WO2015005177A1 - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell Download PDF

Info

Publication number
WO2015005177A1
WO2015005177A1 PCT/JP2014/067524 JP2014067524W WO2015005177A1 WO 2015005177 A1 WO2015005177 A1 WO 2015005177A1 JP 2014067524 W JP2014067524 W JP 2014067524W WO 2015005177 A1 WO2015005177 A1 WO 2015005177A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas flow
flow passage
cell
anode
Prior art date
Application number
PCT/JP2014/067524
Other languages
French (fr)
Japanese (ja)
Inventor
和英 高田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015526277A priority Critical patent/JP5954495B2/en
Publication of WO2015005177A1 publication Critical patent/WO2015005177A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/122Corrugated, curved or wave-shaped MEA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention generally relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell having gas flow passage walls (ribs) for forming a flow passage for anode gas and cathode gas.
  • ribs gas flow passage walls
  • a flat solid electrolyte fuel cell (also referred to as a solid oxide fuel cell (SOFC)) includes a plurality of flat plate-shaped power generation elements each composed of an anode (negative electrode), a solid electrolyte, and a cathode (positive electrode). And a separator (also referred to as an interconnector) disposed between a plurality of cells.
  • the separator is a fuel gas as an anode gas specifically supplied to the anode in order to electrically connect the plurality of cells in series with each other and to separate the gas supplied to each of the plurality of cells.
  • hydrogen hydrogen
  • oxidant gas for example, air
  • Patent Document 1 discloses a structure of a solid oxide fuel cell.
  • the solid electrolyte fuel cell disclosed in Patent Document 1 is disposed between a plurality of cells (power generation element units) each including a fuel electrode layer (anode layer), a solid electrolyte layer, and an air electrode layer (cathode layer). And a gas passage structure having an air passage for supplying air to each cell, and a fuel gas passage for supplying fuel gas to each cell.
  • the cell separation part, the gas passage structure part, and the cell are integrally formed.
  • the main body of the gas passage structure that functions as a manifold is made of an electrical insulator that forms an inter-cell separator that functions as a separator, and is formed continuously with the electrical insulator that forms the inter-cell separator. The portions serving the two functions of the separator and the manifold are formed continuously.
  • fuel gas is supplied to the fuel electrode layer between the inter-cell separator and the fuel electrode layer (anode layer).
  • a plurality of cathode gas flow passages for supplying air (cathode gas) to the air electrode layer are formed between the inter-cell separator and the air electrode layer (cathode layer).
  • a plurality of anode gas flow passage walls (ribs) are formed so as to separate each of the plurality of anode gas flow passages from each other, and the plurality of cathode gas flow passages are spaced apart from each other.
  • a plurality of cathode gas flow passage walls (ribs) are formed. Conductive portions are formed on the ribs in order to extract electric power generated in the cells.
  • the solid electrolyte fuel cell includes a cell in which a fuel electrode layer, a solid electrolyte layer, and an air electrode layer are stacked, and an inter-cell separation unit. Then, a solid oxide fuel cell is manufactured by integrally firing the molded body in which the green sheets constituting each layer are laminated. When this molded body is fired, the temperature of each layer increases, whereby each layer thermally expands, and then contracts greatly by sintering. When the firing is finished, the layers are further contracted by cooling the obtained fired body as the temperature is lowered to room temperature. In this series of shrinkage behaviors, the shrinkage rates of the ceramics in each layer are different, and thus the cell layers are warped or undulated after being cooled to room temperature.
  • an object of the present invention is to provide a solid oxide fuel cell capable of preventing poor connection between the power generation element portion and the gas flow passage wall portion.
  • the solid oxide fuel cell according to the present invention includes a cell, an anode gas flow passage layer, a cathode gas flow passage layer, and a support layer.
  • the cell is composed of a laminate of an anode layer, a solid electrolyte layer, and a cathode layer.
  • the anode gas flow path layer is stacked on the anode layer outside the cell, and a plurality of anode gas flow paths that supply the anode gas to the anode layer are separated from each other.
  • An anode gas flow passage wall The cathode gas flow passage layer is stacked on the cathode layer outside the cell, and a plurality of cathode gas flow passages that supply the cathode gas to the cathode layer are spaced apart from each other. It has a cathode gas flow passage wall.
  • the support layer is disposed between at least one of the anode gas flow path layer and the anode layer and between the cathode gas flow path layer and the cathode layer, and is formed with a plurality of gaps formed therebetween. It has a support wall.
  • the support layers are laminated so that the plurality of support wall portions are aligned with the positions of the plurality of cathode gas flow passages.
  • the support layers are laminated so that the plurality of support wall portions are aligned with the positions of the plurality of anode gas flow passages.
  • the anode gas flow passage layer having a plurality of anode gas flow passage walls (ribs) and the anode layer, and the plurality of cathode gas flow passage walls (ribs) are provided.
  • a support layer having a plurality of support walls that are aligned with the positions of the predetermined gas flow passages is disposed at least one of the cathode gas flow passage layer and the cathode layer. As described above, the support layer is interposed between at least one of the layer constituting the cell (power generation element portion) and the gas flow passage layer having the rib.
  • At least one of the layer constituting the cell and the layer having the rib has a portion where the layer constituting the cell is not restricted by the layer having the rib due to the intervening support layer. For this reason, in the series of shrinkage behavior from firing to cooling, even if the cell layer warps or swells, it prevents peeling or separation between the cells and the ribs or cracking. Can do. As a result, it is possible to prevent a connection failure between the cell and the rib, so that current can be efficiently collected through the conductive portion formed on the rib, and a decrease in output voltage can be suppressed. .
  • the anode gas flow passage wall, the cathode gas flow passage wall, and the support wall are preferably formed of the same material.
  • the support wall portion and the cell can be connected in the same manner as the connection between the anode gas flow passage wall portion or the cathode gas flow passage wall portion and the cell.
  • the thickness of the support wall portion in the stacking direction is equal to or less than the thickness of the anode gas flow passage wall portion or the cathode gas flow passage wall portion in the stacking direction.
  • the thickness in the stacking direction of the support wall is more preferably 1 ⁇ 2 or less of the thickness in the stacking direction of the anode gas flow passage wall or the cathode gas flow passage wall.
  • a solid oxide fuel cell according to the present invention includes a battery structure including a plurality of cells, an inter-cell separator disposed between the plurality of cells, and an anode gas supply for supplying an anode gas to the plurality of anode gas flow passages. It is preferable to include a gas supply flow path structure portion having a flow path and a cathode gas supply flow path for supplying the cathode gas to the plurality of cathode gas flow paths.
  • the inter-cell separation part includes an anode gas flow path layer, a cathode gas flow path layer, and a support layer, and the battery structure part, the inter-cell separation part, and the gas supply flow path structure part are integrally formed. Preferably it is formed.
  • the present invention since it is possible to prevent a connection failure between the cell and the rib, it is possible to efficiently collect current through the conductive portion formed on the rib, and to suppress a decrease in output voltage. Can do.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a unit module of a solid oxide fuel cell as one embodiment of the present invention.
  • FIG. 2 is a plan view showing an arrangement of a fuel gas flow passage wall, an air flow passage wall, and a support wall as one embodiment of the present invention.
  • FIG. 3 is a perspective view showing the arrangement of the fuel gas flow passage wall, the air flow passage wall, and the support wall as one embodiment of the present invention.
  • 4 is a cross-sectional end view taken along lines AA, BB, CC, and DD in FIG.
  • FIG. 5 is an end view of the cut portion when the undulation occurs in the cell in FIG. 4.
  • FIG. 5 is an end view of the cut portion when the undulation occurs in the cell in FIG. 4.
  • FIG. 6 is a plan view showing the arrangement of the fuel gas flow passage wall and the air flow passage wall as a comparative embodiment of the present invention.
  • FIG. 7 is a perspective view showing the arrangement of the fuel gas flow passage wall and the air flow passage wall as a comparative embodiment of the present invention.
  • 8 is a cross-sectional end view taken along the lines AA, BB, CC, and DD in FIG.
  • FIG. 9 is an end view of the cut portion when the undulation occurs in the cell in FIG.
  • FIG. 10 is a plan view showing the arrangement of a fuel gas flow passage wall, an air flow passage wall, and a support wall as another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of a solid oxide fuel cell having a plurality of unit modules of FIG. 1 as one embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a unit module 1 of a solid oxide fuel cell as one embodiment of the present invention, in which a stacked molded body (green sheet) before firing is disassembled. Show.
  • the unit module 1 of the solid oxide fuel cell is configured by stacking the inter-cell separator 20, the support layer 40, the cell 10, and the inter-cell separator 20 in order from the bottom. ing. Two inter-cell separators 20 are arranged so as to sandwich a single cell 10. In the solid oxide fuel cell configured by providing a plurality of unit modules in FIG. 1, the inter-cell separator 20 is disposed between the plurality of cells 10.
  • One inter-cell separation portion 20 is disposed so as to contact one side of the cell 10 (upper side in FIG. 1), and the other side (lower side in FIG. 1) of the cell 10 is interposed with another support layer 40 interposed therebetween.
  • An inter-cell separator 20 is arranged.
  • One inter-cell separator 20 is disposed on one side (upper side in FIG. 1) of the cell 10 with the support layer 40 interposed therebetween, and another side so as to contact the other side (lower side in FIG. 1) of the cell 10.
  • An inter-cell separator 20 may be disposed.
  • One inter-cell separator 20 is disposed on one side of the cell 10 (upper side in FIG. 1) with the support layer 40 interposed, and the support layer 40 is also interposed on the other side (lower side in FIG. 1) of the cell 10.
  • Another inter-cell separator 20 may be disposed.
  • the cell 10 includes a laminate of a fuel electrode layer 11 as an anode layer, a solid electrolyte layer 12 and an air electrode layer 13 as a cathode layer.
  • the inter-cell separator 20 disposed on the air electrode layer 13 side of the cell 10 is formed of a laminate of a separator 21 and an air flow passage layer 23 as a cathode gas flow passage layer.
  • the inter-cell separator 20 disposed on the fuel electrode layer 11 side of the cell 10 is formed of a laminate of a separator 21 and a fuel gas flow passage layer 22 as an anode gas flow passage layer.
  • a structure 30 is formed.
  • the gas supply channel structure 30 includes a fuel gas supply channel 31 as an anode gas supply channel for supplying anode gas (fuel gas) to the fuel electrode layer 11, and a cathode gas (air) to the air electrode layer 13.
  • an air supply channel 32 as a cathode gas supply channel for supplying the gas.
  • the fuel gas supply flow path 31 fits the rectangular flat plate-shaped fuel electrode layer 11 into the U-shaped plate-shaped electric insulator 110 and the fuel insulator 110 and the fuel. It corresponds to a gap formed between the pole layer 11 and is formed of an opening extending in one direction, that is, one elongated rectangular through hole.
  • the air supply flow path 32 is formed with a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes.
  • the air supply flow path 32 is formed by fitting the rectangular flat plate-shaped air electrode layer 13 to the U-shaped flat plate-shaped electric insulator 130, and the air insulator 130 and the air electrode. It corresponds to a gap formed between the layers 13 and is formed of an opening extending in one direction, that is, one elongated rectangular through hole.
  • the fuel gas supply channel 31 is formed with a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes.
  • each of the fuel gas supply channel 31 and the air supply channel 32 is formed by a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes. Yes.
  • each of the fuel gas supply channel 31 and the air supply channel 32 is formed by a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes.
  • the green sheet before firing of the fuel gas flow passage layer 22 includes a plurality of fuel gas flow passage formation layers (anode gas flow passage formation layers) 2210 and fuel gas flow passage wall portions (anode gas flow passage wall portions) arranged in a staggered manner.
  • Rib) 222 is fitted to U-shaped flat electrical insulator 220.
  • the fuel gas supply channel 31 corresponds to a gap formed between the electrical insulator 220, the plurality of fuel gas flow channel formation layers 2210, and the fuel gas flow channel wall 222, and extends in one direction. That is, it is formed by one elongated rectangular through hole.
  • the fuel gas flow passage forming layer 2210 disappears after firing, thereby leading to the fuel gas supply channel 31 for supplying the fuel gas to the fuel electrode layer 11 and allowing the fuel gas to flow through the fuel electrode layer 11. It becomes a flow passage (anode gas flow passage) 221 (see FIG. 3).
  • the air supply flow path 32 is formed with a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes.
  • the green sheet before firing of the air flow passage layer 23 includes a plurality of air flow passage formation layers (cathode gas flow passage formation layers) 2310 and air flow passage wall portions (cathode gas flow passage wall portions; ribs) 232 arranged in a staggered manner.
  • air flow passage formation layers cathode gas flow passage formation layers
  • air flow passage wall portions cathode gas flow passage wall portions; ribs
  • the air supply flow path 32 corresponds to a gap formed between the electrical insulator 230 and the plurality of air flow passage forming layers 2310 and the air flow passage wall portion 232, and is an opening extending in one direction, that is, It is formed by one elongated rectangular through hole.
  • the air flow passage forming layer 2310 disappears after firing, so that the air flow passage formation layer 2310 communicates with the air supply flow path 32 that supplies air to the air electrode layer 13 and flows air through the air electrode layer 13 (cathode gas).
  • Flow passage) 231 (see FIG. 3).
  • the fuel gas supply channel 31 is formed with a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes.
  • the support layer 40 is disposed between the fuel gas flow passage layer 22 and the fuel electrode layer 11.
  • the green sheet before firing of the support layer 40 is formed by disposing a plurality of gas flow path forming layers 4010 in a flat electrical insulator 400.
  • the gas flow passage forming layer 4010 disappears after firing, and in this embodiment, the gas flow passage 401 (see FIG. 3) communicates with the fuel gas flow passage 221 (see FIG. 3) through which the fuel gas flows.
  • the support wall portion 402 is formed between the plurality of gas flow passages 401.
  • the plurality of support wall portions 402 are arranged at intervals.
  • the fuel gas supply channel 31 is formed with an opening extending in one direction, that is, one elongated rectangular through hole, and the air gas supply channel 32 is spaced in one direction. It is formed by a plurality of arranged openings, that is, a plurality of circular through holes.
  • FIGS. 2 and 3 are a plan view and a perspective view showing the arrangement of the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 as one embodiment of the present invention.
  • the plurality of support walls 402 are arranged to distribute air as shown in FIGS. 2 and 3.
  • the support layer 40 is laminated so as to be aligned with the positions of the plurality of air flow passages 231 in the road layer 23.
  • the support layer 40 is disposed between the air flow passage layer 23 and the air electrode layer 13, the plurality of support wall portions 402 of the plurality of fuel gas flow passages 221 in the fuel gas flow passage layer 22 are provided.
  • the support layer 40 is formed so as to be aligned with the position.
  • FIG. 4 are cross-sectional end views taken along lines AA, BB, CC and DD in FIG.
  • electrical conductors 211, 223, 233, 403 are used to extract power generated in the cell 10 and to electrically connect the plurality of cells 10 to each other. Is arranged.
  • the electric conductor 211 is filled in a plurality of via holes formed in the electric insulator 210 constituting the main body of the separator 21.
  • the electric conductor 223 is filled in a plurality of via holes formed in the fuel gas flow passage wall 222.
  • the electric conductor 233 is filled in a plurality of via holes formed in the air flow passage wall 232.
  • the electric conductor 403 is filled in a plurality of via holes formed in the support wall portion 402.
  • the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 are formed of, for example, an electrically insulating ceramic material, and the electrical insulator 210 that constitutes the main body of the separator 21.
  • the electric insulator 220 constituting the fuel gas flow passage layer 22, the electric insulator 230 constituting the air flow passage layer 23, and the electric insulator 400 constituting the support layer 40 are formed of the same material. preferable. By comprising in this way, it can form integrally continuously by baking.
  • the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 need to be functionally conductive, a via hole that fills the electric conductor is not formed. You may form from electroconductive ceramics.
  • the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 are made of stabilized zirconia, partially stabilized zirconia, ceria doped with rare earth elements, lanthanum gallate doped with rare earth elements, etc. Electrolytic materials; conductive ceramic materials such as lanthanum chromite doped with alkaline earth metal elements, strontium titanate doped with rare earth elements, niobium or tantalum, lanthanum ferrate, lanthanum ferrate substituted with aluminum; alumina , Magnesia, strontium titanate, and a mixed material of these materials can be used.
  • the material forming the support wall 402 is preferably the same as the material forming the fuel gas flow passage wall 222 and the air flow passage wall 232.
  • the material for forming the support wall 402 is different from the material for forming the fuel gas flow passage wall 222 and the air flow passage wall 232, and is a combination of a conductive ceramic material and an electrically insulating ceramic material.
  • the electrical conductivity of the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 may be impaired due to mutual diffusion.
  • Ceria doped with rare earth elements is chemically stable and can be used in combination with many other materials.
  • the fuel gas flow passage layer 22 is laminated on the fuel electrode layer 11 outside the cell 10, and the fuel electrode layer 11 is fueled.
  • Each of the plurality of fuel gas flow passages 221 for supplying gas has a plurality of fuel gas flow passage wall portions 222 formed at intervals so as to be separated from each other.
  • the air flow passage layer 23 is laminated on the air electrode layer 13 outside the cell 10 and is formed at intervals so as to separate each of the plurality of air flow passages 231 that supply air to the air electrode layer 13.
  • the support layer 40 includes a plurality of support wall portions 402 that are disposed between the fuel gas flow passage layer 22 and the fuel electrode layer 11 and are spaced from each other.
  • the support layer 40 is laminated so that the plurality of support wall portions 402 are aligned with the positions of the plurality of air flow passages 231.
  • a plurality of support wall portions 402 aligned with the position of the air flow passage 231 are provided.
  • a support layer 40 is disposed.
  • the support layer 40 is interposed between the fuel electrode layer 11 constituting the cell (power generation element portion) 10 and the fuel gas flow passage layer 22 having the fuel gas flow passage wall portion (rib) 222. Therefore, the fuel constituting the cell 10 is interposed between the fuel electrode layer 11 constituting the cell 10 and the fuel gas flow passage layer 22 having the fuel gas flow passage wall portion (rib) 222 by interposing the support layer 40. There is a location where the polar layer 11 is not restrained by the fuel gas flow passage layer 22 having the fuel gas flow passage wall portion (rib) 222.
  • the cell 10 and the fuel gas flow passage wall (rib) 222 or the air flow passage wall (rib) It is possible to prevent peeling or separation with respect to H.232 or occurrence of cracks. Thereby, it is possible to prevent a connection failure between the cell 10 and the fuel gas flow passage wall (rib) 222 or the air flow passage wall (rib) 232, so that the fuel gas flow passage wall ( Rib) 222 can be efficiently collected through the electric conductor 223 formed on the rib 222 and the electric conductor 233 formed on the air flow passage wall (rib) 232, and a decrease in output voltage can be suppressed. . *
  • FIG. 5 is an end view of the cut portion when the undulation occurs in the cell in FIG. 5 (A), (B), (C) and (D) are cut along the lines AA, BB, CC and DD in FIG. 2, as in FIG. FIG.
  • the layer of the cell 10 and the fuel gas flow passage wall (rib) are provided by interposing the support layer 40 having the support wall 402 at the other end of the cut. 222 is spaced apart and the layers of the cell 10 are not pulled by the fuel gas flow passage walls (ribs) 222 and the air flow passage walls (ribs) 232 so that the layers of the cells 10 are peeled or separated. There is nothing to do. 5D, the support wall portion 402 pulls the layer of the cell 10, and thus no undulation occurs.
  • the support layer 40 is disposed between the fuel gas flow passage layer 22 having a plurality of fuel gas flow passage wall portions (ribs) 222 and the cell 10 (fuel electrode layer 11).
  • FIG. 6 corresponds to FIG. 2, and is a plan view showing the arrangement of the fuel gas flow passage wall and the air flow passage wall.
  • FIG. 7 corresponds to FIG.
  • FIG. 8 is a perspective view showing the arrangement of the air flow passage wall, and FIG. 8 corresponds to FIG. 4, and is an end view of a cut portion taken along lines AA, BB, CC, and DD in FIG.
  • FIG. 9 corresponds to FIG. 5 and is an end view of the cut portion when the undulation occurs in the cell in FIG.
  • the support layer 40 is disposed between the fuel gas flow passage layer 22 and the cell 10 (fuel electrode layer 11), but the air flow having a plurality of air flow passage wall portions (ribs) 232. Between the road layer 23 and the cell 10 (air electrode layer 13), a support layer 40 having a plurality of support wall portions 402 aligned with the position of the fuel gas flow passage 221 may be disposed. Even if comprised in this way, the above-mentioned effect can be achieved.
  • a support layer 40 having a plurality of support wall portions 402 aligned with the position of the air flow passage 231 is disposed between the cell 10 and the cell 10 (air electrode layer 13). Even if comprised in this way, the above-mentioned effect can be achieved.
  • the shrinkage rate of the support layer 40 is preferably 10 to 30%, and the porosity of the support layer 40 is preferably 0 to 55%.
  • the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 are formed of the same material, so that the fuel gas flow passage wall 222 or the air flow passage wall 232 and the cell 10 are formed. In the same manner as the connection, the support wall portion 402 and the cell 10 can be connected.
  • the thickness of the support wall 402 in the stacking direction is equal to or less than the thickness of the fuel gas flow passage wall 222 or the air flow passage wall 232 in the stacking direction.
  • the thickness of the support wall 402 in the stacking direction is more preferably 1 ⁇ 2 or less of the thickness of the fuel gas flow passage wall 222 or the air flow passage wall 232 in the stacking direction.
  • the thickness in the stacking direction of the fuel gas flow passage wall 222 and the air flow passage wall 232 is preferably 100 to 600 ⁇ m.
  • the thickness of the support wall 402 in the stacking direction is preferably 10 to 120 ⁇ m.
  • FIG. 10 is a plan view showing the arrangement of the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 as another embodiment of the present invention.
  • a plurality of support wall portions 402 are regions sandwiched by a plurality of air flow passage wall portions (ribs) 232 in the air flow passage layer 23, that is, a plurality of May be formed in an island shape in the region of the air flow passage 231 in alignment with the position of the air flow passage 231 (see FIG. 3). Even if comprised in this way, the above-mentioned effect can be achieved.
  • a plurality of island-shaped support walls 402 are formed in an island shape in the region of the plurality of fuel gas flow passage walls (ribs) 222.
  • the plurality of island-like support wall portions 402 are provided in the fuel gas flow passage layer 22 with a plurality of fuel gas flows.
  • the region sandwiched between the road wall portions (ribs) 222, that is, the position of the plurality of fuel gas flow passages 221 (see FIG. 3) is aligned and formed in an island shape within the region of the fuel gas flow passages 221. Also good. *
  • FIG. 11 is a cross-sectional view showing a schematic configuration of a solid oxide fuel cell including a plurality of unit modules of FIG. 1 as one embodiment of the present invention.
  • the solid oxide fuel cell 100 has a plurality of cells 10 as a battery structure portion, and a current collector plate 50 is electrically connected to an uppermost cell via an electrical insulator 210.
  • the current collector plate 60 is disposed so as to be electrically connected via the inter-cell separator 20 to the cell located at the lowermost position.
  • Each of the plurality of cells 10 includes a fuel electrode layer 11, a solid electrolyte layer 12, and an air electrode layer 13 that are sequentially stacked.
  • the inter-cell separator 20 and the support layer 40 are disposed between the plurality of cells 10.
  • the solid oxide fuel cell 100 of the present invention includes a battery structure portion including a plurality of cells 10, and an inter-cell separation portion 20 disposed between the plurality of cells 10.
  • a gas supply flow path structure portion 30 having a fuel gas supply flow path 31 for supplying fuel gas to the plurality of fuel gas flow paths 221 and an air supply flow path 32 for supplying air to the plurality of air flow paths 231.
  • the inter-cell separation unit 20 includes a fuel gas flow passage layer 22, an air flow passage layer 23, and a support layer 40, and includes a battery structure unit including a plurality of cells 10, an inter-cell separation unit 20, and
  • the gas supply flow path structure 30 is integrally formed.
  • the electrical insulators 110, 130, 210, 220, 230, and 400 are made of, for example, zirconia (ZrO 2 ) (yttria-stabilized zirconia: YSZ) stabilized with 3 mol% of yttria (Y 2 O 3 ) added. ), Zirconia (ZrO 2 ) (ceria stabilized zirconia: CeSZ) stabilized with ceria (CeO 2 ) added in an amount of 12 mol%.
  • the electrical conductors 211, 223, 233, and 403 are formed using, for example, a silver (Ag) -platinum (Pt) alloy, a silver (Ag) -palladium (Pd) alloy, or the like.
  • the solid electrolyte layer 12 includes, for example, zirconia (ZrO 2 ) (scandia ceria stabilized zirconia stabilized with 10 mol% scandia (Sc 2 O 3 ) and 1 mol% ceria (CeO 2 ) added: ScCeSZ), zirconia (ZrO 2 ) stabilized with scandia (Sc 2 O 3 ) with an addition amount of 11 mol% (scandia stabilized zirconia: ScSZ), and the like.
  • Fuel electrode layer 11 for example, a nickel oxide (NiO), the addition amount 10 mol% of scandia (Sc 2 O 3) and zirconia stabilized with the addition of 1 mol% of ceria (CeO 2) (ZrO 2) It is formed using a mixture with (scandiaceria stabilized zirconia: ScCeSZ) or the like.
  • the air electrode layer 13 is stabilized with, for example, La 0.8 Sr 0.2 MnO 3 , scandia (Sc 2 O 3 ) added in an amount of 10 mol%, and ceria (CeO 2 ) added in an amount of 1 mol%. It is formed using a mixture with zirconia (ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ) or the like.
  • the current collecting plates 50 and 60 are made of, for example, silver (Ag).
  • Examples 1 to 4 having different support layer thicknesses, and solids without a support layer for comparison with the structure of the present invention.
  • a comparative example for producing an electrolyte fuel cell will be described.
  • material powders of members (A) to (D) constituting the unit module of the solid oxide fuel cell of the embodiment shown in FIG. 1 were prepared as follows.
  • Fuel electrode layer 11 zirconia stabilized with 60% by weight of nickel oxide (NiO), scandia (Sc 2 O 3 ) with an addition amount of 10 mol% and ceria (CeO 2 ) with an addition amount of 1 mol% ( ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ) with 40% by weight
  • Solid electrolyte layer 12 zirconia (ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ) stabilized with 10 mol% scandia (Sc 2 O 3) and 1 mol% ceria (CeO 2 ) added
  • the air electrode layer 13 Stable in La 0.8 Sr 0.2 MnO 3 60 wt% and the addition amount 10 mol% of scandia (Sc 2 O 3) and the addition amount 1 mol% of ceria (CeO 2) With Zirconia Zirconia (ZrO 2 ) (Scandiaceria Stabilized Zirconia: ScCeSZ) 40 wt%
  • a member (D) was produced as follows.
  • the electrical insulator 210 of the separator 21, the electrical insulator 220 of the fuel gas flow passage layer 22 and the fuel gas flow passage wall (rib) 222, the electrical insulator 230 of the air flow passage layer 23 and the air flow passage wall (rib). 232, and the electrical insulator 400 and the support wall portion 402 of the support layer 40 are a mixture of an electrically insulating material powder, a polyvinyl butyral binder, ethanol and toluene as an organic solvent (a mixing ratio of 1 by weight). : 4) was mixed, and then green sheets of the respective members were produced.
  • through holes for forming a plurality of electrical conductors 211, 223, 233, 403 were formed in the electrical insulator.
  • a conductive paste filling layer for forming the electric conductors 211, 223, 233, and 403 was prepared by filling these through holes with a paste made of 70% by weight of silver and 30% by weight of palladium.
  • the electrical insulator 210 of the separator 21, the electrical insulator 220 of the fuel gas flow passage layer 22, the electrical insulator 230 of the air flow passage layer 23, and the electrical insulator 400 of the support layer 40 In order to form the fuel gas supply channel 31 and the air supply channel 32, circular and elongated rectangular through holes were formed. Five circular through holes were evenly arranged with a diameter of 4.5 mm and an interval of 12 mm. The rectangular through hole had a width of 4.5 mm and a length of 61.5 mm. *
  • a fuel gas flow passage formation layer made of polyethylene terephthalate (PET) is connected to a through hole for forming the fuel gas supply flow path 31. 2210 was formed.
  • the fuel gas flow passage forming layer 2210 disappears after firing, thereby leading to the fuel gas supply passage 31 for supplying the fuel gas, and the fuel gas flow passage 221 ( Fig. 3).
  • three fuel gas flow passages are formed, and in FIG. 3, four fuel gas flow passages 221 are formed.
  • the fuel has a width of 0.8 mm and a length of 61.5 mm.
  • a number of gas flow passages 221 were arranged at intervals (ribs) of 0.8 mm.
  • an air flow passage formation layer 2310 made of polyethylene terephthalate (PET) is formed so as to be connected to the through hole for forming the air supply flow path 32. did.
  • the air flow passage forming layer 2310 disappears after firing, thereby leading to an air supply passage 32 for supplying air and forming an air flow passage 231 (FIG. 3) through which air flows through the air electrode layer 13. .
  • FIG. 1 three air flow passages are formed, and in FIG. 3, five air flow passages 231 are formed.
  • the air flow passage has a width of 0.8 mm and a length of 61.5 mm. A number 231 were arranged at intervals (ribs) of 0.8 mm.
  • the electrical insulation material powder the polyvinyl butyral binder, and a mixture of ethanol and toluene as an organic solvent (mixing ratio by weight is 1: 4) are mixed with the doctor.
  • a green sheet of the electrical insulator 130 was produced by a blade method.
  • the green sheet of the electrical insulator 130 has a substantially U shape as shown in FIG. 1 so that the green sheet of the air electrode layer 13 can be fitted with a gap for forming the air supply channel 32.
  • a letter-shaped sheet was produced.
  • a circular through hole having the same size as the above was formed in the green sheet of the electric insulator 130.
  • the green sheet of the electrical insulator 110 has a gap for forming the fuel gas supply channel 31 so that the green sheet of the fuel electrode layer 11 can be fitted.
  • a U-shaped sheet was produced.
  • a circular through hole having the same size as described above was formed in the green sheet of the electrical insulator 110.
  • the green sheets of the air electrode layer 13, the fuel electrode layer 11, and the solid electrolyte layer 12 shown in FIG. 1 were produced as follows.
  • the solid electrolyte layer 12 After mixing the material powder of the solid electrolyte layer 12, the polyvinyl butyral binder, and a mixture of ethanol and toluene as an organic solvent (weight ratio is 1: 4), the solid electrolyte layer 12 is mixed by a doctor blade method. A green sheet was prepared. In the green sheet of the solid electrolyte layer 12, as shown in FIG. 1, elongated rectangular through holes having the same size as described above for forming the fuel gas supply channel 31 and the air supply channel 32 were formed. *
  • the separator 21, the fuel gas flow passage layer 22, the support layer 40, the electric insulator 110 fitted with the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13 were fitted together.
  • the electrical insulator 130, the air flow passage layer 23, and the green sheets of the separator 21 were laminated in order from the bottom as shown in FIG.
  • separator 21 (thickness after firing: 300 ⁇ m) / air flow passage layer 23 (thickness after firing: 300 ⁇ m) / air electrode layer 13 (thickness after firing: 80 ⁇ m) / solid electrolyte layer 12 (thickness after firing) : 40 ⁇ m) / fuel electrode layer 11 (thickness after firing: 80 ⁇ m) / support layer 40 (thickness after firing: 10 ⁇ m (Example 1), 30 ⁇ m (Example 2), 60 ⁇ m (Example 3), 120 ⁇ m (implementation) Example 4), solid oxide fuel cell unit module 1 consisting of 0 ⁇ m (comparative example: no support layer) / fuel gas flow passage layer 22 (thickness after firing: 300 ⁇ m) / separator 21 (thickness after firing: 300 ⁇ m) Configured.
  • the laminate was pressure bonded by cold isostatic pressing at a pressure of 1000 kgf / cm 2 and a temperature of 80 ° C. for 2 minutes. This pressure-bonded body was degreased at a temperature in the range of 400 to 500 ° C., and then fired by being held at a temperature in the range of 1000 to 1300 ° C. for 2 hours.
  • the solid electrolyte fuel cell samples of Examples 1 to 4 and the comparative example in the laminate, the area of the planar region where the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13 overlap (power generation area) ): 65 mm ⁇ 65 mm).
  • current collecting plates 50 and 60 made of silver having a thickness of 20 ⁇ m are formed on the upper and lower surfaces of the samples of the solid electrolyte fuel cells of Examples 1 to 4 and Comparative Example manufactured as described above. Fixed.
  • Unit module 10 of a solid electrolyte fuel cell 10 Cell 11: Fuel electrode layer 12: Solid electrolyte layer 13: Air electrode layer 20: Inter-cell separator 21: Separator 22: Fuel gas flow path layer 23: Air flow path layer 30: Gas supply flow path structure 31: Fuel gas supply flow path 32: Air supply flow path 40: Support layer 100: Solid electrolyte fuel cells 211, 223, 233, 403: Electric conductor 221: Fuel gas flow path 222 : Fuel gas flow passage wall 231: air flow passage 232: air flow passage wall 401: gas flow passage, 402: support wall.

Abstract

 A fuel gas channel layer (22) has a plurality of fuel gas channel wall parts (222) formed at a distance from each other so as to separate a plurality of fuel gas channels (221) for feeding a fuel gas to a fuel electrode layer (11) from each other. An air channel layer (23) has a plurality of air channel wall parts (232) formed at a distance from each other so as to separate a plurality of air channels (231) for feeding air to an air electrode layer (13) from each other. A support layer (40) has a plurality of support wall parts (402) formed at a distance from each other and disposed between the fuel gas channel layer (22) and the fuel electrode layer (11). The support layer (40) is stacked so that the positions of the plurality of support wall parts (402) match those of the plurality of air channels (231).

Description

固体電解質形燃料電池Solid electrolyte fuel cell
 本発明は、一般的には固体電解質形燃料電池に関し、特にアノードガスとカソードガスの流通路を形成するためのガス流通路壁部(リブ)を有する固体電解質形燃料電池に関するものである。 The present invention generally relates to a solid oxide fuel cell, and more particularly to a solid oxide fuel cell having gas flow passage walls (ribs) for forming a flow passage for anode gas and cathode gas.
 一般的に、平板型の固体電解質形燃料電池(固体酸化物燃料電池(SOFC)ともいう)は、各々がアノード(負極)、固体電解質およびカソード(正極)からなる発電要素としての平板状の複数のセルと、複数のセルの間に配置されるセパレータ(インタコネクタともいう)とから構成される。セパレータは、複数のセルを相互に電気的に直列に接続し、かつ、複数のセルの各々に供給されるガスを分離するために、具体的にはアノードに供給されるアノードガスとしての燃料ガス(たとえば水素)と、カソードに供給されるカソードガスとしての酸化剤ガス(たとえば空気)とを分離するために複数のセルの間に配置される。 In general, a flat solid electrolyte fuel cell (also referred to as a solid oxide fuel cell (SOFC)) includes a plurality of flat plate-shaped power generation elements each composed of an anode (negative electrode), a solid electrolyte, and a cathode (positive electrode). And a separator (also referred to as an interconnector) disposed between a plurality of cells. The separator is a fuel gas as an anode gas specifically supplied to the anode in order to electrically connect the plurality of cells in series with each other and to separate the gas supplied to each of the plurality of cells. In order to separate (for example, hydrogen) and oxidant gas (for example, air) as cathode gas supplied to the cathode, it is disposed between the plurality of cells.
 たとえば、国際公開第2008/044429号(以下、特許文献1という)には、固体電解質形燃料電池の構造が開示されている。 For example, International Publication No. 2008/044429 (hereinafter referred to as Patent Document 1) discloses a structure of a solid oxide fuel cell.
 特許文献1に開示された固体電解質形燃料電池は、各々が燃料極層(アノード層)、固体電解質層および空気極層(カソード層)からなる複数のセル(発電素子部)の間に配置されるセル間分離部と、各セルに燃料ガスを供給するための燃料ガス通路、および、各セルに空気を供給するための空気通路を有するガス通路構造部とを備える。セル間分離部とガス通路構造部とセルとが一体的に形成されている。マニホールドの機能を果たすガス通路構造部の本体が、セパレータの機能を果たすセル間分離部を形成する電気絶縁体からなり、セル間分離部を形成する電気絶縁体に連続して形成されているので、セパレータとマニホールドの二つの機能を果たす部分が連続して形成されている。 The solid electrolyte fuel cell disclosed in Patent Document 1 is disposed between a plurality of cells (power generation element units) each including a fuel electrode layer (anode layer), a solid electrolyte layer, and an air electrode layer (cathode layer). And a gas passage structure having an air passage for supplying air to each cell, and a fuel gas passage for supplying fuel gas to each cell. The cell separation part, the gas passage structure part, and the cell are integrally formed. The main body of the gas passage structure that functions as a manifold is made of an electrical insulator that forms an inter-cell separator that functions as a separator, and is formed continuously with the electrical insulator that forms the inter-cell separator. The portions serving the two functions of the separator and the manifold are formed continuously.
国際公開第2008/044429号公報International Publication No. 2008/044429
 特許文献1に開示された固体電解質形燃料電池では、明示されていないが、セル間分離部と燃料極層(アノード層)との間には燃料ガス(アノードガス)を燃料極層に供給するための複数のアノードガス流通路と、セル間分離部と空気極層(カソード層)との間には空気(カソードガス)を空気極層に供給するための複数のカソードガス流通路とが形成されている。複数のアノードガス流通路の各々を互いに分離するように間隔をあけて複数のアノードガス流通路壁部(リブ)が形成され、複数のカソードガス流通路の各々を互いに分離するように間隔をあけて複数のカソードガス流通路壁部(リブ)が形成されている。リブには、セルで発生した電力を取り出すために導電部が形成されている。 In the solid oxide fuel cell disclosed in Patent Document 1, although not clearly shown, fuel gas (anode gas) is supplied to the fuel electrode layer between the inter-cell separator and the fuel electrode layer (anode layer). And a plurality of cathode gas flow passages for supplying air (cathode gas) to the air electrode layer are formed between the inter-cell separator and the air electrode layer (cathode layer). Has been. A plurality of anode gas flow passage walls (ribs) are formed so as to separate each of the plurality of anode gas flow passages from each other, and the plurality of cathode gas flow passages are spaced apart from each other. A plurality of cathode gas flow passage walls (ribs) are formed. Conductive portions are formed on the ribs in order to extract electric power generated in the cells.
 固体電解質形燃料電池は、燃料極層、固体電解質層および空気極層が積層されたセルと、セル間分離部とにより構成される。そして、それぞれの層を構成するグリーンシートが積層された成形体を一体焼成することにより、固体電解質形燃料電池が製造される。この成形体を焼成すると、各層の温度が上昇することにより、各層が熱膨張し、その後、焼結によって大きく収縮する。焼成が終了すると、常温まで温度が低くなるにつれて、得られた焼成体が冷却されることによって、さらに各層がそれぞれ収縮する。この一連の収縮の挙動において、各層のセラミックスの収縮率が異なるため、室温に冷却された後に、セルの層に反りまたはうねりが生じる。その反りまたはうねりの程度によっては、互いに密着されるべき上層と下層との間で剥離または分離が生じたり、クラックが発生する。この場合、特に複数のセラミックス層を3層積層したセルの収縮挙動が複雑となり、セルと接触するリブの収縮挙動と異なってくるので、セルとリブとの間で剥離または分離が生じたり、クラックが発生する。これにより、セルとリブの間で接続不良が起こるという問題がある。その結果、セルとリブとの間に隙間が形成されて、リブに形成された導電部を通じて効率よく集電することができないので、出力電圧が低下する。 The solid electrolyte fuel cell includes a cell in which a fuel electrode layer, a solid electrolyte layer, and an air electrode layer are stacked, and an inter-cell separation unit. Then, a solid oxide fuel cell is manufactured by integrally firing the molded body in which the green sheets constituting each layer are laminated. When this molded body is fired, the temperature of each layer increases, whereby each layer thermally expands, and then contracts greatly by sintering. When the firing is finished, the layers are further contracted by cooling the obtained fired body as the temperature is lowered to room temperature. In this series of shrinkage behaviors, the shrinkage rates of the ceramics in each layer are different, and thus the cell layers are warped or undulated after being cooled to room temperature. Depending on the degree of warpage or undulation, peeling or separation occurs between the upper layer and the lower layer that are to be in close contact with each other, or cracks occur. In this case, in particular, the shrinkage behavior of a cell in which a plurality of ceramic layers are laminated is complicated and differs from the shrinkage behavior of a rib in contact with the cell. Will occur. As a result, there is a problem that connection failure occurs between the cell and the rib. As a result, a gap is formed between the cell and the rib, and the current cannot be efficiently collected through the conductive portion formed on the rib, so that the output voltage decreases.
 そこで、本発明の目的は、発電素子部とガス流通路壁部との間の接続不良を防止することが可能な固体電解質形燃料電池を提供することである。 Therefore, an object of the present invention is to provide a solid oxide fuel cell capable of preventing poor connection between the power generation element portion and the gas flow passage wall portion.
 本発明に従った固体電解質形燃料電池は、セルと、アノードガス流通路層と、カソードガス流通路層と、支持層とを備える。セルは、アノード層、固体電解質層およびカソード層の積層体からなる。アノードガス流通路層は、セルの外側でアノード層に積層され、かつ、アノード層にアノードガスを供給する複数のアノードガス流通路の各々を互いに分離するように間隔をあけて形成される複数のアノードガス流通路壁部を有する。カソードガス流通路層は、セルの外側でカソード層に積層され、かつ、カソード層にカソードガスを供給する複数のカソードガス流通路の各々を互いに分離するように間隔をあけて形成される複数のカソードガス流通路壁部を有する。支持層は、アノードガス流通路層とアノード層との間、および、カソードガス流通路層とカソード層との間の少なくともいずれか一方に配置され、かつ、互いに間隔をあけて形成される複数の支持壁部を有する。支持層がアノードガス流通路層とアノード層との間に配置される場合には、複数の支持壁部が複数のカソードガス流通路の位置に整合するように支持層が積層されている。支持層がカソードガス流通路層とカソード層との間に配置される場合には、複数の支持壁部が複数のアノードガス流通路の位置に整合するように支持層が積層されている。 The solid oxide fuel cell according to the present invention includes a cell, an anode gas flow passage layer, a cathode gas flow passage layer, and a support layer. The cell is composed of a laminate of an anode layer, a solid electrolyte layer, and a cathode layer. The anode gas flow path layer is stacked on the anode layer outside the cell, and a plurality of anode gas flow paths that supply the anode gas to the anode layer are separated from each other. An anode gas flow passage wall; The cathode gas flow passage layer is stacked on the cathode layer outside the cell, and a plurality of cathode gas flow passages that supply the cathode gas to the cathode layer are spaced apart from each other. It has a cathode gas flow passage wall. The support layer is disposed between at least one of the anode gas flow path layer and the anode layer and between the cathode gas flow path layer and the cathode layer, and is formed with a plurality of gaps formed therebetween. It has a support wall. When the support layer is disposed between the anode gas flow passage layer and the anode layer, the support layers are laminated so that the plurality of support wall portions are aligned with the positions of the plurality of cathode gas flow passages. When the support layer is disposed between the cathode gas flow passage layer and the cathode layer, the support layers are laminated so that the plurality of support wall portions are aligned with the positions of the plurality of anode gas flow passages.
 本発明の固体電解質形燃料電池においては、複数のアノードガス流通路壁部(リブ)を有するアノードガス流通路層とアノード層との間、および、複数のカソードガス流通路壁部(リブ)を有するカソードガス流通路層とカソード層との間の少なくともいずれか一方に、所定のガス流通路の位置に整合する複数の支持壁部を有する支持層が配置されている。このようにセル(発電素子部)を構成する層とリブを有するガス流通路層との間の少なくともいずれか一方に支持層が介在している。したがって、セルを構成する層とリブを有する層との間の少なくともいずれか一方では、支持層が介在することにより、セルを構成する層がリブを有する層に拘束されない箇所が存在する。このため、焼成から冷却までの一連の収縮の挙動において、セルの層に反りまたはうねりが生じても、セルとリブとの間で剥離または分離が生じたり、クラックが発生することを防止することができる。これにより、セルとリブとの間で接続不良が起こることを防止することができるので、リブに形成される導電部を通じて効率よく集電することができ、出力電圧の低下を抑制することができる。 In the solid oxide fuel cell of the present invention, the anode gas flow passage layer having a plurality of anode gas flow passage walls (ribs) and the anode layer, and the plurality of cathode gas flow passage walls (ribs) are provided. A support layer having a plurality of support walls that are aligned with the positions of the predetermined gas flow passages is disposed at least one of the cathode gas flow passage layer and the cathode layer. As described above, the support layer is interposed between at least one of the layer constituting the cell (power generation element portion) and the gas flow passage layer having the rib. Therefore, at least one of the layer constituting the cell and the layer having the rib has a portion where the layer constituting the cell is not restricted by the layer having the rib due to the intervening support layer. For this reason, in the series of shrinkage behavior from firing to cooling, even if the cell layer warps or swells, it prevents peeling or separation between the cells and the ribs or cracking. Can do. As a result, it is possible to prevent a connection failure between the cell and the rib, so that current can be efficiently collected through the conductive portion formed on the rib, and a decrease in output voltage can be suppressed. .
 本発明の固体電解質形燃料電池において、アノードガス流通路壁部、カソードガス流通路壁部、および、支持壁部は、同一の材料から形成されていることが好ましい。 In the solid oxide fuel cell of the present invention, the anode gas flow passage wall, the cathode gas flow passage wall, and the support wall are preferably formed of the same material.
 このように構成することにより、アノードガス流通路壁部またはカソードガス流通路壁部とセルとの接続と同様にして、支持壁部とセルとを接続することができる。  With this configuration, the support wall portion and the cell can be connected in the same manner as the connection between the anode gas flow passage wall portion or the cathode gas flow passage wall portion and the cell. *
 支持壁部の積層方向の厚みが大きいほど、支持壁部がセルを拘束することができるので、セルとリブとの間で剥離または分離が生じることを防止するのに有効であるが、アノードガス流通路壁部またはカソードガス流通路壁部とセルとが離れることになるので、セルへのガスの供給効率が低下する。これにより、支持壁部の積層方向の厚みは、アノードガス流通路壁部またはカソードガス流通路壁部の積層方向の厚み以下であることが好ましい。支持壁部の積層方向の厚みは、アノードガス流通路壁部またはカソードガス流通路壁部の積層方向の厚みの1/2以下であることがさらに好ましい。 The larger the thickness of the support wall in the stacking direction, the more the support wall can restrain the cell. Therefore, it is effective to prevent separation or separation between the cell and the rib. Since the flow passage wall portion or the cathode gas flow passage wall portion is separated from the cell, the gas supply efficiency to the cell is lowered. Thereby, it is preferable that the thickness of the support wall portion in the stacking direction is equal to or less than the thickness of the anode gas flow passage wall portion or the cathode gas flow passage wall portion in the stacking direction. The thickness in the stacking direction of the support wall is more preferably ½ or less of the thickness in the stacking direction of the anode gas flow passage wall or the cathode gas flow passage wall.
 本発明の固体電解質形燃料電池は、複数のセルを含む電池構造部と、複数のセルの間に配置されるセル間分離部と、複数のアノードガス流通路にアノードガスを供給するアノードガス供給流路と、複数のカソードガス流通路にカソードガスを供給するカソードガス供給流路とを有するガス供給流路構造部とを備えていることが好ましい。この場合、セル間分離部は、アノードガス流通路層と、カソードガス流通路層と、支持層とを含み、電池構造部、セル間分離部、および、ガス供給流路構造部が一体的に形成されていることが好ましい。 A solid oxide fuel cell according to the present invention includes a battery structure including a plurality of cells, an inter-cell separator disposed between the plurality of cells, and an anode gas supply for supplying an anode gas to the plurality of anode gas flow passages. It is preferable to include a gas supply flow path structure portion having a flow path and a cathode gas supply flow path for supplying the cathode gas to the plurality of cathode gas flow paths. In this case, the inter-cell separation part includes an anode gas flow path layer, a cathode gas flow path layer, and a support layer, and the battery structure part, the inter-cell separation part, and the gas supply flow path structure part are integrally formed. Preferably it is formed.
 このように構成することにより、セパレータとマニホールドの二つの機能を果たす部分を連続して形成することができる。 By configuring in this way, it is possible to continuously form portions that perform the two functions of the separator and the manifold.
 本発明によれば、セルとリブの間で接続不良が起こることを防止することができるので、リブに形成される導電部を通じて効率よく集電することができ、出力電圧の低下を抑制することができる。 According to the present invention, since it is possible to prevent a connection failure between the cell and the rib, it is possible to efficiently collect current through the conductive portion formed on the rib, and to suppress a decrease in output voltage. Can do.
図1は、本発明の一つの実施の形態として固体電解質形燃料電池の単位モジュールの概略的な構成を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a schematic configuration of a unit module of a solid oxide fuel cell as one embodiment of the present invention. 図2は、本発明の一つの実施形態として燃料ガス流通路壁部、空気流通路壁部および支持壁部の配置を示す平面図である。FIG. 2 is a plan view showing an arrangement of a fuel gas flow passage wall, an air flow passage wall, and a support wall as one embodiment of the present invention. 図3は、本発明の一つの実施形態として燃料ガス流通路壁部、空気流通路壁部および支持壁部の配置を示す斜視図である。FIG. 3 is a perspective view showing the arrangement of the fuel gas flow passage wall, the air flow passage wall, and the support wall as one embodiment of the present invention. 図4は、図2のA-A線、B-B線、C-C線、D-D線における切断部端面図である。4 is a cross-sectional end view taken along lines AA, BB, CC, and DD in FIG. 図5は、図4においてセルにうねりが生じた場合の切断部端面図である。FIG. 5 is an end view of the cut portion when the undulation occurs in the cell in FIG. 4. 図6は、本発明の比較形態として燃料ガス流通路壁部および空気流通路壁部の配置を示す平面図である。FIG. 6 is a plan view showing the arrangement of the fuel gas flow passage wall and the air flow passage wall as a comparative embodiment of the present invention. 図7は、本発明の比較形態として燃料ガス流通路壁部および空気流通路壁部の配置を示す斜視図である。FIG. 7 is a perspective view showing the arrangement of the fuel gas flow passage wall and the air flow passage wall as a comparative embodiment of the present invention. 図8は、図6のA-A線、B-B線、C-C線、D-D線における切断部端面図である。8 is a cross-sectional end view taken along the lines AA, BB, CC, and DD in FIG. 図9は、図8においてセルにうねりが生じた場合の切断部端面図である。FIG. 9 is an end view of the cut portion when the undulation occurs in the cell in FIG. 図10は、本発明のもう一つの実施形態として燃料ガス流通路壁部、空気流通路壁部および支持壁部の配置を示す平面図である。FIG. 10 is a plan view showing the arrangement of a fuel gas flow passage wall, an air flow passage wall, and a support wall as another embodiment of the present invention. 図11は、本発明の一つの実施形態として図1の単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成を示す断面図である。FIG. 11 is a cross-sectional view showing a schematic configuration of a solid oxide fuel cell having a plurality of unit modules of FIG. 1 as one embodiment of the present invention.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一つの実施の形態として固体電解質形燃料電池の単位モジュール1の概略的な構成を示す分解斜視図であり、焼成前の積層された成形体(グリーンシート)を分解して示す。 FIG. 1 is an exploded perspective view showing a schematic configuration of a unit module 1 of a solid oxide fuel cell as one embodiment of the present invention, in which a stacked molded body (green sheet) before firing is disassembled. Show.
 図1に示すように、下から順に、セル間分離部20、支持層40、セル10、および、セル間分離部20が積層されることにより、固体電解質形燃料電池の単位モジュール1が構成されている。単一のセル10を挟むように二つのセル間分離部20が配置されている。図1の単位モジュールを複数備えることによって構成される固体電解質形燃料電池では、セル間分離部20が複数のセル10の間に配置される。 As shown in FIG. 1, the unit module 1 of the solid oxide fuel cell is configured by stacking the inter-cell separator 20, the support layer 40, the cell 10, and the inter-cell separator 20 in order from the bottom. ing. Two inter-cell separators 20 are arranged so as to sandwich a single cell 10. In the solid oxide fuel cell configured by providing a plurality of unit modules in FIG. 1, the inter-cell separator 20 is disposed between the plurality of cells 10.
 セル10の一方側(図1では上側)に接触するように一つのセル間分離部20が配置され、セル10の他方側(図1では下側)に支持層40を介在させてもう一つのセル間分離部20が配置されている。セル10の一方側(図1では上側)に支持層40を介在させて一つのセル間分離部20が配置され、セル10の他方側(図1では下側)に接触するようにもう一つのセル間分離部20が配置されてもよい。セル10の一方側(図1では上側)に支持層40を介在させて一つのセル間分離部20が配置され、セル10の他方側(図1では下側)にも支持層40を介在させてもう一つのセル間分離部20が配置されてもよい。 One inter-cell separation portion 20 is disposed so as to contact one side of the cell 10 (upper side in FIG. 1), and the other side (lower side in FIG. 1) of the cell 10 is interposed with another support layer 40 interposed therebetween. An inter-cell separator 20 is arranged. One inter-cell separator 20 is disposed on one side (upper side in FIG. 1) of the cell 10 with the support layer 40 interposed therebetween, and another side so as to contact the other side (lower side in FIG. 1) of the cell 10. An inter-cell separator 20 may be disposed. One inter-cell separator 20 is disposed on one side of the cell 10 (upper side in FIG. 1) with the support layer 40 interposed, and the support layer 40 is also interposed on the other side (lower side in FIG. 1) of the cell 10. Another inter-cell separator 20 may be disposed.
 セル10は、アノード層としての燃料極層11、固体電解質層12、および、カソード層としての空気極層13の積層体からなる。セル10の空気極層13側に配置されるセル間分離部20は、セパレータ21と、カソードガス流通路層としての空気流通路層23との積層体からなる。セル10の燃料極層11側に配置されるセル間分離部20は、セパレータ21と、アノードガス流通路層としての燃料ガス流通路層22との積層体からなる。 The cell 10 includes a laminate of a fuel electrode layer 11 as an anode layer, a solid electrolyte layer 12 and an air electrode layer 13 as a cathode layer. The inter-cell separator 20 disposed on the air electrode layer 13 side of the cell 10 is formed of a laminate of a separator 21 and an air flow passage layer 23 as a cathode gas flow passage layer. The inter-cell separator 20 disposed on the fuel electrode layer 11 side of the cell 10 is formed of a laminate of a separator 21 and a fuel gas flow passage layer 22 as an anode gas flow passage layer.
 セル間分離部20、支持層40、セル10、および、セル間分離部20の積層体には、セル10にアノードガス(燃料ガス)とカソードガス(空気)を供給するためのガス供給流路構造部30が形成されている。ガス供給流路構造部30は、燃料極層11にアノードガス(燃料ガス)を供給するためのアノードガス供給流路としての燃料ガス供給流路31と、空気極層13にカソードガス(空気)を供給するためのカソードガス供給流路としての空気供給流路32とから構成される。 A gas supply channel for supplying anode gas (fuel gas) and cathode gas (air) to the cell 10 in the stacked body of the cell separator 20, the support layer 40, the cell 10, and the cell separator 20. A structure 30 is formed. The gas supply channel structure 30 includes a fuel gas supply channel 31 as an anode gas supply channel for supplying anode gas (fuel gas) to the fuel electrode layer 11, and a cathode gas (air) to the air electrode layer 13. And an air supply channel 32 as a cathode gas supply channel for supplying the gas.
 セル10の燃料極層11が配置される箇所では、燃料ガス供給流路31が、U字形平板状の電気絶縁体110に矩形平板状の燃料極層11を嵌めることによって電気絶縁体110と燃料極層11との間に形成される隙間に相当し、一方向に延在する開口、すなわち、一つの細長い矩形状の貫通孔で形成されている。電気絶縁体110には、空気供給流路32が、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。 In the place where the fuel electrode layer 11 of the cell 10 is disposed, the fuel gas supply flow path 31 fits the rectangular flat plate-shaped fuel electrode layer 11 into the U-shaped plate-shaped electric insulator 110 and the fuel insulator 110 and the fuel. It corresponds to a gap formed between the pole layer 11 and is formed of an opening extending in one direction, that is, one elongated rectangular through hole. In the electrical insulator 110, the air supply flow path 32 is formed with a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes.
 セル10の空気極層13が配置される箇所では、空気供給流路32が、U字形平板状の電気絶縁体130に矩形平板状の空気極層13を嵌めることによって電気絶縁体130と空気極層13との間に形成される隙間に相当し、一方向に延在する開口、すなわち、一つの細長い矩形状の貫通孔で形成されている。電気絶縁体130には、燃料ガス供給流路31が、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。 In the place where the air electrode layer 13 of the cell 10 is disposed, the air supply flow path 32 is formed by fitting the rectangular flat plate-shaped air electrode layer 13 to the U-shaped flat plate-shaped electric insulator 130, and the air insulator 130 and the air electrode. It corresponds to a gap formed between the layers 13 and is formed of an opening extending in one direction, that is, one elongated rectangular through hole. In the electrical insulator 130, the fuel gas supply channel 31 is formed with a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes.
 固体電解質層12には、燃料ガス供給流路31と空気供給流路32のそれぞれが、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。 In the solid electrolyte layer 12, each of the fuel gas supply channel 31 and the air supply channel 32 is formed by a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes. Yes.
 セパレータ21には、燃料ガス供給流路31と空気供給流路32のそれぞれが、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。 In the separator 21, each of the fuel gas supply channel 31 and the air supply channel 32 is formed by a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes.
 燃料ガス流通路層22の焼成前のグリーンシートは、互い違いに並んだ複数の燃料ガス流通路形成層(アノードガス流通路形成層)2210と燃料ガス流通路壁部(アノードガス流通路壁部;リブ)222とをU字形平板状の電気絶縁体220に嵌めることによって形成されている。燃料ガス供給流路31が、電気絶縁体220と、複数の燃料ガス流通路形成層2210および燃料ガス流通路壁部222との間に形成される隙間に相当し、一方向に延在する開口、すなわち、一つの細長い矩形状の貫通孔で形成されている。燃料ガス流通路形成層2210は、焼成後において消失することによって、燃料極層11に燃料ガスを供給する燃料ガス供給流路31に通じ、かつ、燃料極層11に燃料ガスを流通させる燃料ガス流通路(アノードガス流通路)221(図3参照)になる。電気絶縁体220には、空気供給流路32が、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。 The green sheet before firing of the fuel gas flow passage layer 22 includes a plurality of fuel gas flow passage formation layers (anode gas flow passage formation layers) 2210 and fuel gas flow passage wall portions (anode gas flow passage wall portions) arranged in a staggered manner. Rib) 222 is fitted to U-shaped flat electrical insulator 220. The fuel gas supply channel 31 corresponds to a gap formed between the electrical insulator 220, the plurality of fuel gas flow channel formation layers 2210, and the fuel gas flow channel wall 222, and extends in one direction. That is, it is formed by one elongated rectangular through hole. The fuel gas flow passage forming layer 2210 disappears after firing, thereby leading to the fuel gas supply channel 31 for supplying the fuel gas to the fuel electrode layer 11 and allowing the fuel gas to flow through the fuel electrode layer 11. It becomes a flow passage (anode gas flow passage) 221 (see FIG. 3). In the electrical insulator 220, the air supply flow path 32 is formed with a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes.
 空気流通路層23の焼成前のグリーンシートは、互い違いに並んだ複数の空気流通路形成層(カソードガス流通路形成層)2310と空気流通路壁部(カソードガス流通路壁部;リブ)232とをU字形平板状の電気絶縁体230に嵌めることによって形成されている。空気供給流路32が、電気絶縁体230と、複数の空気流通路形成層2310および空気流通路壁部232との間に形成される隙間に相当し、一方向に延在する開口、すなわち、一つの細長い矩形状の貫通孔で形成されている。空気流通路形成層2310は、焼成後において消失することによって、空気極層13に空気を供給する空気供給流路32に通じ、かつ、空気極層13に空気を流通させる空気流通路(カソードガス流通路)231(図3参照)になる。電気絶縁体230には、燃料ガス供給流路31が、一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。  The green sheet before firing of the air flow passage layer 23 includes a plurality of air flow passage formation layers (cathode gas flow passage formation layers) 2310 and air flow passage wall portions (cathode gas flow passage wall portions; ribs) 232 arranged in a staggered manner. Are fitted into a U-shaped flat electrical insulator 230. The air supply flow path 32 corresponds to a gap formed between the electrical insulator 230 and the plurality of air flow passage forming layers 2310 and the air flow passage wall portion 232, and is an opening extending in one direction, that is, It is formed by one elongated rectangular through hole. The air flow passage forming layer 2310 disappears after firing, so that the air flow passage formation layer 2310 communicates with the air supply flow path 32 that supplies air to the air electrode layer 13 and flows air through the air electrode layer 13 (cathode gas). Flow passage) 231 (see FIG. 3). In the electrical insulator 230, the fuel gas supply channel 31 is formed with a plurality of openings arranged at intervals in one direction, that is, a plurality of circular through holes. *
 この実施形態では、支持層40が燃料ガス流通路層22と燃料極層11との間に配置されている。支持層40の焼成前のグリーンシートは、平板状の電気絶縁体400内に複数のガス流通路形成層4010を配置することによって形成されている。ガス流通路形成層4010は、焼成後において消失することによって、この実施形態では、燃料極層11に燃料ガスを流通させる燃料ガス流通路221(図3参照)に通じるガス流通路401(図3参照)になり、複数のガス流通路401の間に支持壁部402が形成される。複数の支持壁部402は互いに間隔をあけて配置されている。電気絶縁体400には、燃料ガス供給流路31が一方向に延在する開口、すなわち、一つの細長い矩形状の貫通孔で形成され、空気ガス供給流路32が一方向に間隔をあけて配置された複数の開口、すなわち、複数の円形状の貫通孔で形成されている。 In this embodiment, the support layer 40 is disposed between the fuel gas flow passage layer 22 and the fuel electrode layer 11. The green sheet before firing of the support layer 40 is formed by disposing a plurality of gas flow path forming layers 4010 in a flat electrical insulator 400. In this embodiment, the gas flow passage forming layer 4010 disappears after firing, and in this embodiment, the gas flow passage 401 (see FIG. 3) communicates with the fuel gas flow passage 221 (see FIG. 3) through which the fuel gas flows. The support wall portion 402 is formed between the plurality of gas flow passages 401. The plurality of support wall portions 402 are arranged at intervals. In the electrical insulator 400, the fuel gas supply channel 31 is formed with an opening extending in one direction, that is, one elongated rectangular through hole, and the air gas supply channel 32 is spaced in one direction. It is formed by a plurality of arranged openings, that is, a plurality of circular through holes.
 図2と図3は、本発明の一つの実施形態として燃料ガス流通路壁部222、空気流通路壁部232および支持壁部402の配置を示す平面図と斜視図である。 2 and 3 are a plan view and a perspective view showing the arrangement of the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 as one embodiment of the present invention.
 図1に示すように支持層40が燃料ガス流通路層22と燃料極層11との間に配置される場合には、図2と図3に示すように複数の支持壁部402が空気流通路層23内の複数の空気流通路231の位置に整合するように形成され、支持層40が積層されている。  When the support layer 40 is disposed between the fuel gas flow passage layer 22 and the fuel electrode layer 11 as shown in FIG. 1, the plurality of support walls 402 are arranged to distribute air as shown in FIGS. 2 and 3. The support layer 40 is laminated so as to be aligned with the positions of the plurality of air flow passages 231 in the road layer 23. *
 なお、支持層40が空気流通路層23と空気極層13との間に配置される場合には、複数の支持壁部402が燃料ガス流通路層22内の複数の燃料ガス流通路221の位置に整合するように形成され、支持層40が積層される。 In the case where the support layer 40 is disposed between the air flow passage layer 23 and the air electrode layer 13, the plurality of support wall portions 402 of the plurality of fuel gas flow passages 221 in the fuel gas flow passage layer 22 are provided. The support layer 40 is formed so as to be aligned with the position.
 図4の(A)、(B)、(C)および(D)は、図2のA-A線、B-B線、C-C線およびD-D線における切断部端面図である。 (A), (B), (C) and (D) in FIG. 4 are cross-sectional end views taken along lines AA, BB, CC and DD in FIG.
 図1、図2および図4に示すように、セル10で発生した電力を取り出すために、かつ、複数のセル10を相互に電気的に接続するために電気導電体211、223、233、403が配置されている。電気導電体211は、セパレータ21の本体を構成する電気絶縁体210内に形成された複数のビアホールに充填されている。電気導電体223は、燃料ガス流通路壁部222内に形成された複数のビアホールに充填されている。電気導電体233は、空気流通路壁部232内に形成された複数のビアホールに充填されている。電気導電体403は、支持壁部402内に形成された複数のビアホールに充填されている。上記の場合、燃料ガス流通路壁部222、空気流通路壁部232、および、支持壁部402は、たとえば、電気絶縁性のセラミック材料から形成され、セパレータ21の本体を構成する電気絶縁体210、燃料ガス流通路層22を構成する電気絶縁体220、空気流通路層23を構成する電気絶縁体230、および、支持層40を構成する電気絶縁体400と同一の材料から形成されるのが好ましい。このように構成することによって、焼成によって一体的に連続して形成することができる。 As shown in FIGS. 1, 2, and 4, electrical conductors 211, 223, 233, 403 are used to extract power generated in the cell 10 and to electrically connect the plurality of cells 10 to each other. Is arranged. The electric conductor 211 is filled in a plurality of via holes formed in the electric insulator 210 constituting the main body of the separator 21. The electric conductor 223 is filled in a plurality of via holes formed in the fuel gas flow passage wall 222. The electric conductor 233 is filled in a plurality of via holes formed in the air flow passage wall 232. The electric conductor 403 is filled in a plurality of via holes formed in the support wall portion 402. In the above case, the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 are formed of, for example, an electrically insulating ceramic material, and the electrical insulator 210 that constitutes the main body of the separator 21. The electric insulator 220 constituting the fuel gas flow passage layer 22, the electric insulator 230 constituting the air flow passage layer 23, and the electric insulator 400 constituting the support layer 40 are formed of the same material. preferable. By comprising in this way, it can form integrally continuously by baking.
 なお、燃料ガス流通路壁部222、空気流通路壁部232、および、支持壁部402は、機能的には導電性を有する必要があるため、電気導電体を充填するビアホールを形成しないで、導電性のセラミックスから形成されてもよい。 In addition, since the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 need to be functionally conductive, a via hole that fills the electric conductor is not formed. You may form from electroconductive ceramics.
 燃料ガス流通路壁部222、空気流通路壁部232、および、支持壁部402は、安定化ジルコニア、部分安定化ジルコニア、希土類元素がドープされたセリア、希土類元素がドープされたランタンガレート等の電解質材料;アルカリ土類金属元素がドープされたランタンクロマイト、希土類元素,ニオブまたはタンタルがドープされたチタン酸ストロンチウム、ランタンフェレート、アルミニウムで置換されたランタンフェレート等の導電性のセラミック材料;アルミナ、マグネシア、チタン酸ストロンチウム、これらの混合材料等の電気絶縁性のセラミック材料などによって形成することができる。支持壁部402を形成する材料は、燃料ガス流通路壁部222と空気流通路壁部232を形成する材料と同じであることが好ましい。支持壁部402を形成する材料と、燃料ガス流通路壁部222と空気流通路壁部232を形成する材料とが異なる材料で、導電性のセラミック材料と電気絶縁性のセラミック材料との組み合わせであるとき、相互拡散により、燃料ガス流通路壁部222、空気流通路壁部232、および、支持壁部402の導電性が損なわれる場合がある。希土類元素がドープされたセリアは化学的に安定であるので、多くの他の材料と組み合わせて用いることができる。 The fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 are made of stabilized zirconia, partially stabilized zirconia, ceria doped with rare earth elements, lanthanum gallate doped with rare earth elements, etc. Electrolytic materials; conductive ceramic materials such as lanthanum chromite doped with alkaline earth metal elements, strontium titanate doped with rare earth elements, niobium or tantalum, lanthanum ferrate, lanthanum ferrate substituted with aluminum; alumina , Magnesia, strontium titanate, and a mixed material of these materials can be used. The material forming the support wall 402 is preferably the same as the material forming the fuel gas flow passage wall 222 and the air flow passage wall 232. The material for forming the support wall 402 is different from the material for forming the fuel gas flow passage wall 222 and the air flow passage wall 232, and is a combination of a conductive ceramic material and an electrically insulating ceramic material. In some cases, the electrical conductivity of the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 may be impaired due to mutual diffusion. Ceria doped with rare earth elements is chemically stable and can be used in combination with many other materials.
 図1~図4に示すように、本発明の実施形態では、要約すれば、燃料ガス流通路層22は、セル10の外側で燃料極層11に積層され、かつ、燃料極層11に燃料ガスを供給する複数の燃料ガス流通路221の各々を互いに分離するように間隔をあけて形成される複数の燃料ガス流通路壁部222を有する。空気流通路層23は、セル10の外側で空気極層13に積層され、かつ、空気極層13に空気を供給する複数の空気流通路231の各々を互いに分離するように間隔をあけて形成される複数の空気流通路壁部232を有する。支持層40は、燃料ガス流通路層22と燃料極層11との間に配置され、かつ、互いに間隔をあけて形成される複数の支持壁部402を有する。複数の支持壁部402が複数の空気流通路231の位置に整合するように支持層40が積層されている。複数の燃料ガス流通路壁部(リブ)222を有する燃料ガス流通路層22とセル10(燃料極層11)との間に、空気流通路231の位置に整合する複数の支持壁部402を有する支持層40が配置されている。このようにセル(発電素子部)10を構成する燃料極層11と燃料ガス流通路壁部(リブ)222を有する燃料ガス流通路層22との間に支持層40が介在している。したがって、セル10を構成する燃料極層11と燃料ガス流通路壁部(リブ)222を有する燃料ガス流通路層22との間では、支持層40が介在することにより、セル10を構成する燃料極層11が燃料ガス流通路壁部(リブ)222を有する燃料ガス流通路層22に拘束されない箇所が存在する。このため、焼成から冷却までの一連の収縮の挙動において、セル10の層に反りまたはうねりが生じても、セル10と燃料ガス流通路壁部(リブ)222または空気流通路壁部(リブ)232との間で剥離または分離が生じたり、クラックが発生することを防止することができる。これにより、セル10と燃料ガス流通路壁部(リブ)222または空気流通路壁部(リブ)232との間で接続不良が起こることを防止することができるので、燃料ガス流通路壁部(リブ)222に形成される電気導電体223と空気流通路壁部(リブ)232に形成される電気導電体233とを通じて効率よく集電することができ、出力電圧の低下を抑制することができる。  As shown in FIGS. 1 to 4, according to the embodiment of the present invention, in summary, the fuel gas flow passage layer 22 is laminated on the fuel electrode layer 11 outside the cell 10, and the fuel electrode layer 11 is fueled. Each of the plurality of fuel gas flow passages 221 for supplying gas has a plurality of fuel gas flow passage wall portions 222 formed at intervals so as to be separated from each other. The air flow passage layer 23 is laminated on the air electrode layer 13 outside the cell 10 and is formed at intervals so as to separate each of the plurality of air flow passages 231 that supply air to the air electrode layer 13. A plurality of air flow passage wall portions 232 formed. The support layer 40 includes a plurality of support wall portions 402 that are disposed between the fuel gas flow passage layer 22 and the fuel electrode layer 11 and are spaced from each other. The support layer 40 is laminated so that the plurality of support wall portions 402 are aligned with the positions of the plurality of air flow passages 231. Between the fuel gas flow passage layer 22 having the plurality of fuel gas flow passage wall portions (ribs) 222 and the cell 10 (fuel electrode layer 11), a plurality of support wall portions 402 aligned with the position of the air flow passage 231 are provided. A support layer 40 is disposed. Thus, the support layer 40 is interposed between the fuel electrode layer 11 constituting the cell (power generation element portion) 10 and the fuel gas flow passage layer 22 having the fuel gas flow passage wall portion (rib) 222. Therefore, the fuel constituting the cell 10 is interposed between the fuel electrode layer 11 constituting the cell 10 and the fuel gas flow passage layer 22 having the fuel gas flow passage wall portion (rib) 222 by interposing the support layer 40. There is a location where the polar layer 11 is not restrained by the fuel gas flow passage layer 22 having the fuel gas flow passage wall portion (rib) 222. For this reason, in a series of shrinkage behaviors from firing to cooling, even if the layer of the cell 10 is warped or undulated, the cell 10 and the fuel gas flow passage wall (rib) 222 or the air flow passage wall (rib) It is possible to prevent peeling or separation with respect to H.232 or occurrence of cracks. Thereby, it is possible to prevent a connection failure between the cell 10 and the fuel gas flow passage wall (rib) 222 or the air flow passage wall (rib) 232, so that the fuel gas flow passage wall ( Rib) 222 can be efficiently collected through the electric conductor 223 formed on the rib 222 and the electric conductor 233 formed on the air flow passage wall (rib) 232, and a decrease in output voltage can be suppressed. . *
 図5は、図4においてセルにうねりが生じた場合の切断部端面図である。図5の(A)、(B)、(C)および(D)は、図4と同様に、図2のA-A線、B-B線、C-C線およびD-D線における切断部端面図である。 FIG. 5 is an end view of the cut portion when the undulation occurs in the cell in FIG. 5 (A), (B), (C) and (D) are cut along the lines AA, BB, CC and DD in FIG. 2, as in FIG. FIG.
 具体的には、図5(A)に示す切断部端面では、焼成から冷却までの一連の収縮の挙動において、セル10の層にうねりが生じても、セル10と燃料ガス流通路壁部(リブ)222との間で剥離または分離が生じたり、クラックが発生することを防止することができる。また、図5(C)に示す切断部端面では、他の切断部端面にて支持壁部402を有する支持層40が介在することにより、セル10の層と燃料ガス流通路壁部(リブ)222との間は離隔しており、セル10の層は燃料ガス流通路壁部(リブ)222と空気流通路壁部(リブ)232とによって引張られないので、セル10の層が剥離または分離することがない。さらに、図5(D)に示す切断部端面では、支持壁部402がセル10の層を引張るためにうねりが生じない。 Specifically, in the cut end face shown in FIG. 5 (A), even if undulation occurs in the layer of the cell 10 in a series of shrinkage behaviors from firing to cooling, the cell 10 and the fuel gas flow passage wall ( It is possible to prevent peeling or separation with respect to (rib) 222 or occurrence of cracks. 5C, the layer of the cell 10 and the fuel gas flow passage wall (rib) are provided by interposing the support layer 40 having the support wall 402 at the other end of the cut. 222 is spaced apart and the layers of the cell 10 are not pulled by the fuel gas flow passage walls (ribs) 222 and the air flow passage walls (ribs) 232 so that the layers of the cells 10 are peeled or separated. There is nothing to do. 5D, the support wall portion 402 pulls the layer of the cell 10, and thus no undulation occurs.
 これに対して、本発明の比較形態として、複数の燃料ガス流通路壁部(リブ)222を有する燃料ガス流通路層22とセル10(燃料極層11)との間に支持層40が配置されていない場合として、図6は図2に対応し、燃料ガス流通路壁部および空気流通路壁部の配置を示す平面図、図7は図3に対応し、燃料ガス流通路壁部および空気流通路壁部の配置を示す斜視図、図8は図4に対応し、図6のA-A線、B-B線、C-C線、D-D線における切断部端面図、図9は図5に対応し、図8においてセルにうねりが生じた場合の切断部端面図である。 On the other hand, as a comparative form of the present invention, the support layer 40 is disposed between the fuel gas flow passage layer 22 having a plurality of fuel gas flow passage wall portions (ribs) 222 and the cell 10 (fuel electrode layer 11). FIG. 6 corresponds to FIG. 2, and is a plan view showing the arrangement of the fuel gas flow passage wall and the air flow passage wall. FIG. 7 corresponds to FIG. FIG. 8 is a perspective view showing the arrangement of the air flow passage wall, and FIG. 8 corresponds to FIG. 4, and is an end view of a cut portion taken along lines AA, BB, CC, and DD in FIG. FIG. 9 corresponds to FIG. 5 and is an end view of the cut portion when the undulation occurs in the cell in FIG.
 図9(A)に示す切断部端面では、焼成から冷却までの一連の収縮の挙動において、セル10の層にうねりが生じることにより、セル10と燃料ガス流通路壁部(リブ)222との間で剥離または分離が生じる。また、図9(C)に示す切断部端面では、セル10の層は燃料ガス流通路壁部(リブ)222と空気流通路壁部(リブ)232とによって引張られ、燃料ガス流通路壁部(リブ)222の引張る力が空気流通路壁部(リブ)232の引張る力に比べて弱い場合、セル10の層が剥離または分離する。さらに、図9(D)に示す切断部端面では、セル10の層にうねりが生じる。 In the cut end face shown in FIG. 9A, in the series of shrinkage behaviors from firing to cooling, undulation occurs in the layer of the cell 10, whereby the cell 10 and the fuel gas flow passage wall (rib) 222 are separated. Separation or separation occurs between them. 9C, the layer of the cell 10 is stretched by the fuel gas flow passage wall (rib) 222 and the air flow passage wall (rib) 232, and the fuel gas flow passage wall. When the pulling force of the (rib) 222 is weaker than the pulling force of the air flow passage wall (rib) 232, the layers of the cell 10 are peeled or separated. Furthermore, in the end surface of the cut portion shown in FIG.
 上記の実施形態では、燃料ガス流通路層22とセル10(燃料極層11)との間に支持層40が配置されているが、複数の空気流通路壁部(リブ)232を有する空気流通路層23とセル10(空気極層13)との間に、燃料ガス流通路221の位置に整合する複数の支持壁部402を有する支持層40が配置されてもよい。このように構成しても上述の作用効果を達成することができる。 In the above embodiment, the support layer 40 is disposed between the fuel gas flow passage layer 22 and the cell 10 (fuel electrode layer 11), but the air flow having a plurality of air flow passage wall portions (ribs) 232. Between the road layer 23 and the cell 10 (air electrode layer 13), a support layer 40 having a plurality of support wall portions 402 aligned with the position of the fuel gas flow passage 221 may be disposed. Even if comprised in this way, the above-mentioned effect can be achieved.
 燃料ガス流通路層22とセル10(燃料極層11)との間に、空気流通路231の位置に整合する複数の支持壁部402を有する支持層40を配置するとともに、空気流通路層23とセル10(空気極層13)との間に、燃料ガス流通路221の位置に整合する複数の支持壁部402を有する支持層40が配置されてもよい。このように構成しても上述の作用効果を達成することができる。 Between the fuel gas flow passage layer 22 and the cell 10 (fuel electrode layer 11), a support layer 40 having a plurality of support wall portions 402 aligned with the position of the air flow passage 231 is disposed. A support layer 40 having a plurality of support wall portions 402 aligned with the position of the fuel gas flow passage 221 may be disposed between the cell 10 and the cell 10 (air electrode layer 13). Even if comprised in this way, the above-mentioned effect can be achieved.
 なお、支持層40の収縮率は10~30%であることが好ましく、支持層40の気孔率は0~55%であることが好ましい。 The shrinkage rate of the support layer 40 is preferably 10 to 30%, and the porosity of the support layer 40 is preferably 0 to 55%.
 燃料ガス流通路壁部222、空気流通路壁部232、および、支持壁部402は、同一の材料から形成されることにより、燃料ガス流通路壁部222または空気流通路壁部232とセル10との接続と同様にして、支持壁部402とセル10とを接続することができる。 The fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 are formed of the same material, so that the fuel gas flow passage wall 222 or the air flow passage wall 232 and the cell 10 are formed. In the same manner as the connection, the support wall portion 402 and the cell 10 can be connected.
 支持壁部402の積層方向の厚みが大きいほど、支持壁部402がセル10を拘束することができるので、セル10とリブとの間で剥離または分離が生じることを防止するのに有効であるが、燃料ガス流通路壁部222または空気流通路壁部232とセル10とが離れることになるので、セル10へのガスの供給効率が低下する。これにより、支持壁部402の積層方向の厚みは、燃料ガス流通路壁部222または空気流通路壁部232の積層方向の厚み以下であることが好ましい。支持壁部402の積層方向の厚みは、燃料ガス流通路壁部222または空気流通路壁部232の積層方向の厚みの1/2以下であることがさらに好ましい。具体的には、燃料ガス流通路壁部222と空気流通路壁部232の積層方向の厚みは100~600μmであることが好ましい。支持壁部402の積層方向の厚みは10~120μmであることが好ましい。 The greater the thickness of the support wall 402 in the stacking direction, the more the support wall 402 can restrain the cell 10, which is more effective in preventing separation or separation between the cell 10 and the rib. However, since the fuel gas flow passage wall 222 or the air flow passage wall 232 and the cell 10 are separated from each other, the gas supply efficiency to the cell 10 is lowered. Thereby, it is preferable that the thickness of the support wall 402 in the stacking direction is equal to or less than the thickness of the fuel gas flow passage wall 222 or the air flow passage wall 232 in the stacking direction. The thickness of the support wall 402 in the stacking direction is more preferably ½ or less of the thickness of the fuel gas flow passage wall 222 or the air flow passage wall 232 in the stacking direction. Specifically, the thickness in the stacking direction of the fuel gas flow passage wall 222 and the air flow passage wall 232 is preferably 100 to 600 μm. The thickness of the support wall 402 in the stacking direction is preferably 10 to 120 μm.
 図10は、本発明のもう一つの実施形態として燃料ガス流通路壁部222、空気流通路壁部232および支持壁部402の配置を示す平面図である。 FIG. 10 is a plan view showing the arrangement of the fuel gas flow passage wall 222, the air flow passage wall 232, and the support wall 402 as another embodiment of the present invention.
 図10に示すように、複数の支持壁部402(斜線で囲まれた領域)が、空気流通路層23内で複数の空気流通路壁部(リブ)232で挟まれた領域、すなわち、複数の空気流通路231(図3参照)の位置に整合し、かつ、空気流通路231の領域内に島状に形成されてもよい。このように構成しても上述の作用効果を達成することができる。この場合、島状の複数の支持壁部402が、複数の燃料ガス流通路壁部(リブ)222の領域内に島状に形成されている。 As shown in FIG. 10, a plurality of support wall portions 402 (regions surrounded by oblique lines) are regions sandwiched by a plurality of air flow passage wall portions (ribs) 232 in the air flow passage layer 23, that is, a plurality of May be formed in an island shape in the region of the air flow passage 231 in alignment with the position of the air flow passage 231 (see FIG. 3). Even if comprised in this way, the above-mentioned effect can be achieved. In this case, a plurality of island-shaped support walls 402 are formed in an island shape in the region of the plurality of fuel gas flow passage walls (ribs) 222.
 なお、支持層40が空気流通路層23と空気極層13との間に配置される場合には、複数の島状の支持壁部402が燃料ガス流通路層22内で複数の燃料ガス流通路壁部(リブ)222で挟まれた領域、すなわち、複数の燃料ガス流通路221(図3参照)の位置に整合し、かつ、燃料ガス流通路221の領域内に島状に形成されてもよい。  When the support layer 40 is disposed between the air flow passage layer 23 and the air electrode layer 13, the plurality of island-like support wall portions 402 are provided in the fuel gas flow passage layer 22 with a plurality of fuel gas flows. The region sandwiched between the road wall portions (ribs) 222, that is, the position of the plurality of fuel gas flow passages 221 (see FIG. 3) is aligned and formed in an island shape within the region of the fuel gas flow passages 221. Also good. *
 図11は、本発明の一つの実施形態として図1の単位モジュールを複数備えた固体電解質形燃料電池の概略的な構成を示す断面図である。 FIG. 11 is a cross-sectional view showing a schematic configuration of a solid oxide fuel cell including a plurality of unit modules of FIG. 1 as one embodiment of the present invention.
 図11に示すように、固体電解質形燃料電池100は、電池構造部として複数のセル10を有し、最上部に位置するセルには電気絶縁体210を介して集電板50が電気的に接続するように配置され、最下部に位置するセルにはセル間分離部20を介して集電板60が電気的に接続するように配置されている。複数のセル10の各々は、順に積層された燃料極層11と固体電解質層12と空気極層13とからなる。セル間分離部20と支持層40は複数のセル10の間に配置される。 As shown in FIG. 11, the solid oxide fuel cell 100 has a plurality of cells 10 as a battery structure portion, and a current collector plate 50 is electrically connected to an uppermost cell via an electrical insulator 210. The current collector plate 60 is disposed so as to be electrically connected via the inter-cell separator 20 to the cell located at the lowermost position. Each of the plurality of cells 10 includes a fuel electrode layer 11, a solid electrolyte layer 12, and an air electrode layer 13 that are sequentially stacked. The inter-cell separator 20 and the support layer 40 are disposed between the plurality of cells 10.
 また、図1と図11に示すように、本発明の固体電解質形燃料電池100は、複数のセル10を含む電池構造部と、複数のセル10の間に配置されるセル間分離部20と、複数の燃料ガス流通路221に燃料ガスを供給する燃料ガス供給流路31と、複数の空気流通路231に空気を供給する空気供給流路32とを有するガス供給流路構造部30とを備えている。この場合、セル間分離部20は、燃料ガス流通路層22と、空気流通路層23と、支持層40とを含み、複数のセル10を含む電池構造部、セル間分離部20、および、ガス供給流路構造部30が一体的に形成されている。 As shown in FIGS. 1 and 11, the solid oxide fuel cell 100 of the present invention includes a battery structure portion including a plurality of cells 10, and an inter-cell separation portion 20 disposed between the plurality of cells 10. A gas supply flow path structure portion 30 having a fuel gas supply flow path 31 for supplying fuel gas to the plurality of fuel gas flow paths 221 and an air supply flow path 32 for supplying air to the plurality of air flow paths 231. I have. In this case, the inter-cell separation unit 20 includes a fuel gas flow passage layer 22, an air flow passage layer 23, and a support layer 40, and includes a battery structure unit including a plurality of cells 10, an inter-cell separation unit 20, and The gas supply flow path structure 30 is integrally formed.
 このように構成することにより、セパレータとマニホールドの二つの機能を果たす部分を一体的に連続して形成することができる。 By configuring in this way, it is possible to integrally and continuously form the portions that perform the two functions of the separator and the manifold.
 なお、電気絶縁体110、130、210、220、230、400は、たとえば、添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)、添加量12モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(セリア安定化ジルコニア:CeSZ)等を用いて形成される。電気導電体211、223、233、403は、たとえば、銀(Ag)‐白金(Pt)合金、銀(Ag)‐パラジウム(Pd)合金等を用いて形成される。固体電解質層12は、たとえば、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)、添加量11モル%のスカンジア(Sc)で安定化されたジルコニア(ZrO)(スカンジア安定化ジルコニア:ScSZ)等を用いて形成される。燃料極層11は、たとえば、酸化ニッケル(NiO)と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)との混合物等を用いて形成される。空気極層13は、たとえば、La0.8Sr0.2MnOと、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)との混合物等を用いて形成される。集電板50、60は、たとえば、銀(Ag)から形成される。 The electrical insulators 110, 130, 210, 220, 230, and 400 are made of, for example, zirconia (ZrO 2 ) (yttria-stabilized zirconia: YSZ) stabilized with 3 mol% of yttria (Y 2 O 3 ) added. ), Zirconia (ZrO 2 ) (ceria stabilized zirconia: CeSZ) stabilized with ceria (CeO 2 ) added in an amount of 12 mol%. The electrical conductors 211, 223, 233, and 403 are formed using, for example, a silver (Ag) -platinum (Pt) alloy, a silver (Ag) -palladium (Pd) alloy, or the like. The solid electrolyte layer 12 includes, for example, zirconia (ZrO 2 ) (scandia ceria stabilized zirconia stabilized with 10 mol% scandia (Sc 2 O 3 ) and 1 mol% ceria (CeO 2 ) added: ScCeSZ), zirconia (ZrO 2 ) stabilized with scandia (Sc 2 O 3 ) with an addition amount of 11 mol% (scandia stabilized zirconia: ScSZ), and the like. Fuel electrode layer 11, for example, a nickel oxide (NiO), the addition amount 10 mol% of scandia (Sc 2 O 3) and zirconia stabilized with the addition of 1 mol% of ceria (CeO 2) (ZrO 2) It is formed using a mixture with (scandiaceria stabilized zirconia: ScCeSZ) or the like. The air electrode layer 13 is stabilized with, for example, La 0.8 Sr 0.2 MnO 3 , scandia (Sc 2 O 3 ) added in an amount of 10 mol%, and ceria (CeO 2 ) added in an amount of 1 mol%. It is formed using a mixture with zirconia (ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ) or the like. The current collecting plates 50 and 60 are made of, for example, silver (Ag).
 以下、上述した実施形態に基づいて本発明の固体電解質形燃料電池を作製した実施例として支持層の厚みが異なる実施例1~4と、本発明の構造と比較するために支持層がない固体電解質形燃料電池を作製した比較例について説明する。 Hereinafter, as examples for producing the solid oxide fuel cells of the present invention based on the above-described embodiments, Examples 1 to 4 having different support layer thicknesses, and solids without a support layer for comparison with the structure of the present invention. A comparative example for producing an electrolyte fuel cell will be described.
 まず、図1に示す実施形態の固体電解質形燃料電池の単位モジュールを構成する部材(A)~(D)の材料粉末を以下のとおり準備した。 First, material powders of members (A) to (D) constituting the unit module of the solid oxide fuel cell of the embodiment shown in FIG. 1 were prepared as follows.
 (A)燃料極層11:酸化ニッケル(NiO)60重量%と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)40重量%との混合物 (A) Fuel electrode layer 11: zirconia stabilized with 60% by weight of nickel oxide (NiO), scandia (Sc 2 O 3 ) with an addition amount of 10 mol% and ceria (CeO 2 ) with an addition amount of 1 mol% ( ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ) with 40% by weight
 (B)固体電解質層12:添加量10モル%のスカンジア(Sc2O3)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ) (B) Solid electrolyte layer 12: zirconia (ZrO 2 ) (scandiaceria stabilized zirconia: ScCeSZ) stabilized with 10 mol% scandia (Sc 2 O 3) and 1 mol% ceria (CeO 2 ) added
 (C)空気極層13:La0.8Sr0.2MnO60重量%と、添加量10モル%のスカンジア(Sc)と添加量1モル%のセリア(CeO)で安定化されたジルコニア(ZrO)(スカンジアセリア安定化ジルコニア:ScCeSZ)40重量%との混合物 (C) The air electrode layer 13: Stable in La 0.8 Sr 0.2 MnO 3 60 wt% and the addition amount 10 mol% of scandia (Sc 2 O 3) and the addition amount 1 mol% of ceria (CeO 2) With Zirconia Zirconia (ZrO 2 ) (Scandiaceria Stabilized Zirconia: ScCeSZ) 40 wt%
 (D)電気絶縁体110、電気絶縁体130、セパレータ21の電気絶縁体210、燃料ガス流通路層22の電気絶縁体220と燃料ガス流通路壁部(リブ)222、空気流通路層23の電気絶縁体230と空気流通路壁部(リブ)232、および、支持層40の電気絶縁体400と支持壁部402:添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:3YSZ) (D) The electric insulator 110, the electric insulator 130, the electric insulator 210 of the separator 21, the electric insulator 220 of the fuel gas flow passage layer 22, the fuel gas flow passage wall (rib) 222, and the air flow passage layer 23. Electrical insulator 230 and airflow passage wall (rib) 232, and electrical insulator 400 and support wall 402 of support layer 40: zirconia stabilized with 3 mol% yttria (Y 2 O 3 ) added (ZrO 2 ) (yttria stabilized zirconia: 3YSZ)
 まず、図1に示すように、部材(D)を以下のように作製した。 First, as shown in FIG. 1, a member (D) was produced as follows.
 セパレータ21の電気絶縁体210、燃料ガス流通路層22の電気絶縁体220と燃料ガス流通路壁部(リブ)222、空気流通路層23の電気絶縁体230と空気流通路壁部(リブ)232、および、支持層40の電気絶縁体400と支持壁部402については、電気絶縁材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、各部材のグリーンシートを作製した。 The electrical insulator 210 of the separator 21, the electrical insulator 220 of the fuel gas flow passage layer 22 and the fuel gas flow passage wall (rib) 222, the electrical insulator 230 of the air flow passage layer 23 and the air flow passage wall (rib). 232, and the electrical insulator 400 and the support wall portion 402 of the support layer 40 are a mixture of an electrically insulating material powder, a polyvinyl butyral binder, ethanol and toluene as an organic solvent (a mixing ratio of 1 by weight). : 4) was mixed, and then green sheets of the respective members were produced.
 セパレータ21の電気絶縁体210、燃料ガス流通路層22の燃料ガス流通路壁部(リブ)222、空気流通路層23の空気流通路壁部(リブ)232、および、支持層40の支持壁部402のグリーンシートでは、図1に示すように、電気絶縁体に複数の電気導電体211、223、233、403を形成するための貫通孔を形成した。これらの貫通孔に70重量%の銀と30重量%のパラジウムとからなるペーストを充填することにより、電気導電体211、223、233、403を形成するための導電性ペースト充填層を作製した。 The electric insulator 210 of the separator 21, the fuel gas flow passage wall (rib) 222 of the fuel gas flow passage layer 22, the air flow passage wall (rib) 232 of the air flow passage layer 23, and the support wall of the support layer 40. In the green sheet of the portion 402, as shown in FIG. 1, through holes for forming a plurality of electrical conductors 211, 223, 233, 403 were formed in the electrical insulator. A conductive paste filling layer for forming the electric conductors 211, 223, 233, and 403 was prepared by filling these through holes with a paste made of 70% by weight of silver and 30% by weight of palladium.
 また、図1に示すように、セパレータ21の電気絶縁体210、燃料ガス流通路層22の電気絶縁体220、空気流通路層23の電気絶縁体230、および、支持層40の電気絶縁体400には、燃料ガス供給流路31と空気供給流路32を形成するために、円形と細長い矩形の貫通孔を形成した。円形の貫通孔は、直径が4.5mmで12mmの間隔で均等に5個配置した。矩形の貫通孔は、幅が4.5mmで長さが61.5mmであった。  Further, as shown in FIG. 1, the electrical insulator 210 of the separator 21, the electrical insulator 220 of the fuel gas flow passage layer 22, the electrical insulator 230 of the air flow passage layer 23, and the electrical insulator 400 of the support layer 40. In order to form the fuel gas supply channel 31 and the air supply channel 32, circular and elongated rectangular through holes were formed. Five circular through holes were evenly arranged with a diameter of 4.5 mm and an interval of 12 mm. The rectangular through hole had a width of 4.5 mm and a length of 61.5 mm. *
 燃料ガス流通路層22のグリーンシートでは、図1に示すように、燃料ガス供給流路31を形成するための貫通孔に接続するように、ポリエチレンテレフタレート(PET)からなる燃料ガス流通路形成層2210を形成した。この燃料ガス流通路形成層2210は、焼成後において消失することにより、燃料ガスを供給する燃料ガス供給流路31に通じ、かつ、燃料極層11に燃料ガスを流通させる燃料ガス流通路221(図3)になる。なお、図1では3つの燃料ガス流通路、図3では4つの燃料ガス流通路221が形成されるようになっているが、実際には幅が0.8mmで長さが61.5mmの燃料ガス流通路221を0.8mmの間隔(リブ)で多数配置した。 In the green sheet of the fuel gas flow passage layer 22, as shown in FIG. 1, a fuel gas flow passage formation layer made of polyethylene terephthalate (PET) is connected to a through hole for forming the fuel gas supply flow path 31. 2210 was formed. The fuel gas flow passage forming layer 2210 disappears after firing, thereby leading to the fuel gas supply passage 31 for supplying the fuel gas, and the fuel gas flow passage 221 ( Fig. 3). In FIG. 1, three fuel gas flow passages are formed, and in FIG. 3, four fuel gas flow passages 221 are formed. Actually, however, the fuel has a width of 0.8 mm and a length of 61.5 mm. A number of gas flow passages 221 were arranged at intervals (ribs) of 0.8 mm.
 空気流通路層23のグリーンシートでは、図1に示すように、空気供給流路32を形成するための貫通孔に接続するように、ポリエチレンテレフタレート(PET)からなる空気流通路形成層2310を形成した。この空気流通路形成層2310は、焼成後において消失することにより、空気を供給する空気供給流路32に通じ、かつ、空気極層13に空気を流通させる空気流通路231(図3)になる。なお、図1では3つの空気流通路、図3では5つの空気流通路231が形成されるようになっているが、実際には幅が0.8mmで長さが61.5mmの空気流通路231を0.8mmの間隔(リブ)で多数配置した。 In the green sheet of the air flow passage layer 23, as shown in FIG. 1, an air flow passage formation layer 2310 made of polyethylene terephthalate (PET) is formed so as to be connected to the through hole for forming the air supply flow path 32. did. The air flow passage forming layer 2310 disappears after firing, thereby leading to an air supply passage 32 for supplying air and forming an air flow passage 231 (FIG. 3) through which air flows through the air electrode layer 13. . In FIG. 1, three air flow passages are formed, and in FIG. 3, five air flow passages 231 are formed. Actually, the air flow passage has a width of 0.8 mm and a length of 61.5 mm. A number 231 were arranged at intervals (ribs) of 0.8 mm.
 次に、電気絶縁体130については、電気絶縁材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により電気絶縁体130のグリーンシートを作製した。 Next, with respect to the electrical insulator 130, the electrical insulation material powder, the polyvinyl butyral binder, and a mixture of ethanol and toluene as an organic solvent (mixing ratio by weight is 1: 4) are mixed with the doctor. A green sheet of the electrical insulator 130 was produced by a blade method.
 電気絶縁体130のグリーンシートでは、空気供給流路32を形成するための隙間を存在させて空気極層13のグリーンシートを嵌め合わせすることができるように、図1に示すように、ほぼU字形状のシートを作製した。また、図1に示すように電気絶縁体130に燃料ガス供給流路31を形成するために上記と同様の大きさの円形の貫通孔を電気絶縁体130のグリーンシートに形成した。 As shown in FIG. 1, the green sheet of the electrical insulator 130 has a substantially U shape as shown in FIG. 1 so that the green sheet of the air electrode layer 13 can be fitted with a gap for forming the air supply channel 32. A letter-shaped sheet was produced. Further, as shown in FIG. 1, in order to form the fuel gas supply channel 31 in the electric insulator 130, a circular through hole having the same size as the above was formed in the green sheet of the electric insulator 130.
 そして、電気絶縁体110については、電気絶縁材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により電気絶縁体110のグリーンシートを作製した。 And about the electrical insulator 110, after mixing an electrical insulation material powder, a polyvinyl butyral binder, and a mixture of ethanol and toluene as an organic solvent (mixing ratio is 1: 4 by weight), a doctor blade A green sheet of the electrical insulator 110 was produced by the method.
 電気絶縁体110のグリーンシートでは、燃料ガス供給流路31を形成するための隙間を存在させて燃料極層11のグリーンシートを嵌め合わせすることができるように、図1に示すように、ほぼU字形状のシートを作製した。また、図1に示すように電気絶縁体110に空気供給流路32を形成するために上記と同様の大きさの円形の貫通孔を電気絶縁体110のグリーンシートに形成した。 As shown in FIG. 1, the green sheet of the electrical insulator 110 has a gap for forming the fuel gas supply channel 31 so that the green sheet of the fuel electrode layer 11 can be fitted. A U-shaped sheet was produced. Further, as shown in FIG. 1, in order to form the air supply channel 32 in the electrical insulator 110, a circular through hole having the same size as described above was formed in the green sheet of the electrical insulator 110.
 次に、図1に示す空気極層13、燃料極層11、および、固体電解質層12のグリーンシートを以下のようにして作製した。 Next, the green sheets of the air electrode layer 13, the fuel electrode layer 11, and the solid electrolyte layer 12 shown in FIG. 1 were produced as follows.
 燃料極層11と空気極層13のそれぞれの材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により、燃料極層11と空気極層13のグリーンシートを作製した。 After mixing each material powder of the fuel electrode layer 11 and the air electrode layer 13, a polyvinyl butyral binder, and a mixture of ethanol and toluene as an organic solvent (mixing ratio by weight is 1: 4), the doctor The green sheet of the fuel electrode layer 11 and the air electrode layer 13 was produced by the blade method.
 固体電解質層12の材料粉末と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノールとトルエンとの混合物(重量比率で混合比が1:4)とを混合した後、ドクターブレード法により固体電解質層12のグリーンシートを作製した。固体電解質層12のグリーンシートには、図1に示すように、燃料ガス供給流路31と空気供給流路32を形成するための上記と同様の大きさの細長い矩形の貫通孔を形成した。  After mixing the material powder of the solid electrolyte layer 12, the polyvinyl butyral binder, and a mixture of ethanol and toluene as an organic solvent (weight ratio is 1: 4), the solid electrolyte layer 12 is mixed by a doctor blade method. A green sheet was prepared. In the green sheet of the solid electrolyte layer 12, as shown in FIG. 1, elongated rectangular through holes having the same size as described above for forming the fuel gas supply channel 31 and the air supply channel 32 were formed. *
 以上のようにして作製されたセパレータ21、燃料ガス流通路層22、支持層40、燃料極層11が嵌め合わせられた電気絶縁体110、固体電解質層12、空気極層13が嵌め合わせられた電気絶縁体130、空気流通路層23、および、セパレータ21のグリーンシートを図1に示すように下から順に積層した。これにより、セパレータ21(焼成後の厚み:300μm)/空気流通路層23(焼成後の厚み:300μm)/空気極層13(焼成後の厚み:80μm)/固体電解質層12(焼成後の厚み:40μm)/燃料極層11(焼成後の厚み:80μm)/支持層40(焼成後の厚み:10μm(実施例1)、30μm(実施例2)、60μm(実施例3)、120μm(実施例4)、0μm(比較例:支持層なし)/燃料ガス流通路層22(焼成後の厚み:300μm)/セパレータ21(焼成後の厚み:300μm)からなる固体電解質形燃料電池の単位モジュール1を構成した。 The separator 21, the fuel gas flow passage layer 22, the support layer 40, the electric insulator 110 fitted with the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13 were fitted together. The electrical insulator 130, the air flow passage layer 23, and the green sheets of the separator 21 were laminated in order from the bottom as shown in FIG. Thereby, separator 21 (thickness after firing: 300 μm) / air flow passage layer 23 (thickness after firing: 300 μm) / air electrode layer 13 (thickness after firing: 80 μm) / solid electrolyte layer 12 (thickness after firing) : 40 μm) / fuel electrode layer 11 (thickness after firing: 80 μm) / support layer 40 (thickness after firing: 10 μm (Example 1), 30 μm (Example 2), 60 μm (Example 3), 120 μm (implementation) Example 4), solid oxide fuel cell unit module 1 consisting of 0 μm (comparative example: no support layer) / fuel gas flow passage layer 22 (thickness after firing: 300 μm) / separator 21 (thickness after firing: 300 μm) Configured.
 次に、固体電解質形燃料電池の単位モジュール1を図11に示すように4組積層し、最上部にはガス供給流路を形成していない電気絶縁体210を積層した。この積層体を1000kgf/cmの圧力、80℃の温度にて2分間、冷間静水圧成形することにより圧着した。この圧着体を温度400~500℃の範囲内で脱脂処理を施した後、温度1000℃~1300℃の範囲内で2時間保持することにより、焼成した。このようにして実施例1~4と比較例の固体電解質形燃料電池の試料(積層体において燃料極層11、固体電解質層12、および、空気極層13が重複する平面領域の面積(発電面積):65mm×65mm)を作製した。 Next, four sets of unit modules 1 of the solid oxide fuel cell were stacked as shown in FIG. 11, and an electrical insulator 210 having no gas supply flow path was stacked at the top. The laminate was pressure bonded by cold isostatic pressing at a pressure of 1000 kgf / cm 2 and a temperature of 80 ° C. for 2 minutes. This pressure-bonded body was degreased at a temperature in the range of 400 to 500 ° C., and then fired by being held at a temperature in the range of 1000 to 1300 ° C. for 2 hours. In this way, the solid electrolyte fuel cell samples of Examples 1 to 4 and the comparative example (in the laminate, the area of the planar region where the fuel electrode layer 11, the solid electrolyte layer 12, and the air electrode layer 13 overlap (power generation area) ): 65 mm × 65 mm).
 以上のようにして作製された実施例1~4と比較例の固体電解質形燃料電池の試料の上面と下面に、図11に示すように、銀からなる厚みが20μmの集電板50と60を固着した。 As shown in FIG. 11, current collecting plates 50 and 60 made of silver having a thickness of 20 μm are formed on the upper and lower surfaces of the samples of the solid electrolyte fuel cells of Examples 1 to 4 and Comparative Example manufactured as described above. Fixed.
 (評価)
 得られた実施例1~4と比較例の各試料の燃料電池を750℃に昇温して、5%の水蒸気を含む水素ガス(温度60℃)と空気とをそれぞれ、燃料ガス供給流路31と空気供給流路32とを通じて供給することにより、発電した。また、水素ガスと空気の供給量を増加させることにより、発電によって得られる電流密度を0.5A/cmまで増大させた。燃料利用率(%)を75%に設定して、発電によって得られる出力電圧(V/cell)を測定した。その結果を以下の表1に示す。
(Evaluation)
The obtained fuel cells of Examples 1 to 4 and Comparative Example were heated to 750 ° C., and hydrogen gas containing 5% water vapor (temperature 60 ° C.) and air were respectively supplied to the fuel gas supply channel. Electric power was generated by supplying through the air supply channel 31 and the air supply channel 32. Further, the current density obtained by power generation was increased to 0.5 A / cm 2 by increasing the supply amounts of hydrogen gas and air. The fuel utilization rate (%) was set to 75%, and the output voltage (V / cell) obtained by power generation was measured. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、実施例1~4では高い出力電圧を得ることができ、比較例では出力電圧が低下したことがわかる。比較例の燃料電池では、支持層がないのでセル10の層が剥離して、有効な発電面積が小さくなるため、出力電圧が低下したものと考えられる。  From the above results, it can be seen that a high output voltage can be obtained in Examples 1 to 4, and that the output voltage has decreased in the comparative example. In the fuel cell of the comparative example, since there is no support layer, the layer of the cell 10 is peeled off, and the effective power generation area is reduced. Therefore, it is considered that the output voltage is lowered. *
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではない
と考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .
 1:固体電解質形燃料電池の単位モジュール
10:セル
11:燃料極層
12:固体電解質層
13:空気極層
20:セル間分離部
21:セパレータ
22:燃料ガス流通路層
23:空気流通路層
30:ガス供給流路構造部
31:燃料ガス供給流路
32:空気供給流路
40:支持層
100:固体電解質形燃料電池
211,223,233,403:電気導電体
221:燃料ガス流通路
222:燃料ガス流通路壁部
231:空気流通路
232:空気流通路壁部
401:ガス流通路、402:支持壁部。
1: Unit module 10 of a solid electrolyte fuel cell 10: Cell 11: Fuel electrode layer 12: Solid electrolyte layer 13: Air electrode layer 20: Inter-cell separator 21: Separator 22: Fuel gas flow path layer 23: Air flow path layer 30: Gas supply flow path structure 31: Fuel gas supply flow path 32: Air supply flow path 40: Support layer 100: Solid electrolyte fuel cells 211, 223, 233, 403: Electric conductor 221: Fuel gas flow path 222 : Fuel gas flow passage wall 231: air flow passage 232: air flow passage wall 401: gas flow passage, 402: support wall.

Claims (5)

  1.  アノード層、固体電解質層およびカソード層の積層体からなるセルと、
     前記セルの外側でアノード層に積層され、かつ、前記アノード層にアノードガスを供給する複数のアノードガス流通路の各々を互いに分離するように間隔をあけて形成される複数のアノードガス流通路壁部を有するアノードガス流通路層と、
     前記セルの外側でカソード層に積層され、かつ、前記カソード層にカソードガスを供給する複数のカソードガス流通路の各々を互いに分離するように間隔をあけて形成される複数のカソードガス流通路壁部を有するカソードガス流通路層と、
     前記アノードガス流通路層と前記アノード層との間、および、前記カソードガス流通路層と前記カソード層との間の少なくともいずれか一方に配置され、かつ、互いに間隔をあけて形成される複数の支持壁部を有する支持層とを備え、
     前記支持層が前記アノードガス流通路層と前記アノード層との間に配置される場合には、前記複数の支持壁部が前記複数のカソードガス流通路の位置に整合するように前記支持層が積層され、
     前記支持層が前記カソードガス流通路層と前記カソード層との間に配置される場合には、前記複数の支持壁部が前記複数のアノードガス流通路の位置に整合するように前記支持層が積層されている、固体電解質形燃料電池。
    A cell comprising a laminate of an anode layer, a solid electrolyte layer and a cathode layer;
    A plurality of anode gas flow passage walls stacked on the anode layer outside the cell and formed at intervals so as to separate each of the plurality of anode gas flow passages supplying the anode gas to the anode layer. An anode gas flow passage layer having a section;
    A plurality of cathode gas flow passage walls stacked on the cathode layer outside the cell and spaced apart from each other so as to separate each of the plurality of cathode gas flow passages supplying cathode gas to the cathode layer A cathode gas flow passage layer having a portion;
    And a plurality of anode gas flow passage layers disposed between the anode gas flow passage layer and the anode layer and at least one of the cathode gas flow passage layer and the cathode layer and spaced apart from each other. A support layer having a support wall,
    When the support layer is disposed between the anode gas flow path layer and the anode layer, the support layer is arranged so that the plurality of support wall portions are aligned with the positions of the plurality of cathode gas flow paths. Laminated,
    When the support layer is disposed between the cathode gas flow path layer and the cathode layer, the support layer is arranged so that the plurality of support wall portions are aligned with the positions of the plurality of anode gas flow paths. Solid electrolyte fuel cells that are stacked.
  2.  前記アノードガス流通路壁部、前記カソードガス流通路壁部、および、前記支持壁部が、同一の材料から形成されている、請求項1に記載の固体電解質形燃料電池。 The solid oxide fuel cell according to claim 1, wherein the anode gas flow passage wall portion, the cathode gas flow passage wall portion, and the support wall portion are formed of the same material.
  3.  前記支持壁部の積層方向の厚みが、前記アノードガス流通路壁部または前記カソードガス流通路壁部の積層方向の厚み以下である、請求項1または請求項2に記載の固体電解質形燃料電池。 3. The solid oxide fuel cell according to claim 1, wherein a thickness of the support wall portion in the stacking direction is equal to or less than a thickness of the anode gas flow passage wall portion or the cathode gas flow passage wall portion in the stacking direction. .
  4.  前記支持壁部の積層方向の厚みが、前記アノードガス流通路壁部または前記カソードガス流通路壁部の積層方向の厚みの1/2以下である、請求項3に記載の固体電解質形燃料電池。 4. The solid oxide fuel cell according to claim 3, wherein the thickness of the support wall in the stacking direction is ½ or less of the thickness in the stacking direction of the anode gas flow channel wall or the cathode gas flow channel wall. .
  5.  複数の前記セルを含む電池構造部と、
     前記複数のセルの間に配置されるセル間分離部と、
     前記複数のアノードガス流通路にアノードガスを供給するアノードガス供給流路と、前記複数のカソードガス流通路にカソードガスを供給するカソードガス供給流路とを有するガス供給流路構造部とを備え、
     前記セル間分離部が、前記アノードガス流通路層と、前記カソードガス流通路層と、前記支持層とを含み、
     前記電池構造部、前記セル間分離部、および、前記ガス供給流路構造部が一体的に形成されている、請求項1から請求項4までのいずれか1項に記載の固体電解質形燃料電池。
    A battery structure including a plurality of the cells;
    An inter-cell separator disposed between the plurality of cells;
    A gas supply flow path structure having an anode gas supply flow path for supplying an anode gas to the plurality of anode gas flow paths, and a cathode gas supply flow path for supplying a cathode gas to the plurality of cathode gas flow paths. ,
    The inter-cell separator includes the anode gas flow passage layer, the cathode gas flow passage layer, and the support layer,
    The solid oxide fuel cell according to any one of claims 1 to 4, wherein the battery structure section, the inter-cell separation section, and the gas supply flow path structure section are integrally formed. .
PCT/JP2014/067524 2013-07-10 2014-07-01 Solid electrolyte fuel cell WO2015005177A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015526277A JP5954495B2 (en) 2013-07-10 2014-07-01 Solid electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-144346 2013-07-10
JP2013144346 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015005177A1 true WO2015005177A1 (en) 2015-01-15

Family

ID=52279863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067524 WO2015005177A1 (en) 2013-07-10 2014-07-01 Solid electrolyte fuel cell

Country Status (2)

Country Link
JP (1) JP5954495B2 (en)
WO (1) WO2015005177A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303508A (en) * 2003-03-31 2004-10-28 Nissan Motor Co Ltd Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP2006196326A (en) * 2005-01-14 2006-07-27 Honda Motor Co Ltd Fuel cell
WO2007029860A1 (en) * 2005-09-07 2007-03-15 Ngk Insulators, Ltd. Electrochemical device and electrochemical apparatus
WO2012133175A1 (en) * 2011-03-25 2012-10-04 株式会社村田製作所 Fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110761A (en) * 1989-09-22 1991-05-10 Fuji Electric Co Ltd High temperature type fuel battery
JP5077238B2 (en) * 2006-10-05 2012-11-21 株式会社村田製作所 Solid oxide fuel cell support structure and solid oxide fuel cell module including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303508A (en) * 2003-03-31 2004-10-28 Nissan Motor Co Ltd Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP2006196326A (en) * 2005-01-14 2006-07-27 Honda Motor Co Ltd Fuel cell
WO2007029860A1 (en) * 2005-09-07 2007-03-15 Ngk Insulators, Ltd. Electrochemical device and electrochemical apparatus
WO2012133175A1 (en) * 2011-03-25 2012-10-04 株式会社村田製作所 Fuel cell

Also Published As

Publication number Publication date
JP5954495B2 (en) 2016-07-20
JPWO2015005177A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
CN107408711B (en) Fuel cell stack
KR101869305B1 (en) Cell, cell stacker, module, and module storage device
JP5077238B2 (en) Solid oxide fuel cell support structure and solid oxide fuel cell module including the same
JP4420139B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP3478080B2 (en) Method for manufacturing solid oxide fuel cell
JP6044717B2 (en) CERAMIC SUBSTRATE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME, FUEL CELL AND FUEL CELL STACK
US9742022B2 (en) Solid electrolytic fuel battery having an inner gas supply path
JP5954495B2 (en) Solid electrolyte fuel cell
JP5326330B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
US9865889B2 (en) Solid electrolyte fuel battery having anode and cathode gas supply channels with different cross-section areas
JP5502365B2 (en) Half cell for solid oxide fuel cell, solid oxide fuel cell, and method for producing half cell for solid oxide fuel cell
JP6137326B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP6146474B2 (en) Solid electrolyte fuel cell
JP6503746B2 (en) Method of manufacturing solid electrolyte fuel cell
WO2015045926A1 (en) Solid oxide fuel cell stack
JP5426488B2 (en) Method for producing single cell for solid oxide fuel cell
JP2016024951A (en) Solid-state oxide fuel battery
JP2016167373A (en) Fuel battery stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526277

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823153

Country of ref document: EP

Kind code of ref document: A1