WO2015005553A1 - 루테리알의 형태특성을 이용한 질병의 진단방법 - Google Patents

루테리알의 형태특성을 이용한 질병의 진단방법 Download PDF

Info

Publication number
WO2015005553A1
WO2015005553A1 PCT/KR2014/000393 KR2014000393W WO2015005553A1 WO 2015005553 A1 WO2015005553 A1 WO 2015005553A1 KR 2014000393 W KR2014000393 W KR 2014000393W WO 2015005553 A1 WO2015005553 A1 WO 2015005553A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
disease
type
ruterial
luterial
Prior art date
Application number
PCT/KR2014/000393
Other languages
English (en)
French (fr)
Inventor
권영아
최원철
권성필
전현정
Original Assignee
Kwon Young Ah
Choi Won Cheol
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwon Young Ah, Choi Won Cheol filed Critical Kwon Young Ah
Priority to JP2016525261A priority Critical patent/JP2016526688A/ja
Priority to CN201480050194.4A priority patent/CN106068455B/zh
Priority to EP14823421.4A priority patent/EP3021119A4/en
Priority to US14/904,507 priority patent/US10338061B2/en
Publication of WO2015005553A1 publication Critical patent/WO2015005553A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7023(Hyper)proliferation
    • G01N2800/7028Cancer

Definitions

  • the present invention relates to a method for diagnosing a disease using the morphological characteristics of luterial present in the body fluid discharged from the patient.
  • Micromaterials such as microvesicles in the blood, have been previously recognized as substances having no special function. However, it is known from various experimental data that microvesicles also have various biological activities. For example, platelet-derived microvesicles have been shown to function to stimulate specific cells through surface proteins on vesicles (CD154, RANTES and / or PF-4; Thromb. Haemost. (1999) 82: 794 , or J. Boil. Chem. (1999) 274: 7545), It has been reported that physiologically active lipids (eg, HTET, or arachidonic acid) in platelet microvesicles have specific effects on specific target cells. (See J. Biol. Chem.
  • characteristics of a substance such as vesicles present in a biological sample may provide information on diagnosis, prognosis or therapeutic diagnosis of the disease, thereby detecting the disease and There is a need to identify biological indicators that can be used to treat them.
  • Cancer is still the number 1 mortality disease in most industrialized countries. The cancer cure rate is still low and the death toll from cancer continues to increase, resulting in a significant increase in household burdens and national health care costs. Cancer is a disease in which cells proliferate indefinitely and interfere with normal cell functions. Representatives of lung cancer, gastric cancer (GC), breast cancer (BRC), and colorectal cancer (CRC) are typical. Can occur in any organization.
  • GC gastric cancer
  • BRC breast cancer
  • CRC colorectal cancer
  • the diagnosis using the image the cancer is determined based on the X-ray image, nuclear magnetic resonance (NMR) image obtained using a contrast agent attached to the disease target material, but such an image Diagnosis is likely to be misdiagnosed, depending on the clinician's or proficiency of the reading, and has a drawback that is highly dependent on the precision of the device obtaining the image. Furthermore, even the finest instruments are unable to detect tumors of several millimeters or less, which makes them difficult to detect in the early stages of development.
  • NMR nuclear magnetic resonance
  • a patient or a disease-bearing person is exposed to high-energy electromagnetic waves that may cause a mutation of a gene, which may cause another disease, and has a disadvantage in that the number of diagnosis through the image is limited. .
  • the present inventors have found that the disease can be diagnosed and predicted by observing the morphological characteristics of the micromaterial, Luterial ((Luterial), present in the body fluid discharged from the patient.
  • Luterial (Luterial)
  • An object of the present invention is to provide a method for diagnosing a disease using morphological characteristics of luterial existing in body fluids that have already been discharged from a patient.
  • the present invention (a) the microscope to determine one or more of the number, size (diameter or area), shape, film formation and nano-tracking speed of the ruterials present in the body fluid discharged from the patient Measuring using; And (b) one or more of the measured number, size (diameter or area), shape, film formation, and nano tracking rate of the ruterials; Normal luterial; Or it provides a method for providing information for predicting the diagnosis and prognosis of the disease, comprising the step of comparing with red blood cells.
  • the present invention also comprises the steps of: (a) measuring the form of luterial existing in the body fluids already discharged from the patient by electron microscopy; (b) determining the shape of the measured ruterial in a form selected from the group consisting of a single type, a fused type, a multi-fused type, and a membrane-fused type; And (c) determining a disease state based on the determined form.
  • the method provides information for predicting diagnosis and prognosis of a disease.
  • the present invention also includes the steps of: (a) measuring at least one of the number, size (diameter or area), morphology, encapsulation, and nano-tracking speed of the ruterials present in the body fluid discharged from the patient using a microscope; And (b) one or more of the measured number, size (diameter or area), shape, film formation, and nano tracking rate of the ruterials; Normal luterial; Or it provides a method of diagnosing or predicting the disease, comprising the step of comparing with red blood cells.
  • the present invention also comprises the steps of: (a) measuring the form of luterial existing in the body fluids already discharged from the patient by electron microscopy; (b) determining the shape of the measured ruterial in a form selected from the group consisting of a single type, a fused type, a multi-fused type, and a membrane-fused type; And (c) determining a disease state on the basis of the determined form.
  • 1 schematically shows the life cycle of luterial.
  • Figure 2a shows a photograph taken with confocal laser scanning microscopy of the blood-derived luterial of the terminal patients with non-small cell lung cancer
  • Figure 2b is fluorescent staining of the blood-derived ruterion of the terminal patients with non-small cell lung cancer with rhodamine 123
  • Figure 2c shows a photograph taken by electron microscopy of blood-derived ruterion of the terminal patients with non-small cell lung cancer.
  • Figure 3 shows a photograph of the blood-derived ruterial arranged by the size of the diameter to 100 ⁇ 1000nm or more by taking an electron microscope.
  • Figure 4a shows a picture taken with a dark field microscope of normal blood luteiral (stage 1)
  • Figure 4b shows a picture taken with a dark field microscope of normal luteal (stage 2) of blood
  • Figure 4c shows a picture taken with a dark field microscope of normal luteal blood (stage 3)
  • Figure 4d shows a picture taken with a dark field microscope of luteal (step 4) of blood at a stage above methylation (methylation)
  • 4E shows a photograph taken with dark field microscope of luterial of blood (step 5) at the stage of gene mutation
  • FIG. 4F shows dark field microscope of ruterial of blood (step 6) at the stage of gene mutation.
  • Figure 4g is a picture taken with
  • Figure 4g shows a picture taken with a dark field microscope of the luterial (stage 7) of blood in the tumor-related gene mutation step
  • Figure 4h shows a picture taken with a dark field microscope of the luterial of blood (stage 8) in the stage of complex variation
  • Figure 4i shows a picture taken with a dark field microscope of the ruterial (step 9) of blood derived from terminal cancer patients .
  • Figure 5 shows a photograph taken with a dark field microscope of the mass-type ruterial.
  • Figure 6 shows a photograph of a rod-shaped luterial taken with a dark field microscope.
  • Figure 7 shows a photograph taken with a dark field microscope of the lung cancer patient-derived luterial (a: early; b-e: stage 2-3).
  • FIG. 8 shows a photograph taken by a dark field microscope of a luterial derived from a breast cancer patient (a / b: early stage, c / d: middle stage; e: lymph, peritoneal and pericardial metastasis).
  • Figure 9 shows a photograph taken with a dark field microscope of the luterial derived from pancreatic cancer patients (a: early; b-d: mid-term).
  • Figure 10 shows a picture taken with a confocal laser scanning microscope of the luteri from the patient of the common Bile Duct Cancer bone / lung metastasis.
  • Figure 11 shows a photograph taken with a dark field microscope of the luterial derived from patients with Pleural Mesothelioma.
  • Figure 12 shows a picture taken with a dark field microscope of the luterial derived from thyroid cancer (medium) patient.
  • Figure 13 shows a photograph taken with a dark field microscope of uteri cancer derived from ovarian cancer patients (a / b: mid-term).
  • Figure 14 shows a photograph taken with a dark field microscope of the luterial derived from biliary tract cancer patients.
  • Figure 15 shows a photograph taken with a dark field microscope of the luterial derived from a prostate cancer patient.
  • Figure 16 shows a photograph taken with a dark field microscope of the luterial derived from acute lymphocytic leukemia patients (a: medium; b: rod-mass complex advanced).
  • Figure 17a ⁇ c is a dark-field microscope photograph of the liver cancer patient-derived luterial (a: early; b / c: medium),
  • Figure 17d is a confocal laser scanning microscope of the lung cancer from lung cancer patients metastasized It shows the picture taken.
  • Figure 18 shows a picture taken by a confocal laser scanning microscope of the ruterial derived from angiosarcoma of liver patients.
  • Figure 19a ⁇ c shows a picture taken with a dark field microscope of the luterial derived from colorectal cancer gastric cancer patients.
  • Figure 21 shows a photograph taken with a dark field microscope of the luterial derived from the early gastric cancer patients.
  • Figure 22 shows a photograph taken with a dark field microscope of luterial derived from early patients with rectal cancer (a: mass-rod advanced; b: mass).
  • FIG. 23 shows a photograph of luterial derived from acute myeloid leukemia patient with a dark field microscope (a: mass-load progressive; b / c: mid-term).
  • FIG. 24 shows a photograph taken by a dark field microscope of luterial derived from acute myeloid leukemia patient (mass-load progression type).
  • 25a shows luterial derived from liver cancer patients with gastric metastasis
  • 25b shows luterial derived from peritoneal metastatic gastric cancer patients
  • 25c shows luterial derived from peritoneal and liver metastatic gastric cancer patients.
  • FIG. 26 shows luterial derived from bone and lung metastatic rectal cancer patients
  • FIG. 27 shows luterial derived from bone metastatic prostate cancer patients
  • FIG. 28 shows luterial derived from lymphatic metastatic non-small cell lung cancer (NSCLC) patients
  • FIG. 29 shows a photograph taken by a dark field microscope of a luteal bone derived from a bone metastasized kidney cancer patient
  • FIG. 30 shows a photograph taken by a dark field microscope of a luteal derived from an acute lymphocytic leukemia patient.
  • FIG. 31 shows a photograph of measuring the moving speed (nano tracking speed) of the ruterial using a natto tracker.
  • the term “luterial” used in the present invention is a living organism existing in all animals, and is similar to that of a virus to about 500 nm (normal treatment step 50 to 500 nm / abnormal fusion step 800 nm or more).
  • the micromaterial having a size is named by the inventor.
  • the ruterial includes both DNA and RNA and is distinguished from exosomes or microvesicles in that they have adhesion and mobility.
  • the substance present in the plant is referred to as "Luterion” (Luterion), the origin of the ruterial found in the blood, etc. is estimated to be plant-derived ruterion (Fig. 1).
  • Mitochondria are identified by Janus green B and fluorescent dyes Rhodamine 123, Mitotracker, Acridine Orange, and DAPI, and the ruterial also mitochondria The color is confirmed by the same dye, and similar to mitochondria, it is a double-layered membrane structure that has not completed the internal cristae structure and is observed in the same laser wavelength range as mitochondria. May also be referred to as “mitochondrial analogues” or “proto-mitochondria”.
  • Luterial is present in blood, saliva, lymphatic vessels, semen and vaginal fluids, breast milk (especially colostrum), cord blood, brain cells, spinal cord and bone marrow in animals including humans.
  • horned animals have luterials within their horns.
  • the ruterials are also expected to be involved in the regulation of cell cycle and cell growth as well as signaling, cell differentiation and cell death, among which we have found that ruterials are closely related to the diagnosis of cancer. .
  • RNAi RNA interference
  • RNAi RNA interference
  • the information system in the RNA instructs to produce a protein that causes abnormal disease out of the normal orbit, it artificially interferes with the action to suppress the occurrence of diseases such as cancer.
  • energy metabolism when the size is more than 200 ⁇ 500nm, if these ruterials do not play a normal role, it causes a critical disorder in homeostasis and ATP production, causing diseases in both respiration and energy metabolism Can be.
  • the mutant ruterial that does not perform a normal role is different in size and shape due to different ecology and characteristics from normal luterial.
  • normal luterials do not proliferate after forming double-spores, but similar to stem cells in the case of mutant luterials found in the blood of cancer patients or patients with chronic diseases. Infinitely multiplying from 600-800nm or more, some have a size of 200 ⁇ m (200,000nm) or more.
  • Luterial differs in number, size (diameter or area), shape, film formation, and nano-tracking speed according to an individual's disease, and thus diagnoses or prognoses a disease through one or more of the above characteristics. It can be predicted. This can be seen by the difference in the number, size (diameter or area), shape, film formation, nano-tracking speed, etc. of the lutereals derived from healthy people without disease and the diseased people. . This difference is due to the presence or absence of luterial mutations and is termed “mutant luterial” to distinguish luterials from diseased persons from normal luterials from healthy persons.
  • the diagnosis and prognosis of the disease are possible by observing the number and morphological or biochemical characteristics of the ruterials present in the body fluid discharged from the patient.
  • the number of luterials in patients is smaller than that of normal patients, and in severe patients, the number is reduced to 20 to 80%. Therefore, if the number of luterial is less than 20% of normal people, it can be determined as a tumor suspected state.
  • a mutant luterial having a size (long diameter) of 20 micrometers when found, it can be determined as a tumor suspected state.
  • the long diameter of the ruterial is less than 20um, when the coating is formed on the outside of the mutant ruterial can be determined as a suspected malignant tumor.
  • the mutant luterial has a long diameter of 20 ⁇ m or more, it may be determined as a benign tumor suspect state when the film is not completed.
  • the present invention provides a method for preparing a human body, the method comprising: (a) measuring by means of a microscope one or more of the number, size, shape, film formation, and nano-tracking speed of ruterials present in body fluids that have already been released; And (b) one or more of the measured number, size, shape, film formation, and nano-tracking rate of the ruterials; Normal luterial; Or to compare information with red blood cells and provide information for predicting the diagnosis and prognosis of the disease.
  • Luterial observed in the present invention can be isolated from the body fluids previously released from the patient.
  • Prevented body fluids in the present invention may be blood, saliva, lymphatic vessels, semen, vaginal fluid, breast milk (particularly colostrum), umbilical cord blood, brain cells, spinal cord or bone marrow, but is not limited thereto.
  • luterial derived from blood can be used.
  • the disease can be diagnosed and the prognosis can be predicted by observing the luterial present in the collected blood sample or the ruterial separated from the blood under a microscope.
  • the first separation step of separating serum from the blood A second separation step of separating the precipitate that does not pass through the filter having pores having a diameter of 100 nm to 2 mm from the separated serum; And washing the separated precipitate to obtain ruterial.
  • the first separation step may include collecting blood from the patient and centrifuging for 5-15 minutes at 1200 ⁇ 5000rpm centrifugation.
  • the second separation step is a step of obtaining a supernatant by removing a general micro-vesicles, such as exosomes (exosomes) using a centrifugation in the serum; And passing the obtained supernatant through a filter having pores having a diameter of 100 nm to 2 mm to separate a precipitate that does not pass through it. ExoQuix may be used to remove exosomes, but is not limited thereto.
  • the washing may include washing the serum from which the precipitate is separated (which may be an exosome) with physiological saline.
  • the cleaning may then further comprise maintaining the icing (4 degrees or less).
  • the long diameter of the luterial observed or photographed in step (b) is 8-30 times the diameter of red blood cells; Alternatively, if the observed or photographed luterial area is 8 to 30 times the area of red blood cells, the disease may be determined as a suspected cancer.
  • the normal person's luterial When observing or measuring the size of the ruterial, the normal person's luterial has a size of 100-250 nm, 250-800 nm in case of fatigue syndrome, 800 nm or more in case of disease, and a maximum of several hundred ⁇ m (about 200 ⁇ m). .
  • the number of luterials observed or photographed in step (b) is 20% or less of a normal person, and the size (diameter) is 0.8 to 1 ⁇ m, it may be determined as a suspected disease occurrence state, and when it is 20 ⁇ m, a cancer suspected state may be determined.
  • a film is formed on the outside of the mutant luterial, it may be determined as a cancer marker regardless of its size. In particular, when a film is formed and flagella (tentacle) is observed, it may be determined as a malignant severity factor . Film formation can be observed with a dark field microscope or an electron microscope.
  • step (a) the shape of the ruterial may be observed or photographed, and in step (b), the disease may be determined according to the shape of the ruterial observed or photographed.
  • the form of the rutirial may be selected from the group including a normal type, flagella type, mass (Mass: M) type, rod (L: L) type, and a complex type having a flagella on the outside. have.
  • the ratio of the long diameter to the short diameter of the ruterial may be 1: 1 to 3: 1.
  • the mass is densely rounded, and most of the membranes are open, and a ratio of long diameter to short diameter may be 3: 1 to 5: 1.
  • the rod type has a pointed and angular shape, and most of the membrane is closed, and a ratio of long diameter to short diameter may be 5: 1 to 12: 1.
  • the rod type may be a rod type 1 consisting of a single chain of circular or oval shape or a rod type 2 formed by combining two or more single chains.
  • the complex type may be a rod type and a mass type fusion type, a rod type and rod type fusion type, or a mass type and mass type fusion type.
  • the shape of the ruterial measured by observation or imaging is rod-type, lung cancer, breast cancer, pancreatic cancer, bile duct cancer, medullary mesothelioma, thyroid cancer, ovarian cancer, biliary tract cancer, prostate cancer, or lymphoid blood cancer
  • Determining the marker factor if the mass type, liver cancer, hemangiosarcoma, colon cancer, uterine cancer, gastrointestinal cancer (stomach cancer), kidney cancer, rectal cancer or myeloid hematologic cancer development markers, if complex, severe blood cancer or
  • the metastatic cancer suspected state is determined by the core Gin, and when the flagella appears, it may be characterized by determining the terminal tumor suspected marker.
  • the mutant luterial form can be used to track the site of development.
  • the cancer can be determined by the lung, breast, pancreas, bile duct, thyroid, ovary, biliary tract, prostate, or lymphoid blood.
  • the cancer can be determined by liver, colon, uterus, and digestive organs (stomach). ), Kidney, rectal or myeloid blood.
  • the original occurrence of the arm is the same as that of the rod, and in the case of a complex battle from the mass to the rod-type, the original occurrence of the arm is the same as the mass.
  • the present invention can also determine nanotracking speed, which means the mobility of luterial, and determine the suspected stage 1 to 4 cancer according to the speed.
  • nanotracking speed means the mobility of luterial
  • the nano tracking speed of the ruterial measured by observation or imaging is 8.0 ⁇ 11nm / sec suspected stage 1 cancer, 2.5 ⁇ 8.0nm / sec when suspected stage 2 cancer, 0.5 ⁇
  • the suspected stage 3 cancer may be determined.
  • the suspected stage 4 cancer may be determined.
  • the present invention (a) measuring the form of luterial existing in the body fluids already discharged from the patient by electron microscopy; (b) determining the shape of the measured ruterial in a form selected from the group consisting of a single type, a fused type, a multi-fused type, and a membrane-fused type; And (c) determining a disease state on the basis of the determined form.
  • the present invention provides a method for preparing a human body, the method comprising the steps of: (a) measuring the form of luterial existing in the body fluid discharged from a patient by electron microscopy; (b) determining the shape of the measured ruterial in a form selected from the group consisting of a single type, a fused type, a multi-fused type, and a membrane-fused type; And (c) determining a disease state based on the determined form.
  • the blood-derived ruterial is at least one dye selected from the group consisting of Rhodamine 123, Mitotracker, Acridine Orange, DAPI, and Janus green B. Coloring is confirmed by dyeing, and double layer and criste structures are confirmed on an electron microscope.
  • Step (c) is determined as normal when the shape of the ruterial measured by the observation or photographing is 80-100% consistent with the form of a single form, and a disease suspected state when 80-100% matches the form of a fusion type. Determining the tumor suspected state when 80-100% matched the multiple fusion type, and determining the severe tumor suspected state when 80-100% coincided with the ruptured fused form.
  • Serum was isolated by centrifuging 250 ⁇ l of blood collected from a late stage of non-small cell lung cancer at 1600 rpm for 10 minutes. 63 ⁇ l of SBI ExoQuick was added to the serum and centrifuged at 3000 rpm for 15 minutes, and then maintained for an additional 15 minutes to separate the upper layer that did not react with ExoQuick. The separated supernatant (supernatant) was filtered through a 100 nm microfilter to separate out precipitate that did not pass. This was washed several times with physiological saline and then maintained by icing (less than 4 °C) to separate the fine material ruterial.
  • Example 1 Luterial isolated in Example 1 was observed using a confocal laser scanning microscope (FIG. 2a), stained with rhodamine 123, and confirmed using a confocal laser scanning microscope (FIG. 2b). , Positive reaction stained by Janus Green B was confirmed by light microscopy.
  • the isolated ruterial was observed by making an electron microscope sample (FIG. 2C). After fixing the blood cells with MICA, the membrane was peeled off with a probe (Probe) to confirm the DNA and RNA (atomic microscope). Fixed solution Cell-Tack BD (Bioscience) or Glutaraldehyde / poly-L-lysine may be used instead of MICA. After application of Rhodamine 123 fluorescein reagent in a dark field microscope, and washed after 5 minutes and observed with an orange filter (506nm ⁇ 520nm bandpass filter) it was confirmed that the green color observed.
  • FIG. 2a to 2c are photographs taken of the ruterial separated in Example 1, and as shown in FIG. 2b, when the luterial is fluorescently stained with rhodamine 123, it is specifically stained and observed by a confocal laser scanning microscope. .
  • the ruterial is specifically stained with Janus green B and can be observed with an optical microscope. Color development can also be confirmed by mitotracker, acridine orange, and DAPI, which are fluorescent staining reagents.
  • Luterial shown in Figure 2a has a maximum diameter of 718nm, that is, 0.718 ⁇ m, it can be confirmed that the coating was formed on the outside as shown in Figure 2c. Indeed, the experimental group was diagnosed with late non-small cell lung cancer. Therefore, in the diagnosis and prognosis prediction method of the disease according to the present invention, the diameter of the observed or photographed ruterial is 0.5 ⁇ m or more, and when an external coating is formed, it may be determined as a cancer suspected state.
  • Figure 2c is an electron micrograph of the ruterial, the ruterial used in the diagnosis and prognosis prediction method of the disease according to the present invention as a membrane structure having a double membrane formed on the outside to confirm the internal structure of the Christie Can be.
  • Example 3 Diameter measurement of various subject-derived ruterials (electron microscopy)
  • Luterial was isolated from the blood of 30 subjects from normal subjects to terminal cancer patients in the same manner as in Example 1, and then the diameter of the ruterial was measured using an electron microscope.
  • the method for diagnosing and prognosticing the disease according to the present invention may observe or photograph the diameter of the ruterial under a microscope, and determine that the disease is suspected when the diameter of the observed or photographed ruterial is 800 nm, that is, 0.8 ⁇ m or more ( Electron microscopy or atomic force microscopy can be observed at 0.45 ⁇ m). The maximum observed size under the microscope was 200 ⁇ m, but the maximum can increase with the patient.
  • the encapsulated luterial of 800 nm (0.8 ⁇ m) of FIG. 3 was found in cancer-derived blood. Therefore, the method for diagnosing and prognosticing the disease according to the present invention may observe or photograph the diameter of the luterial under a microscope, and if the diameter of the observed or photographed ruterial is 0.8 ⁇ m or more, and a film is formed, the disease may be determined to be a cancer suspect state. have.
  • Luterial was isolated from blood collected from 15 patients with stage 1, stage 2, stage 3, and stage 4 cancer in the same manner as in Example 1.
  • the isolated luterial was placed in a buffer solution, stained with rhodamine 123, and the diameter thereof was measured using a confocal laser scanning microscope. Observation rates of luterial variants of 2 ⁇ m or more, ie, mutant ruterials, are as follows.
  • mutant ruterials with diameters of 2 ⁇ m or more increased.
  • mutant luterials with diameters of 2 ⁇ m or more were found in about 94% of patients, and the maximum size was 200 ⁇ m or more.
  • the observation ratio of the mutant ruterials having a diameter of 0.5 to 5 ⁇ m was high in stage 1 to 3 cancer patients.
  • the rate of mutant ruterial was higher than 5 ⁇ m.
  • the method for diagnosing and prognosticing the disease according to the present invention is to determine the suspected state of cancer when the diameter of the luterial is observed or photographed under a microscope and the diameter of the observed or photographed ruterial is 1.0 to 200 ⁇ m, but the thickness is 20 ⁇ m or more. Formation can be determined as a suspected cancer.
  • Blood from normal, chromosomal methylation abnormalities, patients with genetic mutations, patients with tumor-related genetic mutations, patients with tumor-associated genetic mutations (late prostate cancer), are covered with slide glass, covered with a glass of glass and a drop of dark field oil It was added and observed at 1000 magnification using a Nikon Eclipse Ni (1000 ⁇ ) with a dark field microscope.
  • stage 1 the proportion of luterial morphology observed in patients with stage 1, stage 2, stage 3, and stage 4 cancer among the experimental group patients was calculated.
  • Figures 4b to 4i are shown in the form of the ruterial taken according to Example 6 divided into 2 to 9 steps in the order of severity of disease, step 1 is shown in Figure 4a.
  • FIGS. 4B and 4C show normal blood-derived luterials (stages 2 and 3), FIG. 4D shows blood-derived luterials (stage 4) of patients with methylation abnormality stages, and FIGS. 4E and 4F show gene mutation generation stage patients.
  • Derived luterial stages 5 and 6
  • Figure 4g is a tumor-derived gene mutation stage patient-derived ruterials (stage 7)
  • Figure 4h is a tumor-related gene mutation stage patient-derived ruterials (stage 8)
  • Figure 4i is a tumor Luterial (stage 9) from a related gene complex mutation stage patient (late prostate cancer) was taken.
  • the circular material is red blood cells or white blood cells.
  • shiny silver micromaterials are ruterials. Normally derived ruterials are smaller than red blood cells, and no fused or modified colony was found.
  • FIG. 4D is a blood-derived ruterial of a patient whose chromosome begins to show an abnormal methylation stage. The size is larger than that of the classification stage 3 of FIG. 4C, but no modified colony has been found.
  • 4E and 4F are images of blood-derived luterial of the gene mutation generation patient, and in particular, in the case of classification step 6 of FIG. 4F, it can be seen that fusion between the ruterials has progressed compared to the classification step 4 of FIG. 4D.
  • Gene mutation stage patients of Figures 4e and 4f has not yet been mutation in the tumor-related genes.
  • Figure 4g is a picture taken of the luteri derived from the blood of a patient with a mutation in a part of the tumor-related gene (stage 7), overwhelmingly large mutant ruterial more than 20 times the size of red blood cells compared to Figures 4e and 4f (mass ) Clusters were observed (central silver matter).
  • Figure 4h is a photograph of the luteri derived from the blood of patients with complex mutations in tumor-related genes (classification step 8), the size is much larger than the classification step 7, it was observed as a rod type.
  • Figure 4i is a picture of the luterial (step 9) of the terminal cancer-derived blood, unlike step 8 was observed in the form of flagella.
  • Patients with flagellar mutant ruterials were classified as terminal cancer patients and the survival of flagellar cancer patients was 1-4 months.
  • the survival time was within 2 months.
  • Example 6 As a result of microscopic observation according to Example 6, it was confirmed that the blood-derived ruterial morphology appeared in a normal form, flagella form, mass form, rod form, and complex form.
  • the observed or photographed ruterials do not cause additional fusion or bursting, and have a long diameter to short diameter ratio of 1: 1 to 3: 1.
  • 4a to 4c are normal ruterials.
  • the method for diagnosing and prognosticing a disease according to the present invention may be determined to be normal when the observed or photographed form of the ruterial is 80 to 100% consistent with the normal form.
  • the flagella is a form in which the observed or photographed luterial causes deformation or fusion, and thus the flagella is provided on the outside, and in FIG. 4I, the flagella luterial is observed.
  • the flagellar observation rate increased rapidly, and in stage IV cancer, 99.1% in stage IV cancer showed a flagellar luterial in almost all stage IV cancer patients.
  • the method for diagnosing and prognosticing a disease according to the present invention may be determined as a terminal tumor suspected state when the observed or photographed form of luterial is 80 to 100% consistent with the form of flagella.
  • the survival period of the patient diagnosed with the terminal tumor may be 1 to 4 months. In particular, in the case of flagella, long-term survival is impossible.
  • the mass type (M) is an observed or photographed ruterial that causes bursting or fusion, and thus its size and shape are deformed from the normal type, and in an irregular volume form in which the difference between the long diameter and the short diameter is not large, preferably
  • the ratio of long diameter to short diameter may be 3: 1 to 5: 1.
  • 4G and 5 illustrate photographs of a mass-type ruterial taken by a dark field microscope according to Example 6, and various types of mass types are observed. As a control, the disease can be determined by comparing the observed or photographed luterial forms.
  • Rod type (L) is the observed or photographed ruterial causes a burst (bursting), deformation, or fusion to form a rod (Rod), the length difference between the short diameter and the long diameter is larger than the mass type.
  • the ratio of the long diameter to the short diameter may be 5: 1 to 12: 1.
  • the rod shape is observed in various forms as shown in FIG. Rod 1 type consisting of a single chain of circular or oval shape; And it may include a rod type 2 formed by combining two or more single chain.
  • the rod type 1 is a single luterial in the form of a rod, which may be due to bursting and / or deformation.
  • the rod type 2 is formed in a rod form by combining two or more ruterials, which may be due to one or more of bursting, deformation, and fusion.
  • the flagella may be included in the rod form in a large category in shape, but differ in that the flagella is extended. Therefore, it is possible to determine whether it is a rod type first and then a flagellar type.
  • the complex type may be a fusion type of rod type and mass type.
  • a part of the ruterial formed integrally may be referred to as a rod type and a part which is a mass type.
  • Luterial was obtained from the blood obtained from patients diagnosed with various cancers (Table 3) or by the same method as in Example 1, and observed.
  • the blood sample or luterial was placed in a buffer solution, buried in a slide glass, covered with a cover glass, and then a drop of darkfield oil was added and observed using a darkfield microscope (Nikon Eclipse Ni (1000 ⁇ )) and a confocal scanning microscope.
  • liver cancer hemangiosarcoma, colon cancer, uterine cancer, gastrointestinal cancer (gastric cancer), rectal cancer and acute myeloid leukemia, mass type (M) luterial was observed.
  • the site of cancer is the same as that of L type, but it can be determined that metastasis proceeds, and also from mass type to mass-load type (ML)
  • the site of cancer is the same as that of type M, but metastasis can be determined.
  • the method for diagnosing and prognosticing the disease according to the present invention when the form of the observed or photographed ruterial is rod-shaped, lung cancer, breast cancer, pancreatic cancer, cholangiocarcinoma, mesothelioma, thyroid cancer, ovarian cancer, biliary tract cancer, prostate cancer , Or lymphoid hematologic cancer.
  • the method for diagnosing and prognosticing the disease according to the present invention is characterized in that when the observed or photographed form of luterial is a mass, liver cancer, hemangiosarcoma, colon cancer, uterine cancer, gastrointestinal cancer (gastric cancer), rectal cancer, kidney cancer or myeloid It can be determined by the state of blood cancer.
  • the method for diagnosing and prognosticing the disease according to the present invention may be determined as a suspected state of hematologic or metastatic cancer when the form of luterial is complex, and as a terminal cancer suspected state when the flagella is detected. have.
  • Luterial was obtained from the blood of patients with stage 1, stage 2, stage 3, and stage 4 cancer (15 patients each) in the same manner as in Example 1.
  • the ruterial was placed in a buffer solution, stained with Janus Green B, and observed under an optical microscope.
  • the motility criterion was measured by nano-tracking of the ruterial with nano-tracking of US 3i using 200nm luterial. Specifically, after observing the ruterial with a bright field microscope and setting the tracking at the center of the ruterial and operating the nano-specific tracking, the speed per second was calculated by indicating the real-time movement trajectory along with the movement of the ruterial (FIG. 31).
  • Nano-tracking rate of the ruterial derived from cancer patients according to the present embodiment indicates the motility of the ruterial.
  • the method for diagnosing and prognosticing the disease according to the present invention is stage 1 cancer when the nano tracking speed of the observed or photographed luterial is 8.0 to 11 ⁇ m / sec, stage 2 cancer, and 0.5 to 2.5 ⁇ m / for 2.5 to 8.0 ⁇ m / sec.
  • sec it can be determined as 3 rock, and in the case of 0 ⁇ 0.5 ⁇ m / sec, it is determined as 4 rock.
  • the ruterial When observed by electron microscopy, the ruterial may be in the form of a single, fused, multiple fused, or ruptured fused type, and based on this, the disease may be diagnosed and predicted.
  • the single type is a form in which a single luterial is observed
  • the fusion type is a form in which two to four luterial communities are fused and observed
  • the multiple fusion type is a form in which the fused luterial community is fused in multiple layers.
  • the fused type membrane is a form in which the membrane of the fused ruterial is expelled and the inner material is expelled.
  • Luterial was obtained from blood of various subjects (30 patients) from normal subjects to terminal cancer patients in the same manner as in Example 1.
  • the obtained ruterial was fixed to a slide glass, and the shape was observed or photographed using an electron microscope.
  • Tumors were found in a number of patients in which multiple fusion ruterials were found. Therefore, multiple fusion ruterials are considered to be tumor suspected.
  • FIG. 32A to c show photographs taken with an electron microscope sequentially in the form of a film-fused fusion type.
  • FIG. 32A the luteiral colony forming the membrane gradually proliferated (FIG. 32B), and finally the membrane burst to explode the deformed particles inside (FIG. 32C).
  • FIG. 32A the luteiral colony forming the membrane gradually proliferated (FIG. 32B), and finally the membrane burst to explode the deformed particles inside (FIG. 32C).
  • Severe cancers have been found in a number of patients in which these membrane-ruptured fused ruterials have been found. Therefore, the fused ruterial membrane is considered suspected of serious cancer.
  • the method for diagnosing and prognosticing the disease according to the present invention is determined to be normal when 80-100% of the monomorphic form is matched with that of the ruterial which is present in the blood and whose double layer and criste structure are confirmed on the electron microscope. If 80 ⁇ 100% match with the fusion type, it is determined as the suspected disease state.If 80 ⁇ 100% match with the multiple fusion type, it is determined as the suspected tumor state. If 100% match, a serious tumor suspect can be determined.
  • the method for diagnosing and prognosticing a disease utilizes ruterial as a marker for diagnosing and prognosticing a disease, and in particular, diagnoses of cancer patients, whether treatments are effective, before and after treatment, and organs of treated patients. It can be used effectively to judge survival.
  • the ruterial which is a micromaterial present in the body fluid discharged from the patient, as a marker for diagnosis and prognosis of the disease, in particular, the diagnosis, operation and treatment effects of cancer patients, before and after treatment, And it can be effectively used to determine the long-term survival of the treated patient.
  • the cancer cell tissue size is 5mm or less, regardless of the carcinoma, there is an advantage that it is possible to determine the current state, recurrence, and long-term viability of the cancer disease.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ecology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

본 발명은 혈액에 존재하는 루테리알의 형태학적 특성을 이용한 질병의 진단방법에 관한 것이다. 본 발명에 의하면, 질병의 종류 및 진행정도에 따라 루테리알의 수, 크기나 모양과 같은 형태학적 특성 및 움직임(나노 트래킹속도)이 달라지는바, 이러한 혈액내 루테리알의 특성을 관찰 및 측정함으로써 질병(특히, 암)의 진단 및 예후를 효과적으로 판단할 수 있다.

Description

루테리알의 형태특성을 이용한 질병의 진단방법
본 발명은 환자에서 기 배출된 체액에 존재하는 루테리알의 형태학적 특성을 이용한 질병의 진단방법에 관한 것이다.
혈액 내 미소포 등의 미세물질은 예전에는 특별한 기능을 가지지 않는 물질로 인식되어 왔다. 그러나, 미소포(microvesicle)도 다양한 생물활성을 가진다는 사실이 여러 실험 데이터를 통하여 알려지고 있다. 예를 들면, 혈소판 유래의 미소포는 소포상의 표면 단백질을 통하여 특정 세포를 자극하는 기능을 한다는 사실이 밝혀진바 있으며 (CD154, RANTES and/or PF-4; Thromb.Haemost.(1999) 82:794, or J.Boil.Chem. (1999) 274:7545), 혈소판 미소포에 있어서의 생리활성 지질(예를 들어, HTET, 또는 아라키돈산)이 특정의 표적 세포에 대하여 특정 효과가 있음이 보고된 바 있다 (J.Biol.Chem.(2001) 276;19672; 또는 Cardiovasc.Res.(2001) 49(5):88를 참조). 이와 같이, 생물학적 시료 안에 존재하는 소낭 등의 물질의 특징 (가령, 크기, 표면 항원들, 기원 세포의 결정, 페이로드)은 질병의 진단, 예후 또는 치료진단 정보를 제공할 수 있으므로 질환을 탐지하고 치료하는데 이용될 수 있는 생물학적 지표를 확인할 필요가 대두되고 있다.
한편, 암(cancer)은 아직까지도 대부분의 산업화 국가에서 사망률 제1위의 난치성 질환이다. 암 완치율은 여전히 낮고 암으로 인한 사망자는 지속적으로 증가함으로써 이에 따른 가계부담 및 국가 의료비 부담 또한 많이 증가하였다. 암은 세포가 무한히 증식해 정상적인 세포의 기능을 방해하는 질병으로, 폐암, 위암(gastric cancer, GC), 유방암(breast cancer, BRC), 대장암(colorectal cancer, CRC) 등이 대표적이나, 실질적으로는 어느 조직에서나 발생할 수 있다.
초창기 암 진단은 암 세포의 성장에 따른 생체 조직의 외적 변화에 근거하였으나, 근래에 들어 혈액, 당쇄(glyco chain), DNA 등 생물의 조직 또는 세포에 존재하는 미량의 생체분자를 이용한 진단 및 검출이 시도되고 있다. 그러나 가장 보편적으로 사용되는 암 진단 방법은 생체 조직 검사를 통해 얻어진 조직 샘플을 이용하거나, 영상을 이용한 진단이다. 그 중 생체 조직 검사는 환자에게 큰 고통을 야기하며, 고비용이 들 뿐만 아니라, 진단까지 긴 시간이 소요되는 단점이 있다. 또한 환자가 실제 암에 걸린 경우, 생체 조직 검사 과정 중 암의 전이가 유발될 수 있는 위험이 있으며, 생체 조직 검사를 통해 조직 샘플을 얻을 수 없는 부위의 경우, 외과적인 수술을 통해 의심되는 조직의 적출이 이루어지기 전에는 질병의 진단이 불가능한 단점이 있다. 또한, 영상을 이용한 진단에서는 엑스레이(X-ray) 영상, 질병 표적 물질이 부착된 조영제를 사용하여 획득한 핵자기 공명(nuclear magnetic resonance, NMR) 영상 등을 기반으로 암을 판정하고 있으나, 이러한 영상 진단은 임상의 또는 판독의의 숙련도에 따라 오진의 가능성이 있으며, 영상을 얻는 기기의 정밀도에 크게 의존하는 단점이 있다. 더 나아가, 가장 정밀한 기기조차도 수 mm 이하의 종양은 검출이 불가능하여, 발병 초기 단계에서는 검출이 어려운 단점이 있다. 또한, 영상을 얻기 위해 환자 또는 질병 보유 가능자가 유전자의 변이를 유발할 수 있는 고에너지의 전자기파에 노출되므로, 또 다른 질병을 야기할 수 있을 뿐만 아니라, 영상을 통한 진단 횟수에 제한이 있는 단점이 있다.
즉, 암의 진단을 위한 생체 조직 검사는 많은 시간, 비용, 불편, 고통 등을 수반하므로, 불필요한 생체 조직 검사의 대상자 수를 획기적으로 줄일 수 있는 방법, 조기에 암을 진단할 수 있는 방법이 요구되고 있다.
이러한 배경하에서, 본 발명자들은 환자에서 기 배출된 체액 내에 존재하는 미세물질인 루테리알((Luterial)의 형태학적 특성을 관찰함으로써 질병을 진단 및 예측할 수 있음을 발견하고 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은, 환자에서 기 배출된 체액에 존재하는 루테리알의 형태학적 특성을 이용한 질병의 진단방법을 제공하는데 있다.
상기한 목적을 달성하기 위하여, 본 발명은 (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 수, 크기(직경 또는 면적), 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 현미경을 이용하여 측정하는 단계; 및 (b) 상기 측정된 루테리알의 수, 크기(직경 또는 면적), 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 정상인의 루테리알; 정상 루테리알; 또는 적혈구와 비교하는 단계를 포함하는, 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법을 제공한다.
본 발명은 또한, (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 형태를 전자현미경으로 측정하는 단계; (b) 상기 측정된 루테리알의 형태를 단일형, 융합형, 다중 융합형 및 막이 터진 융합형으로 구성된 군에 선택되는 형태로 결정하는 단계; 및 (c) 상기 결정된 형태를 기준으로 질병상태를 결정하는 단계를 포함하는, 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법을 제공한다.
본 발명은 또한, (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 수, 크기(직경 또는 면적), 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 현미경을 이용하여 측정하는 단계; 및 (b) 상기 측정된 루테리알의 수, 크기(직경 또는 면적), 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 정상인의 루테리알; 정상 루테리알; 또는 적혈구와 비교하는 단계를 포함하는, 질병의 진단 또는 예후 예측 방법을 제공한다.
본 발명은 또한, (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 형태를 전자현미경으로 측정하는 단계; (b) 상기 측정된 루테리알의 형태를 단일형, 융합형, 다중 융합형 및 막이 터진 융합형으로 구성된 군에 선택되는 형태로 결정하는 단계; 및 (c) 상기 결정된 형태를 기준으로 질병상태를 결정하는 단계를 포함하는, 질병의 진단 또는 예후 예측 방법을 제공한다.
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부된 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 루테리알의 life cycle을 개략적으로 도시하여 나타낸 것이다.
도 2a는 비소세포성 폐암 말기 환자의 혈액 유래 루테리알을 공초점 레이저 주사현미경으로 촬영한 사진을 나타낸 것이고, 도 2b는 비소세포성 폐암 말기 환자의 혈액 유래 루테리온을 로다민 123으로 형광염색한 후 촬영한 공초점 레이저 주사현미경 사진을 나타낸 것이고, 도 2c는 비소세포성 폐암 말기 환자의 혈액 유래 루테리온을 전자현미경으로 촬영한 사진을 나타낸 것이다.
도 3은 혈액 유래 루테리알을 전자현미경으로 촬영하여 100~1000nm 이상까지 직경의 크기순으로 배열한 사진을 나타낸 것이다.
도 4a는 정상인 혈액의 루테리알(1단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이고, 도 4b는 정상인 혈액의 루테리알(2단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이고, 도 4c는 정상인 혈액의 루테리알(3단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이고, 도 4d는 메틸화(methylation) 이상의 단계에서 혈액의 루테리알(4단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이고, 도 4e는 유전자 변이 발생 단계에서 혈액의 루테리알(5단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이고, 도 4f는 유전자 변이 발생 단계에서 혈액의 루테리알(6단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이고, 도 4g는 종양관련 유전자 변이 단계에서 혈액의 루테리알(7단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이고, 도 4h는 종양관련 유전자 복합 변이 단계에서 혈액의 루테리알(8단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이고, 도 4i는 말기암 환자유래 혈액의 루테리알(9단계)을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 5는 매스형의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 6은 로드형의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 7은 폐암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다(a: 초기; b~e: 2~3기).
도 8은 유방암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다(a/b: 초기, c/d: 중기; e: 림프, 복막 및 심막 전이).
도 9는 췌장암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다(a: 초기; b~d: 중기).
도 10은 담관암(Common Bile Duct Cancer) 뼈/폐 전이 환자 유래 루테리알을 공초점 레이저 주사현미경으로 촬영한 사진을 나타낸 것이다.
도 11은 흉막중피종(Pleural Mesothelioma) 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 12는 갑상선암(중기) 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 13은 난소암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다(a/b: 중기).
도 14는 담도암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 15는 전립선암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 16은 급성림프구성 백혈병 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다(a: 중기; b: 로드-매스 복합 진행형).
도 17a~c는 간암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이고(a: 초기; b/c: 중기), 도 17d는 폐 전이된 간암 환자 유래 루테리알을 공초점 레이저 주사현미경 촬영한 사진을 나타낸 것이다.
도 18은 간 혈관육종(angiosarcoma of liver) 환자 유래 루테리알을 공초점 레이저 주사현미경으로 촬영한 사진을 나타낸 것이다.
도 19a~c는 대장암 위암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 20은 자궁암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 21은 위암 초기 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 22는 직장암 초기 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다(a: 매스-로드 진행형; b: 매스형).
도 23은 급성 골수성 백혈병 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다(a: 매스-로드 진행형; b/c: 중기).
도 24는 급성 골수성 백혈병 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다(매스-로드 진행형).
도 25a는 간전이 위암환자 유래 루테리알을 나타낸 것이고; 도 25b는 복막전이 위암환자 유래 루테리알을 나타낸 것이며; 도 25c는 복막 및 간 전이 위암환자 유래 루테리알을 나타낸 것이다.
도 26은 뼈 및 폐 전이 직장암 환자 유래 루테리알을 나타낸 것이고, 도 27은 뼈 전이 전립선암 환자 유래 루테리알을 나타낸 것이며, 도 28은 림프전이 비소세포성폐암(NSCLC) 환자 유래 루테리알을 나타낸 것이고, 도 29는 뼈 전이 신장암 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이며, 도 30은 급성 림프구성 백혈병 환자 유래 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것이다.
도 31은 나토트랙커를 이용하여 루테리알의 이동속도(나노트래킹 속도)를 측정한 사진을 나타낸 것이다.
도 32a~c는 막이 터진 융합형의 형태를 순서대로 전자현미경으로 촬영한 사진을 나타낸 것이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서 사용하는 용어 “루테리알(luterial)”은 모든 동물에 존재하는 생명인자 (living organism)로서, 바이러스와 유사한 정도부터 약 500nm까지 (정상 피션단계 50~500nm/ 비정상 퓨전단계 800nm이상)의 크기를 가지는 미세물질을 본 발명자가 명명한 것이다. 상기 루테리알은 DNA와 RNA를 모두 포함하며, 부착성과 운동성을 가진다는 점에서 엑소좀(exosome)이나 미소포(microvesicle)와는 구별된다.
인간을 포함한 동물의 경우에는 혈액, 타액, 림프관, 정액, 질액, 모유(특히, 초유), 제대혈, 뇌세포, 척수, 골수에 존재하며 “루테리알”로 지칭된다. 아울러, 식물에 존재하는 물질은 “루테리온(Luterion)”으로 지칭되며, 혈액 등에서 발견되는 루테리알의 기원은 식물유래 루테리온인 것으로 추정된다 (도 1).
미토콘드리아는 야누스 그린B(Janus green B) 및 형광염색인 로다민123(Rhodamine123), 미토트랙커(Mitotracker), 아크리딘 오렌지(Acridine Orange), 및 DAPI에 의해 발색이 확인되는데, 상기 루테리알도 미토콘드리아와 동일한 염색약에 의해 발색이 확인되며, 미토콘드리아와 유사하게 이중막을 가진 막구조로서 내부 크리스테(cristae) 구조를 완성하지 않은 상태의 구조를 가지고, 미토콘드리아와 동일한 레이저 파장 범위에서 관찰된다는 점에서 “유사 미토콘드리아”, “미토콘드리아 유사체” 혹은 “미토콘드리아 전구체 (proto-mitochondria)”라고도 지칭할 수도 있다.
루테리알은 인간을 포함한 동물의 경우에는 혈액, 타액, 림프관, 정액?질액, 모유(특히, 초유), 제대혈, 뇌세포, 척수, 골수에 존재한다. 그 외, 뿔이 있는 동물의 경우에는 뿔 내에도 루테리알이 존재한다.
상기 루테리알은 또한, 시그널링, 세포 분화, 세포 사멸 뿐 아니라 세포 사이클 및 세포 성장의 조절과도 관련이 있을 것으로 예상되는데, 본 발명자는 그 중에서도 루테리알이 암의 진단에 밀접한 관련이 있음을 발견하였다.
정상적인 루테리알 (normal luterial)은 암세포의 성장을 막고, 세포를 건강한 면역체계로 되돌리는 역할을 하는 것으로 예상되는데, 그 역할은 유전자를 정상화시키는 가능성을 지닌 RNAi(RNA interference; RNA 간섭)에 의해 수행된다. 이와 같이, 건강한 사람이나 동물 유래의 루테리알의 경우, RNA 내에 있는 정보체계가 정상궤도에서 벗어나 이상 질환을 유발하는 단백질을 생산하도록 지시할 경우 이를 인위적으로 간섭하여 암 등의 질병 발생을 억제하도록 작용하며, 크기가 200~500nm 이상으로 성숙하였을 때에는 에너지 대사에도 관여하므로 이러한 루테리알이 정상적인 역할을 수행하지 못할 경우에는 항상성 및 ATP 생산에 결정적인 장애를 유발하여, 호흡 및 에너지 대사 모두에 질병을 야기시킬 수 있다.
이와 같이, 정상적인 역할을 수행하지 못하는 변이 루테리알은, 정상적인 루테리알과는 생태 및 특성이 상이하여 그 크기나 형태가 다양하다. 구체적으로, 정상적인 루테리알의 경우는 이중포자 (double-spore)를 형성한 후 더 이상 증식하지는 않으나, 암 환자나 만성 질병을 가지는 환자의 혈액 내에서 발견되는 변이 루테리알의 경우에는 줄기세포와 유사하게 무한히 증식하는 특성을 가져 600~800nm 이상부터, 어떤 것은 200μm(200,000nm) 이상의 크기를 가진다. 또한, 바이러스와 유사하게 적혈구, 백혈구, 혈소판 등에 침입하여 생장하거나, 다른 루테리알과 응집하는 특성을 보인다.
한편, 루테리알은 개체의 질병 유무에 따라 그 수, 크기(직경 또는 면적), 형태, 피막형성여부 및 나노 트랙킹 속도가 상이하여, 상기 특성 중 하나 또는 둘 이상의 조합을 통하여 질병의 진단이나 예후를 예측할 수 있다. 이는, 질병이 없는 건강한 사람으로부터 유래한 루테리알과 질병이 있는 사람으로부터 유래한 루테리알의 수, 크기(직경 또는 면적), 형태, 피막형성여부, 나노 트랙킹 속도 등이 상이함을 통해 알 수 있다. 이러한 차이는 루테리알의 변이 유무에 의해 기인한 것으로, 질병이 있는 사람으로부터 유래한 루테리알을 건강한 사람으로부터 유래한 정상적인 루테리알과 구분하기 위하여 “변이 루테리알(mutant luterial)”로 명명하였다.
결국, 환자에서 기 배출된 체액에 존재하는 루테리알의 수와 형태학적 특성 또는 생화학적 특성을 관찰함으로써 질병의 진단 및 예후예측이 가능하다.
보다 구체적으로, 환자의 경우 루테리알의 수, 특히 4,000nm 이하 크기의 루테리알 수가 정상인에 비해 적어지는 특성이 있고, 중증환자의 경우 20~80%까지도 적어진다. 따라서, 루테리알의 수가 정상인의 20%이하일 경우에는 종양 의심상태로 결정할 수 있다.
아울러, 루테리알의 크기(장직경)가 20um인 뮤턴트 루테리알이 발견될 경우 종양 의심상태로 결정할 수 있다. 특히, 루테리알의 장직경이 20um이하라 하더라도, 뮤턴트 루테리알 외부에 피막이 형성될 경우에는 악성 종양 의심상태로 결정할 수 있다. 다만, 뮤턴트 루테리알의 장직경이 20um이상이라 하더라도, 피막이 완성되지 않은 경우에는 양성 종양 의심상태로 결정할 수 있다.
또한, 환자유래 루테리알의 경우 그 움직임이 정상인 유래 루테리알에 비해 현저히 낮아진다. 이러한 루테리알의 움직임은 나노트래킹 속도를 통해 정량할 수 있다.
따라서, 본 발명은 일 관점에서, (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 수, 크기, 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 현미경을 이용하여 측정하는 단계; 및 (b) 상기 측정된 루테리알의 수, 크기, 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 정상인의 루테리알; 정상 루테리알; 또는 적혈구와 비교하는 단계를 포함하는, 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법에 관한 것이다.
본 발명은 다른 관점에서, (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 수, 크기, 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 현미경을 이용하여 측정하는 단계; 및 (b) 상기 측정된 루테리알의 수, 크기, 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 정상인의 루테리알; 정상 루테리알; 또는 적혈구와 비교하는 단계를 포함하는, 질병의 진단 또는 예후 예측 방법에 관한 것이다.
본 발명에서 관찰되는 루테리알은 환자에서 기 배출된 체액에서 분리될 수 있다. 본 발명의 “환자에서 기 배출된 체액”은 혈액, 타액, 림프관, 정액, 질액, 모유(특히, 초유), 제대혈, 뇌세포, 척수 또는 골수일 수 있으나, 이에 제한되는 것은 아니다. 가장 바람직하게는 혈액 유래의 루테리알을 사용할 수 있다. 구체적으로, 채취된 혈액 샘플내에 존재하는 루테리알 또는 혈액으로부터 분리된 루테리알을 현미경으로 관찰함으로써 질병을 진단하고, 예후를 예측할 수 있다.
본 발명의 일 실시예에서는 혈액에서 혈청을 분리하는 제1분리단계; 상기 분리된 혈청에서 100nm~2mm의 직경의 공극을 구비하는 필터를 통과하지 않는 침전물을 분리하는 제2분리단계; 및 상기 분리된 침전물을 세정하는 단계를 포함하여 루테리알을 수득하였다.
더욱 자세하게는, 상기 제1분리단계는 환자에게서 혈액을 채취하고 원심분리 1200~5000rpm에서 5~15분간 원심분리하는 단계를 포함할 수 있다. 상기 제2분리단계는 혈청에서 원심분리 등을 이용하여 엑소좀(exosome)과 같은 일반 마이크로 베지클을 제거하여 상등액을 획득하는 단계; 및 상기 획득된 상등액을 100nm~2mm의 직경의 공극을 구비하는 필터를 통과시켜 이를 통과하지 않는 침전물을 분리하는 단계를 포함할 수 있다. 엑소좀을 제거하기 위하여 엑소퀵을 사용할 수 있으나, 이에 제한되지 않는다. 상기 세정하는 단계는 상기 침전물이 분리된 혈청(이는 엑소좀일 수 있음)을 생리 식염수(Normal Saline)로 세정하는 단계를 포함할 수 있다. 상기 세정하는 단계는 이후 아이싱(4도 이하)을 유지하는 단계를 추가로 포함할 수 있다.
상기 (b) 단계에서 관찰 또는 촬영된 루테리알의 장직경이 적혈구 직경의 8~30배; 또는 관찰 또는 촬영된 루테리알의 면적이 적혈구 면적의 8~30배일 경우 질병을 암 의심상태로 결정할 수 있다.
루테리알의 크기를 관찰 또는 촬영하여 측정하는 경우, 정상인의 루테리알은 100~250nm이나, 피로증후군이 있는 경우 250~800nm, 질병이 있는 경우 800nm 이상, 최대 수백μm(약 200μm)의 크기를 가진다.
상기 (b) 단계에서 관찰 또는 촬영된 루테리알의 수가 정상인의 20%이하이고, 크기(직경)가 0.8~1μm일 경우 질병 발생 의심상태로, 20μm일 경우 암 의심상태로 결정할 수 있다. 뮤턴트 루테리알의 외부에 피막이 형성된 경우에는 그 크기와 무관하게 암의 표식인자로 결정할 수 있다. 특히, 피막이 형성되고 편모(촉수)가 관찰되면 악성종양 중증인자로 결정할 수 있다. 피막형성 여부는 암시야 현미경이나 전자현미경으로 관찰이 가능하다.
상기 (a)단계에서는 루테리알의 형태를 관찰 또는 촬영하고 상기 (b)단계에서는 관찰 또는 촬영된 루테리알의 형태에 따라 질병을 결정할 수 있다.
상기 (b)단계에서, 루티리알의 형태는 정상형, 외부에 편모가 구비된 편모형, 매스(Mass:M)형, 로드(Rod:L)형, 및 복합형을 포함하는 군에서 선택될 수 있다.
상기 정상형은 루테리알의 장직경:단직경의 비가 1:1~3:1일 수 있다.
상기 매스(Mass)형은 둥그런 형상으로 밀집되어 있고, 대다수 막이 열린 구조로, 장직경:단직경의 비가 3:1~5:1일 수 있다.
상기 로드(Rod)형은 뾰족하고 각진 형상을 가지고, 대다수 막이 닫친 구조로, 장직경:단직경의 비가 5:1~12:1일 수 있다.
상기 로드(Rod)형은 원형 또는 타원형의 단일 사슬로 이루어지는 로드 1형 또는 단일 사슬이 2개 이상 결합하여 이루어지는 로드 2형일 수 있다.
상기 복합형은 로드형과 매스형의 융합형태, 로드형과 로드형의 융합 형태 또는 매스형과 매스형의 융합형태일 수 있다.
상기 (b)단계에서는 관찰 또는 촬영에 의해 측정된 루테리알의 형태가 로드형일 경우, 폐암, 유방암, 췌장암, 담관암, 융막중피종, 갑상선암, 난소암, 담도암, 전립선암, 또는 림프구성 혈액암 발생 표식인자로 결정하며, 매스형일 경우, 간암, 간혈관육종, 대장암, 자궁암, 소화기암(위암), 신장암, 직장암 또는 골수성 혈액암 발생 표식인자로 결정하고, 복합형일 경우, 중증 혈액암 또는 전이암 의심상태 표심긴자로 결정하며, 편모형이 나타날 경우, 말기 종양 의심 표식인자로 결정하는 것을 특징으로 할 수 있다.
이러한 뮤턴트 루테리알의 형태를 통해 발생부위를 추적할 수도 있다. 로드형일 경우, 암 발생부위를 폐, 유방, 췌장, 담관, 갑상선, 난소, 담도, 전립선, 또는 림프구성 혈액으로 결정할 수 있고, 매스형일 경우, 암 발생부위를 간, 대장, 자궁, 소화기(위), 신장, 직장 또는 골수성 혈액으로 결정할 수 있다. 아울러, 로드형에서 매스형으로 복합형 진행중인 경우, 암의 원래 발생부위는 로드형과 동일하며, 매스형에서 로드형으로 복합형 진쟁중인 경우에는 암의 원래 발생부위는 매스형과 동일하다.
본 발명은 또한, 루테리알의 운동성을 의미하는 나노 트랙킹 속도를 측정하여 그 속도에 따라 1기암 내지 4기암 의심상태로 결정할 수 있다. 상기 (b)단계에서, 관찰 또는 촬영에 의해 측정된 루테리알의 나노 트랙킹 속도가 8.0~11nm/sec인 경우 1기암 의심상태로, 2.5~8.0nm/sec인 경우 2기암 의심상태로, 0.5~2.5nm/sec인 경우 3기암 의심상태로, 0.5nm/sec 미만인 경우 4기암 의심상태로 결정할 수 있다.
본 발명은 또 다른 관점에서는, (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 형태를 전자현미경으로 측정하는 단계; (b) 상기 측정된 루테리알의 형태를 단일형, 융합형, 다중 융합형 및 막이 터진 융합형으로 구성된 군에 선택되는 형태로 결정하는 단계; 및 (c) 상기 결정된 형태를 기준으로 질병상태를 결정하는 단계를 포함하는, 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법에 관한 것이다.
본 발명은 또 다른 관점에서, (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 형태를 전자현미경으로 측정하는 단계; (b) 상기 측정된 루테리알의 형태를 단일형, 융합형, 다중 융합형 및 막이 터진 융합형으로 구성된 군에 선택되는 형태로 결정하는 단계; 및 (c) 상기 결정된 형태를 기준으로 질병상태를 결정하는 단계를 포함하는, 질병의 진단 또는 예후 예측 방법에 관한 것이다.
상기 혈액 유래 루테리알은 로다민 123(Rhodamine123), 미토트랙커(Mitotracker), 아크리딘 오렌지(Acridine Orange), DAPI, 및 야누스 그린 B (Janus green B)로 구성되는 군에서 선택되는 1 이상의 염색약으로 염색하여 발색이 확인되며 전자현미경 상에서 이중막 및 크리스테 구조가 확인되는 것을 특징으로 한다.
상기 (c)단계는 상기 관찰 또는 촬영에 의해 측정된 루테리알의 형태가 단일형의 형태와 80~100% 일치할 경우 정상으로 결정하고, 융합형의 형태와 80~100% 일치할 경우 질병 의심상태로 결정하고, 다중 융합형의 형태와 80~100% 일치할 경우 종양 의심상태로 결정하고, 막이 터진 융합형의 형태와 80~100% 일치할 경우 중증 종양 의심상태로 결정할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 혈액 유래 루테리알의 분리
비소세포성 폐암 말기 환자로부터 채취된 혈액 250μl을 1600rpm로 10분간 원심분리하여 혈청을 분리하였다. 이 혈청에 SBI사의 ExoQuick를 63μl 첨가하고 3000rpm으로 15분간 원심분리한 다음, 추가로 15분을 유지시킨 후 ExoQuick와 반응하지 않는 상층부를 분리하였다. 분리된 상층부(상등액)를 100nm 마이크로필터로 필터링해서 통과하지 않은 침전물을 분리하였다. 이를 생리 식염수로 수차례 세정후 아이싱(4℃ 이하)을 유지하여 미세물질인 루테리알을 분리하였다.
실시예 2: 현미경 관찰 및 루테리알의 확인
실시예 1에서 분리된 루테리알은 공초점 레이저 주사현미경을 이용하여 관찰이 가능하였고(도 2a), 로다민 123에 염색시킨 다음, 공초점 레이저 주사현미경을 이용하여 확인이 가능하였으며(도 2b), 야누스 그린 B에 의하여 염색되는 양성 반응을 광학현미경으로 확인하였다.
아울러, 상기 분리된 루테리알을 전자현미경 샘플로 만들어 관찰하였다(도 2c). 혈구를 MICA로 고정시킨 후 막을 프로브(Probe)로 벗겨 내어 DNA와 RNA를 확인할 수 있었다(원자현미경 이용). MICA 대신 고정액 Cell-Tack BD(Bioscience 사), 또는 Glutaraldehyde/poly-L-lysine을 사용할 수 있다. 암시야 현미경에서 로다민123 형광염색 시약을 도포 후 5분 뒤 세척 후 오렌지 필터(506nm~520nm 대역파장 필터)로 관찰하여 초록색으로 관찰됨을 확인하였다.
도 2a 내지 도 2c는 실시예 1에 분리된 루테리알을 촬영한 사진으로, 도 2b와 같이, 상기 루테리알을 로다민 123으로 형광염색할 경우 특이적으로 염색되며 공초점 레이저 주사현미경으로 관찰된다. 상기 루테리알은 야누스 그린 B (Janus green B)로 특이적으로 염색되어 광학 현미경으로 관찰 가능하다. 형광염색 시약인 미토트랙커(Mitotracker), 아크리딘 오렌지(Acridine Orange), 및 DAPI에 의해서도 발색을 확인할 수 있다.
도 2a에 나타난 루테리알은 최대 718nm, 즉 0.718μm의 직경을 보이며, 도 2c와 같이 외부에 피막이 형성된 것을 확인할 수 있었다. 실제로 실험군인 환자는 비소세포성 폐암 말기로 진단받았다. 따라서 본 발명에 따른 질병의 진단 및 예후예측 방법은 관찰 또는 촬영된 루테리알의 직경이 0.5μm 이상이고, 외부에 피막이 형성된 경우 암 의심상태로 결정할 수 있다.
도 2c는 상기 루테리알의 전자현미경 사진으로, 본 발명에 따른 질병의 진단 및 예후예측 방법에 사용되는 루테리알은 외부에 피막이 형성되어 있는 이중막을 가진 막구조로서 완성되지 않은 내부 크리스테 구조를 확인할 수 있다.
실시예 3: 다양한 피험자 유래 루테리알의 직경 측정(전자현미경)
정상인부터 말기암 환자까지 다양한 피험자 30명의 혈액으로부터 실시예 1과 같은 방법으로 루테리알을 분리한 다음, 전자현미경을 이용하여 루테리알의 직경을 측정하였다.
도 3은 관찰된 루테리알을 100nm부터 1μm까지 직경의 크기순으로 배열한 것이다. 융합 또는 변이된 루테리알은 직경 450nm 이상에서부터 발견되었으며(대체로는 800nm이상에서 발견), 이중 대다수는 질병진단을 받았다. 따라서 본 발명에 따른 질병의 진단 및 예후예측 방법은 루테리알의 직경을 현미경으로 관찰 또는 촬영하여, 관찰 또는 촬영된 루테리알의 직경이 800nm, 즉 0.8μm 이상일 경우 질병 발생 의심상태로 결정할 수 있다(전자현미경 또는 원자 현미경으로는 0.45μm에서도 관찰이 가능). 현미경으로는 최대 관찰된 크기는 200μm이었으나, 최대치는 환자에 따라 증가할 수 있다.
도 3의 800nm(0.8μm)의 피막형성 루테리알은 암환자 유래 혈액에서 다수 발견되었다. 따라서 본 발명에 따른 질병의 진단 및 예후예측 방법은 루테리알의 직경을 현미경으로 관찰 또는 촬영하여, 관찰 또는 촬영된 루테리알의 직경이 0.8μm 이상이고, 피막이 형성된 경우 질병을 암 의심상태로 결정할 수 있다.
실시예 4: 정상인의 혈액 유래 루테리알의 현미경 관찰
질병의 징후가 전혀 없는 정상인으로부터 채취된 혈액을 슬라이드 글라스에 묻히고 커버글라스로 덮은 다음, 암시야용 오일을 한 방울 가하고 암시야 현미경(Nikon Eclipse Ni(1000배)을 사용하여 1000배율로 관찰하였다.
그 결과, 도 4a에 나타난 바와 같이, 반짝이는 점으로 나타나는 루테리알을 관찰되었다. 원형의 물질은 적혈구이며 나타내며, 정상인 유래의 미루테리알은 적혈구보다 매우 작게 관찰된다.
실시예 5: 루테리알의 직경에 따른 질병의 진단 및 예후예측
1기암, 2기암, 3기암, 및 4기암 환자 각 15명으로부터 채취된 혈액으로부터, 실시예 1과 같은 방법으로 루테리알을 분리하였다.
분리된 루테리알을 버퍼 솔루션에 담아 로다민123으로 염색한 후 공초점 레이저 주사현미경을 이용하여 그 직경을 측정하였다. 2μm이상의 루테리알 변이체, 즉 변이 루테리알의 관측 비율은 다음과 같다.
표 1
직경 2㎛ 이상의 변이 루테리알 관측 비율
1기암 72.2%
2기암 83.5%
3기암 91.3%
4기암 93.6%
조기암에서 말기암으로 발전할수록 직경 2μm 이상의 변이 루테리알이 증가하였으며, 4기 암에서는 약 94%의 환자에게서 직경 2μm 이상의 변이 루테리알이 발견되었고 최대 크기는 200μm 이상으로 관측되었다. 또한, 1기 내지 3기 암환자에서 직경 0.5~5μm의 변이 루테리알의 관측비율이 높았다. 또한 말기암인 4기 암환자의 경우 5μm 이상의 변이 루테리알의 관측 비율이 높았다.
따라서 본 발명에 따른 질병의 진단 및 예후예측 방법은 루테리알의 직경을 현미경으로 관찰 또는 촬영하여, 관찰 또는 촬영된 루테리알의 직경이 1.0~200μm일 경우 암 의심상태로 결정하되, 20μm이상이고 피막 형성시 암 의심상태로 결정할 수 있다.
실시예 6: 루테리알의 형태에 따른 질병의 진단 및 예후예측
정상인, 염색체 메틸화 이상 단계의 환자, 유전자 변이 발생 환자, 종양 관련 유전자 변이 환자, 종양관련 유전자 복합 변이 환자(전립선 암 말기 환자)의 혈액을 슬라이드 글라스에 묻히고 커버글라스로 덮은 다음 암시야용 오일을 한 방울 가하고 암시야 현미경으로 Nikon Eclipse Ni(1000배)를 사용하여 1000배율로 관찰하였다.
또한, 상기 실험군 환자 중 1기암, 2기암, 3기암, 및 4기암 환자를 대상으로 루테리알의 형태가 편모형으로 관찰되는 비율을 계산하였다.
표 2
편모형 관찰 비율
1기암 2.3%
2기암 7.2%
3기암 13.6%
4기암 99.1%
도 4b 내지 도 4i는 실시예 6에 따라 촬영된 루테리알의 형태를 질병의 경중 순으로 2단계부터 9단계로 분류하여 나타낸 것이며, 1단계는 도 4a로 나타내었다.
도 4b 및 도 4c는 정상인 혈액 유래 루테리알(2단계 및 3단계), 도 4d는 메틸화(methylation) 이상 단계 환자의 혈액 유래 루테리알(4단계), 도 4e 및 도 4f는 유전자 변이 발생단계 환자 유래 루테리알(5단계 및 6단계), 도 4g는 종양관련 유전자 변이단계 환자 유래 루테리알(7단계), 도 4h는 종양관련 유전자 복합 변이단계 환자 유래 루테리알(8단계), 도 4i은 종양관련 유전자 복합 변이단계 환자(말기 전립선암) 유래 루테리알(9단계)을 촬영한 것이다. 도 4b 내지 도 4i에서 원형의 물질은 적혈구 또는 백혈구이다.
먼저, 도 4b 및 도 4c에서 원형의 물질 외에 반짝이는 은색의 미세물질들이 루테리알이다. 정상인 유래 루테리알에서는 적혈구보다 크기가 작으며, 융합되거나 변형된 군집형태가 발견되지 않았다.
도 4d는 염색체가 메틸화(methylation) 이상 단계를 보이기 시작하는 환자의 혈액 유래 루테리알을 촬영한 것으로, 도 4c의 분류 3단계와 비교할 때 크기는 커졌으나, 아직 변형된 군집형태가 발견되지 않았다.
도 4e 및 도 4f는 유전자 변이 발생 단계 환자의 혈액 유래 루테리알을 촬영한 것으로, 특히 도 4f의 분류 6단계의 경우 도 4d의 분류 4단계와 비교할 때 루테리알 간 융합이 진행된 것을 알 수 있다. 도 4e 및 도 4f의 유전자 변이 발생 단계 환자는 아직 종양관련 유전자에는 변이가 일어나지 않았다.
도 4g는 종양관련 유전자 일부에 변이가 발생한 환자의 혈액에서 유래한 루테리알을 촬영한 것으로(분류 7단계), 도 4e 및 도 4f에 비하여 적혈구 크기의 20배 이상의 압도적으로 큰 변이 루테리알(매스형) 군집이 관찰되었다(중앙의 은색 물질).
도 4h는 종양관련 유전자에 복합 변이가 발생한 환자의 혈액에서 유래한 루테리알을 촬영한 것으로(분류 8단계), 분류 7단계에 비해 크기가 훨씬 커졌으며, 로드형으로 관찰되었다.
도 4i는 말기암 환자유래 혈액의 루테리알(9단계)을 촬영한 것으로, 8단계와 달리 편모형의 형태로 관찰되었다. 편모가 형성된 변이 루테리알이 관찰된 환자는 말기 암환자로 구분되며, 편모형 암환자의 생존기간은 1~4개월이었다. 또한, 도 4i와 같이 300nm이상의 편모가 방출되는 경우 생존기간이 2개월 이내였다.
실시예 6에 따른 현미경 관찰 결과, 혈액 유래 루테리알의 형태는 정상형, 편모형, 매스(Mass)형, 로드(Rod)형, 및 복합형으로 나타나는 것을 확인할 수 있었다.
정상형이란 관찰 또는 촬영된 루테리알이 별도의 융합이나 버스팅(Bursting) 등의 변형을 일으키지 않고 장직경:단직경의 비가 1:1~3:1인 형태로, 현미경 관찰 시 작은 점으로 나타난다. 도 4a 내지 도 4c에 나타난 형태가 정상형의 루테리알이다. 본 발명에 따른 질병의 진단 및 예후예측 방법은 관찰 또는 촬영된 루테리알의 형태가 정상형의 형태와 80~100% 일치할 경우, 정상으로 결정할 수 있다.
편모형이란 관찰 또는 촬영된 루테리알이 변형 또는 융합을 일으켜 외부에 편모가 구비된 형태로, 도 4i에서 편모형의 루테리알이 관찰되었다. 말기암으로 갈수록 편모형 관찰 비율이 급격히 증가하며, 4기암에서는 99.1%로 거의 대부분의 4기암 환자에서 편모형의 루테리알이 관찰되었다. 본 발명에 따른 질병의 진단 및 예후예측 방법은 관찰 또는 촬영된 루테리알의 형태가 편모형의 형태와 80~100% 일치할 경우, 말기 종양 의심상태로 결정할 수 있다. 상기 말기 종양으로 진단받은 환자의 생존 기간은 1~4개월일 수 있다. 특히, 편모형의 경우 장기생존이 불가능하다.
매스형(M)이란 관찰 또는 촬영된 루테리알이 버스팅(Bursting) 또는 융합을 일으켜 크기 및 형태가 정상형에서 변형된 것으로, 장직경 및 단직경의 차이가 크지 않은 불규칙적인 부피 형태로, 바람직하게는 장직경:단직경의 비가 3:1~5:1일 수 있다. 도 4g 및 도 5는 실시예 6에 따라 매스형의 루테리알을 암시야현미경으로 촬영한 사진을 나타낸 것으로, 다양한 형태의 매스형이 관찰된다. 이를 대조군으로 하여 관찰 또는 촬영된 루테리알의 형태를 비교하여 질병을 결정할 수 있다.
로드형(L)은 관찰 또는 촬영된 루테리알이 버스팅(Bursting), 변형, 또는 융합을 일으켜 막대(Rod) 형태를 나타내는 것으로, 단직경과 장직경의 길이 차이가 매스형 보다 크다. 바람직하게는 장직경:단직경의 비가 5:1~12:1일 수 있다. 로드형은 도 6과 같이 다양한 형태로 관찰된다. 원형 또는 타원형의 단일 사슬로 이루어지는 로드 1형; 및 단일 사슬이 2개 이상 결합하여 이루어지는 로드 2형을 포함할 수 있다. 상기 로드 1형은 단일의 루테리알이 막대 형태가 된 것으로, 이는 버스팅(Bursting) 및/또는 변형에 의한 것일 수 있다. 상기 로드 2형은 2 이상의 루테리알이 결합하여 막대 형태가 된 것으로, 이는 버스팅(Bursting), 변형 및 융합 중 하나 이상에 의한 것일 수 있다.
편모형은 형상에 있어서 큰 범주에서 로드형에 포함될 수 있으나, 편모가 뻗어 나왔다는 점에서 차이를 가진다. 따라서 로드형인지 먼저 판단한 다음 편모형인지를 판단할 수 있다.
복합형은 로드형과 매스형의 융합형태일 수 있다. 일체로 형성된 루테리알의 일부는 로드형이고 일부는 매스형인 형태를 일컬을 수 있다.
실시예 7: 다양한 종류의 암환자 유래 루테리알의 형태에 따른 질병의 진단 및 예후예측
다양한 암 진단을 받은 환자(표 3)로부터 채취된 혈액 또는 실시예 1과 같은 방법으로 상기 혈액으로부터 루테리알을 수득하여 관찰하였다.
상기 혈액 샘플 또는 루테리알을 버퍼 솔루션에 담아 슬라이드 글라스에 묻히고 커버글라스로 덮은 다음 암시야용 오일을 한 방울 가하고 암시야 현미경(Nikon Eclipse Ni(1000배)) 및 공초점 주사현미경을 이용하여 관찰하였다.
그 결과, 표 4에 나타낸 바와 같이, 폐암, 유방암, 췌장암, 담관암, 융막중피종, 갑상선암, 난소암, 담도암, 전립선암, 및 급성림프구성 백혈병의 경우, 로드형(L)의 루테리알이 관찰되었다.
또한, 간암, 간혈관육종, 대장암, 자궁암, 소화기암(위암), 직장암 및 급성 골수성 백혈병의 경우, 매스형(M)의 루테리알이 관찰되었다.
전이암 환자의 경우, 매스형과 로드형이 복합된 복합형의 루테리알이 발견되었고, 말기암 환자의 경우에는 도 4i에 나타난 바와 같이, 편모형의 루테리알이 관찰되었다.
로드형에서 로드-매스형으로 진행되는 경우(L-M), 암의 발생 부위는 L형과 동일하나, 전이가 진행되는 것으로 판단할 수 있다, 아울러, 매스형에서 매스-로드형으로 진행되는 경우(M-L) 암의 발생 부위는 M형과 동일하나, 전이가 진행되는 것으로 판단할 수 있다.
표 3
암 종류 진행상태 루테리알 형태 도면
폐암 초기 L 도7a
중기 L 도 7b~e
유방암 초기 L 도8a~b
중기 L 도8c
중기 L-M 도8d
림프, 복막(Peritoneal) 및 심막(Pericardial) 전이 L 도8e
췌장암 초기 L 도9a
중기 L-M 도9b
중기 L 도9c~d
담관암(Common Bile Duct Cancer) 뼈/폐 전이 L 도11
흉막중피종 (Pleural Mesothelima) L 도11
갑상선암 초기 L 도6
중기 L 도12
난소암 L-M 도13a~b
담도암 L 도14
전립선암 L 도15
급성림프구성 백혈병 L 도16a
L-M 도16b
간암 초기 M 도17a
중기 M 도17b~c
폐전이 M 도17d
간 혈관육종(angiosarcoma of liver) M 도18
대장암 M 도19a~c
자궁암 M 도20
위암 M-L 도21
직장암 중기 M-L 도22a
중기 M 도22b
급성골수성 백혈병 중기 M-L 도23a
M 도23b~c
신장암 중기 M-L 도24
위암 간전이 복합형 도25a
위암 복막전이 복합형 도25b
위암 복막 및 간 전이 복합형 도25c
직장암 뼈/폐 전이 복합형 도26
전립선암 뼈전이 복합형 도27
비소성폐암(NSCLC) 림프전이 복합형 도28
신장암 뼈전이 복합형 도29
급성림프구성 백혈병 복합형 도30
이 결과로부터, 본 발명에 따른 질병의 진단 및 예후예측 방법은 관찰 또는 촬영된 루테리알의 형태가 로드형일 경우, 폐암, 유방암, 췌장암, 담관암, 융막중피종, 갑상선암, 난소암, 담도암, 전립선암, 또는 림프성 혈액암 발생상태로 결정할 수 있다.
또한, 본 발명에 따른 질병의 진단 및 예후예측 방법은 관찰 또는 촬영된 루테리알의 형태가 매스형일 경우, 간암, 간혈관육종, 대장암, 자궁암, 소화기암(위암), 직장암, 신장암 또는 골수성 혈액암 발생상태로 결정할 수 있다.
아울러, 본 발명에 따른 질병의 진단 및 예후예측 방법은 루테리알의 형태가 복합형일 경우, 중중 혈액암 또는 전이암 의심상태로 결정할 수 있고, 편모형이 검출될 경우, 말기암 의심상태로 결정할 수 있다.
실시예 8: 루테리알의 나노 트랙킹 속도에 따른 질병의 진단 및 예후 예측
1기암, 2기암, 3기암, 및 4기암 환자(각각 15명)의 혈액으로부터 실시예 1과 같은 방법으로, 루테리알을 얻었다. 상기 루테리알을 버퍼 솔루션에 담아 Janus Green B에 염색시킨 후 광학현미경으로 관찰하였다.
운동성 기준은 200nm 루테리알을 이용하여 미국 3i 사의 나노 트랙킹으로 루테리알의 나노 트랙킹 속도를 측정하였다. 구체적으로, 루테리알을 명시야 현미경으로 관찰한 후 루테리알 중심에 트랙킹을 설정하고 나노 특랙킹을 작동하면, 루테리알의 이동과 함께 실시간 이동궤적을 표기하여 초당 속도를 계산하였다(도 31).
표 4
나노 트랙킹 속도
정상인 12㎛/sec 이상
1기암 8.0~11㎛/sec
2기암 5.0㎛/sec 내외 (2.5~8.0㎛/sec)
3기암 0.5~2.5㎛/sec
4기암 운동성 없음 (0~0.5㎛/sec)
본 실시예에 따른 암환자 유래 루테리알의 나노 트랙킹 속도는 루테리알의 운동성을 나타낸다. 정상인의 경우 12μm/sec 이상이나, 초기암인 1기암에서 말기암인 4기암으로 갈수록 운동성은 줄어들어 4기암에서는 거의 운동성이 없는 것으로 관찰되었다. 따라서 본 발명에 따른 질병의 진단 및 예후예측 방법은 관찰 또는 촬영된 루테리알의 나노 트랙킹 속도가 8.0~11μm/sec인 경우 1기암, 2.5~8.0μm/sec인 경우 2기암, 0.5~2.5μm/sec인 경우 3기암, 0~0.5μm/sec인 경우 4기암으로 결정할 수 있다.
실시예 9: 전자현미경을 이용한 루테리알의 형태에 따른 질병의 진단 및 예후예측
루테리알은 전자현미경으로 관찰할 경우, 단일형, 융합형, 다중 융합형, 또는 막이 터진 융합형의 형태를 나타낼 수 있으며, 이를 기준으로 하여 질병을 진단 및 예후예측 할 수 있다.
단일형은 단일의 루테리알이 관찰되는 형태이고, 융합형은 2~4개의 루테리알 군집이 융합되어 관찰되는 형태이며, 다중 융합형은 상기 융합형 루테리알 군집이 여러 겹으로 겹쳐서 융합되어 관찰되는 형태이고, 막이 터진 융합형은 상기 융합형의 루테리알의 막이 터지고 내부 물질이 빠져나온 형태이다.
정상인부터 말기암환자까지 다양한 피험자(30명) 혈액으로부터 실시예 1과 같은 방법으로 루테리알을 수득하였다. 수득된 루테리알을 슬라이드 글라스에 고정시키고 전자현미경을 이용하여 형태를 관찰 또는 촬영하였다.
그 결과, 정상인의 경우, 단일형의 루테리알이 관찰되었다. 암 이외의 질병을 가지는 환자의 경우, 융합형의 루테리알이 관찰되었는바, 융합형의 루테리알은 질병 의심상태로 판단된다.
다중 융합형의 루테리알이 발견된 다수의 환자에게서 종양이 발견되었다. 따라서 다중 융합형의 루테리알은 종양 의심상태로 판단된다.
도 32a~c는 막이 터진 융합형의 형태를 순서대로 전자현미경으로 촬영한 사진을 나타낸 것이다. 도 32a부터 막을 형성한 루테리알 군집이 점점 증식하여(도 32b), 최종적으로 막이 터져 내부의 변형된 입자들이 터져 나왔다(도 32c). 이러한 막이 터진 융합형의 루테리알이 발견된 다수의 환자에게서 중증암이 발견되었다. 따라서 막이 터진 융합형의 루테리알은 중증 암 의심상태로 판단된다.
따라서 본 발명에 따른 질병의 진단 및 예후예측 방법은 혈액에 존재하며 전자현미경 상에서 이중막 및 크리스테 구조가 확인되는 루테리알의 형태와 비교하여 단일형의 형태와 80~100% 일치할 경우 정상으로 결정하고, 융합형의 형태와 80~100% 일치할 경우 질병 의심상태로 결정하며, 다중 융합형의 형태와 80~100% 일치할 경우 종양 의심상태로 결정하고, 막이 터진 융합형의 형태와 80~100% 일치할 경우 중증 종양 의심상태로 결정할 수 있다.
따라서 본 발명에 따른 질병의 진단 및 예후예측 방법은 루테리알을 질병의 진단 및 예후예측의 마커로서 활용함으로써, 특히 암환자의 진단, 치료법의 효과여부, 치료전후의 비교, 및 치료 받은 환자의 장기생존여부를 판단하는데 효과적으로 사용할 수 있다.
이상으로 본 발명의 내용을 상세히 기술하였는바, 당 업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따르면, 환자에서 기 배출된 체액에 존재하는 미세물질인 루테리알을 질병의 진단 및 예후예측의 마커로서 활용함으로써, 특히 암환자의 진단, 수술법 및 치료법의 효과여부, 치료전후의 비교, 및 치료 받은 환자의 장기생존여부를 판단하는데 효과적으로 사용할 수 있다. 특히, 암 종과 상관없이 암세포 조직 크기가 5mm 이하이더라도 암 질환의 현재 상태, 재발가능성, 장기생존 가능성에 대한 판단이 가능하다는 이점이 있다.
또한 별도의 유전자 분석, 고가의 장치를 이용하지 않고 현미경 관찰만으로 자동으로 질병의 진단 및 예후예측을 가능하게 하므로 생체 조직 검사 또는 고가의 영상 진단이 불필요하므로 경제적인 이점이 있다.

Claims (15)

  1. (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 수, 크기(직경또는 면적), 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 현미경을 이용하여 측정하는 단계; 및
    (b) 상기 측정된 루테리알의 수, 크기(직경 또는 면적), 형태, 피막형성여부 및 나노 트랙킹 속도 중 하나 이상을 정상인의 루테리알; 정상 루테리알; 또는 적혈구와 비교하는 단계를 포함하는, 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  2. 제1항에 있어서, 상기 체액은 혈액인 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  3. 제1항에 있어서, 상기 (a) 단계는 루테리알을 로다민123(Rhodamine123), 미토트랙커(Mito- tracker), 아크리딘 오렌지(Acridine Orange), DAPI, 및 야누스 그린 B (Janus green B)로 구성되는 군에서 선택되는 1 이상의 염색약으로 염색하여 발색하고, 측정하는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  4. 제1항에 있어서, 상기 루테리알은 혈액에서 혈청을 분리하는 단계; 상기 분리된 혈청에서 100nm~2mm의 직경의 공극을 구비하는 필터를 통과하지 않는 침전물을 분리하는 단계; 및 상기 분리된 침전물을 세정하는 단계를 포함하는 방법에 의해 분리되는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 (b)단계는 측정된 루테리알의 직경이 적혈구의 직경의 8~30배; 또는 측정된 루테리알의 면적이 적혈구의 면적의 8~30배일 경우, 질병을 암 의심상태로 결정하는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 (b)단계는 측정된 루테리알의 수가 정상인의 20%이하이고, 장직경이 20μm이상인 경우 암 의심상태로 결정하는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 (b)단계는 루테리알의 외부에 피막이 형성된 경우, 암 의심상태로 결정하는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  8. 제1항에 있어서, 상기 (b)단계에서 루테리알의 형태는 정상형, 외부에 편모가 구비된 편모형, 매스(Mass)형, 로드(Rod)형, 및 복합형을 포함하는 군에서 선택되는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  9. 제8항에 있어서, 상기 정상형은 루테리알의 장직경:단직경의 비가 1:1~3:1이고, 상기 매스(Mass) 형은 장직경:단직경의 비가 3:1~5:1이며, 상기 로드(Rod) 형은 장직경:단직경의 비가 5:1~12:1이고, 상기 복합형은 로드형간, 매스형간 또는 로드형과 매스형의 융합형태인 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  10. 제8항 또는 제9항에 있어서, 상기 (b)단계는 측정된 루테리알의 형태가 (i) 로드형일 경우, 폐암, 유방암, 췌장암, 담관암, 융막중피종, 갑상선암, 난소암, 담도암, 전립선암, 또는 림프구성 혈액암 발생상태로 결정하며, (ii) 매스형일 경우, 간암, 간혈관육종, 대장암, 자궁암, 소화기암(위암), 신장암, 직장암 또는 골수성 혈액암 발생상태로 결정하고, (iii) 복합형일 경우, 중증 혈액암 또는 전이암 의심상태로 결정하며, (iv) 편모형이 나타날 경우, 말기 종양 의심상태로 결정하는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  11. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 (b)단계는 측정된 루테리알의 나노 트랙킹 속도가 8.0~11μm/sec인 경우 1기암 의심상태로, 2.5~8.0μm/sec인 경우 2기암 의심상태로, 0.5~2.5μm/sec인 경우 3기암 의심상태로, 0.5μm/sec 미만인 경우 4기암 의심상태로 결정하는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  12. (a) 환자에서 기 배출된 체액에 존재하는 루테리알의 형태를 전자현미경으로 측정하는 단계;
    (b) 상기 측정된 루테리알의 형태를 단일형, 융합형, 다중 융합형 및 막이 터진 융합형으로 구성된 군에 선택되는 형태로 결정하는 단계; 및
    (c) 상기 결정된 형태를 기준으로 질병상태를 결정하는 단계를 포함하는, 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  13. 제12항에 있어서, 상기 체액은 혈액인 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  14. 제12항에 있어서, 상기 루테리알은 로다민123(Rhodamine123), 미토트랙커(Mito- tracker), 아크리딘 오렌지(Acridine Orange), DAPI, 및 야누스 그린 B (Janus green B)로 구성되는 군에서 선택되는 1 이상의 염색약으로 염색하여 발색이 확인되며, 전자현미경 상에서 이중막 및 크리스테 구조가 확인되는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
  15. 제12항 내지 제14항 중 어느 한 항에 있어서, 상기 (c)단계는 상기 측정된 루테리알의 형태가 단일형의 형태와 80~100% 일치할 경우 정상으로 결정하고, 융합형의 형태와 80~100% 일치할 경우 질병 의심상태로 결정하고, 다중 융합형의 형태와 80~100% 일치할 경우 종양 의심상태로 결정하고, 막이 터진 융합형의 형태와 80~100% 일치할 경우 중증 종양 의심상태로 결정하는 것을 특징으로 하는 질병의 진단 및 예후를 예측하기 위한 정보를 제공하는 방법.
PCT/KR2014/000393 2013-07-12 2014-01-14 루테리알의 형태특성을 이용한 질병의 진단방법 WO2015005553A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016525261A JP2016526688A (ja) 2013-07-12 2014-01-14 ルテリアルの形態学的特性を用いた疾病の診断方法
CN201480050194.4A CN106068455B (zh) 2013-07-12 2014-01-14 使用Luterial的形态特征用于诊断疾病的方法
EP14823421.4A EP3021119A4 (en) 2013-07-12 2014-01-14 Method for diagnosis of diseases using morphological characteristics of luterial
US14/904,507 US10338061B2 (en) 2013-07-12 2014-01-14 Method for diagnosis of diseases using morphological characteristics of luterial

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0082060 2013-07-12
KR20130082060 2013-07-12

Publications (1)

Publication Number Publication Date
WO2015005553A1 true WO2015005553A1 (ko) 2015-01-15

Family

ID=52280202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000393 WO2015005553A1 (ko) 2013-07-12 2014-01-14 루테리알의 형태특성을 이용한 질병의 진단방법

Country Status (6)

Country Link
US (1) US10338061B2 (ko)
EP (1) EP3021119A4 (ko)
JP (1) JP2016526688A (ko)
KR (7) KR20150007922A (ko)
CN (1) CN106068455B (ko)
WO (1) WO2015005553A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3096141A4 (en) * 2014-01-14 2017-09-06 Won Cheol Choi Method for screening cancer prevention agent or anticancer agent using morphological characteristics of luterial
EP3095875A4 (en) * 2014-01-14 2018-01-03 Won Cheol Choi Luterial and method for isolating and culturing same
US10071170B2 (en) 2013-06-24 2018-09-11 Ablbio Antibody-drug conjugate having improved stability and use thereof
US10406188B1 (en) 2015-01-05 2019-09-10 Luterion Co., Ltd. Method for inhibiting telomerase in cancer cell using luterion
US10569194B2 (en) 2015-01-06 2020-02-25 Luterion Co., Ltd. Luterion and separating and culturing methods for same
US10590384B2 (en) 2014-01-14 2020-03-17 Luterion Co., Ltd. Luterial and method for isolating and culturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022432A1 (en) * 1998-10-08 2000-04-20 Silvia Maria Doglia A method for the detection of mitochondrial alterations
KR20030033134A (ko) * 2001-10-17 2003-05-01 장준근 적혈구의 물리적 특성을 이용한 질환 진단 장치 및 그진단 방법
WO2006054296A2 (en) * 2004-11-17 2006-05-26 Spectrum Dynamics Llc Methods of detecting prostate cancer
WO2009100029A1 (en) * 2008-02-01 2009-08-13 The General Hospital Corporation Use of microvesicles in diagnosis, prognosis and treatment of medical diseases and conditions
US20090311664A1 (en) * 2005-12-22 2009-12-17 Yuman Fong Method for Detection of Cancer Cells Using Virus
WO2012135844A2 (en) * 2011-04-01 2012-10-04 Cornell University Circulating exosomes as diagnostic/prognostic indicators and therapeutic targets of melanoma and other cancers

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1473945A (en) 1973-05-24 1977-05-18 Gen Electric Method for preparing slides for blood evaluation
US4581223A (en) 1980-03-12 1986-04-08 Lawrence Kass Individual leukocyte determination by means of differential metachromatic dye sorption
JPS6064909A (ja) 1983-09-20 1985-04-13 Shiseido Co Ltd 化粧料
JPH0412243A (ja) * 1990-05-02 1992-01-16 Asahi Chem Ind Co Ltd 直孔性フィルター及びその製造方法
JP2002223768A (ja) 2001-01-31 2002-08-13 Japan Science & Technology Corp ヒトミトコンドリア蛋白質とこの蛋白質をコードするポリヌクレオチド
US20040009518A1 (en) 2002-05-14 2004-01-15 The Chinese University Of Hong Kong Methods for evaluating a disease condition by nucleic acid detection and fractionation
US9176121B2 (en) 2004-02-13 2015-11-03 Roche Diagnostics Hematology, Inc. Identification of blood elements using inverted microscopy
JP5704590B2 (ja) 2010-02-05 2015-04-22 国立大学法人東京農工大学 サイズ選択マイクロキャビティアレイを用いた循環腫瘍細胞の検出
JP5673025B2 (ja) 2010-11-26 2015-02-18 ユーハ味覚糖株式会社 新規レスベラトロール誘導体
CN106574927A (zh) * 2014-01-14 2017-04-19 崔元哲 使用luterial的形态学特征筛选癌症预防剂或抗癌剂的方法
EP3095875A4 (en) * 2014-01-14 2018-01-03 Won Cheol Choi Luterial and method for isolating and culturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022432A1 (en) * 1998-10-08 2000-04-20 Silvia Maria Doglia A method for the detection of mitochondrial alterations
KR20030033134A (ko) * 2001-10-17 2003-05-01 장준근 적혈구의 물리적 특성을 이용한 질환 진단 장치 및 그진단 방법
WO2006054296A2 (en) * 2004-11-17 2006-05-26 Spectrum Dynamics Llc Methods of detecting prostate cancer
US20090311664A1 (en) * 2005-12-22 2009-12-17 Yuman Fong Method for Detection of Cancer Cells Using Virus
WO2009100029A1 (en) * 2008-02-01 2009-08-13 The General Hospital Corporation Use of microvesicles in diagnosis, prognosis and treatment of medical diseases and conditions
WO2012135844A2 (en) * 2011-04-01 2012-10-04 Cornell University Circulating exosomes as diagnostic/prognostic indicators and therapeutic targets of melanoma and other cancers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CARDIOVASC. RES., vol. 49, no. 5, 2001, pages 88
J. BIOL. CHEM., vol. 274, 1999, pages 7545
J. BIOL. CHEM., vol. 276, 2001, pages 19672
See also references of EP3021119A4
THROMB. HAEMOST., vol. 82, 1999, pages 794

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071170B2 (en) 2013-06-24 2018-09-11 Ablbio Antibody-drug conjugate having improved stability and use thereof
EP3096141A4 (en) * 2014-01-14 2017-09-06 Won Cheol Choi Method for screening cancer prevention agent or anticancer agent using morphological characteristics of luterial
EP3095875A4 (en) * 2014-01-14 2018-01-03 Won Cheol Choi Luterial and method for isolating and culturing same
US10590384B2 (en) 2014-01-14 2020-03-17 Luterion Co., Ltd. Luterial and method for isolating and culturing the same
US10624926B2 (en) 2014-01-14 2020-04-21 Luterion Co., Ltd. Luterial and method for isolating and culturing the same
US10406188B1 (en) 2015-01-05 2019-09-10 Luterion Co., Ltd. Method for inhibiting telomerase in cancer cell using luterion
US10569194B2 (en) 2015-01-06 2020-02-25 Luterion Co., Ltd. Luterion and separating and culturing methods for same

Also Published As

Publication number Publication date
KR20150007922A (ko) 2015-01-21
CN106068455B (zh) 2018-05-11
KR20160115886A (ko) 2016-10-06
EP3021119A4 (en) 2017-04-19
KR20200007065A (ko) 2020-01-21
JP2016526688A (ja) 2016-09-05
US20160169870A1 (en) 2016-06-16
US10338061B2 (en) 2019-07-02
CN106068455A (zh) 2016-11-02
KR20200139117A (ko) 2020-12-11
KR20220050844A (ko) 2022-04-25
EP3021119A1 (en) 2016-05-18
KR20240001089A (ko) 2024-01-03
KR20230009999A (ko) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2015005553A1 (ko) 루테리알의 형태특성을 이용한 질병의 진단방법
Feller et al. Immunohistology and aetiology of histiocytic necrotizing lymphadenitis. Report of three instructive cases
WO2011027956A2 (ko) 그람 양성 박테리아에서 유래한 세포밖 소포체 및 이를 이용한 질병 모델
CA2395325C (en) Method of cancer screening primarily utilizing non-invasive cell collection and fluorescence detection techniques
EP1360203A1 (en) Antibodies to non-functional p 2 x 7 receptor diagnosis and treatment of cancers and other conditions
WO2015108246A1 (ko) 루테리알 및 그 분리·배양 방법
WO2012091465A2 (ko) 혈청 아밀로이드 a에 대한 단일클론항체 및 이를 생산하는 하이브리도마 세포
JP6203846B2 (ja) 腸細胞バリア機能不全を検出するための方法および組成物
WO2020235757A1 (ko) 퇴행성 뇌질환 치료용 후보약물의 스크리닝 방법
Mintz et al. Membrane difference in peripheral blood lymphocytes from patients with chronic lymphocytic leukemia and Hodgkin's disease.
Young et al. Three year trial of endoscopic cytology of the stomach and duodenum.
WO2019013392A1 (ko) En2 단백질을 특이적으로 인식하는 특정 항원으로부터 얻어진 단클론 항체 또는 이를 함유하는 전립선암 진단용 조성물
Pinder et al. Identification of a surface antigen on Loa loa microfilariae the recognition of which correlates with the amicrofilaremic state in man.
WO2020141893A1 (ko) 항체가 결합된 엑소좀 분리용 나노와이어 및 이를 이용한 엑소좀 분리 방법
WO2019035623A2 (ko) 렉틴이 결합된 나노입자를 이용한 암 진단 방법
Seymour et al. Identification of cells expressing T and p28, 33 (Ia-like) antigens in sections of human lymphoid tissue.
Bullen et al. Lymphocyte subpopulations in adult coeliac disease.
Prat et al. Immunocytologic analysis of nasal cells obtained by nasal lavage: a comparative study with a standard method of cell identification
WO2021125477A1 (ko) 프리온 단백질 특이적인 항체를 포함하는 의약 조성물
Smith et al. Tγδ Cell Subsets in Cord and Adult Blood
Chen The diagnosis of colorectal cancer with cytologic brushings under direct vision at fiberoptic colonoscopy: A report of 59 cases
WO2012093754A1 (ko) 포유동물 체내에서 유래된 세포밖 소포체를 포함하는 조성물 및 이의 용도
Nasirudeen et al. Programmed cell death in Blastocystis hominis occurs independently of caspase and mitochondrial pathways
AU2021103347A4 (en) Method for recognizing peripheral blood circulating tumor cell of tumor patient based on isolation by size of epithelial tumor cells
WO2022035222A1 (ko) 암세포 유래 엑소좀에 선택적으로 결합하는 펩타이드 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525261

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14904507

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014823421

Country of ref document: EP