WO2015005317A1 - Oxidative curing, alkyd-modified silicone acrylic copolymer - Google Patents

Oxidative curing, alkyd-modified silicone acrylic copolymer Download PDF

Info

Publication number
WO2015005317A1
WO2015005317A1 PCT/JP2014/068138 JP2014068138W WO2015005317A1 WO 2015005317 A1 WO2015005317 A1 WO 2015005317A1 JP 2014068138 W JP2014068138 W JP 2014068138W WO 2015005317 A1 WO2015005317 A1 WO 2015005317A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
silicone
alkyd
meth
Prior art date
Application number
PCT/JP2014/068138
Other languages
French (fr)
Japanese (ja)
Inventor
祐紀 大橋
Original Assignee
ハリマ化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリマ化成株式会社 filed Critical ハリマ化成株式会社
Priority to SG11201510695VA priority Critical patent/SG11201510695VA/en
Priority to CN201480038356.2A priority patent/CN105358607B/en
Priority to JP2015526340A priority patent/JP5970613B2/en
Publication of WO2015005317A1 publication Critical patent/WO2015005317A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences

Definitions

  • the present invention relates to an oxidatively curable alkyd-modified silicone acrylic copolymer capable of forming a coating film having excellent initial gloss, weather resistance, initial drying property and impact resistance (strength).
  • Alkyd resin has oil and fat as a basic component and has an oxidative polymerization property of spontaneously curing by oxidative drying to form a coating film. Therefore, it dries faster than an oil-based blended paint that uses boil oil (long oil) as a film-forming component, and provides a coating film with an initial gloss, and is used for indoor and outdoor iron parts and indoor wood parts of general buildings. It is widely used as a film-forming component for resin blend paints.
  • the alkyd resin is excellent in initial gloss as compared with the acrylic resin and the silicone-modified resin, drying is slow, and the weather resistance and the coating film strength are lowered at the site exposed to ultraviolet rays, wind and rain. Therefore, the paint using the alkyd resin needs to limit the painting range to the indoor part as much as possible.
  • Patent Document 1 discloses a copolymer using cyclohexyl methacrylate, which is a kind of highly weatherable monomer, at a fatty acid-modified acrylic resin or a fatty acid-modified acrylic copolymerization site. A one-part coating composition containing is described.
  • Patent Document 2 describes an oxidatively curable silicone-modified (meth) acrylic copolymer in which a fatty acid is added to an epoxy group of an epoxy group-containing acrylic copolymer, and a silicone is reacted with a hydroxyl group generated by ring opening of the epoxy group. Has been.
  • Patent Document 3 in the presence of a polymer (B) that is soluble in an organic solvent, a vinyl monomer (A) that is difficult to dissolve in an organic solvent is produced by copolymerizing a vinyl monomer, and ( A non-aqueous dispersion type resin having improved weather resistance by modifying A) with silicone is described. Furthermore, it is described that the polymer (B) may be an oil-modified alkyd having an oil length of at least 50%.
  • Patent Document 4 describes an oxidatively curable silicone-modified vinyl copolymer using a polysiloxane-containing vinyl monomer, which introduces an unsaturated fatty acid into the copolymer molecule or is further modified with an unsaturated alkyd resin. It is described that the oxidative polymerizability is ensured by, for example.
  • Patent Document 5 describes a copolymer obtained by radical copolymerization of various monomers, an alkyd resin, and a resin obtained by mixing and reacting with a polysiloxane. It is described that this resin is basically used as a lacquer together with a cross-linking material such as polyisocyanate, and can also be imparted with oxidative curability.
  • JP 2004-211009 A JP 2001-122968 A JP-A-10-158311 JP 2004-091678 A JP 55-005977 A
  • the copolymer described in Patent Document 1 contains fatty acid which is a soft component having low polarity as a constituent monomer. Therefore, the coating composition containing this copolymer has insufficient weather resistance of the coating film.
  • the oxidation-curable silicone-modified (meth) acrylic copolymer described in Patent Document 2 has good weather resistance. However, the initial gloss of the coating film is insufficient, and the solubility in a solvent is lowered by further modification with silicone.
  • the polymer (B) used as a dispersion stabilizer only surrounds the polymer (A) constituting the inside of the resin. That is, the polymers (A) and (B) are not bonded. Therefore, there is a problem in the weather resistance of the coating film, and there is also a fatal problem in the non-aqueous dispersion that the initial gloss of the coating film is insufficient.
  • the oxidation-curable silicone-modified vinyl copolymer described in Patent Document 4 has insufficient weather resistance and initial gloss.
  • the problem of the present invention is that the initial gloss of the coating film is high and the alkyd resin is a conventional silicone-modified resin, which cannot be realized by the resins and copolymers disclosed in Patent Documents 1 to 5 or conventional silicone-modified resins.
  • the object of the present invention is to provide an oxidatively curable alkyd-modified silicone acrylic copolymer which is a coating film forming component satisfying weather resistance, initial drying property and impact resistance (strength) which are inferior to those of the above.
  • the alkyd resin (c) is 8 with respect to the total amount of styrenes (a-1), (meth) acrylic acid ester (a-2), polymerizable unsaturated monomer (a-3), and silicone (b).
  • An oxidatively curable alkyd-modified silicone resin comprising: -40 mass%, styrenes (a-1) 10-30 mass%, and silicone (b) 5-15 mass% Lil copolymer.
  • the styrenes (a-1), the (meth) acrylic acid ester (a-2), and the polymerizable unsaturated monomer (a-3) are styrenes (a-1).
  • the oxidatively curable alkyd-modified product according to (1) which is contained in the following ratio with respect to the total amount of (meth) acrylic acid ester (a-2) and polymerizable unsaturated monomer (a-3) Silicone acrylic copolymer.
  • the styrenes (a-1), the (meth) acrylic acid ester (a-2), and the polymerizable unsaturated monomer (a-3) are contained in an oxidatively curable alkyd-modified silicone acrylic copolymer.
  • the oxidatively curable alkyd-modified silicone acrylic copolymer according to (1) or (2) which is contained in a total amount of 45 to 87% by mass.
  • (4) The oxidation-curable alkyd-modified silicone acrylic copolymer according to any one of (1) to (3), having a solid iodine value of 5 to 50.
  • (5) The oxidation-curable alkyd-modified silicone acrylic copolymer according to any one of (1) to (4), which has a weight average molecular weight of 10,000 to 150,000.
  • (6) The oxidation-curable alkyd-modified silicone acrylic copolymer according to any one of (1) to (5), wherein the silicone (b) further has a phenyl group.
  • An alkyd resin (c) comprising a step of obtaining (a), a step of reacting the obtained oxidatively curable acrylic copolymer (a) with a silicone (b) having at least one of a hydroxyl group and an alkoxy group.
  • the oxidatively curable alkyd-modified silicone acrylic copolymer is used in an amount of 8 to 40% by mass, styrenes (a-1) 10 to 30% by mass, and silicone (b) 5 to 15% by mass. Polymer Manufacturing method.
  • the oxidatively curable alkyd-modified silicone acrylic copolymer of the present invention contains alkyd resin (c), styrenes (a-1) and silicone (b) in a predetermined ratio, and this is used as a coating film forming component. When used, a coating film having high initial gloss and satisfactory weather resistance, initial drying property and impact resistance (strength) can be obtained.
  • the oxidation-curable alkyd-modified silicone acrylic copolymer according to the present invention includes an oxidation-curable acrylic copolymer (a), a hydroxyl group and an alkoxy group. It is obtained by reacting with silicone (b) having at least one of groups (hereinafter sometimes simply referred to as “silicone (b)”).
  • the oxidatively curable acrylic copolymer (a) used in the present invention includes an alkyd resin (c) having an oxidative polymerizable group, the following (a-1), (a-2) and (a-3): It is obtained by graft polymerization of the monomers shown.
  • (A-1) Styrenes (a-2) (Meth) acrylic acid ester (a-3) Polymerization having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group
  • Unsaturated monomer hereinafter, sometimes simply referred to as “polymerizable unsaturated monomer”).
  • alkyd resin Having Oxidatively Polymerizable Group>
  • the alkyd resin is a kind of polyester resin and can be obtained by condensing a polyhydric alcohol and a polybasic acid.
  • an alkyd resin (c) having an oxidative polymerizable group hereinafter sometimes simply referred to as “alkyd resin (c)”.
  • the oxidative polymerizable group possessed by the alkyd resin (c) is, for example, an unsaturated carbon bond (carbon double bond or carbon triple bond) derived from an unsaturated fatty acid. That is, the alkyd resin (c) is obtained by introducing an unsaturated fatty acid into the alkyd resin.
  • the unsaturated fatty acid is not particularly limited as long as it is a fatty acid having at least one unsaturated carbon bond in the molecule.
  • the unsaturated fatty acid used in the present invention preferably has a solid iodine value that is somewhat high (that is, has a lot of unsaturated carbon bonds). Examples of such unsaturated fatty acids include dry oil fatty acids and semi-dry oil fatty acids. Is mentioned.
  • Dry oil fatty acids and semi-dry oil fatty acids are not strictly distinguishable, but usually dry oil fatty acids are unsaturated fatty acids having a solid iodine value of 130 or more, and semi-dry oil fatty acids have a solid iodine value of 100 or more and Less than 130 unsaturated fatty acids.
  • the non-drying oil fatty acid is usually a fatty acid having a solid iodine value of less than 100.
  • dry and semi-dry oil fatty acids examples include fish oil fatty acid, dehydrated castor oil fatty acid, safflower oil fatty acid, linseed oil fatty acid, soybean oil fatty acid, sesame oil fatty acid, poppy oil fatty acid, eno oil fatty acid, hemp oil fatty acid, grape Examples include nuclear oil fatty acid, corn oil fatty acid, tall oil fatty acid, sunflower oil fatty acid, cottonseed oil fatty acid, walnut oil fatty acid, rubber seed oil fatty acid, hydienoic acid fatty acid, oleic acid, linoleic acid, and linolenic acid.
  • dry oil fatty acids and semi-dry oil fatty acids are non-dry oil fatty acids (for example, coconut oil fatty acid, hydrogenated coconut oil fatty acid, palm oil fatty acid, etc.), caproic acid, capric acid, lauric acid, myristic acid as necessary. , Palmitic acid, stearic acid and the like may be used in combination.
  • fats and oils may be used together with unsaturated fatty acids or instead of unsaturated fatty acids.
  • the fats and oils are those having unsaturated carbon bonds, such as fish oil, dehydrated castor oil, safflower oil, linseed oil, soybean oil, sesame oil, poppy oil, eno oil, hemp seed oil, grape kernel oil, corn oil , Dry oil or semi-dry oil such as tall oil, sunflower oil, cottonseed oil, walnut oil, rubber seed oil.
  • the oil length of the alkyd resin (c) is preferably 30 to 70%.
  • oil length means the ratio (mass%) of the fatty acid or fats and oils in alkyd resin (c) raw material.
  • oil length is in such a range, when the obtained copolymer is used as a coating film-forming component, it is rich in oxidative curability, has a high crosslinking density, has a high initial gloss, and has weather resistance and initial drying properties. An excellent coating film can be obtained.
  • hydrocarbon groups derived from fatty acids and fats and oils are appropriately introduced into the molecule of the alkyd resin (c), and the solubility in a solvent is further improved when preparing a coating composition.
  • the oil length is more preferably 40 to 60%.
  • the alkyd resin (c) is obtained by subjecting a polyhydric alcohol, a polybasic acid, and an unsaturated fatty acid (or oil) to a condensation reaction (or transesterification reaction).
  • a polyhydric alcohol include ethylene glycol, diethylene glycol, glycerin, pentaerythritol, mannitol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, hexanediol, trimethylolpropane, dipentaerythritol, And D-sorbitol.
  • polybasic acid examples include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, succinic anhydride, maleic acid, maleic anhydride, adipic acid, sebacic acid, and tetrahydrophthalic anhydride.
  • monobasic acids such as benzoic acid, t-butylbenzoic acid, hexahydrobenzoic acid and cinnamic acid can be used in combination.
  • raw materials may be mixed and reacted usually at 170 to 280 ° C. for 3 to 15 hours under normal pressure or pressure.
  • a solvent for example, xylene, toluene, methyl isobutyl ketone, etc. can be used. Other usable solvents will be described later.
  • an alkyd resin (c) having an unsaturated fatty acid residue introduced into the molecule is obtained.
  • the oxidatively curable acrylic copolymer (a) used in the present invention is obtained by graft polymerization of the monomers (a-1), (a-2) and (a-3) to the alkyd resin (c). Can be obtained.
  • Styrenes (a-1) are used for improving the initial gloss of the coating film.
  • the styrenes (a-1) used in the present invention are not particularly limited, and examples thereof include styrene, ⁇ -methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-tert-butyl styrene and the like. Can be mentioned. Among these, styrene is preferable from an economical viewpoint and availability.
  • These styrenes (a-1) may be used alone or in combination of two or more.
  • the styrenes (a-1) are preferably used in a proportion of 13 to 40% by mass with respect to the total amount of the above (a-1), (a-2) and (a-3).
  • a-1 a large amount of styrene
  • a-3 impact resistance
  • weather resistance tend to be lowered.
  • the balance with other monomers ((a-2) and (a-3)) and the alkyd resin in spite of setting a relatively large amount of styrenes (a-1).
  • Styrenes (a-1) are more preferably used in a proportion of 20 to 33% by mass.
  • the (meth) acrylic acid ester (a-2) is used for imparting flexibility and weather resistance to the coating film.
  • “(meth) acryl” means “acryl” or “methacryl”.
  • the (meth) acrylic acid ester (a-2) used in the present invention is not particularly limited, and examples thereof include alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms.
  • (meth) acrylic acid esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth ) N-butyl acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, Lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, dialkylaminoalkyl (meth) acrylate (eg, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate) Etc.
  • a (meth) acrylic acid ester containing a fluorine atom in the molecule may be used as the (meth) acrylic acid ester (a-2).
  • examples of such (meth) acrylic acid esters include (meth) acrylic acid esters having 3 to 17 fluorine atoms in the molecule.
  • the (meth) acrylic acid ester containing a fluorine atom in the molecule is commercially available from, for example, Osaka Organic Chemical Industry Co., Ltd. under the following product name.
  • Biscoat 3F (acrylic ester monomer containing 3 fluorine atoms)
  • Biscoat 4F (acrylic ester monomer containing 4 fluorine atoms)
  • Biscote 8F (acrylic ester monomer containing 8 fluorine atoms)
  • Biscoat 12F (acrylic ester monomer containing 12 fluorine atoms)
  • Biscote 17F (acrylic acid ester monomer containing 17 fluorine atoms)
  • n-butyl acrylate, i-butyl methacrylate, and t-butyl methacrylate are preferable.
  • These (meth) acrylic acid esters (a-2) may be used alone or in combination of two or more.
  • the compound generally classified into (meth) acrylic acid ester may overlap with the compound classified into the polymerizable unsaturated monomer (a-3) mentioned later depending on the kind.
  • hydroxymethyl (meth) acrylate is classified as (meth) acrylic acid ester and polymerizable unsaturated monomer.
  • the (meth) acrylic acid ester having such a polar functional group is classified as “polymerizable unsaturated monomer (a-3)” in the present specification.
  • the polar functional group include a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group.
  • the (meth) acrylic acid ester (a-2) is preferably used in a proportion of 53 to 86% by mass with respect to the total amount of the above (a-1), (a-2) and (a-3). .
  • the (meth) acrylic acid ester (a-2) is more preferably used in a proportion of 64 to 79% by mass.
  • the polymerizable unsaturated monomer (a-3) is used to introduce silicone (b) described later into the copolymer (that is, to bond the oxidatively curable acrylic copolymer (a) and the silicone (b)). Used.
  • the polymerizable unsaturated monomer (a-3) is a polymerizable unsaturated monomer having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group in the molecule. There is no particular limitation. Among these, a polymerizable unsaturated monomer having a hydroxyl group or a carboxyl group in the molecule is preferable. These polymerizable unsaturated monomers (a-3) may be used alone or in combination of two or more.
  • Examples of the polymerizable unsaturated monomer having a hydroxyl group include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 1-methyl (meth) acrylate.
  • Examples thereof include hydroxyl group-containing (meth) acrylic acid esters such as 2-hydroxyethyl, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Of these, 2-hydroxyethyl (meth) acrylate is preferred.
  • Examples of the polymerizable unsaturated monomer having a carboxyl group include ⁇ , ⁇ -unsaturated carboxylic acids such as (meth) acrylic acid, itaconic acid, maleic acid and fumaric acid or salts thereof; Examples include half esterified products of acid esters and acid anhydrides. Among these, ⁇ , ⁇ -unsaturated carboxylic acids are preferable, (meth) acrylic acid is more preferable, and methacrylic acid is more preferable.
  • Examples of the polymerizable unsaturated monomer having a glycidyl group include glycidyl group-containing (meth) acrylic acid esters such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and allyl glycidyl ether. Among these, glycidyl (meth) acrylate is preferable.
  • Examples of the polymerizable unsaturated monomer having an isocyanate group include isocyanatomethyl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 3-isocyanatopropyl (meth) acrylate, and (meth) acrylic acid.
  • examples thereof include isocyanate group-containing (meth) acrylic esters such as 1-methyl-2-isocyanatoethyl, 2-isocyanatopropyl (meth) acrylate, and 4-isocyanatobutyl (meth) acrylate. Of these, 2-isocyanatoethyl (meth) acrylate is preferred.
  • the polymerizable unsaturated monomer (a-3) is preferably used in a ratio of 1 to 7% by mass with respect to the total amount of the above (a-1), (a-2) and (a-3).
  • the reaction with the silicone (b) proceeds moderately, and the weather resistance of the coating film is almost reduced without substantially reducing the initial gloss of the coating film.
  • impact resistance (strength) can be further increased.
  • the viscosity of the coating composition does not become too high.
  • the polymerizable unsaturated monomer (a-3) is more preferably used in a proportion of 1 to 3% by mass.
  • the method for graft polymerizing these (a-1), (a-2) and (a-3) to the alkyd resin (c) is not particularly limited.
  • polymerization may be performed in an inert gas atmosphere such as nitrogen gas or argon gas using light irradiation or a polymerization initiator shown below.
  • the reaction temperature is 50 to 150 ° C., and the reaction time is 3 to 20 hours.
  • a method of dropping a mixture of a monomer and a polymerization initiator into a reaction vessel containing an alkyd resin, a remaining monomer and a polymerization initiator in a reaction vessel containing an alkyd resin and a part of the monomer And a method of dropping a polymerization initiator into a reaction vessel containing an alkyd resin and a monomer, a method of dropping an alkyd resin and a polymerization initiator into a reaction vessel containing a monomer, and the like.
  • the polymerization initiator is not particularly limited, and is appropriately selected according to the type of monomer and reaction conditions. Specific examples include radical polymerization initiators and photopolymerization initiators. These polymerization initiators may be used alone or in combination of two or more.
  • radical polymerization initiators examples include azo compounds, peroxide compounds, sulfides, sulfines, sulfinic acids, diazo compounds, and resox compounds. Among these, an azo compound or a peroxide compound is preferable.
  • azo compound examples include azobisisobutyronitrile, azobisdimethylvaleronitrile, azobiscyclohexanenitrile, 1,1′-azobis (1-acetoxy-1-phenylethane), dimethyl 2,2′-azo.
  • examples thereof include bisisobutyrate and 4,4′-azobis-4-cyanovaleric acid.
  • peroxide compounds examples include benzoyl peroxide, lauroyl peroxide, acetyl peroxide, capryel peroxide, 2,4-dichlorobenzoyl peroxide, isobutyl peroxide, acetylcyclohexylsulfonyl peroxide, and t-butyl peroxide.
  • photopolymerization initiator examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 1-cyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl.
  • the alkyd resin (c) and the mixture of (a-1), (a-2) and (a-3) are an alkyd resin (c) and styrenes (a-1), which are described later. What is necessary is just to mix so that it may become a ratio contained in a polymer.
  • monomers other than (a-1) to (a-3) may be polymerized to the alkyd resin (c) within a range not impairing the effects of the present invention.
  • monomers other than (a-1) to (a-3) include (meth) acrylonitrile, (meth) acrylamide, vinyl acetate, vinyl chloride, vinyl pyrrolidone, vinyl oxazoline, acryloylmorpholine, and the like.
  • the content of monomers other than the above (a-1) to (a-3) is included in the oxidatively curable alkyd-modified silicone acrylic copolymer in a total amount of 5% by mass or less, preferably 2% by mass or less. It is.
  • a mixture of (a-1), (a-2) and (a-3) can be graft polymerized to the alkyd resin (c).
  • the impact resistance (strength), weather resistance, initial gloss and initial drying properties of the coating film are improved. Can be improved.
  • the silicone (b) used in the present invention is, for example, a branched chain having a siloxane bond (—Si—O—Si—) as the main chain and a substituent such as an alkyl group, an aryl group, a hydroxyl group or an alkoxy group in the side chain.
  • the polysiloxane having a structure is not particularly limited as long as it is a silicone having at least one of a hydroxyl group and an alkoxy group.
  • At least one of the hydroxyl group or the alkoxy group is directly bonded to at least one silicon atom in the silicone molecule.
  • Silicone (b) is represented, for example, by the formula R 1 m (R 2 O) n SiO (4-mn) / 2 .
  • R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and m is 0 ⁇ m ⁇ 3 .5 and n satisfies 0.0005 ⁇ n ⁇ 4).
  • silicone (c) is a mixture of molecules having different degrees of polymerization and functional group substitution, the values of m and n in the above formula are not necessarily integers.
  • Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.
  • an alkyl group having 1 to 3 carbon atoms is preferable in terms of imparting weather resistance to the coating film.
  • a propyl group n-propyl group or isopropyl group
  • the number of carbon atoms is 3 or more, it may be a cyclic alkyl group.
  • aryl group having 6 to 12 carbon atoms examples include phenyl group, benzyl group, tolyl group, xylyl group, and naphthyl group. Among these, an aryl group having 6 to 8 carbon atoms is preferable, and a phenyl group is more preferable.
  • the silicone (b) is preferably a silicone further having a phenyl group in addition to a hydroxyl group or an alkoxy group, and the phenyl group is more preferably directly bonded to a silicon atom.
  • silicone having a phenyl group is used, solubility in a solvent (particularly a weak solvent described later) is further increased.
  • the viscosity of the paint can be lowered appropriately, workability can be further improved.
  • the refractive index of a coating film improves, initial glossiness improves.
  • a silicone having an alkyl group is preferable, and the alkyl group is more preferably directly bonded to a silicon atom.
  • a silicone having a phenyl group directly bonded to a silicon atom and a propyl group (n-propyl group or isopropyl group) bonded directly to the silicon atom is particularly preferable.
  • a silicone in which a phenyl group and a propyl group are bonded to a silicon atom may be referred to as “phenylpropyl silicone”, and the phenylpropyl group is not bonded to a silicon atom.
  • phenylmethyl silicone exists, but the phenylmethyl group is not bonded to a silicon atom. It means a silicone in which a phenyl group and a methyl group are bonded to a silicon atom.
  • the molecular weight of silicone (b) is not particularly limited.
  • a silicone having a number average molecular weight of preferably 200 to 5,500, more preferably a silicone having a number average molecular weight of 1,400 to 3,000 is used.
  • Typical examples of such commercially available silicones are 3037 INTERMEDIATE, 3074 INTERMEDIATE, Z-6018, 217 FLAKE, 220 FLAKE, 233 FLAKE, 249 FLAKE, QP8-5314, SR2402, AY 42-163 (all of which are Toray Manufactured by Dow Corning); TSR160, TSR165, TSR3168 (all manufactured by Momentive Performance Materials); KR-211, KR-216, KR-213, KR-9218 (all manufactured by Shin-Etsu Chemical Co., Ltd.) SILRES SY 231, SILRES SY 300, SILRES SY 409, SILRES IC368 (all manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) and the like.
  • the copolymer of the present invention is characterized in that alkyd resin (c), styrenes (a-1) and silicone (b) are polymerized at a specific ratio. That is, with respect to the total amount of alkyd resin (c), styrenes (a-1), (meth) acrylic acid ester (a-2), polymerizable unsaturated monomer (a-3), and silicone (b)
  • the alkyd resin (c) is contained in an amount of 8 to 40% by mass
  • the styrene (a-1) is contained in an amount of 10 to 30% by mass
  • the silicone (b) is contained in an amount of 5 to 15% by mass.
  • the content of the alkyd resin (c) is less than 8% by mass, the solvent resistance of the obtained coating film is lowered because the number of oxidatively polymerizable sites is reduced, and the weather resistance of the coating film, initial drying property, and the meat of the coating film The feeling of holding will be poor.
  • the content of the alkyd resin (c) exceeds 40% by mass, it tends to gel during the production of the copolymer, and even if it does not gel, a coating film using such a copolymer.
  • the water resistance, alkali resistance, weather resistance and the like are reduced.
  • the alkyd resin (c) is preferably contained in a proportion of 15 to 25% by mass.
  • styrenes (a-1) When the content of styrenes (a-1) is less than 10% by mass, the initial gloss and initial drying properties of the coating film are lowered. On the other hand, when the content of styrenes (a-1) exceeds 30% by mass, the impact resistance (strength) of the coating film becomes poor, and the weather resistance is greatly lowered.
  • the styrenes (a-1) are preferably contained in a proportion of 15 to 25% by mass.
  • Silicone (b) is preferably contained in a proportion of 7 to 12% by mass.
  • the styrenes (a-1), the (meth) acrylic acid ester (a-2) and the polymerizable unsaturated monomer (a-3) are preferably 45 to 87% by mass in total, More preferably, it is contained in a proportion of 63 to 78% by mass.
  • the copolymer of the present invention preferably has a solid iodine value of 5 to 50.
  • the obtained coating film has good water resistance and alkali resistance in addition to weather resistance, and good strength and fleshiness. Furthermore, gelation is less likely during production of the copolymer, and the solubility in weak solvents is less likely to decrease.
  • the copolymer of the present invention has a solid iodine value of more preferably 18 to 46, still more preferably 20 to 40.
  • the solid iodine value can be measured in accordance with JIS K0070 (Test method for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponified product of chemical products).
  • the weight average molecular weight of the copolymer of the present invention is not particularly limited.
  • the copolymer of the present invention preferably has a weight average molecular weight of 10,000 to 150,000.
  • the resulting coating film has good water resistance and alkali resistance in addition to weather resistance, and more initial gloss can be obtained.
  • the viscosity of the paint does not become too high, and the workability during coating becomes better.
  • the copolymer of the present invention has a weight average molecular weight of more preferably 30,000 to 100,000, still more preferably 40,000 to 80,000.
  • the weight average molecular weight is measured by, for example, gel permeation chromatography (GPC).
  • the copolymer of the present invention can be obtained, for example, by reacting the above-mentioned oxidatively curable acrylic copolymer (a) with silicone (b).
  • a functional group (at least one selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group) present in the oxidation-curable acrylic copolymer (a) and a hydroxyl group present in the silicone (b) Or an alkoxy group couple
  • the dehydration or dealcoholization condensation reaction between the oxidation curable acrylic copolymer (a) and the silicone (b) is performed by, for example, mixing the oxidation curable acrylic copolymer (a) and the silicone (b) to 130 to 180. The reaction is carried out for 2 to 8 hours while heating to 0 ° C. and removing water or alcohol produced. Furthermore, you may react in presence of a well-known catalyst and a reflux solvent as needed.
  • the weather resistance of the coating film can be improved by subjecting the oxidation-curable acrylic copolymer (a) and the silicone (b) to dehydration or dealcoholization condensation reaction. On the other hand, the weather resistance of the coating film becomes insufficient by simply mixing (cold blend) without reacting the oxidation-curable acrylic copolymer (a) and the silicone (b).
  • an organic solvent can be used as necessary.
  • Usable organic solvents include, for example, mineral spirit (also known as mineral terpene, white spirit), isoparaffin, hexane, heptane, octane, nonane, decane, cyclohexane, cycloheptane, toluene, xylene, ethyl acetate, butyl acetate, methanol, Examples include ethanol, butanol, propanol, methyl ethyl ketone, and methyl isobutyl ketone. These solvents may be used alone or in combination of two or more.
  • a weak solvent is an aliphatic hydrocarbon solvent that may contain a high-boiling aromatic hydrocarbon solvent, and has a high flash point, a high boiling point, and a low hazard, such as terpenes and mineral spirits. Say something.
  • Examples of the mixed solvent include mineral spirit, white spirit, mineral terpene, isoparaffin, solvent kerosene, aromatic naphtha, VM & P naphtha, and solvent naphtha.
  • single component solvents include, for example, aliphatic hydrocarbons such as n-butane, n-hexane, n-heptane, n-octane, isononane, n-decane, n-dodecane, cyclopentane, cyclohexane, cyclobutane, etc. Is mentioned.
  • the copolymer of the present invention thus obtained contains alkyd resin (c), styrenes (a-1) and silicone (b) in a predetermined ratio, and this is used as a film-forming component.
  • a coating film having high initial gloss and satisfactory weather resistance, initial drying property and impact resistance (strength) can be obtained. Therefore, the copolymer of the present invention is suitably used as various coating compositions (for example, for building (indoor and outdoor coating), for automobiles, for baking, etc.) and as coating film forming components and binders in ink compositions. Is done.
  • the above-mentioned coating composition is prepared by mixing the copolymer of the present invention with a solvent, a pigment, a dryer, and, if necessary, other additives (leveling agent, sagging inhibitor, etc.) depending on the application.
  • the above-mentioned coating composition is prepared by mixing the copolymer of the present invention with a solvent, a pigment, a dryer, and, if necessary
  • the same alkyd resin (c), oxidatively curable acrylic copolymer (a), or those similar to those used in the respective steps for producing the copolymer of the present invention can be used.
  • the pigment include inorganic pigments such as titanium dioxide, carbon black, calcium oxide, barium sulfate, silica, clay, talc, and silica sand, and organic pigments such as phthalocyanine blue.
  • the dryer include cobalt salt, manganese salt, lead salt, zirconium salt, calcium salt of naphthenic acid or octylic acid.
  • the copolymer of the present invention is contained in the coating composition in an amount of about 10 to 90% by mass, preferably about 40 to 70% by mass.
  • the obtained coating composition can be used as a room temperature curable coating composition, a baking type coating composition, and the like.
  • Phthalic anhydride 140 parts by weight Dehydrated castor oil fatty acid: 260 parts by weight Glycerin: 50 parts by weight Pentaerythritol: 70 parts by weight Refluxing solvent (xylene): 15.6 parts by weight
  • Example 1 Synthesis of oxidation-curable alkyd-modified silicone acrylic resin (copolymer)> 17.53 parts by mass of the alkyd resin (nonvolatile content: 60% by mass) obtained in the above synthesis example and 31.78 parts by mass of mineral spirit were charged into a reaction vessel, and the temperature was raised to 120 ° C. while stirring with aeration of nitrogen gas. . Next, the mixture shown below was dropped into the reaction vessel over 2 hours while maintaining 120 ° C. In addition, the ratio in a parenthesis shows the ratio of each monomer when the total amount of monomers is 100 mass%.
  • the weight average molecular weight of the obtained resin was measured by gel permeation chromatography (GPC).
  • the resin was dissolved in tetrahydrofuran (concentration: 1.0 g / L) and measured by GPC equipped with a differential refractive index detector (RID) to obtain a molecular weight distribution of the resin. Thereafter, the weight average molecular weight (Mw) of the resin was calculated from the obtained chromatogram (chart) using standard polystyrene as a calibration curve.
  • the weight average molecular weight of the obtained resin was 44,000. Measuring devices and measuring conditions are as follows.
  • HLC-8220GPC manufactured by Tosoh Corporation
  • Differential refractive index detector RI detector built in HLC-8220GPC
  • Column: 2 TSKgel SuperHZM-H manufactured by Tosoh Corporation
  • Mobile phase Tetrahydrofuran
  • Sample concentration 1.0 g / L
  • Injection volume 10 ⁇ L
  • Measurement temperature 40 ° C
  • Molecular weight marker Standard polystyrene (standard material manufactured by POLYMER LABORATORIES) (using POLYSYRENE-MEDIAUM WEIGHT CALIBRATION KIT)
  • the solid iodine value of the obtained resin was measured in accordance with JIS K0070 (Testing method for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponified product of chemical products).
  • ⁇ Preparation of coating composition > 57.0 parts by mass of the obtained resin (nonvolatile content 55% by mass), 23.5 parts by mass of mineral spirit as a solvent, and 14.0 parts by mass of titanium oxide JR-603 (manufactured by Teika) as a pigment, 3.5 parts by mass of a dryer composed of cobalt octylate and zirconium octylate, 2.0 parts by mass of an anti-sagging agent as an additive, kneaded by a three roll mill, coating composition (room temperature curable coating composition) Was prepared.
  • Example 2 to 18 and Comparative Examples 1 to 8 An oxidatively curable alkyd-modified silicone acrylic copolymer was obtained in the same procedure as in Example 1 except that the components shown in Table 1 were used in the proportions shown in Table 1.
  • a coating composition was prepared in the same manner as in Example 1 except that each of the obtained resins was used.
  • the symbol shown in Table 1 shows the following compound. Furthermore, the meanings of “phenylpropyl” and “phenylmethyl” of silicone are as described above.
  • i-BMA i-butyl methacrylate
  • t-BMA t-butyl methacrylate
  • n-BA n-butyl acrylate
  • St styrene
  • 2-HEMA 2-hydroxyethyl methacrylate
  • MA methacrylic acid
  • the obtained coating composition (room temperature curable coating composition) is coated on a 3 mm thick glass plate (150 mm ⁇ 70 mm) using a film applicator AP250 (manufactured by Dazai Equipment Co., Ltd.). did.
  • the coated glass plate was dried in a room at 23 ° C. and 50% RH for 1 week, measured for 20 ° specular reflectance (20 ° G), and the measured value was converted to specular gloss according to JIS Z8741.
  • the evaluation was based on the following criteria, and a B rating or higher (mirror reflectivity of 80 or higher) was determined to be acceptable.
  • the painted tin plate was left in a room at 23 ° C. and 50% RH for 2 hours to place gauze on the surface of the coating film, and a weight was placed thereon. After 1 hour, the weight was taken and the state when the gauze was turned over was evaluated according to the following criteria, and the B evaluation or higher was regarded as acceptable.
  • a + When gauze peels off without resistance, and no trace remains on the coating film surface
  • B When gauze is peeled off, resistance is When there is
  • C When the groundwork (tinplate) is visible when the gauze is peeled off
  • the obtained coating composition (room temperature curable coating composition) was coated on a dull steel plate (150 mm ⁇ 70 mm) having a thickness of 0.8 mm using a film applicator AP250.
  • Gloss retention (20 °) when painted dull steel plate is dried for one week in a room at 23 ° C and 50% RH and exposed for 1,500 hours with a sunshine weather meter (Suga Test Instruments Co., Ltd.) GR) was determined and evaluated according to the following criteria.
  • a B rating or higher gloss retention of 70% or higher was considered acceptable.
  • the gloss retention rate is obtained by the following formula.
  • Gloss retention (%) (Specular reflectance after test / Specular reflectance before test) ⁇ 100
  • the obtained coating film had a high initial gloss, initial drying property, weather resistance and resistance. It turns out that it is excellent also in impact property (strength).
  • the initial gloss, initial drying property, weather resistance, and resistance It is inferior to any of impact properties (that is, initial gloss is C rating (specular gloss is less than 80), initial drying property is C rating, weather resistance is C rating (gloss retention is less than 70%), or It can be seen that the impact property is C evaluation.
  • the mixture was aged at 115 ° C. for 2 hours, heated to 140 ° C., and 30 parts by mass of linseed oil fatty acid and 0.4 part by mass of N, N-dimethylaminoethanol as a reaction catalyst were added.
  • the fatty acid addition reaction was carried out at 160 ° C. for 5 hours.
  • the resin acid value was traced by the KOH titration method, and the time when the resin acid value became 1.0 or less was taken as the end point.
  • 45 parts by mass of xylene was added for dilution to obtain a brown transparent and viscous fatty acid-modified copolymer solution having a nonvolatile content of 47% by mass.
  • the ratio of styrene in the raw material of the silicone-modified acrylic copolymer (in solid conversion) is 17.2% by mass, and the ratio of silicone is 10.3% by mass.
  • the weight average molecular weight and solid iodine value of the obtained resin were measured in the same procedure as in Example 1.
  • the weight average molecular weight was 40,000, and the solid iodine value was 28.
  • a coating composition was prepared in the same manner as in Example 1, except that the amount of mineral spirit was adjusted so that the nonvolatile content was the same as in Example 1.
  • the above-mentioned (1) initial gloss, (2) initial drying property, (3) accelerated weather resistance, and (4) impact resistance were evaluated. The results are shown in Table 3.
  • Phthalic anhydride 140 parts by weight Dehydrated castor oil fatty acid: 260 parts by weight Glycerin: 50 parts by weight Pentaerythritol: 70 parts by weight Refluxing solvent (xylene): 15.6 parts by weight
  • the mixture was aged at 120 ° C. for 4 hours and then cooled to 80 ° C. to obtain a brown transparent and viscous acrylic copolymer having a nonvolatile content of 57% by mass.
  • the proportion of styrene constituting the obtained resin was 18.8 mass% in terms of solid content, the proportion of alkyd resin was 18.5 mass%, and the proportion of silicone was 7.0 mass%.
  • the weight average molecular weight and solid iodine value of the obtained resin were measured in the same procedure as in Example 1. The weight average molecular weight was 47,000, and the solid iodine value was 21.
  • Example 3 Using the obtained resin, a coating composition was prepared in the same manner as in Example 1. Using the obtained coating composition, the above-mentioned (1) initial gloss, (2) initial drying property, (3) accelerated weather resistance, and (4) impact resistance were evaluated. The results are shown in Table 3.
  • Example 12 The coating composition was evaluated using a mixture obtained by simply mixing (cold blend) without reacting the oxidation-curable acrylic copolymer (a) and the silicone (b).
  • the reaction vessel was charged with 17.53 parts by mass of alkyd resin (nonvolatile content 60% by mass) and 31.78 parts by mass of mineral spirit used in Example 1 above.
  • the mixture was stirred and heated up to 120 ° C. while bubbling nitrogen gas. While maintaining the temperature at 120 ° C., the following mixture was added dropwise over 2 hours.
  • the ratio in a parenthesis shows the ratio of each monomer when the total amount of monomers is 100 mass%.
  • the mixture was aged at 120 ° C. for 4 hours to obtain an oxidatively curable acrylic copolymer (a monomer graft polymer to an alkyd resin).
  • a water separator was attached to the reaction vessel and cooled to 80 ° C.
  • the silicone resin (Z-6018) used in Example 1 was charged and stirred at 80 ° C. for 2 hours. During this time, no water was generated in the reaction system. 3.79 parts by mass of mineral spirit was charged into a reaction vessel to obtain a mixture of a brown transparent and viscous oxidative curable acrylic copolymer (a monomer graft polymer to an alkyd resin) and silicone.
  • the proportion of styrene in the obtained mixture was 18.7 mass% in terms of solid content, the proportion of alkyd resin was 18.6 mass%, and the proportion of silicone was 7.0 mass%.
  • the weight average molecular weight and solid iodine value of the obtained mixture were measured by the same procedure as in Example 1. The weight average molecular weight was 40,000, and the solid iodine value was 22.
  • Example 3 Using the resulting mixture, a coating composition was prepared in the same manner as in Example 1. Using the obtained coating composition, the above-mentioned (1) initial gloss, (2) initial drying property, (3) accelerated weather resistance, and (4) impact resistance were evaluated. The results are shown in Table 3.
  • Comparative Example 9 containing no alkyd resin is inferior in initial gloss.
  • Comparative Example 10 is an example in which an alkyd resin was used instead of the unsaturated fatty acid (linseed oil fatty acid) of Comparative Example 9, but the reaction between the epoxy group-containing vinyl copolymer and the alkyd resin did not proceed, and the resin was It was not obtained.
  • Comparative Example 11 is an example in which a resin in which the monomers shown in (a-1) to (a-3) such as styrene are not graft-polymerized is used for the alkyd resin, but the crosslinking reaction during the coating film formation proceeds. It can be seen that the initial gloss, initial drying, weather resistance and impact resistance are all inferior.
  • Comparative Example 12 is an example using a mixture obtained by simply mixing (cold blend) without reacting the oxidation-curable acrylic copolymer and silicone, but it is found that the weather resistance is poor. This is presumably because the silicone does not react with the oxidatively curable acrylic copolymer, and the silicone bleeds out over time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

This oxidative curing, alkyd-modified silicone acrylic copolymer is obtained by reacting (a) an oxidative curing acrylic copolymer, and (b) a silicone having at least a hydroxyl group and/or an alkoxy group. The oxidative curing acrylic copolymer (a) is a copolymer obtained through graft polymerization of a monomer indicated by (a-1) styrenes, (a-2) (meth)acrylic acid esters, and (a-3) predetermined polymerizable unsaturated monomers, to an alkyd resin (c) having an oxidative polymerizable group.

Description

酸化硬化型アルキッド変性シリコーンアクリル共重合体Oxidation-curable alkyd-modified silicone acrylic copolymer
 本発明は、優れた初期光沢、耐候性、初期乾燥性および耐衝撃性(強度)を有する塗膜を形成し得る酸化硬化型アルキッド変性シリコーンアクリル共重合体に関する。 The present invention relates to an oxidatively curable alkyd-modified silicone acrylic copolymer capable of forming a coating film having excellent initial gloss, weather resistance, initial drying property and impact resistance (strength).
 アルキッド樹脂は、油脂を基本成分としており、酸化乾燥で自然硬化して塗膜になるという酸化重合性を有する。そのため、ボイル油(長油)を塗膜形成成分とした油性調合ペイントより乾燥が早く、初期光沢のある塗膜が得られ、一般建築物の屋内・屋外の鉄部、屋内木部向けの合成樹脂調合ペイントの塗膜形成成分として広く用いられている。しかし、アルキッド樹脂は、アクリル樹脂およびシリコーン変性樹脂と比べると、初期光沢は優れているものの乾燥が遅く、紫外線、風雨などに曝される部位では、耐候性および塗膜強度が低下していた。したがって、アルキッド樹脂を用いたペイントは、塗装範囲をできる限り屋内部に限定する必要があった。 Alkyd resin has oil and fat as a basic component and has an oxidative polymerization property of spontaneously curing by oxidative drying to form a coating film. Therefore, it dries faster than an oil-based blended paint that uses boil oil (long oil) as a film-forming component, and provides a coating film with an initial gloss, and is used for indoor and outdoor iron parts and indoor wood parts of general buildings. It is widely used as a film-forming component for resin blend paints. However, although the alkyd resin is excellent in initial gloss as compared with the acrylic resin and the silicone-modified resin, drying is slow, and the weather resistance and the coating film strength are lowered at the site exposed to ultraviolet rays, wind and rain. Therefore, the paint using the alkyd resin needs to limit the painting range to the indoor part as much as possible.
 この耐候性の問題を解決する手法として、特許文献1には、脂肪酸変性したアクリル樹脂や脂肪酸変性したアクリル共重合部位に、高耐候性モノマーの一種であるシクロヘキシルメタクリルレートを使用した共重合体を含む一液型塗料組成物が記載されている。 As a technique for solving this problem of weather resistance, Patent Document 1 discloses a copolymer using cyclohexyl methacrylate, which is a kind of highly weatherable monomer, at a fatty acid-modified acrylic resin or a fatty acid-modified acrylic copolymerization site. A one-part coating composition containing is described.
 特許文献2には、エポキシ基含有アクリル共重合体のエポキシ基に脂肪酸を付加させ、エポキシ基の開環によって生じる水酸基にシリコーンを反応させた酸化硬化型シリコーン変性(メタ)アクリル共重合体が記載されている。 Patent Document 2 describes an oxidatively curable silicone-modified (meth) acrylic copolymer in which a fatty acid is added to an epoxy group of an epoxy group-containing acrylic copolymer, and a silicone is reacted with a hydroxyl group generated by ring opening of the epoxy group. Has been.
 特許文献3には、有機溶剤に溶解する重合体(B)の存在下で、ビニル系単量体を共重合させて有機溶剤に溶解しにくいビニル共重合体(A)を生成させ、かつ(A)をシリコーン変性することで耐候性を向上させた非水ディスパージョン型樹脂が記載されている。さらに、重合体(B)は、少なくとも50%の油長を有する油変性アルキドであってもよいことが記載されている。 In Patent Document 3, in the presence of a polymer (B) that is soluble in an organic solvent, a vinyl monomer (A) that is difficult to dissolve in an organic solvent is produced by copolymerizing a vinyl monomer, and ( A non-aqueous dispersion type resin having improved weather resistance by modifying A) with silicone is described. Furthermore, it is described that the polymer (B) may be an oil-modified alkyd having an oil length of at least 50%.
 特許文献4には、ポリシロキサン含有ビニル単量体を使用した酸化硬化型シリコーン変性ビニル共重合体が記載され、共重合体分子内に不飽和脂肪酸を導入したり、さらに不飽和アルキッド樹脂で変性したりすることによって酸化重合性を確保することが記載されている。 Patent Document 4 describes an oxidatively curable silicone-modified vinyl copolymer using a polysiloxane-containing vinyl monomer, which introduces an unsaturated fatty acid into the copolymer molecule or is further modified with an unsaturated alkyd resin. It is described that the oxidative polymerizability is ensured by, for example.
 特許文献5には、種々のモノマーをラジカル共重合させた共重合体、アルキッド樹脂、およびポリシロキサンを混合し反応させた樹脂が記載されている。この樹脂は、基本的にはラッカーとして、ポリイソシアネートなどの交叉結合材とともに使用されること、酸化硬化性を持たせることもできると記載されている。 Patent Document 5 describes a copolymer obtained by radical copolymerization of various monomers, an alkyd resin, and a resin obtained by mixing and reacting with a polysiloxane. It is described that this resin is basically used as a lacquer together with a cross-linking material such as polyisocyanate, and can also be imparted with oxidative curability.
特開2004-211009号公報JP 2004-211009 A 特開2001-122968号公報JP 2001-122968 A 特開平10-158311号公報JP-A-10-158311 特開2004-091678号公報JP 2004-091678 A 特開昭55-005977号公報JP 55-005977 A
 特許文献1に記載の共重合体は、構成するモノマーとして極性が低い軟質成分である脂肪酸が含まれている。そのため、この共重合体を含む塗料組成物は、塗膜の耐候性が不十分である。 The copolymer described in Patent Document 1 contains fatty acid which is a soft component having low polarity as a constituent monomer. Therefore, the coating composition containing this copolymer has insufficient weather resistance of the coating film.
 特許文献2に記載の酸化硬化型シリコーン変性(メタ)アクリル共重合体は、良好な耐候性を有している。しかし、塗膜の初期光沢が不十分であり、さらにシリコーンで変性することにより、溶剤に対する溶解性が低下する。 The oxidation-curable silicone-modified (meth) acrylic copolymer described in Patent Document 2 has good weather resistance. However, the initial gloss of the coating film is insufficient, and the solubility in a solvent is lowered by further modification with silicone.
 特許文献3に記載の非水ディスパージョン型樹脂は、樹脂の内部を構成する重合体(A)の周りを、分散安定剤として使用される重合体(B)が取り囲んでいるだけである。すなわち、重合体(A)と(B)とは結合していない。そのため、塗膜の耐候性に問題があり、さらに塗膜の初期光沢が不十分であるという非水ディスパージョンに宿命的な問題も有している。 In the non-aqueous dispersion type resin described in Patent Document 3, the polymer (B) used as a dispersion stabilizer only surrounds the polymer (A) constituting the inside of the resin. That is, the polymers (A) and (B) are not bonded. Therefore, there is a problem in the weather resistance of the coating film, and there is also a fatal problem in the non-aqueous dispersion that the initial gloss of the coating film is insufficient.
 特許文献4に記載の酸化硬化型シリコーン変性ビニル共重合体は、塗膜の耐候性および初期光沢が不十分である。 The oxidation-curable silicone-modified vinyl copolymer described in Patent Document 4 has insufficient weather resistance and initial gloss.
 特許文献5に記載の樹脂は、製造工程において、予め重合させたビニル共重合体を、アルキッド樹脂およびポリシロキサンと反応させている。したがって、構造的には、アルキッド樹脂と共重合体とは直接結合しておらず、ポリシロキサンを介して結合している。そのため、アルキッド樹脂、共重合体およびポリシロキサンのバランスが悪く、塗膜形成時に架橋反応が進みにくく、塗膜の耐候性および耐衝撃性(強度)が不十分である。 In the resin described in Patent Document 5, a vinyl copolymer polymerized in advance is reacted with an alkyd resin and polysiloxane in the production process. Therefore, structurally, the alkyd resin and the copolymer are not directly bonded but are bonded via the polysiloxane. Therefore, the balance between the alkyd resin, the copolymer and the polysiloxane is poor, the crosslinking reaction does not easily proceed during the formation of the coating film, and the weather resistance and impact resistance (strength) of the coating film are insufficient.
 本発明の課題は、特許文献1~5に開示された樹脂や共重合体、あるいは従来のシリコーン変性樹脂では実現できなかった、塗膜の初期光沢が高く、かつアルキッド樹脂が従来のシリコーン変性樹脂よりも劣っていた耐候性、初期乾燥性および耐衝撃性(強度)を満足する塗膜形成成分となる酸化硬化型アルキッド変性シリコーンアクリル共重合体を提供することである。 The problem of the present invention is that the initial gloss of the coating film is high and the alkyd resin is a conventional silicone-modified resin, which cannot be realized by the resins and copolymers disclosed in Patent Documents 1 to 5 or conventional silicone-modified resins. The object of the present invention is to provide an oxidatively curable alkyd-modified silicone acrylic copolymer which is a coating film forming component satisfying weather resistance, initial drying property and impact resistance (strength) which are inferior to those of the above.
 本発明者は、上記課題を解決するべく鋭意検討を行った結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
 (1)酸化重合性基を有するアルキッド樹脂(c)に下記の(a-1)、(a-2)および(a-3)に示すモノマーをグラフト重合させて得られる酸化硬化型アクリル共重合体(a)と、水酸基およびアルコキシ基の少なくとも一方を有するシリコーン(b)とを反応させて得られる酸化硬化型アルキッド変性シリコーンアクリル共重合体であって、原料中に、アルキッド樹脂(c)、スチレン類(a-1)、(メタ)アクリル酸エステル(a-2)、重合性不飽和モノマー(a-3)、およびシリコーン(b)の合計量に対して、アルキッド樹脂(c)が8~40質量%、スチレン類(a-1)が10~30質量%、およびシリコーン(b)が5~15質量%の割合で含まれることを特徴とする、酸化硬化型アルキッド変性シリコーンアクリル共重合体。
  (a-1)スチレン類
  (a-2)(メタ)アクリル酸エステル
  (a-3)水酸基、カルボキシル基、グリシジル基、およびイソシアネート基からなる群より選択される少なくとも1種の官能基を有する重合性不飽和モノマー
 (2)前記スチレン類(a-1)、前記(メタ)アクリル酸エステル(a-2)、および前記重合性不飽和モノマー(a-3)が、スチレン類(a-1)、(メタ)アクリル酸エステル(a-2)、および重合性不飽和モノマー(a-3)の合計量に対して、それぞれ下記の割合で含まれる、(1)に記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。
  (a-1)スチレン類:13~40質量%
  (a-2)(メタ)アクリル酸エステル:53~86質量%
  (a-3)重合性不飽和モノマー:1~7質量%
 (3)前記スチレン類(a-1)、前記(メタ)アクリル酸エステル(a-2)、および前記重合性不飽和モノマー(a-3)が、酸化硬化型アルキッド変性シリコーンアクリル共重合体中に、合計で45~87質量%の割合で含まれる、(1)または(2)に記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。
 (4)固形ヨウ素価が5~50である、(1)~(3)のいずれかに記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。
 (5)重量平均分子量が10,000~150,000である、(1)~(4)のいずれかに記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。
 (6)前記シリコーン(b)が、フェニル基をさらに有する、(1)~(5)のいずれかに記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。
 (7)酸化重合性基を有するアルキッド樹脂(c)に、下記の(a-1)、(a-2)および(a-3)に示すモノマーをグラフト重合させて酸化硬化型アクリル共重合体(a)を得る工程と、得られた酸化硬化型アクリル共重合体(a)と、水酸基およびアルコキシ基の少なくとも一方を有するシリコーン(b)とを反応させる工程とを含み、アルキッド樹脂(c)、スチレン類(a-1)、(メタ)アクリル酸エステル(a-2)、重合性不飽和モノマー(a-3)、およびシリコーン(b)の合計量に対して、アルキッド樹脂(c)が8~40質量%、スチレン類(a-1)が10~30質量%、およびシリコーン(b)が5~15質量%の割合で用いられることを特徴とする、酸化硬化型アルキッド変性シリコーンアクリル共重合体の製造方法。
  (a-1)スチレン類
  (a-2)(メタ)アクリル酸エステル
  (a-3)水酸基、カルボキシル基、グリシジル基、およびイソシアネート基からなる群より選択される少なくとも1種の官能基を有する重合性不飽和モノマー。
As a result of intensive studies to solve the above problems, the present inventor has found a solution means having the following configuration, and has completed the present invention.
(1) Oxidation-curable acrylic copolymer obtained by graft polymerization of the following monomers (a-1), (a-2) and (a-3) to an alkyd resin (c) having an oxidation-polymerizable group An oxidatively curable alkyd-modified silicone acrylic copolymer obtained by reacting the union (a) with a silicone (b) having at least one of a hydroxyl group and an alkoxy group, wherein the alkyd resin (c), The alkyd resin (c) is 8 with respect to the total amount of styrenes (a-1), (meth) acrylic acid ester (a-2), polymerizable unsaturated monomer (a-3), and silicone (b). An oxidatively curable alkyd-modified silicone resin comprising: -40 mass%, styrenes (a-1) 10-30 mass%, and silicone (b) 5-15 mass% Lil copolymer.
(A-1) Styrenes (a-2) (Meth) acrylic acid ester (a-3) Polymerization having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group (2) The styrenes (a-1), the (meth) acrylic acid ester (a-2), and the polymerizable unsaturated monomer (a-3) are styrenes (a-1). The oxidatively curable alkyd-modified product according to (1), which is contained in the following ratio with respect to the total amount of (meth) acrylic acid ester (a-2) and polymerizable unsaturated monomer (a-3) Silicone acrylic copolymer.
(A-1) Styrenes: 13 to 40% by mass
(A-2) (Meth) acrylic acid ester: 53 to 86% by mass
(A-3) Polymerizable unsaturated monomer: 1 to 7% by mass
(3) The styrenes (a-1), the (meth) acrylic acid ester (a-2), and the polymerizable unsaturated monomer (a-3) are contained in an oxidatively curable alkyd-modified silicone acrylic copolymer. The oxidatively curable alkyd-modified silicone acrylic copolymer according to (1) or (2), which is contained in a total amount of 45 to 87% by mass.
(4) The oxidation-curable alkyd-modified silicone acrylic copolymer according to any one of (1) to (3), having a solid iodine value of 5 to 50.
(5) The oxidation-curable alkyd-modified silicone acrylic copolymer according to any one of (1) to (4), which has a weight average molecular weight of 10,000 to 150,000.
(6) The oxidation-curable alkyd-modified silicone acrylic copolymer according to any one of (1) to (5), wherein the silicone (b) further has a phenyl group.
(7) Oxidation-curable acrylic copolymer obtained by graft polymerization of the following monomers (a-1), (a-2) and (a-3) to alkyd resin (c) having an oxidative polymerizable group An alkyd resin (c) comprising a step of obtaining (a), a step of reacting the obtained oxidatively curable acrylic copolymer (a) with a silicone (b) having at least one of a hydroxyl group and an alkoxy group. Alkyd resin (c) with respect to the total amount of styrenes (a-1), (meth) acrylic acid ester (a-2), polymerizable unsaturated monomer (a-3), and silicone (b) The oxidatively curable alkyd-modified silicone acrylic copolymer is used in an amount of 8 to 40% by mass, styrenes (a-1) 10 to 30% by mass, and silicone (b) 5 to 15% by mass. Polymer Manufacturing method.
(A-1) Styrenes (a-2) (Meth) acrylic acid ester (a-3) Polymerization having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group Unsaturated monomers.
 本発明の酸化硬化型アルキッド変性シリコーンアクリル共重合体は、アルキッド樹脂(c)、スチレン類(a-1)およびシリコーン(b)をそれぞれ所定の割合で含有するので、これを塗膜形成成分として用いた場合に、塗膜の初期光沢が高く、耐候性、初期乾燥性および耐衝撃性(強度)を満足する塗膜が得られる。 The oxidatively curable alkyd-modified silicone acrylic copolymer of the present invention contains alkyd resin (c), styrenes (a-1) and silicone (b) in a predetermined ratio, and this is used as a coating film forming component. When used, a coating film having high initial gloss and satisfactory weather resistance, initial drying property and impact resistance (strength) can be obtained.
 本発明に係る酸化硬化型アルキッド変性シリコーンアクリル共重合体(以下、単に「本発明の共重合体」と記載する場合がある)は、酸化硬化型アクリル共重合体(a)と、水酸基およびアルコキシ基の少なくとも一方を有するシリコーン(b)(以下、単に「シリコーン(b)」と記載する場合がある)とを反応させて得られる。 The oxidation-curable alkyd-modified silicone acrylic copolymer according to the present invention (hereinafter sometimes simply referred to as “the copolymer of the present invention”) includes an oxidation-curable acrylic copolymer (a), a hydroxyl group and an alkoxy group. It is obtained by reacting with silicone (b) having at least one of groups (hereinafter sometimes simply referred to as “silicone (b)”).
(酸化硬化型アクリル共重合体(a))
 本発明で用いられる酸化硬化型アクリル共重合体(a)は、酸化重合性基を有するアルキッド樹脂(c)に、下記の(a-1)、(a-2)および(a-3)に示すモノマーをグラフト重合させて得られる。
  (a-1)スチレン類
  (a-2)(メタ)アクリル酸エステル
  (a-3)水酸基、カルボキシル基、グリシジル基、およびイソシアネート基からなる群より選択される少なくとも1種の官能基を有する重合性不飽和モノマー(以下、単に「重合性不飽和モノマー」と記載する場合がある)。
(Oxidation-curing acrylic copolymer (a))
The oxidatively curable acrylic copolymer (a) used in the present invention includes an alkyd resin (c) having an oxidative polymerizable group, the following (a-1), (a-2) and (a-3): It is obtained by graft polymerization of the monomers shown.
(A-1) Styrenes (a-2) (Meth) acrylic acid ester (a-3) Polymerization having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group Unsaturated monomer (hereinafter, sometimes simply referred to as “polymerizable unsaturated monomer”).
 <酸化重合性基を有するアルキッド樹脂(c)>
 アルキッド樹脂は、ポリエステル樹脂の一種であり、多価アルコールと多塩基酸とを縮合させることによって得られる。本発明においては、アルキッド樹脂の中でも、酸化重合性基を有するアルキッド樹脂(c)(以下、単に「アルキッド樹脂(c)」と記載する場合がある)が用いられる。
<Alkyd Resin (c) Having Oxidatively Polymerizable Group>
The alkyd resin is a kind of polyester resin and can be obtained by condensing a polyhydric alcohol and a polybasic acid. In the present invention, among alkyd resins, an alkyd resin (c) having an oxidative polymerizable group (hereinafter sometimes simply referred to as “alkyd resin (c)”) is used.
 アルキッド樹脂(c)が有する酸化重合性基は、例えば、不飽和脂肪酸に由来する不飽和炭素結合(炭素二重結合または炭素三重結合)である。すなわち、アルキッド樹脂(c)は、アルキッド樹脂に不飽和脂肪酸を導入することによって得られる。不飽和脂肪酸は、分子内に少なくとも1つの不飽和炭素結合を有する脂肪酸であれば、特に限定されない。本発明に用いられる不飽和脂肪酸は、固形ヨウ素価がある程度高い(すなわち、不飽和炭素結合を多く有する)ものが好ましく、このような不飽和脂肪酸としては、例えば、乾性油脂肪酸および半乾性油脂肪酸が挙げられる。乾性油脂肪酸および半乾性油脂肪酸は、厳密に区別できるものではないが、通常、乾性油脂肪酸は固形ヨウ素価が130以上の不飽和脂肪酸であり、半乾性油脂肪酸は固形ヨウ素価が100以上かつ130未満の不飽和脂肪酸である。なお、不乾性油脂肪酸は、通常、固形ヨウ素価が100未満の脂肪酸である。 The oxidative polymerizable group possessed by the alkyd resin (c) is, for example, an unsaturated carbon bond (carbon double bond or carbon triple bond) derived from an unsaturated fatty acid. That is, the alkyd resin (c) is obtained by introducing an unsaturated fatty acid into the alkyd resin. The unsaturated fatty acid is not particularly limited as long as it is a fatty acid having at least one unsaturated carbon bond in the molecule. The unsaturated fatty acid used in the present invention preferably has a solid iodine value that is somewhat high (that is, has a lot of unsaturated carbon bonds). Examples of such unsaturated fatty acids include dry oil fatty acids and semi-dry oil fatty acids. Is mentioned. Dry oil fatty acids and semi-dry oil fatty acids are not strictly distinguishable, but usually dry oil fatty acids are unsaturated fatty acids having a solid iodine value of 130 or more, and semi-dry oil fatty acids have a solid iodine value of 100 or more and Less than 130 unsaturated fatty acids. The non-drying oil fatty acid is usually a fatty acid having a solid iodine value of less than 100.
 乾性油脂肪酸および半乾性油脂肪酸としては、例えば、魚油脂肪酸、脱水ヒマシ油脂肪酸、サフラワー油脂肪酸、亜麻仁油脂肪酸、大豆油脂肪酸、ゴマ油脂肪酸、ケシ油脂肪酸、エノ油脂肪酸、麻実油脂肪酸、ブドウ核油脂肪酸、トウモロコシ油脂肪酸、トール油脂肪酸、ヒマワリ油脂肪酸、綿実油脂肪酸、クルミ油脂肪酸、ゴム種油脂肪酸、ハイジエン酸脂肪酸、オレイン酸、リノール酸、リノレン酸などが挙げられる。これらの乾性油脂肪酸および半乾性油脂肪酸は、必要に応じて不乾性油脂肪酸(例えば、ヤシ油脂肪酸、水添ヤシ油脂肪酸、パーム油脂肪酸など)、カプロン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸などと併用してもよい。 Examples of the dry and semi-dry oil fatty acids include fish oil fatty acid, dehydrated castor oil fatty acid, safflower oil fatty acid, linseed oil fatty acid, soybean oil fatty acid, sesame oil fatty acid, poppy oil fatty acid, eno oil fatty acid, hemp oil fatty acid, grape Examples include nuclear oil fatty acid, corn oil fatty acid, tall oil fatty acid, sunflower oil fatty acid, cottonseed oil fatty acid, walnut oil fatty acid, rubber seed oil fatty acid, hydienoic acid fatty acid, oleic acid, linoleic acid, and linolenic acid. These dry oil fatty acids and semi-dry oil fatty acids are non-dry oil fatty acids (for example, coconut oil fatty acid, hydrogenated coconut oil fatty acid, palm oil fatty acid, etc.), caproic acid, capric acid, lauric acid, myristic acid as necessary. , Palmitic acid, stearic acid and the like may be used in combination.
 さらに、本発明では、不飽和脂肪酸と共にあるいは不飽和脂肪酸の代わりに、油脂(グリセリド)を用いてもよい。油脂としては、不飽和炭素結合を有する油脂であって、例えば、魚油、脱水ヒマシ油、サフラワー油、亜麻仁油、大豆油、ゴマ油、ケシ油、エノ油、麻実油、ブドウ核油、トウモロコシ油、トール油、ヒマワリ油、綿実油、クルミ油、ゴム種油などの乾性油または半乾性油が挙げられる。 Furthermore, in the present invention, fats and oils (glycerides) may be used together with unsaturated fatty acids or instead of unsaturated fatty acids. The fats and oils are those having unsaturated carbon bonds, such as fish oil, dehydrated castor oil, safflower oil, linseed oil, soybean oil, sesame oil, poppy oil, eno oil, hemp seed oil, grape kernel oil, corn oil , Dry oil or semi-dry oil such as tall oil, sunflower oil, cottonseed oil, walnut oil, rubber seed oil.
 アルキッド樹脂(c)の油長は、好ましくは30~70%である。本明細書において「油長」は、アルキッド樹脂(c)原料中における脂肪酸または油脂の割合(質量%)を意味する。油長は下記の式で求められる。
 油長(%)=(脂肪酸または油脂の質量/アルキッド樹脂(c)原料の総質量)×100
 油長がこのような範囲の場合、得られる共重合体を塗膜形成成分として用いた場合に、酸化硬化性に富み架橋密度が高く、塗膜の初期光沢が高く、耐候性および初期乾燥性に優れた塗膜が得られる。さらに、アルキッド樹脂(c)の分子内に、適度に脂肪酸や油脂に由来する炭化水素基が導入され、塗料組成物を調製する際に、溶剤への溶解性がより向上する。油長は、より好ましくは40~60%である。
The oil length of the alkyd resin (c) is preferably 30 to 70%. In this specification, "oil length" means the ratio (mass%) of the fatty acid or fats and oils in alkyd resin (c) raw material. The oil length is obtained by the following formula.
Oil length (%) = (mass of fatty acid or fat / total mass of alkyd resin (c) raw material) × 100
When the oil length is in such a range, when the obtained copolymer is used as a coating film-forming component, it is rich in oxidative curability, has a high crosslinking density, has a high initial gloss, and has weather resistance and initial drying properties. An excellent coating film can be obtained. Furthermore, hydrocarbon groups derived from fatty acids and fats and oils are appropriately introduced into the molecule of the alkyd resin (c), and the solubility in a solvent is further improved when preparing a coating composition. The oil length is more preferably 40 to 60%.
 アルキッド樹脂(c)は、多価アルコールと多塩基酸と不飽和脂肪酸(または油脂)とを縮合反応(またはエステル交換反応)させることによって得られる。多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、マンニトール、トリエチレングリコール、ポリエチレングリコール、プロプレングリコール、ジプロピレングリコール、トリプロピレングリコール、ヘキサンジオール、トリメチロールプロパン、ジペンタエリスリトール、D-ソルビトールなどが挙げられる。多塩基酸としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、無水コハク酸、マレイン酸、無水マレイン酸、アジピン酸、セバシン酸、テトラヒドロ無水フタル酸などが挙げられる。必要に応じて、安息香酸、t-ブチル安息香酸、ヘキサヒドロ安息香酸、ケイ皮酸などの一塩基酸を併用することもできる。 The alkyd resin (c) is obtained by subjecting a polyhydric alcohol, a polybasic acid, and an unsaturated fatty acid (or oil) to a condensation reaction (or transesterification reaction). Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, glycerin, pentaerythritol, mannitol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, hexanediol, trimethylolpropane, dipentaerythritol, And D-sorbitol. Examples of the polybasic acid include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic acid, succinic anhydride, maleic acid, maleic anhydride, adipic acid, sebacic acid, and tetrahydrophthalic anhydride. If necessary, monobasic acids such as benzoic acid, t-butylbenzoic acid, hexahydrobenzoic acid and cinnamic acid can be used in combination.
 これらの原料を混合して、通常、170~280℃で3~15時間、常圧または加圧下で反応させればよい。反応の際には、溶剤(例えば、キシレン、トルエン、メチルイソブチルケトンなどが使用可能である。その他、使用可能な溶剤については後述する。)を用いてもよい。このようにして、分子内に不飽和脂肪酸残基が導入されたアルキッド樹脂(c)が得られる。さらに、必要に応じて公知の触媒を用いてもよい。 These raw materials may be mixed and reacted usually at 170 to 280 ° C. for 3 to 15 hours under normal pressure or pressure. In the reaction, a solvent (for example, xylene, toluene, methyl isobutyl ketone, etc. can be used. Other usable solvents will be described later) may be used. Thus, an alkyd resin (c) having an unsaturated fatty acid residue introduced into the molecule is obtained. Furthermore, you may use a well-known catalyst as needed.
 本発明で用いられる酸化硬化型アクリル共重合体(a)は、このようなアルキッド樹脂(c)に、上記(a-1)、(a-2)および(a-3)のモノマーをグラフト重合させて得られる。 The oxidatively curable acrylic copolymer (a) used in the present invention is obtained by graft polymerization of the monomers (a-1), (a-2) and (a-3) to the alkyd resin (c). Can be obtained.
 <スチレン類(a-1)>
 スチレン類(a-1)は、塗膜の初期光沢を向上させるために用いられる。本発明に用いられるスチレン類(a-1)は特に限定されず、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレンなどが挙げられる。これらの中でも、経済的な観点や入手の容易さからスチレンが好ましい。これらのスチレン類(a-1)は、単独で用いてもよく、2種以上を併用してもよい。スチレン類(a-1)は、上記(a-1)、(a-2)および(a-3)の合計量に対して、好ましくは13~40質量%の割合で用いられる。一般的に、スチレン類(a-1)を多く使用すると、耐衝撃性(強度)や耐候性を低下させる傾向にある。本発明では、スチレン類(a-1)の使用量を比較的多く設定しているにもかかわらず、他のモノマー((a-2)および(a-3))とのバランスや、アルキッド樹脂(c)および後述するシリコーン(b)とのバランスによって、塗膜の耐衝撃性(強度)および耐候性をほとんど低下させることなく、塗膜の初期光沢および初期乾燥性をより高めることができる。スチレン類(a-1)は、より好ましくは20~33質量%の割合で用いられる。
<Styrenes (a-1)>
Styrenes (a-1) are used for improving the initial gloss of the coating film. The styrenes (a-1) used in the present invention are not particularly limited, and examples thereof include styrene, α-methyl styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-tert-butyl styrene and the like. Can be mentioned. Among these, styrene is preferable from an economical viewpoint and availability. These styrenes (a-1) may be used alone or in combination of two or more. The styrenes (a-1) are preferably used in a proportion of 13 to 40% by mass with respect to the total amount of the above (a-1), (a-2) and (a-3). Generally, when a large amount of styrene (a-1) is used, impact resistance (strength) and weather resistance tend to be lowered. In the present invention, the balance with other monomers ((a-2) and (a-3)) and the alkyd resin in spite of setting a relatively large amount of styrenes (a-1). By the balance with (c) and silicone (b) described later, the initial gloss and initial drying properties of the coating film can be further improved without substantially reducing the impact resistance (strength) and weather resistance of the coating film. Styrenes (a-1) are more preferably used in a proportion of 20 to 33% by mass.
 <(メタ)アクリル酸エステル(a-2)>
 (メタ)アクリル酸エステル(a-2)は、塗膜に柔軟性および耐候性を付与するために用いられる。なお、本明細書において「(メタ)アクリル」は、「アクリル」または「メタクリル」を意味する。本発明で用いられる(メタ)アクリル酸エステル(a-2)は特に限定されず、例えば、炭素数が1~18のアルキル基を有する(メタ)アクリル酸アルキルなどが挙げられる。(メタ)アクリル酸エステルとしては、具体的には、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸ジアルキルアミノアルキル(例えば、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル)などが挙げられる。
<(Meth) acrylic acid ester (a-2)>
The (meth) acrylic acid ester (a-2) is used for imparting flexibility and weather resistance to the coating film. In the present specification, “(meth) acryl” means “acryl” or “methacryl”. The (meth) acrylic acid ester (a-2) used in the present invention is not particularly limited, and examples thereof include alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms. Specific examples of (meth) acrylic acid esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth ) N-butyl acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, Lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, dialkylaminoalkyl (meth) acrylate (eg, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate) Etc.
 さらに、(メタ)アクリル酸エステル(a-2)として、分子内にフッ素原子を含む(メタ)アクリル酸エステルを用いてもよい。このような(メタ)アクリル酸エステルとしては、例えば分子内に3~17個のフッ素原子を有する(メタ)アクリル酸エステルなどが挙げられる。分子内にフッ素原子を含む(メタ)アクリル酸エステルは、例えば下記の製品名で大阪有機化学工業(株)より市販されている。
 ビスコート3F(フッ素原子3個含有アクリル酸エステルモノマー)
 ビスコート4F(フッ素原子4個含有アクリル酸エステルモノマー)
 ビスコート8F(フッ素原子8個含有アクリル酸エステルモノマー)
 ビスコート12F(フッ素原子12個含有アクリル酸エステルモノマー)
 ビスコート17F(フッ素原子17個含有アクリル酸エステルモノマー)
 これらの中でも、アクリル酸n-ブチル、メタクリル酸i-ブチル、およびメタクリル酸t-ブチルが好ましい。これらの(メタ)アクリル酸エステル(a-2)は、単独で用いてもよく、2種以上を併用してもよい。
Furthermore, as the (meth) acrylic acid ester (a-2), a (meth) acrylic acid ester containing a fluorine atom in the molecule may be used. Examples of such (meth) acrylic acid esters include (meth) acrylic acid esters having 3 to 17 fluorine atoms in the molecule. The (meth) acrylic acid ester containing a fluorine atom in the molecule is commercially available from, for example, Osaka Organic Chemical Industry Co., Ltd. under the following product name.
Biscoat 3F (acrylic ester monomer containing 3 fluorine atoms)
Biscoat 4F (acrylic ester monomer containing 4 fluorine atoms)
Biscote 8F (acrylic ester monomer containing 8 fluorine atoms)
Biscoat 12F (acrylic ester monomer containing 12 fluorine atoms)
Biscote 17F (acrylic acid ester monomer containing 17 fluorine atoms)
Among these, n-butyl acrylate, i-butyl methacrylate, and t-butyl methacrylate are preferable. These (meth) acrylic acid esters (a-2) may be used alone or in combination of two or more.
 なお、一般的に(メタ)アクリル酸エステルに分類される化合物は、その種類によっては、後述する重合性不飽和モノマー(a-3)に分類される化合物と重複する場合がある。例えば、(メタ)アクリル酸ヒドロキシメチルは、(メタ)アクリル酸エステルおよび重合性不飽和モノマーに分類される。このような極性官能基を有する(メタ)アクリル酸エステルは、本明細書では「重合性不飽和モノマー(a-3)」に分類する。極性官能基としては、例えば、水酸基、カルボキシル基、グリシジル基、イソシアネート基などが挙げられる。 In addition, the compound generally classified into (meth) acrylic acid ester may overlap with the compound classified into the polymerizable unsaturated monomer (a-3) mentioned later depending on the kind. For example, hydroxymethyl (meth) acrylate is classified as (meth) acrylic acid ester and polymerizable unsaturated monomer. The (meth) acrylic acid ester having such a polar functional group is classified as “polymerizable unsaturated monomer (a-3)” in the present specification. Examples of the polar functional group include a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group.
 (メタ)アクリル酸エステル(a-2)は、上記(a-1)、(a-2)および(a-3)の合計量に対して、好ましくは53~86質量%の割合で用いられる。(メタ)アクリル酸エステル(a-2)をこのような割合で用いることによって、塗膜の初期光沢および耐衝撃性(強度)をほとんど低下させることなく、塗膜の柔軟性および耐候性をより高めることができる。(メタ)アクリル酸エステル(a-2)は、より好ましくは64~79質量%の割合で用いられる。 The (meth) acrylic acid ester (a-2) is preferably used in a proportion of 53 to 86% by mass with respect to the total amount of the above (a-1), (a-2) and (a-3). . By using (meth) acrylic acid ester (a-2) in such a proportion, the flexibility and weather resistance of the coating film can be further improved without substantially reducing the initial gloss and impact resistance (strength) of the coating film. Can be increased. The (meth) acrylic acid ester (a-2) is more preferably used in a proportion of 64 to 79% by mass.
 <重合性不飽和モノマー(a-3)>
 重合性不飽和モノマー(a-3)は、後述するシリコーン(b)を共重合体に導入する(すなわち、酸化硬化型アクリル共重合体(a)とシリコーン(b)とを結合させる)ために用いられる。重合性不飽和モノマー(a-3)は、分子内に水酸基、カルボキシル基、グリシジル基、およびイソシアネート基からなる群より選択される少なくとも1種の官能基を有する重合性不飽和モノマーであれば、特に限定されない。これらの中でも、分子内に水酸基またはカルボキシル基を有する重合性不飽和モノマーが好ましい。これらの重合性不飽和モノマー(a-3)は、単独で用いてもよく、2種以上を併用してもよい。
<Polymerizable unsaturated monomer (a-3)>
The polymerizable unsaturated monomer (a-3) is used to introduce silicone (b) described later into the copolymer (that is, to bond the oxidatively curable acrylic copolymer (a) and the silicone (b)). Used. The polymerizable unsaturated monomer (a-3) is a polymerizable unsaturated monomer having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group in the molecule. There is no particular limitation. Among these, a polymerizable unsaturated monomer having a hydroxyl group or a carboxyl group in the molecule is preferable. These polymerizable unsaturated monomers (a-3) may be used alone or in combination of two or more.
 水酸基を有する重合性不飽和モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸1-メチル-2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチルなどの水酸基含有(メタ)アクリル酸エステルが挙げられる。これらの中でも、(メタ)アクリル酸2-ヒドロキシエチルが好ましい。 Examples of the polymerizable unsaturated monomer having a hydroxyl group include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 1-methyl (meth) acrylate. Examples thereof include hydroxyl group-containing (meth) acrylic acid esters such as 2-hydroxyethyl, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. Of these, 2-hydroxyethyl (meth) acrylate is preferred.
 カルボキシル基を有する重合性不飽和モノマーとしては、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸などのα、β-不飽和カルボン酸またはその塩;上述の水酸基含有(メタ)アクリル酸エステルと酸無水物とのハーフエステル化物などが挙げられる。これらの中でも、α、β-不飽和カルボン酸が好ましく、(メタ)アクリル酸がより好ましく、メタクリル酸がさらに好ましい。 Examples of the polymerizable unsaturated monomer having a carboxyl group include α, β-unsaturated carboxylic acids such as (meth) acrylic acid, itaconic acid, maleic acid and fumaric acid or salts thereof; Examples include half esterified products of acid esters and acid anhydrides. Among these, α, β-unsaturated carboxylic acids are preferable, (meth) acrylic acid is more preferable, and methacrylic acid is more preferable.
 グリシジル基を有する重合性不飽和モノマーとしては、例えば、(メタ)アクリル酸グリシジル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、アリルグリシジルエーテルなどのグリシジル基含有(メタ)アクリル酸エステルが挙げられる。これらの中でも、(メタ)アクリル酸グリシジルが好ましい。 Examples of the polymerizable unsaturated monomer having a glycidyl group include glycidyl group-containing (meth) acrylic acid esters such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and allyl glycidyl ether. Among these, glycidyl (meth) acrylate is preferable.
 イソシアネート基を有する重合性不飽和モノマーとしては、例えば、(メタ)アクリル酸イソシアナトメチル、(メタ)アクリル酸2-イソシアナトエチル、(メタ)アクリル酸3-イソシアナトプロピル、(メタ)アクリル酸1-メチル-2-イソシアナトエチル、(メタ)アクリル酸2-イソシアナトプロピル、(メタ)アクリル酸4-イソシアナトブチルなどのイソシアネート基含有(メタ)アクリル酸エステルが挙げられる。これらの中でも、(メタ)アクリル酸2-イソシアナトエチルが好ましい。 Examples of the polymerizable unsaturated monomer having an isocyanate group include isocyanatomethyl (meth) acrylate, 2-isocyanatoethyl (meth) acrylate, 3-isocyanatopropyl (meth) acrylate, and (meth) acrylic acid. Examples thereof include isocyanate group-containing (meth) acrylic esters such as 1-methyl-2-isocyanatoethyl, 2-isocyanatopropyl (meth) acrylate, and 4-isocyanatobutyl (meth) acrylate. Of these, 2-isocyanatoethyl (meth) acrylate is preferred.
 重合性不飽和モノマー(a-3)は、上記(a-1)、(a-2)および(a-3)の合計量に対して、好ましくは1~7質量%の割合で用いられる。重合性不飽和モノマー(a-3)をこのような割合で用いることによって、シリコーン(b)との反応が適度に進行し、塗膜の初期光沢をほとんど低下させることなく、塗膜の耐候性および耐衝撃性(強度)をより高めることができる。さらに、塗料組成物の粘度も高くなりすぎない。重合性不飽和モノマー(a-3)は、より好ましくは1~3質量%の割合で用いられる。 The polymerizable unsaturated monomer (a-3) is preferably used in a ratio of 1 to 7% by mass with respect to the total amount of the above (a-1), (a-2) and (a-3). By using the polymerizable unsaturated monomer (a-3) in such a proportion, the reaction with the silicone (b) proceeds moderately, and the weather resistance of the coating film is almost reduced without substantially reducing the initial gloss of the coating film. In addition, impact resistance (strength) can be further increased. Furthermore, the viscosity of the coating composition does not become too high. The polymerizable unsaturated monomer (a-3) is more preferably used in a proportion of 1 to 3% by mass.
 アルキッド樹脂(c)に、これらの(a-1)、(a-2)および(a-3)をグラフト重合させる方法は、特に限定されない。例えば、光照射や、以下に示す重合開始剤などを用いて、窒素ガス、アルゴンガスなどの不活性ガス雰囲気下で重合させればよい。通常、反応温度は50~150℃、反応時間は3~20時間である。より詳細には、例えば、アルキッド樹脂を入れた反応容器にモノマーと重合開始剤との混合物を滴下する方法、アルキッド樹脂とモノマーの一部とを入れた反応容器に、残りのモノマーと重合開始剤とを滴下する方法、アルキッド樹脂とモノマーとを入れた反応容器に重合開始剤を滴下する方法、モノマーを入れた反応容器にアルキッド樹脂と重合開始剤とを滴下する方法などが挙げられる。 The method for graft polymerizing these (a-1), (a-2) and (a-3) to the alkyd resin (c) is not particularly limited. For example, polymerization may be performed in an inert gas atmosphere such as nitrogen gas or argon gas using light irradiation or a polymerization initiator shown below. Usually, the reaction temperature is 50 to 150 ° C., and the reaction time is 3 to 20 hours. More specifically, for example, a method of dropping a mixture of a monomer and a polymerization initiator into a reaction vessel containing an alkyd resin, a remaining monomer and a polymerization initiator in a reaction vessel containing an alkyd resin and a part of the monomer And a method of dropping a polymerization initiator into a reaction vessel containing an alkyd resin and a monomer, a method of dropping an alkyd resin and a polymerization initiator into a reaction vessel containing a monomer, and the like.
 重合開始剤は特に限定されず、モノマーの種類、反応条件などに応じて適宜選択される。具体的にはラジカル重合開始剤、光重合開始剤などが挙げられる。これらの重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。 The polymerization initiator is not particularly limited, and is appropriately selected according to the type of monomer and reaction conditions. Specific examples include radical polymerization initiators and photopolymerization initiators. These polymerization initiators may be used alone or in combination of two or more.
 ラジカル重合開始剤としては、例えば、アゾ系化合物、パーオキサイド系化合物、スルフィド類、スルフィン類、スルフィン酸類、ジアゾ化合物、レゾックス系化合物などが挙げられる。これらの中でもアゾ系化合物またはパーオキサイド系化合物が好ましい。 Examples of radical polymerization initiators include azo compounds, peroxide compounds, sulfides, sulfines, sulfinic acids, diazo compounds, and resox compounds. Among these, an azo compound or a peroxide compound is preferable.
 アゾ系化合物としては、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、ジメチル2,2’-アゾビスイソブチレート、4,4’-アゾビス-4-シアノバレリン酸などが挙げられる。 Examples of the azo compound include azobisisobutyronitrile, azobisdimethylvaleronitrile, azobiscyclohexanenitrile, 1,1′-azobis (1-acetoxy-1-phenylethane), dimethyl 2,2′-azo. Examples thereof include bisisobutyrate and 4,4′-azobis-4-cyanovaleric acid.
 パーオキサイド系化合物としては、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルパーオキサイド、カプリエルパーオキサイド、2,4-ジクロルベンゾイルパーオキサイド、イソブチルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキサイド、t-ブチルパーオキシビパレート、t-ブチルパーオキシ-2-エチルヘキサノエート、1,1-ジ-t-ブチルパーオキシシクロヘキサン、1,1-ジ-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、1,1-ジ-t-ヘキシルパーオキシ-3,3,5-トリメチルシクロヘキサン、イソプロピルパーオキシジカーボネート、イソブチルパーオキシジカーボネート、s-ブチルパーオキシジカーボネート、n-ブチルパーオキシジカーボネート、2-エチルヘキシルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、t-アミルパーオキシ-2-エチルヘキサエノート、1,1,3,3-テトラメチルブチルパーオキシ-エチルヘキサノエート、1,1,2-トリメチルプロピルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソプロピルモノカーボネート、t-アミルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、t-ブチルパーオキシアリルカーボネート、t-ブチルパーオキシイソプロピルカーボネート、1,1,3,3-テトラメチルブチルパーオキシイソプロピルモノカーボネート、1,1,2-トリメチルプロピルパーオキシイソプロピルモノカーボネート、1,1,3,3-テトラメチルブチルパーオキシイソノナエート、1,1,2-トリメチルプロピルパーオキシ-イソノナエート、t-ブチルパーオキシベンゾエート、t-へキシルパーオキシイソプロピルモノカーボネート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエートなどの有機過酸化物などが挙げられる。 Examples of the peroxide compounds include benzoyl peroxide, lauroyl peroxide, acetyl peroxide, capryel peroxide, 2,4-dichlorobenzoyl peroxide, isobutyl peroxide, acetylcyclohexylsulfonyl peroxide, and t-butyl peroxide. Oxybiparate, t-butylperoxy-2-ethylhexanoate, 1,1-di-t-butylperoxycyclohexane, 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane 1,1-di-t-hexylperoxy-3,3,5-trimethylcyclohexane, isopropyl peroxydicarbonate, isobutyl peroxydicarbonate, s-butyl peroxydicarbonate, n-butyl peroxydi -Bonate, 2-ethylhexyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, t-amylperoxy-2-ethylhexaenoate, 1,1,3,3-tetramethylbutylperoxy -Ethylhexanoate, 1,1,2-trimethylpropylperoxy-2-ethylhexanoate, t-butylperoxyisopropyl monocarbonate, t-amylperoxyisopropyl monocarbonate, t-butylperoxy-2- Ethylhexyl carbonate, t-butyl peroxyallyl carbonate, t-butyl peroxyisopropyl carbonate, 1,1,3,3-tetramethylbutyl peroxyisopropyl monocarbonate, 1,1,2-trimethylpropyl peroxyisopropyl Monomonocarbonate, 1,1,3,3-tetramethylbutylperoxyisononate, 1,1,2-trimethylpropylperoxy-isononate, t-butylperoxybenzoate, t-hexylperoxyisopropylmonocarbonate, and organic peroxides such as t-amylperoxy-3,5,5-trimethylhexanoate.
 光重合開始剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、4-メチルベンゾフェノンなどが挙げられる。 Examples of the photopolymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 1-cyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl. -Propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-methyl-1- [4- (methylthio) Phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, bis (2,4,6-trimethylbenzoyl) -phenylphos Fin oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 4-methylbenzophenone, etc. And the like.
 アルキッド樹脂(c)と、(a-1)、(a-2)および(a-3)の混合物とは、アルキッド樹脂(c)およびスチレン類(a-1)が、後述する本発明の共重合体に含まれる割合となるように混合すればよい。 The alkyd resin (c) and the mixture of (a-1), (a-2) and (a-3) are an alkyd resin (c) and styrenes (a-1), which are described later. What is necessary is just to mix so that it may become a ratio contained in a polymer.
 さらに、本発明の効果を阻害しない範囲で、アルキッド樹脂(c)に(a-1)~(a-3)以外のモノマーを重合させてもよい。(a-1)~(a-3)以外のモノマーとしては、例えば、(メタ)アクリロニトリル、(メタ)アクリルアミド、酢酸ビニル、塩化ビニル、ビニルピロリドン、ビニルオキサゾリン、アクリロイルモルホリンなどが挙げられる。上記(a-1)~(a-3)以外のモノマーの含有量は、酸化硬化型アルキッド変性シリコーンアクリル共重合体中に、合計で5質量%以下、好ましくは2質量%以下の割合で含まれる。 Furthermore, monomers other than (a-1) to (a-3) may be polymerized to the alkyd resin (c) within a range not impairing the effects of the present invention. Examples of monomers other than (a-1) to (a-3) include (meth) acrylonitrile, (meth) acrylamide, vinyl acetate, vinyl chloride, vinyl pyrrolidone, vinyl oxazoline, acryloylmorpholine, and the like. The content of monomers other than the above (a-1) to (a-3) is included in the oxidatively curable alkyd-modified silicone acrylic copolymer in a total amount of 5% by mass or less, preferably 2% by mass or less. It is.
 このような方法によって、アルキッド樹脂(c)に、(a-1)、(a-2)および(a-3)の混合物をグラフト重合させることができる。アルキッド樹脂に、(a-1)、(a-2)および(a-3)の混合物をグラフト重合させることによって、塗膜の耐衝撃性(強度)、耐候性、初期光沢および初期乾燥性を向上させることができる。 By such a method, a mixture of (a-1), (a-2) and (a-3) can be graft polymerized to the alkyd resin (c). By graft polymerization of a mixture of (a-1), (a-2) and (a-3) to an alkyd resin, the impact resistance (strength), weather resistance, initial gloss and initial drying properties of the coating film are improved. Can be improved.
(水酸基およびアルコキシ基の少なくとも一方を有するシリコーン(b))
 本発明で用いられるシリコーン(b)は、例えば、シロキサン結合(-Si-O-Si-)を主鎖とし、側鎖にアルキル基、アリール基、水酸基、アルコキシ基などの置換基が存在する分岐構造を有するポリシロキサンであり、水酸基およびアルコキシ基の少なくとも一方を有するシリコーンであれば、特に限定されない。
(Silicone (b) having at least one of hydroxyl group and alkoxy group)
The silicone (b) used in the present invention is, for example, a branched chain having a siloxane bond (—Si—O—Si—) as the main chain and a substituent such as an alkyl group, an aryl group, a hydroxyl group or an alkoxy group in the side chain. The polysiloxane having a structure is not particularly limited as long as it is a silicone having at least one of a hydroxyl group and an alkoxy group.
 水酸基またはアルコキシ基の少なくとも1つは、シリコーン分子内の少なくとも1つのケイ素原子に、直接結合していることが好ましい。 It is preferable that at least one of the hydroxyl group or the alkoxy group is directly bonded to at least one silicon atom in the silicone molecule.
 シリコーン(b)は、例えば、式R1 m(R2O)nSiO(4-m-n)/2で示される。
(式中、R1およびR2は、それぞれ同一または異なって、水素原子、炭素数が1~8のアルキル基、または炭素数が6~12のアリール基を表し、mは0≦m≦3.5を満足し、nは0.0005≦n<4を満足する)。シリコーン(c)は、重合度や官能基の置換度が異なる分子の混合物であるため、上記の式におけるmやnの値は必ずしも整数とはならない。
Silicone (b) is represented, for example, by the formula R 1 m (R 2 O) n SiO (4-mn) / 2 .
Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and m is 0 ≦ m ≦ 3 .5 and n satisfies 0.0005 ≦ n <4). Since silicone (c) is a mixture of molecules having different degrees of polymerization and functional group substitution, the values of m and n in the above formula are not necessarily integers.
 炭素数が1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などが挙げられる。これらの中でも、塗膜に耐候性を付与する点で、炭素数が1~3のアルキル基が好ましい。さらに溶剤への溶解性の点で、プロピル基(n-プロピル基またはイソプロピル基)がより好ましい。なお、炭素数が3以上の場合は、環状アルキル基であってもよい。 Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group. Among these, an alkyl group having 1 to 3 carbon atoms is preferable in terms of imparting weather resistance to the coating film. Furthermore, a propyl group (n-propyl group or isopropyl group) is more preferable from the viewpoint of solubility in a solvent. When the number of carbon atoms is 3 or more, it may be a cyclic alkyl group.
 炭素数が6~12のアリール基としては、例えば、フェニル基、ベンジル基、トリル基、キシリル基、ナフチル基などが挙げられる。これらの中でも、炭素数が6~8のアリール基が好ましく、フェニル基がより好ましい。 Examples of the aryl group having 6 to 12 carbon atoms include phenyl group, benzyl group, tolyl group, xylyl group, and naphthyl group. Among these, an aryl group having 6 to 8 carbon atoms is preferable, and a phenyl group is more preferable.
 シリコーン(b)としては、水酸基またはアルコキシ基に加えて、フェニル基をさらに有するシリコーンが好ましく、フェニル基は、ケイ素原子に直接結合していることがより好ましい。フェニル基を有するシリコーンを用いると、溶剤(特に後述する弱溶剤)への溶解性がより高くなる。その結果、塗料の粘度を適度に下げることができるため、作業性をより向上させることができる。また塗膜の屈折率が向上するため、初期光沢が向上する。さらに、アルキル基を有するシリコーンが好ましく、アルキル基は、ケイ素原子に直接結合していることがより好ましい。ケイ素原子に直接結合するフェニル基とケイ素原子に直接結合するプロピル基(n-プロピル基またはイソプロピル基)とを有するシリコーンが特に好ましい。このように、ケイ素原子にフェニル基とプロピル基とがそれぞれ結合しているシリコーンを、「フェニルプロピル系シリコーン」と称する場合があり、フェニルプロピル基がケイ素原子に結合しているわけではない。同様に、「フェニルメチル系シリコーン」も存在するが、フェニルメチル基がケイ素原子に結合しているわけではない。ケイ素原子にフェニル基とメチル基とがそれぞれ結合しているシリコーンを意味する。 The silicone (b) is preferably a silicone further having a phenyl group in addition to a hydroxyl group or an alkoxy group, and the phenyl group is more preferably directly bonded to a silicon atom. When silicone having a phenyl group is used, solubility in a solvent (particularly a weak solvent described later) is further increased. As a result, since the viscosity of the paint can be lowered appropriately, workability can be further improved. Moreover, since the refractive index of a coating film improves, initial glossiness improves. Furthermore, a silicone having an alkyl group is preferable, and the alkyl group is more preferably directly bonded to a silicon atom. A silicone having a phenyl group directly bonded to a silicon atom and a propyl group (n-propyl group or isopropyl group) bonded directly to the silicon atom is particularly preferable. Thus, a silicone in which a phenyl group and a propyl group are bonded to a silicon atom may be referred to as “phenylpropyl silicone”, and the phenylpropyl group is not bonded to a silicon atom. Similarly, “phenylmethyl silicone” exists, but the phenylmethyl group is not bonded to a silicon atom. It means a silicone in which a phenyl group and a methyl group are bonded to a silicon atom.
 シリコーン(b)の分子量は特に限定されない。本発明においては、好ましくは200~5,500の数平均分子量を有するシリコーン、より好ましくは1,400~3,000の数平均分子量を有するシリコーンが用いられる。
 このようなシリコーンの代表的な市販品としては、3037 INTERMEDIATE、3074 INTERMEDIATE、Z-6018、217 FLAKE、220 FLAKE、233 FLAKE、249 FLAKE、QP8-5314、SR2402、AY 42-163(いずれも東レ・ダウコーニング(株)製);TSR160、TSR165、TSR3168(いずれもモメンティブ・パフォーマンス・マテリアルズ社製);KR-211、KR-216、KR-213、KR-9218(いずれも信越化学工業(株)製);SILRES SY 231、SILRES SY 300、SILRES SY 409、SILRES IC368(いずれも旭化成ワッカーシリコーン(株)製)などが挙げられる。
The molecular weight of silicone (b) is not particularly limited. In the present invention, a silicone having a number average molecular weight of preferably 200 to 5,500, more preferably a silicone having a number average molecular weight of 1,400 to 3,000 is used.
Typical examples of such commercially available silicones are 3037 INTERMEDIATE, 3074 INTERMEDIATE, Z-6018, 217 FLAKE, 220 FLAKE, 233 FLAKE, 249 FLAKE, QP8-5314, SR2402, AY 42-163 (all of which are Toray Manufactured by Dow Corning); TSR160, TSR165, TSR3168 (all manufactured by Momentive Performance Materials); KR-211, KR-216, KR-213, KR-9218 (all manufactured by Shin-Etsu Chemical Co., Ltd.) SILRES SY 231, SILRES SY 300, SILRES SY 409, SILRES IC368 (all manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) and the like.
(酸化硬化型アルキッド変性シリコーンアクリル共重合体)
 本発明の共重合体は、アルキッド樹脂(c)、スチレン類(a-1)およびシリコーン(b)を、特定の割合で重合させている点に特徴がある。すなわち、アルキッド樹脂(c)、スチレン類(a-1)、(メタ)アクリル酸エステル(a-2)、重合性不飽和モノマー(a-3)、およびシリコーン(b)の合計量に対して、アルキッド樹脂(c)が8~40質量%、スチレン類(a-1)が10~30質量%、およびシリコーン(b)が5~15質量%の割合で含まれる点に特徴がある。
(Oxidation-curable alkyd-modified silicone acrylic copolymer)
The copolymer of the present invention is characterized in that alkyd resin (c), styrenes (a-1) and silicone (b) are polymerized at a specific ratio. That is, with respect to the total amount of alkyd resin (c), styrenes (a-1), (meth) acrylic acid ester (a-2), polymerizable unsaturated monomer (a-3), and silicone (b) The alkyd resin (c) is contained in an amount of 8 to 40% by mass, the styrene (a-1) is contained in an amount of 10 to 30% by mass, and the silicone (b) is contained in an amount of 5 to 15% by mass.
 アルキッド樹脂(c)の含有量が8質量%未満の場合、酸化重合性部位が少なくなるため得られる塗膜の耐溶剤性が低くなり、塗膜の耐候性、初期乾燥性および塗膜の肉持ち感も乏しくなる。一方、アルキッド樹脂(c)の含有量が40質量%を超える場合、共重合体の製造中にゲル化する傾向にあり、たとえゲル化しなくても、このような共重合体を用いた塗膜は、耐水性、耐アルカリ性、耐候性などが低下する。アルキッド樹脂(c)は、好ましくは15~25質量%の割合で含まれる。 When the content of the alkyd resin (c) is less than 8% by mass, the solvent resistance of the obtained coating film is lowered because the number of oxidatively polymerizable sites is reduced, and the weather resistance of the coating film, initial drying property, and the meat of the coating film The feeling of holding will be poor. On the other hand, when the content of the alkyd resin (c) exceeds 40% by mass, it tends to gel during the production of the copolymer, and even if it does not gel, a coating film using such a copolymer. The water resistance, alkali resistance, weather resistance and the like are reduced. The alkyd resin (c) is preferably contained in a proportion of 15 to 25% by mass.
 スチレン類(a-1)の含有量が10質量%未満の場合、塗膜の初期光沢および初期乾燥性が低下する。一方、スチレン類(a-1)の含有量が30質量%を超える場合、塗膜の耐衝撃性(強度)が乏しくなり、さらに耐候性が大きく低下する。スチレン類(a-1)は、好ましくは15~25質量%の割合で含まれる。 When the content of styrenes (a-1) is less than 10% by mass, the initial gloss and initial drying properties of the coating film are lowered. On the other hand, when the content of styrenes (a-1) exceeds 30% by mass, the impact resistance (strength) of the coating film becomes poor, and the weather resistance is greatly lowered. The styrenes (a-1) are preferably contained in a proportion of 15 to 25% by mass.
 シリコーン(b)の含有量が5質量%未満の場合、塗膜の耐候性が大きく低下する。一方、シリコーン(b)の含有量が15質量%を超える場合、共重合体の製造中にゲル化する傾向にある。たとえゲル化しなくても、このような共重合体を用いた塗膜は、塗膜の耐衝撃性(強度)および塗膜の肉持ち感が乏しくなる。シリコーン(b)は、好ましくは7~12質量%の割合で含まれる。 When the content of silicone (b) is less than 5% by mass, the weather resistance of the coating film is greatly reduced. On the other hand, when content of silicone (b) exceeds 15 mass%, it exists in the tendency to gelatinize during manufacture of a copolymer. Even if it does not gel, a coating film using such a copolymer is poor in impact resistance (strength) of the coating film and feeling of flesh of the coating film. Silicone (b) is preferably contained in a proportion of 7 to 12% by mass.
 本発明の共重合体において、スチレン類(a-1)、(メタ)アクリル酸エステル(a-2)および重合性不飽和モノマー(a-3)は、合計で好ましくは45~87質量%、より好ましくは63~78質量%の割合で含まれる。 In the copolymer of the present invention, the styrenes (a-1), the (meth) acrylic acid ester (a-2) and the polymerizable unsaturated monomer (a-3) are preferably 45 to 87% by mass in total, More preferably, it is contained in a proportion of 63 to 78% by mass.
 本発明の共重合体は、好ましくは5~50の固形ヨウ素価を有する。固形ヨウ素価がこのような範囲の場合、得られる塗膜は、耐候性に加えて耐水性および耐アルカリ性も良好となり、強度や肉持ち感も良好となる。さらに、共重合体の製造中にゲル化することも少なく、弱溶剤への溶解性も低下しにくくなる。本発明の共重合体は、より好ましくは18~46、さらに好ましくは20~40の固形ヨウ素価を有する。固形ヨウ素価は、JIS K0070(化学製品の酸価、けん化価、エステル価、よう素価、水酸基価および不けん化物の試験方法)に準拠して測定することができる。 The copolymer of the present invention preferably has a solid iodine value of 5 to 50. When the solid iodine value is within such a range, the obtained coating film has good water resistance and alkali resistance in addition to weather resistance, and good strength and fleshiness. Furthermore, gelation is less likely during production of the copolymer, and the solubility in weak solvents is less likely to decrease. The copolymer of the present invention has a solid iodine value of more preferably 18 to 46, still more preferably 20 to 40. The solid iodine value can be measured in accordance with JIS K0070 (Test method for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponified product of chemical products).
 さらに、本発明の共重合体の重量平均分子量は特に限定されない。本発明の共重合体は、好ましくは10,000~150,000の重量平均分子量を有する。重量平均分子量がこのような範囲の場合、得られる塗膜は、耐候性に加えて耐水性および耐アルカリ性も良好となり、より初期光沢も得られるようになる。さらに、塗料の粘度が高くなりすぎず、塗装する際の作業性もより良好になる。本発明の共重合体は、より好ましくは30,000~100,000、さらに好ましくは40,000~80,000の重量平均分子量を有する。重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)により測定される。 Furthermore, the weight average molecular weight of the copolymer of the present invention is not particularly limited. The copolymer of the present invention preferably has a weight average molecular weight of 10,000 to 150,000. When the weight average molecular weight is in such a range, the resulting coating film has good water resistance and alkali resistance in addition to weather resistance, and more initial gloss can be obtained. Furthermore, the viscosity of the paint does not become too high, and the workability during coating becomes better. The copolymer of the present invention has a weight average molecular weight of more preferably 30,000 to 100,000, still more preferably 40,000 to 80,000. The weight average molecular weight is measured by, for example, gel permeation chromatography (GPC).
(酸化硬化型アルキッド変性シリコーンアクリル共重合体の製造方法)
 本発明の共重合体は、例えば、上述の酸化硬化型アクリル共重合体(a)とシリコーン(b)とを反応させて得られる。すなわち、酸化硬化型アクリル共重合体(a)に存在する官能基(水酸基、カルボキシル基、グリシジル基、およびイソシアネート基からなる群より選択される少なくとも1種)と、シリコーン(b)に存在する水酸基またはアルコキシ基とが、脱水または脱アルコール縮合によって結合し、本発明の酸化硬化型アルキッド変性シリコーンアクリル共重合体が得られる。
(Method for producing oxidation-curing alkyd-modified silicone acrylic copolymer)
The copolymer of the present invention can be obtained, for example, by reacting the above-mentioned oxidatively curable acrylic copolymer (a) with silicone (b). That is, a functional group (at least one selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group) present in the oxidation-curable acrylic copolymer (a) and a hydroxyl group present in the silicone (b) Or an alkoxy group couple | bonds by dehydration or dealcohol condensation, and the oxidation hardening type alkyd modified silicone acrylic copolymer of this invention is obtained.
 酸化硬化型アクリル共重合体(a)とシリコーン(b)との脱水または脱アルコール縮合反応は、例えば、酸化硬化型アクリル共重合体(a)とシリコーン(b)とを混合して130~180℃に加熱し、生成する水またはアルコールを除去しながら2~8時間行われる。さらに、必要に応じて、公知の触媒、還流溶剤の存在下で反応を行ってもよい。酸化硬化型アクリル共重合体(a)とシリコーン(b)との脱水または脱アルコール縮合反応させることによって、塗膜の耐候性を向上させることができる。一方、酸化硬化型アクリル共重合体(a)とシリコーン(b)とを反応させずに単に混合する(コールドブレンド)だけでは、塗膜の耐候性が不十分となる。 The dehydration or dealcoholization condensation reaction between the oxidation curable acrylic copolymer (a) and the silicone (b) is performed by, for example, mixing the oxidation curable acrylic copolymer (a) and the silicone (b) to 130 to 180. The reaction is carried out for 2 to 8 hours while heating to 0 ° C. and removing water or alcohol produced. Furthermore, you may react in presence of a well-known catalyst and a reflux solvent as needed. The weather resistance of the coating film can be improved by subjecting the oxidation-curable acrylic copolymer (a) and the silicone (b) to dehydration or dealcoholization condensation reaction. On the other hand, the weather resistance of the coating film becomes insufficient by simply mixing (cold blend) without reacting the oxidation-curable acrylic copolymer (a) and the silicone (b).
 アルキッド樹脂(c)、酸化硬化型アクリル共重合体(a)、または本発明の共重合体を製造するそれぞれの工程において、必要に応じて、有機溶剤を使用することができる。使用可能な有機溶剤としては、例えばミネラルスピリット(別名:ミネラルターペン、ホワイトスピリット)、イソパラフィン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、シクロヘプタン、トルエン、キシレン、酢酸エチル、酢酸ブチル、メタノール、エタノール、ブタノール、プロパノール、メチルエチルケトン、メチルイソブチルケトンなどが挙げられる。これらの溶剤は、単独で用いてもよく、2種以上を併用してもよい。 In each step of producing the alkyd resin (c), the oxidation-curing acrylic copolymer (a), or the copolymer of the present invention, an organic solvent can be used as necessary. Usable organic solvents include, for example, mineral spirit (also known as mineral terpene, white spirit), isoparaffin, hexane, heptane, octane, nonane, decane, cyclohexane, cycloheptane, toluene, xylene, ethyl acetate, butyl acetate, methanol, Examples include ethanol, butanol, propanol, methyl ethyl ketone, and methyl isobutyl ketone. These solvents may be used alone or in combination of two or more.
 なお、環境や塗装作業者の健康などを考えれば、弱溶剤を使用することが好ましい。弱溶剤とは、高沸点芳香族炭化水素系溶剤を含んでいてもよい脂肪族炭化水素系溶剤であり、ターペンやミネラルスピリットなどに代表されるような高引火点、高沸点、低有害性であるものをいう。混合溶剤としては、例えば、ミネラルスピリット、ホワイトスピリット、ミネラルターペン、イソパラフィン、ソルベント灯油、芳香族ナフサ、VM&Pナフサ、ソルベントナフサなどが挙げられる。その他、単成分溶剤としては、例えば、n-ブタン、n-ヘキサン、n-ヘプタン、n-オクタン、イソノナン、n-デカン、n-ドデカン、シクロペンタン、シクロヘキサン、シクロブタンなどの脂肪族炭化水素類などが挙げられる。 In consideration of the environment and the health of the painter, it is preferable to use a weak solvent. A weak solvent is an aliphatic hydrocarbon solvent that may contain a high-boiling aromatic hydrocarbon solvent, and has a high flash point, a high boiling point, and a low hazard, such as terpenes and mineral spirits. Say something. Examples of the mixed solvent include mineral spirit, white spirit, mineral terpene, isoparaffin, solvent kerosene, aromatic naphtha, VM & P naphtha, and solvent naphtha. Other single component solvents include, for example, aliphatic hydrocarbons such as n-butane, n-hexane, n-heptane, n-octane, isononane, n-decane, n-dodecane, cyclopentane, cyclohexane, cyclobutane, etc. Is mentioned.
 このようにして得られた本発明の共重合体は、アルキッド樹脂(c)、スチレン類(a-1)およびシリコーン(b)をそれぞれ所定の割合で含有するので、これを塗膜形成成分として用いた場合に、塗膜の初期光沢が高く、耐候性、初期乾燥性および耐衝撃性(強度)を満足する塗膜が得られる。したがって、本発明の共重合体は、各種塗料組成物(例えば、建築用(屋内塗装および屋外塗装)、自動車用、焼き付け用など)やインキ組成物における塗膜形成成分、バインダーなどとして好適に使用される。上記の塗料組成物は、用途に応じて、本発明の共重合体を、溶剤、顔料、ドライヤー、さらに必要に応じて他の添加剤(レベリング剤、タレ防止剤など)と混合して調製される。 The copolymer of the present invention thus obtained contains alkyd resin (c), styrenes (a-1) and silicone (b) in a predetermined ratio, and this is used as a film-forming component. When used, a coating film having high initial gloss and satisfactory weather resistance, initial drying property and impact resistance (strength) can be obtained. Therefore, the copolymer of the present invention is suitably used as various coating compositions (for example, for building (indoor and outdoor coating), for automobiles, for baking, etc.) and as coating film forming components and binders in ink compositions. Is done. The above-mentioned coating composition is prepared by mixing the copolymer of the present invention with a solvent, a pigment, a dryer, and, if necessary, other additives (leveling agent, sagging inhibitor, etc.) depending on the application. The
 溶剤は、アルキッド樹脂(c)、酸化硬化型アクリル共重合体(a)、または本発明の共重合体を製造するそれぞれの工程において、必要に応じて使用されるものと同様のものが使用できる。顔料としては、二酸化チタン、カーボンブラック、酸化カルシウム、硫酸バリウム、シリカ、クレー、タルク、ケイ砂などの無機顔料や、フタロシアニンブルーなどの有機顔料が挙げられる。ドライヤーとしては、ナフテン酸またはオクチル酸のコバルト塩、マンガン塩、鉛塩、ジルコニウム塩、カルシウム塩などが挙げられる。 As the solvent, the same alkyd resin (c), oxidatively curable acrylic copolymer (a), or those similar to those used in the respective steps for producing the copolymer of the present invention can be used. . Examples of the pigment include inorganic pigments such as titanium dioxide, carbon black, calcium oxide, barium sulfate, silica, clay, talc, and silica sand, and organic pigments such as phthalocyanine blue. Examples of the dryer include cobalt salt, manganese salt, lead salt, zirconium salt, calcium salt of naphthenic acid or octylic acid.
 塗料組成物中に、本発明の共重合体は、10~90質量%、好ましくは40~70質量%程度含有されるのがよい。得られた塗料組成物は、常温硬化性の塗料組成物、焼き付け型塗料組成物などとして使用可能である。 The copolymer of the present invention is contained in the coating composition in an amount of about 10 to 90% by mass, preferably about 40 to 70% by mass. The obtained coating composition can be used as a room temperature curable coating composition, a baking type coating composition, and the like.
 以下、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to these examples.
(合成例:アルキッド樹脂の合成)
 反応容器に下記の原料を仕込み、240℃まで昇温し、水分離器で反応系内の水分を除去しながら酸価が5以下となるまで反応させた。酸価が5以下となった時点で、減圧蒸留によってキシレンを除去した。冷却後、得られた反応物をミネラルスピリット350質量部で希釈し、油長50%、酸価2.5、粘度(ガードナー気泡粘度計/25℃)Z、色数(ガードナー)6、不揮発分60質量%のアルキッド樹脂を得た。
 無水フタル酸    :140質量部
 脱水ひまし油脂肪酸 :260質量部
 グリセリン     :50質量部
 ペンタエリスリトール:70質量部
 還流溶剤(キシレン):15.6質量部
(Synthesis example: Synthesis of alkyd resin)
The following raw materials were charged in a reaction vessel, heated to 240 ° C., and reacted until the acid value became 5 or less while removing water in the reaction system with a water separator. When the acid value became 5 or less, xylene was removed by vacuum distillation. After cooling, the reaction product obtained was diluted with 350 parts by mass of mineral spirit, oil length 50%, acid value 2.5, viscosity (Gardner bubble viscometer / 25 ° C.) Z, color number (Gardner) 6, non-volatile content 60 mass% alkyd resin was obtained.
Phthalic anhydride: 140 parts by weight Dehydrated castor oil fatty acid: 260 parts by weight Glycerin: 50 parts by weight Pentaerythritol: 70 parts by weight Refluxing solvent (xylene): 15.6 parts by weight
(実施例1)
<酸化硬化型アルキッド変性シリコーンアクリル樹脂(共重合体)の合成>
 上記合成例で得られたアルキッド樹脂(不揮発分60質量%)17.53質量部およびミネラルスピリット31.78質量部を反応容器に仕込み、窒素ガスを通気しながら撹拌して120℃まで昇温した。次いで、120℃を保持しながら、下記に示す混合物を2時間かけて反応容器に滴下した。なお、括弧内の割合は、モノマーの合計量を100質量%とした場合の各モノマーの割合を示す。
(混合物)
 メタクリル酸i-ブチル:21.24質量部(50.0質量%)
 メタクリル酸t-ブチル:2.12質量部(5.0質量%)
 アクリル酸n-ブチル:7.95質量部(18.7質量%)
 スチレン:10.70質量部(25.2質量%)
 メタクリル酸2-ヒドロキシエチル:0.43質量部(1.0質量%)
 メタクリル酸:0.04質量部(0.1質量%)
 t-ヘキシルパーオキシイソプロピルモノカーボネート:0.46質量部
Example 1
<Synthesis of oxidation-curable alkyd-modified silicone acrylic resin (copolymer)>
17.53 parts by mass of the alkyd resin (nonvolatile content: 60% by mass) obtained in the above synthesis example and 31.78 parts by mass of mineral spirit were charged into a reaction vessel, and the temperature was raised to 120 ° C. while stirring with aeration of nitrogen gas. . Next, the mixture shown below was dropped into the reaction vessel over 2 hours while maintaining 120 ° C. In addition, the ratio in a parenthesis shows the ratio of each monomer when the total amount of monomers is 100 mass%.
(blend)
I-Butyl methacrylate: 21.24 parts by mass (50.0% by mass)
T-butyl methacrylate: 2.12 parts by mass (5.0% by mass)
N-butyl acrylate: 7.95 parts by mass (18.7% by mass)
Styrene: 10.70 parts by mass (25.2% by mass)
2-hydroxyethyl methacrylate: 0.43 parts by mass (1.0% by mass)
Methacrylic acid: 0.04 parts by mass (0.1% by mass)
t-Hexylperoxyisopropyl monocarbonate: 0.46 parts by mass
 滴下終了後、120℃で4時間熟成した後、反応容器に水分離器を取り付けた。3.96質量部のシリコーン樹脂Z-6018(不揮発分100質量%の固形樹脂、数平均分子量が2,000でありケイ素原子に直接結合するフェニル基とプロピル基を有する、東レ・ダウコーニング(株)製)を反応容器に加えて160℃まで昇温し、水分離器で反応系内の水を除去しながら4時間反応させた。反応後、80℃まで冷却して3.79質量部のミネラルスピリットを反応容器に加え、褐色透明で粘稠な酸化硬化型アルキッド変性シリコーンアクリル共重合体(樹脂)(不揮発分55質量%)を得た。 After completion of dropping, the mixture was aged at 120 ° C. for 4 hours, and then a water separator was attached to the reaction vessel. 3.96 parts by mass of silicone resin Z-6018 (solid resin having a nonvolatile content of 100% by mass, a number average molecular weight of 2,000 and having a phenyl group and a propyl group directly bonded to a silicon atom, Toray Dow Corning Co., Ltd. )) Was added to the reaction vessel, the temperature was raised to 160 ° C., and the reaction was carried out for 4 hours while removing water in the reaction system with a water separator. After the reaction, the reaction mixture is cooled to 80 ° C. and 3.79 parts by mass of mineral spirit is added to the reaction vessel, and a brown transparent and viscous oxidative curable alkyd-modified silicone acrylic copolymer (resin) (nonvolatile content 55% by mass) is added. Obtained.
 得られた樹脂の重量平均分子量を、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した。樹脂をテトラヒドロフランに溶解して(濃度1.0g/L)、示差屈折率検出器(RID)を備えるGPCによって測定し、樹脂の分子量分布を得た。その後、得られたクロマトグラム(チャート)から、標準ポリスチレンを検量線として、樹脂の重量平均分子量(Mw)を算出した。得られた樹脂の重量平均分子量は44,000であった。測定装置および測定条件は下記の通りである。
 データ処理装置:HLC-8220GPC(東ソー(株)製)
 示差屈折率検出器:HLC-8220GPCに内蔵されたRI検出器
 カラム:TSKgel SuperHZM-H(東ソー(株)製)2本
 移動相:テトラヒドロフラン
 カラム流量:0.35mL/分
 試料濃度:1.0g/L
 注入量:10μL
 測定温度:40℃
 分子量マーカー:標準ポリスチレン(POLYMER LABORATORIES社製標準物質)(POLYSTYRENE-MEDIUM MOLECULAR WEIGHT CALIBRATION KITを使用)
The weight average molecular weight of the obtained resin was measured by gel permeation chromatography (GPC). The resin was dissolved in tetrahydrofuran (concentration: 1.0 g / L) and measured by GPC equipped with a differential refractive index detector (RID) to obtain a molecular weight distribution of the resin. Thereafter, the weight average molecular weight (Mw) of the resin was calculated from the obtained chromatogram (chart) using standard polystyrene as a calibration curve. The weight average molecular weight of the obtained resin was 44,000. Measuring devices and measuring conditions are as follows.
Data processor: HLC-8220GPC (manufactured by Tosoh Corporation)
Differential refractive index detector: RI detector built in HLC-8220GPC Column: 2 TSKgel SuperHZM-H (manufactured by Tosoh Corporation) Mobile phase: Tetrahydrofuran Column flow rate: 0.35 mL / min Sample concentration: 1.0 g / L
Injection volume: 10 μL
Measurement temperature: 40 ° C
Molecular weight marker: Standard polystyrene (standard material manufactured by POLYMER LABORATORIES) (using POLYSYRENE-MEDIAUM WEIGHT CALIBRATION KIT)
 得られた樹脂の固形ヨウ素価を、JIS K0070(化学製品の酸価、けん化価、エステル価、よう素価、水酸基価および不けん化物の試験方法)に準拠して測定した。 The solid iodine value of the obtained resin was measured in accordance with JIS K0070 (Testing method for acid value, saponification value, ester value, iodine value, hydroxyl value and unsaponified product of chemical products).
<塗料組成物の調製>
 得られた樹脂(不揮発分55質量%)を57.0質量部、溶剤としてミネラルスピリットを23.5質量部、顔料として酸化チタンJR-603(テイカ(株)製)を14.0質量部、オクチル酸コバルトとオクチル酸ジルコニウムとからなるドライヤーを3.5質量部、ダレ防止剤を添加剤として2.0質量部加え、3本ロールミルにより混練し、塗料組成物(常温硬化性塗料組成物)を調製した。
<Preparation of coating composition>
57.0 parts by mass of the obtained resin (nonvolatile content 55% by mass), 23.5 parts by mass of mineral spirit as a solvent, and 14.0 parts by mass of titanium oxide JR-603 (manufactured by Teika) as a pigment, 3.5 parts by mass of a dryer composed of cobalt octylate and zirconium octylate, 2.0 parts by mass of an anti-sagging agent as an additive, kneaded by a three roll mill, coating composition (room temperature curable coating composition) Was prepared.
(実施例2~18および比較例1~8)
 表1に記載の成分を表1に記載の割合で用いた以外は、実施例1と同様の手順で酸化硬化型アルキッド変性シリコーンアクリル共重合体を得た。得られた各樹脂を用いた以外は、実施例1と同様にして塗料組成物を調製した。なお、表1に記載の略号は下記の化合物を示す。さらに、シリコーンの「フェニルプロピル系」および「フェニルメチル系」の意味は上述のとおりである。
 i-BMA:メタクリル酸i-ブチル
 t-BMA:メタクリル酸t-ブチル
 n-BA:アクリル酸n-ブチル
 St:スチレン
 2-HEMA:メタクリル酸2-ヒドロキシエチル
 MA:メタクリル酸
(Examples 2 to 18 and Comparative Examples 1 to 8)
An oxidatively curable alkyd-modified silicone acrylic copolymer was obtained in the same procedure as in Example 1 except that the components shown in Table 1 were used in the proportions shown in Table 1. A coating composition was prepared in the same manner as in Example 1 except that each of the obtained resins was used. In addition, the symbol shown in Table 1 shows the following compound. Furthermore, the meanings of “phenylpropyl” and “phenylmethyl” of silicone are as described above.
i-BMA: i-butyl methacrylate t-BMA: t-butyl methacrylate n-BA: n-butyl acrylate St: styrene 2-HEMA: 2-hydroxyethyl methacrylate MA: methacrylic acid
(評価)
 実施例1~18および比較例1~8で得られた塗料組成物を用いて、(1)初期光沢、(2)初期乾燥性、(3)促進耐候性、および(4)耐衝撃性を評価した。結果を表2に示す。これら(1)~(4)の物性のうち、1つでも不合格(C評価)であれば、塗料組成物としての実用性に欠けると判断した。
(Evaluation)
Using the coating compositions obtained in Examples 1 to 18 and Comparative Examples 1 to 8, (1) initial gloss, (2) initial drying, (3) accelerated weather resistance, and (4) impact resistance evaluated. The results are shown in Table 2. If any one of the physical properties (1) to (4) failed (C evaluation), it was judged that the practicality as a coating composition was lacking.
(1)初期光沢
 得られた塗料組成物(常温硬化性塗料組成物)を、厚さ3mmのガラス板(150mm×70mm)上に、フィルムアプリケーターAP250(太佑機材(株)製)を用いて塗装した。塗装されたガラス板を、23℃、50%RHの室内で1週間乾燥して、20°鏡面反射率(20°G)を測定し、その測定値をJIS Z8741に従って鏡面光沢度に変換した。下記の基準で評価し、B評価以上(鏡面反射率が80以上)を合格とした。
 A+:鏡面光沢度が90以上の場合
 A :鏡面光沢度が85以上90未満の場合
 B :鏡面光沢度が80以上85未満の場合
 C :鏡面光沢度が80未満の場合
(1) Initial gloss The obtained coating composition (room temperature curable coating composition) is coated on a 3 mm thick glass plate (150 mm × 70 mm) using a film applicator AP250 (manufactured by Dazai Equipment Co., Ltd.). did. The coated glass plate was dried in a room at 23 ° C. and 50% RH for 1 week, measured for 20 ° specular reflectance (20 ° G), and the measured value was converted to specular gloss according to JIS Z8741. The evaluation was based on the following criteria, and a B rating or higher (mirror reflectivity of 80 or higher) was determined to be acceptable.
A: When the specular gloss is 90 or more A: When the specular gloss is 85 or more and less than 90 B: When the specular gloss is 80 or more and less than 85 C: When the specular gloss is less than 80
(2)初期乾燥性
 JIS K 5600-3-6(不粘着乾燥性試験)を一部変更した方法で試験を行った。得られた塗料組成物(常温硬化性塗料組成物)、分銅(500g、底面の直径40mm)、厚さ0.3mmのブリキ板(300mm×70mm)、塗装具(フィルムアプリケーターAP250)、および局方ガーゼ(薬局で普通に販売されているものを、50mm四方に切断して使用)を、23℃雰囲気下で24時間静置した。次いで、得られた塗料組成物(常温硬化性塗料組成物)を、ブリキ板上にフィルムアプリケーターAP250を用いて塗装した。塗装されたブリキ板を、23℃、50%RHの室内に2時間静置して塗膜表面にガーゼを置き、その上に分銅を載せた。1時間後に分銅を取り、ガーゼをめくったときの状態を下記の基準で評価し、B評価以上を合格とした。
 A+:ガーゼが抵抗なく剥がれ、塗膜表面に全く跡が残っていない場合
 A :塗膜表面に跡が残っているものの、ガーゼが抵抗なく剥がれた場合
 B :ガーゼを剥がした際に、抵抗があった場合
 C :ガーゼを剥がした際に、下地(ブリキ板)が見えた場合
(2) Initial drying property The test was performed by a method in which JIS K 5600-3-6 (non-adhesive drying property test) was partially changed. Obtained coating composition (room temperature curable coating composition), weight (500 g, bottom diameter 40 mm), tin plate of thickness 0.3 mm (300 mm × 70 mm), coating tool (film applicator AP250), and pharmacopoeia Gauze (what was normally sold at a pharmacy was cut into 50 mm squares and used) was allowed to stand in an atmosphere of 23 ° C. for 24 hours. Subsequently, the obtained coating composition (room temperature curable coating composition) was coated on a tin plate using a film applicator AP250. The painted tin plate was left in a room at 23 ° C. and 50% RH for 2 hours to place gauze on the surface of the coating film, and a weight was placed thereon. After 1 hour, the weight was taken and the state when the gauze was turned over was evaluated according to the following criteria, and the B evaluation or higher was regarded as acceptable.
A +: When gauze peels off without resistance, and no trace remains on the coating film surface A: When trace remains on the coating film surface, but gauze peels off without resistance B: When gauze is peeled off, resistance is When there is C: When the groundwork (tinplate) is visible when the gauze is peeled off
(3)促進耐候性
 得られた塗料組成物(常温硬化性塗料組成物)を、厚さ0.8mmのダル鋼板(150mm×70mm)上に、フィルムアプリケーターAP250を用いて塗装した。塗装されたダル鋼板を、23℃、50%RHの室内で1週間乾燥して、サンシャイン・ウェザー・メータ(スガ試験機(株)製)にて1500時間暴露したときの光沢保持率(20°GR)を求めて、下記の基準で評価した。B評価以上(光沢保持率が70%以上)を合格とした。なお、光沢保持率は下記の式で求められる。
光沢保持率(%)=(試験後の鏡面反射率/試験前の鏡面反射率)×100
 A+:光沢保持率が90%以上の場合
 A :光沢保持率が80%以上90%未満の場合
 B :光沢保持率が70%以上80%未満の場合
 C :光沢保持率が70%未満の場合
(3) Accelerated weather resistance The obtained coating composition (room temperature curable coating composition) was coated on a dull steel plate (150 mm × 70 mm) having a thickness of 0.8 mm using a film applicator AP250. Gloss retention (20 °) when painted dull steel plate is dried for one week in a room at 23 ° C and 50% RH and exposed for 1,500 hours with a sunshine weather meter (Suga Test Instruments Co., Ltd.) GR) was determined and evaluated according to the following criteria. A B rating or higher (gloss retention of 70% or higher) was considered acceptable. The gloss retention rate is obtained by the following formula.
Gloss retention (%) = (Specular reflectance after test / Specular reflectance before test) × 100
A: When gloss retention is 90% or more A: When gloss retention is 80% or more and less than 90% B: When gloss retention is 70% or more and less than 80% C: When gloss retention is less than 70%
(4)耐衝撃性
 JIS K 5600-5-3(耐おもり落下性試験)に準拠して、耐衝撃性の試験を行い、下記の基準で評価した。B評価以上を合格とした。
 A:1kg×15cmの衝撃で、塗膜が割れなかった場合
 B:1kg×10cmの衝撃では塗膜が割れなかったが、1kg×15cmの衝撃で塗膜が割れた場合
 C:1kg×10cmの衝撃で、塗膜が割れた場合
(4) Impact resistance In accordance with JIS K 5600-5-3 (weight drop resistance test), an impact resistance test was conducted and evaluated according to the following criteria. A B rating or higher was considered acceptable.
A: When the coating film was not broken by impact of 1 kg × 15 cm B: When the coating film was not broken by impact of 1 kg × 10 cm, but when the coating film was broken by impact of 1 kg × 15 cm C: 1 kg × 10 cm When the coating cracks due to impact
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~18では、得られた樹脂を塗膜形成成分として用いた場合、得られた塗膜は、高い初期光沢を有し、初期乾燥性、耐候性および耐衝撃性(強度)にも優れていることがわかる。 As shown in Table 2, in Examples 1 to 18, when the obtained resin was used as a coating film forming component, the obtained coating film had a high initial gloss, initial drying property, weather resistance and resistance. It turns out that it is excellent also in impact property (strength).
 一方、アルキッド樹脂(c)、スチレン類(a-1)またはシリコーン(b)の含有量が本発明の範囲外である比較例1~8では、初期光沢、初期乾燥性、耐候性、および耐衝撃性のいずれかに劣っている(すなわち、初期光沢がC評価(鏡面光沢度が80未満)、初期乾燥性がC評価、耐候性がC評価(光沢保持率が70%未満)、または耐衝撃性がC評価)ことがわかる。 On the other hand, in Comparative Examples 1 to 8 in which the content of the alkyd resin (c), styrenes (a-1) or silicone (b) is outside the scope of the present invention, the initial gloss, initial drying property, weather resistance, and resistance It is inferior to any of impact properties (that is, initial gloss is C rating (specular gloss is less than 80), initial drying property is C rating, weather resistance is C rating (gloss retention is less than 70%), or It can be seen that the impact property is C evaluation.
(比較例9)
<シリコーン変性アクリル共重合体の合成>
 反応容器にミネラルスピリット100質量部を仕込み、窒素ガスを通気しながら、115℃まで撹拌を行いながら昇温した。次いで、温度を115℃に保ちながら、下記に示す混合物を4時間かけて滴下した。
(混合物)
 メタクリル酸n-ブチル:15質量部
 メタクリル酸i-ブチル:20質量部
 スチレン:25質量部
 アクリル酸2-エチルヘキシル:20質量部
 メタクリル酸グリシジル:20質量部
 2,2’-アゾビスイソブチロニトリル:1質量部
(Comparative Example 9)
<Synthesis of silicone-modified acrylic copolymer>
The reaction vessel was charged with 100 parts by mass of mineral spirits and heated to 115 ° C. with stirring while aeration of nitrogen gas. Subsequently, the following mixture was added dropwise over 4 hours while maintaining the temperature at 115 ° C.
(blend)
N-butyl methacrylate: 15 parts by mass i-butyl methacrylate: 20 parts by mass Styrene: 25 parts by mass 2-ethylhexyl acrylate: 20 parts by mass Glycidyl methacrylate: 20 parts by mass 2,2′-azobisisobutyronitrile : 1 part by mass
 滴下終了後、115℃で2時間熟成した後、140℃に昇温してからアマニ油脂肪酸30質量部および反応触媒としてN,N-ジメチルアミノエタノール0.4質量部を加えた。160℃で5時間保持して脂肪酸の付加反応を行った。樹脂酸価をKOH滴定法で追跡し、樹脂酸価が1.0以下になった時点を終点とした。反応終了後、キシレン45質量部を加えて希釈して不揮発分47質量%の褐色透明で粘調な脂肪酸変性共重合体溶液を得た。次に100℃まで冷却し、反応容器に水分離器を取り付けた。反応容器に、Z-6018(東レ・ダウコーニング・シリコーン(株)製のシリコーン)15質量部、ミネラルスピリット14質量部、キシレン6質量部および反応触媒としてのテトラ-n-ブチルチタネート0.20質量部を加えた。165℃まで昇温し、還流系中で水分離器にて水を分離しながら5時間反応させて不揮発分47質量%の褐色透明で粘調なシリコーン変性アクリル共重合体を得た。 After completion of the dropwise addition, the mixture was aged at 115 ° C. for 2 hours, heated to 140 ° C., and 30 parts by mass of linseed oil fatty acid and 0.4 part by mass of N, N-dimethylaminoethanol as a reaction catalyst were added. The fatty acid addition reaction was carried out at 160 ° C. for 5 hours. The resin acid value was traced by the KOH titration method, and the time when the resin acid value became 1.0 or less was taken as the end point. After completion of the reaction, 45 parts by mass of xylene was added for dilution to obtain a brown transparent and viscous fatty acid-modified copolymer solution having a nonvolatile content of 47% by mass. Next, it cooled to 100 degreeC and attached the water separator to the reaction container. In a reaction vessel, 15 parts by mass of Z-6018 (silicone manufactured by Toray Dow Corning Silicone Co., Ltd.), 14 parts by mass of mineral spirit, 6 parts by mass of xylene, and 0.20 mass of tetra-n-butyl titanate as a reaction catalyst. Part was added. The temperature was raised to 165 ° C., and the reaction was allowed to proceed for 5 hours while separating water with a water separator in a reflux system to obtain a brown transparent and viscous silicone-modified acrylic copolymer having a nonvolatile content of 47% by mass.
 シリコーン変性アクリル共重合体の原料中(固形換算)のスチレンの割合は17.2質量%、シリコーンの割合は10.3質量%である。得られた樹脂の重量平均分子量および固形ヨウ素価を実施例1と同様の手順で測定した。重量平均分子量は40,000、固形ヨウ素価は28であった。得られた樹脂を用い、実施例1と同様にして、但し不揮発分が実施例1の場合と同じになるようにミネラルスピリットの量を調整して、塗料組成物を調製した。得られた塗料組成物を用いて、上述の(1)初期光沢、(2)初期乾燥性、(3)促進耐候性、および(4)耐衝撃性を評価した。結果を表3に示す。 The ratio of styrene in the raw material of the silicone-modified acrylic copolymer (in solid conversion) is 17.2% by mass, and the ratio of silicone is 10.3% by mass. The weight average molecular weight and solid iodine value of the obtained resin were measured in the same procedure as in Example 1. The weight average molecular weight was 40,000, and the solid iodine value was 28. Using the obtained resin, a coating composition was prepared in the same manner as in Example 1, except that the amount of mineral spirit was adjusted so that the nonvolatile content was the same as in Example 1. Using the obtained coating composition, the above-mentioned (1) initial gloss, (2) initial drying property, (3) accelerated weather resistance, and (4) impact resistance were evaluated. The results are shown in Table 3.
(比較例10)
<アルキッド樹脂の合成>
 反応容器に下記の原料を仕込み、240℃まで昇温し、水分離器で反応系内の水分を除去しながら酸価が8以下となるまで反応させた。酸価が8以下となった時点で、減圧蒸留によってキシレンを除去した。冷却後、得られた反応物をミネラルスピリット350質量部で希釈し、油長50%、酸価5.5、粘度(ガードナー気泡粘度計/25℃)Z、色数(ガードナー)6、不揮発分58質量%のアルキッド樹脂を得た。
 無水フタル酸    :140質量部
 脱水ひまし油脂肪酸 :260質量部
 グリセリン     :50質量部
 ペンタエリスリトール:70質量部
 還流溶剤(キシレン):15.6質量部
(Comparative Example 10)
<Synthesis of alkyd resin>
The following raw materials were charged into a reaction vessel, heated to 240 ° C., and reacted until the acid value became 8 or less while removing water in the reaction system with a water separator. When the acid value became 8 or less, xylene was removed by vacuum distillation. After cooling, the reaction product obtained was diluted with 350 parts by mass of mineral spirits, oil length 50%, acid value 5.5, viscosity (Gardner bubble viscometer / 25 ° C) Z, color number (Gardner) 6, non-volatile content 58 mass% alkyd resin was obtained.
Phthalic anhydride: 140 parts by weight Dehydrated castor oil fatty acid: 260 parts by weight Glycerin: 50 parts by weight Pentaerythritol: 70 parts by weight Refluxing solvent (xylene): 15.6 parts by weight
 比較例9において、アマニ油脂肪酸30質量部の代わりに、上記で得られたアルキッド樹脂30質量部を用いて反応させることを試みた。しかし、反応が進行しなかったため(樹脂酸価が低下せず)、反応を中止して、評価は行わなかった。 In Comparative Example 9, an attempt was made to cause the reaction using 30 parts by mass of the alkyd resin obtained above instead of 30 parts by mass of linseed oil fatty acid. However, since the reaction did not proceed (resin acid value did not decrease), the reaction was stopped and no evaluation was performed.
(比較例11)
 アルキッド樹脂に、スチレン類など(a-1)~(a-3)に示すモノマーをグラフト重合させていない樹脂を用いて塗料組成物の評価を行った。
<アクリル樹脂(共重合体)の合成>
 反応容器にミネラルスピリット42.41質量部を仕込み、窒素ガスを通気しながら、118℃まで撹拌しながら昇温した。次いで、温度を118℃に保ちながら、下記に示す混合物を3時間かけて滴下した。なお、括弧内の割合は、モノマーの合計量を100質量%とした場合の各モノマーの割合を示す。
(混合物)
 メタクリル酸i-ブチル:28.51質量部(50.0質量%)
 メタクリル酸t-ブチル:2.85質量部(5.0質量%)
 アクリル酸n-ブチル:10.67質量部(18.7質量%)
 スチレン:14.36質量部(25.2質量%)
 メタクリル酸2-ヒドロキシエチル:0.57質量部(1.0質量%)
 メタクリル酸:0.05質量部(0.1質量%)
 t-ヘキシルパーオキシイソプロピルモノカーボネート:0.58質量部
(Comparative Example 11)
The coating composition was evaluated using a resin in which the monomers shown in (a-1) to (a-3) such as styrenes were not graft-polymerized as the alkyd resin.
<Synthesis of acrylic resin (copolymer)>
The reaction vessel was charged with 42.41 parts by mass of mineral spirits and heated to 118 ° C. with stirring while aeration of nitrogen gas. Subsequently, the following mixture was added dropwise over 3 hours while maintaining the temperature at 118 ° C. In addition, the ratio in a parenthesis shows the ratio of each monomer when the total amount of monomers is 100 mass%.
(blend)
I-Butyl methacrylate: 28.51 parts by mass (50.0% by mass)
T-butyl methacrylate: 2.85 parts by mass (5.0% by mass)
N-butyl acrylate: 10.67 parts by mass (18.7% by mass)
Styrene: 14.36 parts by mass (25.2% by mass)
2-hydroxyethyl methacrylate: 0.57 parts by mass (1.0% by mass)
Methacrylic acid: 0.05 parts by mass (0.1% by mass)
t-Hexylperoxyisopropyl monocarbonate: 0.58 parts by mass
 滴下終了後、120℃で4時間熟成した後80℃まで冷却して、不揮発分57質量%の褐色透明で粘調なアクリル共重合体を得た。 After completion of dropping, the mixture was aged at 120 ° C. for 4 hours and then cooled to 80 ° C. to obtain a brown transparent and viscous acrylic copolymer having a nonvolatile content of 57% by mass.
<アルキッド樹脂、共重合体およびシリコーン樹脂の反応>
 水分離器を取り付けた反応容器に、上記実施例1で使用したアルキッド樹脂(不揮発分60質量%)17.60質量部、上記アクリル共重合体(不揮発分57質量%)74.81質量部、実施例1で用いたシリコーン樹脂(Z-6018)3.98質量部、およびミネラルスピリット7.58質量部を仕込んだ。次いで、窒素ガスを通気しながら、120℃で4時間撹拌して、樹脂(不揮発分55質量%)を得た。得られた樹脂を構成するスチレンの割合は固形分換算で18.8質量%、アルキッド樹脂の割合は18.5質量%、およびシリコーンの割合は7.0質量%であった。得られた樹脂の重量平均分子量および固形ヨウ素価を実施例1と同様の手順で測定した。重量平均分子量は47,000、固形ヨウ素価は21であった。
<Reaction of alkyd resin, copolymer and silicone resin>
In a reaction vessel equipped with a water separator, 17.60 parts by mass of the alkyd resin (nonvolatile content 60% by mass) used in Example 1 above, 74.81 parts by mass of the acrylic copolymer (nonvolatile content 57% by mass), 3.98 parts by mass of silicone resin (Z-6018) used in Example 1 and 7.58 parts by mass of mineral spirit were charged. Next, the mixture was stirred at 120 ° C. for 4 hours while ventilating nitrogen gas to obtain a resin (nonvolatile content: 55% by mass). The proportion of styrene constituting the obtained resin was 18.8 mass% in terms of solid content, the proportion of alkyd resin was 18.5 mass%, and the proportion of silicone was 7.0 mass%. The weight average molecular weight and solid iodine value of the obtained resin were measured in the same procedure as in Example 1. The weight average molecular weight was 47,000, and the solid iodine value was 21.
 得られた樹脂を用い、実施例1と同様にして塗料組成物を調製した。得られた塗料組成物を用いて、上述の(1)初期光沢、(2)初期乾燥性、(3)促進耐候性、および(4)耐衝撃性を評価した。結果を表3に示す。 Using the obtained resin, a coating composition was prepared in the same manner as in Example 1. Using the obtained coating composition, the above-mentioned (1) initial gloss, (2) initial drying property, (3) accelerated weather resistance, and (4) impact resistance were evaluated. The results are shown in Table 3.
(比較例12)
 酸化硬化型アクリル共重合体(a)とシリコーン(b)とを反応させずに、単に混合(コールドブレンド)して得られる混合物を用いて塗料組成物の評価を行った。まず、反応容器に、上記実施例1で使用したアルキッド樹脂(不揮発分60質量%)17.53質量部およびミネラルスピリット31.78質量部を仕込んだ。次いで、窒素ガスを通気しながら撹拌して120℃まで昇温した。温度を120℃に保ちながら、下記に示す混合物を2時間かけて滴下した。なお、括弧内の割合は、モノマーの合計量を100質量%とした場合の各モノマーの割合を示す。
(混合物)
 メタクリル酸i-ブチル:21.24質量部(50.0質量%)
 メタクリル酸t-ブチル:2.12質量部(5.0質量%)
 アクリル酸n-ブチル:7.95質量部(18.7質量%)
 スチレン:10.70質量部(25.2質量%)
 メタクリル酸2-ヒドロキシエチル:0.43質量部(1.0質量%)
 メタクリル酸:0.04質量部(0.1質量%)
 t-ヘキシルパーオキシイソプロピルモノカーボネート:0.46質量部
(Comparative Example 12)
The coating composition was evaluated using a mixture obtained by simply mixing (cold blend) without reacting the oxidation-curable acrylic copolymer (a) and the silicone (b). First, the reaction vessel was charged with 17.53 parts by mass of alkyd resin (nonvolatile content 60% by mass) and 31.78 parts by mass of mineral spirit used in Example 1 above. Next, the mixture was stirred and heated up to 120 ° C. while bubbling nitrogen gas. While maintaining the temperature at 120 ° C., the following mixture was added dropwise over 2 hours. In addition, the ratio in a parenthesis shows the ratio of each monomer when the total amount of monomers is 100 mass%.
(blend)
I-Butyl methacrylate: 21.24 parts by mass (50.0% by mass)
T-butyl methacrylate: 2.12 parts by mass (5.0% by mass)
N-butyl acrylate: 7.95 parts by mass (18.7% by mass)
Styrene: 10.70 parts by mass (25.2% by mass)
2-hydroxyethyl methacrylate: 0.43 parts by mass (1.0% by mass)
Methacrylic acid: 0.04 parts by mass (0.1% by mass)
t-Hexylperoxyisopropyl monocarbonate: 0.46 parts by mass
 反応終了後、120℃で4時間熟成して酸化硬化型アクリル共重合体(アルキッド樹脂へのモノマーのグラフト重合物)を得た。次いで、反応容器に水分離器を取り付けて、80℃まで冷却した。実施例1で用いたシリコーン樹脂(Z-6018)を仕込み、80℃で2時間撹拌した。この間、反応系内に水は発生しなかった。3.79質量部のミネラルスピリットを反応容器に仕込み、褐色透明で粘調な酸化硬化型アクリル共重合体(アルキッド樹脂へのモノマーのグラフト重合物)とシリコーンとの混合物を得た。得られた混合物中におけるスチレンの割合は固形分換算で18.7質量%、アルキッド樹脂の割合は18.6質量%、およびシリコーンの割合は7.0質量%であった。得られた混合物の重量平均分子量および固形ヨウ素価を実施例1と同様の手順で測定した。重量平均分子量は40,000、固形ヨウ素価は22であった。 After completion of the reaction, the mixture was aged at 120 ° C. for 4 hours to obtain an oxidatively curable acrylic copolymer (a monomer graft polymer to an alkyd resin). Next, a water separator was attached to the reaction vessel and cooled to 80 ° C. The silicone resin (Z-6018) used in Example 1 was charged and stirred at 80 ° C. for 2 hours. During this time, no water was generated in the reaction system. 3.79 parts by mass of mineral spirit was charged into a reaction vessel to obtain a mixture of a brown transparent and viscous oxidative curable acrylic copolymer (a monomer graft polymer to an alkyd resin) and silicone. The proportion of styrene in the obtained mixture was 18.7 mass% in terms of solid content, the proportion of alkyd resin was 18.6 mass%, and the proportion of silicone was 7.0 mass%. The weight average molecular weight and solid iodine value of the obtained mixture were measured by the same procedure as in Example 1. The weight average molecular weight was 40,000, and the solid iodine value was 22.
 得られた混合物を用い、実施例1と同様にして塗料組成物を調製した。得られた塗料組成物を用いて、上述の(1)初期光沢、(2)初期乾燥性、(3)促進耐候性、および(4)耐衝撃性を評価した。結果を表3に示す。 Using the resulting mixture, a coating composition was prepared in the same manner as in Example 1. Using the obtained coating composition, the above-mentioned (1) initial gloss, (2) initial drying property, (3) accelerated weather resistance, and (4) impact resistance were evaluated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、アルキッド樹脂を含まない比較例9は、初期光沢に劣ることがわかる。比較例10は、比較例9の不飽和脂肪酸(アマニ油脂肪酸)の代わりにアルキッド樹脂を用いた例であるが、エポキシ基含有ビニル共重合体とアルキッド樹脂との反応が進行せず、樹脂は得られなかった。比較例11は、アルキッド樹脂に、スチレン類など(a-1)~(a-3)に示すモノマーをグラフト重合させていない樹脂を用いた例であるが、塗膜形成時の架橋反応が進みにくく、初期光沢、初期乾燥性、耐候性および耐衝撃性のいずれも劣ることがわかる。比較例12は、酸化硬化型アクリル共重合体とシリコーンとを反応させずに、単に混合(コールドブレンド)して得られる混合物を用いた例であるが、耐候性に劣ることがわかる。これは、シリコーンが酸化硬化型アクリル共重合体と反応しておらず、経時的にシリコーンがブリードアウトしてくるためと推察される。 As shown in Table 3, Comparative Example 9 containing no alkyd resin is inferior in initial gloss. Comparative Example 10 is an example in which an alkyd resin was used instead of the unsaturated fatty acid (linseed oil fatty acid) of Comparative Example 9, but the reaction between the epoxy group-containing vinyl copolymer and the alkyd resin did not proceed, and the resin was It was not obtained. Comparative Example 11 is an example in which a resin in which the monomers shown in (a-1) to (a-3) such as styrene are not graft-polymerized is used for the alkyd resin, but the crosslinking reaction during the coating film formation proceeds. It can be seen that the initial gloss, initial drying, weather resistance and impact resistance are all inferior. Comparative Example 12 is an example using a mixture obtained by simply mixing (cold blend) without reacting the oxidation-curable acrylic copolymer and silicone, but it is found that the weather resistance is poor. This is presumably because the silicone does not react with the oxidatively curable acrylic copolymer, and the silicone bleeds out over time.

Claims (7)

  1.  酸化重合性基を有するアルキッド樹脂(c)に下記の(a-1)、(a-2)および(a-3)に示すモノマーをグラフト重合させて得られる酸化硬化型アクリル共重合体(a)と水酸基およびアルコキシ基の少なくとも一方を有するシリコーン(b)とを反応させて得られる酸化硬化型アルキッド変性シリコーンアクリル共重合体であって、
     原料中に、アルキッド樹脂(c)、スチレン類(a-1)、(メタ)アクリル酸エステル(a-2)、重合性不飽和モノマー(a-3)、およびシリコーン(b)の合計量に対して、アルキッド樹脂(c)が8~40質量%、スチレン類(a-1)が10~30質量%、およびシリコーン(b)が5~15質量%の割合で含まれることを特徴とする、酸化硬化型アルキッド変性シリコーンアクリル共重合体。
      (a-1)スチレン類
      (a-2)(メタ)アクリル酸エステル
      (a-3)水酸基、カルボキシル基、グリシジル基、およびイソシアネート基からなる群より選択される少なくとも1種の官能基を有する重合性不飽和モノマー
    Oxidation-curable acrylic copolymer (a) obtained by graft polymerization of the following monomers (a-1), (a-2) and (a-3) to alkyd resin (c) having an oxidatively polymerizable group (a) ) And a silicone (b) having at least one of a hydroxyl group and an alkoxy group, and an oxidatively curable alkyd-modified silicone acrylic copolymer,
    In the raw material, the total amount of alkyd resin (c), styrenes (a-1), (meth) acrylic acid ester (a-2), polymerizable unsaturated monomer (a-3), and silicone (b) In contrast, the alkyd resin (c) is contained in an amount of 8 to 40% by mass, the styrenes (a-1) in an amount of 10 to 30% by mass, and the silicone (b) in an amount of 5 to 15% by mass. , Oxidation-curable alkyd-modified silicone acrylic copolymer.
    (A-1) Styrenes (a-2) (Meth) acrylic acid ester (a-3) Polymerization having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group Unsaturated monomers
  2.  前記スチレン類(a-1)、前記(メタ)アクリル酸エステル(a-2)、および前記重合性不飽和モノマー(a-3)が、スチレン類(a-1)、(メタ)アクリル酸エステル(a-2)、および重合性不飽和モノマー(a-3)の合計量に対して、それぞれ下記の割合で含まれる、請求項1に記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。
      (a-1)スチレン類:13~40質量%
      (a-2)(メタ)アクリル酸エステル:53~86質量%
      (a-3)重合性不飽和モノマー:1~7質量%
    The styrenes (a-1), the (meth) acrylic acid ester (a-2), and the polymerizable unsaturated monomer (a-3) are styrenes (a-1) and (meth) acrylic acid esters. The oxidatively curable alkyd-modified silicone acrylic copolymer according to claim 1, which is contained in the following proportions relative to the total amount of (a-2) and the polymerizable unsaturated monomer (a-3).
    (A-1) Styrenes: 13 to 40% by mass
    (A-2) (Meth) acrylic acid ester: 53 to 86% by mass
    (A-3) Polymerizable unsaturated monomer: 1 to 7% by mass
  3.  前記スチレン類(a-1)、前記(メタ)アクリル酸エステル(a-2)、および前記重合性不飽和モノマー(a-3)が、酸化硬化型アルキッド変性シリコーンアクリル共重合体中に、合計で45~87質量%の割合で含まれる、請求項1または2に記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。 The styrenes (a-1), the (meth) acrylic acid ester (a-2), and the polymerizable unsaturated monomer (a-3) are combined in an oxidatively curable alkyd-modified silicone acrylic copolymer. The oxidatively curable alkyd-modified silicone acrylic copolymer according to claim 1 or 2, which is contained in an amount of 45 to 87% by mass.
  4.  固形ヨウ素価が5~50である、請求項1~3のいずれかに記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。 The oxidatively curable alkyd-modified silicone acrylic copolymer according to any one of claims 1 to 3, having a solid iodine value of 5 to 50.
  5.  重量平均分子量が10,000~150,000である、請求項1~4のいずれかに記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。 The oxidatively curable alkyd-modified silicone acrylic copolymer according to any one of claims 1 to 4, having a weight average molecular weight of 10,000 to 150,000.
  6.  前記シリコーン(b)が、フェニル基をさらに有する、請求項1~5のいずれかに記載の酸化硬化型アルキッド変性シリコーンアクリル共重合体。 The oxidation-curable alkyd-modified silicone acrylic copolymer according to any one of claims 1 to 5, wherein the silicone (b) further has a phenyl group.
  7.  酸化重合性基を有するアルキッド樹脂(c)に、下記の(a-1)、(a-2)および(a-3)に示すモノマーをグラフト重合させて酸化硬化型アクリル共重合体(a)を得る工程と、
     得られた酸化硬化型アクリル共重合体(a)と、水酸基およびアルコキシ基の少なくとも一方を有するシリコーン(b)とを反応させる工程とを含み、
     アルキッド樹脂(c)、スチレン類(a-1)、(メタ)アクリル酸エステル(a-2)、重合性不飽和モノマー(a-3)、およびシリコーン(b)の合計量に対して、アルキッド樹脂(c)が8~40質量%、スチレン類(a-1)が10~30質量%、およびシリコーン(b)が5~15質量%の割合で用いられることを特徴とする、酸化硬化型アルキッド変性シリコーンアクリル共重合体の製造方法。
      (a-1)スチレン類
      (a-2)(メタ)アクリル酸エステル
      (a-3)水酸基、カルボキシル基、グリシジル基、およびイソシアネート基からなる群より選択される少なくとも1種の官能基を有する重合性不飽和モノマー。
    Oxidation-curable acrylic copolymer (a) obtained by graft polymerization of the following monomers (a-1), (a-2) and (a-3) to alkyd resin (c) having an oxidatively polymerizable group Obtaining
    A step of reacting the obtained oxidatively curable acrylic copolymer (a) with silicone (b) having at least one of a hydroxyl group and an alkoxy group,
    Alkyd relative to the total amount of alkyd resin (c), styrenes (a-1), (meth) acrylic acid ester (a-2), polymerizable unsaturated monomer (a-3), and silicone (b) Oxidation-curing type, characterized in that the resin (c) is used in a proportion of 8 to 40% by mass, the styrene (a-1) is used in a proportion of 10 to 30% by mass, and the silicone (b) is used in a proportion of 5 to 15% by mass. A method for producing an alkyd-modified silicone acrylic copolymer.
    (A-1) Styrenes (a-2) (Meth) acrylic acid ester (a-3) Polymerization having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, a glycidyl group, and an isocyanate group Unsaturated monomers.
PCT/JP2014/068138 2013-07-10 2014-07-08 Oxidative curing, alkyd-modified silicone acrylic copolymer WO2015005317A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201510695VA SG11201510695VA (en) 2013-07-10 2014-07-08 Oxidative curing alkyd-modified silicone acrylic copolymer
CN201480038356.2A CN105358607B (en) 2013-07-10 2014-07-08 The manufacturing method of the alkyd modified silicone acrylic copolymer of oxidative cure type
JP2015526340A JP5970613B2 (en) 2013-07-10 2014-07-08 Oxidation-curable alkyd-modified silicone acrylic copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013144479 2013-07-10
JP2013-144479 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015005317A1 true WO2015005317A1 (en) 2015-01-15

Family

ID=52279997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068138 WO2015005317A1 (en) 2013-07-10 2014-07-08 Oxidative curing, alkyd-modified silicone acrylic copolymer

Country Status (5)

Country Link
JP (1) JP5970613B2 (en)
CN (1) CN105358607B (en)
MY (1) MY180169A (en)
SG (1) SG11201510695VA (en)
WO (1) WO2015005317A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240000680A (en) * 2022-06-23 2024-01-03 코오롱글로텍주식회사 Biodegradable foam composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114504759B (en) * 2022-01-17 2022-11-18 华南理工大学 Long-acting tailing passivator capable of being cured at normal temperature and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555977A (en) * 1978-06-23 1980-01-17 Bayer Ag Adhesive agent for coating composition
JPH05279408A (en) * 1992-01-23 1993-10-26 Sherwin Williams Co Novel non-aqueous dispersion
JPH05287006A (en) * 1990-01-16 1993-11-02 Sherwin Williams Co Improved nonaqueous dispersion
JPH10158311A (en) * 1996-12-03 1998-06-16 Dainippon Ink & Chem Inc Non-aqueous dispersion type resin and resin composition for coating material using the same
JP2001106975A (en) * 1999-08-04 2001-04-17 Dainippon Ink & Chem Inc Coating composition
JP2001122968A (en) * 1999-10-25 2001-05-08 Kansai Paint Co Ltd Cold curing coating composition
JP2004091678A (en) * 2002-08-30 2004-03-25 Harima Chem Inc Oxidation curing type silicone-modified vinyl copolymer, one-pack type coating using the same and method for producing oxidation curing type silicone-modified vinyl copolymer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102746771A (en) * 2012-05-29 2012-10-24 兰州理工大学 Alkyd acrylic graft copolymer paint and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555977A (en) * 1978-06-23 1980-01-17 Bayer Ag Adhesive agent for coating composition
JPH05287006A (en) * 1990-01-16 1993-11-02 Sherwin Williams Co Improved nonaqueous dispersion
JPH05279408A (en) * 1992-01-23 1993-10-26 Sherwin Williams Co Novel non-aqueous dispersion
JPH10158311A (en) * 1996-12-03 1998-06-16 Dainippon Ink & Chem Inc Non-aqueous dispersion type resin and resin composition for coating material using the same
JP2001106975A (en) * 1999-08-04 2001-04-17 Dainippon Ink & Chem Inc Coating composition
JP2001122968A (en) * 1999-10-25 2001-05-08 Kansai Paint Co Ltd Cold curing coating composition
JP2004091678A (en) * 2002-08-30 2004-03-25 Harima Chem Inc Oxidation curing type silicone-modified vinyl copolymer, one-pack type coating using the same and method for producing oxidation curing type silicone-modified vinyl copolymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240000680A (en) * 2022-06-23 2024-01-03 코오롱글로텍주식회사 Biodegradable foam composition
KR102629564B1 (en) * 2022-06-23 2024-01-25 코오롱글로텍주식회사 Biodegradable foam composition

Also Published As

Publication number Publication date
JP5970613B2 (en) 2016-08-17
SG11201510695VA (en) 2016-01-28
MY180169A (en) 2020-11-24
CN105358607A (en) 2016-02-24
JPWO2015005317A1 (en) 2017-03-02
CN105358607B (en) 2019-01-11

Similar Documents

Publication Publication Date Title
CA2567723C (en) Coating composition comprising a vinyl modified alkyd resin
JP4836542B2 (en) Paint composition
US10494541B2 (en) Aqueous dispersions
CN103102446B (en) A kind of car refinishing paint Hydroxylated acrylic resin and preparation method thereof
JP2011122155A (en) Water-soluble acrylic modified epoxy ester resin composition and method for producing the same
JPS6210269B2 (en)
JPS6210545B2 (en)
JP5970613B2 (en) Oxidation-curable alkyd-modified silicone acrylic copolymer
KR101860988B1 (en) Water soluble anti-corrosive paint composition using acrylic modified epoxy ester resin
JP7265483B2 (en) Modified polyolefin resin composition and method for producing the same
JP2013040331A (en) Coating material and method for forming coating film
KR101907532B1 (en) Unsaturated mixture resin part for putty and method for forming putty layer
AU2012210498B2 (en) Graft copolymer latices
JP4058734B2 (en) Oxidation-curing silicone-modified vinyl copolymer, one-component paint using the same, and method for producing oxidation-curing silicone-modified vinyl copolymer
JP3895990B2 (en) Room temperature curable coating composition
KR0167706B1 (en) Paint compositions
KR20120089469A (en) Randomly branched copolymers, preparation thereof and use thereof as levelling agents in coating substances
JP2013249397A (en) Resin for coating material
KR102479765B1 (en) Acrylic-moified alkyd resin and coating composition comprising the same
JP4507535B2 (en) Paint composition
JP2005120197A (en) Weak solvent-based nonaqueous dispersion type curable resin composition
KR101219174B1 (en) Urethane modified unsaturated acrylic resin, method for preparing the same and coating composition comprising the same
JP2001122968A (en) Cold curing coating composition
JP2000212233A (en) Non-water dispersed resin composition and coating material
GB2363609A (en) RTV coating composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038356.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823674

Country of ref document: EP

Kind code of ref document: A1