JP5426488B2 - Method for producing single cell for solid oxide fuel cell - Google Patents

Method for producing single cell for solid oxide fuel cell Download PDF

Info

Publication number
JP5426488B2
JP5426488B2 JP2010143486A JP2010143486A JP5426488B2 JP 5426488 B2 JP5426488 B2 JP 5426488B2 JP 2010143486 A JP2010143486 A JP 2010143486A JP 2010143486 A JP2010143486 A JP 2010143486A JP 5426488 B2 JP5426488 B2 JP 5426488B2
Authority
JP
Japan
Prior art keywords
fuel electrode
sheet
electrolyte
fuel
single cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010143486A
Other languages
Japanese (ja)
Other versions
JP2012009245A (en
Inventor
武志 小松
姫子 大類
博章 田口
玲一 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010143486A priority Critical patent/JP5426488B2/en
Publication of JP2012009245A publication Critical patent/JP2012009245A/en
Application granted granted Critical
Publication of JP5426488B2 publication Critical patent/JP5426488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本願発明は、固体酸化物形燃料電池に関するものである。   The present invention relates to a solid oxide fuel cell.

近年、規模の大小にかかわらず高い効率が得られることから、燃料電池が次世代のコジェネレーションシステムに用いられる発電手段として注目されている。燃料電池は、酸素などの酸化剤ガスと水素などの燃料ガスとの化学反応を利用した電池であり、空気極と呼ばれる陽極と、燃料極と呼ばれる陰極とで電解質の層を挟んだ単セルを、複数重ね合わせたスタック構造を用いている。一組のセル(単セル)で得られる電気の電圧は、約0.7Vであるが、複数の単セルを重ね合わせて用いることで、所望とする電圧の供給が可能である。   In recent years, fuel cells have attracted attention as power generation means used in next-generation cogeneration systems because high efficiency can be obtained regardless of the size. A fuel cell is a battery that uses a chemical reaction between an oxidant gas such as oxygen and a fuel gas such as hydrogen. A fuel cell is composed of a single cell with an electrolyte layer sandwiched between an anode called an air electrode and a cathode called a fuel electrode. A stack structure in which a plurality of layers are stacked is used. The electric voltage obtained in one set of cells (single cells) is about 0.7 V, but a desired voltage can be supplied by using a plurality of single cells in an overlapping manner.

このような燃料電池には、高分子材料を電解質層に用いる固体高分子型や、セラミックスなどの酸化物を電解質層に用いる固体酸化物形がある。   Such fuel cells include a solid polymer type using a polymer material for the electrolyte layer, and a solid oxide type using an oxide such as ceramics for the electrolyte layer.

固体高分子形燃料電池では、作動温度が高々90℃であり、自動車用や家庭用コジェネレーションシステムに適用可能とされている。   The polymer electrolyte fuel cell has an operating temperature of at most 90 ° C., and can be applied to automobile and household cogeneration systems.

これに対して、固体酸化物形燃料電池は、作動温度が600℃以上と高温であるが、発電効率が45%以上と高効率である。このため、複数の単セルを組み合わせたスタック構造の固体酸化物形燃料電池は、タービン発電などと組み合わせてより高効率のコジェネレーションシステムを構築できるという利点を有しており、発電所への用途などに期待されている。   In contrast, the solid oxide fuel cell has an operating temperature as high as 600 ° C. or higher, but has a high power generation efficiency of 45% or higher. For this reason, a solid oxide fuel cell with a stack structure that combines multiple single cells has the advantage that it can be combined with turbine power generation to build a more efficient cogeneration system. Is expected.

ところで、複数の単セルを組み合わせてスタック構造とするときには、単セルを収容して、単セルの燃料極に燃料ガス、空気極に酸化剤ガスをそれぞれ個別に供給するととともに、各単セルを電気的に接続するセパレータまたはインターコネクタと呼ばれる部材(以下、「セパレータ」という。)が用いられている(例えば、特許文献1参照。)。このセパレータに収容された単セルは、セパレータ内部でセパレータと接触することにより、セパレータと電気的に接続されることとなる。   By the way, when a plurality of single cells are combined to form a stack structure, the single cells are accommodated, and fuel gas and oxidant gas are individually supplied to the fuel electrode and air electrode of the single cell, and each single cell is electrically connected. A member called a separator or interconnector (hereinafter referred to as a “separator”) is used (see, for example, Patent Document 1). The single cell accommodated in the separator is electrically connected to the separator by contacting the separator inside the separator.

特開2009−146745号公報JP 2009-146745 A

しかしながら、単セルは、電解質と燃料極からなるハーフセルの作製時に、単セルの中心を頂点とした反りが発生することがある。この反りは、電解質と燃料極を構成する材料の熱膨張係数、それぞれの厚さや気孔率などが原因で発生すると考えられている。この反りが大きいと、燃料極の一部しかセパレータに接触しなくなる。例えば、図4に示すような電解質11、空気極12および燃料極13からなる単セル10の場合、燃料極13の外周部にしかセパレータ21が接触しなくなる。すると、燃料極13では、単セル10の外周部近傍で電気化学反応が行わることになるので、燃料極13の平面内で電流が流れる「横流れ」という現象(図4の符号bを参照。)が生じてしまう。この横流れした電流は、燃料極13の平面内を通過する際に燃料極13の材料に起因するオーミック抵抗の影響を受ける。このため、単セルから十分な発電特性を得ることが困難となる。特に近年では単セルの大型化が促進されているため、この単セルの大型化に伴って反りも大きくなるので、ますます発電特性の向上が阻害される。   However, a single cell may be warped with the center of the single cell as the apex when a half cell composed of an electrolyte and a fuel electrode is manufactured. This warpage is considered to occur due to the coefficient of thermal expansion of the materials constituting the electrolyte and the fuel electrode, the thickness and the porosity of each. If this warpage is large, only a part of the fuel electrode comes into contact with the separator. For example, in the case of the single cell 10 including the electrolyte 11, the air electrode 12 and the fuel electrode 13 as shown in FIG. 4, the separator 21 comes into contact only with the outer peripheral portion of the fuel electrode 13. Then, in the fuel electrode 13, an electrochemical reaction takes place in the vicinity of the outer peripheral portion of the unit cell 10, so that a phenomenon called “lateral flow” in which a current flows in the plane of the fuel electrode 13 (see symbol b in FIG. 4) ) Will occur. This transversely flowing current is affected by ohmic resistance caused by the material of the fuel electrode 13 when passing through the plane of the fuel electrode 13. For this reason, it becomes difficult to obtain sufficient power generation characteristics from a single cell. In particular, in recent years, since the increase in the size of the single cell has been promoted, the warpage increases with the increase in the size of the single cell, so that the improvement in power generation characteristics is further hindered.

そこで、本発明は、発電特性を向上させることができる固体酸化物形燃料電池用単セルの製造方法を提供することを目的とする。 Accordingly, an object of the present invention to provide a method for producing a solid body oxide fuel cell single cell that can improve power generation characteristics.

上述したような課題を解決するために、本発明に係る固体酸化物形燃料電池用単セルは、平板状の電解質と、この電解質の一方の面に設けられた空気極と、電解質の他方の面に設けられた燃料極と、この燃料極の電解質と接触する面と反対側の面に形成され、燃料極よりも電気抵抗が低い材料からなる導電部材とを備えたことを特徴とするものである。   In order to solve the above-described problems, a single cell for a solid oxide fuel cell according to the present invention includes a flat electrolyte, an air electrode provided on one surface of the electrolyte, and the other electrolyte. A fuel electrode provided on the surface, and a conductive member formed on a surface opposite to the surface in contact with the electrolyte of the fuel electrode and made of a material having a lower electrical resistance than the fuel electrode It is.

上記固体酸化物形燃料電池用単セルにおいて、導電部材は、格子状または放射状の平面形状を有するようにしてもよい。   In the single cell for a solid oxide fuel cell, the conductive member may have a lattice shape or a radial planar shape.

また、上記固体酸化物形燃料電池用単セルにおいて、燃料極よりも電気抵抗が低い上記材料は、ニッケル酸化物からなるようにしてもよい。   In the solid oxide fuel cell single cell, the material having an electric resistance lower than that of the fuel electrode may be made of nickel oxide.

また、本発明に係る固体酸化物形燃料電池用単セルの製造方法は、電解質の材料より形成されたスラリーおよび燃料極の材料より形成されたスラリーをそれぞれ成形して乾燥することで、電解質となる第1のシートおよび燃料極となる第2のシートを形成する第1のステップと、第2のシート上に燃料極の材料よりも電気抵抗が低い材料より形成されたスラリーを成形して乾燥することで、第2のシート上に導電部材となる第3のシートが形成された第4のシートを形成する第2のステップと、第1のシートおよび第2のシートを積層し、この第2のシート上に第4のシートを配設して焼成することにより、燃料極、電解質および導電部材を一体焼結する第3のステップと、空気極の材料より形成されたスラリーを電解質上に塗布して焼成することにより空気極を作製する第4のステップとを有することを特徴とするものである。   Also, the method for manufacturing a solid oxide fuel cell unit cell according to the present invention includes forming a slurry formed from an electrolyte material and a slurry formed from a fuel electrode material, respectively, and drying the molded electrolyte and the electrolyte. A first step of forming a first sheet to be formed and a second sheet to be a fuel electrode, and a slurry formed of a material having a lower electrical resistance than the material of the fuel electrode on the second sheet and dried Then, the second step of forming the fourth sheet in which the third sheet serving as the conductive member is formed on the second sheet, the first sheet and the second sheet are laminated, The fourth sheet is disposed on the second sheet and fired, whereby the third step of integrally sintering the fuel electrode, the electrolyte and the conductive member, and the slurry formed from the air electrode material are deposited on the electrolyte. Apply and fire It is characterized in that a fourth step of making the air electrode by.

上記固体酸化物形燃料電池用単セルの製造方法において、第3のシートは、格子状または放射状の平面形状を有するように形成されるようにしてもよい。   In the method for manufacturing a single cell for a solid oxide fuel cell, the third sheet may be formed so as to have a lattice shape or a radial planar shape.

また、上記固体酸化物形燃料電池用単セルの製造方法において、前記燃料極よりも電気抵抗が低い上記材料は、ニッケル酸化物からなるようにしてもい。   In the method for manufacturing a single cell for a solid oxide fuel cell, the material having an electric resistance lower than that of the fuel electrode may be made of nickel oxide.

本発明によれば、燃料極の電解質と接触する面と反対側の面に燃料極よりも電気抵抗が低い材料からなる導電部材を設けることにより、燃料極の平面内を横流れしていた電流が導電部材を流れることが可能となるので、燃料極の材料に起因する電気抵抗を受ける電流が少なくなるため、発電特性を向上させることができる。   According to the present invention, by providing a conductive member made of a material having a lower electrical resistance than the fuel electrode on the surface opposite to the surface in contact with the electrolyte of the fuel electrode, the current that has flowed laterally in the plane of the fuel electrode can be obtained. Since it becomes possible to flow through the conductive member, the current that receives the electrical resistance due to the material of the fuel electrode is reduced, so that the power generation characteristics can be improved.

図1は、本発明に係る固体酸化物形燃料電池用単セルの構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a single cell for a solid oxide fuel cell according to the present invention. 図2は、導電部材の平面形状を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the planar shape of the conductive member. 図3は、本発明に係る固体酸化物形燃料電池用単セルの製造方法を示すフローチャートである。FIG. 3 is a flowchart showing a method for manufacturing a single cell for a solid oxide fuel cell according to the present invention. 図4は、電流の横流れを説明するための図である。FIG. 4 is a diagram for explaining the lateral flow of current.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<単セルの構成>
図1に示すように、本実施の形態に係る固体酸化物形燃料電池セル用の単セルは、燃料極支持型の構成を有し、平板状の電解質1、この電解質1の他方の面に形成された平板状の空気極2、電解質1の他方の面に形成された平板状の燃料極3、および、この燃料極3の電解質1と接触する面と反対側の面に形成された導電部材4を備えている。
<Single cell configuration>
As shown in FIG. 1, the unit cell for a solid oxide fuel cell according to the present embodiment has a fuel electrode support type configuration, and has a flat electrolyte 1 on the other surface of the electrolyte 1. The formed flat air electrode 2, the flat fuel electrode 3 formed on the other surface of the electrolyte 1, and the conductive material formed on the surface of the fuel electrode 3 opposite to the surface in contact with the electrolyte 1. A member 4 is provided.

電解質1は、平面視円盤状に形成され、例えば、スカンジア安定化ジルコニア(ScSZ)、イットリア安定化ジルコニア(YSZ)、サマリア安定化ジルコニア(SSZ)などのジルコニア系の材料から構成される。   The electrolyte 1 is formed in a disk shape in plan view, and is made of, for example, a zirconia-based material such as scandia-stabilized zirconia (ScSZ), yttria-stabilized zirconia (YSZ), or samaria-stabilized zirconia (SSZ).

空気極2は、平面視円盤状に形成され、例えば、タンランニッケルフェライト(La(Ni,Fe)O3)、ランタンストロンチウムマンガネート((La,Sr)MnO3)、ランタンストロンチウムコバルタイト((La,Sr)CoO3)など、ペロブスカイト酸化物から構成される。 The air electrode 2 is formed in a disk shape in plan view. For example, the lanthanum nickel ferrite (La (Ni, Fe) O 3 ), lanthanum strontium manganate ((La, Sr) MnO 3 ), lanthanum strontium cobaltite (( La, Sr) CoO 3 ) and other perovskite oxides.

燃料極3は、平面視円盤状に形成され、例えば、ニッケル添加イットリア安定化ジルコニア(Ni−YSZ)、ニッケル添加サマリア安定化ジルコニア(Ni−SSZ)、ニッケル添加スカンジア安定化ジルコニア(Ni−ScSZ)など、電気導電性が高い金属Niと上述した電解質1を構成する材料とが3:7〜7:3の重量比で混合された混合物から構成される。ここで、燃料極3の電子導電性は、混合材料によって特性が決定される。すなわち、酸素導電性を有するジルコニアの割合が多い場合には、燃料極3の電子導電性は低くなり、電気導電性が高いニッケルの割合が多い場合には、燃料極3の電子導電性は高くなる。   The fuel electrode 3 is formed in a disk shape in plan view. For example, nickel-added yttria stabilized zirconia (Ni-YSZ), nickel-added samaria stabilized zirconia (Ni-SSZ), nickel-added scandia stabilized zirconia (Ni-ScSZ). For example, the metal Ni having high electrical conductivity and the material constituting the electrolyte 1 are mixed from a weight ratio of 3: 7 to 7: 3. Here, the characteristics of the electronic conductivity of the fuel electrode 3 are determined by the mixed material. That is, when the proportion of zirconia having oxygen conductivity is large, the electronic conductivity of the fuel electrode 3 is low, and when the proportion of nickel having high electrical conductivity is large, the electronic conductivity of the fuel electrode 3 is high. Become.

導電部材4は、燃料極3の電解質1と接触する面と反対側の面に形成され、例えば、ニッケル酸化物など、燃料極3よりも電気抵抗が低い材料から構成される。このような導電部材4は、図2に示すように、平面視略格子状に形成される。   The conductive member 4 is formed on the surface of the fuel electrode 3 opposite to the surface in contact with the electrolyte 1 and is made of a material having an electric resistance lower than that of the fuel electrode 3, such as nickel oxide. As shown in FIG. 2, the conductive member 4 is formed in a substantially lattice shape in plan view.

<単セルの製造方法>
次に、図3を参照して、本実施の形態に係る固体酸化物形燃料電池セル用の単セルの製造方法について説明する。
<Manufacturing method of single cell>
Next, with reference to FIG. 3, the manufacturing method of the single cell for solid oxide fuel cells which concerns on this Embodiment is demonstrated.

まず、ジルコニア酸化物からなる電解質1の材料、ペロブスカイト酸化物からなる空気極2の材料、ならびに、ニッケル酸化物およびジルコニア酸化物からなる燃料極3の材料それぞれにバインダー溶液を加えてスラリーを作製する(ステップS1)。便宜上、以下において、電解質1の材料からなるスラリーを電解質スラリー、空気極2の材料からなるスラリーを空気極スラリー、燃料極3の材料からなるスラリーを燃料極スラリーと呼ぶ。   First, a slurry is prepared by adding a binder solution to each of the material of the electrolyte 1 made of zirconia oxide, the material of the air electrode 2 made of perovskite oxide, and the material of the fuel electrode 3 made of nickel oxide and zirconia oxide. (Step S1). For convenience, in the following, a slurry made of the material of the electrolyte 1 is called an electrolyte slurry, a slurry made of the material of the air electrode 2 is called an air electrode slurry, and a slurry made of the material of the fuel electrode 3 is called a fuel electrode slurry.

各スラリーを作製すると、電解質スラリーおよび燃料極スラリーに対して、攪拌および減圧脱泡処理を行い、各スラリーの粘度の調整と脱泡を行う(ステップS2)。   When each slurry is produced, the electrolyte slurry and the fuel electrode slurry are subjected to stirring and vacuum defoaming treatment, and the viscosity of each slurry is adjusted and defoamed (step S2).

粘度調整および脱泡を行うと、ドクターブレード法により、電解質スラリーおよび燃料極スラリーそれぞれを所定の厚さを有するシート状の成形体を形成する(ステップS3)。便宜上、以下において、電解質スラリーから形成されたシート状の成形体を電解質シート、燃料極スラリーから形成されたシート状の成形体を燃料極シートと呼ぶ。   When the viscosity adjustment and defoaming are performed, a sheet-like molded body having a predetermined thickness is formed from the electrolyte slurry and the fuel electrode slurry by the doctor blade method (step S3). For convenience, in the following, a sheet-like formed body formed from the electrolyte slurry is referred to as an electrolyte sheet, and a sheet-like formed body formed from the fuel electrode slurry is referred to as a fuel electrode sheet.

燃料極シートを生成すると、予め用意しておいたニッケル酸化物のみからなるスラリーを、単セルが完成したときにセパレータとの接触面となる燃料極シート上に、スクリーン印刷法によって図2の符号aで示すような0.1−1.0mm間隔の格子状に印刷して、乾燥させる(ステップS4)。この結果、燃料極3上に導電部材4が形成されることとなる。   When the fuel electrode sheet is generated, a slurry made of only nickel oxide prepared in advance is applied to the fuel electrode sheet that becomes a contact surface with the separator when a single cell is completed by screen printing. It prints in the grid | lattice form of 0.1-1.0 mm space | interval as shown by a, and is dried (step S4). As a result, the conductive member 4 is formed on the fuel electrode 3.

続いて、電解質シートおよび燃料極シートを所定の形状に切り出し、複数枚の燃料極シートと1枚の電解質とを積層したグリーン体を作製する(ステップS5)。このとき、作製されたグリーン体における燃料極側の端面には、導電部材4が形成されている。   Subsequently, the electrolyte sheet and the fuel electrode sheet are cut into a predetermined shape, and a green body in which a plurality of fuel electrode sheets and one electrolyte are laminated is produced (step S5). At this time, the conductive member 4 is formed on the end face of the produced green body on the fuel electrode side.

グリーン体を作製すると、これに対して脱脂処理および焼結処理を行うことにより、電解質1と燃料極3とからなる燃料極支持型ハーフセルを作製する(ステップS6)。   When the green body is produced, a degreasing treatment and a sintering treatment are performed on the green body, thereby producing a fuel electrode supporting half cell composed of the electrolyte 1 and the fuel electrode 3 (step S6).

燃料極支持型ハーフセルを作製すると、この燃料極支持型ハーフセルの電解質1の面上に空気極スラリーを塗布して焼成する(ステップS7)。このようにして空気極2が生成されることにより、単セルが完成することとなる。   When the fuel electrode support type half cell is manufactured, the air electrode slurry is applied to the surface of the electrolyte 1 of the fuel electrode support type half cell and fired (step S7). A single cell is completed by generating the air electrode 2 in this way.

このように形成された単セルをセパレータに収容し、所定の温度下において空気極2に酸化剤ガス、燃料極3に燃料ガスを供給すると、空気極2および燃料極3と電解質1との界面で電気化学反応が発生する。このような状態で、空気極2側のセパレータと燃料極3側のセパレータとを端子として負荷回路に接続すると、電力を取り出すことができる。   When the single cell formed in this way is accommodated in a separator and an oxidant gas is supplied to the air electrode 2 and a fuel gas is supplied to the fuel electrode 3 at a predetermined temperature, the interface between the air electrode 2 and the fuel electrode 3 and the electrolyte 1 is obtained. An electrochemical reaction occurs. In such a state, when the separator on the air electrode 2 side and the separator on the fuel electrode 3 side are connected to the load circuit as terminals, electric power can be taken out.

このような状態において、燃料極3の平面内で横流れしている電流のうち格子状の導電部材4に到達した電流は、この導電部材4を通って流れる。この導電部材4を流れる電流は、従来のように燃料極3の平面内を横流れしなくてよいので、燃料極3の材料に起因する抵抗の影響を受けない。したがって、従来よりも抵抗の影響を受ける電流が少なくなるので、単セル全体として発電特性の向上を実現することができる。   In such a state, among the currents flowing laterally in the plane of the fuel electrode 3, the current that has reached the lattice-shaped conductive member 4 flows through the conductive member 4. Since the current flowing through the conductive member 4 does not have to flow laterally in the plane of the fuel electrode 3 as in the prior art, it is not affected by the resistance caused by the material of the fuel electrode 3. Therefore, since the current affected by the resistance is smaller than that of the conventional one, the power generation characteristics can be improved as a whole single cell.

以上説明したように、本実施の形態によれば、燃料極3の電解質1と接触する面と反対側の面に導電性の材料からなる導電部材4を設けることにより、燃料極3の平面内を横流れしていた電流が導電部材4を流れることが可能となるので、燃料極3の材料に起因する電気抵抗を受ける電流が少なくなるため、発電特性を向上させることができる。   As described above, according to the present embodiment, by providing the conductive member 4 made of a conductive material on the surface of the fuel electrode 3 opposite to the surface in contact with the electrolyte 1, Since the current that has flowed through the conductive member 4 can flow through the conductive member 4, the current that receives the electrical resistance due to the material of the fuel electrode 3 is reduced, and the power generation characteristics can be improved.

なお、本実施の形態では、導電部材4としてニッケル酸化物を用いた場合を例に説明したが、導電部材4の材料は、燃料極3よりも電気抵抗が低い材料であればニッケル酸化物に限定されず、各種材料を用いることができる。   In this embodiment, the case where nickel oxide is used as the conductive member 4 has been described as an example. However, the material of the conductive member 4 is nickel oxide as long as the material has a lower electrical resistance than the fuel electrode 3. Without limitation, various materials can be used.

また、本実施の形態では、燃料極シート上にニッケル酸化物からなる導電部材4を格子状に形成する場合を例に説明したが、燃料極シート上に形成する導電部材4の平面形状は格子状に限定されず、適宜自由に設定することができる。例えば、単セルの中心から外縁に向かう放射状に形成するようにしてもよい。この場合には、燃料極3の平面内の電流が単セルの中心部から外縁に向かって導かれるので、電流が導電部材4を効率的に流れるので、燃料極3の材料に起因する抵抗の影響を受ける電流を減少させることができ、結果として、単セルの発電特性を向上させることができる。   In the present embodiment, the case where the conductive member 4 made of nickel oxide is formed in a lattice shape on the fuel electrode sheet has been described as an example. However, the planar shape of the conductive member 4 formed on the fuel electrode sheet is a lattice shape. It is not limited to the shape, and can be set freely as appropriate. For example, you may make it form radially from the center of a single cell toward an outer edge. In this case, since the current in the plane of the fuel electrode 3 is guided from the center of the single cell toward the outer edge, the current efficiently flows through the conductive member 4, so that the resistance caused by the material of the fuel electrode 3 is reduced. The affected current can be reduced, and as a result, the power generation characteristics of the single cell can be improved.

本発明は、各種燃料電池に適用することができる。   The present invention can be applied to various fuel cells.

1…電解質、2…空気極、3…燃料極、4…導電部材。   DESCRIPTION OF SYMBOLS 1 ... Electrolyte, 2 ... Air electrode, 3 ... Fuel electrode, 4 ... Conductive member.

Claims (3)

電解質の材料より形成されたスラリーおよび燃料極の材料より形成されたスラリーをそれぞれ成形して乾燥することで、電解質となる第1のシートおよび燃料極となる第2のシートを形成する第1のステップと、
前記第2のシート上に前記燃料極の材料よりも電気抵抗が低い材料より形成されたスラリーを成形して乾燥することで、前記第2のシート上に導電部材となる第3のシートが形成された第4のシートを形成する第2のステップと、
前記第1のシートおよび前記第2のシートを積層し、この第2のシート上に前記第4のシートを配設して焼成することにより、前記燃料極、前記電解質および前記導電部材を一体焼結する第3のステップと
空気極の材料より形成されたスラリーを前記電解質上に塗布して焼成することにより前記空気極を作製する第4のステップと
を有することを特徴とする固体酸化物形燃料電池用単セルの製造方法。
A first sheet forming an electrolyte and a second sheet forming a fuel electrode are formed by molding and drying a slurry formed from an electrolyte material and a slurry formed from a fuel electrode material, respectively. Steps,
By forming and drying a slurry formed of a material having a lower electrical resistance than the material of the fuel electrode on the second sheet, a third sheet serving as a conductive member is formed on the second sheet. A second step of forming a finished fourth sheet;
By laminating the first sheet and the second sheet, and disposing the fourth sheet on the second sheet and firing it, the fuel electrode, the electrolyte and the conductive member are integrally fired. A solid oxide form comprising: a third step of bonding; and a fourth step of producing the air electrode by applying a slurry formed of a material of the air electrode onto the electrolyte and firing the slurry. A method for producing a single cell for a fuel cell.
前記第3のシートは、格子状または放射状の平面形状を有するように形成される
ことを特徴とする請求項記載の固体酸化物形燃料電池用単セルの製造方法。
It said third sheet, lattice or manufacturing method of the solid oxide fuel cell single cell according to claim 1, characterized in that it is formed to have a radial planar shape.
前記燃料極よりも電気抵抗が低い材料は、ニッケル酸化物からなる
ことを特徴とする請求項または記載の固体酸化物形燃料電池用単セルの製造方法。
The method for producing a single cell for a solid oxide fuel cell according to claim 1 or 2, wherein the material having an electric resistance lower than that of the fuel electrode is made of nickel oxide.
JP2010143486A 2010-06-24 2010-06-24 Method for producing single cell for solid oxide fuel cell Expired - Fee Related JP5426488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143486A JP5426488B2 (en) 2010-06-24 2010-06-24 Method for producing single cell for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143486A JP5426488B2 (en) 2010-06-24 2010-06-24 Method for producing single cell for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2012009245A JP2012009245A (en) 2012-01-12
JP5426488B2 true JP5426488B2 (en) 2014-02-26

Family

ID=45539572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143486A Expired - Fee Related JP5426488B2 (en) 2010-06-24 2010-06-24 Method for producing single cell for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5426488B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106608A (en) * 1996-10-02 1998-04-24 Murata Mfg Co Ltd Solid electrolyte fuel cell and manufacture thereof
NL1014284C2 (en) * 2000-02-04 2001-08-13 Stichting Energie A method of manufacturing an assembly comprising an anode-supported electrolyte and a ceramic cell comprising such an assembly.
JP4304889B2 (en) * 2001-06-25 2009-07-29 三菱マテリアル株式会社 Solid oxide fuel cell
JP2005339878A (en) * 2004-05-25 2005-12-08 Nissan Motor Co Ltd Unit cell, and solid oxide fuel battery using the unit cell

Also Published As

Publication number Publication date
JP2012009245A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP4605885B2 (en) Support membrane type solid oxide fuel cell
JP5608813B2 (en) Method for producing solid oxide fuel cell unit cell
JP5189405B2 (en) Method for producing solid oxide fuel cell
JP5671196B2 (en) Reinforced electrode-supported ceramic fuel cell and manufacturing method
JP2012212541A (en) Electrolyte/electrode assembly and manufacturing method therefor
KR20140082400A (en) Solid oxide fuel cell and method for manufacturing the same
JP5373668B2 (en) Single cell for solid oxide fuel cell and solid oxide fuel cell
KR102111859B1 (en) Solid oxide fuel cell and a battery module comprising the same
KR101439668B1 (en) Solid oxide fuel cell and method for manufacturing the same
KR102114627B1 (en) Fuel cell power generation unit and fuel cell stack
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
KR20160058275A (en) Metal-supported solid oxide fuel cell and method of manufacturing the same
JP3963122B2 (en) Cell plate for solid oxide fuel cell and method for producing the same
JP5426488B2 (en) Method for producing single cell for solid oxide fuel cell
JP2012142241A (en) Method for manufacturing single cell for solid oxide fuel cell
JP5326330B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP2017522691A (en) Fuel cell having a flat cylindrical anode
JP2014007127A (en) Method for manufacturing single cell for solid oxide fuel cell, single cell for solid oxide fuel cell, and solid oxide fuel cell
US9865889B2 (en) Solid electrolyte fuel battery having anode and cathode gas supply channels with different cross-section areas
JP5727567B2 (en) Solid oxide fuel cell, solid oxide fuel cell stack and spacer
JP2013257973A (en) Solid oxide fuel cell stack
JP2019075197A (en) Electrochemical reaction single cell, and electrochemical reaction cell stack
JP2010267515A (en) Half cell for solid-oxide fuel cell, solid-oxide fuel cell, and method for manufacturing half cell for solid-oxide fuel cell
JP2016024951A (en) Solid-state oxide fuel battery
JP2010135283A (en) Solid oxide fuel cell, and manufacturing method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees