WO2015045926A1 - Solid oxide fuel cell stack - Google Patents

Solid oxide fuel cell stack Download PDF

Info

Publication number
WO2015045926A1
WO2015045926A1 PCT/JP2014/074307 JP2014074307W WO2015045926A1 WO 2015045926 A1 WO2015045926 A1 WO 2015045926A1 JP 2014074307 W JP2014074307 W JP 2014074307W WO 2015045926 A1 WO2015045926 A1 WO 2015045926A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
conductive material
metal layer
material layer
layer
Prior art date
Application number
PCT/JP2014/074307
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 朝重
智昭 平井
和英 高田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015539116A priority Critical patent/JP6119869B2/en
Publication of WO2015045926A1 publication Critical patent/WO2015045926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell stack in which a plurality of solid oxide fuel cells are stacked.
  • Patent Document 1 discloses a fuel cell stack formed by laminating a plurality of flat plate-type fuel cells using ceramics. When thermal stress is applied, in the fuel cell stack, there is a risk of poor conduction due to deformation of the fuel cell.
  • a cell following deformation portion is provided on at least one of the one end side and the other end side in the stacking direction. Thereby, the conduction failure when the thermal cycle is applied is suppressed.
  • the thermal conductivity of ceramics is relatively low. Therefore, when the number of stacks of fuel cells using ceramics is increased, the heat generated by power generation tends to be trapped near the center of the fuel cell stack. For this reason, heat distribution is generated on the surface of the fuel cell, and there is a possibility that the cell is cracked by thermal stress.
  • Patent Document 2 a method of reducing the nonuniformity of heat distribution by arranging a metal layer such as a metal film or a metal plate between cells is also known. In this case, the influence of thermal stress can be reduced. However, since the thermal expansion coefficients of the metal and the ceramic are considerably different, there is a possibility that separation between the metal and the ceramic occurs. Since the electrical connection was achieved by the direct contact between the metal and the ceramic, there was a problem that the electrical connection was broken when the above-described peeling occurred.
  • the solid oxide fuel cell stack according to the present invention has a structure in which a plurality of fuel cells are stacked.
  • the solid oxide fuel cell stack according to the present invention includes a plurality of stacked solid oxide fuel cells, and a portion where the fuel cells are stacked, and one of the fuel cells and the other A metal layer disposed between the fuel cell and the metal layer and the fuel cell so as to electrically connect the metal layer and the fuel cell.
  • the conductive material layer, the conductive material layer, and between the conductive material layer and the metal layer and the conductive material so as to electrically connect at least one of the metal layer and the fuel cell.
  • a conductive via provided so as to be located in at least one of the layer and the fuel cell.
  • the conductive via means a columnar conductor that electrically connects the layers.
  • the conductive via protrudes from the conductive material layer at the power generation temperature of the fuel cell.
  • the conductive via is formed in the metal layer side of the conductive material layer and the surface layer on the fuel cell side, and The conductive material layer is electrically connected to the metal layer and the fuel cell.
  • the conductive via extends from the metal layer side of the conductive material layer and the fuel cell side to the inside of the conductive material layer.
  • the conductive material layer is electrically connected to the metal layer and the fuel battery cell.
  • the conductive via is formed on a surface layer of either the metal layer side or the fuel cell side of the conductive material layer. And the said electrically-conductive material layer and either the said metal layer or the said fuel cell are electrically connected.
  • the conductive via is mainly composed of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, Cr and these metals. And at least one metal selected from the group consisting of alloys.
  • the conductive material layer is electrically connected to the metal layer and / or the fuel battery cell by the conductive via made of metal. Therefore, even if a thermal cycle is applied and peeling occurs between the conductive material layer and the metal layer and / or the fuel cell, the electrical connection is maintained between the conductive material layer and the metal layer and the fuel cell. can do. Therefore, the reliability of electrical connection can be improved.
  • FIG. 1A and FIG. 1B are schematic front cross-sectional views showing the main parts of a fuel cell stack according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of one fuel cell used in the fuel cell stack according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of one fuel cell used in the fuel cell stack according to the first embodiment.
  • FIG. 4 is a perspective view schematically showing a part of the fuel cell stack of the first embodiment.
  • FIG. 5 shows the relationship between the fuel cell / metal interlayer resistance and the number of thermal cycles in the first embodiment of the present invention, and the fuel cell / metal interlayer resistance and thermal cycle in a comparative example in which no conductive via is provided. It is a graph which shows the relationship with the frequency
  • FIG. 5 shows the relationship between the fuel cell / metal interlayer resistance and the number of thermal cycles in the first embodiment of the present invention, and the fuel cell / metal interlayer resistance and thermal cycle in a comparative example in which no conductive via
  • FIG. 6 is a schematic front sectional view showing a main part of the fuel cell stack of the second embodiment.
  • FIG. 7 is a schematic front sectional view showing the main part of the fuel cell stack of the third embodiment.
  • FIG. 8 is a schematic front sectional view showing the main part of the fuel cell stack of the fourth embodiment.
  • FIG. 9 is a schematic front sectional view showing the main part of the fuel cell stack of the fifth embodiment.
  • FIG. 1A is a schematic front sectional view of a fuel cell stack according to a first embodiment of the present invention.
  • the upper fuel cell 2 and the lower fuel cell 2 are joined via a joint 4.
  • FIG. 1 (a) two fuel cells 2 and 2 are shown, but in this embodiment, a structure in which the fuel cells 2 and 2 on both sides are stacked via the joint 4 is further provided. It is lined up.
  • FIG. 1 (a) only the positions where the fuel cells 2 and 2 are provided are schematically shown. Details of one fuel cell 2 will be described with reference to FIGS. 2 and 3.
  • the fuel cell 2 has a solid oxide electrolyte layer 7.
  • the solid oxide electrolyte layer 7 is made of a ceramic having high ionic conductivity. Examples of such materials include stabilized zirconia and partially stabilized zirconia. More specifically, zirconia stabilized by Y or Sc is mentioned. Examples of the stabilized zirconia include 10 mol% yttria stabilized zirconia (10YSZ) and 11 mol% scandia stabilized zirconia (11ScSZ). Examples of the partially stabilized zirconia include 3 mol% yttria partially stabilized zirconia (3YSZ).
  • the material constituting the solid oxide electrolyte layer 7 is not limited to the above, Sm and Gd-doped ceria-based oxide and, La 0.8 Sr 0.2 Ga 0.8 Mn 0.2 O It may be formed of a perovskite oxide such as (3- ⁇ ) . ⁇ represents a positive number less than 3.
  • the solid oxide electrolyte layer 7 is provided with a through hole 7a and a through hole 7b.
  • the through hole 7a constitutes a fuel gas flow path.
  • the through hole 7b constitutes an air flow path through which air as an oxidant gas passes.
  • the fuel electrode layer 6 is laminated above the solid oxide electrolyte layer 7.
  • the fuel electrode layer 6 can be composed of yttria-stabilized zirconia containing Ni, scandia-stabilized zirconia containing Ni, or the like.
  • the fuel electrode layer 6 is provided with a slit 6a constituting a fuel gas flow path and a slit 6b constituting an air flow path.
  • the separator 5 is laminated on the fuel electrode layer 6.
  • the separator 5 can be formed of stabilized zirconia, partially stabilized zirconia, or the like.
  • Through holes 5 a and 5 b are formed in the separator 5.
  • the through hole 5a constitutes a fuel gas flow path.
  • the through hole 5b constitutes an air flow path.
  • the separator 5 is provided with a plurality of interconnectors 5c for taking out electricity so as to penetrate the lower surface from the upper surface of the separator 5. That is, each interconnector 5c is formed by a via-hole conductor. The plurality of interconnectors 5 c are electrically connected to the fuel electrode layer 6.
  • an air electrode layer 8 and a separator 9 are laminated below the solid oxide electrolyte layer 7.
  • the air electrode layer 8 is provided with a slit 8a that constitutes a fuel gas passage and a slit 8b that constitutes an air passage.
  • the air electrode layer 8 is preferably made of a porous material having high electron conductivity.
  • Such an air electrode layer 8 includes, for example, scandia-stabilized zirconia (ScSZ), ceria doped with Gd, indium oxide doped with Sn, PrCoO 3 oxide, LaCoO 3 oxide, or LaMoO 3 oxide. It can be formed of an oxide or the like.
  • Examples of the LaMoO 3 oxide include La 0.8 Sr 0.2 MnO 3 (hereinafter abbreviated as LSM) and La 0.6 Ca 0.4 MnO 3 .
  • the separator 9 is configured in the same manner as the separator 5. Therefore, it has the through-hole 9a which comprises a fuel gas flow path, the through-hole 9b which comprises an air flow path, and the several interconnector 9c.
  • FIG. 3 shows a plan view of the single fuel cell 2.
  • the fuel battery cell 2 has a cross-shaped flow path component 2a and four power generation units 2b, 2c, 2d, and 2e partitioned by the flow path component 2a when viewed in plan. .
  • the interconnector 5c is exposed on the upper surfaces of the power generation units 2b to 2e.
  • FIG. 4 is a perspective view showing a part of the fuel cell stack 1. The part corresponds to a portion where one power generation section 2b, 2c, 2d or 2e divided by the cross-shaped flow path constituting section 2a shown in FIG. 3 is laminated. As shown in FIG. 4, the fuel cells 2, 2, 2 are stacked via the joints 4, 4. In practice, as shown in FIG. 3, the power generation units 2b and 2c are located on both sides of the flow path component 2a.
  • the fuel cell stack 1 is characterized by the structure of the joint 4 that joins the fuel cell 2 and the fuel cell 2 to each other.
  • the joint 4 physically joins and integrates the upper fuel cell 2 and the lower fuel cell 2 and electrically connects the upper fuel cell 2 and the lower fuel cell 2 in series. Connected.
  • a metal layer 10 is provided in order not to concentrate heat in the center and to electrically connect the upper fuel cell 2 and the lower fuel cell 2 to each other.
  • the metal layer 10 is made of a metal plate in the present embodiment.
  • the material constituting the metal plate is not particularly limited, but it is desirable to use a metal having a thermal expansion coefficient close to that of the ceramic constituting the fuel cell 2.
  • a material preferably, ferritic stainless steel can be used.
  • the thermal expansion coefficient of ferritic stainless steel is close to that of zirconia.
  • Ferritic stainless steel has excellent heat resistance. Accordingly, ferritic stainless steel is preferred.
  • the material which comprises the said metal layer 10 is not specifically limited, You may use another metal.
  • a conductive material layer 11 is provided on each of the upper and lower surfaces of the metal layer 10.
  • the conductive material layer 11 is made of LSM, which is a conductive ceramic material.
  • the bonding portion 4 is a laminated structure of the adhesive layer 12 and the spacer 13 in a region different from the bonding portion that electrically connects the power generation portions 2b, 2c, 2d, and 2e.
  • the spacer 13 does not necessarily have to be provided, but it is desirable to use the spacer 13 for facilitating adhesion when the distance between the fuel cells 2 and 2 is large.
  • the material constituting the spacer 13 is not particularly limited, but a material having a thermal expansion coefficient close to that of the ceramic constituting the fuel cell 2 is desirable.
  • the material which comprises the said adhesive bond layer 12 is not specifically limited, The material which expresses favorable adhesiveness between the said fuel cell 2 and 2 or between the said fuel cell and the said spacer 13 is desirable.
  • the conductive via 3 is provided so as to penetrate the conductive material layer 11 and protrude toward the metal layer 10 side and the fuel cell 2 side.
  • the conductive via 3 has a columnar shape in this embodiment. One end of the conductive via 3 is provided in contact with the metal layer 10, and the other end is provided in contact with the fuel cell 2.
  • the conductive via 3 electrically connects the conductive material layer 11, the metal layer 10, and the fuel cell 2.
  • the conductive via 3 is made of metal in the present embodiment. Although it does not specifically limit as this metal, It is desirable that it is a metal which has heat resistance and electroconductivity. It is particularly preferable that the main component is at least one kind of metal selected from the group consisting of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, Cr and alloys mainly composed of these metals. In this specification, “mainly” means to occupy 1/2 or more.
  • the gaps 14a and 14b as shown in FIG. 1 (b) are caused by separation between the conductive material layer 11, the metal layer 10 and the fuel cell 2 when, for example, a thermal cycle is applied. Arise.
  • the gaps 14a and 14b are generated, if the conductive via 3 is not provided between the conductive material layer 11 and the metal layer 10 and the fuel cell 2, the electrical connection is cut off. .
  • the conductive material layer 11, the metal layer 10, and the fuel cell 2 are electrically connected by the conductive via 3. Maintained. Therefore, in the fuel cell stack 1, the reliability of electrical connection can be effectively increased.
  • the conductive via 3 of the present embodiment can be formed, for example, by making a through hole in the conductive material layer 11 and pouring metal therethrough.
  • the above is an example of a method for forming the conductive via 3, and the conductive via 3 may be formed by other methods.
  • FIG. 5 is a diagram showing the relationship between the resistance of the fuel cell according to the embodiment and the fuel cell of the comparative example and the metal layer, and the number of thermal cycles.
  • the fuel cell of the comparative example was manufactured in the same manner as in the above embodiment except that the conductive via 3 was not provided.
  • FIG. 6 is a schematic front sectional view of a fuel cell stack according to the second embodiment of the present invention.
  • the conductive vias 3 a and 3 b are formed in the surface layer on the metal layer 10 side and the surface layer on the fuel cell 2 side of the conductive material layer 11.
  • the conductive vias 3a and 3b correspond to a shape obtained by dividing the conductive via 3 of the first embodiment.
  • the conductive vias 3a and the conductive vias 3b forming a pair are arranged so as to overlap in the vertical direction.
  • the conductive vias 3a and 3b are provided so as to protrude toward the metal layer 10 side and the fuel cell 2 side.
  • the conductive vias 3 a and 3 b electrically connect the conductive material layer 11, the metal layer 10, and the fuel cell 2. Since the other configuration is the same as that of the first embodiment, the detailed description is omitted by using the description of the first embodiment. Note that the conductive vias 3a and 3b may not be arranged so as to overlap in the vertical direction.
  • the conductive material layer is formed by the conductive vias 3 a and 3 b. 11, the metal layer 10 and the fuel cell 2 are electrically connected. Therefore, the electrical connection is not broken. Furthermore, compared with the first embodiment, the material constituting the conductive via can be reduced.
  • FIG. 7 is a schematic front sectional view of a fuel cell stack according to the third embodiment of the present invention.
  • the conductive vias 3 a and 3 b are formed so as to reach the inside of the conductive material layer 11 from the metal layer 10 side and the fuel cell 2 side of the conductive material layer 11.
  • the conductive vias 3a and 3b have a large depth which is a degree reaching the inside of the conductive material layer 11.
  • the conductive via 3a and the conductive via 3b are arranged so as not to overlap in the vertical direction.
  • the conductive vias 3a and 3b are provided so as to protrude toward the metal layer 10 side and the fuel cell 2 side.
  • the conductive vias 3 a and 3 b electrically connect the conductive material layer 11, the metal layer 10, and the fuel cell 2.
  • the electrical connection can be maintained by the conductive vias 3a and 3b. Furthermore, compared to the first embodiment, the material constituting the conductive via can be reduced. The conductive vias 3 a and 3 b are formed so as to reach the inside of the conductive material layer 11. Therefore, in this embodiment, compared to the second embodiment, when the peeling occurs in at least one of the conductive material layer 11 and the metal layer 10 or the fuel cell 2, the conductive material is used. The vias 3a and 3b are unlikely to rise. Therefore, the reliability of electrical connection can be further improved.
  • the conductive vias 3a and 3b were formed in the same manner on the metal layer 10 side and the fuel cell 2 side of the conductive material layer 11.
  • the conductive vias 3a and 3b may be formed differently on the metal layer 10 side and the fuel cell 2 side of the conductive material layer 11.
  • the conductive via 3 a is formed on the surface layer of the conductive material layer 11 on the metal layer 10 side
  • the conductive via 3 b is formed on the conductive material layer 11 from the fuel cell 2 side of the conductive material layer 11. It may be formed so as to reach the inside.
  • FIG. 8 is a schematic front sectional view of a fuel cell stack according to the fourth embodiment of the present invention.
  • the conductive via 3 b is formed on the surface layer of the conductive material layer 11 on the fuel cell 2 side.
  • the conductive via 3b is provided so as to protrude toward the fuel cell 2 side.
  • the conductive via 3 b electrically connects the conductive material layer 11 and the fuel battery cell 2.
  • the conductive material layer 11 even if delamination occurs between the conductive material layer 11 and the fuel cell 2, the conductive material layer 11, the metal layer 10, and the fuel cell 2 The electrical connection between the two can be maintained.
  • the conductive via 3b is formed in the surface layer of the conductive material layer 11.
  • the conductive via 3b is connected to the conductive battery layer 11 from the fuel cell 2 side. It may be formed so as to reach the inside of the material layer 11.
  • FIG. 9 is a schematic front sectional view of a fuel cell stack according to a fifth embodiment of the present invention.
  • the conductive via 3 a is formed on the surface layer of the conductive material layer 11 on the metal layer 10 side.
  • the conductive via 3a is provided so as to protrude toward the metal layer 10 side.
  • the conductive via 3 a electrically connects the conductive material layer 11 and the metal layer 10.
  • the conductive material layer 11, the metal layer 10, and the fuel cell 2 are separated from each other. The electrical connection between them can be maintained.
  • the conductive via 3 a is formed on the surface of the conductive material layer 11. However, the conductive via 3 a is connected to the conductive material layer 11 from the metal layer 10 side. It may be formed so as to reach the inside of the layer 11.
  • the conductive via 3 may be in contact with the surface of the metal layer 10 or in a state of being formed so as to reach the inside of the metal layer 10. Also good. Further, the conductive via 3 may be in contact with the surface of the fuel cell 2 or may be in a state of being formed so as to reach the inside of the fuel cell 2.

Abstract

Provided is a solid oxide fuel cell stack, which is capable of maintaining electrical connection between layers even if peeling between the layers is generated in the cases where heat cycle is applied, and which has improved electrical connection reliability. Disclosed is a solid oxide fuel cell stack (1) wherein: a plurality of solid oxide fuel cells (2) are laminated; at an area where the fuel cells (2, 2) are laminated to each other, a metal layer (10) is disposed between one of the fuel cells (2) and the other one of the fuel cells (2); conductive material layers (11) are disposed between the metal layer (10) and respective fuel cells (2) such that the metal layer (10) and the fuel cells (2) are electrically connected to each other; and conductive vias (3) are provided so as to be positioned between respective conductive material layers (11) and the metal layer (10) and/or between respective conductive material layers (11) and respective fuel cells (2) such that the conductive material layers (11) are electrically connected with the metal layer (10) and/or the fuel cells (2).

Description

固体酸化物形燃料電池スタックSolid oxide fuel cell stack
 本発明は、複数の固体酸化物形の燃料電池セルが積層されている固体酸化物形燃料電池スタックに関する。 The present invention relates to a solid oxide fuel cell stack in which a plurality of solid oxide fuel cells are stacked.
 従来、固体酸化物電解質を用いた固体酸化物形燃料電池が種々提案されている。固体酸化物形燃料電池においては、十分な電圧を得るために、複数の燃料電池セルが積層されている。それによって、燃料電池スタックが構成されている。下記の特許文献1には、セラミックスを用いた平板型の燃料電池セルを複数積層してなる燃料電池スタックが開示されている。熱応力が加わると、燃料電池スタックにおいては、燃料電池セルの変形による導通不良が生じるおそれがある。特許文献1においては、積層方向一端側及び他端側の内少なくとも一方に、セル追従変形部が設けられている。それによって、熱サイクルが加わった際の導通不良の抑制が図られている。 Conventionally, various solid oxide fuel cells using a solid oxide electrolyte have been proposed. In a solid oxide fuel cell, a plurality of fuel cells are stacked in order to obtain a sufficient voltage. Thereby, a fuel cell stack is configured. The following Patent Document 1 discloses a fuel cell stack formed by laminating a plurality of flat plate-type fuel cells using ceramics. When thermal stress is applied, in the fuel cell stack, there is a risk of poor conduction due to deformation of the fuel cell. In Patent Document 1, a cell following deformation portion is provided on at least one of the one end side and the other end side in the stacking direction. Thereby, the conduction failure when the thermal cycle is applied is suppressed.
WO2010/038869WO2010 / 038869 特開2006-310005号公報JP 2006-310005 A
 セラミックスの熱伝導率は比較的低い。従って、セラミックスを用いた燃料電池セルの積層数を増加させると、発電によって生じた熱が燃料電池スタックの中心付近にこもり易くなる。そのため、燃料電池セル面において熱分布が生じ、熱応力によるセルの割れが生じるおそれがあった。 The thermal conductivity of ceramics is relatively low. Therefore, when the number of stacks of fuel cells using ceramics is increased, the heat generated by power generation tends to be trapped near the center of the fuel cell stack. For this reason, heat distribution is generated on the surface of the fuel cell, and there is a possibility that the cell is cracked by thermal stress.
 他方、特許文献2に記載のように、セル間に金属膜や金属板などの金属層を配置することにより、熱分布の不均一性を低める方法も知られている。この場合には、熱応力による影響を少なくすることができる。しかしながら、金属とセラミックスとの熱膨張係数がかなり異なるため、金属とセラミックスとの間での剥離が生じるおそれがあった。金属とセラミックスとが直接接触することによって電気的接続が達成されていたため、上記のような剥がれが生じると、電気的接続が絶たれてしまうという問題があった。 On the other hand, as described in Patent Document 2, a method of reducing the nonuniformity of heat distribution by arranging a metal layer such as a metal film or a metal plate between cells is also known. In this case, the influence of thermal stress can be reduced. However, since the thermal expansion coefficients of the metal and the ceramic are considerably different, there is a possibility that separation between the metal and the ceramic occurs. Since the electrical connection was achieved by the direct contact between the metal and the ceramic, there was a problem that the electrical connection was broken when the above-described peeling occurred.
 本発明の目的は、熱サイクルが加わった場合などに層間の剥離などが生じたとしても、層間の電気的接続を維持することができ、電気的接続の信頼性が高められている、固体酸化物形燃料電池スタックを提供することにある。 The object of the present invention is to maintain the electrical connection between the layers even when peeling between layers occurs when a thermal cycle is applied, etc., and the reliability of the electrical connection is improved. The object is to provide a physical fuel cell stack.
 本発明に係る固体酸化物形燃料電池スタックは、複数の燃料電池セルが積層されている構造を有する。本発明の固体酸化物形燃料電池スタックは、積層されている複数の固体酸化物形の燃料電池セルと、上記燃料電池セル同士が積層されている部分において、一方の上記燃料電池セルと、他方の上記燃料電池セルとの間に配置されている金属層と、上記金属層と、上記燃料電池セルとを電気的に接続するように上記金属層と上記燃料電池セルとの間に配置されている導電材層と、上記導電材層と、上記金属層及び上記燃料電池セルの内の少なくとも一方とを電気的に接続するように、上記導電材層と上記金属層との間及び上記導電材層と上記燃料電池セルとの間の内の少なくとも一方に位置するように設けられている導電ビアとを備える。なお、導電ビアは、層間を電気的に接続する柱状の導電体を意味する。 The solid oxide fuel cell stack according to the present invention has a structure in which a plurality of fuel cells are stacked. The solid oxide fuel cell stack according to the present invention includes a plurality of stacked solid oxide fuel cells, and a portion where the fuel cells are stacked, and one of the fuel cells and the other A metal layer disposed between the fuel cell and the metal layer and the fuel cell so as to electrically connect the metal layer and the fuel cell. The conductive material layer, the conductive material layer, and between the conductive material layer and the metal layer and the conductive material so as to electrically connect at least one of the metal layer and the fuel cell. A conductive via provided so as to be located in at least one of the layer and the fuel cell. The conductive via means a columnar conductor that electrically connects the layers.
 本発明に係る固体酸化物形燃料電池スタックのある特定の局面においては、上記燃料電池セルの発電温度において、上記導電ビアが上記導電材層から突出している。 In a specific aspect of the solid oxide fuel cell stack according to the present invention, the conductive via protrudes from the conductive material layer at the power generation temperature of the fuel cell.
 本発明に係る固体酸化物形燃料電池スタックのさらに他の特定の局面においては、上記導電ビアが上記導電材層を貫通しており、且つ上記導電材層と、上記金属層及び上記燃料電池セルとを電気的に接続している。 In still another specific aspect of the solid oxide fuel cell stack according to the present invention, the conductive via penetrates the conductive material layer, and the conductive material layer, the metal layer, and the fuel cell. And are electrically connected.
 本発明に係る固体酸化物形燃料電池スタックのさらに別の特定の局面においては、上記導電ビアが、上記導電材層の上記金属層側及び上記燃料電池セル側の表層に形成されており、且つ上記導電材層と、上記金属層及び上記燃料電池セルとを電気的に接続している。 In still another specific aspect of the solid oxide fuel cell stack according to the present invention, the conductive via is formed in the metal layer side of the conductive material layer and the surface layer on the fuel cell side, and The conductive material layer is electrically connected to the metal layer and the fuel cell.
 本発明に係る固体酸化物形燃料電池スタックのさらに別の特定の局面においては、上記導電ビアが、上記導電材層の上記金属層側及び上記燃料電池セル側から該導電材層の内部に至るように形成されており、且つ上記導電材層と、上記金属層及び上記燃料電池セルとを電気的に接続している。 In still another specific aspect of the solid oxide fuel cell stack according to the present invention, the conductive via extends from the metal layer side of the conductive material layer and the fuel cell side to the inside of the conductive material layer. The conductive material layer is electrically connected to the metal layer and the fuel battery cell.
 本発明に係る固体酸化物形燃料電池スタックのさらに別の特定の局面においては、上記導電ビアが、上記導電材層の上記金属層側または上記燃料電池セル側のいずれか一方の表層に形成され、且つ上記導電材層と、上記金属層または上記燃料電池セルのいずれか一方とを電気的に接続している。 In still another specific aspect of the solid oxide fuel cell stack according to the present invention, the conductive via is formed on a surface layer of either the metal layer side or the fuel cell side of the conductive material layer. And the said electrically-conductive material layer and either the said metal layer or the said fuel cell are electrically connected.
 本発明に係る固体酸化物形燃料電池スタックのさらに他の特定の局面においては、上記導電ビアが、Pt、Pd、Ag、Au、Ru、Rh、Ni、Fe、Cr及びこれらの金属を主体とする合金からなる群から選択された少なくとも1種の金属を主体とする。 In still another specific aspect of the solid oxide fuel cell stack according to the present invention, the conductive via is mainly composed of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, Cr and these metals. And at least one metal selected from the group consisting of alloys.
 本発明に係る固体酸化物形燃料電池スタックによれば、導電材層が、金属層及び/または燃料電池セルと、金属からなる導電ビアにより電気的に接続されている。従って、熱サイクルが加わり、導電材層と金属層及び/または燃料電池セルとの間に剥離が起こったとしても、導電材層と金属層及び燃料電池セルとの間で電気的な接続を維持することができる。よって、電気的接続の信頼性を高めることができる。 According to the solid oxide fuel cell stack according to the present invention, the conductive material layer is electrically connected to the metal layer and / or the fuel battery cell by the conductive via made of metal. Therefore, even if a thermal cycle is applied and peeling occurs between the conductive material layer and the metal layer and / or the fuel cell, the electrical connection is maintained between the conductive material layer and the metal layer and the fuel cell. can do. Therefore, the reliability of electrical connection can be improved.
図1(a)及び図1(b)は、本発明の第1の実施形態に係る燃料電池スタックの要部を示す略図的正面断面図である。FIG. 1A and FIG. 1B are schematic front cross-sectional views showing the main parts of a fuel cell stack according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態の燃料電池スタックに用いられている1つの燃料電池セルの分解斜視図である。FIG. 2 is an exploded perspective view of one fuel cell used in the fuel cell stack according to the first embodiment of the present invention. 図3は、第1の実施形態に係る燃料電池スタックに用いられている1つの燃料電池セルの平面図である。FIG. 3 is a plan view of one fuel cell used in the fuel cell stack according to the first embodiment. 図4は、第1の実施形態の燃料電池スタックの一部を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a part of the fuel cell stack of the first embodiment. 図5は、本発明の第1の実施形態における燃料電池セル/金属層間抵抗と熱サイクル回数との関係、並びに導電ビアを設けない場合である比較例における燃料電池セル/金属層間抵抗と熱サイクル回数との関係を示すグラフである。FIG. 5 shows the relationship between the fuel cell / metal interlayer resistance and the number of thermal cycles in the first embodiment of the present invention, and the fuel cell / metal interlayer resistance and thermal cycle in a comparative example in which no conductive via is provided. It is a graph which shows the relationship with the frequency | count. 図6は、第2の実施形態の燃料電池スタックの要部を示す略図的正面断面図である。FIG. 6 is a schematic front sectional view showing a main part of the fuel cell stack of the second embodiment. 図7は、第3の実施形態の燃料電池スタックの要部を示す略図的正面断面図である。FIG. 7 is a schematic front sectional view showing the main part of the fuel cell stack of the third embodiment. 図8は、第4の実施形態の燃料電池スタックの要部を示す略図的正面断面図である。FIG. 8 is a schematic front sectional view showing the main part of the fuel cell stack of the fourth embodiment. 図9は、第5の実施形態の燃料電池スタックの要部を示す略図的正面断面図である。FIG. 9 is a schematic front sectional view showing the main part of the fuel cell stack of the fifth embodiment.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1(a)は、本発明の第1の実施形態に係る燃料電池スタックの略図的正面断面図である。燃料電池スタック1においては、上方の燃料電池セル2と、下方の燃料電池セル2とが接合部4を介して接合されている。図1(a)においては、2つの燃料電池セル2,2を示したが、本実施形態においては、上記接合部4を介して両側の燃料電池セル2,2が積層されている構造がさらに連ねられている。 FIG. 1A is a schematic front sectional view of a fuel cell stack according to a first embodiment of the present invention. In the fuel cell stack 1, the upper fuel cell 2 and the lower fuel cell 2 are joined via a joint 4. In FIG. 1 (a), two fuel cells 2 and 2 are shown, but in this embodiment, a structure in which the fuel cells 2 and 2 on both sides are stacked via the joint 4 is further provided. It is lined up.
 また、図1(a)においては、燃料電池セル2,2は、その設けられている位置のみを略図的に示している。図2及び図3を参照して、1つの燃料電池セル2の詳細を説明する。 In FIG. 1 (a), only the positions where the fuel cells 2 and 2 are provided are schematically shown. Details of one fuel cell 2 will be described with reference to FIGS. 2 and 3.
 図2に示すように、燃料電池セル2は、固体酸化物電解質層7を有する。固体酸化物電解質層7は、イオン導電性が高いセラミックスからなる。このような材料としては、例えば、安定化ジルコニアや部分安定化ジルコニアなどを挙げることができる。より具体的には、YやScにより安定化されたジルコニアが挙げられる。安定化ジルコニアとしては、例えば、10モル%イットリア安定化ジルコニア(10YSZ)、11モル%スカンジア安定化ジルコニア(11ScSZ)などを挙げることができる。部分安定化ジルコニアとしては、例えば、3モル%イットリア部分安定化ジルコニア(3YSZ)などを挙げることができる。 As shown in FIG. 2, the fuel cell 2 has a solid oxide electrolyte layer 7. The solid oxide electrolyte layer 7 is made of a ceramic having high ionic conductivity. Examples of such materials include stabilized zirconia and partially stabilized zirconia. More specifically, zirconia stabilized by Y or Sc is mentioned. Examples of the stabilized zirconia include 10 mol% yttria stabilized zirconia (10YSZ) and 11 mol% scandia stabilized zirconia (11ScSZ). Examples of the partially stabilized zirconia include 3 mol% yttria partially stabilized zirconia (3YSZ).
 なお、上記固体酸化物電解質層7を構成する材料は上記に限定されず、SmやGdがドープされたセリア系酸化物や、La0.8Sr0.2Ga0.8Mn0.2(3-δ)などのペロブスカイト型酸化物などにより形成してもよい。なお、δは、3未満の正の数を示す。 Incidentally, the material constituting the solid oxide electrolyte layer 7 is not limited to the above, Sm and Gd-doped ceria-based oxide and, La 0.8 Sr 0.2 Ga 0.8 Mn 0.2 O It may be formed of a perovskite oxide such as (3-δ) . Δ represents a positive number less than 3.
 固体酸化物電解質層7には、貫通孔7aと貫通孔7bとが設けられている。貫通孔7aは、燃料ガス流路を構成している。貫通孔7bは、酸化剤ガスとしての空気を通す空気流路を構成している。 The solid oxide electrolyte layer 7 is provided with a through hole 7a and a through hole 7b. The through hole 7a constitutes a fuel gas flow path. The through hole 7b constitutes an air flow path through which air as an oxidant gas passes.
 固体酸化物電解質層7の上方に燃料極層6が積層されている。燃料極層6は、Niを含むイットリア安定化ジルコニアや、Niを含むスカンジア安定化ジルコニアなどにより構成することができる。燃料極層6には、燃料ガス流路を構成するスリット6aと、空気流路を構成するスリット6bとが設けられている。 The fuel electrode layer 6 is laminated above the solid oxide electrolyte layer 7. The fuel electrode layer 6 can be composed of yttria-stabilized zirconia containing Ni, scandia-stabilized zirconia containing Ni, or the like. The fuel electrode layer 6 is provided with a slit 6a constituting a fuel gas flow path and a slit 6b constituting an air flow path.
 上記燃料極層6上にセパレータ5が積層されている。セパレータ5は、安定化ジルコニアや部分安定化ジルコニアなどにより形成され得る。セパレータ5に、貫通孔5a,5bが形成されている。貫通孔5aは、燃料ガス流路を構成している。貫通孔5bは、空気流路を構成している。 The separator 5 is laminated on the fuel electrode layer 6. The separator 5 can be formed of stabilized zirconia, partially stabilized zirconia, or the like. Through holes 5 a and 5 b are formed in the separator 5. The through hole 5a constitutes a fuel gas flow path. The through hole 5b constitutes an air flow path.
 他方、セパレータ5には、電気を取り出すための複数本のインターコネクタ5cがセパレータ5の上面から下面を貫くように設けられている。すなわち、ビアホール導体により各インターコネクタ5cが形成されている。複数本のインターコネクタ5cは、上記燃料極層6に電気的に接続されている。 On the other hand, the separator 5 is provided with a plurality of interconnectors 5c for taking out electricity so as to penetrate the lower surface from the upper surface of the separator 5. That is, each interconnector 5c is formed by a via-hole conductor. The plurality of interconnectors 5 c are electrically connected to the fuel electrode layer 6.
 他方、固体酸化物電解質層7の下方には、空気極層8及びセパレータ9が積層されている。空気極層8には、燃料ガス流路を構成するスリット8aと、空気流路を構成するスリット8bとが設けられている。空気極層8は、電子伝導性が高く、かつ多孔質の材料からなることが好ましい。このような空気極層8は、例えば、スカンジア安定化ジルコニア(ScSZ)、Gdがドープされたセリア、Snがドープされた酸化インジウム、PrCoO系酸化物、LaCoO系酸化物、またはLaMoO系酸化物などにより形成することができる。LaMoO系酸化物としては、例えば、La0.8Sr0.2MnO(以下においてLSMと略す)や、La0.6Ca0.4MnOなどが挙げられる。 On the other hand, an air electrode layer 8 and a separator 9 are laminated below the solid oxide electrolyte layer 7. The air electrode layer 8 is provided with a slit 8a that constitutes a fuel gas passage and a slit 8b that constitutes an air passage. The air electrode layer 8 is preferably made of a porous material having high electron conductivity. Such an air electrode layer 8 includes, for example, scandia-stabilized zirconia (ScSZ), ceria doped with Gd, indium oxide doped with Sn, PrCoO 3 oxide, LaCoO 3 oxide, or LaMoO 3 oxide. It can be formed of an oxide or the like. Examples of the LaMoO 3 oxide include La 0.8 Sr 0.2 MnO 3 (hereinafter abbreviated as LSM) and La 0.6 Ca 0.4 MnO 3 .
 セパレータ9はセパレータ5と同様に構成されている。従って、燃料ガス流路を構成する貫通孔9aと、空気流路を構成する貫通孔9bと、複数本のインターコネクタ9cとを有する。 The separator 9 is configured in the same manner as the separator 5. Therefore, it has the through-hole 9a which comprises a fuel gas flow path, the through-hole 9b which comprises an air flow path, and the several interconnector 9c.
 図3は、この単一の燃料電池セル2の平面図を示す。図3に示すように燃料電池セル2は、平面視した場合、十字状の流路構成部2aと、流路構成部2aで区画された4つの発電部2b,2c,2d,2eとを有する。そして、発電部2b~2eの上面には上記インターコネクタ5cが露出している。 FIG. 3 shows a plan view of the single fuel cell 2. As shown in FIG. 3, the fuel battery cell 2 has a cross-shaped flow path component 2a and four power generation units 2b, 2c, 2d, and 2e partitioned by the flow path component 2a when viewed in plan. . The interconnector 5c is exposed on the upper surfaces of the power generation units 2b to 2e.
 図1(a)に戻り、本実施形態の燃料電池スタック1においては、このような燃料電池セル2が複数層積層されている。図4は、燃料電池スタック1の一部を示す斜視図である。一部とは、図3に示した十字状の流路構成部2aで区切られている1つの発電部2b,2c,2dまたは2eが積層されている部分に相当する。図4に示すように、燃料電池セル2,2,2が接合部4,4を介して積層されている。なお、実際には、図3に示すように、流路構成部2aの両側に、発電部2b,2cが位置している。 Referring back to FIG. 1A, in the fuel cell stack 1 of the present embodiment, a plurality of such fuel cells 2 are stacked. FIG. 4 is a perspective view showing a part of the fuel cell stack 1. The part corresponds to a portion where one power generation section 2b, 2c, 2d or 2e divided by the cross-shaped flow path constituting section 2a shown in FIG. 3 is laminated. As shown in FIG. 4, the fuel cells 2, 2, 2 are stacked via the joints 4, 4. In practice, as shown in FIG. 3, the power generation units 2b and 2c are located on both sides of the flow path component 2a.
 図1(a)に戻り、本実施形態の燃料電池スタック1の特徴は、上記燃料電池セル2と燃料電池セル2とを接合している接合部4の構成にある。 Referring back to FIG. 1A, the fuel cell stack 1 according to this embodiment is characterized by the structure of the joint 4 that joins the fuel cell 2 and the fuel cell 2 to each other.
 接合部4は、上方の燃料電池セル2と下方の燃料電池セル2とを物理的に接合し一体化すると共に、上方の燃料電池セル2と下方の燃料電池セル2とを電気的に直列に接続している。 The joint 4 physically joins and integrates the upper fuel cell 2 and the lower fuel cell 2 and electrically connects the upper fuel cell 2 and the lower fuel cell 2 in series. Connected.
 図1(a)において、熱を中央に集中させないために、並びに上方の燃料電池セル2と下方の燃料電池セル2とを電気的に接続するために、金属層10が設けられている。 In FIG. 1 (a), a metal layer 10 is provided in order not to concentrate heat in the center and to electrically connect the upper fuel cell 2 and the lower fuel cell 2 to each other.
 金属層10は、本実施形態においては、金属板からなる。この金属板を構成する材料としては、特に限定されないが、燃料電池セル2を構成しているセラミックスと熱膨張係数が近い金属を用いることが望ましい。このような材料としては、好ましくは、フェライト系ステンレスを用いることができる。フェライト系ステンレスの熱膨張係数は、ジルコニアと熱膨張係数が近い。また、フェライト系ステンレスは耐熱性に優れている。従って、フェライト系ステンレスが好ましい。 The metal layer 10 is made of a metal plate in the present embodiment. The material constituting the metal plate is not particularly limited, but it is desirable to use a metal having a thermal expansion coefficient close to that of the ceramic constituting the fuel cell 2. As such a material, preferably, ferritic stainless steel can be used. The thermal expansion coefficient of ferritic stainless steel is close to that of zirconia. Ferritic stainless steel has excellent heat resistance. Accordingly, ferritic stainless steel is preferred.
 もっとも、上記金属層10を構成する材料は特に限定されず、他の金属を用いてもよい。 But the material which comprises the said metal layer 10 is not specifically limited, You may use another metal.
 上記金属層10の上面及び下面に、それぞれ導電材層11が設けられている。 A conductive material layer 11 is provided on each of the upper and lower surfaces of the metal layer 10.
 導電材層11は、本実施形態においては、導電セラミックス材料であるLSMからなる。 In this embodiment, the conductive material layer 11 is made of LSM, which is a conductive ceramic material.
 もっとも、上記導電材層11を構成する材料は特に限定されず、良好な導電性を有していればよい。例えば、導電セラミックス材料であれば、LaSrCoO、LaSrCoFeO、MnCoO、SmSrCoO、LaCaMnO、LaCaCoO、LaCaCoFeO、LaNiFeO、(LaSr)NiOなどが使用でき、金属であれば、ステンレス全般、そのほかの耐熱金属全般が使用できる。 But the material which comprises the said electrically-conductive material layer 11 is not specifically limited, What is necessary is just to have favorable electroconductivity. For example, LaSrCoO 3 , LaSrCoFeO 3 , MnCoO 3 , SmSrCoO 3 , LaCaMnO 3 , LaCaCoO 3 , LaCaCoFeO 3 , LaNiFeO 3 , (LaSr) 2 NiO 4, and the like can be used for conductive ceramic materials. In general, other refractory metals can be used.
 さらに、本実施形態においては、接合部4は、上記発電部2b,2c,2d,2eを電気的に接続している接合部とは別の領域において、接着剤層12及びスペーサ13の積層構造を有する。ここで、スペーサ13は必ずしも設けられずともよいが、燃料電池セル2,2間の距離が大きい場合、接着を容易とするために用いることが望ましい。このようなスペーサ13を構成する材料としては、特に限定されないが、燃料電池セル2を構成しているセラミックスと熱膨張係数が近い材料が望ましい。上記接着剤層12を構成する材料は、特に限定されないが、上記燃料電池セル2,2間または上記燃料電池セルと上記スペーサ13との間で良好な接着性を発現する材料が望ましい。 Further, in the present embodiment, the bonding portion 4 is a laminated structure of the adhesive layer 12 and the spacer 13 in a region different from the bonding portion that electrically connects the power generation portions 2b, 2c, 2d, and 2e. Have Here, the spacer 13 does not necessarily have to be provided, but it is desirable to use the spacer 13 for facilitating adhesion when the distance between the fuel cells 2 and 2 is large. The material constituting the spacer 13 is not particularly limited, but a material having a thermal expansion coefficient close to that of the ceramic constituting the fuel cell 2 is desirable. Although the material which comprises the said adhesive bond layer 12 is not specifically limited, The material which expresses favorable adhesiveness between the said fuel cell 2 and 2 or between the said fuel cell and the said spacer 13 is desirable.
 図1(b)に示すように、導電ビア3が上記導電材層11を貫通して、上記金属層10側及び上記燃料電池セル2側へ突出するように設けられている。上記導電ビア3は、本実施形態においては柱状の形状を有している。上記導電ビア3の一方端は上記金属層10と接触するように設けられており、他方端は上記燃料電池セル2と接触するように設けられている。本実施形態において上記導電ビア3は、上記導電材層11と、上記金属層10及び上記燃料電池セル2とを電気的に接続している。 As shown in FIG. 1B, the conductive via 3 is provided so as to penetrate the conductive material layer 11 and protrude toward the metal layer 10 side and the fuel cell 2 side. The conductive via 3 has a columnar shape in this embodiment. One end of the conductive via 3 is provided in contact with the metal layer 10, and the other end is provided in contact with the fuel cell 2. In the present embodiment, the conductive via 3 electrically connects the conductive material layer 11, the metal layer 10, and the fuel cell 2.
 導電ビア3は、本実施形態においては、金属からなる。この金属としては、特に限定されないが、耐熱性及び導電性を有する金属であることが望ましい。Pt、Pd、Ag、Au、Ru、Rh、Ni、Fe、Cr及びこれらの金属を主体とする合金からなる群から選択された少なくとも1種の金属を主体とすることが特に好ましい。なお、本明細書において、主体とするとは、1/2以上を占めることを意味する。 The conductive via 3 is made of metal in the present embodiment. Although it does not specifically limit as this metal, It is desirable that it is a metal which has heat resistance and electroconductivity. It is particularly preferable that the main component is at least one kind of metal selected from the group consisting of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, Cr and alloys mainly composed of these metals. In this specification, “mainly” means to occupy 1/2 or more.
 図1(b)に示すような空隙14a,14bは、例えば熱サイクルが加わった場合などに上記導電材層11と、上記金属層10及び上記燃料電池セル2との間に剥離が起こることによって生じる。上記空隙14a,14bが生じた際、導電ビア3が上記導電材層11と、上記金属層10及び上記燃料電池セル2との間に設けられていない場合は、電気的接続が絶たれてしまう。これに対して本実施形態においては、上記空隙14a,14bが生じたとしても、上記導電ビア3により上記導電材層11と、上記金属層10及び上記燃料電池セル2とが電気的に接続された状態が維持される。よって、燃料電池スタック1においては、電気的接続の信頼性を効果的に高めることができる。 The gaps 14a and 14b as shown in FIG. 1 (b) are caused by separation between the conductive material layer 11, the metal layer 10 and the fuel cell 2 when, for example, a thermal cycle is applied. Arise. When the gaps 14a and 14b are generated, if the conductive via 3 is not provided between the conductive material layer 11 and the metal layer 10 and the fuel cell 2, the electrical connection is cut off. . On the other hand, in the present embodiment, even if the gaps 14a and 14b are generated, the conductive material layer 11, the metal layer 10, and the fuel cell 2 are electrically connected by the conductive via 3. Maintained. Therefore, in the fuel cell stack 1, the reliability of electrical connection can be effectively increased.
 本実施形態の導電ビア3は、例えば、上記導電材層11に貫通孔をあけ、そこに金属を流し込むことにより、形成することができる。なお、上記は導電ビア3の形成方法の一例であり、他の方法により導電ビア3を形成してもよい。 The conductive via 3 of the present embodiment can be formed, for example, by making a through hole in the conductive material layer 11 and pouring metal therethrough. The above is an example of a method for forming the conductive via 3, and the conductive via 3 may be formed by other methods.
 本実施形態によれば電気的接続の信頼性を高め得ることを、具体的な実験例に基づき説明する。 The fact that the reliability of electrical connection can be improved according to the present embodiment will be described based on a specific experimental example.
 図5は、上記実施形態としての燃料電池セル及び、比較例の燃料電池セルと金属層との抵抗と、熱サイクル回数との関係を示す図である。なお、比較例の燃料電池セルは、上記導電ビア3を設けていないこと以外は、上記実施形態と同様にして作製した。 FIG. 5 is a diagram showing the relationship between the resistance of the fuel cell according to the embodiment and the fuel cell of the comparative example and the metal layer, and the number of thermal cycles. The fuel cell of the comparative example was manufactured in the same manner as in the above embodiment except that the conductive via 3 was not provided.
 図5から明らかなように、上記実施形態の燃料電池スタックにおける燃料電池セルと金属層との抵抗の熱サイクル特性が、上記導電ビア3を設けていない比較例に比べ、飛躍的に向上していることがわかる。 As is apparent from FIG. 5, the thermal cycle characteristics of the resistance between the fuel cell and the metal layer in the fuel cell stack of the above embodiment are dramatically improved as compared with the comparative example in which the conductive via 3 is not provided. I understand that.
 図6は、本発明の第2の実施形態に係る燃料電池スタックの略図的正面断面図である。第2の実施形態においては、導電ビア3a,3bが、導電材層11の金属層10側の表層及び燃料電池セル2側の表層に形成されている。上記導電ビア3a,3bは、第1の実施形態の導電ビア3が分割された形に相当している。対を成す上記導電ビア3aと上記導電ビア3bとは、上下方向に重なり合って配置されている。また、上記導電ビア3a,3bは上記金属層10側及び上記燃料電池セル2側へ突出するように設けられている。上記導電ビア3a,3bは、上記導電材層11と、上記金属層10及び上記燃料電池セル2とを電気的に接続している。その他の構成は上記第1の実施形態と同様であるため、第1の実施形態の説明を援用することにより、詳細な説明は省略する。なお、上記導電ビア3a,3bは上下方向に重なり合って配置されていなくてもよい。 FIG. 6 is a schematic front sectional view of a fuel cell stack according to the second embodiment of the present invention. In the second embodiment, the conductive vias 3 a and 3 b are formed in the surface layer on the metal layer 10 side and the surface layer on the fuel cell 2 side of the conductive material layer 11. The conductive vias 3a and 3b correspond to a shape obtained by dividing the conductive via 3 of the first embodiment. The conductive vias 3a and the conductive vias 3b forming a pair are arranged so as to overlap in the vertical direction. The conductive vias 3a and 3b are provided so as to protrude toward the metal layer 10 side and the fuel cell 2 side. The conductive vias 3 a and 3 b electrically connect the conductive material layer 11, the metal layer 10, and the fuel cell 2. Since the other configuration is the same as that of the first embodiment, the detailed description is omitted by using the description of the first embodiment. Note that the conductive vias 3a and 3b may not be arranged so as to overlap in the vertical direction.
 第2の実施形態においては、上記導電材層11と、上記金属層10及び上記燃料電池セル2との間に空隙14a,14bが生じたとしても、上記導電ビア3a,3bにより上記導電材層11と、上記金属層10及び上記燃料電池セル2とが電気的に接続された状態が維持される。従って、電気的接続が絶たれない。さらに、第1の実施形態と比較して、導電ビアを構成する材料を削減することができる。 In the second embodiment, even if gaps 14 a and 14 b are generated between the conductive material layer 11, the metal layer 10, and the fuel cell 2, the conductive material layer is formed by the conductive vias 3 a and 3 b. 11, the metal layer 10 and the fuel cell 2 are electrically connected. Therefore, the electrical connection is not broken. Furthermore, compared with the first embodiment, the material constituting the conductive via can be reduced.
 図7は、本発明の第3の実施形態に係る燃料電池スタックの略図的正面断面図である。第3の実施形態においては、導電ビア3a,3bが、導電材層11の金属層10側及び燃料電池セル2側から該導電材層11の内部に至るように形成されている。上記導電ビア3a,3bは、上記導電材層11の内部に至っている度合いである深度が大きい。また、上記導電ビア3aと上記導電ビア3bとは、上下方向に重なり合わないように配置されている。また、上記導電ビア3a,3bは上記金属層10側及び上記燃料電池セル2側へ突出するように設けられている。上記導電ビア3a,3bは、上記導電材層11と、上記金属層10及び上記燃料電池セル2とを電気的に接続している。 FIG. 7 is a schematic front sectional view of a fuel cell stack according to the third embodiment of the present invention. In the third embodiment, the conductive vias 3 a and 3 b are formed so as to reach the inside of the conductive material layer 11 from the metal layer 10 side and the fuel cell 2 side of the conductive material layer 11. The conductive vias 3a and 3b have a large depth which is a degree reaching the inside of the conductive material layer 11. The conductive via 3a and the conductive via 3b are arranged so as not to overlap in the vertical direction. The conductive vias 3a and 3b are provided so as to protrude toward the metal layer 10 side and the fuel cell 2 side. The conductive vias 3 a and 3 b electrically connect the conductive material layer 11, the metal layer 10, and the fuel cell 2.
 第3の実施形態においては、上記金属層10及び上記燃料電池セル2との間に空隙14a,14bが生じたとしても、上記導電ビア3a,3bにより、電気的接続を維持することができる。さらに、第1の実施形態と比較し、導電ビアを構成する材料を削減することができる。また、上記導電ビア3a,3bは上記導電材層11の内部に至るように形成されている。従って、本実施形態では、第2の実施形態と比較して、上記導電材層11と、上記金属層10または上記燃料電池セル2との間の少なくとも一方において剥離が生じた場合に、上記導電ビア3a,3bの浮き上がりが生じ難くなる。よって、電気的接続の信頼性をより一層高めることができる。 In the third embodiment, even if gaps 14a and 14b are generated between the metal layer 10 and the fuel cell 2, the electrical connection can be maintained by the conductive vias 3a and 3b. Furthermore, compared to the first embodiment, the material constituting the conductive via can be reduced. The conductive vias 3 a and 3 b are formed so as to reach the inside of the conductive material layer 11. Therefore, in this embodiment, compared to the second embodiment, when the peeling occurs in at least one of the conductive material layer 11 and the metal layer 10 or the fuel cell 2, the conductive material is used. The vias 3a and 3b are unlikely to rise. Therefore, the reliability of electrical connection can be further improved.
 なお、第2の実施形態及び第3の実施形態においては、上記導電材層11の上記金属層10側及び上記燃料電池セル2側において、上記導電ビア3a,3bの形成形態は同様であったが、上記導電材層11の上記金属層10側及び上記燃料電池セル2側において、上記導電ビア3a,3bの形成形態が異なってもよい。例えば、上記導電ビア3aが上記導電材層11の上記金属層10側の表層に形成されており、上記導電ビア3bが上記導電材層11の上記燃料電池セル2側から該導電材層11の内部に至るように形成されていてもよい。 In the second and third embodiments, the conductive vias 3a and 3b were formed in the same manner on the metal layer 10 side and the fuel cell 2 side of the conductive material layer 11. However, the conductive vias 3a and 3b may be formed differently on the metal layer 10 side and the fuel cell 2 side of the conductive material layer 11. For example, the conductive via 3 a is formed on the surface layer of the conductive material layer 11 on the metal layer 10 side, and the conductive via 3 b is formed on the conductive material layer 11 from the fuel cell 2 side of the conductive material layer 11. It may be formed so as to reach the inside.
 図8は、本発明の第4の実施形態に係る燃料電池スタックの略図的正面断面図である。第4の実施形態においては、導電ビア3bが、導電材層11の燃料電池セル2側の表層に形成されている。また、上記導電ビア3bは上記燃料電池セル2側へ突出するように設けられている。上記導電ビア3bは、上記導電材層11と上記燃料電池セル2とを電気的に接続している。 FIG. 8 is a schematic front sectional view of a fuel cell stack according to the fourth embodiment of the present invention. In the fourth embodiment, the conductive via 3 b is formed on the surface layer of the conductive material layer 11 on the fuel cell 2 side. The conductive via 3b is provided so as to protrude toward the fuel cell 2 side. The conductive via 3 b electrically connects the conductive material layer 11 and the fuel battery cell 2.
 第4の実施形態においては、層間の剥離が、上記導電材層11と上記燃料電池セル2との間に生じたとしても、上記導電材層11と、金属層10及び上記燃料電池セル2との間の電気的接続を維持することができる。 In the fourth embodiment, even if delamination occurs between the conductive material layer 11 and the fuel cell 2, the conductive material layer 11, the metal layer 10, and the fuel cell 2 The electrical connection between the two can be maintained.
 なお、第4の実施形態においては、上記導電ビア3bが上記導電材層11の表層に形成されていたが、上記導電ビア3bは、上記導電材層11の上記燃料電池セル2側から該導電材層11の内部に至るように形成されていてもよい。 In the fourth embodiment, the conductive via 3b is formed in the surface layer of the conductive material layer 11. However, the conductive via 3b is connected to the conductive battery layer 11 from the fuel cell 2 side. It may be formed so as to reach the inside of the material layer 11.
 図9は、本発明の第5の実施形態に係る燃料電池スタックの略図的正面断面図である。第5の実施形態においては、導電ビア3aが、導電材層11の金属層10側の表層に形成されている。また、上記導電ビア3aは上記金属層10側へ突出するように設けられている。上記導電ビア3aは、上記導電材層11と上記金属層10とを電気的に接続している。 FIG. 9 is a schematic front sectional view of a fuel cell stack according to a fifth embodiment of the present invention. In the fifth embodiment, the conductive via 3 a is formed on the surface layer of the conductive material layer 11 on the metal layer 10 side. The conductive via 3a is provided so as to protrude toward the metal layer 10 side. The conductive via 3 a electrically connects the conductive material layer 11 and the metal layer 10.
 第5の実施形態においては、層間の剥離が、上記導電材層11と上記金属層10との間に生じたとしても、上記導電材層11と、上記金属層10及び燃料電池セル2との間の電気的接続を維持することができる。 In the fifth embodiment, even if delamination occurs between the conductive material layer 11 and the metal layer 10, the conductive material layer 11, the metal layer 10, and the fuel cell 2 are separated from each other. The electrical connection between them can be maintained.
 なお、第5の実施形態においては、上記導電ビア3aが上記導電材層11の表面に形成されていたが、上記導電ビア3aは、上記導電材層11の上記金属層10側から該導電材層11の内部に至るように形成されていてもよい。 In the fifth embodiment, the conductive via 3 a is formed on the surface of the conductive material layer 11. However, the conductive via 3 a is connected to the conductive material layer 11 from the metal layer 10 side. It may be formed so as to reach the inside of the layer 11.
 なお、第1~5の実施形態において、上記導電ビア3は上記金属層10の表面に接触していてもよく、あるいは上記金属層10の内部に至るように形成された状態で接触していてもよい。また、上記導電ビア3は上記燃料電池セル2の表面で接触していてもよく、あるいは上記燃料電池セル2の内部に至るように形成された状態で接触していてもよい。 In the first to fifth embodiments, the conductive via 3 may be in contact with the surface of the metal layer 10 or in a state of being formed so as to reach the inside of the metal layer 10. Also good. Further, the conductive via 3 may be in contact with the surface of the fuel cell 2 or may be in a state of being formed so as to reach the inside of the fuel cell 2.
1…燃料電池スタック
2…燃料電池セル
2a…流路構成部
2b,2c,2d,2e…発電部
3,3a,3b…導電ビア
4…接合部
5…セパレータ
5a,5b…貫通孔
5c…インターコネクタ
6…燃料極層
6a,6b…スリット
7…固体酸化物電解質層
7a,7b…貫通孔
8…空気極層
8a,8b…スリット
9…セパレータ
9a,9b…貫通孔
9c…インターコネクタ
10…金属層
11…導電材層
12…接着剤層
13…スペーサ
14a,14b…空隙
DESCRIPTION OF SYMBOLS 1 ... Fuel cell stack 2 ... Fuel cell 2a ... Flow path structure part 2b, 2c, 2d, 2e ... Electric power generation part 3, 3a, 3b ... Conductive via 4 ... Joint part 5 ... Separator 5a, 5b ... Through-hole 5c ... Inter Connector 6 ... Fuel electrode layer 6a, 6b ... Slit 7 ... Solid oxide electrolyte layer 7a, 7b ... Through hole 8 ... Air electrode layer 8a, 8b ... Slit 9 ... Separator 9a, 9b ... Through hole 9c ... Interconnector 10 ... Metal Layer 11 ... Conductive material layer 12 ... Adhesive layer 13 ... Spacers 14a, 14b ... Gaps

Claims (7)

  1.  複数の燃料電池セルが積層されている構造を有する固体酸化物形燃料電池スタックであって、
     積層されている複数の固体酸化物形の燃料電池セルと、
     前記燃料電池セル同士が積層されている部分において、一方の前記燃料電池セルと、他方の前記燃料電池セルとの間に配置されている金属層と、
     前記金属層と、前記燃料電池セルとを電気的に接続するように前記金属層と前記燃料電池セルとの間に配置されている導電材層と、
     前記導電材層と、前記金属層及び前記燃料電池セルの内の少なくとも一方とを電気的に接続するように、前記導電材層と前記金属層との間及び前記導電材層と前記燃料電池セルとの間の内の少なくとも一方に位置するように設けられている導電ビアとを備える、固体酸化物形燃料電池スタック。
    A solid oxide fuel cell stack having a structure in which a plurality of fuel cells are stacked,
    A plurality of solid oxide fuel cells stacked;
    In the portion where the fuel cells are stacked, a metal layer disposed between one of the fuel cells and the other fuel cell,
    A conductive material layer disposed between the metal layer and the fuel cell so as to electrically connect the metal layer and the fuel cell;
    The conductive material layer and at least one of the metal layer and the fuel battery cell are electrically connected between the conductive material layer and the metal layer and between the conductive material layer and the fuel battery cell. And a conductive via provided so as to be located in at least one of them.
  2.  前記導電ビアが、前記燃料電池セルの発電温度において、前記導電材層から突出している、請求項1に記載の固体酸化物形燃料電池スタック。 2. The solid oxide fuel cell stack according to claim 1, wherein the conductive via protrudes from the conductive material layer at a power generation temperature of the fuel cell.
  3.  前記導電ビアが前記導電材層を貫通しており、且つ前記導電材層と、前記金属層及び前記燃料電池セルとを電気的に接続している、請求項1または2に記載の固体酸化物形燃料電池スタック。 3. The solid oxide according to claim 1, wherein the conductive via penetrates the conductive material layer, and electrically connects the conductive material layer, the metal layer, and the fuel cell. Fuel cell stack.
  4.  前記導電ビアが、前記導電材層の前記金属層側及び前記燃料電池セル側の表層に形成されており、且つ前記導電材層と、前記金属層及び前記燃料電池セルとを電気的に接続している、請求項1または2に記載の固体酸化物形燃料電池スタック。 The conductive via is formed on the metal layer side and the fuel cell side surface of the conductive material layer, and electrically connects the conductive material layer, the metal layer and the fuel cell. The solid oxide fuel cell stack according to claim 1 or 2.
  5.  前記導電ビアが、前記導電材層の前記金属層側及び前記燃料電池セル側から該導電材層の内部に至るように形成されており、且つ前記導電材層と、前記金属層及び前記燃料電池セルとを電気的に接続している、請求項1または2に記載の固体酸化物形燃料電池スタック。 The conductive via is formed so as to extend from the metal layer side and the fuel cell side of the conductive material layer to the inside of the conductive material layer, and the conductive material layer, the metal layer, and the fuel cell. The solid oxide fuel cell stack according to claim 1 or 2, wherein the cell is electrically connected to the cell.
  6.  前記導電ビアが、前記導電材層の前記金属層側または前記燃料電池セル側のいずれか一方の表層に形成されており、且つ前記導電材層と、前記金属層または前記燃料電池セルのいずれか一方とを電気的に接続している、請求項1または2に記載の固体酸化物形燃料電池スタック。 The conductive via is formed in one surface layer of the conductive material layer on the metal layer side or the fuel battery cell side, and the conductive material layer, the metal layer, or the fuel battery cell. The solid oxide fuel cell stack according to claim 1 or 2, wherein one of them is electrically connected.
  7.  前記導電ビアが、Pt、Pd、Ag、Au、Ru、Rh、Ni、Fe、Cr及びこれらの金属を主体とする合金からなる群から選択された少なくとも1種の金属を主体とする、請求項1~6のいずれか1項に記載の固体酸化物形燃料電池スタック。 The conductive via is mainly composed of at least one metal selected from the group consisting of Pt, Pd, Ag, Au, Ru, Rh, Ni, Fe, Cr, and alloys mainly composed of these metals. 7. The solid oxide fuel cell stack according to any one of 1 to 6.
PCT/JP2014/074307 2013-09-27 2014-09-12 Solid oxide fuel cell stack WO2015045926A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015539116A JP6119869B2 (en) 2013-09-27 2014-09-12 Solid oxide fuel cell stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-201076 2013-09-27
JP2013201076 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015045926A1 true WO2015045926A1 (en) 2015-04-02

Family

ID=52743068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074307 WO2015045926A1 (en) 2013-09-27 2014-09-12 Solid oxide fuel cell stack

Country Status (2)

Country Link
JP (1) JP6119869B2 (en)
WO (1) WO2015045926A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017220375A (en) * 2016-06-08 2017-12-14 株式会社村田製作所 Fuel cell stack and fuel battery cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132914A (en) * 2001-10-19 2003-05-09 Mcdermott Technol Inc Interconnect of high performance ceramic fuel cell having integrated flowpath and making method for the same
JP2007095384A (en) * 2005-09-27 2007-04-12 Kyocera Corp Fuel battery cell and fuel battery
JP2012018808A (en) * 2010-07-07 2012-01-26 Ngk Spark Plug Co Ltd Solid oxide fuel cell, solid oxide fuel cell stack and solid oxide fuel cell device
WO2012133175A1 (en) * 2011-03-25 2012-10-04 株式会社村田製作所 Fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132914A (en) * 2001-10-19 2003-05-09 Mcdermott Technol Inc Interconnect of high performance ceramic fuel cell having integrated flowpath and making method for the same
JP2007095384A (en) * 2005-09-27 2007-04-12 Kyocera Corp Fuel battery cell and fuel battery
JP2012018808A (en) * 2010-07-07 2012-01-26 Ngk Spark Plug Co Ltd Solid oxide fuel cell, solid oxide fuel cell stack and solid oxide fuel cell device
WO2012133175A1 (en) * 2011-03-25 2012-10-04 株式会社村田製作所 Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017220375A (en) * 2016-06-08 2017-12-14 株式会社村田製作所 Fuel cell stack and fuel battery cell

Also Published As

Publication number Publication date
JP6119869B2 (en) 2017-04-26
JPWO2015045926A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
KR102133161B1 (en) Fuel cell stack
JP6317222B2 (en) Solid oxide fuel cell stack
JP6086154B2 (en) Separator and fuel cell
JP5077238B2 (en) Solid oxide fuel cell support structure and solid oxide fuel cell module including the same
JP6176329B2 (en) Solid oxide fuel cell stack
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP6389133B2 (en) Fuel cell stack
JP2016062655A (en) Separator-fitted single fuel cell
JP6119869B2 (en) Solid oxide fuel cell stack
JP6460261B2 (en) Solid oxide fuel cell stack
JP6756549B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2015032557A (en) Solid oxide fuel cell stack and interconnector with separator
JP6908885B2 (en) Separator and fuel cell
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JP2010205534A (en) Fuel cell power generation unit, and fuel cell stack
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP6925578B2 (en) Fuel cell stack
JP7032853B2 (en) Fuel cell stack and fuel cell
JP6777473B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP6959039B2 (en) Method for manufacturing electrochemical reaction unit, electrochemical reaction cell stack, and electrochemical reaction unit
JP6774230B2 (en) Current collector-electrochemical reaction single cell complex and electrochemical reaction cell stack
JP2016024951A (en) Solid-state oxide fuel battery
JP5954495B2 (en) Solid electrolyte fuel cell
JP2020170630A (en) Electrochemical reaction cell stack
JP2006172906A (en) Fuel battery cell and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848063

Country of ref document: EP

Kind code of ref document: A1