO2015007007A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2015118249A RU2619538C2 (ru) 2013-07-19 2013-08-20 Способ и устройство для автоматической калибровки ацп
AU2013392022A AU2013392022B2 (en) 2013-07-19 2013-08-20 Method and device for auto-calibration of ADC
US14/411,108 US9391629B2 (en) 2013-07-19 2013-08-20 Method and device for auto-calibration of ADC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310306856.7 2013-07-19
CN201310306856.7A CN103346793B (zh) 2013-07-19 2013-07-19 一种adc自动校正的方法及装置

Publications (1)

Publication Number Publication Date
WO2015007007A1 true WO2015007007A1 (zh) 2015-01-22

Family

ID=49281575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081903 WO2015007007A1 (zh) 2013-07-19 2013-08-20 一种adc自动校正的方法及装置

Country Status (5)

Country Link
US (1) US9391629B2 (zh)
CN (1) CN103346793B (zh)
AU (1) AU2013392022B2 (zh)
RU (1) RU2619538C2 (zh)
WO (1) WO2015007007A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252956A (zh) * 2021-04-08 2021-08-13 广州致远电子有限公司 一种具有adc线性校准功能的示波器

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716565A (zh) * 2013-12-20 2014-04-09 乐视致新电子科技(天津)有限公司 显示设备、显示设备中模数转换参数的设置方法及装置
CN103901336B (zh) * 2014-03-05 2017-01-25 深圳欣锐科技股份有限公司 一种集成电路芯片内部参考电压的校准方法、装置
US10382048B2 (en) 2015-05-28 2019-08-13 Analog Devices, Inc. Calibration of analog-to-digital converter devices
CN105227184B (zh) * 2015-10-09 2018-07-03 武汉永力科技股份有限公司 一种adc/dac信号数字校正方法及系统
CN106292445A (zh) * 2016-08-31 2017-01-04 中国船舶重工集团公司第七〇二研究所 一种基于fpga的误差校正装置及方法
CN107707846B (zh) * 2017-10-12 2020-08-18 深圳怡化电脑股份有限公司 一种cis参数校正方法、装置、设备及存储介质
CN108198536B (zh) 2017-12-29 2020-06-09 深圳市华星光电技术有限公司 基于时序控制器的电压校准方法及校准系统
CN108387834B (zh) * 2018-01-22 2020-08-18 航天科工防御技术研究试验中心 一种广域adc误差修正测试方法及装置
RU2717316C1 (ru) * 2019-05-28 2020-03-20 Публичное акционерное общество "Научно-производственное объединение "Алмаз" имени академика А.А. Расплетина" (ПАО "НПО "Алмаз") Устройство для контроля и диагностики ацп радиолокатора
CN110391814B (zh) * 2019-07-29 2023-03-10 中国电子科技集团公司第二十四研究所 用于芯片内数模转换器的积分非线性数字校正方法
CN110531296B (zh) * 2019-08-09 2022-05-10 格威半导体(厦门)有限公司 电池管理系统的增益校准方法
RU2723566C1 (ru) * 2019-10-31 2020-06-16 Публичное акционерное общество "Научно-производственное объединение "Алмаз" имени академика А.А. Расплетина" (ПАО "НПО "Алмаз") Способ компенсации фазовых искажений в многоканальных системах аналого-цифрового преобразования сигналов и устройство для его реализации
CN114203570A (zh) * 2020-09-18 2022-03-18 深圳英集芯科技股份有限公司 Ic芯片的校准方法、相关系统及装置
CN113342121A (zh) * 2020-11-10 2021-09-03 明峰医疗系统股份有限公司 一种多通道pet电源自动校准电路及校准方法
CN112187274A (zh) * 2020-11-27 2021-01-05 成都铭科思微电子技术有限责任公司 提高逐次逼近型模数转换器参考电压稳定性的电路
CN115314045B (zh) * 2022-10-08 2023-01-20 深圳市好盈科技股份有限公司 指拨输出区间的自适应校准方法、系统、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777259A (zh) * 2005-11-29 2006-05-24 天津三星电子显示器有限公司 一种模拟电视agc参数自动调整方法
CN101212562A (zh) * 2006-12-28 2008-07-02 比亚迪股份有限公司 Cmos图像传感器固定模式噪声消除电路
CN102075464A (zh) * 2011-01-18 2011-05-25 电子科技大学 Tiadc系统通道误差的联合估计及实时校正方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027116A (en) * 1987-02-24 1991-06-25 Micro Linear Corporation Self-calibrating analog to digital converter
US5644308A (en) * 1995-01-17 1997-07-01 Crystal Semiconductor Corporation Algorithmic analog-to-digital converter having redundancy and digital calibration
SE516157C2 (sv) * 1999-05-28 2001-11-26 Ericsson Telefon Ab L M Rättning av statiska fel i en AD-omvandlare
ATE392044T1 (de) * 2002-04-02 2008-04-15 Ericsson Telefon Ab L M Komparator-offsetkallibration für a/d-umsetzer
JP2005303602A (ja) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Adコンバータ測定回路
RU2335844C2 (ru) * 2006-09-29 2008-10-10 Юрий Владимирович Агрич Аналого-цифровой преобразователь и способ его калибровки
CN201716587U (zh) * 2010-07-22 2011-01-19 中国矿业大学(北京) 多通道电流模拟量转换/分配模块
RU2442279C1 (ru) * 2010-08-27 2012-02-10 Юрий Владимирович Агрич Аналого-цифровой преобразователь и способ его калибровки

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777259A (zh) * 2005-11-29 2006-05-24 天津三星电子显示器有限公司 一种模拟电视agc参数自动调整方法
CN101212562A (zh) * 2006-12-28 2008-07-02 比亚迪股份有限公司 Cmos图像传感器固定模式噪声消除电路
CN102075464A (zh) * 2011-01-18 2011-05-25 电子科技大学 Tiadc系统通道误差的联合估计及实时校正方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252956A (zh) * 2021-04-08 2021-08-13 广州致远电子有限公司 一种具有adc线性校准功能的示波器

Also Published As

Publication number Publication date
US20160072517A1 (en) 2016-03-10
CN103346793B (zh) 2016-12-28
AU2013392022B2 (en) 2016-02-18
AU2013392022A1 (en) 2015-02-05
CN103346793A (zh) 2013-10-09
RU2015118249A (ru) 2016-12-10
US9391629B2 (en) 2016-07-12
RU2619538C2 (ru) 2017-05-16

Similar Documents

Publication Publication Date Title
WO2015007007A1 (zh) 一种adc自动校正的方法及装置
WO2017201899A1 (zh) 连接蓝牙设备的方法及装置
WO2016056787A1 (en) Display device and method of controlling the same
WO2019114269A1 (zh) 一种节目续播方法、电视设备及计算机可读存储介质
WO2019019374A1 (zh) 智能语音设备控制家电的方法、装置及系统
WO2019051890A1 (zh) 终端控制方法、装置及计算机可读存储介质
WO2016082267A1 (zh) 语音识别方法和系统
WO2019051899A1 (zh) 终端控制方法、装置及存储介质
WO2018058919A1 (zh) 标识信息生成方法、装置、设备和计算机可读存储介质
WO2018223607A1 (zh) 电视终端及hdr图像转为sdr的方法和计算机可读存储介质
WO2016056737A1 (en) Display device and method for controlling the same
WO2018000856A1 (zh) 一种实现SDN Overlay网络报文转发的方法、终端、设备及计算机可读存储介质
WO2019051905A1 (zh) 空调器控制方法、空调器及计算机可读存储介质
WO2016043404A1 (ko) 멀티미디어 장치 및 그의 오디오 신호 처리방법
WO2019237505A1 (zh) 基于区域调光的画质优化方法、装置、设备及存储介质
WO2018107650A1 (zh) 一种修正调整灰阶曲线的方法及显示装置
WO2017088437A1 (zh) 智能电视控制终端摄像头切换方法及装置
WO2018032688A1 (zh) 一种终端设备播放开机视频的控制方法及装置
WO2017088438A1 (zh) 无线路由器及其控制方法
WO2018232818A1 (zh) Pfc电源的交流电压有效值获取方法及装置
WO2016107249A1 (zh) 卫星电视搜台的方法和装置
WO2019051903A1 (zh) 终端控制方法、装置及计算机可读存储介质
WO2021091178A1 (en) Artificial intelligence (ai) encoding apparatus and operating method thereof and ai decoding apparatus and operating method thereof
WO2017113596A1 (zh) 单独听控制方法及系统、移动终端及智能电视
WO2018094812A1 (zh) 调节液晶显示装置屏幕背光亮度的方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013392022

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 14411108

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015118249

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.05.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13889387

Country of ref document: EP

Kind code of ref document: A1