WO2015005530A1 - Multipath cross flow heat exchanger - Google Patents

Multipath cross flow heat exchanger Download PDF

Info

Publication number
WO2015005530A1
WO2015005530A1 PCT/KR2013/008586 KR2013008586W WO2015005530A1 WO 2015005530 A1 WO2015005530 A1 WO 2015005530A1 KR 2013008586 W KR2013008586 W KR 2013008586W WO 2015005530 A1 WO2015005530 A1 WO 2015005530A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
circulation pipe
pipe
refrigerant
circulation
Prior art date
Application number
PCT/KR2013/008586
Other languages
French (fr)
Korean (ko)
Inventor
양형석
황시돌
손송호
임성우
임지현
장호명
박찬우
곽경현
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to US14/888,371 priority Critical patent/US20160109183A1/en
Publication of WO2015005530A1 publication Critical patent/WO2015005530A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/106Particular pattern of flow of the heat exchange media with cross flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Definitions

  • the present invention relates to a multi-channel AC heat exchanger, and more particularly, a cooling tube through which a refrigerant for cooling liquid nitrogen is circulated to a circulation tube through which liquid nitrogen is circulated is formed so as to cross a plurality of times. It is related to a multi-channel AC heat exchanger that can prevent the cooling of the superconductor due to the freezing of the liquid nitrogen in the circulation tube is not smooth circulation.
  • a superconductor is a conductor that exhibits a superconducting phenomenon of near zero electrical resistance at very low temperatures. The superconductor cannot enter a magnetic field and pushes the magnetic field inside out, indicating a magnetic levitation phenomenon.
  • Superconductors having these properties can be used in the field of current limiters, magnetic levitation technology, and power transmission.
  • cryogenic liquid nitrogen for cooling the superconducting cable is used.
  • the liquid nitrogen cools the liquid nitrogen because the temperature of the liquid nitrogen increases due to heat exchange with the superconducting cable.
  • Another cooling system must be in place.
  • the present invention has been made in order to solve the above problems, the cooling tube for cooling the cooling fluid flows to the circulation pipe through which the cooling fluid for cooling the superconducting cable is installed so as to cross a plurality of times. It is an object of the present invention to provide a multi-channel ac heat exchanger which prevents freezing of the cooling fluid and does not reduce cooling performance.
  • the present invention has an object to provide a heater for preventing the freezing of the cooling fluid, or a heat exchanger that does not need to install a heater.
  • the present invention includes a circulation tube through which a cooling fluid for cooling a superconducting cable is distributed, and a cooling tube through which a refrigerant heat-exchanging with the cooling fluid is formed by forming a flow path crossing the circulation tube a plurality of times.
  • the circulation pipe and the cooling pipe cross each other in a state in which the cooling fluid inside the circulation pipe and the refrigerant inside the cooling pipe are not mixed with each other.
  • the cooling tube when the cooling fluid flows from one side of the circulation tube to the other side, the portion where the refrigerant flowing in the cooling tube crosses the circulation tube for the first time is located on the other side of the circulation tube, inside the cooling tube
  • the portion where the refrigerant after the heat exchange with the cooling fluid crosses the circulation pipe again is formed to be located on one side of the circulation pipe.
  • the diameter of the cooling tube is formed to be larger than the diameter of the circulation tube, and at the portion where the circulation tube and the cooling tube intersect, the circulation tube is located inside the cooling tube, so that the cooling tube is formed on the outer surface of the circulation tube.
  • the cooling fluid and the refrigerant are heat-exchanged through the outer surface of the circulation pipe that crosses.
  • the cooling tube is a housing shape having a space formed therein, wherein the space is formed at any one of a body part installed to include a predetermined portion of the circulation pipe and an outer surface of the body part to supply the refrigerant to the space part. Is formed in the other of the supply portion and the outer surface of the body portion includes a discharge portion for the refrigerant supplied to the space flows out.
  • the circulation pipe may be branched into a plurality of branch pipes in which the circulation pipe has a smaller diameter in a region where the circulation pipe crosses the cooling pipe.
  • the supply unit and the discharge unit are formed on any one side with respect to the circulation pipe across the body portion is formed spaced apart from each other on the outer surface of the cooling tube.
  • the body portion may further include a partition wall disposed in the space portion formed inside the body portion, and provided between the supply portion and the discharge portion, wherein the coolant supplied to the supply portion is provided in the space portion.
  • An opening portion through which the refrigerant may pass may be formed to be discharged to the discharge portion.
  • the present invention has the effect of preventing the cooling performance from being lowered while preventing the freezing of the cooling fluid.
  • the present invention also has the effect that it is not necessary to install a heater or a heater for preventing the freezing of the cooling fluid.
  • FIG. 1 illustrates an embodiment of a multi-pass ac heat exchanger in accordance with the present invention.
  • FIG. 2 is a diagram showing a heat exchange schematic diagram of another embodiment of the multi-channel AC heat exchanger according to the present invention.
  • FIG 3 illustrates various embodiments of a multi-pass ac heat exchanger in accordance with the present invention.
  • FIG. 4 is a view showing an overview of the cooling fluid behavior and temperature distribution of the multi-pass AC heat exchanger according to the present invention.
  • FIG. 5 is a view showing an outline of the cooling fluid behavior and temperature distribution of the countercurrent heat exchanger.
  • FIG. 6 is a view showing an outline of cooling fluid behavior and temperature distribution of an alternating heat exchanger
  • FIG. 1 is a view showing an embodiment of a multi-pass AC heat exchanger according to the present invention.
  • an exemplary embodiment of a multi-channel AC heat exchanger includes a circulation pipe 100 through which a cooling fluid for cooling a superconducting cable is distributed, and a plurality of crossings of the circulation pipe 100.
  • a cooling pipe 200 is formed to form a flow path through which the refrigerant that exchanges heat with the cooling fluid is distributed therein.
  • the heat exchange process in which the cooling fluid is cooled by the refrigerant while the circulation pipe 100 and the cooling pipe 200 cross each other is a cooling fluid in the circulation pipe 100 and an inside of the cooling pipe 200. Allow the refrigerants to cross each other in isolation from each other so that they do not mix with each other.
  • the refrigerant and the cooling fluid are not mixed with each other, but are exchanged with each other with the outer surface of the circulation pipe 100 through which the cooling fluid flows.
  • the circulation tube 100 and the cooling tube 200 may be heat exchanged in the following shape.
  • the cooling pipe 200 has a housing shape in which a space S is formed therein, and the body portion 210 is installed to include a predetermined portion of the circulation pipe 100 in the space S, and the body. Is formed in any one of the outer surface of the portion 210 is formed in the other of the outer surface of the supply portion 220 and the body portion 210 to supply the refrigerant to the space (S) to the space (S) And a discharge part 230 through which the supplied refrigerant flows out.
  • the supply part 220 and the discharge part 230 are formed to be spaced apart from each other on one side (the same side) based on the circulation pipe 100 crossing the body part 210. Can be.
  • the cooling fluid is circulated from the left side to the right side of the circulation pipe 100, and the refrigerant is supplied to the supply unit 220. And heat exchanged with the cooling fluid circulated therein while being in contact with the outer surface of the circulation pipe 100 in the body 210, and then discharged through the discharge unit 230 again.
  • FIG. 2 is a diagram showing a heat exchange schematic diagram of another embodiment of the multi-channel AC heat exchanger according to the present invention.
  • the cooling pipe 200 when the cooling fluid flows from one side of the circulation pipe 100 to the other direction, the cooling pipe 200 is connected to the circulation pipe 100 with the refrigerant flowing in the cooling pipe 200.
  • the first portion P1 intersecting is positioned at the other side of the circulation tube 100, and the portion where the refrigerant after the heat exchange with the cooling fluid in the cooling tube 200 crosses the circulation tube 100 again ( P2) is characterized in that it is formed to be located on one side of the circulation pipe (100).
  • the circulation pipe 100 includes a plurality of branch pipes having a smaller diameter in the circulation pipe 100 in a region where the circulation pipe 100 intersects the cooling pipe 200. It may be branched to 110.
  • the body portion 210 may further include a partition wall 240 disposed in the space S formed therein, and provided between the supply portion 220 and the discharge portion 230.
  • the partition 240 has an opening portion 241 through which the refrigerant can pass so that the refrigerant supplied to the supply part 220 in the space S may be distributed and discharged toward the discharge part 230. ) Is formed.
  • the coolant is circulated in a “ ⁇ ” shape in the space S to cool the cooling fluid.
  • the cooling fluid for cooling the superconducting cable flows to cross the body portion 210 of the cooling pipe 200 from the left side to the right side of the circulation pipe (100). do.
  • the circulation section may branch the plurality of branch pipes 110 as necessary.
  • Refrigerant for cooling the cooling fluid is introduced into the interior of the body portion 210, that is, the space portion (S) through the supply unit 220.
  • the refrigerant passing through the P1 region collides with the inner wall surface of the body portion 210, and the traveling direction thereof is changed to the left side of the circulation pipe 100. After passing through the area corresponding to P2 in (S) and the heat exchange again with the cooling fluid through the outer surface of the circulation tube 100 is discharged from the body portion 210 through the discharge unit 230.
  • the multi-channel AC heat exchanger according to the present invention may be designed in various embodiments as follows according to the cooling performance value required in the facility for cooling the superconducting cable.
  • FIG. 3 is a diagram illustrating various embodiments of a multi-pass AC heat exchanger according to the present invention.
  • FIG. 3 (a) is a diagram illustrating an embodiment of a structure in which the cooling fluid and the refrigerant are first cooled in the P1 region and secondly cooled in the P2 region, as described above.
  • (c) of FIG. 3 shows that the refrigerant supplied to the supply part 220 intersects with the circulation pipe 100 four times in the space part S a total of four times. It is a figure which shows the Example in which heat exchange is performed.
  • FIG. 4 is a view showing an overview of the cooling fluid behavior and temperature distribution of the multi-channel AC heat exchanger according to the present invention
  • Figure 5 is a view showing an overview of the cooling fluid behavior and temperature distribution of the countercurrent heat exchanger
  • 6 is a view showing the outline of the cooling fluid behavior and the temperature distribution of the heat exchanger of the alternating current system.
  • Figure 4 is a view showing the cooling fluid behavior and temperature distribution of the multi-channel AC heat exchanger according to the present invention, it can be smoothly circulated without liquid nitrogen in the circulation pipe 100 under normal load Able to know.
  • the temperature distribution line (unit: absolute temperature, K) is concentrated at the portion where the supply unit 220 is formed and the refrigerant is not supplied, and the lowest temperature is 64K, so that the liquid nitrogen does not freeze and circulates smoothly. Can be.
  • the lowest temperature near the supply part 220 is 63K, and the corresponding area is only a very small part, which is a freezing area of the procedure that is insignificant to prevent the circulation of liquid nitrogen in the circulation pipe 100. It is within a degree that does not disturb the circulation.
  • 5 is a generally used counterflow method, which refers to a case in which the flow direction of the liquid nitrogen in the circulation pipe 100 and the flow direction of the refrigerant in the cooling pipe 200 are opposite to each other, and the cooling efficiency is excellent and widely. This is the way it is used.
  • the countercurrent system smoothly flows in the circulation pipe 100 without freezing liquid nitrogen.
  • the minimum temperature reaches 62K, and liquid nitrogen freezes in a region corresponding to a temperature distribution line of 62K or less including a temperature distribution line near 63K.
  • alternating current system refers to a case in which the flow direction of the refrigerant in the cooling tube 200 is perpendicular to the flow direction of the liquid nitrogen in the circulation tube 100.
  • the formation of more than one third of the freezing area of the circulating area to inhibit the circulation of the liquid nitrogen even under the normal load state not only prevents the flow of the liquid nitrogen in the circulation pipe 100 but also continues the heat exchanger in this state. If you operate by installing a separate heater for stability will cause a problem that must be operated at all times.
  • the liquid nitrogen is prevented from being frozen in the circulation pipe 100 even in a low load state as well as a normal load, or it does not prevent the flow of liquid nitrogen in the purified pipe. Since liquid nitrogen is frozen only in a very limited area, the liquid nitrogen is smoothly circulated in the circulation pipe 100, thereby preventing the cooling efficiency of the superconducting cable from being lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

The present invention relates to a multipath cross flow heat exchanger and, more particularly, to a multipath cross flow heat exchanger, capable of preventing degradation of the cooling performance of a superconductor which may occur when circulation of liquid nitrogen in a circulation tube is not smooth, by forming cooling tubes, in which a refrigerant for cooling liquid nitrogen is distributed, to intersect multiple times with the circulation tube, in which the liquid nitrogen is circulated, to thereby freeze the liquid nitrogen by the refrigerant.

Description

다중 통로 교류 열교환기Multi-channel flow heat exchanger
본 발명은 다중 통로 교류 열교환기에 관한 것으로, 보다 상세하게는, 액체질소가 순환되는 순환관에 대하여 액체질소를 냉각하는 냉매가 유통되는 냉각관이 복수 회 가로지르도록 형성되어 상기 냉매로 인하여 액체질소가 동결되어 순환관 내에서 액체질소의 순환이 원활하지 못하여 초전도체의 냉각성능이 저하되는 것을 방지할 수 있는 다중 통로 교류 열교환기에 관한 것이다.The present invention relates to a multi-channel AC heat exchanger, and more particularly, a cooling tube through which a refrigerant for cooling liquid nitrogen is circulated to a circulation tube through which liquid nitrogen is circulated is formed so as to cross a plurality of times. It is related to a multi-channel AC heat exchanger that can prevent the cooling of the superconductor due to the freezing of the liquid nitrogen in the circulation tube is not smooth circulation.
본 발명은 2013년 07월 12일 출원된 한국특허출원 제10-2013-0082388호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.The present invention claims the benefit of the filing date of Korean Patent Application No. 10-2013-0082388 filed on July 12, 2013, the entire contents of which are incorporated herein.
초전도체란, 매우 낮은 온도에서 전기저항이 0에 가까워지는 초전도현상이 나타나는 도체로서, 내부에는 자기장이 들어갈 수 없고 내부에 있던 자기장도 밖으로 밀어내는 성질이 있어 자석 위에 떠오르는 자기부상현상을 나타낸다.A superconductor is a conductor that exhibits a superconducting phenomenon of near zero electrical resistance at very low temperatures. The superconductor cannot enter a magnetic field and pushes the magnetic field inside out, indicating a magnetic levitation phenomenon.
이러한 성질을 가지고 있는 초전도체는 전력을 제어하는 한류기 분야, 자기부상 기술 관련 분야 및 송전분야에 이용될 수 있다.Superconductors having these properties can be used in the field of current limiters, magnetic levitation technology, and power transmission.
특히, 송전분야의 경우 초전도 케이블의 길이가 길수록 외부의 열침입이 증가하게 되고, 초전도 케이블에 교류전류가 흐르면 교류손실에 의해 온도가 증가하게 되어 전력손실이 발생하고, 이로 인하여 냉각부하가 증가하게 된다.In particular, in the case of the transmission field, the longer the length of the superconducting cable, the more external heat infiltration increases, and when an AC current flows in the superconducting cable, the temperature increases due to the AC loss, causing a power loss, thereby increasing the cooling load. do.
즉, 초전도체의 특성을 이용하여 저항을 0에 가까이 유지하기 위해서는 초전도체를 냉각하여 지속적으로 극저온과 같은 낮은 온도를 유지할 수 있도록 하는 것이 매우 중요하다.In other words, in order to keep the resistance close to 0 using the characteristics of the superconductor, it is very important to cool the superconductor so that it can continuously maintain a low temperature such as cryogenic temperature.
상기와 같이 초전도 소자를 극저온 상태로 유지하기 위해서 초전도 케이블을 냉각하기 위한 극저온의 액체질소를 이용하게 되는데, 이 액체질소가 초전도 케이블과의 열교환으로 인하여 액체질소의 온도가 상승하게 되므로 액체질소를 냉각하기 위한 또 다른 냉각시스템을 갖추어야 한다.As described above, in order to maintain the superconducting element in a cryogenic state, cryogenic liquid nitrogen for cooling the superconducting cable is used. The liquid nitrogen cools the liquid nitrogen because the temperature of the liquid nitrogen increases due to heat exchange with the superconducting cable. Another cooling system must be in place.
이와 관련한 선행기술로는 국내공개특허 제2009-0124825호(2009.12.03.공개, 고화냉매를 이용한 초전도 한류기의 냉각 시스템)이 있다.Prior art related to this is disclosed in Korean Patent Publication No. 2009-0124825 (2009.12.03. Publication, cooling system of superconducting current limiter using solidification refrigerant).
본 발명은 상기와 같은 문제를 해결하기 위하여 안출된 것으로, 초전도 케이블을 냉각하기 위한 냉각유체가 유통되는 순환관에 대하여 냉각유체를 냉각하기 위한 냉매가 유통되는 냉각관이 복수 회 가로지르도록 설치되어 냉각유체의 동결을 방지하면서도 냉각성능이 저하되지 않도록 하는 다중 통로 교류 열교환기를 제공하는데 목적이 있다.The present invention has been made in order to solve the above problems, the cooling tube for cooling the cooling fluid flows to the circulation pipe through which the cooling fluid for cooling the superconducting cable is installed so as to cross a plurality of times. It is an object of the present invention to provide a multi-channel ac heat exchanger which prevents freezing of the cooling fluid and does not reduce cooling performance.
상기와 같은 구성에 의하여 본 발명은, 냉각유체의 동결 방지를 위한 가열기, 또는 히터를 설치할 필요가 없는 열교환기를 제공하는데 목적이 있다.In accordance with the above configuration, the present invention has an object to provide a heater for preventing the freezing of the cooling fluid, or a heat exchanger that does not need to install a heater.
상기한 과제를 해결하기 위하여,In order to solve the above problems,
본 발명은 초전도 케이블을 냉각하기 위한 냉각유체가 유통되는 순환관 및 상기 순환관을 복수 회 가로지르는 유로를 형성하여 내부에 상기 냉각유체와 열교환되는 냉매가 유통되는 냉각관을 포함한다.The present invention includes a circulation tube through which a cooling fluid for cooling a superconducting cable is distributed, and a cooling tube through which a refrigerant heat-exchanging with the cooling fluid is formed by forming a flow path crossing the circulation tube a plurality of times.
상기 순환관과 냉각관은, 상기 순환관 내부의 냉각유체와 상기 냉각관 내부의 냉매가 서로 혼합되지 않도록 서로 격리된 상태로 교차된다.The circulation pipe and the cooling pipe cross each other in a state in which the cooling fluid inside the circulation pipe and the refrigerant inside the cooling pipe are not mixed with each other.
상기 냉각관은, 상기 순환관의 일측에서 타측 방향으로 냉각유체가 유통 될 때, 상기 냉각관에서 유통되는 냉매가 상기 순환관과 최초로 교차하는 부위는 상기 순환관의 타측에 위치하고, 상기 냉각관 내부에서 상기 냉각유체와 열교환된 후의 냉매가 상기 순환관과 다시 교차하는 부위는 상기 순환관의 일측에 위치하도록 형성된다.The cooling tube, when the cooling fluid flows from one side of the circulation tube to the other side, the portion where the refrigerant flowing in the cooling tube crosses the circulation tube for the first time is located on the other side of the circulation tube, inside the cooling tube The portion where the refrigerant after the heat exchange with the cooling fluid crosses the circulation pipe again is formed to be located on one side of the circulation pipe.
상기 냉각관의 직경이 상기 순환관의 직경보다 더 크게 형성되고, 상기 순환관과 냉각관이 교차하는 부위에서 상기 순환관은 상기 냉각관의 내부에 위치함으로서 상기 순환관의 외면 중 상기 냉각관과 교차하는 순환관의 외면을 통하여 상기 냉각유체와 냉매가 열교환 된다.The diameter of the cooling tube is formed to be larger than the diameter of the circulation tube, and at the portion where the circulation tube and the cooling tube intersect, the circulation tube is located inside the cooling tube, so that the cooling tube is formed on the outer surface of the circulation tube. The cooling fluid and the refrigerant are heat-exchanged through the outer surface of the circulation pipe that crosses.
상기 냉각관은, 내부에 공간부가 형성되는 하우징 형상으로서 상기 공간부에는 상기 순환관의 일정 부분이 포함되도록 설치되는 몸체부와, 상기 몸체부의 외면 중 어느 한 곳에 형성되어 상기 공간부로 상기 냉매를 공급하는 공급부 및 상기 몸체부의 외면 중 다른 한 곳에 형성되어 상기 공간부로 공급된 냉매가 유출되는 배출부를 포함한다.The cooling tube is a housing shape having a space formed therein, wherein the space is formed at any one of a body part installed to include a predetermined portion of the circulation pipe and an outer surface of the body part to supply the refrigerant to the space part. Is formed in the other of the supply portion and the outer surface of the body portion includes a discharge portion for the refrigerant supplied to the space flows out.
상기 순환관은, 상기 순환관이 상기 냉각관과 교차하는 영역 내에서 상기 순환관이 더 작은 직경을 갖는 복수의 분기관으로 분기될 수 있다.The circulation pipe may be branched into a plurality of branch pipes in which the circulation pipe has a smaller diameter in a region where the circulation pipe crosses the cooling pipe.
상기 공급부와 배출부는, 상기 몸체부를 가로지르는 상기 순환관을 기준으로 어느 한 측방에 위치하여 상기 냉각관의 외면에서 서로 이격되어 형성된다.The supply unit and the discharge unit are formed on any one side with respect to the circulation pipe across the body portion is formed spaced apart from each other on the outer surface of the cooling tube.
상기 몸체부에는, 상기 몸체부의 내측에 형성되는 상기 공간부에 배치되며, 상기 공급부와 배출부 사이에 구비되는 격벽을 더 포함하되, 상기 격벽에는, 상기 공간부 내에서 상기 공급부로 공급된 냉매가 상기 배출부로 배출될 수 있도록 상기 냉매가 통과할 수 있는 개방부가 형성된다.The body portion may further include a partition wall disposed in the space portion formed inside the body portion, and provided between the supply portion and the discharge portion, wherein the coolant supplied to the supply portion is provided in the space portion. An opening portion through which the refrigerant may pass may be formed to be discharged to the discharge portion.
상기와 같은 과제의 해결 수단에 의하여,By the means for solving the above problems,
본 발명은, 냉각유체의 동결을 방지하면서도 냉각성능이 저하되지 않도록 하는 효과가 있다.The present invention has the effect of preventing the cooling performance from being lowered while preventing the freezing of the cooling fluid.
이에 따라, 본 발명은 냉각유체의 동결 방지를 위한 가열기, 또는 히터를 설치할 필요가 없는 효과도 있다.Accordingly, the present invention also has the effect that it is not necessary to install a heater or a heater for preventing the freezing of the cooling fluid.
도 1은, 본 발명에 따른 다중 통로 교류 열교환기의 일실시예를 도시한 도면.1 illustrates an embodiment of a multi-pass ac heat exchanger in accordance with the present invention.
도 2는, 본 발명에 따른 다중 통로 교류 열교환기의 다른 실시예의 열교환 모식도를 도시한 도면.2 is a diagram showing a heat exchange schematic diagram of another embodiment of the multi-channel AC heat exchanger according to the present invention;
도 3은, 본 발명에 따른 다중 통로 교류 열교환기의 다양한 실시에를 도시한 도면.3 illustrates various embodiments of a multi-pass ac heat exchanger in accordance with the present invention.
도 4는, 본 발명에 따른 다중 통로 교류 열교환기의 냉각유체 거동 및 온도 분포의 개요를 도시한 도면.4 is a view showing an overview of the cooling fluid behavior and temperature distribution of the multi-pass AC heat exchanger according to the present invention.
도 5는, 향류 방식의 열교환기의 냉각유체 거동 및 온도분포의 개요를 도시한 도면.5 is a view showing an outline of the cooling fluid behavior and temperature distribution of the countercurrent heat exchanger.
도 6은, 교류 방식의 열교환기의 냉각유체 거동 및 온도분포의 개요를 도시한 도면.FIG. 6 is a view showing an outline of cooling fluid behavior and temperature distribution of an alternating heat exchanger; FIG.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
여기서, 반복되는 설명과 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Here, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the repeated description and the gist of the present invention will be omitted.
그리고 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.And embodiments of the present invention is provided to more completely explain the present invention to those skilled in the art.
따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.Accordingly, the shape and size of elements in the drawings may be exaggerated for clarity.
도 1은, 본 발명에 따른 다중 통로 교류 열교환기의 일실시예를 도시한 도면이다.1 is a view showing an embodiment of a multi-pass AC heat exchanger according to the present invention.
도 1을 참조하여 본 발명에 따른 다중 통로 교류 열교환기의 일실시예를 설명하면, 초전도 케이블을 냉각하기 위한 냉각유체가 유통되는 순환관(100) 및 상기 순환관(100)을 복수 회 가로지르는 유로를 형성하여 내부에 상기 냉각유체와 열교환되는 냉매가 유통되는 냉각관(200)을 포함한다.Referring to FIG. 1, an exemplary embodiment of a multi-channel AC heat exchanger according to the present invention includes a circulation pipe 100 through which a cooling fluid for cooling a superconducting cable is distributed, and a plurality of crossings of the circulation pipe 100. A cooling pipe 200 is formed to form a flow path through which the refrigerant that exchanges heat with the cooling fluid is distributed therein.
여기에서 상기 순환관(100)과 냉각관(200)이 서로 교차하면서 상기 냉매에 의하여 냉각유체가 냉각되는 열교환 과정은, 상기 순환관(100) 내부의 냉각유체와 상기 냉각관(200) 내부의 냉매가 서로 혼합되지 않도록 서로 격리된 상태로 교차되도록 한다.Here, the heat exchange process in which the cooling fluid is cooled by the refrigerant while the circulation pipe 100 and the cooling pipe 200 cross each other, is a cooling fluid in the circulation pipe 100 and an inside of the cooling pipe 200. Allow the refrigerants to cross each other in isolation from each other so that they do not mix with each other.
즉, 상기 냉매와 냉각유체는 서로 혼합되지 않고 냉각유체가 유통되는 순환관(100)의 외면을 사이에 두고 서로 열교환 되는 것이다.That is, the refrigerant and the cooling fluid are not mixed with each other, but are exchanged with each other with the outer surface of the circulation pipe 100 through which the cooling fluid flows.
상기 순환관(100)과 냉각관(200)은, 다음과 같은 형상으로 열교환 될 수 있다.The circulation tube 100 and the cooling tube 200 may be heat exchanged in the following shape.
상기 냉각관(200)은 내부에 공간부(S)가 형성되는 하우징 형상으로서 상기 공간부(S)에는 상기 순환관(100)의 일정 부분이 포함되도록 설치되는 몸체부(210)와, 상기 몸체부(210)의 외면 중 어느 한 곳에 형성되어 상기 공간부(S)로 상기 냉매를 공급하는 공급부(220) 및 상기 몸체부(210)의 외면 중 다른 한 곳에 형성되어 상기 공간부(S)로 공급된 냉매가 유출되는 배출부(230)를 포함한다.The cooling pipe 200 has a housing shape in which a space S is formed therein, and the body portion 210 is installed to include a predetermined portion of the circulation pipe 100 in the space S, and the body. Is formed in any one of the outer surface of the portion 210 is formed in the other of the outer surface of the supply portion 220 and the body portion 210 to supply the refrigerant to the space (S) to the space (S) And a discharge part 230 through which the supplied refrigerant flows out.
상기 공급부(220)와 배출부(230)는 도 1에 도시된 바와 같이, 상기 몸체부(210)를 가로지르는 상기 순환관(100)을 기준으로 어느 한 측면(동일한 측면)에서 서로 이격되어 형성될 수 있다.As shown in FIG. 1, the supply part 220 and the discharge part 230 are formed to be spaced apart from each other on one side (the same side) based on the circulation pipe 100 crossing the body part 210. Can be.
도 1에 도시된 본원발명의 열교환기를 일예로 하여 냉각유체와 냉매가 열교환 되는 과정을 설명하면, 상기 냉각유체는 상기 순환관(100)의 좌측에서 우측으로 유통되고, 상기 냉매는 상기 공급부(220)로 공급되어 상기 몸체부(210) 내부에서 상기 순환관(100)의 외면에 접촉되면서 그 내부에서 유통되는 냉각유체와 열교환 된 후, 다시 상기 배출부(230)를 통하여 배출된다.Referring to the process of heat exchange between the cooling fluid and the refrigerant by using the heat exchanger of the present invention shown in FIG. 1 as an example, the cooling fluid is circulated from the left side to the right side of the circulation pipe 100, and the refrigerant is supplied to the supply unit 220. And heat exchanged with the cooling fluid circulated therein while being in contact with the outer surface of the circulation pipe 100 in the body 210, and then discharged through the discharge unit 230 again.
본 발명은 특히, 상기와 같은 구성에 의해 본 발명에 따른 열교환기를 이용함으로서 상기 냉각유체의 동결을 방지하면서도 효율적인 냉각성능을 유지할 수 있는데, 이러한 열교환 과정에 대하여 더욱 상세히 설명하면 다음과 같다.In particular, by using the heat exchanger according to the present invention by the above configuration, it is possible to maintain efficient cooling performance while preventing the freezing of the cooling fluid. The heat exchange process will be described in more detail as follows.
도 2는, 본 발명에 따른 다중 통로 교류 열교환기의 다른 실시예의 열교환 모식도를 도시한 도면이다.2 is a diagram showing a heat exchange schematic diagram of another embodiment of the multi-channel AC heat exchanger according to the present invention.
도 2를 참조하면, 상기 냉각관(200)은 상기 순환관(100)의 일측에서 타측방향으로 냉각유체가 유통될 때, 상기 냉각관(200)에서 유통되는 냉매가 상기 순환관(100)과 최초로 교차하는 부위(P1)는 상기 순환관(100)의 타측에 위치하게 되고, 상기 냉각관(200) 내부에서 상기 냉각유체와 열교환된 후의 냉매가 상기 순환관(100)과 다시 교차하는 부위(P2)는 상기 순환관(100)의 일측에 위치하도록 형성되는 것을 기술적 특징으로 한다.Referring to FIG. 2, when the cooling fluid flows from one side of the circulation pipe 100 to the other direction, the cooling pipe 200 is connected to the circulation pipe 100 with the refrigerant flowing in the cooling pipe 200. The first portion P1 intersecting is positioned at the other side of the circulation tube 100, and the portion where the refrigerant after the heat exchange with the cooling fluid in the cooling tube 200 crosses the circulation tube 100 again ( P2) is characterized in that it is formed to be located on one side of the circulation pipe (100).
상기 순환관(100)은 도 2에 도시된 바와 같이, 상기 순환관(100)이 상기 냉각관(200)과 교차하는 영역 내에서 상기 순환관(100)이 더 작은 직경을 갖는 복수의 분기관(110)으로 분기될 수도 있다.As shown in FIG. 2, the circulation pipe 100 includes a plurality of branch pipes having a smaller diameter in the circulation pipe 100 in a region where the circulation pipe 100 intersects the cooling pipe 200. It may be branched to 110.
이처럼, 초전도 케이블을 이용한 시설에서 필요에 따라 선택적으로 상기 순환관(100)에 분기관(110)을 연결하여 상기 열교환기의 냉각성능을 더욱 향상할 수 있게 된다.As such, by selectively connecting the branch pipe 110 to the circulation pipe 100 in a facility using a superconducting cable, it is possible to further improve the cooling performance of the heat exchanger.
또한, 상기 몸체부(210)에는, 그 내측에 형성되는 상기 공간부(S)에 배치되되, 상기 공급부(220)와 배출부(230) 사이에 구비되는 격벽(240)을 더 포함할 수 있으며, 상기 격벽(240)에는 상기 공간부(S) 내에서 상기 공급부(220)로 공급된 냉매가 상기 배출부(230) 방향으로 유통되어 배출될 수 있도록 상기 냉매가 통과할 수 있는 개방부(241)가 형성된다.The body portion 210 may further include a partition wall 240 disposed in the space S formed therein, and provided between the supply portion 220 and the discharge portion 230. The partition 240 has an opening portion 241 through which the refrigerant can pass so that the refrigerant supplied to the supply part 220 in the space S may be distributed and discharged toward the discharge part 230. ) Is formed.
즉, 도 2를 기준으로 하여 상기 냉매는 상기 공간부(S) 내부에서 "∩"자 형태로 유통되면서 상기 냉각유체를 냉각하게 된다.That is, based on FIG. 2, the coolant is circulated in a “∩” shape in the space S to cool the cooling fluid.
도 2를 참조하여 열교환되는 과정을 설명하면, 초전도 케이블을 냉각하기 위한 상기 냉각유체는 상기 순환관(100)의 왼쪽에서 오른쪽으로 상기 냉각관(200)의 몸체부(210)를 가로지르도록 유통된다.Referring to Figure 2, the process of heat exchange, the cooling fluid for cooling the superconducting cable flows to cross the body portion 210 of the cooling pipe 200 from the left side to the right side of the circulation pipe (100). do.
상기 순환과는 몸체부(210) 내부에서 도 2에 도시된 바와 같이, 필요에 따라 복수의 분기관(110)을 분기될 수 있다.As shown in FIG. 2, the circulation section may branch the plurality of branch pipes 110 as necessary.
상기 냉각유체를 냉각시키기 위한 냉매는 상기 공급부(220)를 통하여 상기 몸체부(210)의 내부, 즉 공간부(S)로 유입된다.Refrigerant for cooling the cooling fluid is introduced into the interior of the body portion 210, that is, the space portion (S) through the supply unit 220.
상기 공간부(S) 내에서 P1에 해당하는 영역에서 상기 순환관(100)의 외면을 통하여 상기 냉각유체와 열교환되어 냉각유체를 1차로 냉각하게 된다.Heat exchange with the cooling fluid through the outer surface of the circulation tube 100 in the region corresponding to P1 in the space (S) to cool the cooling fluid primarily.
상기 P1 영역을 통과한 냉매는 상기 몸체부(210)의 내측 벽면에 충돌되고, 그 진행방향이 상기 순환관(100)의 좌측 방향으로 전환되는데, 이와 같이 진행방향이 전환된 냉매는 상기 공간부(S) 내에서 P2에 해당하는 영역을 지나면서 상기 순환관(100)의 외면을 통해 상기 냉각유체와 다시 열교환 된 후에 상기 배출부(230)를 통하여 상기 몸체부(210)로부터 배출된다.The refrigerant passing through the P1 region collides with the inner wall surface of the body portion 210, and the traveling direction thereof is changed to the left side of the circulation pipe 100. After passing through the area corresponding to P2 in (S) and the heat exchange again with the cooling fluid through the outer surface of the circulation tube 100 is discharged from the body portion 210 through the discharge unit 230.
본 발명에 따른 다중 통로 교류 열교환기는, 초전도 케이블을 냉각하기 위한 설비에서 요구되는 냉각성능치에 따라 다음과 같은 다양한 실시예로 설계될 수 있다. The multi-channel AC heat exchanger according to the present invention may be designed in various embodiments as follows according to the cooling performance value required in the facility for cooling the superconducting cable.
도 3은, 본 발명에 따른 다중 통로 교류 열교환기의 다양한 실시에를 도시한 도면이다.3 is a diagram illustrating various embodiments of a multi-pass AC heat exchanger according to the present invention.
도 3의 (a)는 상술한 바와 같이, 상기 냉각유체와 냉매가 P1 영역에서 1차로 냉각되고, P2 영역에서 2차로 재냉각 될 수 있는 구조의 일실시예를 도시한 도면이다.3 (a) is a diagram illustrating an embodiment of a structure in which the cooling fluid and the refrigerant are first cooled in the P1 region and secondly cooled in the P2 region, as described above.
이에 대한 설명은 상술한 바와 동일하므로 생략하기로 한다.Since the description thereof is the same as described above, it will be omitted.
도 3의 (b)는 P2 영역을 통과한 냉매가 상기 배출부(230)로 바로 배출되지 않고, 그 진행방향이 재전환되어 상기 냉각유체를 3차에 걸친 열교환 후에 상기 배출부(230)로 배출되는 구성이다.3 (b) shows that the refrigerant having passed through the P2 region is not immediately discharged to the discharge unit 230, and the direction of travel thereof is changed again so that the cooling fluid is returned to the discharge unit 230 after three times of heat exchange. It is a discharged configuration.
도 3의 (b)와 같이, 도 3의 (c)는 상기 공급부(220)로 공급된 냉매가 상기 공간부(S) 내에서 총 4회에 걸쳐서 상기 순환관(100)과 교차하여 4회의 열교환이 이루어지는 실시예를 도시한 도면이다.As shown in (b) of FIG. 3, (c) of FIG. 3 shows that the refrigerant supplied to the supply part 220 intersects with the circulation pipe 100 four times in the space part S a total of four times. It is a figure which shows the Example in which heat exchange is performed.
도 4는, 본 발명에 따른 다중 통로 교류 열교환기의 냉각유체 거동 및 온도 분포의 개요를 도시한 도면이고, 도 5는, 향류 방식의 열교환기의 냉각유체 거동 및 온도분포의 개요를 도시한 도면이며, 도 6은, 교류 방식의 열교환기의 냉각유체 거동 및 온도분포의 개요를 도시한 도면이다.4 is a view showing an overview of the cooling fluid behavior and temperature distribution of the multi-channel AC heat exchanger according to the present invention, Figure 5 is a view showing an overview of the cooling fluid behavior and temperature distribution of the countercurrent heat exchanger. 6 is a view showing the outline of the cooling fluid behavior and the temperature distribution of the heat exchanger of the alternating current system.
먼저, 도 4는 본 발명에 따른 다중 통로 교류 열교환기의 냉각유체 거동 및 온도분포를 도시한 도면으로서, 정상적인 부하에서는 순환관(100) 내에서 액체질소가 동결되지 않고 원활하게 유통될 수 있음을 알 수 있다.First, Figure 4 is a view showing the cooling fluid behavior and temperature distribution of the multi-channel AC heat exchanger according to the present invention, it can be smoothly circulated without liquid nitrogen in the circulation pipe 100 under normal load Able to know.
여기에서, 온도분포선(단위는 절대온도, K)은 상기 공급부(220)가 형성되어 냉매가 공급되지 시작하는 부분에 집중되어 있으며 가장 낮은 온도는 64K로서 액체질소가 동결되지 않고 원활하게 순환될 수 있다.Here, the temperature distribution line (unit: absolute temperature, K) is concentrated at the portion where the supply unit 220 is formed and the refrigerant is not supplied, and the lowest temperature is 64K, so that the liquid nitrogen does not freeze and circulates smoothly. Can be.
저부하일 경우에는, 상기 공급부(220) 근처의 가장 낮은 온도가 63K 이며, 이에 해당하는 영역은 극히 일부로서 이는 순환관(100) 내에서 액체질소의 순환을 방해하기에는 미미한 수순의 동결영역이므로 액체질소의 순환을 방해하지 않는 정도 이내이다.In the case of low load, the lowest temperature near the supply part 220 is 63K, and the corresponding area is only a very small part, which is a freezing area of the procedure that is insignificant to prevent the circulation of liquid nitrogen in the circulation pipe 100. It is within a degree that does not disturb the circulation.
도 5는, 일반적으로 사용되는 향류방식으로서, 이는 순환관(100) 내의 액체질소의 유통방향과 냉각관(200) 내의 냉매의 유통 방향이 서로 반대 방향인 경우를 말하며, 냉각효율이 우수하여 널리 이용되는 방식이다.5 is a generally used counterflow method, which refers to a case in which the flow direction of the liquid nitrogen in the circulation pipe 100 and the flow direction of the refrigerant in the cooling pipe 200 are opposite to each other, and the cooling efficiency is excellent and widely. This is the way it is used.
도 5에 도시된 바와 같이, 정상부하인 경우에 향류방식은 액체질소가 동결되지 않고 순환관(100) 내에서 원활히 유통된다. 그러나, 저부하 상태에서는 최저 온도가 62K에 달하여 63K 근처의 온도분포선을 포함한 62K 이하의 온도분포선에 해당하는 영역에서 액체질소가 동결되는 현상이 발생한다.As shown in FIG. 5, in the case of the normal load, the countercurrent system smoothly flows in the circulation pipe 100 without freezing liquid nitrogen. However, in the low load state, the minimum temperature reaches 62K, and liquid nitrogen freezes in a region corresponding to a temperature distribution line of 62K or less including a temperature distribution line near 63K.
이는, 도 4의 저부하 상태의 동결영역에 대비하여 향류방식의 저부하 상태에서는 상기 순환관(100) 내부에서 62K 내지 63K에 해당하는 영역이 동결되어 순환관(100) 내부에서 액체질소의 동결로 인하여 순환이 불가한 문제가 발생하게 된다.This, in contrast to the low-loaded frozen region of FIG. 4, in the counter-current low-loaded state, a region corresponding to 62K to 63K is frozen inside the circulation tube 100 to freeze liquid nitrogen within the circulation tube 100. Due to this problem is impossible to circulate.
도 6은, 교류방식으로서, 이는 순환관(100) 내의 액체질소의 유통방향에 대하여 냉각관(200) 내의 냉매의 유통 방향이 수직하게 형성되는 경우를 말한다.6 is an alternating current system, which refers to a case in which the flow direction of the refrigerant in the cooling tube 200 is perpendicular to the flow direction of the liquid nitrogen in the circulation tube 100.
이와 같은 교류방식은 도 6에 도시된 바와 같이, 정상부하인 경우에도 순환관(100) 내부에서 액체질소가 일부 동결되는 동결영역이 형성된다. 이를 도 4의 저부하 상태와 비교하면, 본 발명에 따른 다중 통로 교류 열교환기에 대비하여, 교류방식은 정상부하 상태에서도 액체질소가 동결되는 영역이 더 크게 형성되는 것을 알 수 있다.In this alternating current method, as shown in FIG. 6, even in a normal load, a freezing region in which the liquid nitrogen is partially frozen is formed in the circulation tube 100. Comparing this with the low load state of Figure 4, compared to the multi-channel AC heat exchanger according to the present invention, it can be seen that the alternating current is formed in the area where the liquid nitrogen is frozen even in the normal load state.
이처럼, 정상부하 상태에서도 액체질소의 순환을 저해할 만큼 순환가능 영역의 1/3 이상의 동결영역이 형성되는 것은 순환관(100) 내에서 액체질소의 유통을 방해할 뿐 아니라 이러한 상태의 열교환기를 계속하여 가동하게 되면 안정성을 위하여 별도의 가열기를 설치하여 항시로 가동해야 하는 문제가 발생하게 된다.As such, the formation of more than one third of the freezing area of the circulating area to inhibit the circulation of the liquid nitrogen even under the normal load state not only prevents the flow of the liquid nitrogen in the circulation pipe 100 but also continues the heat exchanger in this state. If you operate by installing a separate heater for stability will cause a problem that must be operated at all times.
교류방식에서 저부하인 경우에는, 정상부하의 액체질소 동결영역보다 더 큰 동결영역이 형성되는 것을 확인할 수 있다.In the case of the low load in the alternating current system, it can be seen that a larger freezing area is formed than the liquid nitrogen freezing area of the normal load.
이처럼, 본 발명에 다른 다중 통로 교류 열교환기를 이용함으로서, 정상부하뿐만 아니라 저부하 상태에서도 상기 순환관(100) 내에서 액체질소가 동결되는 것을 방지하거나, 순화관 내에서 액체질소의 유통을 방해하지 않는 정도로 극히 일부의 영역에서만 액체질소가 동결되므로 순환관(100) 내에서 액체질소의 순환을 원활히 하여 초전도 케이블의 냉각효율이 저하되는 것을 방지할 수 있는 효과가 있다.As such, by using the multi-channel alternating heat exchanger according to the present invention, the liquid nitrogen is prevented from being frozen in the circulation pipe 100 even in a low load state as well as a normal load, or it does not prevent the flow of liquid nitrogen in the purified pipe. Since liquid nitrogen is frozen only in a very limited area, the liquid nitrogen is smoothly circulated in the circulation pipe 100, thereby preventing the cooling efficiency of the superconducting cable from being lowered.
또, 액체질소의 동결영역이 극히 미미하여 이러한 문제를 해결하기 위하여 상기 순환관(100)에 열을 가하는 별도의 가열기를 설치할 필요가 없어 냉각시스템의 효율을 향상하고, 가열기의 가동으로 인한 에너지 소비를 제거 및 저감할 수 있는 효과가 있다.In addition, since the freezing area of the liquid nitrogen is very small, there is no need to install a separate heater for applying heat to the circulation pipe 100 to solve this problem, thereby improving the efficiency of the cooling system and reducing energy consumption due to the operation of the heater. There is an effect that can be removed and reduced.
이상 본 발명의 특정 실시예를 도시하고 설명하였으나, 본 발명의 기술사상은 첨부된 도면과 상기한 설명내용에 한정하지 않으며 본 발명의 사상을 벗어나지 않는 범위 내에서 다양한 형태의 변형이 가능함은 이 분야의 통상의 지식을 가진 자에게는 자명한 사실이며, 이러한 형태의 변형은 본 발명의 정신에 위배되지 않는 범위 내에서 본 발명의 특허청구범위에 속한다고 볼 것이다.While specific embodiments of the present invention have been illustrated and described, the technical spirit of the present invention is not limited to the accompanying drawings and the above description, and various modifications can be made without departing from the spirit of the present invention. It will be apparent to those skilled in the art, and variations of this type will be regarded as belonging to the claims of the present invention without departing from the spirit of the present invention.

Claims (8)

  1. 초전도 케이블을 냉각하기 위한 냉각유체가 유통되는 순환관; 및A circulation pipe through which a cooling fluid for cooling the superconducting cable is distributed; And
    상기 순환관을 복수 회 가로지르는 유로를 형성하여 내부에 상기 냉각유체와 열교환되는 냉매가 유통되는 냉각관;을 포함하는 것을 특징으로 하는 다중 통로 교류 열교환기.And a cooling tube in which a coolant to exchange heat with the cooling fluid is formed by forming a flow path that crosses the circulation pipe a plurality of times.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 순환관과 냉각관은,The circulation tube and the cooling tube,
    상기 순환관 내부의 냉각유체와 상기 냉각관 내부의 냉매가 서로 혼합되지 않도록 서로 격리된 상태로 교차하는 것을 특징으로 하는 다중 통로 교류 열교환기.And the cooling fluid inside the circulation pipe and the refrigerant inside the cooling pipe cross each other in a state in which they are not mixed with each other.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 냉각관은,The cooling tube,
    상기 순환관의 일측에서 타측 방향으로 냉각유체가 유통 될 때,When the cooling fluid flows from one side of the circulation pipe to the other side,
    상기 냉각관에서 유통되는 냉매가 상기 순환관과 최초로 교차하는 부위는 상기 순환관의 타측에 위치하고,The portion where the refrigerant circulated in the cooling pipe crosses the circulation pipe for the first time is located at the other side of the circulation pipe,
    상기 냉각관 내부에서 상기 냉각유체와 열교환된 후의 냉매가 상기 순환관과 다시 교차하는 부위는 상기 순환관의 일측에 위치하도록 형성되는 것을 특징으로 하는 다중 통로 교류 열교환기.And a portion where the refrigerant after the heat exchange with the cooling fluid crosses the circulation pipe again in the cooling pipe is located at one side of the circulation pipe.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 냉각관의 직경이 상기 순환관의 직경보다 더 크게 형성되고,The diameter of the cooling tube is formed larger than the diameter of the circulation tube,
    상기 순환관과 냉각관이 교차하는 부위에서 상기 순환관은 상기 냉각관의 내부에 위치함으로서 상기 순환관의 외면 중 상기 냉각관과 교차하는 순환관의 외면을 통하여 상기 냉각유체와 냉매가 열교환 되는 것을 특징으로 하는 다중 통로 교류 열교환기.At the intersection of the circulation pipe and the cooling pipe, the circulation pipe is located inside the cooling pipe so that the cooling fluid and the refrigerant exchange heat through the outer surface of the circulation pipe crossing the cooling pipe among the outer surfaces of the circulation pipe. Multi-channel flow heat exchanger characterized.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 냉각관은,The cooling tube,
    내부에 공간부가 형성되는 하우징 형상으로서 상기 공간부에는 상기 순환관의 일정 부분이 포함되도록 설치되는 몸체부;A housing portion having a space formed therein, the space having a body portion installed to include a predetermined portion of the circulation pipe;
    상기 몸체부의 외면 중 어느 한 곳에 형성되어 상기 공간부로 상기 냉매를 공급하는 공급부; 및A supply unit formed at any one of an outer surface of the body part to supply the refrigerant to the space part; And
    상기 몸체부의 외면 중 다른 한 곳에 형성되어 상기 공간부로 공급된 냉매가 유출되는 배출부;를 포함하는 것을 특징으로 하는 다중 통로 교류 열교환기.And a discharge part formed at another one of the outer surfaces of the body part to discharge the refrigerant supplied to the space part.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 순환관은,The circulation pipe,
    상기 순환관이 상기 냉각관과 교차하는 영역 내에서 상기 순환관이 더 작은 직경을 갖는 복수의 분기관으로 분기될 수 있는 것을 특징으로 하는 다중 통로 교류 열교환기.And wherein the circulation pipe can branch into a plurality of branch pipes having a smaller diameter in an area where the circulation pipe crosses the cooling pipe.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 공급부와 배출부는,The supply part and the discharge part,
    상기 몸체부를 가로지르는 상기 순환관을 기준으로 어느 한 측방에 위치하여 상기 냉각관의 외면에서 서로 이격되어 형성되는 것을 특징으로 하는 다중 통로 교류 열교환기.The multi-pass AC heat exchanger, characterized in that formed on any one side with respect to the circulation pipe across the body portion spaced apart from each other on the outer surface of the cooling tube.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 몸체부에는,The body portion,
    상기 몸체부의 내측에 형성되는 상기 공간부에 배치되며, 상기 공급부와 배출부 사이에 구비되는 격벽;을 더 포함하되,A partition wall disposed in the space part formed inside the body part and provided between the supply part and the discharge part;
    상기 격벽에는, 상기 공간부 내에서 상기 공급부로 공급된 냉매가 상기 배출부로 배출될 수 있도록 상기 냉매가 통과할 수 있는 개방부가 형성되는 것을 특징으로 하는 다중 통로 교류 열교환기.The partition wall, the multi-channel AC heat exchanger is characterized in that the opening through which the refrigerant can pass so that the refrigerant supplied to the supply portion in the space portion is discharged to the discharge portion is formed.
PCT/KR2013/008586 2013-07-12 2013-09-25 Multipath cross flow heat exchanger WO2015005530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/888,371 US20160109183A1 (en) 2013-07-12 2013-09-25 Multipath cross flow heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0082388 2013-07-12
KR1020130082388A KR102001250B1 (en) 2013-07-12 2013-07-12 Heat exchanger with multi flow path

Publications (1)

Publication Number Publication Date
WO2015005530A1 true WO2015005530A1 (en) 2015-01-15

Family

ID=52280189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008586 WO2015005530A1 (en) 2013-07-12 2013-09-25 Multipath cross flow heat exchanger

Country Status (3)

Country Link
US (1) US20160109183A1 (en)
KR (1) KR102001250B1 (en)
WO (1) WO2015005530A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347003B1 (en) * 2017-01-25 2018-06-20 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド LNG ship evaporative gas reliquefaction method and system
US20210293483A1 (en) * 2020-03-23 2021-09-23 General Electric Company Multifurcating heat exchanger with independent baffles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027401A (en) * 1999-09-13 2001-04-06 김윤규 Radial heat exchanger and ground-thermal system used radial heat exchanger
US20040007349A1 (en) * 2002-07-09 2004-01-15 Samsung Electronics Co., Ltd. Heat exchanger
KR100736844B1 (en) * 2006-03-23 2007-07-10 한국에너지기술연구원 Underground thermal heat exchange system containing refrigerator
JP2009027843A (en) * 2007-07-19 2009-02-05 Sumitomo Electric Ind Ltd Terminal structure for superconductive cable
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630276A (en) * 1970-02-10 1971-12-28 Nasa Shell-side liquid metal boiler
US4360057A (en) * 1979-06-18 1982-11-23 Westinghouse Electric Corp. High temperature abrasive resistant heat exchanger
US5048596A (en) * 1990-01-02 1991-09-17 Mccord Heat Transfer Corporation Oil cooler
FR2841331B1 (en) * 2002-06-21 2005-02-25 Mota MULTITUBULAR EXCHANGERS AND METHOD OF MANUFACTURING THESE EXCHANGERS
US20040069470A1 (en) * 2002-09-10 2004-04-15 Jacob Gorbulsky Bent-tube heat exchanger
WO2006087794A1 (en) * 2005-02-18 2006-08-24 Sumitomo Electric Industries, Ltd. Circulation cooling system for cryogenic cable
KR20080073048A (en) * 2007-02-05 2008-08-08 엘에스전선 주식회사 Cooling apparatus superconduction cable line and operating method using there of
US8602089B2 (en) * 2007-05-25 2013-12-10 Holtec International, Inc. Heat exchanger apparatus for accommodating thermal and/or pressure transients
KR101640607B1 (en) * 2010-01-21 2016-07-19 엘에스전선 주식회사 Cooling apparatus of superconduction cable line
KR20130035755A (en) * 2011-09-30 2013-04-09 한국전력공사 Decompression pumping system for hts power cable and cooling method for using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027401A (en) * 1999-09-13 2001-04-06 김윤규 Radial heat exchanger and ground-thermal system used radial heat exchanger
US20040007349A1 (en) * 2002-07-09 2004-01-15 Samsung Electronics Co., Ltd. Heat exchanger
KR100736844B1 (en) * 2006-03-23 2007-07-10 한국에너지기술연구원 Underground thermal heat exchange system containing refrigerator
JP2009027843A (en) * 2007-07-19 2009-02-05 Sumitomo Electric Ind Ltd Terminal structure for superconductive cable
JP2009192177A (en) * 2008-02-15 2009-08-27 Toyota Industries Corp Ebullient cooling device

Also Published As

Publication number Publication date
KR102001250B1 (en) 2019-07-19
US20160109183A1 (en) 2016-04-21
KR20150008310A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
US7647787B2 (en) Upgradeable, modular data center cooling apparatus
WO2021080217A1 (en) High performance uniform temperature cold plate
WO2011019137A2 (en) Water purifier with ice maker
WO2017018594A1 (en) Heat exchanger module unit
CN1008493B (en) Ventilated end turns for rotor windings of dynamoelectric machine
WO2012002698A2 (en) Heat exchanger
WO2014081140A1 (en) Transformer having air-cooled heat sink
WO2015005530A1 (en) Multipath cross flow heat exchanger
TW201924510A (en) Cooling cabinet and cooling system
WO2022085879A1 (en) Heat exchanger for exhaust heat recovery in integrated ghp
WO2009139591A2 (en) Rapid cooling device and refrigerator having same
WO2016148508A1 (en) Vehicle heat exchanger
CN1518009A (en) Superconducting cable
WO2015178736A1 (en) Server room ventilation system
WO2021235748A1 (en) Heat sink
WO2022255812A1 (en) Complex heat exchanger
SE460160B (en) REGULATORY PROCEDURES FOR A WATER-COOLED CABLING
WO2017146450A1 (en) Cascade heat pump system for simultaneously producing cold water and steam
CN115494923A (en) Single-layer server-level full liquid cooling heat dissipation device
US4786886A (en) Forced-cooled superconductor
CN114615871A (en) Water separator of liquid cooling cabinet and liquid cooling cabinet
US3903355A (en) Cooling arrangement for electrical transmission system
WO2022164021A1 (en) Heat sink for electric machine
WO2020022837A1 (en) Refrigerant stabilization system and control method therefor
WO2016072719A1 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14888371

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13889150

Country of ref document: EP

Kind code of ref document: A1