WO2020022837A1 - Refrigerant stabilization system and control method therefor - Google Patents

Refrigerant stabilization system and control method therefor Download PDF

Info

Publication number
WO2020022837A1
WO2020022837A1 PCT/KR2019/009335 KR2019009335W WO2020022837A1 WO 2020022837 A1 WO2020022837 A1 WO 2020022837A1 KR 2019009335 W KR2019009335 W KR 2019009335W WO 2020022837 A1 WO2020022837 A1 WO 2020022837A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
stabilization
connection line
pressure
Prior art date
Application number
PCT/KR2019/009335
Other languages
French (fr)
Korean (ko)
Inventor
김동호
이근식
Original Assignee
주식회사 스마트링크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 스마트링크 filed Critical 주식회사 스마트링크
Publication of WO2020022837A1 publication Critical patent/WO2020022837A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass

Definitions

  • the present invention relates to a refrigerant stabilization system and a control method thereof, and more specifically, to activate a refrigerant primarily, to increase a refrigerant speed and cooling efficiency secondly, and to heat heat of a refrigerant having a high temperature / high pressure through preheat cooling.
  • the present invention relates to a refrigerant stabilization system and a control method of maximizing energy saving and maximizing the efficiency of maintaining a stable refrigeration cycle by reducing the overload of the discharged condenser.
  • a cooling system (hereinafter referred to as a "chiller") is widely used throughout the industry.
  • Such a freezer is largely comprised of a compressor, a condenser, an expansion valve, and an evaporator.
  • the compressor adiabaticly compresses the low-temperature low-pressure refrigerant to produce a high-temperature high-pressure gas refrigerant
  • the condenser makes the high-temperature, high-pressure gas refrigerant discharged from the compressor into a saturated liquid state by heat exchange.
  • the expansion valve makes the refrigerant liquefied and conveyed from the condenser into a low pressure saturated wet steam state
  • the evaporator forms a cycle of evaporating the refrigerant transferred from the expansion valve by heat exchange to make a saturated steam state and send it to the compressor.
  • the evaporator cools the refrigerant transferred from the expansion valve by exchanging heat with the surrounding space or the object to be cooled.
  • the above-mentioned conventional refrigerator has a problem that the refrigerant does not play the same role as the initial refrigerant state due to deterioration phenomenon, and there is another problem that the efficiency of the refrigerator is lowered due to this problem.
  • Patent Document 1 proposed by the present applicant (KR 10-1817227 B1) is mounted on the connection pipe connecting the compressor and the condenser constituting the refrigerator, and / or the connection pipe connecting the expansion valve and the evaporator
  • a refrigerant stabilizing device comprising: mixing means for inducing an unstable refrigerant to stabilize a vortex flow; And a tank for confining the mixing means therein, wherein the tank allows the refrigerant stabilized by the mixing means to flow out while introducing the unstable refrigerant to the inside, wherein the tank has a hollow cylindrical shape and has an open top and bottom ends.
  • An outlet pipe for guiding the refrigerant to the inside of the tank is installed, and the outlet pipe is connected to a connection pipe connected to the input terminal of the condenser or the evaporator, and an overflow pipe for guiding the stabilized refrigerant to the outlet pipe side is disposed inside the tank.
  • the bottom of is connected to the outflow pipe and the top extends vertically toward the top cover side and moves along the overflow pipe on the outer circumferential surface.
  • the spiral groove is formed to extend from the bottom of the outer peripheral surface of the overflow pipe to the upper side of the overflow pipe so as to form a vortex flow so that the stabilized refrigerant is more stabilized, and the mixing means is disposed inside the top cover but is unstable guided through the inflow pipe.
  • a vortex impeller which forms a vortex flow so as to stabilize the unstable refrigerant while stabilizing the unstable refrigerant while rotating along the inner circumferential surface of the tank by the pressure of the coolant; and the vortex impeller is rotatably supported by the frame. Is a technique that can be fixed to the top cover by a bracket.
  • the refrigerant stabilization device (hereinafter referred to as a stabilization tank) was intended to further reduce the temperature of the low-temperature / high pressure refrigerant from the condenser to further maximize the cooling efficiency of the cooler, but in practice, the condenser and expansion valve There is a problem in that the temperature of the low-temperature / high-pressure refrigerant is dropped too much by the stabilization tank provided in the end to become a low-pressure gas state before entering the expansion valve, so that the expansion effect is significantly lowered.
  • the present invention includes a preheating / stabilization tank in a bundle between the condenser and the expansion valve and between the compressor and the condenser and controls the bypass to activate the refrigerant first, and the refrigerant secondly.
  • a refrigerant stabilization system and its control method to increase the speed and cooling efficiency and to maintain stable refrigeration cycle, save energy and maximize efficiency by reducing overload of condenser that releases heat of high temperature / high pressure refrigerant through preheat cooling. The purpose is to.
  • Refrigerant stabilization system for achieving the above object is a cooling device 10 in which the refrigerant is sequentially circulated along the compressor 20, the condenser 30, expansion valve 40 and the evaporator 50;
  • the first connection line 11 connecting the compressor 20 and the condenser 30 and the second connection line 12 connecting the condenser 30 and the expansion valve 40 are provided in a bundle.
  • Preheating / stabilization tank which pre-cools the refrigerant passing through the connection line 11 and the refrigerant passing through the second connection line 12 by vortex flow to simultaneously stabilize the molecular structure. Characterized in that it comprises (100).
  • the preheating / stabilization tank 100 the tank body 110; It is connected to the upper end of the tank body 110 and the second connection line 12, the low-temperature / high-pressure refrigerant of the condenser 30 is introduced, the vortex impeller to form a vortex flow inside the tank body 110
  • a second inlet pipe 150 having a 180; It is connected to the lower end of the tank body 110 and the second connection line 12 to supply the stabilized refrigerant through the tank body 110 to the expansion valve 40, the vortex to the tank body 110
  • a second outlet pipe 160 having a overflow pipe 170 for sucking the stabilized refrigerant through a flow phenomenon;
  • a first inlet pipe 120 connected to a lower end of the tank body 110 and the first connection line 11 to introduce a high temperature / high pressure refrigerant of the compressor 20;
  • a coil tube 140 wound around the tank body 110 to preheat and cool the high temperature / high pressure refrigerant by the low temperature / high pressure refrigerant through a vortex
  • the sensor (S) for detecting the temperature and pressure of the refrigerant in the first inlet pipe 120, the first outlet pipe 130, the second inlet pipe 150, the second outlet pipe 160, respectively;
  • a first bypass B1 connecting the first inlet pipe 120 and the middle of the coil pipe 140 and a second connecting the middle part of the coil pipe 140 and the first outlet pipe 130.
  • Bypass B2 In order to supply the refrigerant having the optimal temperature and pressure to minimize the load of the condenser 30 according to the temperature and pressure change amount ⁇ T, ⁇ P of the refrigerant through the sensor S to the condenser 30.
  • It may include a control unit 300 for opening and closing the first bypass (B1) and the second bypass (B2).
  • first bypass B1 section may have a longer section than the second bypass B2 section.
  • first connection line 11 between the compressor 20 and the preheating / stabilization tank 100 includes a heat dissipation tube 200 for firstly dissipating the refrigerant immediately before entering the preheating / stabilization tank 100. It may be further provided.
  • the outer circumferential surface of the tubular body 210 may have a plurality of heat dissipation fins 220 formed in the longitudinal direction.
  • the first and second bypasses B1 and B2 are controlled by the control unit 300 when the temperature and pressure change amounts ⁇ T and ⁇ P of the refrigerant are equal to or lower than the set A (T1) temperature and pressure.
  • a first stabilizing step (S100) which does not perform preheating cooling through the preheating / stabilization tank 100 by opening all; If the temperature and pressure change amounts ⁇ T and ⁇ P of the refrigerant are equal to or higher than the set A (T1) temperature and pressure, the control unit 300 opens the first bypass B1 and closes the second bypass B2 to preheat it.
  • FIG. 1 is a block diagram showing an embodiment of a refrigerant stabilization system according to the present invention.
  • FIG. 2 is a block diagram showing another embodiment of a refrigerant stabilization system according to the present invention.
  • FIG. 3 is a flowchart illustrating an algorithm for a stabilization method using a refrigerant stabilization system according to the present invention.
  • the refrigerant stabilization system of the present invention is basically a cooling device in which the refrigerant is circulated sequentially along the compressor 20, the condenser 30, the expansion valve 40 and the evaporator 50, as shown in FIG. Provide 10.
  • the refrigerant circulating in the air conditioner 10 includes both a refrigerant gasified according to temperature and pressure, and a refrigerant liquefied.
  • the refrigerant is collectively described.
  • the preheating / stabilization tank 100 includes precooling of the refrigerant passing through the first connection line 11 and a refrigerant passing through the second connection line 12. It can be compressed at the same time to stabilize the molecular structure.
  • the condenser while performing the stabilization of the low temperature / high pressure refrigerant passing through the condenser 30 through the preheating / stabilization tank 100, the condenser through heat exchange with the high temperature / high pressure refrigerant passing through the compressor 20 relatively To lower the temperature of the refrigerant entering the 30 to prevent the overload of the condenser 30.
  • the preheating / stabilization tank 100 is provided with a tank body 110 having a space therein, the first outlet pipe 130, the second inlet pipe 150 is the upper end of the tank body 110 The first inlet pipe 120 and the second outlet pipe 160 are connected to the lower end of the tank body 110.
  • the second inlet pipe 150 is connected to the upper end of the tank body 110 and the second connection line 12, the low temperature / high pressure refrigerant of the condenser 30 is introduced, the tank body It has a vortex impeller 180 to form a vortex flow inside the (110).
  • the second outlet pipe 160 is connected to the lower end of the tank body 110 and the second connection line 12.
  • the refrigerant stabilized through the tank body 110 is expanded to the expansion valve 40.
  • the tank body 110 has a overflow pipe 170 for sucking the stabilized refrigerant through the vortex flow phenomenon to be supplied to.
  • the low temperature / high pressure refrigerant passing through the condenser 30 along the second connection line 12 enters the tank body 110 along the second inlet pipe 150 and the vortex impeller 180.
  • the expansion valve 40 along the second outlet pipe 160 through the overflow pipe 170. Will be supplied.
  • the first inlet pipe 120 is connected to the lower end of the tank body 110 and the first connection line 11 so that the high temperature / high pressure refrigerant of the compressor 20 is introduced.
  • the coil body 140 is wound around the tank body 110 to preheat and cool the high temperature / high pressure refrigerant by the low temperature / high pressure refrigerant through the vortex flow phenomenon.
  • first outlet pipe 130 is connected to the upper end of the tank body 110 and the first connection line 11 to supply the refrigerant preheated and cooled through the coil pipe 140 to the condenser 30. Connected.
  • the first inlet pipe 120, the first outlet pipe 130, the second inlet pipe 150, the second outlet pipe 160 for detecting the temperature and pressure of the refrigerant, respectively (S) is provided.
  • a first bypass B1 connecting the first inlet pipe 120 and the middle portion of the coil tube 140 is installed, and the middle portion of the coil tube 140 and the first outlet tube 130.
  • the second bypass (B2) connecting) is installed.
  • the refrigerant having the optimal temperature and pressure to minimize the load of the condenser 30 may be supplied to the condenser 30 according to the temperature and pressure change amounts ⁇ T and ⁇ P of the refrigerant through the sensor S.
  • a control unit 300 to control the opening and closing of the first bypass B1 and the second bypass B2.
  • the first bypass B1 section may have a longer section than the second bypass B2 section.
  • a heat dissipation tube 200 for primary heat dissipation of the refrigerant immediately before entering the preheating / stabilization tank 100 is provided. It may be further provided.
  • the preheated high temperature / high pressure refrigerant passing through the preheating / stabilization tank 100 may be provided to the condenser 30 by reducing the temperature by air cooling through the heat dissipation tube 200.
  • the control unit 300 compares the temperature and pressure measured by the respective sensors (S), but the temperature and pressure change amount ( ⁇ T, ⁇ P) of the refrigerant is set A (T1).
  • the first and second bypasses B1 and B2 are opened by the control unit 300 so as not to perform preheat cooling through the preheating / stabilization tank 100.
  • the control unit 300 compares the temperature and pressure measured by the respective sensors S, but the temperature and pressure change amounts ⁇ T and ⁇ P of the refrigerant are set A (T1). If the temperature and pressure are equal to or higher, the control unit 300 opens the first bypass B1, closes the second bypass B2, and performs preheat cooling through the preheat / stabilization tank 100.
  • the control unit 300 compares the temperature and pressure measured by the respective sensors (S), but the temperature and pressure change amount ( ⁇ T, ⁇ P) of the refrigerant is set B (T2). If the temperature and pressure are equal to or higher, the control unit 300 closes the first bypass B1 and opens the second bypass B2 to perform preheat cooling through the preheat / stabilization tank 100.
  • the control unit 300 compares the temperature and pressure measured by the respective sensors (S), but the temperature and pressure change amount ( ⁇ T, ⁇ P) of the refrigerant is set C (T3) If the temperature and the pressure or more, the control unit 300 closes all of the first and second bypasses B1 and B2 to perform preheating cooling through the preheating / stabilization tank 100 to the maximum.
  • setting A, setting B, and setting C may be variously changed from a minimum to a maximum reference value according to the load of the condenser 30 to an arbitrary value set according to the conditions of the indoor load.
  • the vortex impeller 180 is disposed inside the tank body 110 so as not to interfere with the upper end of the overflow pipe, the tank body by the pressure applied by the unstable refrigerant flowing through the second inlet pipe 150 It is arranged to rotate along the inner circumferential surface of (110).
  • the vortex impeller 180 disposed as described above is stabilized by rotating and mixing the unstable refrigerant to form a vortex flow, and moves the stabilized refrigerant to the lower side of the tank body 110.
  • the vortex impeller 180 is rotatably supported on a frame (not shown) or the like that does not interfere with the rotation of the refrigerant, and the frame (not shown) is the tank body 100 by a bracket (not shown) or the like. It is fixed to the top of the bracket, a frame (not shown) for rotatably supporting the vortex impeller 180 and a bracket (fixing the frame (not shown)) to the top of the tank body 100 is a known technique, so the detailed description Is omitted.
  • the refrigerant is primarily activated, the refrigerant speed and cooling efficiency are secondly increased, and the overload of the condenser that releases the heat of the high temperature / high pressure refrigerant through preheat cooling reduces the maintenance of a stable refrigeration cycle. And it can be used more effectively in refrigerant stabilization system because it can improve energy saving and efficiency.

Abstract

The present invention relates to a refrigerant stabilization system and a control method therefor. The refrigerant stabilization system according to the present invention comprises: a cooling device for sequentially circulating a refrigerant along a compressor, a condenser, an expansion valve and an evaporator; and a preheating/stabilizing tank, which has, as one bundle, a first connection line connecting the compressor and the condenser and a second connection line connecting the condenser and the expansion valve and simultaneously performs preheating and cooling on the refrigerant passing through the first connection line and the stabilization of a molecular structure by compressing, with a vortex flow, the refrigerant passing through the second connection line.

Description

냉매 안정화 시스템 및 그 제어방법Refrigerant stabilization system and control method
본 발명은 냉매 안정화 시스템 및 그 제어방법에 관한 것으로, 보다 구체적으로는 1차적으로 냉매를 활성화시키고, 2차적으로 냉매 속도 및 냉각 효율을 상승시키며, 예열냉각을 통해 고온/고압의 냉매의 열을 방출하는 응축기의 과부하를 감소시켜 안정적인 냉동사이클의 유지와 에너지 절감 및 효율성을 극대화하는 냉매 안정화 시스템 및 그 제어방법에 관한 것이다.The present invention relates to a refrigerant stabilization system and a control method thereof, and more specifically, to activate a refrigerant primarily, to increase a refrigerant speed and cooling efficiency secondly, and to heat heat of a refrigerant having a high temperature / high pressure through preheat cooling. The present invention relates to a refrigerant stabilization system and a control method of maximizing energy saving and maximizing the efficiency of maintaining a stable refrigeration cycle by reducing the overload of the discharged condenser.
일반적으로, 산업분야 전반에 걸쳐 냉각시스템(이하, "냉동기"라 한다)이 널리 사용되고 있는 실정이다.In general, a cooling system (hereinafter referred to as a "chiller") is widely used throughout the industry.
이러한, 냉동기는 누구나 알 수 있듯이 크게 압축기, 응축기, 팽창밸브 및 증발기를 포함하여 이루어진다. 여기서 압축기는 저온저압의 냉매를 단열압축하여 고온고압의 가스냉매로 만들어 토출하고, 응축기는 압축기로부터 토출되는 고온고압의 가스냉매를 열교환에 의해 포화액 상태로 만든다. 그리고 팽창밸브는 응축기로부터 액화되어 이송되는 냉매를 저압의 포화습증기 상태로 만들며, 증발기는 팽창밸브로부터 이송되는 냉매를 열교환에 의해 증발시켜 포화증기 상태로 만들어 압축기로 보내는 사이클을 이룬다.Such a freezer, as anyone knows, is largely comprised of a compressor, a condenser, an expansion valve, and an evaporator. Here, the compressor adiabaticly compresses the low-temperature low-pressure refrigerant to produce a high-temperature high-pressure gas refrigerant, and the condenser makes the high-temperature, high-pressure gas refrigerant discharged from the compressor into a saturated liquid state by heat exchange. The expansion valve makes the refrigerant liquefied and conveyed from the condenser into a low pressure saturated wet steam state, and the evaporator forms a cycle of evaporating the refrigerant transferred from the expansion valve by heat exchange to make a saturated steam state and send it to the compressor.
여기서, 이때, 증발기는 팽창밸브에서 이송된 냉매를 주위의 공간 또는 피냉각 물체와 열 교환시켜 냉각시킨다.Here, the evaporator cools the refrigerant transferred from the expansion valve by exchanging heat with the surrounding space or the object to be cooled.
그런데, 전술한 종래 냉동기는 장시간 운영하다 보면 냉매가 열화현상에 의해 초기 냉매 상태와 같은 역할을 못하는 문제점이 있었으며, 이러한 문제로 인해 냉동기의 효율이 저하되는 또 다른 문제점이 있었다.However, the above-mentioned conventional refrigerator has a problem that the refrigerant does not play the same role as the initial refrigerant state due to deterioration phenomenon, and there is another problem that the efficiency of the refrigerator is lowered due to this problem.
이에 대한 문제점을 해결하고자, 본 출원인이 제안한 특허문헌 1(KR 10-1817227 B1)은 냉동기를 구성하는 압축기와 응축기를 연결하는 연결관, 및/또는 팽창밸브와 증발기를 연결하는 연결관에 장착되는 냉매 안정화 장치에 있어서, 냉매 안정화 장치는, 불안정한 냉매가 보텍스 플로를 형성하도록 유도해 안정화시키는 혼화수단; 및 혼화수단을 내부에 한정하되, 불안정한 냉매를 내부로 유입시키면서 혼화수단에 의해 안정화된 냉매를 외부로 유출시키는 탱크;를 포함하며, 탱크는, 내부가 중공된 원통형상을 가지며, 열린 상단 및 하단은 상단커버 및 하단커버에 의해 마감되며, 상단커버에는 압축기 또는 팽창밸브의 배출단과 연결된 연결관을 따라 안내되는 불안정한 냉매를 탱크 내부로 안내하는 유입관이 장착되고, 하단커버에는 혼화수단에 의해 안정화된 냉매를 탱크 내부로 안내하는 유출관이 장착되되 이 유출관은 응축기 또는 증발기의 입력단과 연결된 연결관과 연결되며, 탱크의 내부에는 안정화된 냉매를 유출관 측으로 유도하는 월류관이 배치되되 월류관의 하단은 유출관과 연결되고 상단은 상단커버 측으로 수직하게 연장되면서 외주면에는 월류관을 따라 이동되는 안정화된 냉매가 더 안정화되도록 보텍스 플로를 형성하도록 나선홈이 월류관의 외주면 하단에서부터 월류관의 상단 측으로 연장되게 형성되고, 혼화수단은, 상단커버의 내측에 배치되되 유입관을 통해 안내되는 불안정한 냉매의 압력에 의해 상기 탱크의 내주면을 따라 회전하면서 불안정한 냉매가 안정화되도록 보텍스 플로를 형성시킴과 동시에 탱크의 하단측으로 유도하는 보텍스임펠러;를 포함하며, 보텍스임펠러는 프레임에 회전 가능하게 지지되고, 프레임은 브라켓에 의해 상단커버에 고정될 수 있게 기술이다.In order to solve the problem, Patent Document 1 proposed by the present applicant (KR 10-1817227 B1) is mounted on the connection pipe connecting the compressor and the condenser constituting the refrigerator, and / or the connection pipe connecting the expansion valve and the evaporator A refrigerant stabilizing device, comprising: mixing means for inducing an unstable refrigerant to stabilize a vortex flow; And a tank for confining the mixing means therein, wherein the tank allows the refrigerant stabilized by the mixing means to flow out while introducing the unstable refrigerant to the inside, wherein the tank has a hollow cylindrical shape and has an open top and bottom ends. Is closed by an upper cover and a lower cover, and the upper cover is equipped with an inlet pipe for guiding the unstable refrigerant guided along the connection pipe connected to the discharge end of the compressor or the expansion valve into the tank, and the lower cover is stabilized by mixing means. An outlet pipe for guiding the refrigerant to the inside of the tank is installed, and the outlet pipe is connected to a connection pipe connected to the input terminal of the condenser or the evaporator, and an overflow pipe for guiding the stabilized refrigerant to the outlet pipe side is disposed inside the tank. The bottom of is connected to the outflow pipe and the top extends vertically toward the top cover side and moves along the overflow pipe on the outer circumferential surface. The spiral groove is formed to extend from the bottom of the outer peripheral surface of the overflow pipe to the upper side of the overflow pipe so as to form a vortex flow so that the stabilized refrigerant is more stabilized, and the mixing means is disposed inside the top cover but is unstable guided through the inflow pipe. And a vortex impeller which forms a vortex flow so as to stabilize the unstable refrigerant while stabilizing the unstable refrigerant while rotating along the inner circumferential surface of the tank by the pressure of the coolant; and the vortex impeller is rotatably supported by the frame. Is a technique that can be fixed to the top cover by a bracket.
상기한 특허문헌 1에 경우 냉매 안정화 장치(이하, 안정화탱크라 함.)를 통해 응축기로부터 저온/고압의 냉매의 온도를 더욱 떨어트려 냉각기의 냉각 효율을 더욱 극대화 하고자 하였지만, 실질적으로 응축기와 팽창밸브의 사이에 구비된 안정화탱크에 의해 저온/고압의 냉매의 온도를 너무 떨어트려 결국 팽창밸브에 진입하기 전에 저압의 기체 상태가 되는 경우가 발생하여 팽창효과가 현저하게 낮아지는 문제점이 있다.In Patent Document 1, the refrigerant stabilization device (hereinafter referred to as a stabilization tank) was intended to further reduce the temperature of the low-temperature / high pressure refrigerant from the condenser to further maximize the cooling efficiency of the cooler, but in practice, the condenser and expansion valve There is a problem in that the temperature of the low-temperature / high-pressure refrigerant is dropped too much by the stabilization tank provided in the end to become a low-pressure gas state before entering the expansion valve, so that the expansion effect is significantly lowered.
따라서, 각 연결관을 통과하는 냉매의 온도에 따라 안정화탱크의 통과를 제어하여 최적의 냉각효과를 기대할 수 있는 시스템이 더욱 요구된다.Therefore, there is a further need for a system that can control the passage of the stabilization tank in accordance with the temperature of the refrigerant passing through each connecting pipe to expect the optimal cooling effect.
상기한 문제점을 해결하기 위하여 본 발명은 응축기와 팽창밸브의 사이 및 압축기와 응축기 사이에 한 묶음으로 예열/안정화탱크를 구비하고 이에 바이패스를 제어하여 1차적으로 냉매를 활성화시키고, 2차적으로 냉매 속도 및 냉각 효율을 상승시키며, 예열냉각을 통해 고온/고압의 냉매의 열을 방출하는 응축기의 과부하를 감소시켜 안정적인 냉동사이클의 유지와 에너지 절감 및 효율성을 극대화하는 냉매 안정화 시스템 및 그 제어방법을 제공하는데 목적이 있다.In order to solve the above problems, the present invention includes a preheating / stabilization tank in a bundle between the condenser and the expansion valve and between the compressor and the condenser and controls the bypass to activate the refrigerant first, and the refrigerant secondly. Provides a refrigerant stabilization system and its control method to increase the speed and cooling efficiency and to maintain stable refrigeration cycle, save energy and maximize efficiency by reducing overload of condenser that releases heat of high temperature / high pressure refrigerant through preheat cooling. The purpose is to.
상기한 목적을 달성하기 위한 본 발명에 따른 냉매 안정화 시스템은 압축기(20), 응축기(30), 팽창밸브(40) 및 증발기(50)를 따라 순차적으로 냉매가 순환되는 냉방장치(10)와; 상기 압축기(20)와 응축기(30)를 잇는 제1연결라인(11) 및 상기 응축기(30)와 팽창밸브(40)를 잇는 제2연결라인(12)을 한 묶음으로 구비하며, 상기 제1연결라인(11)을 통과하는 냉매의 예열냉각(precooling)과 제2연결라인(12)을 통과하는 냉매를 보텍스 플로(vortex flow) 현상으로 압축해 분자구조의 안정화를 동시에 수행하는 예열/안정화탱크(100)를 포함하는 것을 특징으로 한다.Refrigerant stabilization system according to the present invention for achieving the above object is a cooling device 10 in which the refrigerant is sequentially circulated along the compressor 20, the condenser 30, expansion valve 40 and the evaporator 50; The first connection line 11 connecting the compressor 20 and the condenser 30 and the second connection line 12 connecting the condenser 30 and the expansion valve 40 are provided in a bundle. Preheating / stabilization tank which pre-cools the refrigerant passing through the connection line 11 and the refrigerant passing through the second connection line 12 by vortex flow to simultaneously stabilize the molecular structure. Characterized in that it comprises (100).
또한, 상기 예열/안정화탱크(100)는, 탱크몸체(110)와; 상기 탱크몸체(110)의 상단과 상기 제2연결라인(12)에 연결되어 상기 응축기(30)의 저온/고압 냉매가 유입되며, 상기 탱크몸체(110)의 내측으로 보텍스 플로를 형성시키는 보텍스임펠러(180)를 갖는 제2유입관(150)과; 상기 탱크몸체(110)의 하단과 상기 제2연결라인(12)에 연결되어 상기 탱크몸체(110)를 통해 안정화된 냉매를 상기 팽창밸브(40)로 공급하며, 상기 탱크몸체(110)에 보텍스 플로 현상을 통한 안정화 냉매를 흡입하는 월류관(170)을 갖는 제2유출관(160)과; 상기 탱크몸체(110)의 하단과 상기 제1연결라인(11)에 연결되어 상기 압축기(20)의 고온/고압 냉매가 유입되는 제1유입관(120)과; 상기 탱크몸체(110)의 내측에 권선되어 고온/고압의 냉매를 보텍스 플로 현상을 통한 저온/고압의 냉매에 의해 예열냉각시키는 코일관(140)과; 상기 탱크몸체(110)의 상단과 상기 제1연결라인(11)에 연결되어 상기 코일관(140)을 통해 예열냉각된 냉매를 상기 응축기(30)로 공급하는 제1유출관(130)을 포함할 수 있다.In addition, the preheating / stabilization tank 100, the tank body 110; It is connected to the upper end of the tank body 110 and the second connection line 12, the low-temperature / high-pressure refrigerant of the condenser 30 is introduced, the vortex impeller to form a vortex flow inside the tank body 110 A second inlet pipe 150 having a 180; It is connected to the lower end of the tank body 110 and the second connection line 12 to supply the stabilized refrigerant through the tank body 110 to the expansion valve 40, the vortex to the tank body 110 A second outlet pipe 160 having a overflow pipe 170 for sucking the stabilized refrigerant through a flow phenomenon; A first inlet pipe 120 connected to a lower end of the tank body 110 and the first connection line 11 to introduce a high temperature / high pressure refrigerant of the compressor 20; A coil tube 140 wound around the tank body 110 to preheat and cool the high temperature / high pressure refrigerant by the low temperature / high pressure refrigerant through a vortex flow phenomenon; A first outlet pipe 130 connected to an upper end of the tank body 110 and the first connection line 11 to supply a preheated coolant to the condenser 30 through the coil pipe 140. can do.
또한, 상기 제1유입관(120), 제1유출관(130), 제2유입관(150), 제2유출관(160)에 각각 냉매의 온도 및 압력을 검출하는 센서(S)와; 상기 제1유입관(120)과 상기 코일관(140)의 중간부분을 잇는 제1바이패스(B1) 및 상기 코일관(140)의 중간부분과 상기 제1유출관(130)을 잇는 제2바이패스(B2)와; 상기 센서(S)를 통한 냉매의 온도 및 압력 변화량(ΔT,ΔP)에 따라 상기 응축기(30)의 부하를 최소화할 수 있는 최적의 온도 및 압력을 갖는 냉매를 상기 응축기(30)로 공급할 수 있도록 상기 제1바이패스(B1) 및 제2바이패스(B2)를 개폐 제어하는 제어부(300)를 포함할 수 있다.In addition, the sensor (S) for detecting the temperature and pressure of the refrigerant in the first inlet pipe 120, the first outlet pipe 130, the second inlet pipe 150, the second outlet pipe 160, respectively; A first bypass B1 connecting the first inlet pipe 120 and the middle of the coil pipe 140 and a second connecting the middle part of the coil pipe 140 and the first outlet pipe 130. Bypass B2; In order to supply the refrigerant having the optimal temperature and pressure to minimize the load of the condenser 30 according to the temperature and pressure change amount ΔT, ΔP of the refrigerant through the sensor S to the condenser 30. It may include a control unit 300 for opening and closing the first bypass (B1) and the second bypass (B2).
또한, 상기 제1바이패스(B1) 구간은 상기 제2바이패스(B2) 구간에 비해 상대적으로 더욱 긴 길이의 구간을 가질 수 있다.In addition, the first bypass B1 section may have a longer section than the second bypass B2 section.
또한, 상기 압축기(20)와 예열/안정화탱크(100)의 사이 제1연결라인(11)에는 상기 예열/안정화탱크(100)로 진입하기 직전의 냉매를 1차 방열시키는 방열튜브(200)가 더 구비될 수 있다.In addition, the first connection line 11 between the compressor 20 and the preheating / stabilization tank 100 includes a heat dissipation tube 200 for firstly dissipating the refrigerant immediately before entering the preheating / stabilization tank 100. It may be further provided.
또한, 상기 방열튜브(200)는, 상기 제1연결라인(11)의 일부 구간의 표면을 감싸는 관체(210)와; 상기 관체(210)의 외주면에 길이 방향을 따라 형성된 다수의 방열핀(220)을 가질 수 있다.In addition, the heat dissipation tube 200, the tubular body 210 surrounding the surface of a portion of the first connection line 11; The outer circumferential surface of the tubular body 210 may have a plurality of heat dissipation fins 220 formed in the longitudinal direction.
아울러, 본 발명에 따른 냉매 안정화 방법은 냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정A(T1) 온도 및 압력 이하이면 제어부(300)에 의해 제1,2바이패스(B1,B2)를 모두 개방하여 예열/안정화탱크(100)를 통한 예열냉각을 수행하지 않는 제1안정화단계(S100)와; 냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정A(T1) 온도 및 압력 이상이면 제어부(300)에 의해 제1바이패스(B1)를 개방하고, 제2바이패스(B2)를 폐쇄하여 예열/안정화탱크(100)를 통한 예열냉각을 수행하는 제2안정화단계(S200)와; 냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정B(T2) 온도 및 압력 이상이면 제어부(300)에 의해 제1바이패스(B1)를 폐쇄하고, 제2바이패스(B2)를 개방하여 예열/안정화탱크(100)를 통한 예열냉각을 수행하는 제3안정화단계(S300)와; 냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정C(T3) 온도 및 압력 이상이면 제어부(300)에 의해 제1,2바이패스(B1,B2)를 모두 폐쇄하여 예열/안정화탱크(100)를 통한 예열냉각을 최대한 수행하는 제4안정화단계(S400)를 포함할 수 있다.In addition, in the refrigerant stabilization method according to the present invention, the first and second bypasses B1 and B2 are controlled by the control unit 300 when the temperature and pressure change amounts ΔT and ΔP of the refrigerant are equal to or lower than the set A (T1) temperature and pressure. A first stabilizing step (S100) which does not perform preheating cooling through the preheating / stabilization tank 100 by opening all; If the temperature and pressure change amounts ΔT and ΔP of the refrigerant are equal to or higher than the set A (T1) temperature and pressure, the control unit 300 opens the first bypass B1 and closes the second bypass B2 to preheat it. Second stabilization step (S200) for performing preheat cooling through the / stabilization tank (100); If the temperature and pressure change amount ΔT and ΔP of the refrigerant is equal to or higher than the set temperature B and the pressure T2, the control unit 300 closes the first bypass B1, opens the second bypass B2, and preheats it. Third stabilization step (S300) for performing preheat cooling through the / stabilization tank (100); If the temperature and pressure change amount ΔT, ΔP of the refrigerant is equal to or higher than the set C (T3) temperature and pressure, the control unit 300 closes all of the first and second bypasses B1 and B2 to preheat / stabilize the tank 100. It may include a fourth stabilization step (S400) for performing the preheat cooling through the maximum.
상기와 같이 구성된 본 발명을 제공함으로써, 1차적으로 냉매를 활성화시키고, 2차적으로 냉매 속도 및 냉각 효율을 상승시키며, 예열냉각을 통해 고온/고압의 냉매의 열을 방출하는 응축기의 과부하를 감소시켜 안정적인 냉동사이클의 유지와 에너지 절감 및 효율성을 극대화는 효과가 있다.By providing the present invention configured as described above, by primarily activating the refrigerant, and secondly to increase the refrigerant speed and cooling efficiency, to reduce the overload of the condenser to discharge the heat of the refrigerant of high temperature / high pressure through preheating cooling Maintaining a stable refrigeration cycle, saving energy and maximizing efficiency is effective.
도 1은 본 발명에 따른 냉매 안정화 시스템의 실시예를 나타내는 구성도.1 is a block diagram showing an embodiment of a refrigerant stabilization system according to the present invention.
도 2는 본 발명에 따른 냉매 안정화 시스템의 다른 실시예를 나타내는 구성도.2 is a block diagram showing another embodiment of a refrigerant stabilization system according to the present invention.
도 3은 본 발명에 따른 냉매 안정화 시스템을 이용한 안정화 방법에 대한 알고리즘을 나타내는 흐름도.3 is a flowchart illustrating an algorithm for a stabilization method using a refrigerant stabilization system according to the present invention.
이하, 본 발명에 대하여 동일한 기술분야에 속하는 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부도면을 참조하여 바람직한 실시 예를 상세하게 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
본 발명의 냉매 안정화 시스템은 도 1 내지 도 2에 도시된 바와 같이, 기본적으로 압축기(20), 응축기(30), 팽창밸브(40) 및 증발기(50)를 따라 순차적으로 냉매가 순환되는 냉방장치(10)를 제공한다.The refrigerant stabilization system of the present invention is basically a cooling device in which the refrigerant is circulated sequentially along the compressor 20, the condenser 30, the expansion valve 40 and the evaporator 50, as shown in FIG. Provide 10.
더불어, 상기 냉방장치(10)를 순환하는 냉매의 경우, 온도 및 압력에 따라 가스화되는 냉매, 및 액화되는 냉매를 모두 포함하며, 이하, 냉매로 일괄 설명한다.In addition, the refrigerant circulating in the air conditioner 10 includes both a refrigerant gasified according to temperature and pressure, and a refrigerant liquefied. Hereinafter, the refrigerant is collectively described.
그리고, 상기 압축기(20)와 응축기(30)를 잇는 제1연결라인(11) 및 상기 응축기(30)와 팽창밸브(40)를 잇는 제2연결라인(12)을 한 묶음으로 하는 예열/안정화탱크(100)를 포함한다. Then, the preheating / stabilization of the first connection line 11 connecting the compressor 20 and the condenser 30 and the second connection line 12 connecting the condenser 30 and the expansion valve 40 in a bundle. Tank 100.
도 1에 의하면, 상기 예열/안정화탱크(100)는 상기 제1연결라인(11)을 통과하는 냉매의 예열냉각(precooling)과 제2연결라인(12)을 통과하는 냉매를 보텍스 플로(vortex flow) 현상으로 압축해 분자구조의 안정화를 동시에 수행할 수 있다.Referring to FIG. 1, the preheating / stabilization tank 100 includes precooling of the refrigerant passing through the first connection line 11 and a refrigerant passing through the second connection line 12. It can be compressed at the same time to stabilize the molecular structure.
즉, 상기 예열/안정화탱크(100)를 통해 상기 응축기(30)를 통과한 저온/고압 냉매에 대한 안정화를 수행하면서 상대적으로 상기 압축기(20)를 통과한 고온/고압의 냉매와 열교환을 통해 응축기(30)로 들어가는 냉매의 온도를 낮추어 응축기(30)의 과부하를 방지하고자 한다.That is, while performing the stabilization of the low temperature / high pressure refrigerant passing through the condenser 30 through the preheating / stabilization tank 100, the condenser through heat exchange with the high temperature / high pressure refrigerant passing through the compressor 20 relatively To lower the temperature of the refrigerant entering the 30 to prevent the overload of the condenser 30.
이때, 상기 예열/안정화탱크(100)는 내부에 공간을 갖는 탱크몸체(110)가 제공되고, 상기 탱크몸체(110)의 상단에는 제1유출관(130), 제2유입관(150)이 연결되며, 상기 탱크몸체(110)의 하단에는 제1유입관(120), 제2유출관(160)이 연결된다.At this time, the preheating / stabilization tank 100 is provided with a tank body 110 having a space therein, the first outlet pipe 130, the second inlet pipe 150 is the upper end of the tank body 110 The first inlet pipe 120 and the second outlet pipe 160 are connected to the lower end of the tank body 110.
다시 말해, 상기 제2유입관(150)은 상기 탱크몸체(110)의 상단과 상기 제2연결라인(12)에 연결되며, 상기 응축기(30)의 저온/고압 냉매가 유입되며, 상기 탱크몸체(110)의 내측으로 보텍스 플로를 형성시키는 보텍스임펠러(180)를 갖는다.In other words, the second inlet pipe 150 is connected to the upper end of the tank body 110 and the second connection line 12, the low temperature / high pressure refrigerant of the condenser 30 is introduced, the tank body It has a vortex impeller 180 to form a vortex flow inside the (110).
그리고, 상기 제2유출관(160)은 상기 탱크몸체(110)의 하단과 상기 제2연결라인(12)에 연결되며, 상기 탱크몸체(110)를 통해 안정화된 냉매를 상기 팽창밸브(40)로 공급되도록 상기 탱크몸체(110)에 보텍스 플로 현상을 통한 안정화 냉매를 흡입하는 월류관(170)을 갖는다.In addition, the second outlet pipe 160 is connected to the lower end of the tank body 110 and the second connection line 12. The refrigerant stabilized through the tank body 110 is expanded to the expansion valve 40. The tank body 110 has a overflow pipe 170 for sucking the stabilized refrigerant through the vortex flow phenomenon to be supplied to.
즉, 상기 제2연결라인(12)을 따라 상기 응축기(30)를 통과한 저온/고압의 냉매가 상기 제2유입관(150)을 따라 탱크몸체(110)에 진입하면서 상기 보텍스임펠러(180)에 의해 내부에 보텍스 플로(vortex flow) 현상을 일으키면서 냉매(액체 상태의 냉매)를 분산시켜 안정화 시키면, 상기 월류관(170)을 통해 상기 제2유출관(160)을 따라 상기 팽창밸브(40)로 공급하게 된다.That is, the low temperature / high pressure refrigerant passing through the condenser 30 along the second connection line 12 enters the tank body 110 along the second inlet pipe 150 and the vortex impeller 180. By dispersing and stabilizing the refrigerant (liquid in the liquid state) while causing a vortex flow phenomenon therein, the expansion valve 40 along the second outlet pipe 160 through the overflow pipe 170. ) Will be supplied.
한편, 상기 제1유입관(120)은 상기 압축기(20)의 고온/고압 냉매가 유입되도록 상기 탱크몸체(110)의 하단과 상기 제1연결라인(11)에 연결된다.On the other hand, the first inlet pipe 120 is connected to the lower end of the tank body 110 and the first connection line 11 so that the high temperature / high pressure refrigerant of the compressor 20 is introduced.
이때, 상기 탱크몸체(110)의 내측에는 고온/고압의 냉매를 보텍스 플로 현상을 통한 저온/고압의 냉매에 의해 예열냉각시키는 코일관(140)이 권선 설치된다.At this time, the coil body 140 is wound around the tank body 110 to preheat and cool the high temperature / high pressure refrigerant by the low temperature / high pressure refrigerant through the vortex flow phenomenon.
그리고, 제1유출관(130)은 상기 코일관(140)을 통해 예열냉각된 냉매를 상기 응축기(30)로 공급할 수 있도록 상기 탱크몸체(110)의 상단과 상기 제1연결라인(11)에 연결된다.In addition, the first outlet pipe 130 is connected to the upper end of the tank body 110 and the first connection line 11 to supply the refrigerant preheated and cooled through the coil pipe 140 to the condenser 30. Connected.
한편, 도 2에 의하면, 상기 제1유입관(120), 제1유출관(130), 제2유입관(150), 제2유출관(160)에 각각 냉매의 온도 및 압력을 검출하는 센서(S)가 구비된다.On the other hand, according to Figure 2, the first inlet pipe 120, the first outlet pipe 130, the second inlet pipe 150, the second outlet pipe 160 for detecting the temperature and pressure of the refrigerant, respectively (S) is provided.
그리고, 상기 제1유입관(120)과 상기 코일관(140)의 중간부분을 잇는 제1바이패스(B1)가 설치되고, 상기 코일관(140)의 중간부분과 상기 제1유출관(130)을 잇는 제2바이패스(B2)가 설치된다.In addition, a first bypass B1 connecting the first inlet pipe 120 and the middle portion of the coil tube 140 is installed, and the middle portion of the coil tube 140 and the first outlet tube 130. The second bypass (B2) connecting) is installed.
또한, 상기 센서(S)를 통한 냉매의 온도 및 압력 변화량(ΔT,ΔP)에 따라 상기 응축기(30)의 부하를 최소화할 수 있는 최적의 온도 및 압력을 갖는 냉매를 상기 응축기(30)로 공급할 수 있도록 상기 제1바이패스(B1) 및 제2바이패스(B2)를 개폐 제어하는 제어부(300)를 포함한다.In addition, the refrigerant having the optimal temperature and pressure to minimize the load of the condenser 30 may be supplied to the condenser 30 according to the temperature and pressure change amounts ΔT and ΔP of the refrigerant through the sensor S. And a control unit 300 to control the opening and closing of the first bypass B1 and the second bypass B2.
이때, 상기 제1바이패스(B1) 구간은 상기 제2바이패스(B2) 구간에 비해 상대적으로 더욱 긴 길이의 구간을 갖는 것이 바람직하다.In this case, the first bypass B1 section may have a longer section than the second bypass B2 section.
한편, 상기 압축기(20)와 예열/안정화탱크(100) 사이의 제1연결라인(11)에는 상기 예열/안정화탱크(100)로 진입하기 직전의 냉매를 1차 방열시키는 방열튜브(200)가 더 구비될 수 있다.On the other hand, in the first connection line 11 between the compressor 20 and the preheating / stabilization tank 100, a heat dissipation tube 200 for primary heat dissipation of the refrigerant immediately before entering the preheating / stabilization tank 100 is provided. It may be further provided.
상기 방열튜브(200)는 상기 제1연결라인(11)의 일부 구간에 표면을 감싸는 관체(210)와; 상기 관체(210)의 외주면에 길이 방향을 따라 형성된 다수의 방열핀(220)으로 일체 형성될 수 있다.The heat dissipation tube 200 and the tube body 210 surrounding the surface in a portion of the first connection line (11); It may be integrally formed with a plurality of heat radiation fins 220 formed along the longitudinal direction on the outer circumferential surface of the tubular body 210.
즉, 상기 예열/안정화탱크(100)를 통과한 예열된 고온/고압의 냉매를 상기 방열튜브(200)를 통해 공냉식으로 온도를 저감시켜 상기 응축기(30)에 제공할 수 있다.That is, the preheated high temperature / high pressure refrigerant passing through the preheating / stabilization tank 100 may be provided to the condenser 30 by reducing the temperature by air cooling through the heat dissipation tube 200.
더욱이, 상기와 같이 구성된 본 발명의 냉매 안정화 시스템을 이용하여 도 3에 도시된 바와 같이, 냉매를 안정화 하는 방법으로 알고리즘을 제안한다.Furthermore, as shown in FIG. 3 using the refrigerant stabilization system of the present invention configured as described above, an algorithm is proposed as a method of stabilizing a refrigerant.
첫 번째, 제1안정화단계(S100)는 상기 각 센서(S)를 통해 측정된 온도 및 압력을 제어부(300)가 비교하되, 냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정A(T1) 온도 및 압력 이하이면 상기 제어부(300)에 의해 상기 제1,2바이패스(B1,B2)를 모두 개방하여 상기 예열/안정화탱크(100)를 통한 예열냉각을 수행하지 않는다.First, in the first stabilization step (S100), the control unit 300 compares the temperature and pressure measured by the respective sensors (S), but the temperature and pressure change amount (ΔT, ΔP) of the refrigerant is set A (T1). When the temperature and pressure are lower than each other, the first and second bypasses B1 and B2 are opened by the control unit 300 so as not to perform preheat cooling through the preheating / stabilization tank 100.
즉, 냉매의 온도 및 압력 변화량(ΔT,ΔP)이 작을 경우 응축기(30)의 과부하가 발생하지 않으므로, 냉각하지 않고 제1,2바이패스(B1,B2)를 통해 우회하는 것이 바람직하다.That is, since the overload of the condenser 30 does not occur when the temperature and pressure change amounts ΔT and ΔP of the refrigerant are small, it is preferable to bypass the first and second bypasses B1 and B2 without cooling.
두 번째, 제2안정화단계(S200)는 상기 각 센서(S)를 통해 측정된 온도 및 압력을 제어부(300)가 비교하되, 냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정A(T1) 온도 및 압력 이상이면 제어부(300)에 의해 상기 제1바이패스(B1)를 개방하고, 제2바이패스(B2)를 폐쇄하여 상기 예열/안정화탱크(100)를 통한 예열냉각을 수행한다.Second, in the second stabilization step (S200), the control unit 300 compares the temperature and pressure measured by the respective sensors S, but the temperature and pressure change amounts ΔT and ΔP of the refrigerant are set A (T1). If the temperature and pressure are equal to or higher, the control unit 300 opens the first bypass B1, closes the second bypass B2, and performs preheat cooling through the preheat / stabilization tank 100.
세 번째, 제3안정화단계(S300)는 상기 각 센서(S)를 통해 측정된 온도 및 압력을 제어부(300)가 비교하되, 냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정B(T2) 온도 및 압력 이상이면 제어부(300)에 의해 상기 제1바이패스(B1)를 폐쇄하고, 제2바이패스(B2)를 개방하여 상기 예열/안정화탱크(100)를 통한 예열냉각을 수행한다.Third, in the third stabilization step (S300), the control unit 300 compares the temperature and pressure measured by the respective sensors (S), but the temperature and pressure change amount (ΔT, ΔP) of the refrigerant is set B (T2). If the temperature and pressure are equal to or higher, the control unit 300 closes the first bypass B1 and opens the second bypass B2 to perform preheat cooling through the preheat / stabilization tank 100.
네 번째, 제4안정화단계(S400)는 상기 각 센서(S)를 통해 측정된 온도 및 압력을 제어부(300)가 비교하되, 냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정C(T3) 온도 및 압력 이상이면 제어부(300)에 의해 상기 제1,2바이패스(B1,B2)를 모두 폐쇄하여 상기 예열/안정화탱크(100)를 통한 예열냉각을 최대한 수행한다.Fourth, the fourth stabilization step (S400), the control unit 300 compares the temperature and pressure measured by the respective sensors (S), but the temperature and pressure change amount (ΔT, ΔP) of the refrigerant is set C (T3) If the temperature and the pressure or more, the control unit 300 closes all of the first and second bypasses B1 and B2 to perform preheating cooling through the preheating / stabilization tank 100 to the maximum.
여기서, 설정A, 설정B, 설정C는 상기 응축기(30)의 부하에 따른 최소에서 최대 기준치를 실내부하의 조건에 따라 설정된 임의 값으로 다양하게 변경될 수 있다.Here, setting A, setting B, and setting C may be variously changed from a minimum to a maximum reference value according to the load of the condenser 30 to an arbitrary value set according to the conditions of the indoor load.
마지막으로, 상기 보텍스임펠러(180)는 상기 월류관의 상단에 간섭되지 않게 탱크몸체(110)의 내측에 배치되되, 제2유입관(150)을 통하여 유입되는 불안정한 냉매가 가하는 압력에 의해 탱크몸체(110)의 내주면을 따라 회전되도록 배치된다.Finally, the vortex impeller 180 is disposed inside the tank body 110 so as not to interfere with the upper end of the overflow pipe, the tank body by the pressure applied by the unstable refrigerant flowing through the second inlet pipe 150 It is arranged to rotate along the inner circumferential surface of (110).
이렇게 배치된 보텍스임펠러(180)는 불안정한 냉매를 볼텍스 플로(vorrtex flow)가 형성하도록 회전시키면서 혼화되게 하여 안정화시킴과 동시에 안정화된 냉매를 탱크몸체(110)의 하단 측으로 이동시킨다.The vortex impeller 180 disposed as described above is stabilized by rotating and mixing the unstable refrigerant to form a vortex flow, and moves the stabilized refrigerant to the lower side of the tank body 110.
여기서, 상기 보텍스임펠러(180)는 냉매의 회전에 간섭되지 않는 프레임(도시되지 않음) 등에 회전 가능하게 지지되며, 또한, 프레임(도시되지 않음)은 브라켓(도시되지 않음) 등에 의해 탱크몸체(100)의 상단에 고정되는데, 보텍스임펠러(180)를 회전 가능하게 지지하는 프레임(도시되지 않음) 및 프레임(도시되지 않음)을 탱크몸체(100)의 상단에 고정시키는 브라켓은 공지의 기술이므로 상세한 설명은 생략한다.Here, the vortex impeller 180 is rotatably supported on a frame (not shown) or the like that does not interfere with the rotation of the refrigerant, and the frame (not shown) is the tank body 100 by a bracket (not shown) or the like. It is fixed to the top of the bracket, a frame (not shown) for rotatably supporting the vortex impeller 180 and a bracket (fixing the frame (not shown)) to the top of the tank body 100 is a known technique, so the detailed description Is omitted.
상기와 같이 구성된 본 발명을 제공함으로써, 1차적으로 냉매를 활성화시키고, 2차적으로 냉매 속도 및 냉각 효율을 상승시키며, 예열냉각을 통해 고온/고압의 냉매의 열을 방출하는 응축기의 과부하를 감소시켜 안정적인 냉동사이클의 유지와 에너지 절감 및 효율성을 극대화는 효과를 기대할 수 있다.By providing the present invention configured as described above, by primarily activating the refrigerant, and secondly to increase the refrigerant speed and cooling efficiency, to reduce the overload of the condenser to discharge the heat of the refrigerant of high temperature / high pressure through preheating cooling Maintaining a stable refrigeration cycle, saving energy and maximizing efficiency can be expected.
이상에 설명한 본 명세서 및 청구범위에 사용되는 용어 및 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 본 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the specification and claims described above should not be construed as being limited to the ordinary or dictionary meanings, and the inventors should properly introduce the concept of terms to explain their own invention in the best way. It should be interpreted as meanings and concepts in accordance with the technical spirit of the present invention based on the principle that it can be defined.
따라서, 본 명세서에 기재된 도면 및 실시 예에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the configuration shown in the drawings and embodiments described herein is only one of the most preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, it is possible to replace them at the time of the present application It should be understood that there may be various equivalents and variations.
본 발명에 따르면, 1차적으로 냉매를 활성화시키고, 2차적으로 냉매 속도 및 냉각 효율을 상승시키며, 예열냉각을 통해 고온/고압의 냉매의 열을 방출하는 응축기의 과부하를 감소시켜 안정적인 냉동사이클의 유지와 에너지 절감 및 효율성을 향상시킬 수 있으므로 냉매 안정화 시스템에 보다 효과적으로 이용될 수 있다.According to the present invention, the refrigerant is primarily activated, the refrigerant speed and cooling efficiency are secondly increased, and the overload of the condenser that releases the heat of the high temperature / high pressure refrigerant through preheat cooling reduces the maintenance of a stable refrigeration cycle. And it can be used more effectively in refrigerant stabilization system because it can improve energy saving and efficiency.

Claims (7)

  1. 압축기(20), 응축기(30), 팽창밸브(40) 및 증발기(50)를 따라 순차적으로 냉매가 순환되는 냉방장치(10)와;A cooling device 10 in which refrigerant is circulated sequentially along the compressor 20, the condenser 30, the expansion valve 40, and the evaporator 50;
    상기 압축기(20)와 응축기(30)를 잇는 제1연결라인(11) 및 상기 응축기(30)와 팽창밸브(40)를 잇는 제2연결라인(12)을 한 묶음으로 구비하며, 상기 제1연결라인(11)을 통과하는 냉매의 예열냉각(precooling)과 제2연결라인(12)을 통과하는 냉매를 보텍스 플로(vortex flow) 현상으로 압축해 분자구조의 안정화를 동시에 수행하는 예열/안정화탱크(100)를 포함하는 것을 특징으로 하는 냉매 안정화 시스템.The first connection line 11 connecting the compressor 20 and the condenser 30 and the second connection line 12 connecting the condenser 30 and the expansion valve 40 are provided in a bundle. Preheating / stabilization tank which pre-cools the refrigerant passing through the connection line 11 and the refrigerant passing through the second connection line 12 by vortex flow to simultaneously stabilize the molecular structure. Refrigerant stabilization system comprising (100).
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 예열/안정화탱크(100)는,The preheating / stabilization tank 100,
    탱크몸체(110)와;A tank body 110;
    상기 탱크몸체(110)의 상단과 상기 제2연결라인(12)에 연결되어 상기 응축기(30)의 저온/고압 냉매가 유입되며, 상기 탱크몸체(110)의 내측으로 보텍스 플로를 형성시키는 보텍스임펠러(180)를 갖는 제2유입관(150)과;It is connected to the upper end of the tank body 110 and the second connection line 12, the low-temperature / high-pressure refrigerant of the condenser 30 is introduced, the vortex impeller to form a vortex flow inside the tank body 110 A second inlet pipe 150 having a 180;
    상기 탱크몸체(110)의 하단과 상기 제2연결라인(12)에 연결되어 상기 탱크몸체(110)를 통해 안정화된 냉매를 상기 팽창밸브(40)로 공급하며, 상기 탱크몸체(110)에 보텍스 플로 현상을 통한 안정화 냉매를 흡입하는 월류관(170)을 갖는 제2유출관(160)과;It is connected to the lower end of the tank body 110 and the second connection line 12 to supply the stabilized refrigerant through the tank body 110 to the expansion valve 40, the vortex to the tank body 110 A second outlet pipe 160 having a overflow pipe 170 for sucking the stabilized refrigerant through a flow phenomenon;
    상기 탱크몸체(110)의 하단과 상기 제1연결라인(11)에 연결되어 상기 압축기(20)의 고온/고압 냉매가 유입되는 제1유입관(120)과;A first inlet pipe 120 connected to a lower end of the tank body 110 and the first connection line 11 to introduce a high temperature / high pressure refrigerant of the compressor 20;
    상기 탱크몸체(110)의 내측에 권선되어 고온/고압의 냉매를 보텍스 플로 현상을 통한 저온/고압의 냉매에 의해 예열냉각시키는 코일관(140)과;A coil tube 140 wound around the tank body 110 to preheat and cool the high temperature / high pressure refrigerant by the low temperature / high pressure refrigerant through a vortex flow phenomenon;
    상기 탱크몸체(110)의 상단과 상기 제1연결라인(11)에 연결되어 상기 코일관(140)을 통해 예열냉각된 냉매를 상기 응축기(30)로 공급하는 제1유출관(130)을 포함하는 것을 특징으로 하는 냉매 안정화 시스템.A first outlet pipe 130 connected to an upper end of the tank body 110 and the first connection line 11 to supply a preheated coolant to the condenser 30 through the coil pipe 140. Refrigerant stabilization system, characterized in that.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 제1유입관(120), 제1유출관(130), 제2유입관(150), 제2유출관(160)에 각각 냉매의 온도 및 압력을 검출하는 센서(S)와;Sensors (S) for detecting the temperature and pressure of the refrigerant in the first inlet pipe 120, the first outlet pipe 130, the second inlet pipe 150, the second outlet pipe 160, respectively;
    상기 제1유입관(120)과 상기 코일관(140)의 중간부분을 잇는 제1바이패스(B1) 및 상기 코일관(140)의 중간부분과 상기 제1유출관(130)을 잇는 제2바이패스(B2)와;A first bypass B1 connecting the first inlet pipe 120 and the middle of the coil pipe 140 and a second connecting the middle part of the coil pipe 140 and the first outlet pipe 130. Bypass B2;
    상기 센서(S)를 통한 냉매의 온도 및 압력 변화량(ΔT,ΔP)에 따라 상기 응축기(30)의 부하를 최소화할 수 있는 최적의 온도 및 압력을 갖는 냉매를 상기 응축기(30)로 공급할 수 있도록 상기 제1바이패스(B1) 및 제2바이패스(B2)를 개폐 제어하는 제어부(300)를 포함하는 것을 특징으로 하는 냉매 안정화 시스템.In order to supply the refrigerant having the optimal temperature and pressure to minimize the load of the condenser 30 according to the temperature and pressure change amount ΔT, ΔP of the refrigerant through the sensor S to the condenser 30. Refrigerant stabilization system comprising a control unit (300) for opening and closing the first bypass (B1) and the second bypass (B2).
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제1바이패스(B1) 구간은 상기 제2바이패스(B2) 구간에 비해 상대적으로 더욱 긴 길이의 구간을 갖는 것을 특징으로 하는 냉매 안정화 시스템.The first bypass (B1) section is a refrigerant stabilization system, characterized in that having a relatively longer section than the second bypass (B2) section.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 압축기(20)와 예열/안정화탱크(100)의 사이 제1연결라인(11)에는 상기 예열/안정화탱크(100)로 진입하기 직전의 냉매를 1차 방열시키는 방열튜브(200)가 더 구비 되는 것을 특징으로 하는 냉매 안정화 시스템.The first connection line 11 between the compressor 20 and the preheating / stabilization tank 100 is further provided with a heat dissipation tube 200 for primary heat dissipation of the refrigerant immediately before entering the preheating / stabilization tank 100. Refrigerant stabilization system, characterized in that.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 방열튜브(200)는,The heat dissipation tube 200,
    상기 제1연결라인(11)의 일부 구간의 표면을 감싸는 관체(210)와;A tubular body (210) surrounding a surface of a portion of the first connection line (11);
    상기 관체(210)의 외주면에 길이 방향을 따라 형성된 다수의 방열핀(220)을 갖는 것을 특징으로 하는 냉매 안정화 시스템.Refrigerant stabilization system, characterized in that it has a plurality of heat radiation fins (220) formed along the longitudinal direction on the outer peripheral surface of the tubular body (210).
  7. 청구항 1 내지 청구항 5 중 어느 한 항에 따른 냉매 안정화 시스템을 이용한 냉매 안정화 방법에 있어서,In the refrigerant stabilization method using a refrigerant stabilization system according to any one of claims 1 to 5,
    냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정A(T1) 온도 및 압력 이하이면 제어부(300)에 의해 제1,2바이패스(B1,B2)를 모두 개방하여 예열/안정화탱크(100)를 통한 예열냉각을 수행하지 않는 제1안정화단계(S100)와;When the temperature and pressure change amount ΔT, ΔP of the refrigerant is equal to or lower than the set A (T1) temperature and pressure, the control unit 300 opens all of the first and second bypasses B1 and B2 to preheat / stabilize the tank 100. A first stabilizing step (S100) not performing preheating cooling through;
    냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정A(T1) 온도 및 압력 이상이면 제어부(300)에 의해 제1바이패스(B1)를 개방하고, 제2바이패스(B2)를 폐쇄하여 예열/안정화탱크(100)를 통한 예열냉각을 수행하는 제2안정화단계(S200)와;If the temperature and pressure change amounts ΔT and ΔP of the refrigerant are equal to or higher than the set A (T1) temperature and pressure, the control unit 300 opens the first bypass B1 and closes the second bypass B2 to preheat it. Second stabilization step (S200) for performing preheat cooling through the / stabilization tank (100);
    냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정B(T2) 온도 및 압력 이상이면 제어부(300)에 의해 제1바이패스(B1)를 폐쇄하고, 제2바이패스(B2)를 개방하여 예열/안정화탱크(100)를 통한 예열냉각을 수행하는 제3안정화단계(S300)와;If the temperature and pressure change amount ΔT and ΔP of the refrigerant is equal to or higher than the set temperature B and the pressure T2, the control unit 300 closes the first bypass B1, opens the second bypass B2, and preheats it. Third stabilization step (S300) for performing preheat cooling through the / stabilization tank (100);
    냉매의 온도 및 압력 변화량(ΔT,ΔP)이 설정C(T3) 온도 및 압력 이상이면 제어부(300)에 의해 제1,2바이패스(B1,B2)를 모두 폐쇄하여 예열/안정화탱크(100)를 통한 예열냉각을 최대한 수행하는 제4안정화단계(S400)를 포함하는 것을 특징으로 하는 냉매 안정화 방법.If the temperature and pressure change amount ΔT, ΔP of the refrigerant is equal to or higher than the set C (T3) temperature and pressure, the control unit 300 closes all of the first and second bypasses B1 and B2 to preheat / stabilize the tank 100. Refrigerant stabilization method comprising a fourth stabilization step (S400) to perform the preheating cooling through.
PCT/KR2019/009335 2018-07-26 2019-07-26 Refrigerant stabilization system and control method therefor WO2020022837A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180087432A KR102142022B1 (en) 2018-07-26 2018-07-26 Refrigerant gas stabilization system and That control method
KR10-2018-0087432 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020022837A1 true WO2020022837A1 (en) 2020-01-30

Family

ID=69182337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009335 WO2020022837A1 (en) 2018-07-26 2019-07-26 Refrigerant stabilization system and control method therefor

Country Status (2)

Country Link
KR (1) KR102142022B1 (en)
WO (1) WO2020022837A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624294A (en) * 2021-10-11 2021-11-09 南通三锐化工装备有限公司 Pressure measuring device of differential pressure measuring liquid level meter for cryogenic liquid storage tank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100859354B1 (en) * 2008-05-28 2008-09-22 주식회사 자이벡 Vapor compression refrigeration apparatus using vortex tube
JP5644469B2 (en) * 2010-12-21 2014-12-24 カルソニックカンセイ株式会社 accumulator
KR101538955B1 (en) * 2015-04-06 2015-07-27 (주)가온인더스트리 Molecule of fluid activating apparatus
KR101747181B1 (en) * 2016-03-23 2017-06-14 에스아이비 주식회사 Showcase
KR101817227B1 (en) * 2016-07-01 2018-01-10 이근식 Stabilization device for refrigerant gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100859354B1 (en) * 2008-05-28 2008-09-22 주식회사 자이벡 Vapor compression refrigeration apparatus using vortex tube
JP5644469B2 (en) * 2010-12-21 2014-12-24 カルソニックカンセイ株式会社 accumulator
KR101538955B1 (en) * 2015-04-06 2015-07-27 (주)가온인더스트리 Molecule of fluid activating apparatus
KR101747181B1 (en) * 2016-03-23 2017-06-14 에스아이비 주식회사 Showcase
KR101817227B1 (en) * 2016-07-01 2018-01-10 이근식 Stabilization device for refrigerant gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624294A (en) * 2021-10-11 2021-11-09 南通三锐化工装备有限公司 Pressure measuring device of differential pressure measuring liquid level meter for cryogenic liquid storage tank

Also Published As

Publication number Publication date
KR102142022B1 (en) 2020-08-06
KR20200012302A (en) 2020-02-05

Similar Documents

Publication Publication Date Title
CN104813756B (en) For the cooling device for the part being arranged in the inner space of switch cubicle
WO2009096729A2 (en) Multilateral continuous uniform rapid cooling device of double cooling structure
CN102563824B (en) Air conditioning device utilizing temperature differentiation of exhausted air to even temperature of external heat exchanger
WO2015088225A1 (en) Dehumidifier
WO2020022837A1 (en) Refrigerant stabilization system and control method therefor
WO2023022545A1 (en) Highly efficient waste cold/warm heat recycling heat exchange device
WO2013133574A1 (en) Electronic component cooling device built into aircraft
JP2007322024A (en) Large temperature difference air conditioning system
WO2013032197A1 (en) Cooling apparatus for a freezer vehicle
WO2018026137A1 (en) Heat exchanger alternating-type heat pump system
WO2013062287A1 (en) Regenerative air-conditioning apparatus
WO2021020786A1 (en) Radiator cooling and heating apparatus
WO2010050663A1 (en) Hybrid heat pump style air condition system
WO2023085846A1 (en) Air cooling-type gas cooler for refrigeration compressor
RU2119129C1 (en) Method and device for conditioning air and heating room space
KR20210004565A (en) Heat pump system for vehicle
WO2012044008A1 (en) A refrigerant system and a control method the same
WO2010107166A1 (en) Air source heat pump
WO2017026736A1 (en) Heat pump using cascade cycle
WO2019066127A1 (en) Method of controlling air dehumidifier using phase change material
WO2019045176A1 (en) Refrigeration system using condensed waste heat recovery by refrigerator discharge gas
JPWO2019026234A1 (en) Refrigeration cycle device
JP3733119B2 (en) Heat pump water heater / heater
US5240651A (en) Adiabatic modulator proportioning refrigeration controller desuperheater
WO2015199399A1 (en) Attachment for controlling temperature and flow rate of brine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19841099

Country of ref document: EP

Kind code of ref document: A1