WO2015002035A1 - Twin-screw extrusion device and method for manufacturing film - Google Patents

Twin-screw extrusion device and method for manufacturing film Download PDF

Info

Publication number
WO2015002035A1
WO2015002035A1 PCT/JP2014/066747 JP2014066747W WO2015002035A1 WO 2015002035 A1 WO2015002035 A1 WO 2015002035A1 JP 2014066747 W JP2014066747 W JP 2014066747W WO 2015002035 A1 WO2015002035 A1 WO 2015002035A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
temperature
refrigerant
film
cylinder
Prior art date
Application number
PCT/JP2014/066747
Other languages
French (fr)
Japanese (ja)
Inventor
山田 晃
圭 原田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201480035773.1A priority Critical patent/CN105339156B/en
Priority to KR1020157036538A priority patent/KR101810856B1/en
Publication of WO2015002035A1 publication Critical patent/WO2015002035A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92428Calibration, after-treatment, or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92971Fluids, e.g. for temperature control or of environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/54Screws with additional forward-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling

Definitions

  • the present invention relates to a twin-screw extruder and a film manufacturing method.
  • Polyester is applied to various applications such as electrical insulation and optical applications.
  • solar cell applications such as a sheet for protecting the back surface of a solar cell (so-called back sheet) have attracted attention as electrical insulation applications in recent years.
  • Films and sheets using polyester usually have a large amount of carboxyl groups and hydroxyl groups on the surface, tend to cause hydrolysis reaction under environmental conditions where moisture exists, and tend to deteriorate over time.
  • the installation environment in which solar cell modules are generally used is an environment that is constantly exposed to wind and rain, such as outdoors, and because it is exposed to conditions where hydrolysis reaction is likely to proceed, the hydrolyzability of polyester is stable. It is desired that the state is controlled to be suppressed.
  • Acid value (AV)
  • AV acid value
  • it is effective to lower the temperature of the extruded resin during melt extrusion with an extruder.
  • the unmelted component increases due to the low resin temperature, the unmelted component promotes crystallization, causing crystallization turbidity and deterioration of adhesion of the product.
  • the cooling capacity is judged based on the temperature state of the barrel and the water flow state in order to reduce the burden of adjusting the opening of the variable throttle valve by the operator when the operating conditions of the extruder are changed
  • a temperature control device that selects a necessary solenoid valve and adjusts the flow rate of water according to the cooling load is disclosed (for example, see Japanese Patent Application Laid-Open No. Hei 2-238920).
  • a resin temperature control method that prevents hunting of the resin temperature immediately before the mold by controlling the cylinder temperature setting value based on the change over time of the resin temperature in the cylinder and the molding resin temperature immediately before the mold. (For example, see JP-A-11-34149).
  • the temperature adjustment mechanism is based on the changed target set temperature value and the medium temperature measured value.
  • a temperature control device that controls heating or cooling of a medium in a circulation circuit based on the result of PID calculation performed (see, for example, Japanese Patent Application Laid-Open No. 2002-307539).
  • a technique for controlling cooling in an extrusion apparatus see, for example, JP-A-63-278819 and JP-A-2009-83313).
  • resin films such as polyester films used under harsh outdoor conditions such as solar cell applications are required to have excellent weather resistance, and it is possible to extrude films with excellent weather resistance. It is effective to perform melt extrusion at as low a temperature as possible. However, as a harmful effect of melting at a low temperature, it is conceivable that the quality other than the weather resistance is impaired, such as acceleration of film turbidity (crystallization) and deterioration of film forming suitability. Therefore, there has been a demand for low-temperature extrusion technology that does not impair film properties and film-forming suitability.
  • a cooling pipe is generally arranged along the periphery of a cylinder wall in which a screw is accommodated, and cooling water is supplied from one end (supply port) of this pipe. .
  • the supplied cooling water evaporates immediately in the vicinity of the supply port, so heat exchange is remarkably insufficient from the vicinity of the center of the entire length of the piping to the downstream side, and a uniform cooling effect is obtained for the entire cylinder. There may not be. If the amount of water injection is increased in consideration of the heat exchange on the downstream side, it becomes difficult to evaporate and the cooling effect cannot be obtained. As a result, temperature unevenness occurs in the cylinder peripheral direction. Moreover, since temperature control is generally performed based on the cylinder temperature, fluctuations in the water amount cycle occur due to cylinder temperature variations, and the temperature of the molten resin is not stabilized.
  • the present invention has been made in view of the above.
  • the present invention provides a twin-screw extrusion apparatus and a film manufacturing method that can stably maintain the temperature of a resin to be melt-extruded as compared with a conventional twin-screw extruder and produce a resin having low haze and excellent weather resistance.
  • a temperature detection means for detecting the temperature of the molten resin extruded from the extrusion port, and disposed on the upstream side of the film forming apparatus for film formation of the molten resin, and to the first refrigerant supply / discharge port of the refrigerant Resin temperature control means for controlling the temperature difference between the temperature of the molten resin detected by the temperature detection means and the resin set temperature to be equal to or less than a predetermined threshold (predetermined threshold) by adjusting the supply amount; Prepared An axial extrusion apparatus.
  • predetermined threshold a predetermined threshold
  • the resin has a resin distribution pipe through which the molten resin circulates on the downstream side of the extrusion port of the cylinder and on the upstream side of the film forming apparatus for film formation of the molten resin.
  • a twin screw extruder according to ⁇ 1> which has at least a temperature measuring part disposed inside the pipe that is 10 mm or more away from the inner wall surface of the resin flow pipe, and a damage preventing material that prevents the temperature measuring part from being damaged. It is.
  • the refrigerant is the twin-screw extruder according to ⁇ 1> or ⁇ 2>, which is a working fluid that exchanges heat with the molten resin by latent heat of vaporization.
  • the resin temperature control means adjusts the supply amount of the refrigerant to the first refrigerant supply / discharge port in the range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg.
  • ⁇ 1> to ⁇ 3> It is a twin-screw extrusion apparatus as described in any one.
  • the resin temperature control means supplies the refrigerant to the first refrigerant supply / exhaust port with a supply time (seconds / time) of 10 seconds / time or more and 120 seconds / time or less, and 0 of the above cycle.
  • the resin temperature control means is a method in which the haze value of the resin film formed by the film forming apparatus exceeds a predetermined upper limit threshold value Q1 or the haze value of the resin film formed by the film forming apparatus varies. When the rate exceeds a predetermined threshold value Q3, the resin set temperature is increased, and when the haze value of the resin film formed by the film forming apparatus is less than the predetermined lower limit threshold value Q2, the resin set temperature is set.
  • the twin-screw extruder according to any one of ⁇ 1> to ⁇ 6>.
  • the resin temperature control means when the temperature difference between the resin temperature and the resin set temperature does not reach a predetermined threshold value or less within a predetermined time, by changing the rotation speed of the screw, The twin-screw extruder according to any one of ⁇ 1> to ⁇ 7>, wherein the resin temperature is controlled to a resin set temperature.
  • the cooling system further includes a second refrigerant supply / exhaust port for discharging the refrigerant from the refrigerant flow path, and a flow switching valve for switching the flow direction of the refrigerant, and the resin temperature control means switches the flow switching valve.
  • the first cooling for supplying the refrigerant to the first refrigerant supply / exhaust port and discharging the refrigerant from the second refrigerant supply / exhaust port, and supplying the refrigerant to the second refrigerant supply / exhaust port for supplying the first refrigerant
  • the twin-screw extrusion apparatus according to any one of ⁇ 1> to ⁇ 8>, wherein the second cooling discharged from the discharge port is switched at a predetermined cycle.
  • thermoplastic resin A step of melting a thermoplastic resin while controlling a temperature of the resin melted in a cylinder having two screws having an outer diameter of ⁇ 100 mm or more arranged rotatably, and a melted thermoplastic resin
  • the temperature of the molten resin extruded from the cylinder extrusion port is detected before the process of extruding into a film shape, and the temperature difference between the detected temperature of the molten resin and the resin set temperature is detected on the cylinder wall.
  • the amount of refrigerant supplied to the arranged cooling system is adjusted to be controlled to be equal to or lower than a predetermined threshold value.
  • the melting step is the film production method according to ⁇ 10> or ⁇ 11>, wherein the supply amount of the refrigerant is adjusted in a range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg.
  • the supply of the refrigerant to the cooling system is intermittently performed at a cycle of 10 seconds / time to 120 seconds / cycle with a supply time (seconds / cycle) of more than 0% and 40% or less of the cycle.
  • the film manufacturing method according to any one of ⁇ 10> to ⁇ 13>, wherein the temperature difference between the temperature of the molten resin and the resin set temperature is controlled to a predetermined threshold value or less.
  • the haze value of the resin film formed by the film forming apparatus exceeds a predetermined upper limit threshold value Q1, or the variation rate of the haze value of the resin film formed by the film forming apparatus.
  • the resin set temperature is raised,
  • the melting step is performed by changing the number of rotations of the screw when the temperature difference between the temperature of the molten resin and the resin set temperature does not reach a predetermined threshold value within a predetermined time.
  • the cooling system includes a first refrigerant supply / exhaust port, a refrigerant flow channel through which the refrigerant flows, a second refrigerant supply / discharge port through which the refrigerant is discharged from the refrigerant flow channel, and a flow switching valve that switches a flow direction of the refrigerant.
  • a flow switching valve that switches a flow direction of the refrigerant.
  • a twin-screw extrusion apparatus and a film manufacturing method that can stably maintain the temperature of the resin to be melt-extruded as compared with the conventional twin-screw extruder and produce a resin having low haze and excellent weather resistance. Is done.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a film manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a twin-screw extruder constituting the film manufacturing apparatus of FIG.
  • FIG. 3 is a schematic perspective view showing the cooling flow path disposed along the cylinder periphery of the twin-screw extruder.
  • 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a schematic cross-sectional view showing a cross section orthogonal to the resin flow direction of the resin temperature detector 50.
  • FIG. 6 is a flowchart showing an intermittent water injection control routine according to the first embodiment of the present invention.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a film manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a twin-screw extruder constituting the film manufacturing apparatus of
  • FIG. 7 is a flowchart showing an intermittent water injection control routine according to the second embodiment of the present invention.
  • FIG. 8 is a flowchart showing an intermittent water injection control routine according to the third embodiment of the present invention.
  • FIG. 9 is a flowchart showing a flow switching control routine according to the fourth embodiment of the present invention.
  • FIG. 10 is a schematic piping configuration diagram showing a refrigerant flow path that switches the flow direction of the refrigerant and supplies the cylinder to the cylinder in the fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram for explaining a method for measuring the cylinder temperature.
  • FIG. 12 is a schematic diagram for explaining a method of measuring the terminal COOH amount of the resin film.
  • a resin temperature detector for measuring the temperature of the resin is disposed at an intermediate position between the gear pump and the filter, and the refrigerant is intermittently generated at a predetermined pulse cycle based on the measured resin temperature.
  • a twin-screw extruder that supplies a predetermined time for cooling control of the molten resin.
  • the film manufacturing apparatus 200 of the present embodiment is discharged from a biaxial extruder 100 ⁇ / b> A, a gear pump 44 provided downstream of the molten resin extruded from the biaxial extruder, and a gear pump.
  • a filter 42 for filtering the molten resin and a forming die 40 that is a film forming machine for forming the molten resin are provided.
  • the biaxial extruder 100A is a biaxial extruder 100 having two screws, and a resin temperature detector that is disposed between the gear pump and the filter and is an example of temperature detecting means for detecting the temperature of the molten resin. 50 and a control device 60 which is an example of a resin temperature control means.
  • twin screw extruder 100 is a cylinder (barrel) having a raw material supply port 12 for supplying a raw material resin and an extrusion port (hereinafter also referred to as an extruder outlet) 14 for extruding a molten resin.
  • 10 and two screws 20A and 20B each having an outer diameter of ⁇ 100 mm or more and rotating in the cylinder 10, a temperature regulator 30 arranged around the cylinder 10 and controlling the temperature in the cylinder 10, and a cylinder And a cooling pipe 35 for cooling the air.
  • Extruders used for producing polyester films using the melt extrusion method are generally roughly classified into single-screw and multi-screw depending on the number of screws.
  • a multi-screw extruder a twin-screw extruder (two-screw extruder) Screw extruders are widely used.
  • the cylinder 10 has a raw material supply port 12 for supplying the raw material resin, and an extruder outlet 14 through which the heat-melted resin is extruded.
  • the cylinder 10 is formed by a cylinder wall having a temperature control function of a molten resin.
  • the cylinder 10 is formed by providing a temperature controller 30 and also serving as the cylinder wall. Yes.
  • a raw material supply device 46 for supplying raw material resin is connected to the raw material supply port 12.
  • the inner wall surface of the cylinder 10 is preferably made of a material that is excellent in heat resistance, wear resistance, and corrosion resistance, and can ensure friction resistance with the resin.
  • a material that is excellent in heat resistance, wear resistance, and corrosion resistance can ensure friction resistance with the resin.
  • nitrided steel whose inner surface is nitrided is used, but chromium molybdenum steel, nickel chromium molybdenum steel, and stainless steel can also be nitrided and used.
  • a bimetallic cylinder in which a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten is lined on the inner wall surface of the cylinder 10 by centrifugal casting. It is effective to use or form a ceramic sprayed coating.
  • the cylinder 10 is provided with vents 16A and 16B (indicated by arrows in FIG. 2) for drawing a vacuum.
  • vents 16A and 16B By evacuating through the vents 16A and 16B, volatile components such as moisture in the resin in the cylinder 10 can be efficiently removed.
  • raw materials pellets, powders, flakes, etc.
  • crushed waste crushed waste of the film produced during film formation, etc.
  • two vents 16A and 16B are provided. However, regarding the arrangement of the vents, it is required that the opening area and the number of the vents are appropriate from the relationship with the deaeration efficiency.
  • the twin screw extruder 100 desirably has one or more vents.
  • a vent is one place or two places.
  • the resin staying on the wall surface near the vent and the deposited volatile components may fall into the extruder 100 (cylinder 10), and if dropped, it may be manifested as foreign matter in the product. It is important not to do so.
  • optimization of the shape of the vent lid and appropriate selection of the upper and side vents are effective, and precipitation of volatile components is generally performed by a method of preventing the precipitation by heating the piping or the like.
  • oxidative decomposition can be suppressed by evacuating the raw material supply port 12 or performing a nitrogen purge. Further, by providing the vents at a plurality of locations, even when the raw material water content is about 2000 ppm, the same extrusion as when a resin dried to 50 ppm or less is extruded on a single axis is possible. In order to suppress resin decomposition due to shearing heat generation, it is preferable not to provide segments such as kneading as much as possible within a range in which extrusion and deaeration can be compatible.
  • the atmosphere of the raw material supply port 12 is preferably suppressed to an oxygen concentration of less than 10% by volume. Since the oxygen concentration (O 2 concentration) in the atmosphere of the raw material supply port for supplying the polyester resin and the terminal sealing material is suppressed to less than 10% by volume, the polyester resin is prevented from being deteriorated and sealed with the terminal sealing material. Since the stopping effect appears well, it is excellent in the effect of improving hydrolysis resistance.
  • the oxygen concentration is preferably 7% by volume or less, more preferably 5% by volume or less, for the same reason as described above.
  • the oxygen concentration can be adjusted by a method of introducing an inert gas (for example, nitrogen gas) into a supply unit having a raw material supply port, a method of evacuating, or the like.
  • the pressure at the extruder outlet 14 is within a range in which the degassing efficiency and the stability of extrusion by the vents 16A and 16B can be secured. It is preferable to make it as low as possible.
  • the screws 20A and 20B have a screw diameter (outer diameter) D of 100 mm or more in the cylinder 10 and are rotatably provided by driving means 21 including a motor and gears.
  • driving means 21 including a motor and gears.
  • a large twin-screw extruder having a screw diameter D of 100 mm or more can be mass-produced.
  • resin melting unevenness that is, resin temperature unevenness tends to occur in the circumferential direction of the cylinder. Easy to accompany.
  • the temperature variation of the molten resin is suppressed, and the resin crystals that are likely to occur when melted at a low temperature
  • the white turbidity (decrease in haze) of the resin due to crystallization can be more effectively suppressed.
  • the physical property variation of the resin film finally produced is suppressed.
  • the screw diameter D is preferably 150 mm or more, more preferably 160 mm to 240 mm from the viewpoint that mass production is possible and the effects of the present invention are more effective.
  • the twin screw extruder is roughly divided into a meshing type and a non-meshing type of two screws, and the meshing type has a larger kneading effect than the non-meshing type.
  • any of a meshing type and a non-meshing type may be used, but from the viewpoint of suppressing kneading by sufficiently kneading the raw material resin, it is preferable to use a meshing type.
  • the rotational directions of the two screws are also divided into the same direction and different directions.
  • the different direction rotation type screw has a higher kneading effect than the same direction rotation type screw.
  • the co-rotating type has a self-cleaning effect and is effective in preventing retention in the extruder.
  • the axial direction is also parallel and oblique, and there is also a conical type shape used when applying strong shear.
  • twin screw extruder that can be used in the present invention, screw segments of various shapes are used.
  • shape of the screws 20A and 20B for example, a full flight screw provided with a single spiral flight 22 of equal pitch is preferably used.
  • At least one resin kneading member is disposed downstream of the raw material supply port 12 in the resin extrusion direction in the longitudinal direction of the cylinder 10.
  • the resin kneading member is a kneading segment that imparts shear such as a kneading disk or a rotor.
  • kneading disks 24A and 24B are installed as shown in FIG.
  • the kneading segment is disposed in a heating zone assigned in the longitudinal direction of the cylinder (heating zones Z1 to Z7 shown in FIG. 2 in this embodiment), and a kneading section for promoting melting and kneading of the raw material resin is provided in the heating zone. Is formed.
  • a reverse screw or a seal ring in this heating zone, it is possible to form a melt seal when damming the resin and pulling the vent.
  • a reverse screw may be provided in the vicinity of the vents 16A and 16B in FIG.
  • the pitch of the screws 28 located in the cooling zone is preferably 0.5D to 0.8D (D: screw diameter [mm]).
  • the temperature controller 30 existing around the cylinder 10 has nine regions (heating zones Z1 to Z7 and cooling zones) in which the cylinder 10 extends in the longitudinal direction from the raw material supply port 12 to the extruder outlet 14. Z8 to Z9). Specifically, heaters C1 to C7 are disposed in seven regions from the upstream side in the resin extrusion direction, and coolers C8 to C9 are disposed in two regions from the downstream side in the resin extrusion direction.
  • the adjuster 30 is configured. In this way, the periphery of the cylinder 10 is divided into heating zones Z1 to Z7 and cooling zones Z8 to Z9 by the heaters C1 to C7 and the coolers C8 to C9 that are arranged separately, and the cylinder 10 is divided into regions.
  • the temperature can be controlled to a desired temperature (for each zone).
  • a heater In the cooling zone, it is also possible to provide a heater and adjust the temperature by using the heater together.
  • FIG. 2 shows an example of a structure in which the cylinder is divided into 9 zones in the longitudinal direction (melting resin flow direction) and the temperature can be controlled for each zone.
  • the number of regions (zones) is limited to 9 zones. Instead, the number of regions (zones) can be arbitrarily selected according to the purpose or the like.
  • a band heater or a sheathed wire aluminum cast heater is generally used.
  • a heater is not limited to these,
  • the heat-medium circulation heating method is also applicable.
  • cooling is performed by providing a cooling pipe for circulating the refrigerant inside the cylinder 10 and circulating the refrigerant through the cooling pipe.
  • cooling piping in a cylinder, you may be comprised in the aspect which provides other structures, such as winding cooling piping around a cylinder, and performs cooling.
  • a temperature detection sensor S2 for detecting the temperature of the cylinder is attached to the cylinder wall.
  • the temperature detection sensor S2 can detect the cylinder temperature during melt-kneading continuously or at a predetermined timing. Thereby, control by the temperature controller 30 is performed. The detected value is sent to the control device 60 at all times or as necessary.
  • a known thermocouple or the like can be used for the temperature detection sensor S2.
  • the temperature controller 30 causes the inner wall of the cylinder 10 on the extruder outlet 14 side to be a cooling zone (temperature control) of the melting point Tm (° C.) or less of the polyester resin (raw material resin). Part)). If the wall surface temperature near the extruder outlet 14 of the cylinder 10 is controlled to be equal to or lower than the melting point Tm (° C.) of the raw material resin in the cooling zone, it is possible to prevent the resin from being heated excessively and increasing the amount of terminal COOH.
  • the temperature in the cooling zone is preferably within the range of (Tm-100) ° C to Tm ° C, and within the range of (Tm-50) ° C to (Tm-10) ° C. Is more preferable.
  • the length of the cooling zone (in this embodiment, the cooling zones Z8 to Z9), that is, the length from the tip of the extrusion port in the screw axis direction is preferably 4D to 11D (D: screw diameter). If the length of the cooling zone is 4D or more, the molten and heated resin is effectively cooled to suppress an increase in terminal COOH. On the other hand, if the length of the cooling zone is 11D or less, the resin can be prevented from being excessively cooled and solidified, and melt extrusion can be performed smoothly. It is preferable that the resin temperature T out in the extruder outlet 14 to the Tm + 30 ° C. or less.
  • the resin temperature T out in the extruder outlet 14 is more able to Tm ⁇ (Tm + 25) °C or less
  • (Tm + 10) ° C. to (Tm + 20) ° C. is more preferable.
  • the cooling pipe 35 has a cylinder wall (that is, a heating zone that forms a part of the cylinder and is provided with a heater (in this embodiment, the heating zones Z1 to Z1 in FIG. 2).
  • Z7 is a cooling system configured by providing a refrigerant flow path 37 through which the refrigerant flows, and at one end of the refrigerant flow path 37 is a first refrigerant supply / exhaust port for supplying the refrigerant.
  • the other end has a refrigerant supply / exhaust port 37a, and the other end has a refrigerant supply / exhaust port 37b that discharges the refrigerant that has passed through the refrigerant flow path 37 and finished heat exchange.
  • the refrigerant supply / exhaust port 37a may be connected to an external refrigerant supply device in order to supply the refrigerant to the refrigerant flow path. Further, the refrigerant supply / exhaust port 37b may be connected to a tank or the like that stores the discharged refrigerant. Further, the refrigerant supply / exhaust port 37a and the refrigerant supply / exhaust port 37b may be connected to each other via a pipe, so that the cooling circulation system may be configured so that the refrigerant can be used without being discarded.
  • the refrigerant supply / exhaust port 37a and the refrigerant supply / exhaust port 37b are connected by a pipe (not shown) to which a circulation pump, a supply stop valve, and a cooling device for cooling the refrigerant are attached.
  • the refrigerant discharged from the refrigerant supply / exhaust port 37b can be circulated and supplied to the refrigerant supply / exhaust port 37a after being adjusted to a predetermined temperature by a cooling device.
  • a liquid medium such as water, alcohol, ether or a mixture thereof, or oil is generally used, but a working fluid (liquid medium) having latent heat of vaporization is preferable in terms of high cooling efficiency.
  • a working fluid liquid medium
  • Such a working fluid can efficiently exchange heat with the molten resin by latent heat of vaporization.
  • water is preferable as the working fluid because it has a high latent heat of vaporization and is dangerous in handling and heat transfer efficiency.
  • water is used as a refrigerant.
  • the amount of the refrigerant supplied to the refrigerant supply / exhaust port 37a in one supply operation is 0.001L (liter; the same applies hereinafter) / resin 1kg to It is preferably adjusted to a range of 0.150 L / kg of resin.
  • the supply amount of the refrigerant is 0.001 L / kg of resin or more, heat exchange on the downstream side of the refrigerant flow path becomes better, and the temperature unevenness of the molten resin between the upstream side and the downstream side of the refrigerant flow path Easy to keep small.
  • the supply amount of the refrigerant is 0.150 L / kg of resin or less, it is prevented that the supply amount of the refrigerant is too large to evaporate, and the cooling efficiency is maintained and the temperature unevenness of the molten resin is kept small. It's easy to do.
  • the supply amount of the refrigerant is preferably 0.002 L / resin 1 kg to 0.100 L / resin 1 kg, more preferably 0.003 L / resin 1 kg or more, from the viewpoint of further maintaining the uniformity of the temperature of the molten resin in the cylinder. 0.050 L / kg of resin.
  • Cooling can be performed after being extruded from an extruder, but it is laminar, has low heat exchange efficiency, generates local cooling, and involves quality variation and local solidification. There is. Therefore, the cooling is preferably performed on the downstream side of the extruder that can utilize high-efficiency heat exchange by convective heat transfer.
  • the resin temperature detector 50 is disposed between a filter 42 and a gear pump 44, which will be described later, and a temperature constituted by a resin temperature detection sensor S1 and a support plate 54 in which a temperature measuring unit is disposed in the resin flow pipe. It is a detection means. This temperature detection means can directly detect the temperature of the extruded molten resin.
  • the resin temperature detection sensor S1 is attached to the wall material of the resin flow pipe 52 having an inner diameter of 80 mm through which the molten resin flows, and the temperature of the molten resin is directly measured. It can be detected.
  • the resin temperature detection sensor S1 is a position where the temperature measuring unit comes into contact with the resin passing through the center of the cross section orthogonal to the resin flow direction of the resin flow tube 52 (in this embodiment, the temperature measurement unit is the inner wall surface of the resin flow tube 52). To 40 mm, that is, at the center of the pipe). Therefore, from the viewpoint of preventing the sensor from being damaged due to the resistance of the flowing molten resin, the support plate 54 is attached as a damage preventing material having a strength capable of withstanding the resistance of the molten resin. In the present embodiment, the support plate 54 is disposed upstream of the resin temperature detection sensor S1 in the resin flow direction in order to reduce the load applied to the resin temperature detection sensor S1 by receiving the resin pressure of the flowing resin.
  • the resin temperature detection sensor S1 in the present embodiment directly detects the resin temperature, not the cylinder temperature. As a result, more accurate temperature control of the molten resin becomes possible, and temperature fluctuation of the molten resin in the cylinder can be effectively suppressed.
  • the temperature measuring unit that measures the temperature of the molten resin is installed from the inner wall surface of the resin distribution pipe. It is preferable to be disposed at a position separated by 10 mm or more in the inner direction (diameter direction). The temperature of the resin can be measured more accurately because the temperature measuring unit is separated from the inner wall surface by 10 mm or more. As for the installation position of a temperature measuring part, it is more preferable that it is 20 mm or more away from the inner wall face of the resin distribution pipe in the pipe internal direction.
  • the support plate 54 is provided by fixing one end and the other end of the plate material to the inner wall surface in the diameter direction of the tube cross section. May be fixed to the inner wall surface.
  • the support plate 54 may be fixed to the inner wall surface.
  • only one end of the plate material may be fixed to the inner wall surface as shown in FIG. 5, and the other end may be fixed at the same position as the temperature measuring unit without being fixed.
  • the form which fixed the sensor inside the support plate may be sufficient.
  • the breakage prevention material As a material for the breakage prevention material, a material that does not corrode upon contact with the molten resin, and a material that is excellent in heat conduction is preferable. Examples of the material include a stainless alloy material (SUS material) and chrome molybdenum steel.
  • the size and thickness of the breakage prevention material are not particularly limited, and may be selected according to the inner diameter of the resin flow tube, the flow rate of the molten resin, the properties of the molten resin, and the like.
  • the damage prevention material may be a plate material, a column material, a bar material, or the like.
  • the damage prevention material such as the support plate 54 may be disposed upstream of the resin temperature detection sensor in the resin distribution direction so as not to receive the resistance of the flowing molten resin itself.
  • the breakage prevention material is not limited to the upstream side of the resin temperature detection sensor, and conversely, may be disposed on the downstream side of the resin temperature detection sensor at a position close to the sensor (for example, a position adjacent to the sensor).
  • the presence of the support plate may be a reinforcing plate when the resistance of the molten resin is received, so that deformation and breakage of the sensor may be prevented.
  • a resin temperature detection sensor may be embedded in the breakage prevention material, and the sensor may be configured not to be directly loaded with molten resin.
  • the resin temperature detector 50 can detect the temperature of the molten resin continuously or at a predetermined timing. The detected value is sent to the control device 60 at all times or as necessary.
  • a known thermocouple or the like can be used for the temperature detection sensor S1.
  • a gear pump 44 that adjusts the flow rate with a driving gear and a driven gear is provided on the upstream side of the resin temperature detector 50 downstream of the extruder outlet 14 of the twin screw extruder 100 in the molten resin extrusion direction. Both gears may be driven.
  • the gear pump 44 between the extruder 100 and the molding die 40, which is a polyester film forming machine, fluctuations in the extrusion amount are reduced, and a certain amount of resin is supplied to the molding die 40. Will improve.
  • an aspect in which extrusion stabilization by the gear pump 44 is achieved is preferable because the pressurization capability of the extruder itself is low.
  • the gear pump 44 By using the gear pump 44, it is possible to reduce the pressure fluctuation (output pressure fluctuation) on the discharge side of the gear pump 44 to 1/5 or less of the pressure fluctuation (input pressure fluctuation) on the suction side, and the resin pressure fluctuation width is ⁇ It can be reduced within 1%. As other merits, it is possible to perform filtration with a filter without increasing the pressure at the tip of the screw. Therefore, it is possible to prevent the resin temperature from increasing, improve the transportation efficiency, and shorten the residence time in the extruder. It is also possible to prevent the amount of resin supplied from the screw from fluctuating over time due to an increase in the filtration pressure of the filter.
  • the gear pump 44 when the gear pump 44 is installed, depending on the method of selecting the equipment, the equipment becomes larger and the residence time of the resin becomes longer, and the shearing stress of the gear pump part may cause the molecular chain of the resin to be broken. It is important that the performance of the polyester, such as hydrolysis resistance, is not impaired.
  • the differential pressure during operation is preferably 20 MPa or less, preferably 15 MPa, and more preferably 10 MPa or less. From the viewpoint of uniform film thickness, it is effective to control the screw rotation of the extruder or to use a pressure control valve in order to keep the primary pressure of the gear pump 44 constant.
  • the molten resin extruded from the extruder outlet 14 Downstream of the resin temperature detector 50 in the direction of extrusion of the molten resin, as a film-forming machine for forming a film such as a polyester film, the molten resin extruded from the extruder outlet 14 is formed into a film (for example, as a band-shaped film).
  • a discharging die 40 and a cooling roll (not shown) for example, a casting drum) for cooling and solidifying the discharged film are provided.
  • the molten resin extruded from the extruder outlet 14 of the cylinder 10 is made into a sheet form from the forming die 40 and sent to a cooling roll, solidified by cooling, and formed into a sheet. In this way, an unstretched polyester sheet is obtained.
  • a filter 42 is provided between the extruder outlet 14 of the cylinder 10 and the molding die 40 to prevent unmelted resin and foreign matters from being mixed into the polyester resin used for film formation.
  • a metal fiber filter or the like can be used as the filter.
  • the filter pore diameter can be appropriately selected within the range of 1 ⁇ m to 100 ⁇ m.
  • the humidity it is preferable to adjust the humidity to 5% RH to 60% RH after the melt (molten resin) is extruded from the molding die 40 until it contacts the cooling roll (air gap), for example, 15% RH to 50%. It is more preferable to adjust to% RH.
  • the humidity in the air gap it is possible to adjust the COOH amount and OH amount on the film surface.
  • the amount of carboxylic acid on the film surface can be reduced by adjusting to low humidity.
  • the resin temperature by increasing the resin temperature once and then cooling, it is possible to suppress the increase in the amount of terminal COOH and to suppress the occurrence of unmelted foreign matter. Furthermore, the effect which suppresses the haze rise of the polyester resin formed into a sheet form is acquired. In particular, when a film is formed on a thick sheet, the haze is likely to increase due to insufficient cooling rate, but the increase in that case can be suppressed.
  • the control device 60 is a resin temperature control means mainly responsible for the control of the twin-screw extruder 100A.
  • the refrigerant is supplied to the refrigerant supply / exhaust port 37a (first refrigerant supply / exhaust port) of the cooling pipe.
  • the intermittent water injection control routine for intermittently supplying certain water will be described with reference to FIG.
  • the control system of the biaxial extrusion device 100A is started, and the intermittent water injection control routine is executed.
  • the system may be started manually instead of automatically.
  • step 100 the temperature of the molten resin is detected by the temperature detection sensor S1 in order to determine whether or not the resin temperature needs to be controlled.
  • step 120 the detected resin temperature exceeds the preset set temperature t of the molten resin, and the temperature difference ⁇ t obtained by subtracting the set temperature t from the detected resin temperature is the threshold temperature T. Whether it is less than or not is determined.
  • step 120 If it is determined in step 120 that the temperature difference ⁇ t is equal to or higher than the threshold temperature T, the resin temperature is too high, and the amount of terminal carboxyl groups increases, which may reduce the hydrolysis resistance of the resin to be formed. Then, the process proceeds to step 140, and the output of the water amount (refrigerant) is determined by PID control according to the deviation of the detected value of the resin temperature with respect to the set temperature.
  • the process proceeds to step 220 because the resin temperature is not excessively increased and the amount of terminal carboxyl groups is unlikely to increase significantly.
  • step 160 supply of the refrigerant to the refrigerant supply / exhaust port 37a is started.
  • the supply of water as the refrigerant is preferably performed while adjusting the supply amount in the range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg. By setting the supply amount within this range, good cooling efficiency can be obtained, and temperature unevenness of the molten resin can be effectively reduced.
  • the supply of the refrigerant is started by opening a supply stop valve provided in the cooling circulation system and driving the circulation pump.
  • the refrigerant is intermittently supplied at the following cycle. That is, the supply of the refrigerant to the first refrigerant supply / exhaust port is adjusted in a cycle of 10 seconds to 120 seconds and the supply time (seconds / time) is adjusted to a range of more than 0% and 40% or less of the above cycle. It is preferably performed.
  • the supply time (second / time) is more than 0% of the above-described cycle (10 seconds to 120 seconds)
  • the temperature difference between the resin temperature and the resin set temperature can be kept small.
  • the supply time (second / time) is 40% or less of the above-described cycle (10 seconds to 120 seconds)
  • the temperature difference between the resin temperature and the resin set temperature can be kept small.
  • supply time (second / time) is adjusted to the range of 0.3% or more and 30% or less of the above-mentioned period.
  • the point that the refrigerant is intermittently supplied in the above-described cycle is the same in the second to fourth embodiments described later.
  • the temperature difference between the resin temperature and the resin set temperature is preferably 1 ° C. or less, and more preferably 0.5 ° C. or less.
  • the temperature difference is 1 ° C. or less, the temperature unevenness of the molten resin can be reduced.
  • the temperature difference between the resin temperature and the resin set temperature is the same in the second to fourth embodiments described later.
  • step 180 the supply time is calculated from the cycle of supplying the refrigerant, the output required for cooling, and the control constant, and it is determined whether or not the supply time of the refrigerant has passed.
  • the supply of the refrigerant commensurate with the output required for cooling is completed, and in the next step 200, the supply of the refrigerant to the refrigerant supply / discharge port 37a is stopped.
  • the supply stop valve provided in the cooling circulation system is closed, and the supply of the refrigerant is stopped.
  • step 180 the flow path of the refrigerant is switched to a bypass that does not pass through a cylinder (not shown), so that the circulating pump is maintained in a driving state.
  • the supply time of the refrigerant is continued as it is until a predetermined supply time has elapsed.
  • step 220 it is determined whether or not there is a request for stopping the operation of the twin-screw extruder, and when it is determined that a request for stopping the operation is not made, the temperature of the melted and kneaded molten resin is continuously maintained stably. Since it is necessary, the process proceeds to step 240. On the other hand, if it is determined in step 220 that the operation stop request has been made, it is not necessary to continuously control the resin temperature, and thus this routine is terminated.
  • Step 240 it is determined whether or not the time from the start of supply in Step 160 to the start of the next supply, that is, the refrigerant supply cycle has reached a predetermined cycle S. If it is determined in step 240 that the predetermined period S has been reached, the refrigerant is intermittently supplied in the predetermined period, so that the process returns to step 100 and the same control as described above is continued. The Here, when it is determined that the predetermined cycle S has not been reached, since intermittent supply in a predetermined cycle cannot be performed, the system waits until the predetermined cycle S, and when the cycle S is reached. Returning to step 100 again, the same control as above is continued.
  • the temperature of the molten resin in the cylinder can be controlled by a cooling zone of the temperature controller 30 provided in the extruder.
  • the cylinder is intended to be cooled with water. Then, temperature unevenness in the circumferential direction of the cylinder and fluctuations in the water amount cycle are likely to occur. Further, even if the detection value of the temperature detection sensor S2 for temperature control attached to the cylinder 10 can be controlled to be constant, the cooling efficiency of the cylinder has changed due to factors such as generation of scale and water temperature change. There is a problem that the temperature inevitably changes.
  • the temperature detection sensor S1 is a temperature detection means disposed on the downstream side of the extrusion port of the cylinder in the molten resin flow direction and on the upstream side of the film forming apparatus for molding the molten resin.
  • the refrigerant supply amount (preferably Is controlled within the range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg), and is supplied to the refrigerant supply / exhaust port 37a (that is, supplied to the cooling system), thereby controlling ⁇ t below a predetermined threshold value.
  • the temperature of the resin to be melt-extruded can be stably maintained, and a resin having low haze and excellent weather resistance can be obtained.
  • the thermoplastic resin is melted while controlling the temperature of the resin melted in a cylinder having two screws having an outer diameter of ⁇ 100 mm or more arranged rotatably. And a step of extruding the molten thermoplastic resin from the forming die into a film shape, and a step of solidifying the extruded thermoplastic resin on a cooling roll.
  • the temperature of the molten resin extruded from the outlet is detected before the step of extruding into a film, and the temperature difference between the detected temperature of the molten resin and the set temperature of the resin is detected in a cooling system disposed on the cylinder wall.
  • the film is controlled to be equal to or less than a predetermined threshold value.
  • the temperature of the resin to be melt-extruded can be stably maintained as compared with a conventional twin-screw extruder, and a resin having low haze and excellent weather resistance can be obtained.
  • the temperature controller 30 heats and cools the cylinder 10 while controlling the temperature, and the screws 20A and 20B are rotated so that the raw material resin is supplied from the raw material supply port 12. Supply.
  • the raw material resin supplied into the cylinder is heated by the temperature controller 30, friction between the resins accompanying rotation of the screws 20A and 20B, friction between the resin and the screws 20A and 20B and the cylinder 10, and the like. And is gradually moved toward the extruder outlet 14 as the screw rotates. At this time, melting and kneading of the raw material resin are promoted by the kneading disks 24A and 24B disposed in the cylinder.
  • heating is started in the zone Z1, and the heating zones Z4 and Z6 in which the kneading disks 24A and 24B are disposed are heating zones Z2 to Z3 and Z5 as kneading sections for resin kneading.
  • Z7 mainly function as a transport unit for melting and transporting the resin.
  • the temperature of the molten resin itself is stably controlled while controlling the amount and timing of water injection to the cooling pipe as described above in accordance with the temperature detected by the temperature detection sensors S1 and S2.
  • the temperature of the resin itself can be stabilized, a low haze can be maintained even when melted at a low temperature, and a resin having excellent weather resistance is stably provided.
  • the raw material resin supplied into the cylinder is heated to a temperature equal to or higher than the melting point Tm (° C.).
  • Tm melting point
  • the resin temperature is too low, melting during melt extrusion may be insufficient and ejection from the molding die 40 may be difficult. There is.
  • the resin temperature is too high, the terminal COOH is remarkably increased by thermal decomposition, which may lead to a decrease in hydrolysis resistance. From these viewpoints, the heating temperature by the temperature controller 30 and the rotation speed of the screws 20A and 20B are adjusted, and the cooling control by the cooling pipe is adjusted.
  • the maximum resin temperature (T max ; [° C.]) in the longitudinal direction (resin extrusion direction) in the twin screw extruder is preferably (Tm + 40) ° C. to (Tm + 60) ° C., and (Tm + 40) ° C. to ( Tm + 55) ° C. is more preferable, and (Tm + 45) ° C. to (Tm + 50) ° C. is further preferable.
  • thermoplastic resin In the production of the film, a thermoplastic resin is used as a raw material resin and is melted in a cylinder.
  • the thermoplastic resin include polyester, polyolefin, polyamide, polyurethane and the like.
  • polyester is preferred in that the effect of obtaining a resin having low haze and excellent weather resistance is more effectively exhibited.
  • Polyester includes polyethylene terephthalate (PET) and polyethylene-2,6-naphthalate (PEN), preferably PET.
  • the raw material resin is not particularly limited as long as it is a raw material of the film and contains a resin, and may contain a slurry of inorganic particles or organic particles in addition to a resin such as polyester.
  • polyester what was synthesize
  • the polyester when the polyester is synthesized, for example, it can be obtained by subjecting (A) a dicarboxylic acid component and (B) a diol component to an esterification reaction and / or a transesterification reaction by a known method.
  • the dicarboxylic acid component include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid Aliphatic dicarboxylic acids such as ethylmalonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexanedicarboxylic acid, decalin dicarboxylic acid, and the like, terephthalic acid, isophthalic acid, phthalic acid, 1,4- Naphthalene dicarboxylic
  • diol component examples include fats such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • Diols cycloaliphatic dimethanol, spiroglycol, isosorbide and other alicyclic diols, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl)
  • Diol compounds such as aromatic diols such as fluorene.
  • the dicarboxylic acid component contains an aromatic dicarboxylic acid as a main component.
  • a dicarboxylic acid component other than the aromatic dicarboxylic acid may be included. Examples of such a dicarboxylic acid component include ester derivatives such as aromatic dicarboxylic acids.
  • the “main component” means that the proportion of aromatic dicarboxylic acid in the dicarboxylic acid component is 80% by mass or more.
  • it is preferable that at least one aliphatic diol is used as the (B) diol component.
  • the aliphatic diol can contain ethylene glycol, and preferably contains ethylene glycol as a main component.
  • the main component means that the proportion of ethylene glycol in the diol component is 80% by mass or more.
  • the amount of the diol component (for example, ethylene glycol) is 1.015 to 1.50 mol per 1 mol of the dicarboxylic acid component (especially aromatic dicarboxylic acid (for example, terephthalic acid)) and, if necessary, its ester derivative. A range is preferred.
  • a conventionally known reaction catalyst can be used for the esterification reaction and / or transesterification reaction.
  • the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds.
  • an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed.
  • a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
  • the maximum resin temperature Tmax in the longitudinal direction (resin extrusion direction) in the twin screw extruder is the temperature of the raw material resin heated in the cylinder 10 in which the screws 20A and 20B of the twin screw extruder 100 are disposed. When there is shearing heat generation, it is a temperature including a local high temperature portion due to the heat generation.
  • T max is obtained by measuring the resin temperature in the cylinder.
  • T max is preferably 300 ° C. or lower, more preferably 290 ° C. or lower, from the viewpoint of suppressing increase in terminal COOH.
  • the lower limit temperature of Tmax is preferably 270 ° C. from the viewpoint of prevention of insufficient melting of the resin, that is, haze (white turbidity).
  • the vent pressure is preferably 1.3 Pa to 6.67 ⁇ 10 2 Pa, and 1.3 Pa to 5.33 ⁇ . 10 2 Pa is more preferable.
  • the average residence time from when the raw material resin is heated and melted in the cylinder to exit the extruder outlet 14 to be extruded from the forming die 40 into a sheet is 5 to 20 minutes.
  • the average residence time from when the raw material resin is heated and melted and after exiting the extruder outlet 14 of the extruder 100 until it is extruded from the molding die 40 is 5 minutes or longer, residual unmelted resin can be reduced.
  • the average residence time is 20 minutes or less, an increase in the amount of terminal COOH due to thermal decomposition can be prevented, and more excellent hydrolysis resistance can be obtained.
  • the average residence time after the raw material resin is heated and melted and extruded from the extruder outlet 14 is more preferably 5 minutes to 15 minutes.
  • the thickness of the sheet is preferably 2 mm to 8 mm, more preferably 2.5 mm to 7 mm, and further preferably 3 mm to 6 mm.
  • Tg glass transition temperature
  • the terminal COOH amount (AV) of the sheet-like resin (particularly polyester) formed after melt extrusion is preferably 5 eq / t or more and 25 eq / t or less, more preferably 8 eq / t or more and 20 eq / t or less. Is 10 eq / t or more and 18 eq / t or less.
  • the terminal COOH amount is 25 eq / ton or less, the hydrolysis resistance is excellent and long-term durability is obtained.
  • the amount of terminal COOH is desirably low from the viewpoint of hydrolysis resistance, but from the viewpoint of enhancing the adhesion when the film-formed sheet is closely attached to the adherend, the amount of the resin formed into a sheet after extrusion is
  • the lower limit of AV is preferably 5 eq / ton. “Eq / t” represents the molar equivalent per ton.
  • the variation rate of the terminal COOH amount is preferably within ⁇ 3% of the average value of the terminal COOH amount, more preferably within ⁇ 2.0% of the average value of the terminal COOH amount, and further preferably, Within ⁇ 1.0% of the average value.
  • the average value of the amount of terminal COOH is a value obtained as follows. Taking an arbitrary number (n) of 1 m samples every 200 m, with the start of winding for all roll lengths set to 0 m, each width direction is equally divided into five, and 5 cm ⁇ 5 cm sample pieces are cut out. And each sample piece is melt
  • the present embodiment has a system configuration that executes the intermittent water injection control routine in the first embodiment in the light of the haze of the formed resin film.
  • control device 60 that is a resin temperature control means for controlling the biaxial extrusion device of the present embodiment
  • an intermittent water injection control routine for intermittently supplying water (refrigerant) to the refrigerant supply / exhaust port 37a of the cooling pipe.
  • step 100 to step 200 the control from step 100 to step 200 is performed in the same manner as the control from step 100 to step 200 in the first embodiment.
  • step 200 the haze of the resin film formed by the film forming apparatus 40 is measured in the next step 300.
  • the haze value is preferably 1.5% to 4.5%, more preferably 1.8% to 4.0%, and still more preferably 2.0% to 3.0%.
  • the haze is a value measured by a haze meter (HZ-1 manufactured by Suga Test Instruments Co., Ltd.).
  • the range of the upper limit threshold value Q1 can be set to a lower limit value Q2 or more and 4.5% or less, and the preferable upper limit threshold value Q1 is more than the lower limit value Q2 and not more than 4.0%, which is a more preferable upper limit threshold value.
  • the range exceeds the lower limit Q2 and is 3.0% or less.
  • step 320 When it is determined in step 320 that the haze value exceeds the upper limit threshold Q1, the resin temperature is low and the resin may be crystallized, so that the set temperature t of the molten resin is changed to a higher temperature. Then, the process proceeds to the next step 360.
  • step 320 when the haze value is equal to or less than the upper threshold Q1, the process proceeds to step 330.
  • step 330 it is determined whether or not the measured haze value is less than a predetermined lower threshold Q2. If it is determined in step 330 that the haze value is less than the lower limit threshold value Q2, there is a concern that the weather resistance will be impaired, so it is effective to lower the resin temperature, and the process proceeds to the next step 370.
  • step 370 the set temperature t of the molten resin is changed to a lower temperature within a range that does not impair the weather resistance.
  • the preferable range of the lower limit threshold Q2 is 1.5% or more and 3.0% or less.
  • step 340 whether or not the absolute value of the fluctuation rate of the haze value of the formed resin film exceeds a predetermined threshold value Q3. Is determined.
  • the absolute value of the fluctuation rate of the haze value refers to the absolute value of the difference between the measured haze value and the average value of the respective haze values.
  • the threshold value Q3 can be 5% or less, the preferable threshold value Q3 is 3 or less, and the more preferable threshold value Q3 is 1 or less.
  • the fluctuation rate of the haze value is preferably within ⁇ 5% of the average value of haze, more preferably within ⁇ 3% of the average value of haze, and further preferably within ⁇ 1% of the average value of haze.
  • Step 340 when it is determined that the variation rate of the haze value exceeds the threshold value Q3, there is a possibility that there is a portion that is easily crystallized because the resin temperature is uneven and the resin temperature is partially low. Therefore, in the next step 380, the set temperature t of the molten resin is changed to a higher temperature within a range where the haze value is maintained at the upper limit threshold value Q1 or less.
  • step 220 it is determined whether or not there is a request for stopping the operation of the twin-screw extruder, and when it is determined that a request for stopping the operation is not made, the temperature of the melted and kneaded molten resin is continuously maintained stably. Since it is necessary, the process proceeds to step 240. On the other hand, when it is determined in step 220 that the operation stop request has been made, it is not necessary to continuously control the resin temperature, and thus this routine is ended as it is. If it is determined in step 340 that the variation rate of the haze value is equal to or less than the threshold value Q3, the process proceeds to step 220 as it is.
  • step 240 it is determined whether the time from the start of supply in step 160 to the start of the next supply, that is, the refrigerant supply cycle has reached a predetermined cycle S set in advance.
  • the predetermined period S When it is determined in step 240 that the predetermined period S has been reached, the refrigerant is intermittently supplied in the predetermined period, so that the process returns to step 100 and the same control as described above is continued.
  • the process waits until the predetermined period S, and when the period S is reached, the step 100 again. The control similar to the above is continued after returning to step S2.
  • a third embodiment of the twin-screw extruder of the present invention will be described with reference to FIG.
  • the present embodiment has a system configuration that executes the intermittent water injection control routine in the first embodiment in the light of whether or not the molten resin reaches the set temperature t.
  • control device 60 that is a resin temperature control means for controlling the biaxial extrusion device of the present embodiment
  • an intermittent water injection control routine for intermittently supplying water (refrigerant) to the refrigerant supply / exhaust port 37a of the cooling pipe.
  • step 120 if it is determined that the temperature difference ⁇ t obtained by subtracting the set temperature t from the detected resin temperature is equal to or higher than the threshold temperature T, in step 400, the determination from the first step 120 after execution of this routine has elapsed. Start accumulating time.
  • step 420 the accumulated time that has elapsed from the determination of the first step 120, whether or not exceeded the threshold time t 2 it is determined.
  • step 420 when the integration time is determined to exceed the threshold time t 2, since the resin temperature is in a situation where not reach the set temperature t of the molten resin that has been previously set, in step 440 Reduce the screw speed. Thereby, the effect that resin temperature falls more is anticipated.
  • step 420 since when the integration time is determined to be the threshold time t 2 below, intermittently a predetermined amount of the refrigerant predetermined may be continued supply time for supplying predetermined control, The process proceeds to step 140.
  • control from step 140 to step 240 is performed similarly to the control from step 140 to 240 in the first embodiment.
  • the temperature variation of the molten resin can be further reduced by performing the refrigerant supply control and the screw rotation control.
  • FIGS. A fourth embodiment of the twin-screw extruder according to the present invention will be described with reference to FIGS.
  • This embodiment has a system configuration in which the intermittent water injection control routine in the first embodiment is replaced with a flow switching control routine for switching the flow direction of the refrigerant in the cooling pipe.
  • the same referential mark is attached
  • control device 60 which is a resin temperature control means for controlling the twin-screw extrusion device of the present embodiment
  • the refrigerant to be circulated through the refrigerant flow path of the cooling pipe is supplied by switching the flow direction in the refrigerant flow path.
  • the flow switching control routine will be mainly described with reference to FIGS.
  • the control system of the biaxial extrusion device 100A is started, and the intermittent water injection control routine is executed. Note that the system may be started manually in addition to being automatically performed.
  • the supply stop valve V1 provided in the cooling circulation system is opened, and the opening of the flow rate adjusting valve V3 is adjusted, so that the coolant supply / exhaust port 37a has water as a coolant. Is adjusted to a supply amount range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg.
  • step 500 the temperature of the molten resin is detected by the temperature detection sensor S1 in order to determine whether or not it is necessary to control the resin temperature.
  • step 520 the detected resin temperature exceeds the preset set temperature t of the molten resin, and the temperature difference ⁇ t obtained by subtracting the set temperature t from the detected resin temperature is the threshold temperature T. Whether it is less than or not is determined.
  • step 520 If it is determined in step 520 that the temperature difference ⁇ t is equal to or higher than the threshold temperature T, the resin temperature is too high and the amount of terminal carboxyl groups increases, which may reduce the hydrolysis resistance of the resin to be formed. Then, the process proceeds to step 540, and the output of the water amount (refrigerant) is determined by PID control according to the deviation of the detected value of the resin temperature with respect to the set temperature. If it is determined in step 520 that the temperature difference ⁇ t is less than the threshold temperature T, the process proceeds to step 620 because the resin temperature is not excessively increased and the amount of terminal carboxyl groups is unlikely to increase significantly.
  • the supply stop valve V1 is closed, the supply stop valve V2 is opened, and the opening degree of the flow rate adjustment valve V4 is adjusted.
  • the refrigerant that has been supplied to the refrigerant supply / exhaust port 37a is supplied to the refrigerant supply / exhaust port 37b.
  • the temperature of the resin on the refrigerant supply / exhaust port 37b side which is higher than that on the refrigerant supply / exhaust port 37a side, is lowered, so that the temperature of the molten resin is made uniform, and the temperature unevenness of the molten resin occurs. It is reduced.
  • Step 580 the supply time is calculated from the cycle of supplying the refrigerant, the output required for cooling, and the control constant, and it is determined whether or not the supply time of the refrigerant has passed. If it is determined in step 580 that the refrigerant supply time has elapsed, the supply of refrigerant commensurate with the output required for cooling has been completed. Therefore, in the next step 600, the supply stop valve V2 is closed and the circulation pump is stopped. As a result, the supply of the refrigerant is stopped. At the same time, the flow rate adjusting valve V4 may be closed. At this time, the supply stop valve V2 and the flow rate adjustment valve V4 are also closed.
  • Step 580 when it is determined that the supply time of the refrigerant has not yet elapsed, the supply of the refrigerant is continued until a predetermined supply time elapses.
  • step 620 it is determined whether or not there is a request for stopping the operation of the twin-screw extruder, and when it is determined that a request for stopping the operation is not made, the temperature of the melted and kneaded molten resin is continuously maintained stably. Since it is necessary, the process proceeds to step 640. On the other hand, when it is determined in step 620 that the operation stop request has been made, it is not necessary to continuously control the resin temperature, and thus this routine is ended as it is.
  • step 640 it is determined whether the time from the start of supply in step 160 to the start of the next supply, that is, the refrigerant supply cycle has reached a predetermined cycle S set in advance. If it is determined in step 640 that the predetermined period S has been reached, the refrigerant is intermittently supplied in the predetermined period, so that the process returns to step 500 and the same control as described above is continued. .
  • the process waits until the predetermined cycle S, and when the cycle S is reached, the step 500 is performed again. The control similar to the above is continued after returning to step S2.
  • the temperature unevenness of the molten resin can be further reduced by performing the supply control of the refrigerant amount and the switching control of the flow direction of the refrigerant flowing in the cooling flow path.
  • a polyester manufacturing apparatus having the same configuration as that in FIG. 1 is prepared, and a screw having the following configuration is provided in a cylinder 10 provided with a raw material supply port 12 and two vents 16 ⁇ / b> A and 16 ⁇ / b> B as an extruder.
  • a double vent type co-rotating and meshing twin screw extruder equipped with 20A and 20B was prepared.
  • the cylinder 10 is formed by providing a temperature controller 30 and also serving as a cylinder wall.
  • the temperature controller 30 has nine zones (heating zones Z1 to Z7 and cooling zones Z8 to Z9) divided into nine in the screw rotation axis direction (cylinder longitudinal direction), and temperature control can be performed for each zone. it can.
  • a cooling pipe 35 is embedded in the cylinder wall along the periphery of the cylinder 10.
  • a gear pump 44, a metal fiber filter 42, and a molding die 40 having the following configuration are connected to the polyester manufacturing apparatus, as shown in FIG. 1, on the downstream side of the extruder outlet in the melt resin extrusion direction of the twin screw extruder.
  • the set temperature of the heater 30 for heating the molding die 40 was 280 ° C., and the average residence time of the resin was 10 minutes.
  • Temperature detector The following two sensors are installed to control the amount of cooling water in the Z9 zone of the extruder (the part closest to the cylinder outlet) ⁇ Temperature detection sensor S1: Attached to the temperature detector 50 downstream of the cylinder outlet ⁇ Temperature detection sensor S2: Attached to the wall material of the cylinder (h) Filter: Sintered metal fiber filter (pore diameter 20 ⁇ m) (I) Molding die: 4mm lip spacing
  • the PET pellets were put into a hopper. Prior to the injection of the PET pellets, the resin temperature and water content of the PET pellets were adjusted to 120 ° C. and 50 ppm by heating and drying the PET pellets in advance. And it melt-kneaded adjusting the temperature of a cylinder wall to the temperature shown in following Table 1, and extruded from the extruder exit. Melt extrusion was performed by adjusting the suction side pressure of the gear pump to 1.0 MPa.
  • the melt (melt) extruded from the exit of the extruder was passed through a gear pump and a metal fiber filter (pore diameter: 20 ⁇ m), and then extruded from a forming die onto a cooling roll.
  • the extruded melt was brought into close contact with a cooling roll using an electrostatic application method to produce an unstretched sheet.
  • This cooling roll is provided with a hollow chill roll, and the temperature is adjusted by passing water as a heat medium in the chill roll.
  • the humidity was adjusted to 30% RH by surrounding the conveyance area (air gap) from the exit of the forming die to the cooling roll, and introducing humidity-conditioned air into the enclosed area.
  • the melt thickness was adjusted to 3000 ⁇ m by adjusting the extrusion amount of the twin screw extruder and the slit width of the molding die.
  • a polyester film having a thickness of 250 ⁇ m is obtained by biaxially stretching the unstretched sheet obtained by sticking to a cooling roll and solidifying as described above by sequentially performing longitudinal stretching and lateral stretching under the following conditions.
  • B Transverse stretching After longitudinal stretching, transverse stretching was performed under the following conditions using a tenter. ⁇ Condition> -Preheating temperature: 110 ° C -Stretching temperature: 120 ° C -Stretch ratio: 3.8 times-Stretch speed: 70% / second
  • the stretched film after finishing the longitudinal stretching and the transverse stretching was heat-set under the following conditions.
  • the tenter width was reduced and thermal relaxation was performed under the following conditions.
  • both ends of the polyester film were trimmed by 10 cm.
  • extrusion was performed at both ends with a width of 10 mm, and the film was wound up with a tension of 25 kg / m.
  • the width was 1.3 m and the winding length was 1000 m.
  • PET polyethylene terephthalate
  • thermocouple is attached to the cylinder heater fixing bolt as shown in Fig. 11, and the temperatures of the upper, lower, left and right sides in the circumferential direction are measured. It was measured. The average value of the measured values was obtained and used as the cylinder temperature.
  • Terminal COOH amount As shown in FIG. 12, from the formed PET film, the start of winding in all roll lengths was set to 0 m, and a plurality of 1 m samples were taken every 200 m, and then each width direction was set to 5 etc. 5 pieces of 5 cm ⁇ 5 cm size samples were cut in each width direction. And this sample piece was melt
  • PET films having less terminal COOH amount and superior weather resistance were obtained as compared with Comparative Examples while maintaining low haze.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a twin-screw extrusion device comprising: a cylinder that has an extrusion port which extrudes molten resin; two screws that have an outer diameter (φ) of 100mm or more, and are disposed inside the cylinder in a manner so as to be capable of rotating; a cooling system that is installed on the cylinder wall, and has a first coolant supply/discharge port and a coolant channel through which a coolant, which exchanges heat with the molten resin inside the cylinder, flows; a temperature detection means that detects the temperature of the molten resin extruded from the extrusion port, and is positioned at the downstream side of the extrusion port of the cylinder in the direction of flow of the molten resin, and at the upstream side of a film production device which moulds the molten resin; and a resin temperature control means which adjusts the amount of the coolant supplied to the first coolant supply/discharge port, and controls the temperature difference between a resin set temperature and the molten resin temperature that has been detected by the temperature detection means, said temperature difference being controlled so as to be equal to or less than a predetermined threshold value.

Description

二軸押出装置及びフィルム製造方法Twin screw extrusion apparatus and film manufacturing method
 本発明は、二軸押出装置及びフィルム製造方法に関する。 The present invention relates to a twin-screw extruder and a film manufacturing method.
 ポリエステルは、電気絶縁用途や光学用途などの種々の用途に適用されている。そのうち、電気絶縁用途として、近年では特に、太陽電池の裏面保護用シート(いわゆるバックシート)などの太陽電池用途が注目されている。 Polyester is applied to various applications such as electrical insulation and optical applications. Among these, solar cell applications such as a sheet for protecting the back surface of a solar cell (so-called back sheet) have attracted attention as electrical insulation applications in recent years.
 ポリエステルを用いたフィルムやシートは、通常、その表面にカルボキシル基や水酸基が多く存在しており、水分が存在する環境条件下では加水分解反応を起こしやすく、経時で劣化する傾向がある。例えば太陽電池モジュールが一般に使用される設置環境は、屋外等の常に風雨に曝されるような環境であり、加水分解反応が進行しやすい条件に曝されるため、ポリエステルの加水分解性が安定的に抑制された状態に制御されていることが望まれる。 Films and sheets using polyester usually have a large amount of carboxyl groups and hydroxyl groups on the surface, tend to cause hydrolysis reaction under environmental conditions where moisture exists, and tend to deteriorate over time. For example, the installation environment in which solar cell modules are generally used is an environment that is constantly exposed to wind and rain, such as outdoors, and because it is exposed to conditions where hydrolysis reaction is likely to proceed, the hydrolyzability of polyester is stable. It is desired that the state is controlled to be suppressed.
 ポリエステル樹脂の耐加水分解性を高めるには、末端カルボキシル基量(Acid value(AV))を低減することが好ましい。末端カルボキシル基量を少なくするためには、押出機で溶融押出する際、押出される樹脂の温度を低くすることが有効である。ところが、樹脂温度が低いことで未溶融成分が増えると、この未溶融成分が結晶化を促進し、製品の結晶化白濁及び密着性の悪化を引き起こす。 In order to improve the hydrolysis resistance of the polyester resin, it is preferable to reduce the amount of terminal carboxyl groups (Acid value (AV)). In order to reduce the amount of terminal carboxyl groups, it is effective to lower the temperature of the extruded resin during melt extrusion with an extruder. However, when the unmelted component increases due to the low resin temperature, the unmelted component promotes crystallization, causing crystallization turbidity and deterioration of adhesion of the product.
 上記のような状況に関係して、溶融後に押出機内部で冷却することが有効とされている(例えば、特開2012-91494号公報参照)。この場合、押出機の樹脂押出方向下流に冷却ゾーンが設けられる。そして、冷却には、高い冷却効率が求められるため、高い蒸発潜熱を有する水を使用した水冷方式が有効である。 In relation to the above situation, it is effective to cool the inside of the extruder after melting (for example, see JP 2012-91494 A). In this case, a cooling zone is provided downstream of the extruder in the resin extrusion direction. Since cooling requires high cooling efficiency, a water cooling system using water having high latent heat of evaporation is effective.
 押出機の冷却に関連する技術として、押出機の運転条件の変更時にオペレータの可変絞り弁の開度調節の負担を軽減するため、バレルの温度状態と水の流量状態に基づいて冷却能力を判定し、必要な電磁弁を選択して水の流量を冷却負荷に応じて調節する温度制御装置が開示されている(例えば、特開平2-238920号公報参照)。
 また、シリンダ内の樹脂温度と金型直前の成形樹脂温度との経時変化に基づいて、シリンダ温度設定値を制御することで、金型直前の樹脂温度のハンチングを防ぐ樹脂温度制御方法が開示されている(例えば、特開平11-34149号公報参照)。
As a technology related to the cooling of the extruder, the cooling capacity is judged based on the temperature state of the barrel and the water flow state in order to reduce the burden of adjusting the opening of the variable throttle valve by the operator when the operating conditions of the extruder are changed A temperature control device that selects a necessary solenoid valve and adjusts the flow rate of water according to the cooling load is disclosed (for example, see Japanese Patent Application Laid-Open No. Hei 2-238920).
Also disclosed is a resin temperature control method that prevents hunting of the resin temperature immediately before the mold by controlling the cylinder temperature setting value based on the change over time of the resin temperature in the cylinder and the molding resin temperature immediately before the mold. (For example, see JP-A-11-34149).
 また、材料温度測定値と予め記憶された材料温度の目標設定温度値との差値から変更目標設定温度値を設定する一方、温度調節機構は、変更目標設定温度値と媒体温度測定値とによって行なったPID演算結果により、循環回路内の媒体を加熱あるいは冷却制御する温度制御装置が開示されている(例えば、特開2002-307539号公報参照)。
 上記のほか、押出装置において冷却制御する技術に関する開示がある(例えば、特開昭63-278819号公報及び特開2009-83313号公報参照)。
In addition, while the changed target set temperature value is set from the difference value between the material temperature measured value and the target temperature set value of the material temperature stored in advance, the temperature adjustment mechanism is based on the changed target set temperature value and the medium temperature measured value. There has been disclosed a temperature control device that controls heating or cooling of a medium in a circulation circuit based on the result of PID calculation performed (see, for example, Japanese Patent Application Laid-Open No. 2002-307539).
In addition to the above, there is a disclosure relating to a technique for controlling cooling in an extrusion apparatus (see, for example, JP-A-63-278819 and JP-A-2009-83313).
 上記のように、押出機の樹脂押出方向下流に設けられた冷却ゾーンにおいて、水を冷媒として冷却を行なう場合、水は高い蒸発潜熱を有するため、冷却効率の点では有利であるが、水を連続供給すると過剰冷却になりやすい。そのため、断続的な注水により温度制御しながら冷却する方式が一般的である。 As described above, in the cooling zone provided downstream of the extruder in the resin extrusion direction, when cooling with water as a refrigerant, water has a high latent heat of vaporization, which is advantageous in terms of cooling efficiency. If continuously supplied, overcooling tends to occur. Therefore, a method of cooling while controlling the temperature by intermittent water injection is common.
 例えば太陽電池用途などの屋外の過酷な環境条件下で使用される樹脂フィルム(例えばポリエステルフィルム)については、優れた耐候性が要求され、耐候性に優れたフィルムを押出成形するためには、可能な限り低温で溶融押出を行なうことが有効である。しかしながら、低温溶融することによる弊害として、フィルムの白濁(結晶化)が促進されたり、製膜適性が悪化する等、耐候性以外の品質を損なうことが考えられる。そのため、フィルム特性や製膜適性を損なわない程度の低温押出技術が要求されていた。 For example, resin films (such as polyester films) used under harsh outdoor conditions such as solar cell applications are required to have excellent weather resistance, and it is possible to extrude films with excellent weather resistance. It is effective to perform melt extrusion at as low a temperature as possible. However, as a harmful effect of melting at a low temperature, it is conceivable that the quality other than the weather resistance is impaired, such as acceleration of film turbidity (crystallization) and deterioration of film forming suitability. Therefore, there has been a demand for low-temperature extrusion technology that does not impair film properties and film-forming suitability.
 一方、押出機(特に大型の押出機)では、一般にスクリュが収容されたシリンダ壁にシリンダ周囲に沿って冷却用の配管が配置され、この配管の一端(供給口)から冷却水が供給される。供給された冷却水は、供給口付近で直ぐに蒸発してしまうため、配管の全長の中央付近から下流側では熱交換が著しく不足することになり、シリンダ全体に対して均一な冷却効果が得られない場合がある。下流側の熱交換を考慮し注水量が増やすと、蒸発しにくくなり、やはり冷却効果が得られない。結果、シリンダ周囲方向に温度ムラが発生する。しかも、温度制御は一般にシリンダ温度に基づいて行われるため、シリンダの温度ムラに起因して水量周期の変動が発生し、溶融樹脂の温度が安定化しない。 On the other hand, in an extruder (particularly a large-sized extruder), a cooling pipe is generally arranged along the periphery of a cylinder wall in which a screw is accommodated, and cooling water is supplied from one end (supply port) of this pipe. . The supplied cooling water evaporates immediately in the vicinity of the supply port, so heat exchange is remarkably insufficient from the vicinity of the center of the entire length of the piping to the downstream side, and a uniform cooling effect is obtained for the entire cylinder. There may not be. If the amount of water injection is increased in consideration of the heat exchange on the downstream side, it becomes difficult to evaporate and the cooling effect cannot be obtained. As a result, temperature unevenness occurs in the cylinder peripheral direction. Moreover, since temperature control is generally performed based on the cylinder temperature, fluctuations in the water amount cycle occur due to cylinder temperature variations, and the temperature of the molten resin is not stabilized.
 このような冷却効果の不均一は、フィルム成形品の品質変動(耐候性、白濁等)を招くため、通常これらの変動に安全率を見込んだ品質規格や工程条件を決定し、その都度ロスを生じながら調整している。したがって、このような安全率を考慮すると、設備本来の能力を最大限に発揮させることは困難となる。
 したがって、製品品質の向上及び均一化を図る観点から、シリンダの冷却不均一の改善、換言すれば、溶融押出される樹脂の温度の安定化技術の確立が求められていた。
Such non-uniform cooling effects lead to quality fluctuations (weather resistance, white turbidity, etc.) of film molded products. Usually, quality standards and process conditions that allow for safety factors are determined for these fluctuations. It is adjusted as it occurs. Therefore, when such a safety factor is taken into consideration, it is difficult to maximize the original capacity of the facility.
Therefore, from the viewpoint of improving and homogenizing product quality, improvement of non-uniform cooling of the cylinder, in other words, establishment of a technology for stabilizing the temperature of the resin to be melt-extruded has been demanded.
 本発明は、上記に鑑みなされたものである。本発明は、従来の二軸押出機に比べ、溶融押出される樹脂の温度を安定的に保ち、低ヘイズで耐候性に優れた樹脂を生成する二軸押出装置及びフィルム製造方法を提供する。 The present invention has been made in view of the above. The present invention provides a twin-screw extrusion apparatus and a film manufacturing method that can stably maintain the temperature of a resin to be melt-extruded as compared with a conventional twin-screw extruder and produce a resin having low haze and excellent weather resistance.
 上記の課題を達成するための具体的手段は、以下の通りである。
 <1> 溶融樹脂を押し出す押出口を有するシリンダと、シリンダ内に回転可能に配された外径φ100mm以上の2つのスクリュと、第1の冷媒給排口、及びシリンダ内の溶融樹脂と熱交換する冷媒が流通する冷媒流路を有し、シリンダ壁に(好ましくは、シリンダ壁内にシリンダ周囲に沿って)配設された冷却系統と、溶融樹脂流通方向における、シリンダの押出口下流側で、かつ溶融樹脂をフィルム製膜するためのフィルム製膜装置上流側に配置され、押出口から押し出された溶融樹脂の温度を検出する温度検出手段と、冷媒の第1の冷媒給排口への供給量を調節することにより、温度検出手段で検出された溶融樹脂の温度と樹脂設定温度との温度差を、予め定められた閾値(所定の閾値)以下に制御する樹脂温度制御手段と、を備えた二軸押出装置である。
 <2> 溶融樹脂流通方向における、シリンダの押出口下流側で、かつ溶融樹脂をフィルム製膜するためのフィルム製膜装置上流側に、溶融樹脂が流通する樹脂流通管を有し、温度検出手段は、少なくとも、樹脂流通管の内壁面から10mm以上離れた管内部に配置された測温部と、測温部の破損を防ぐ破損防止材と、を有する<1>に記載の二軸押出装置である。
 <3> 冷媒は、蒸発潜熱により溶融樹脂と熱交換する作動流体である<1>又は<2>に記載の二軸押出装置である。
Specific means for achieving the above-described problems are as follows.
<1> Cylinder having an extrusion port for extruding molten resin, two screws having an outer diameter of φ100 mm or more arranged rotatably in the cylinder, first refrigerant supply / discharge port, and heat exchange with the molten resin in the cylinder And a cooling system disposed on the cylinder wall (preferably along the circumference of the cylinder in the cylinder wall), and on the downstream side of the cylinder outlet in the molten resin flow direction. And a temperature detection means for detecting the temperature of the molten resin extruded from the extrusion port, and disposed on the upstream side of the film forming apparatus for film formation of the molten resin, and to the first refrigerant supply / discharge port of the refrigerant Resin temperature control means for controlling the temperature difference between the temperature of the molten resin detected by the temperature detection means and the resin set temperature to be equal to or less than a predetermined threshold (predetermined threshold) by adjusting the supply amount; Prepared An axial extrusion apparatus.
<2> In the molten resin distribution direction, the resin has a resin distribution pipe through which the molten resin circulates on the downstream side of the extrusion port of the cylinder and on the upstream side of the film forming apparatus for film formation of the molten resin. Is a twin screw extruder according to <1>, which has at least a temperature measuring part disposed inside the pipe that is 10 mm or more away from the inner wall surface of the resin flow pipe, and a damage preventing material that prevents the temperature measuring part from being damaged. It is.
<3> The refrigerant is the twin-screw extruder according to <1> or <2>, which is a working fluid that exchanges heat with the molten resin by latent heat of vaporization.
 <4> 樹脂温度制御手段は、冷媒の第1の冷媒給排口への供給量を、0.001L/樹脂1kg~0.150L/樹脂1kgの範囲で調節する<1>~<3>のいずれか1つに記載の二軸押出装置である。
 <5> 冷媒が水である<1>~<4>のいずれか1つに記載の二軸押出装置である。
 <6> 樹脂温度制御手段は、冷媒の第1の冷媒給排口への供給を、10秒/回以上120秒/回以下の周期で供給時間(秒/回)を、上記の周期の0%超40%以下として断続的に行なうことにより、樹脂温度と樹脂設定温度との温度差を、予め定められた閾値(所定の閾値)以下に制御する<1>~<5>のいずれか1つに記載の二軸押出装置である。
 <7> 樹脂温度制御手段は、フィルム製膜装置で製膜された樹脂フィルムのヘイズ値が予め定められた上限閾値Q1を超える又はフィルム製膜装置で製膜された樹脂フィルムのヘイズ値の変動率が予め定められた閾値Q3を超える場合は、樹脂設定温度を上げ、フィルム製膜装置で製膜された樹脂フィルムのヘイズ値が予め定められた下限閾値Q2未満である場合は、樹脂設定温度を下げる<1>~<6>のいずれか1つに記載の二軸押出装置である。
 <8> 樹脂温度制御手段は、樹脂温度と樹脂設定温度との温度差が予め定められた時間内に予め定められた閾値以下に達しない場合には、スクリュの回転数を変化させることにより、樹脂温度を樹脂設定温度に制御する<1>~<7>のいずれか1つに記載の二軸押出装置である。
<4> The resin temperature control means adjusts the supply amount of the refrigerant to the first refrigerant supply / discharge port in the range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg. <1> to <3> It is a twin-screw extrusion apparatus as described in any one.
<5> The twin-screw extruder according to any one of <1> to <4>, wherein the refrigerant is water.
<6> The resin temperature control means supplies the refrigerant to the first refrigerant supply / exhaust port with a supply time (seconds / time) of 10 seconds / time or more and 120 seconds / time or less, and 0 of the above cycle. Any one of <1> to <5>, in which the temperature difference between the resin temperature and the resin set temperature is controlled to be equal to or less than a predetermined threshold value (predetermined threshold value) It is a twin-screw extrusion apparatus as described in one.
<7> The resin temperature control means is a method in which the haze value of the resin film formed by the film forming apparatus exceeds a predetermined upper limit threshold value Q1 or the haze value of the resin film formed by the film forming apparatus varies. When the rate exceeds a predetermined threshold value Q3, the resin set temperature is increased, and when the haze value of the resin film formed by the film forming apparatus is less than the predetermined lower limit threshold value Q2, the resin set temperature is set. The twin-screw extruder according to any one of <1> to <6>.
<8> The resin temperature control means, when the temperature difference between the resin temperature and the resin set temperature does not reach a predetermined threshold value or less within a predetermined time, by changing the rotation speed of the screw, The twin-screw extruder according to any one of <1> to <7>, wherein the resin temperature is controlled to a resin set temperature.
 <9> 冷却系統は、更に、冷媒を冷媒流路から排出する第2の冷媒給排口、及び冷媒の流通方向を切り換える流通切換弁を有し、樹脂温度制御手段は、流通切換弁を切り換えることにより、冷媒を第1の冷媒給排口に供給して第2の冷媒給排口から排出する第1の冷却と、冷媒を第2の冷媒給排口に供給して第1の冷媒給排口から排出する第2の冷却と、を予め定められた周期で切り換える<1>~<8>のいずれか1つに記載の二軸押出装置である。 <9> The cooling system further includes a second refrigerant supply / exhaust port for discharging the refrigerant from the refrigerant flow path, and a flow switching valve for switching the flow direction of the refrigerant, and the resin temperature control means switches the flow switching valve. Thus, the first cooling for supplying the refrigerant to the first refrigerant supply / exhaust port and discharging the refrigerant from the second refrigerant supply / exhaust port, and supplying the refrigerant to the second refrigerant supply / exhaust port for supplying the first refrigerant The twin-screw extrusion apparatus according to any one of <1> to <8>, wherein the second cooling discharged from the discharge port is switched at a predetermined cycle.
 <10> 回転可能に配された外径φ100mm以上の2つのスクリュを備えたシリンダ内で溶融される樹脂の温度を制御しながら、熱可塑性樹脂を溶融する工程と、溶融された熱可塑性樹脂を成形ダイより膜状に押出す工程と、押出された熱可塑性樹脂を冷却ロール上で固化する工程と、を有し、
 溶融する工程は、シリンダの押出口から押し出された溶融樹脂の温度を、膜状に押出す工程前に検出し、検出された溶融樹脂の温度と樹脂設定温度との温度差を、シリンダ壁に配設された冷却系統に供給される冷媒の供給量を調節することにより、予め定められた閾値以下に制御する、フィルム製造方法である。
 <11> 冷媒は、蒸発潜熱により溶融樹脂と熱交換する作動流体である<10>に記載のフィルム製造方法である。
 <12> 溶融する工程は、冷媒の供給量を0.001L/樹脂1kg~0.150L/樹脂1kgの範囲で調節する<10>又は<11>に記載のフィルム製造方法である。
 <13> 冷媒が水である<10>~<12>のいずれか1つに記載のフィルム製造方法である。
 <14> 溶融する工程は、冷媒の冷却系統への供給を、10秒/回以上120秒/回以下の周期で供給時間(秒/回)を周期の0%超40%以下として断続的に行なうことにより、溶融樹脂の温度と樹脂設定温度との温度差を予め定められた閾値以下に制御する<10>~<13>のいずれか1つに記載のフィルム製造方法である。
 <15> 溶融する工程は、フィルム製膜装置で製膜された樹脂フィルムのヘイズ値が予め定められた上限閾値Q1を超える又はフィルム製膜装置で製膜された樹脂フィルムのヘイズ値の変動率が予め定められた閾値Q3を超える場合は、樹脂設定温度を上げ、
 フィルム製膜装置で製膜された樹脂フィルムのヘイズ値が予め定められた下限閾値Q2未満である場合は、樹脂設定温度を下げる、<10>~<14>のいずれか1つに記載のフィルム製造方法である。
 <16> 溶融する工程は、溶融樹脂の温度と樹脂設定温度との温度差が予め定められた時間内に予め定められた閾値以下に達しない場合には、スクリュの回転数を変化させることにより、溶融樹脂の温度を樹脂設定温度に制御する<10>~<15>のいずれか1つに記載のフィルム製造方法である。
 <17> 冷却系統は、第1の冷媒給排口、冷媒が流通する冷媒流路、冷媒を冷媒流路から排出する第2の冷媒給排口、及び冷媒の流通方向を切り換える流通切換弁を有し、
 溶融する工程は、流通切換弁を切り換えることにより、冷媒を第1の冷媒給排口に供給して第2の冷媒給排口から排出する第1の冷却と、冷媒を第2の冷媒給排口に供給して第1の冷媒給排口から排出する第2の冷却と、を予め定められた周期で切り換える<10>~<16>のいずれか1つに記載のフィルム製造方法である。
<10> A step of melting a thermoplastic resin while controlling a temperature of the resin melted in a cylinder having two screws having an outer diameter of φ100 mm or more arranged rotatably, and a melted thermoplastic resin A step of extruding into a film form from a molding die, and a step of solidifying the extruded thermoplastic resin on a cooling roll,
In the melting process, the temperature of the molten resin extruded from the cylinder extrusion port is detected before the process of extruding into a film shape, and the temperature difference between the detected temperature of the molten resin and the resin set temperature is detected on the cylinder wall. In this film manufacturing method, the amount of refrigerant supplied to the arranged cooling system is adjusted to be controlled to be equal to or lower than a predetermined threshold value.
<11> The refrigerant according to <10>, wherein the refrigerant is a working fluid that exchanges heat with the molten resin by latent heat of vaporization.
<12> The melting step is the film production method according to <10> or <11>, wherein the supply amount of the refrigerant is adjusted in a range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg.
<13> The method for producing a film according to any one of <10> to <12>, wherein the refrigerant is water.
<14> In the melting step, the supply of the refrigerant to the cooling system is intermittently performed at a cycle of 10 seconds / time to 120 seconds / cycle with a supply time (seconds / cycle) of more than 0% and 40% or less of the cycle. By performing, the film manufacturing method according to any one of <10> to <13>, wherein the temperature difference between the temperature of the molten resin and the resin set temperature is controlled to a predetermined threshold value or less.
<15> In the melting step, the haze value of the resin film formed by the film forming apparatus exceeds a predetermined upper limit threshold value Q1, or the variation rate of the haze value of the resin film formed by the film forming apparatus. Is higher than the predetermined threshold value Q3, the resin set temperature is raised,
The film according to any one of <10> to <14>, wherein the resin set temperature is lowered when the haze value of the resin film formed by the film forming apparatus is less than a predetermined lower threshold Q2. It is a manufacturing method.
<16> The melting step is performed by changing the number of rotations of the screw when the temperature difference between the temperature of the molten resin and the resin set temperature does not reach a predetermined threshold value within a predetermined time. The method for producing a film according to any one of <10> to <15>, wherein the temperature of the molten resin is controlled to a resin set temperature.
<17> The cooling system includes a first refrigerant supply / exhaust port, a refrigerant flow channel through which the refrigerant flows, a second refrigerant supply / discharge port through which the refrigerant is discharged from the refrigerant flow channel, and a flow switching valve that switches a flow direction of the refrigerant. Have
In the melting step, by switching the flow switching valve, the first cooling that supplies the refrigerant to the first refrigerant supply / discharge port and discharges it from the second refrigerant supply / discharge port, and the refrigerant is supplied to the second refrigerant supply / discharge port. The film manufacturing method according to any one of <10> to <16>, wherein the second cooling that is supplied to the outlet and discharged from the first refrigerant supply / exhaust opening is switched at a predetermined cycle.
 本発明によれば、従来の二軸押出機に比べ、溶融押出される樹脂の温度を安定的に保ち、低ヘイズで耐候性に優れた樹脂を生成する二軸押出装置及びフィルム製造方法が提供される。 According to the present invention, there is provided a twin-screw extrusion apparatus and a film manufacturing method that can stably maintain the temperature of the resin to be melt-extruded as compared with the conventional twin-screw extruder and produce a resin having low haze and excellent weather resistance. Is done.
図1は、本発明の実施形態におけるフィルム製造装置の構成例を示す概略図である。FIG. 1 is a schematic diagram illustrating a configuration example of a film manufacturing apparatus according to an embodiment of the present invention. 図2は、図1のフィルム製造装置を構成する二軸押出機の構成例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a configuration example of a twin-screw extruder constituting the film manufacturing apparatus of FIG. 図3は、二軸押出機のシリンダ周囲に沿って配設されている冷却流路を示す概略斜視図である。FIG. 3 is a schematic perspective view showing the cooling flow path disposed along the cylinder periphery of the twin-screw extruder. 図4は、図3のA-A線断面図である。4 is a cross-sectional view taken along line AA in FIG. 図5は、樹脂温度検出器50の樹脂流通方向と直交する断面を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing a cross section orthogonal to the resin flow direction of the resin temperature detector 50. 図6は、本発明の第1実施形態の断続注水制御ルーチンを示す流れ図である。FIG. 6 is a flowchart showing an intermittent water injection control routine according to the first embodiment of the present invention. 図7は、本発明の第2実施形態の断続注水制御ルーチンを示す流れ図である。FIG. 7 is a flowchart showing an intermittent water injection control routine according to the second embodiment of the present invention. 図8は、本発明の第3実施形態の断続注水制御ルーチンを示す流れ図である。FIG. 8 is a flowchart showing an intermittent water injection control routine according to the third embodiment of the present invention. 図9は、本発明の第4実施形態の流通切換制御ルーチンを示す流れ図である。FIG. 9 is a flowchart showing a flow switching control routine according to the fourth embodiment of the present invention. 図10は、本発明の第4実施形態における冷媒の流通方向を切り換えてシリンダに供給する冷媒流路を示す概略の配管構成図である。FIG. 10 is a schematic piping configuration diagram showing a refrigerant flow path that switches the flow direction of the refrigerant and supplies the cylinder to the cylinder in the fourth embodiment of the present invention. 図11は、シリンダ温度の測定方法を説明するための模式図である。FIG. 11 is a schematic diagram for explaining a method for measuring the cylinder temperature. 図12は、樹脂フィルムの末端COOH量を測定する方法を説明するための模式図である。FIG. 12 is a schematic diagram for explaining a method of measuring the terminal COOH amount of the resin film.
 以下、図面を参照して、本発明の二軸押出装置の実施形態について具体的に説明する。但し、本発明においては、以下に示す実施形態に制限されるものではない。 Hereinafter, embodiments of the twin-screw extrusion apparatus of the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to the embodiments shown below.
(第1実施形態)
 本発明の二軸押出装置の第1実施形態を図1~図6を参照して説明する。本実施形態では、ギアポンプとフィルタとの中間位置に、樹脂の温度を計測するための樹脂温度検出器を配設し、計測された樹脂温度に基づき、予め定められたパルス周期で断続的に冷媒を予め定められた時間供給して溶融樹脂の冷却制御を行なう二軸押出装置を一例に詳細に説明する。
(First embodiment)
A first embodiment of a twin-screw extruder according to the present invention will be described with reference to FIGS. In the present embodiment, a resin temperature detector for measuring the temperature of the resin is disposed at an intermediate position between the gear pump and the filter, and the refrigerant is intermittently generated at a predetermined pulse cycle based on the measured resin temperature. Will be described in detail by taking as an example a twin-screw extruder that supplies a predetermined time for cooling control of the molten resin.
 本実施形態のフィルム製造装置200は、図1に示すように、二軸押出装置100Aと、二軸押出装置から押出される溶融樹脂の押出方向下流に設けられたギアポンプ44と、ギアポンプから吐出された溶融樹脂をフィルタリングするフィルタ42と、溶融樹脂を製膜するフィルム製膜機である成形ダイ40と、を設けて構成されている。
 二軸押出装置100Aは、2本のスクリュを備えた二軸押出機100と、ギアポンプとフィルタとの間に配設され、溶融樹脂の温度を検出する温度検出手段の例である樹脂温度検出器50と、樹脂温度制御手段の例である制御装置60と、を備えている。
As shown in FIG. 1, the film manufacturing apparatus 200 of the present embodiment is discharged from a biaxial extruder 100 </ b> A, a gear pump 44 provided downstream of the molten resin extruded from the biaxial extruder, and a gear pump. A filter 42 for filtering the molten resin and a forming die 40 that is a film forming machine for forming the molten resin are provided.
The biaxial extruder 100A is a biaxial extruder 100 having two screws, and a resin temperature detector that is disposed between the gear pump and the filter and is an example of temperature detecting means for detecting the temperature of the molten resin. 50 and a control device 60 which is an example of a resin temperature control means.
[二軸押出機]
 二軸押出機100は、図2~図4に示すように、原料樹脂を供給する原料供給口12及び溶融樹脂を押し出す押出口(以下、押出機出口ともいう。)14を有するシリンダ(バレル)10と、それぞれφ100mm以上の外径を有し、シリンダ10内で回転する2つのスクリュ20A,20Bと、シリンダ10の周囲に配置され、シリンダ10内の温度を制御する温度調節器30と、シリンダを冷却するための冷却配管35と、を備えている。
[Twin screw extruder]
As shown in FIGS. 2 to 4, the twin-screw extruder 100 is a cylinder (barrel) having a raw material supply port 12 for supplying a raw material resin and an extrusion port (hereinafter also referred to as an extruder outlet) 14 for extruding a molten resin. 10 and two screws 20A and 20B each having an outer diameter of φ100 mm or more and rotating in the cylinder 10, a temperature regulator 30 arranged around the cylinder 10 and controlling the temperature in the cylinder 10, and a cylinder And a cooling pipe 35 for cooling the air.
 溶融押出法を利用してポリエステルフィルムを製造する場合に使用する押出機は、一般にスクリュの数により単軸と多軸とに大別され、多軸の押出機として、二軸押出機(二軸スクリュ押出機)は広く使用されている。 Extruders used for producing polyester films using the melt extrusion method are generally roughly classified into single-screw and multi-screw depending on the number of screws. As a multi-screw extruder, a twin-screw extruder (two-screw extruder) Screw extruders are widely used.
 シリンダ10は、原料樹脂を供給するための原料供給口12と、加熱溶融された樹脂が押し出される押出機出口14と、を有している。
 シリンダ10は、後述するように、溶融樹脂の温度制御機能を持つシリンダ壁によって形成されており、本実施形態では、温度調節器30が設けられてシリンダ壁を兼ねることによってシリンダ10が形成されている。
 原料供給口12には、原料樹脂を供給するための原料供給装置46が接続されている。
The cylinder 10 has a raw material supply port 12 for supplying the raw material resin, and an extruder outlet 14 through which the heat-melted resin is extruded.
As will be described later, the cylinder 10 is formed by a cylinder wall having a temperature control function of a molten resin. In this embodiment, the cylinder 10 is formed by providing a temperature controller 30 and also serving as the cylinder wall. Yes.
A raw material supply device 46 for supplying raw material resin is connected to the raw material supply port 12.
 シリンダ10の内壁面は、好ましくは、耐熱、耐磨耗性、及び腐食性に優れ、樹脂との摩擦耐性が確保可能な素材で構成される。一般的には内面を窒化処理した窒化鋼が使用されているが、クロムモリブデン鋼、ニッケルクロムモリブデン鋼、ステンレス鋼を窒化処理して用いることもできる。特に耐摩耗性、耐食性を要求される用途では、遠心鋳造法によりニッケル、コバルト、クロム、タングステン等の耐腐食性、耐磨耗性素材合金をシリンダ10の内壁面にライニングさせたバイメタリックシリンダを用いることや、セラミックの溶射皮膜を形成させることが有効である。 The inner wall surface of the cylinder 10 is preferably made of a material that is excellent in heat resistance, wear resistance, and corrosion resistance, and can ensure friction resistance with the resin. Generally, nitrided steel whose inner surface is nitrided is used, but chromium molybdenum steel, nickel chromium molybdenum steel, and stainless steel can also be nitrided and used. For applications that require wear resistance and corrosion resistance in particular, a bimetallic cylinder in which a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten is lined on the inner wall surface of the cylinder 10 by centrifugal casting. It is effective to use or form a ceramic sprayed coating.
 シリンダ10には真空を引くためのベント16A,16B(図2中、矢印で示す)が設けられている。ベント16A,16Bを通じて真空引きをすることで、シリンダ10内の樹脂中の水分等の揮発成分を効率的に除去することができる。ベント16A,16Bを適正に配置することにより、未乾燥状態の原料(ペレット、パウダー、フレークなど)や製膜途中で出たフィルムの粉砕屑(フラフ)等をそのまま原料樹脂として使用することができる。
 本実施形態では、ベント16A,16Bの2つが設けられているが、ベントの配置については、脱気効率との関係から開口面積や個数を適正にすることが求められる。二軸押出機100は、1箇所以上のベントを有していることが望ましい。なお、ベントの数が多過ぎると、溶融樹脂がベントから溢れ出るおそれと滞留劣化異物が増加する懸念があるので、ベントは1箇所又は2箇所であることが好ましい。
 また、ベント付近の壁面に滞留した樹脂や析出した揮発成分については、押出機100(シリンダ10)の内部に落下する場合があり、落下すると製品に異物として顕在化する可能性があるため、落下しないようにすることが重要である。滞留については、ベント蓋の形状の適正化や上部ベント、側面ベントの適正な選定が有効であり、揮発成分の析出は、配管等の加熱で析出を防止する手法が一般的に用いられる。
The cylinder 10 is provided with vents 16A and 16B (indicated by arrows in FIG. 2) for drawing a vacuum. By evacuating through the vents 16A and 16B, volatile components such as moisture in the resin in the cylinder 10 can be efficiently removed. By appropriately arranging the vents 16A and 16B, raw materials (pellets, powders, flakes, etc.) in an undried state, crushed waste (fluffs) of the film produced during film formation, etc. can be used as raw material resins as they are. .
In the present embodiment, two vents 16A and 16B are provided. However, regarding the arrangement of the vents, it is required that the opening area and the number of the vents are appropriate from the relationship with the deaeration efficiency. The twin screw extruder 100 desirably has one or more vents. In addition, since there exists a possibility that molten resin may overflow from a vent and a residence deterioration foreign material may increase when there are too many vents, it is preferable that a vent is one place or two places.
In addition, the resin staying on the wall surface near the vent and the deposited volatile components may fall into the extruder 100 (cylinder 10), and if dropped, it may be manifested as foreign matter in the product. It is important not to do so. For retention, optimization of the shape of the vent lid and appropriate selection of the upper and side vents are effective, and precipitation of volatile components is generally performed by a method of preventing the precipitation by heating the piping or the like.
 例えば、ポリエチレンテレフタレート(PET)を溶融押出する場合、加水分解、熱分解、酸化分解の抑制が製品(フィルム)の品質に大きな影響を及ぼす。例えば、原料供給口12を真空化したり、窒素パージを行なうことで酸化分解を抑えることができる。
 また、ベントを複数箇所に設けることで、原料水分量が2000ppm程度の場合でも、50ppm以下に乾燥した樹脂を単軸で押出した場合と同様の押出しが可能である。
 剪断発熱による樹脂分解を抑えるため、押出と脱気が両立できる範囲では、ニーディング等のセグメントは極力設けないことが好ましい。
For example, when polyethylene terephthalate (PET) is melt-extruded, the suppression of hydrolysis, thermal decomposition, and oxidative decomposition greatly affects the quality of the product (film). For example, oxidative decomposition can be suppressed by evacuating the raw material supply port 12 or performing a nitrogen purge.
Further, by providing the vents at a plurality of locations, even when the raw material water content is about 2000 ppm, the same extrusion as when a resin dried to 50 ppm or less is extruded on a single axis is possible.
In order to suppress resin decomposition due to shearing heat generation, it is preferable not to provide segments such as kneading as much as possible within a range in which extrusion and deaeration can be compatible.
 原料供給口12の雰囲気は、酸素濃度が10体積%未満に抑えられていることが好ましい。ポリエステル樹脂及び末端封止材を供給する原料供給口の雰囲気中の酸素濃度(O濃度)が10体積%未満に抑えられていることで、ポリエステル樹脂の劣化を防ぎ、末端封止材による封止効果が良好に現れるため、耐加水分解性の向上効果に優れる。酸素濃度としては、上記と同様の理由から、7体積%以下がより好ましく、5体積%以下が更に好ましい。
 酸素濃度の調整は、原料供給口を有する供給部に不活性ガス(例えば窒素ガス)を導入する方法、真空引きする方法等により行なうことができる。
The atmosphere of the raw material supply port 12 is preferably suppressed to an oxygen concentration of less than 10% by volume. Since the oxygen concentration (O 2 concentration) in the atmosphere of the raw material supply port for supplying the polyester resin and the terminal sealing material is suppressed to less than 10% by volume, the polyester resin is prevented from being deteriorated and sealed with the terminal sealing material. Since the stopping effect appears well, it is excellent in the effect of improving hydrolysis resistance. The oxygen concentration is preferably 7% by volume or less, more preferably 5% by volume or less, for the same reason as described above.
The oxygen concentration can be adjusted by a method of introducing an inert gas (for example, nitrogen gas) into a supply unit having a raw material supply port, a method of evacuating, or the like.
 また、スクリュ出口(押出機出口)14での圧力が大きいほど剪断発熱が大きくなるため、ベント16A,16Bによる脱気効率と押出の安定性が確保できる範囲内で、押出機出口14の圧力は極力低くすることが好ましい。 Further, since the shear heat generation increases as the pressure at the screw outlet (extruder outlet) 14 increases, the pressure at the extruder outlet 14 is within a range in which the degassing efficiency and the stability of extrusion by the vents 16A and 16B can be secured. It is preferable to make it as low as possible.
 スクリュ20A,20Bは、シリンダ10内において、100mm以上のスクリュ径(外径)Dを有し、モータ及びギアを含む駆動手段21によって回転可能に設けられている。スクリュ径Dが100mm以上である大型の二軸押出機では、大量生産が可能である一方、樹脂の溶融ムラ、すなわちシリンダ周囲方向において樹脂の温度ムラが生じ易く、製造される樹脂の物性バラツキを伴ないやすい。しかし、本発明においては、100mm以上のスクリュ径Dを備えた大型の二軸押出機を用いた場合でも、溶融樹脂の温度ムラが抑制されるともに、低温溶融させた場合に生じやすい樹脂の結晶化による樹脂の白濁(ヘイズの低下)をより効果的に抑制することができる。
 これにより、最終的に作製される樹脂フィルムの物性バラツキが抑えられる。
The screws 20A and 20B have a screw diameter (outer diameter) D of 100 mm or more in the cylinder 10 and are rotatably provided by driving means 21 including a motor and gears. A large twin-screw extruder having a screw diameter D of 100 mm or more can be mass-produced. On the other hand, resin melting unevenness, that is, resin temperature unevenness tends to occur in the circumferential direction of the cylinder. Easy to accompany. However, in the present invention, even when a large twin screw extruder having a screw diameter D of 100 mm or more is used, the temperature variation of the molten resin is suppressed, and the resin crystals that are likely to occur when melted at a low temperature The white turbidity (decrease in haze) of the resin due to crystallization can be more effectively suppressed.
Thereby, the physical property variation of the resin film finally produced is suppressed.
 スクリュ径Dは、大量生産が可能であり、かつ本発明の効果がより効果的奏される観点から、150mm以上が好ましく、より好ましくは160mm~240mmである。 The screw diameter D is preferably 150 mm or more, more preferably 160 mm to 240 mm from the viewpoint that mass production is possible and the effects of the present invention are more effective.
 二軸押出機は、2つのスクリュの噛み合い型と非噛み合い型に大別され、噛み合い型のほうが、非噛み合い型よりも混練効果が大きい。本発明では、噛み合い型と非噛み合い型のいずれのタイプでもよいが、原料樹脂を十分混練して溶融ムラを抑制する観点から、噛み合い型を用いることが好ましい。
 2つのスクリュの回転方向もそれぞれ同方向と異方向に分かれる。異方向回転型のスクリュは、同方向回転型のスクリュよりも混練効果が高い。同方向回転型は、自己清掃効果を持っているため、押出機内の滞留防止には有効である。
 さらに軸方向も平行と斜交があり、強いせん断を付与する場合に用いられるコニカルタイプの形状もある。
The twin screw extruder is roughly divided into a meshing type and a non-meshing type of two screws, and the meshing type has a larger kneading effect than the non-meshing type. In the present invention, any of a meshing type and a non-meshing type may be used, but from the viewpoint of suppressing kneading by sufficiently kneading the raw material resin, it is preferable to use a meshing type.
The rotational directions of the two screws are also divided into the same direction and different directions. The different direction rotation type screw has a higher kneading effect than the same direction rotation type screw. The co-rotating type has a self-cleaning effect and is effective in preventing retention in the extruder.
Furthermore, the axial direction is also parallel and oblique, and there is also a conical type shape used when applying strong shear.
 本発明において使用可能な二軸押出機には、様々な形状のスクリュセグメントが用いられる。スクリュ20A,20Bの形状としては、例えば、等ピッチの1条の螺旋状フライト22が設けられたフルフライトスクリュが好適に用いられる。 In the twin screw extruder that can be used in the present invention, screw segments of various shapes are used. As the shape of the screws 20A and 20B, for example, a full flight screw provided with a single spiral flight 22 of equal pitch is preferably used.
 また、シリンダ10の長手方向における原料供給口12の樹脂押出方向下流には、少なくとも1つの樹脂混練部材が配設されていることが好ましい。樹脂混練部材は、例えばニーディングディスクやローターなどの剪断を付与する混練用セグメントである。本実施形態では、図2のように、ニーディングディスク24A,24Bが設置されている。混練用セグメントを備えることで、原料樹脂をより確実に溶融、混練することができる。混練用セグメントは、シリンダ長手方向に割り当てられた加熱ゾーン(本実施形態では図2に示す加熱ゾーンZ1~Z7)に配設され、加熱ゾーン内に原料樹脂の溶融、混練を促進する混練部が形成されている。 Further, it is preferable that at least one resin kneading member is disposed downstream of the raw material supply port 12 in the resin extrusion direction in the longitudinal direction of the cylinder 10. The resin kneading member is a kneading segment that imparts shear such as a kneading disk or a rotor. In this embodiment, kneading disks 24A and 24B are installed as shown in FIG. By providing the kneading segment, the raw material resin can be more reliably melted and kneaded. The kneading segment is disposed in a heating zone assigned in the longitudinal direction of the cylinder (heating zones Z1 to Z7 shown in FIG. 2 in this embodiment), and a kneading section for promoting melting and kneading of the raw material resin is provided in the heating zone. Is formed.
 また、この加熱ゾーンには、逆スクリュやシールリングを用いることにより、樹脂をせき止め、ベントを引く際のメルトシールを形成することができる。例えば、図2中のベント16A,16B付近に逆スクリュが設けられてもよい。 In addition, by using a reverse screw or a seal ring in this heating zone, it is possible to form a melt seal when damming the resin and pulling the vent. For example, a reverse screw may be provided in the vicinity of the vents 16A and 16B in FIG.
 二軸押出機100を構成するシリンダ10の長手方向中央部の樹脂押出方向下流には、溶融樹脂を冷却して温調するための冷却ゾーン(温調部)が設けられていることが有効である。剪断発熱よりもシリンダ10の伝熱効率が高い場合は、図2のように、冷却ゾーンZ9にピッチの短いスクリュ28を設けることで、シリンダ10壁面の樹脂移動速度が高まり、温調効率を高めることができる。冷却効果を高める観点から、冷却ゾーン(温調部)に位置するスクリュ28のピッチは、0.5D~0.8D(D:スクリュの直径[mm])であることが好ましい。 It is effective to provide a cooling zone (temperature control section) for cooling and controlling the temperature of the molten resin downstream of the center of the longitudinal direction of the cylinder 10 constituting the biaxial extruder 100 in the resin extrusion direction. is there. When the heat transfer efficiency of the cylinder 10 is higher than the shear heat generation, as shown in FIG. 2, by providing a screw 28 with a short pitch in the cooling zone Z9, the resin moving speed of the cylinder 10 wall surface is increased and the temperature control efficiency is increased. Can do. From the viewpoint of enhancing the cooling effect, the pitch of the screws 28 located in the cooling zone (temperature control section) is preferably 0.5D to 0.8D (D: screw diameter [mm]).
 シリンダ10の周囲に存在する温度調節器30は、図2に示すように、シリンダ10が原料供給口12から押出機出口14に向けて長手方向に9つの領域(加熱ゾーンZ1~Z7及び冷却ゾーンZ8~Z9)に分割されている。具体的には、樹脂押出方向上流側から7つの領域には加熱器C1~C7が配設され、樹脂押出方向下流側から2つの領域には冷却器C8~C9が配設されており、温度調節器30を構成している。このようにシリンダ10の周囲は、分割して配置された加熱器C1~C7及び冷却器C8~C9によって、加熱ゾーンZ1~Z7と冷却ゾーンZ8~Z9とに区画され、シリンダ10内を領域毎(ゾーン毎)に所望の温度に制御できるようになっている。冷却ゾーンにおいては、さらに加熱器を設け、加熱器を併用して温度調整を行なうことも可能である。
 なお、図2では、シリンダを長手方向(溶融樹脂流通方向)に9ゾーンに分割し、ゾーン毎に温度制御できる構造を例に示したが、領域(ゾーン)の数は9ゾーンに限られるものではなく、目的等に応じて任意に領域(ゾーン)の数を選択することができる。
As shown in FIG. 2, the temperature controller 30 existing around the cylinder 10 has nine regions (heating zones Z1 to Z7 and cooling zones) in which the cylinder 10 extends in the longitudinal direction from the raw material supply port 12 to the extruder outlet 14. Z8 to Z9). Specifically, heaters C1 to C7 are disposed in seven regions from the upstream side in the resin extrusion direction, and coolers C8 to C9 are disposed in two regions from the downstream side in the resin extrusion direction. The adjuster 30 is configured. In this way, the periphery of the cylinder 10 is divided into heating zones Z1 to Z7 and cooling zones Z8 to Z9 by the heaters C1 to C7 and the coolers C8 to C9 that are arranged separately, and the cylinder 10 is divided into regions. The temperature can be controlled to a desired temperature (for each zone). In the cooling zone, it is also possible to provide a heater and adjust the temperature by using the heater together.
FIG. 2 shows an example of a structure in which the cylinder is divided into 9 zones in the longitudinal direction (melting resin flow direction) and the temperature can be controlled for each zone. However, the number of regions (zones) is limited to 9 zones. Instead, the number of regions (zones) can be arbitrarily selected according to the purpose or the like.
 加熱としては、一般にバンドヒータ又はシーズ線アルミ鋳込みヒータが用いられる。但し、ヒータはこれらに限定されるものではなく、例えば熱媒循環加熱方法も適用することができる。
 一方、冷却は、シリンダ10の内部に冷媒を流通するための冷却配管を設け、この冷却配管に冷媒を循環させる等により行なう。また、シリンダ内に冷却配管を設けると共に、更にシリンダの周囲に冷却配管を巻き付ける等の他の構造を設け、冷却を行うる態様に構成されてもよい。
For heating, a band heater or a sheathed wire aluminum cast heater is generally used. However, a heater is not limited to these, For example, the heat-medium circulation heating method is also applicable.
On the other hand, cooling is performed by providing a cooling pipe for circulating the refrigerant inside the cylinder 10 and circulating the refrigerant through the cooling pipe. Moreover, while providing cooling piping in a cylinder, you may be comprised in the aspect which provides other structures, such as winding cooling piping around a cylinder, and performs cooling.
 また、シリンダ壁には、図1及び図4に示すように、シリンダの温度を検出するための温度検出センサS2が取り付けられている。この温度検出センサS2は、溶融混練時のシリンダ温度を連続的に又は予め定められたタイミングで検出することができる。これにより、温度調節器30での制御を行なう。検出値は、常時又は必要に応じて制御装置60に送られる。温度検出センサS2には、公知の熱電対などを使用することができる。 Further, as shown in FIGS. 1 and 4, a temperature detection sensor S2 for detecting the temperature of the cylinder is attached to the cylinder wall. The temperature detection sensor S2 can detect the cylinder temperature during melt-kneading continuously or at a predetermined timing. Thereby, control by the temperature controller 30 is performed. The detected value is sent to the control device 60 at all times or as necessary. A known thermocouple or the like can be used for the temperature detection sensor S2.
 上記のように原料樹脂をシリンダ内で加熱溶融する一方、温度調節器30によりシリンダ10の押出機出口14側の内壁がポリエステル樹脂(原料樹脂)の融点Tm(℃)以下の冷却ゾーン(温調部)となるように温調制御する。冷却ゾーンにおいて、シリンダ10の押出機出口14に近い壁面温度を原料樹脂の融点Tm(℃)以下に制御すれば、樹脂が過剰に加熱されて末端COOH量が増加することを防ぐことができる。末端COOH量の増加を確実に抑制する観点から、冷却ゾーンにおける温度は、(Tm-100)℃~Tm℃の範囲内が好ましく、(Tm-50)℃~(Tm-10)℃の範囲内がより好ましい。 While the raw material resin is heated and melted in the cylinder as described above, the temperature controller 30 causes the inner wall of the cylinder 10 on the extruder outlet 14 side to be a cooling zone (temperature control) of the melting point Tm (° C.) or less of the polyester resin (raw material resin). Part)). If the wall surface temperature near the extruder outlet 14 of the cylinder 10 is controlled to be equal to or lower than the melting point Tm (° C.) of the raw material resin in the cooling zone, it is possible to prevent the resin from being heated excessively and increasing the amount of terminal COOH. From the viewpoint of reliably suppressing the increase in the amount of terminal COOH, the temperature in the cooling zone is preferably within the range of (Tm-100) ° C to Tm ° C, and within the range of (Tm-50) ° C to (Tm-10) ° C. Is more preferable.
 冷却ゾーンの長さ(本実施形態では冷却ゾーンZ8~Z9)、すなわち押出口先端からスクリュ軸方向における長さは、4D~11D(D:スクリュの直径)にすることが好ましい。冷却ゾーンの長さが4D以上であれば、溶融加熱された樹脂を効果的に冷却して末端COOHの増加を抑制する。一方、冷却ゾーンの長さが11D以下であれば、樹脂を冷却し過ぎて固化することを防ぎ、溶融押出しを円滑に行なうことができる。
 なお、押出機出口14における樹脂温度ToutがTm+30℃以下となるようにすることが好ましい。ただし、押出機出口14における樹脂温度Toutが低過ぎると溶融樹脂の一部が固化するおそれもあるため、押出機出口14における樹脂温度ToutはTm~(Tm+25)℃以下とすることがより好ましく、(Tm+10)℃~(Tm+20)℃とすることがさらに好ましい。
The length of the cooling zone (in this embodiment, the cooling zones Z8 to Z9), that is, the length from the tip of the extrusion port in the screw axis direction is preferably 4D to 11D (D: screw diameter). If the length of the cooling zone is 4D or more, the molten and heated resin is effectively cooled to suppress an increase in terminal COOH. On the other hand, if the length of the cooling zone is 11D or less, the resin can be prevented from being excessively cooled and solidified, and melt extrusion can be performed smoothly.
It is preferable that the resin temperature T out in the extruder outlet 14 to the Tm + 30 ° C. or less. However, because some of the molten resin resin temperature T out is too low in the extruder outlet 14 is also likely to be solidified, the resin temperature T out in the extruder outlet 14 is more able to Tm ~ (Tm + 25) ℃ or less Preferably, (Tm + 10) ° C. to (Tm + 20) ° C. is more preferable.
[冷却配管]
 冷却配管35は、図3及び図4に示すように、シリンダ壁(即ち、シリンダの一部を形成する、加熱器を配設した加熱ゾーン(本実施形態では図2のような加熱ゾーンZ1~Z7)の内部に、冷媒が流通する冷媒流路37を設けて構成された冷却系統である。この冷媒流路37の一端には、冷媒を供給するための第1の冷媒給排口である冷媒給排口37aを有し、他端には冷媒流路37を通過し熱交換を終えた冷媒を排出する冷媒給排口37bを有している。冷却配管35を設けることで、シリンダを冷却し、溶融樹脂の温度を所望の温度域に安定的に制御することができる。
[Cooling piping]
As shown in FIGS. 3 and 4, the cooling pipe 35 has a cylinder wall (that is, a heating zone that forms a part of the cylinder and is provided with a heater (in this embodiment, the heating zones Z1 to Z1 in FIG. 2). Z7) is a cooling system configured by providing a refrigerant flow path 37 through which the refrigerant flows, and at one end of the refrigerant flow path 37 is a first refrigerant supply / exhaust port for supplying the refrigerant. The other end has a refrigerant supply / exhaust port 37a, and the other end has a refrigerant supply / exhaust port 37b that discharges the refrigerant that has passed through the refrigerant flow path 37 and finished heat exchange. By cooling, the temperature of the molten resin can be stably controlled in a desired temperature range.
 冷媒給排口37aは、冷媒を冷媒流路に供給するため、外部の冷媒供給装置に接続されていてもよい。また、冷媒給排口37bは、排出される冷媒を貯留するタンク等に接続されていてもよい。さらには、冷媒給排口37aと冷媒給排口37bとが配管を介して互いに接続されることによって、冷媒を廃棄せずに循環利用可能なように冷却循環系が構成されていてもよい。 The refrigerant supply / exhaust port 37a may be connected to an external refrigerant supply device in order to supply the refrigerant to the refrigerant flow path. Further, the refrigerant supply / exhaust port 37b may be connected to a tank or the like that stores the discharged refrigerant. Further, the refrigerant supply / exhaust port 37a and the refrigerant supply / exhaust port 37b may be connected to each other via a pipe, so that the cooling circulation system may be configured so that the refrigerant can be used without being discarded.
 本実施形態では、図示しないが、冷媒給排口37aと冷媒給排口37bとが、循環用ポンプ、供給停止バルブ、及び冷媒を冷却する冷却装置が取り付けられた配管(不図示)で連結され、冷媒給排口37bから排出された冷媒を、冷却装置で所定の温度に調節して冷媒給排口37aに循環供給できるように構成されている。 In this embodiment, although not shown, the refrigerant supply / exhaust port 37a and the refrigerant supply / exhaust port 37b are connected by a pipe (not shown) to which a circulation pump, a supply stop valve, and a cooling device for cooling the refrigerant are attached. The refrigerant discharged from the refrigerant supply / exhaust port 37b can be circulated and supplied to the refrigerant supply / exhaust port 37a after being adjusted to a predetermined temperature by a cooling device.
 冷媒としては、一般に水やアルコール、エーテルもしくはこれらの混合物、あるいはオイル等の液媒体が用いられるが、冷却効率が高い点で、蒸発潜熱を有する作動流体(液媒体)が好ましい。このような作動流体は、蒸発潜熱により溶融樹脂と効率良く熱交換することができる。中でも、作動流体としては、高い蒸発潜熱を有し、取り扱い上の危険性及び伝熱効率の点で、水が好ましい。本実施形態は、水を冷媒として構成されている。 As the refrigerant, a liquid medium such as water, alcohol, ether or a mixture thereof, or oil is generally used, but a working fluid (liquid medium) having latent heat of vaporization is preferable in terms of high cooling efficiency. Such a working fluid can efficiently exchange heat with the molten resin by latent heat of vaporization. Among these, water is preferable as the working fluid because it has a high latent heat of vaporization and is dangerous in handling and heat transfer efficiency. In the present embodiment, water is used as a refrigerant.
 冷媒給排口37aから冷媒流路37に冷媒を供給する際、1回の供給動作に際して冷媒給排口37aに供給される冷媒の量は、0.001L(リットル;以下同様)/樹脂1kg~0.150L/樹脂1kgの範囲に調節されることが好ましい。冷媒の供給量が0.001L/樹脂1kg以上であると、冷媒流路の下流側での熱交換がより良好になり、冷媒流路の上流側と下流側との間の溶融樹脂の温度ムラを小さく維持しやすい。また、冷媒の供給量が0.150L/樹脂1kg以下であると、供給される冷媒量が多過ぎて蒸発し難くなるのが防止され、冷却効率を保って、溶融樹脂の温度ムラを小さく維持しやすい。
 冷媒の供給量としては、シリンダ内での溶融樹脂の温度の均一性をより保つ観点から、0.002L/樹脂1kg~0.100L/樹脂1kgが好ましく、より好ましくは0.003L/樹脂1kg~0.050L/樹脂1kgである。
When supplying the refrigerant from the refrigerant supply / exhaust port 37a to the refrigerant flow path 37, the amount of the refrigerant supplied to the refrigerant supply / exhaust port 37a in one supply operation is 0.001L (liter; the same applies hereinafter) / resin 1kg to It is preferably adjusted to a range of 0.150 L / kg of resin. When the supply amount of the refrigerant is 0.001 L / kg of resin or more, heat exchange on the downstream side of the refrigerant flow path becomes better, and the temperature unevenness of the molten resin between the upstream side and the downstream side of the refrigerant flow path Easy to keep small. Further, if the supply amount of the refrigerant is 0.150 L / kg of resin or less, it is prevented that the supply amount of the refrigerant is too large to evaporate, and the cooling efficiency is maintained and the temperature unevenness of the molten resin is kept small. It's easy to do.
The supply amount of the refrigerant is preferably 0.002 L / resin 1 kg to 0.100 L / resin 1 kg, more preferably 0.003 L / resin 1 kg or more, from the viewpoint of further maintaining the uniformity of the temperature of the molten resin in the cylinder. 0.050 L / kg of resin.
 冷却は、押出機から押出された後に冷却することも可能であるが、層流であり、熱交換効率が低く、局所的な冷却が発生し、品質バラツキや局所的な固化を伴なうことがある。そのため、冷却は、対流伝熱による高効率な熱交換を利用できる押出機の下流側で行なわれるのが好ましい。 Cooling can be performed after being extruded from an extruder, but it is laminar, has low heat exchange efficiency, generates local cooling, and involves quality variation and local solidification. There is. Therefore, the cooling is preferably performed on the downstream side of the extruder that can utilize high-efficiency heat exchange by convective heat transfer.
[樹脂温度検出器]
 樹脂温度検出器50は、後述するフィルタ42とギアポンプ44との間に配設されており、樹脂流通管内に測温部が配置された樹脂温度検出センサS1とサポート板54とで構成された温度検出手段である。この温度検出手段により、押出された溶融樹脂の温度を直接検出することができる。樹脂温度検出器50では、図1及び図5に示すように、溶融樹脂が流通する内径80mmの樹脂流通管52の壁材に樹脂温度検出センサS1が取り付けられており、溶融樹脂の温度を直接検出できるようになっている。樹脂温度検出センサS1は、測温部が樹脂流通管52の樹脂流通方向と直交する断面の中央を通過する樹脂と接触する位置(本実施形態では、測温部は樹脂流通管52の内壁面から40mmの位置、すなわち配管中央部に位置している)に配置されている。そのため、流通する溶融樹脂の抵抗を受けてセンサが破損するのを防ぐ観点から、溶融樹脂の抵抗に耐え得る強度を有する破損防止材としてサポート板54が取り付けられている。
 本実施形態では、このサポート板54は、流通する樹脂の樹脂圧を受けて樹脂温度検出センサS1にかかる荷重を軽減するため、樹脂温度検出センサS1の樹脂流通方向上流側に配置されている。
[Resin temperature detector]
The resin temperature detector 50 is disposed between a filter 42 and a gear pump 44, which will be described later, and a temperature constituted by a resin temperature detection sensor S1 and a support plate 54 in which a temperature measuring unit is disposed in the resin flow pipe. It is a detection means. This temperature detection means can directly detect the temperature of the extruded molten resin. In the resin temperature detector 50, as shown in FIGS. 1 and 5, the resin temperature detection sensor S1 is attached to the wall material of the resin flow pipe 52 having an inner diameter of 80 mm through which the molten resin flows, and the temperature of the molten resin is directly measured. It can be detected. The resin temperature detection sensor S1 is a position where the temperature measuring unit comes into contact with the resin passing through the center of the cross section orthogonal to the resin flow direction of the resin flow tube 52 (in this embodiment, the temperature measurement unit is the inner wall surface of the resin flow tube 52). To 40 mm, that is, at the center of the pipe). Therefore, from the viewpoint of preventing the sensor from being damaged due to the resistance of the flowing molten resin, the support plate 54 is attached as a damage preventing material having a strength capable of withstanding the resistance of the molten resin.
In the present embodiment, the support plate 54 is disposed upstream of the resin temperature detection sensor S1 in the resin flow direction in order to reduce the load applied to the resin temperature detection sensor S1 by receiving the resin pressure of the flowing resin.
 シリンダで樹脂を加熱溶融するにあたって温度を計測する場合、通常、シリンダ自体の温度を検出し、その温度を調節することが行なわれるが、シリンダにおける温度ムラの影響を受ける。そのため、本実施形態における樹脂温度検出センサS1は、シリンダの温度ではなく、樹脂温度を直接検出する。これにより、溶融樹脂のより正確な温度制御が可能になり、シリンダ内の溶融樹脂の温度変動を効果的に抑制することができる。 When the temperature is measured when the resin is heated and melted by the cylinder, usually the temperature of the cylinder itself is detected and adjusted, but it is affected by temperature unevenness in the cylinder. Therefore, the resin temperature detection sensor S1 in the present embodiment directly detects the resin temperature, not the cylinder temperature. As a result, more accurate temperature control of the molten resin becomes possible, and temperature fluctuation of the molten resin in the cylinder can be effectively suppressed.
 また、樹脂流通管を流通する溶融樹脂の温度は、装置の設置環境などの影響を受けて変動しやすいことから、溶融樹脂の温度を計測する測温部は、樹脂流通管の内壁面から管内部方向(直径方向)に10mm以上離れた位置に配置されていることが好ましい。測温部が内壁面から10mm以上離れていることで、樹脂の温度をより正確に計測することができる。測温部の設置位置は、樹脂流通管の内壁面から管内部方向に20mm以上離れていることがより好ましい。 In addition, since the temperature of the molten resin flowing through the resin distribution pipe is likely to fluctuate due to the influence of the installation environment of the device, the temperature measuring unit that measures the temperature of the molten resin is installed from the inner wall surface of the resin distribution pipe. It is preferable to be disposed at a position separated by 10 mm or more in the inner direction (diameter direction). The temperature of the resin can be measured more accurately because the temperature measuring unit is separated from the inner wall surface by 10 mm or more. As for the installation position of a temperature measuring part, it is more preferable that it is 20 mm or more away from the inner wall face of the resin distribution pipe in the pipe internal direction.
 サポート板54は、図5に示すように管断面の直径方向において、板材の一端と他端とがそれぞれ内壁面に固定されることで設けられているが、この態様に限られず、板材の一端のみを内壁面に固定して設けられていてもよい。例えば、溶融樹脂の流通のし易さの点から、図5のように板材の一端のみを内壁面に固定し、他端は固定されずに測温部と同位置とされていてもよい。また、サポート板の内部にセンサを固定した形態でもよい。 As shown in FIG. 5, the support plate 54 is provided by fixing one end and the other end of the plate material to the inner wall surface in the diameter direction of the tube cross section. May be fixed to the inner wall surface. For example, from the viewpoint of easy circulation of the molten resin, only one end of the plate material may be fixed to the inner wall surface as shown in FIG. 5, and the other end may be fixed at the same position as the temperature measuring unit without being fixed. Moreover, the form which fixed the sensor inside the support plate may be sufficient.
 破損防止材の材質としては、溶融樹脂と接触して腐食しない材料であり、熱伝導に優れる材料が好ましい。材質としては、例えば、ステンレス合金材(SUS材)、クロムモリブデン鋼等が挙げられる。
 破損防止材のサイズや厚みには、特に制限はなく、樹脂流通管の内径や、溶融樹脂の流通速度、溶融樹脂の粘度等の性状などに合わせて選択すればよい。破損防止材は、板材、柱材、棒材などであってもよい。
As a material for the breakage prevention material, a material that does not corrode upon contact with the molten resin, and a material that is excellent in heat conduction is preferable. Examples of the material include a stainless alloy material (SUS material) and chrome molybdenum steel.
The size and thickness of the breakage prevention material are not particularly limited, and may be selected according to the inner diameter of the resin flow tube, the flow rate of the molten resin, the properties of the molten resin, and the like. The damage prevention material may be a plate material, a column material, a bar material, or the like.
 サポート板54等のような破損防止材は、流通する溶融樹脂自体の抵抗を受けないように、樹脂温度検出センサの樹脂流通方向上流に配置されてもよい。また、破損防止材は、樹脂温度検出センサの上流側に限らず、逆に樹脂温度検出センサの下流側にセンサに近い位置(例えばセンサに隣接する位置)に配置されてもよく、センサ近傍にサポート板があることで溶融樹脂の抵抗を受けた際に補強板となってセンサの変形、破損が防止されるようにしてもよい。
 更に、破損防止材の内部に樹脂温度検出センサを埋設し、センサに溶融樹脂による負荷が直接かからない態様に構成されていてもよい。
The damage prevention material such as the support plate 54 may be disposed upstream of the resin temperature detection sensor in the resin distribution direction so as not to receive the resistance of the flowing molten resin itself. Further, the breakage prevention material is not limited to the upstream side of the resin temperature detection sensor, and conversely, may be disposed on the downstream side of the resin temperature detection sensor at a position close to the sensor (for example, a position adjacent to the sensor). The presence of the support plate may be a reinforcing plate when the resistance of the molten resin is received, so that deformation and breakage of the sensor may be prevented.
Further, a resin temperature detection sensor may be embedded in the breakage prevention material, and the sensor may be configured not to be directly loaded with molten resin.
 樹脂温度検出器50は、溶融樹脂の温度を連続的に又は予め定められたタイミングで検出することができる。検出値は、常時又は必要に応じて制御装置60に送られる。温度検出センサS1には、公知の熱電対などを使用することができる。 The resin temperature detector 50 can detect the temperature of the molten resin continuously or at a predetermined timing. The detected value is sent to the control device 60 at all times or as necessary. A known thermocouple or the like can be used for the temperature detection sensor S1.
[ギアポンプ]
 二軸押出機100の押出機出口14の溶融樹脂押出方向下流には、樹脂温度検出器50の上流側において、駆動歯車と被動歯車で流量調節するギアポンプ44が設けられている。両歯車が駆動されてもよい。押出機100とポリエステル製膜機である成形ダイ40との間にギアポンプ44を設けることで、押出量の変動が減少し、成形ダイ40に一定量の樹脂が供給されることになり、厚み精度が向上する。特に、二軸スクリュ押出機を用いる場合には、押出機自身の昇圧能力が低いため、ギアポンプ44による押出安定化が図られている態様が好ましい。
[Gear pump]
A gear pump 44 that adjusts the flow rate with a driving gear and a driven gear is provided on the upstream side of the resin temperature detector 50 downstream of the extruder outlet 14 of the twin screw extruder 100 in the molten resin extrusion direction. Both gears may be driven. By providing the gear pump 44 between the extruder 100 and the molding die 40, which is a polyester film forming machine, fluctuations in the extrusion amount are reduced, and a certain amount of resin is supplied to the molding die 40. Will improve. In particular, when a twin screw extruder is used, an aspect in which extrusion stabilization by the gear pump 44 is achieved is preferable because the pressurization capability of the extruder itself is low.
 ギアポンプ44を用いることで、ギアポンプ44の吐出側の圧力変動(出圧変動)を吸入側の圧力変動(入圧変動)の1/5以下にすることが可能であり、樹脂圧力変動幅を±1%以内に軽減することができる。その他のメリットとして、スクリュ先端部の圧力を上げることなくフィルタによる濾過が可能なため、樹脂温度の上昇の防止、輸送効率の向上、及び押出機内での滞留時間の短縮が期待できる。また、フィルタの濾圧上昇が原因でスクリュから供給される樹脂量が経時変動することも防止できる。但し、ギアポンプ44を設置すると、設備の選定方法によっては設備が大きくなり樹脂の滞留時間が長くなること、及びギアポンプ部のせん断応力によって樹脂の分子鎖の切断を引き起こすことがあり、ギアポンプの設置でポリエステルの耐加水分解性等の性能が損なわれないことが重要である。 By using the gear pump 44, it is possible to reduce the pressure fluctuation (output pressure fluctuation) on the discharge side of the gear pump 44 to 1/5 or less of the pressure fluctuation (input pressure fluctuation) on the suction side, and the resin pressure fluctuation width is ± It can be reduced within 1%. As other merits, it is possible to perform filtration with a filter without increasing the pressure at the tip of the screw. Therefore, it is possible to prevent the resin temperature from increasing, improve the transportation efficiency, and shorten the residence time in the extruder. It is also possible to prevent the amount of resin supplied from the screw from fluctuating over time due to an increase in the filtration pressure of the filter. However, when the gear pump 44 is installed, depending on the method of selecting the equipment, the equipment becomes larger and the residence time of the resin becomes longer, and the shearing stress of the gear pump part may cause the molecular chain of the resin to be broken. It is important that the performance of the polyester, such as hydrolysis resistance, is not impaired.
 ギアポンプ44は、吐出側圧力(入圧)と吸入側圧力(出圧)との差(差圧)が大きくなり過ぎると、ギアポンプ44の負荷が大きくなり剪断発熱が大きくなる。そのため、運転時の差圧は、20MPa以内、好ましくは15MPa、更に好ましくは10MPa以内とすることが好ましい。また、フィルム厚みの均一化の観点から、ギアポンプ44の一次圧力を一定にするために、押出機のスクリュ回転を制御したり、圧力調節弁を用いることが有効である。 In the gear pump 44, if the difference (differential pressure) between the discharge side pressure (input pressure) and the suction side pressure (output pressure) becomes too large, the load on the gear pump 44 increases and shear heat generation increases. Therefore, the differential pressure during operation is preferably 20 MPa or less, preferably 15 MPa, and more preferably 10 MPa or less. From the viewpoint of uniform film thickness, it is effective to control the screw rotation of the extruder or to use a pressure control valve in order to keep the primary pressure of the gear pump 44 constant.
[成形ダイ及びフィルタ]
 樹脂温度検出器50の溶融樹脂押出方向下流には、ポリエステルフィルム等のフィルムに製膜するフィルム製膜機として、押出機出口14から押出された溶融樹脂を膜状に(例えば帯状の膜として)吐出する成形ダイ40と、吐出された膜を冷却して固化するための図示しない冷却ロール(例えばキャスティングドラム等)とが設けられている。シリンダ10の押出機出口14から押し出された溶融樹脂は、成形ダイ40からシート状にして冷却ロールに送られ、冷却されることで固化し、シートに製膜される。このようにして、未延伸のポリエステルシートが得られる。
[Molding die and filter]
Downstream of the resin temperature detector 50 in the direction of extrusion of the molten resin, as a film-forming machine for forming a film such as a polyester film, the molten resin extruded from the extruder outlet 14 is formed into a film (for example, as a band-shaped film). A discharging die 40 and a cooling roll (not shown) (for example, a casting drum) for cooling and solidifying the discharged film are provided. The molten resin extruded from the extruder outlet 14 of the cylinder 10 is made into a sheet form from the forming die 40 and sent to a cooling roll, solidified by cooling, and formed into a sheet. In this way, an unstretched polyester sheet is obtained.
 また、シリンダ10の押出機出口14と成形ダイ40との間には、製膜に用いられるポリエステル樹脂中に未溶融樹脂や異物が混入することを防ぐためのフィルタ42が設けられている。フィルタには、金属繊維フィルタなどが使用可能である。
 フィルタ孔径は、1μm~100μmの範囲で適宜選択することができる。
In addition, a filter 42 is provided between the extruder outlet 14 of the cylinder 10 and the molding die 40 to prevent unmelted resin and foreign matters from being mixed into the polyester resin used for film formation. A metal fiber filter or the like can be used as the filter.
The filter pore diameter can be appropriately selected within the range of 1 μm to 100 μm.
 成形ダイ40からメルト(溶融樹脂)を押出した後、例えば冷却ロールに接触させるまでの間(エアギャップ)は、湿度を5%RH~60%RHに調整することが好ましく、15%RH~50%RHに調整することがより好ましい。エアギャップでの湿度を上記範囲にすることで、フィルム表面のCOOH量やOH量を調節することが可能である。また、低湿度に調節することで、フィルム表面のカルボン酸量を減少させることができる。 It is preferable to adjust the humidity to 5% RH to 60% RH after the melt (molten resin) is extruded from the molding die 40 until it contacts the cooling roll (air gap), for example, 15% RH to 50%. It is more preferable to adjust to% RH. By adjusting the humidity in the air gap to the above range, it is possible to adjust the COOH amount and OH amount on the film surface. Moreover, the amount of carboxylic acid on the film surface can be reduced by adjusting to low humidity.
 また、樹脂温度を一度上げてから冷却することで、末端COOH量の増加を抑制すると共に、未溶融異物の発生を抑制することができる。更に、シート状に製膜したポリエステル樹脂のヘイズ上昇を抑制する効果が得られる。特に、厚手のシートに製膜をする場合は、冷却速度の不足よりヘイズ上昇しやすいが、その場合の上昇が抑えられる。 Also, by increasing the resin temperature once and then cooling, it is possible to suppress the increase in the amount of terminal COOH and to suppress the occurrence of unmelted foreign matter. Furthermore, the effect which suppresses the haze rise of the polyester resin formed into a sheet form is acquired. In particular, when a film is formed on a thick sheet, the haze is likely to increase due to insufficient cooling rate, but the increase in that case can be suppressed.
[制御装置]
 制御装置60は、主として二軸押出装置100Aの制御を担う樹脂温度制御手段であり、二軸押出機100、温度検出センサS1~S2、及び冷却循環系を構成する循環用ポンプや供給停止バルブ、冷却装置などと電気的に接続されており、温度検出センサS1,S2からの検出値に応じて、二軸押出機への冷媒の供給を制御して樹脂温度を適切にコントロールできるように構成されている。
[Control device]
The control device 60 is a resin temperature control means mainly responsible for the control of the twin-screw extruder 100A. The twin-screw extruder 100, temperature detection sensors S1 to S2, and a circulation pump and a supply stop valve constituting a cooling circulation system, It is electrically connected to a cooling device or the like, and is configured so that the resin temperature can be appropriately controlled by controlling the supply of refrigerant to the twin-screw extruder according to the detection values from the temperature detection sensors S1 and S2. ing.
 次に、本実施形態の二軸押出装置100Aを制御する樹脂温度制御手段である制御装置60による制御ルーチンのうち、冷却配管の冷媒給排口37a(第1の冷媒給排口)へ冷媒である水を断続的に供給する断続注水制御ルーチンを中心に図6を参照して説明する。 Next, in the control routine by the control device 60 which is a resin temperature control means for controlling the biaxial extrusion device 100A of the present embodiment, the refrigerant is supplied to the refrigerant supply / exhaust port 37a (first refrigerant supply / exhaust port) of the cooling pipe. The intermittent water injection control routine for intermittently supplying certain water will be described with reference to FIG.
 本実施形態のフィルム製造装置の起動スイッチのオンにより制御装置60の電源がオンされると、二軸押出装置100Aの制御システムが起動され、断続注水制御ルーチンが実行される。なお、システムの起動は、自動で行なう以外に手動で行なうようにしてもよい。 When the power of the control device 60 is turned on by turning on the start switch of the film manufacturing apparatus of the present embodiment, the control system of the biaxial extrusion device 100A is started, and the intermittent water injection control routine is executed. The system may be started manually instead of automatically.
 本ルーチンが実行されると、まず樹脂温度が高くなって制御する必要があるか否かを判断するため、ステップ100において、温度検出センサS1により溶融樹脂の温度を検出する。次に、ステップ120において、検出した樹脂温度が、あらかじめ設定しておいた溶融樹脂の設定温度tの値を超えており、検出した樹脂温度から設定温度tを減算した温度差Δtが閾値温度T未満であるか否かが判定される。 When this routine is executed, first, in step 100, the temperature of the molten resin is detected by the temperature detection sensor S1 in order to determine whether or not the resin temperature needs to be controlled. Next, in step 120, the detected resin temperature exceeds the preset set temperature t of the molten resin, and the temperature difference Δt obtained by subtracting the set temperature t from the detected resin temperature is the threshold temperature T. Whether it is less than or not is determined.
 ステップ120において、温度差Δtが閾値温度T以上であると判定されたときには、樹脂温度が高すぎて末端カルボキシル基量が増え、製膜される樹脂の耐加水分解性が低くなるおそれがあるため、ステップ140に移行し、設定温度に対する樹脂温度の検出値の偏差に応じ、PID制御により水量(冷媒)の出力を決定する。ステップ120において、温度差Δtが閾値温度T未満であると判定されたときには、樹脂温度が上がり過ぎておらず末端カルボキシル基量が著しく増えるおそれが小さいため、ステップ220に移行する。 If it is determined in step 120 that the temperature difference Δt is equal to or higher than the threshold temperature T, the resin temperature is too high, and the amount of terminal carboxyl groups increases, which may reduce the hydrolysis resistance of the resin to be formed. Then, the process proceeds to step 140, and the output of the water amount (refrigerant) is determined by PID control according to the deviation of the detected value of the resin temperature with respect to the set temperature. When it is determined in step 120 that the temperature difference Δt is less than the threshold temperature T, the process proceeds to step 220 because the resin temperature is not excessively increased and the amount of terminal carboxyl groups is unlikely to increase significantly.
 次のステップ160では、冷媒給排口37aへの冷媒の供給を開始する。このとき、冷媒である水の供給は、好ましくは供給量を0.001L/樹脂1kg~0.150L/樹脂1kgの範囲に調節しながら行なわれる。供給量をこの範囲にすることで、良好な冷却効率が得られ、溶融樹脂の温度ムラが効果的に軽減される。
 本実施形態では、冷却循環系に設けられた供給停止バルブを開き、循環用ポンプを駆動することにより、冷媒の供給が開始される。
In the next step 160, supply of the refrigerant to the refrigerant supply / exhaust port 37a is started. At this time, the supply of water as the refrigerant is preferably performed while adjusting the supply amount in the range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg. By setting the supply amount within this range, good cooling efficiency can be obtained, and temperature unevenness of the molten resin can be effectively reduced.
In the present embodiment, the supply of the refrigerant is started by opening a supply stop valve provided in the cooling circulation system and driving the circulation pump.
 このとき、冷媒は、下記の周期で断続的に供給されることが好ましい。すなわち、冷媒の第1の冷媒給排口への供給を、10秒以上120秒以下の周期で、供給時間(秒/回)を上記の周期の0%超40%以下の範囲に調節して好適に行なわれる。供給時間(秒/回)が上記した周期(10秒以上120秒以下)の0%超であることで、樹脂温度と樹脂設定温度との温度差を小さく維持することができる。また、供給時間(秒/回)が上記した周期(10秒以上120秒以下)の40%以下であることで、樹脂温度と樹脂設定温度との温度差を小さく維持することができる。
 中でも、供給時間(秒/回)は、上記した周期の0.3%以上30%以下の範囲に調節されることが好ましい。
 冷媒を上記の周期で断続的に供給する点については、後述する第2実施形態~第4実施形態においても同様である。
At this time, it is preferable that the refrigerant is intermittently supplied at the following cycle. That is, the supply of the refrigerant to the first refrigerant supply / exhaust port is adjusted in a cycle of 10 seconds to 120 seconds and the supply time (seconds / time) is adjusted to a range of more than 0% and 40% or less of the above cycle. It is preferably performed. When the supply time (second / time) is more than 0% of the above-described cycle (10 seconds to 120 seconds), the temperature difference between the resin temperature and the resin set temperature can be kept small. Further, when the supply time (second / time) is 40% or less of the above-described cycle (10 seconds to 120 seconds), the temperature difference between the resin temperature and the resin set temperature can be kept small.
Especially, it is preferable that supply time (second / time) is adjusted to the range of 0.3% or more and 30% or less of the above-mentioned period.
The point that the refrigerant is intermittently supplied in the above-described cycle is the same in the second to fourth embodiments described later.
 上記の溶融樹脂の温度ムラを抑える観点から、樹脂温度と樹脂設定温度との温度差としては、1℃以下とするのが好ましく、0.5℃以下とするのがより好ましい。温度差が1℃以下であると、溶融樹脂の温度ムラを低く低減することができる。
 樹脂温度と樹脂設定温度との温度差については、後述する第2実施形態~第4実施形態においても同様である。
From the viewpoint of suppressing the temperature unevenness of the molten resin, the temperature difference between the resin temperature and the resin set temperature is preferably 1 ° C. or less, and more preferably 0.5 ° C. or less. When the temperature difference is 1 ° C. or less, the temperature unevenness of the molten resin can be reduced.
The temperature difference between the resin temperature and the resin set temperature is the same in the second to fourth embodiments described later.
 続いて、ステップ180において、冷媒を供給する周期と冷却に必要な出力と制御定数とから供給時間が算出され、冷媒の供給時間が経過したか否かが判定される。ステップ180において、冷媒の供給時間が経過したと判定されたときには、冷却に必要な出力に見合う冷媒の供給が完了したため、次のステップ200において、冷媒給排口37aへの冷媒の供給を停止する。本実施形態では、冷却循環系に設けられた供給停止バルブを閉じ、冷媒の供給が停止される。このとき、冷媒の流路が図示しないシリンダを経由しないバイパスに切り替えられることで、循環用ポンプは駆動状態が維持されている。
 なお、ステップ180において、冷媒の供給時間が未だ経過していないと判定されたときには、予め定められた供給時間が経過するまでそのまま冷媒の供給を継続する。
Subsequently, in step 180, the supply time is calculated from the cycle of supplying the refrigerant, the output required for cooling, and the control constant, and it is determined whether or not the supply time of the refrigerant has passed. When it is determined in step 180 that the refrigerant supply time has elapsed, the supply of the refrigerant commensurate with the output required for cooling is completed, and in the next step 200, the supply of the refrigerant to the refrigerant supply / discharge port 37a is stopped. . In this embodiment, the supply stop valve provided in the cooling circulation system is closed, and the supply of the refrigerant is stopped. At this time, the flow path of the refrigerant is switched to a bypass that does not pass through a cylinder (not shown), so that the circulating pump is maintained in a driving state.
When it is determined in step 180 that the supply time of the refrigerant has not yet elapsed, the supply of the refrigerant is continued as it is until a predetermined supply time has elapsed.
 その後、ステップ220において、二軸押出装置の運転停止要求の有無が判定され、運転停止要求がされていないと判定されたときには、溶融混練されている溶融樹脂の温度を継続的に安定的に保つ必要があるため、ステップ240に移行する。一方、ステップ220において、運転停止要求がされていると判定されたときには、樹脂温度を継続的に制御する必要がないため、そのまま本ルーチンを終了する。 Thereafter, in step 220, it is determined whether or not there is a request for stopping the operation of the twin-screw extruder, and when it is determined that a request for stopping the operation is not made, the temperature of the melted and kneaded molten resin is continuously maintained stably. Since it is necessary, the process proceeds to step 240. On the other hand, if it is determined in step 220 that the operation stop request has been made, it is not necessary to continuously control the resin temperature, and thus this routine is terminated.
 ステップ240では、ステップ160での供給開始から次の供給開始までの時間、すなわち冷媒の供給周期が、あらかじめ定めた周期Sに達しているか否かが判定される。ステップ240において、予め定められた周期Sに達したと判定されたときは、予め定められた周期での断続的な冷媒供給を行なうため、再びステップ100に戻って上記と同様の制御が継続される。ここで、予め定められた周期Sに達していないと判定されたときには、予め定められた周期での断続供給が行なえないため、予め定められた周期Sまで待機し、周期Sに達した時点で再びステップ100に戻って上記と同様の制御を継続する。 In Step 240, it is determined whether or not the time from the start of supply in Step 160 to the start of the next supply, that is, the refrigerant supply cycle has reached a predetermined cycle S. If it is determined in step 240 that the predetermined period S has been reached, the refrigerant is intermittently supplied in the predetermined period, so that the process returns to step 100 and the same control as described above is continued. The Here, when it is determined that the predetermined cycle S has not been reached, since intermittent supply in a predetermined cycle cannot be performed, the system waits until the predetermined cycle S, and when the cycle S is reached. Returning to step 100 again, the same control as above is continued.
 シリンダ中の溶融樹脂の温度は、一般に、押出機に設けられた温度調節器30の冷却ゾーンによりコントロールすることが可能であるが、特に外形φ100mm以上の大型の押出機では、シリンダを水冷しようとすると、シリンダの周方向の温度ムラや水量周期の変動が発生しやすい。また、シリンダ10に取り付けられた温度制御用の温度検出センサS2の検出値を一定に制御できたとしても、スケールの発生や水温変化等の要因によりシリンダの冷却効率に変化を来たし、溶融樹脂の温度が必然的に変化してしまう課題がある。このような樹脂温度の変動は、最終的に製造されたフィルム成形品の品質変動(白濁(ヘイズの低下)や耐候性の低下)を招来するため、通常はこれら変動に安全率を見込んだ品質規格及び工程条件を決定したり、その都度ロスを生じながら調整することになる。そのため、安全率を考慮すると、設備本来の能力を最大限に発揮させることは困難となる。
 上記のような観点から、製品品質の向上及び均一化のためのシリンダ冷却の安定化技術が求められていた。かかる事情に鑑み、本発明においては、
 上記の通り、溶融樹脂流通方向における、シリンダの押出口下流側で、かつ溶融樹脂を成形するフィルム製膜装置上流側に配置された温度検出手段である温度検出センサS1により、押出口から押し出された溶融樹脂の温度を検出し、検出された樹脂温度と樹脂設定温度との温度差(Δt)を基準に、Δtが予め定められた閾値を越えている場合に、冷媒の供給量を(好ましくは0.001L/樹脂1kg~0.150L/樹脂1kgの範囲で)調節することで冷媒給排口37aへ供給(つまり冷却系統へ供給)することにより、Δtを予め定められた閾値以下に制御する。
 これにより、従来の二軸押出機に比べ、溶融押出される樹脂の温度が安定的に保たれ、低ヘイズで耐候性に優れた樹脂が得られる。
In general, the temperature of the molten resin in the cylinder can be controlled by a cooling zone of the temperature controller 30 provided in the extruder. However, particularly in a large extruder having an outer diameter of 100 mm or more, the cylinder is intended to be cooled with water. Then, temperature unevenness in the circumferential direction of the cylinder and fluctuations in the water amount cycle are likely to occur. Further, even if the detection value of the temperature detection sensor S2 for temperature control attached to the cylinder 10 can be controlled to be constant, the cooling efficiency of the cylinder has changed due to factors such as generation of scale and water temperature change. There is a problem that the temperature inevitably changes. Such fluctuations in the resin temperature lead to fluctuations in the quality of the final molded film products (white turbidity (decrease in haze) and deterioration in weather resistance). Standards and process conditions are determined, and adjustments are made while causing loss each time. Therefore, considering the safety factor, it is difficult to maximize the original capacity of the facility.
In view of the above, there has been a demand for a technology for stabilizing cylinder cooling for improving and homogenizing product quality. In view of such circumstances, in the present invention,
As described above, it is extruded from the extrusion port by the temperature detection sensor S1, which is a temperature detection means disposed on the downstream side of the extrusion port of the cylinder in the molten resin flow direction and on the upstream side of the film forming apparatus for molding the molten resin. When the temperature of the molten resin is detected and Δt exceeds a predetermined threshold value based on the temperature difference (Δt) between the detected resin temperature and the resin set temperature, the refrigerant supply amount (preferably Is controlled within the range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg), and is supplied to the refrigerant supply / exhaust port 37a (that is, supplied to the cooling system), thereby controlling Δt below a predetermined threshold value. To do.
Thereby, compared with the conventional twin-screw extruder, the temperature of the resin to be melt-extruded can be stably maintained, and a resin having low haze and excellent weather resistance can be obtained.
 本発明においては、本実施形態で示されるように、回転可能に配された外径φ100mm以上の2つのスクリュを備えたシリンダ内で溶融される樹脂の温度を制御しながら、熱可塑性樹脂を溶融する工程と、溶融された熱可塑性樹脂を成形ダイより膜状に押出す工程と、押出された熱可塑性樹脂を冷却ロール上で固化する工程と、を設け、さらに溶融する工程において、シリンダの押出口から押し出された溶融樹脂の温度を、膜状に押出す工程の前に検出し、検出された溶融樹脂の温度と樹脂設定温度との温度差を、シリンダ壁に配設された冷却系統に供給される冷媒の供給量(好ましくは0.001L/樹脂1kg~0.150L/樹脂1kgの範囲で)を調節することにより、予め定められた閾値以下に制御することにより、フィルムを製造する。この方法(本発明に係るフィルム製造方法)により、従来の二軸押出機に比べ、溶融押出される樹脂の温度が安定的に保たれ、低ヘイズで耐候性に優れた樹脂が得られる。 In the present invention, as shown in the present embodiment, the thermoplastic resin is melted while controlling the temperature of the resin melted in a cylinder having two screws having an outer diameter of φ100 mm or more arranged rotatably. And a step of extruding the molten thermoplastic resin from the forming die into a film shape, and a step of solidifying the extruded thermoplastic resin on a cooling roll. The temperature of the molten resin extruded from the outlet is detected before the step of extruding into a film, and the temperature difference between the detected temperature of the molten resin and the set temperature of the resin is detected in a cooling system disposed on the cylinder wall. By adjusting the supply amount of the supplied refrigerant (preferably in the range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg), the film is controlled to be equal to or less than a predetermined threshold value. Manufacturing. By this method (film manufacturing method according to the present invention), the temperature of the resin to be melt-extruded can be stably maintained as compared with a conventional twin-screw extruder, and a resin having low haze and excellent weather resistance can be obtained.
 上記のように、熱可塑性樹脂を溶融する工程においては、温度調節器30によりシリンダ10を加熱、冷却することで温調しながら、スクリュ20A,20Bを回転し、原料供給口12から原料樹脂を供給する。シリンダ内に供給された原料樹脂は、温度調節器30による加熱のほか、スクリュ20A,20Bの回転に伴なう樹脂同士の摩擦、及び樹脂とスクリュ20A,20Bやシリンダ10との間の摩擦などによる発熱によって溶融されると共に、スクリュの回転に伴なって押出機出口14に向けて徐々に移動する。このとき、シリンダ内に配設されたニーディングディスク24A,24Bにより原料樹脂の溶融、混練が促進される。すなわち、加熱ゾーンZ1~Z7のうち、ゾーンZ1で加熱が開始され、ニーディングディスク24A,24Bが配設された加熱ゾーンZ4,Z6は樹脂混練を担う混練部として、加熱ゾーンZ2~Z3,Z5,Z7は主に樹脂を溶融搬送する搬送部として機能する。
 このとき、温度検出センサS1,S2の検出温度に応じて、上記したように冷却配管に注水する量と注水タイミングを制御しながら、溶融樹脂自体を安定的に温調する。これにより、樹脂自体の温度の安定化が図れ、低温溶融しても低ヘイズを保ち、優れた耐候性を有する樹脂が安定的に提供される。
As described above, in the step of melting the thermoplastic resin, the temperature controller 30 heats and cools the cylinder 10 while controlling the temperature, and the screws 20A and 20B are rotated so that the raw material resin is supplied from the raw material supply port 12. Supply. The raw material resin supplied into the cylinder is heated by the temperature controller 30, friction between the resins accompanying rotation of the screws 20A and 20B, friction between the resin and the screws 20A and 20B and the cylinder 10, and the like. And is gradually moved toward the extruder outlet 14 as the screw rotates. At this time, melting and kneading of the raw material resin are promoted by the kneading disks 24A and 24B disposed in the cylinder. That is, of the heating zones Z1 to Z7, heating is started in the zone Z1, and the heating zones Z4 and Z6 in which the kneading disks 24A and 24B are disposed are heating zones Z2 to Z3 and Z5 as kneading sections for resin kneading. , Z7 mainly function as a transport unit for melting and transporting the resin.
At this time, the temperature of the molten resin itself is stably controlled while controlling the amount and timing of water injection to the cooling pipe as described above in accordance with the temperature detected by the temperature detection sensors S1 and S2. As a result, the temperature of the resin itself can be stabilized, a low haze can be maintained even when melted at a low temperature, and a resin having excellent weather resistance is stably provided.
 シリンダ内に供給された原料樹脂は、融点Tm(℃)以上の温度に加熱されるが、樹脂温度が低過ぎると溶融押出時の溶融が不足し、成形ダイ40からの吐出が困難になるおそれがある。逆に樹脂温度が高過ぎると、熱分解によって末端COOHが著しく増加し、耐加水分解性の低下を招くおそれがある。これらの観点から、温度調節器30による加熱温度、スクリュ20A,20Bの回転数を調整すると共に、冷却配管による冷却制御を調整する。
 このとき、二軸押出機内の長手方向(樹脂押出方向)における最大樹脂温度(Tmax;[℃])は、(Tm+40)℃~(Tm+60)℃であることが好ましく、(Tm+40)℃~(Tm+55)℃であることがより好ましく、(Tm+45)℃~(Tm+50)℃であることがさらに好ましい。
The raw material resin supplied into the cylinder is heated to a temperature equal to or higher than the melting point Tm (° C.). However, if the resin temperature is too low, melting during melt extrusion may be insufficient and ejection from the molding die 40 may be difficult. There is. On the other hand, if the resin temperature is too high, the terminal COOH is remarkably increased by thermal decomposition, which may lead to a decrease in hydrolysis resistance. From these viewpoints, the heating temperature by the temperature controller 30 and the rotation speed of the screws 20A and 20B are adjusted, and the cooling control by the cooling pipe is adjusted.
At this time, the maximum resin temperature (T max ; [° C.]) in the longitudinal direction (resin extrusion direction) in the twin screw extruder is preferably (Tm + 40) ° C. to (Tm + 60) ° C., and (Tm + 40) ° C. to ( Tm + 55) ° C. is more preferable, and (Tm + 45) ° C. to (Tm + 50) ° C. is further preferable.
 フィルムの製造には、原料樹脂として熱可塑性樹脂が用いられ、シリンダ内で溶融される。熱可塑性樹脂の例としては、ポリエステル、ポリオレフィン、ポリアミド、ポリウレタンなどが含まれる。本発明においては、低ヘイズで耐候性に優れた樹脂が得られるという効果がより効果的に奏される点で、ポリエステルが好ましい。
 ポリエステルには、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)が含まれ、好ましくはPETである。
In the production of the film, a thermoplastic resin is used as a raw material resin and is melted in a cylinder. Examples of the thermoplastic resin include polyester, polyolefin, polyamide, polyurethane and the like. In the present invention, polyester is preferred in that the effect of obtaining a resin having low haze and excellent weather resistance is more effectively exhibited.
Polyester includes polyethylene terephthalate (PET) and polyethylene-2,6-naphthalate (PEN), preferably PET.
 原料樹脂は、フィルムの原料となり、樹脂を含む材料であれば特に制限されず、ポリエステル等の樹脂のほか、無機粒子や有機粒子のスラリーを含んでもよい。
 ポリエステルとしては、ジカルボン酸成分と、ジオール成分と、を用いて合成されたものでもよいし、市販のポリエステルでもよい。
The raw material resin is not particularly limited as long as it is a raw material of the film and contains a resin, and may contain a slurry of inorganic particles or organic particles in addition to a resin such as polyester.
As polyester, what was synthesize | combined using the dicarboxylic acid component and the diol component may be sufficient, and commercially available polyester may be sufficient.
 ポリエステルを合成する場合は、例えば、(A)ジカルボン酸成分と、(B)ジオール成分と、を周知の方法により、エステル化反応及び/又はエステル交換反応させることによって得ることができる。
 (A)ジカルボン酸成分としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、デカリンジカルボン酸、などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等の芳香族ジカルボン酸などのジカルボン酸もしくはそのエステル誘導体が挙げられる。
 (B)ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンゼンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレン、などの芳香族ジオール類等のジオール化合物が挙げられる。
When the polyester is synthesized, for example, it can be obtained by subjecting (A) a dicarboxylic acid component and (B) a diol component to an esterification reaction and / or a transesterification reaction by a known method.
(A) Examples of the dicarboxylic acid component include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid Aliphatic dicarboxylic acids such as ethylmalonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexanedicarboxylic acid, decalin dicarboxylic acid, and the like, terephthalic acid, isophthalic acid, phthalic acid, 1,4- Naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 4,4′-diphenyl dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sodium sulfo Isophthalic acid, phenyli Boy carboxylic acid, anthracene dicarboxylic acid, phenanthrene carboxylic acid, 9,9'-bis (4-carboxyphenyl) a dicarboxylic acid or its ester derivatives such as aromatic dicarboxylic acids such as fluorene acid.
(B) Examples of the diol component include fats such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol. Diols, cycloaliphatic dimethanol, spiroglycol, isosorbide and other alicyclic diols, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl) ) Diol compounds such as aromatic diols such as fluorene.
 (A)ジカルボン酸成分として、芳香族ジカルボン酸の少なくとも1種が用いられる場合が好ましい。より好ましくは、ジカルボン酸成分のうち、芳香族ジカルボン酸を主成分として含有する。芳香族ジカルボン酸以外のジカルボン酸成分を含んでもよい。このようなジカルボン酸成分としては、芳香族ジカルボン酸などのエステル誘導体等である。なお、「主成分」とは、ジカルボン酸成分に占める芳香族ジカルボン酸の割合が80質量%以上であることをいう。
 また、(B)ジオール成分として、脂肪族ジオールの少なくとも1種が用いられる場合が好ましい。脂肪族ジオールとして、エチレングリコールを含むことができ、好ましくはエチレングリコールを主成分として含有する。なお、主成分とは、ジオール成分に占めるエチレングリコールの割合が80質量%以上であることをいう。
(A) As a dicarboxylic acid component, the case where at least 1 sort of aromatic dicarboxylic acid is used is preferable. More preferably, the dicarboxylic acid component contains an aromatic dicarboxylic acid as a main component. A dicarboxylic acid component other than the aromatic dicarboxylic acid may be included. Examples of such a dicarboxylic acid component include ester derivatives such as aromatic dicarboxylic acids. The “main component” means that the proportion of aromatic dicarboxylic acid in the dicarboxylic acid component is 80% by mass or more.
Moreover, it is preferable that at least one aliphatic diol is used as the (B) diol component. The aliphatic diol can contain ethylene glycol, and preferably contains ethylene glycol as a main component. The main component means that the proportion of ethylene glycol in the diol component is 80% by mass or more.
 ジオール成分(例えばエチレングリコール)の使用量は、ジカルボン酸成分(特に芳香族ジカルボン酸(例えばテレフタル酸))及び必要に応じそのエステル誘導体の1モルに対して、1.015~1.50モルの範囲であるのが好ましい。 The amount of the diol component (for example, ethylene glycol) is 1.015 to 1.50 mol per 1 mol of the dicarboxylic acid component (especially aromatic dicarboxylic acid (for example, terephthalic acid)) and, if necessary, its ester derivative. A range is preferred.
 エステル化反応及び/又はエステル交換反応には、従来から公知の反応触媒を用いることができる。反応触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、リン化合物などを挙げることができる。通常、ポリエステルの製造方法が完結する以前の任意の段階において、重合触媒としてアンチモン化合物、ゲルマニウム化合物、チタン化合物を添加することが好ましい。このような方法としては、例えば、ゲルマニウム化合物を例にとると、ゲルマニウム化合物粉体をそのまま添加することが好ましい。 A conventionally known reaction catalyst can be used for the esterification reaction and / or transesterification reaction. Examples of the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds. Usually, it is preferable to add an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed. As such a method, for example, when a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
 二軸押出機内の長手方向(樹脂押出方向)における最大樹脂温度Tmaxは、二軸押出機100のスクリュ20A,20Bが配設されたシリンダ10内で加熱されている原料樹脂の温度であり、剪断発熱があるときはその発熱による局所的高温部を含む温度である。Tmaxは、シリンダ内の樹脂温度の測定により得られる。Tmaxは、末端COOHの増加を抑える観点から、300℃以下が好ましく、290℃以下がより好ましい。また、Tmaxの下限温度は、樹脂の溶融不足の防止、すなわちヘイズ(白濁)の観点から、270℃が望ましい。 The maximum resin temperature Tmax in the longitudinal direction (resin extrusion direction) in the twin screw extruder is the temperature of the raw material resin heated in the cylinder 10 in which the screws 20A and 20B of the twin screw extruder 100 are disposed. When there is shearing heat generation, it is a temperature including a local high temperature portion due to the heat generation. T max is obtained by measuring the resin temperature in the cylinder. T max is preferably 300 ° C. or lower, more preferably 290 ° C. or lower, from the viewpoint of suppressing increase in terminal COOH. Further, the lower limit temperature of Tmax is preferably 270 ° C. from the viewpoint of prevention of insufficient melting of the resin, that is, haze (white turbidity).
 また、ベント16A,16Bを通じて真空引きをすることで、シリンダ内の樹脂中の水分等の揮発成分を効率的に除去することができる。ベント圧力が低過ぎると溶融樹脂がシリンダ10の外に溢れ出るおそれがあり、ベント圧力が高過ぎると揮発成分の除去が不十分となり、得られたフィルムの加水分解が生じ易くなるおそれがある。溶融樹脂がベント16A,16Bから溢れ出ることを防ぐとともに揮発成分を選択的に除去する観点から、ベント圧力は1.3Pa~6.67×10Paが好ましく、1.3Pa~5.33×10Paがより好ましい。 Further, by evacuating through the vents 16A and 16B, volatile components such as moisture in the resin in the cylinder can be efficiently removed. If the vent pressure is too low, the molten resin may overflow from the cylinder 10, and if the vent pressure is too high, removal of volatile components may be insufficient, and hydrolysis of the resulting film may easily occur. From the viewpoints of preventing the molten resin from overflowing from the vents 16A and 16B and selectively removing volatile components, the vent pressure is preferably 1.3 Pa to 6.67 × 10 2 Pa, and 1.3 Pa to 5.33 ×. 10 2 Pa is more preferable.
 シリンダ内で原料樹脂を加熱溶融し、押出機出口14を出た後、成形ダイ40からシート状に押出されるまでの平均滞留時間を5分~20分とすることが好ましい。原料樹脂を加熱溶融して、押出機100の押出機出口14を出てから成形ダイ40から押出されるまでの平均滞留時間が5分以上であると、未溶融樹脂の残留が少なく抑えられる。また、平均滞留時間が20分以下であると、熱分解による末端COOH量の増加を防ぐことができ、より優れた耐加水分解性が得られる。このような観点から、原料樹脂を加熱溶融して押出機出口14から押出された後の平均滞留時間は、5分~15分がより好ましい。
 なお、平均滞留時間は下記の式で定義される。
 平均滞留時間(秒)={押出機下流配管容積[cm]×溶融体密度[g/cm]×3600/1000}/押出量[kg/h]
It is preferable that the average residence time from when the raw material resin is heated and melted in the cylinder to exit the extruder outlet 14 to be extruded from the forming die 40 into a sheet is 5 to 20 minutes. When the average residence time from when the raw material resin is heated and melted and after exiting the extruder outlet 14 of the extruder 100 until it is extruded from the molding die 40 is 5 minutes or longer, residual unmelted resin can be reduced. Further, when the average residence time is 20 minutes or less, an increase in the amount of terminal COOH due to thermal decomposition can be prevented, and more excellent hydrolysis resistance can be obtained. From such a viewpoint, the average residence time after the raw material resin is heated and melted and extruded from the extruder outlet 14 is more preferably 5 minutes to 15 minutes.
The average residence time is defined by the following formula.
Average residence time (seconds) = {Pipe volume on the downstream side of the extruder [cm 3 ] × Melt density [g / cm 3 ] × 3600/1000} / Extrusion amount [kg / h]
 シートの厚みは、2mm~8mmが好ましく、より好ましくは2.5mm~7mmであり、さらに好ましくは3mm~6mmである。厚みを厚くすることで、押出されたメルトがガラス転移温度(Tg)以下に冷却するまでの所要時間を長くすることができる。この間に、フィルム表面のCOOH基はポリエステル内部に拡散され、表面COOH量を低減することができる。 The thickness of the sheet is preferably 2 mm to 8 mm, more preferably 2.5 mm to 7 mm, and further preferably 3 mm to 6 mm. By increasing the thickness, the time required for the extruded melt to cool below the glass transition temperature (Tg) can be increased. During this time, COOH groups on the film surface are diffused into the polyester, and the amount of surface COOH can be reduced.
~樹脂物性~
 溶融押出後に製膜されたシート状の樹脂(特にポリエステル)の末端COOH量(AV)としては、5eq/t以上25eq/t以下が好ましく、8eq/t以上20eq/t以下がより好ましく、更に好ましくは10eq/t以上18eq/t以下である。末端COOH量が25eq/トン以下であることで、耐加水分解性に優れ、長期耐久性が得られる。末端COOH量は、耐加水分解の観点から低いことが望ましいが、製膜されたシートを被着物に密着させる場合の密着性を高める点からは、押出後のシート状に製膜された樹脂のAVの下限値は5eq/トンが好ましい。
 なお、「eq/t」は、1トンあたりのモル当量を表す。
-Resin physical properties-
The terminal COOH amount (AV) of the sheet-like resin (particularly polyester) formed after melt extrusion is preferably 5 eq / t or more and 25 eq / t or less, more preferably 8 eq / t or more and 20 eq / t or less. Is 10 eq / t or more and 18 eq / t or less. When the terminal COOH amount is 25 eq / ton or less, the hydrolysis resistance is excellent and long-term durability is obtained. The amount of terminal COOH is desirably low from the viewpoint of hydrolysis resistance, but from the viewpoint of enhancing the adhesion when the film-formed sheet is closely attached to the adherend, the amount of the resin formed into a sheet after extrusion is The lower limit of AV is preferably 5 eq / ton.
“Eq / t” represents the molar equivalent per ton.
 また、末端COOH量の変動率としては、末端COOH量の平均値の±3%以内が好ましく、末端COOH量の平均値の±2.0%以内がより好ましく、更に好ましくは、末端COOH量の平均値の±1.0%以内である。
 ここで、末端COOH量の平均値とは、次のように求められる値である。
 全ロール長における巻き始めを0mとして、200mごとに1mのサンプルを任意数(n)採取した後、その各々の幅方向を5等分し、5cm×5cmサイズのサンプル片を5つ切り取る。そして、この各サンプル片をベンジルアルコールに溶解し、溶液の酸価をKOH溶液で滴定することにより、末端COOH量を求め、複数(5n)の末端COOH量の平均を求める。
Further, the variation rate of the terminal COOH amount is preferably within ± 3% of the average value of the terminal COOH amount, more preferably within ± 2.0% of the average value of the terminal COOH amount, and further preferably, Within ± 1.0% of the average value.
Here, the average value of the amount of terminal COOH is a value obtained as follows.
Taking an arbitrary number (n) of 1 m samples every 200 m, with the start of winding for all roll lengths set to 0 m, each width direction is equally divided into five, and 5 cm × 5 cm sample pieces are cut out. And each sample piece is melt | dissolved in benzyl alcohol, the acid value of a solution is titrated with a KOH solution, the amount of terminal COOH is calculated | required, and the average of several (5n) terminal COOH amount is calculated | required.
(第2実施形態)
 本発明の二軸押出装置の第2実施形態を図7を参照して説明する。本実施形態は、上記の第1実施形態における断続注水制御ルーチンを、製膜された樹脂フィルムのヘイズに照らして実行するシステム構成となっている。
(Second Embodiment)
A second embodiment of the twin-screw extruder of the present invention will be described with reference to FIG. The present embodiment has a system configuration that executes the intermittent water injection control routine in the first embodiment in the light of the haze of the formed resin film.
 なお、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。 The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の二軸押出装置を制御する樹脂温度制御手段である制御装置60による制御ルーチンのうち、冷却配管の冷媒給排口37aへ水(冷媒)を断続的に供給する断続注水制御ルーチンについて、製膜されたフィルムのヘイズ値を考慮して樹脂温度に修正をかける態様を図7を参照して説明する。 Among the control routines by the control device 60 that is a resin temperature control means for controlling the biaxial extrusion device of the present embodiment, an intermittent water injection control routine for intermittently supplying water (refrigerant) to the refrigerant supply / exhaust port 37a of the cooling pipe. A mode in which the resin temperature is corrected in consideration of the haze value of the formed film will be described with reference to FIG.
 本ルーチンが実行されると、ステップ100からステップ200までの制御が、第1実施形態におけるステップ100から200までの制御と同様に行なわれる。ステップ200において冷媒給排口37aへの冷媒の供給が停止されると、次のステップ300において、フィルム製膜装置40で製膜された樹脂フィルムのヘイズが測定される。 When this routine is executed, the control from step 100 to step 200 is performed in the same manner as the control from step 100 to step 200 in the first embodiment. When the supply of the refrigerant to the refrigerant supply / exhaust port 37a is stopped in step 200, the haze of the resin film formed by the film forming apparatus 40 is measured in the next step 300.
 ヘイズ値としては、1.5%以上4.5%以下が好ましく、1.8%以上4.0%以下がより好ましく、更に好ましくは2.0%以上3.0%以下である。ヘイズは、ヘイズメーター(スガ試験機株式会社製のHZ-1)により測定される値である。 The haze value is preferably 1.5% to 4.5%, more preferably 1.8% to 4.0%, and still more preferably 2.0% to 3.0%. The haze is a value measured by a haze meter (HZ-1 manufactured by Suga Test Instruments Co., Ltd.).
 次のステップ320において、測定されたヘイズ値が、予め定められた上限閾値Q1を超えているか否かが判定される。上限閾値Q1の範囲は、後記の下限値Q2以上4.5%以下とすることができ、好ましい上限閾値Q1の範囲は、下限値Q2を超え4.0%以下であり、より好ましい上限閾値の範囲は、下限値Q2を超え3.0%以下である。
 ヘイズは、4.5%以下であることで、ムラの少ない品質が得られ、機械負荷の増大や脆性の悪化が防止される等、良好な製膜適性が得られる。ヘイズを下げるには、樹脂温度を上げることが有効であるが、耐候性を損なうおそれがある。
In the next step 320, it is determined whether or not the measured haze value exceeds a predetermined upper limit threshold value Q1. The range of the upper limit threshold value Q1 can be set to a lower limit value Q2 or more and 4.5% or less, and the preferable upper limit threshold value Q1 is more than the lower limit value Q2 and not more than 4.0%, which is a more preferable upper limit threshold value. The range exceeds the lower limit Q2 and is 3.0% or less.
When the haze is 4.5% or less, a quality with less unevenness is obtained, and good film forming suitability such as an increase in mechanical load and deterioration of brittleness can be obtained. In order to reduce haze, it is effective to increase the resin temperature, but the weather resistance may be impaired.
 ステップ320において、ヘイズ値が上限閾値Q1を超えていると判定されたときには、樹脂温度が低く樹脂に結晶化が生じているおそれがあり、溶融樹脂の設定温度tをより高い温度に変更するため、次のステップ360に移行する。 When it is determined in step 320 that the haze value exceeds the upper limit threshold Q1, the resin temperature is low and the resin may be crystallized, so that the set temperature t of the molten resin is changed to a higher temperature. Then, the process proceeds to the next step 360.
 ステップ320において、ヘイズ値が上限閾値Q1以下である場合には、ステップ330に移行する。ステップ330では、測定されたヘイズ値が、予め定められた下限閾値Q2未満であるか否かが判定される。ステップ330において、ヘイズ値が下限閾値Q2未満であると判定されたときには、耐候性を損なう懸念があるため、樹脂温度を下げることが有効であり、次のステップ370に移行する。ステップ370では、耐候性を損なうおそれのない範囲内に、溶融樹脂の設定温度tをより低い温度に変更する。
 ここで、好ましい下限閾値Q2の範囲は、1.5%以上3.0%以下である。
In step 320, when the haze value is equal to or less than the upper threshold Q1, the process proceeds to step 330. In step 330, it is determined whether or not the measured haze value is less than a predetermined lower threshold Q2. If it is determined in step 330 that the haze value is less than the lower limit threshold value Q2, there is a concern that the weather resistance will be impaired, so it is effective to lower the resin temperature, and the process proceeds to the next step 370. In step 370, the set temperature t of the molten resin is changed to a lower temperature within a range that does not impair the weather resistance.
Here, the preferable range of the lower limit threshold Q2 is 1.5% or more and 3.0% or less.
 このように、本実施形態では、ヘイズを1.5%以上4.5%以下に抑えるので、製膜適性により優れ、かつ耐候性により優れたフィルムを製膜することができる。 Thus, in this embodiment, since haze is suppressed to 1.5% or more and 4.5% or less, a film excellent in film forming suitability and excellent in weather resistance can be formed.
 一方、ヘイズ値が、ステップ320において上限閾値Q1以下であると判定され、さらに次のステップ330において、下限閾値Q2以上であると判定されたときには、ヘイズの絶対値に問題はないが、変動が大きく結果として樹脂性能のバラツキを招来するおそれもあるため、引き続いてステップ340において、製膜された樹脂フィルムのヘイズ値の変動率の絶対値が、予め定められた閾値Q3を超えているか否かが判定される。
 ここで、ヘイズ値の変動率の絶対値とは、測定されるヘイズ値の、各ヘイズ値の平均値に対する差の絶対値を指す。閾値Q3は、5%以下とすることができ、好ましい閾値Q3は3以下であり、より好ましい閾値Q3は1以下である。
 換言すれば、ヘイズ値の変動率としては、ヘイズの平均値の±5%以内が好ましく、ヘイズの平均値の±3%以内がより好ましく、ヘイズの平均値の±1%以内が更に好ましい。
On the other hand, when it is determined that the haze value is equal to or lower than the upper limit threshold value Q1 in step 320 and further determined to be equal to or higher than the lower limit threshold value Q2 in the next step 330, there is no problem with the absolute value of the haze, but fluctuations occur. As a result, there is a risk of causing a variation in resin performance. Accordingly, in step 340, whether or not the absolute value of the fluctuation rate of the haze value of the formed resin film exceeds a predetermined threshold value Q3. Is determined.
Here, the absolute value of the fluctuation rate of the haze value refers to the absolute value of the difference between the measured haze value and the average value of the respective haze values. The threshold value Q3 can be 5% or less, the preferable threshold value Q3 is 3 or less, and the more preferable threshold value Q3 is 1 or less.
In other words, the fluctuation rate of the haze value is preferably within ± 5% of the average value of haze, more preferably within ± 3% of the average value of haze, and further preferably within ± 1% of the average value of haze.
 ステップ340において、ヘイズ値の変動率が、閾値Q3を超えていると判定されたときには、樹脂温度にムラがあって樹脂温度が部分的に低いために結晶化しやすい部分が存在しているおそれがあるため、次のステップ380において、ヘイズ値が上限閾値Q1以下に維持される範囲において、溶融樹脂の設定温度tをより高い温度に変更する。 In Step 340, when it is determined that the variation rate of the haze value exceeds the threshold value Q3, there is a possibility that there is a portion that is easily crystallized because the resin temperature is uneven and the resin temperature is partially low. Therefore, in the next step 380, the set temperature t of the molten resin is changed to a higher temperature within a range where the haze value is maintained at the upper limit threshold value Q1 or less.
 その後、ステップ220において、二軸押出装置の運転停止要求の有無が判定され、運転停止要求がされていないと判定されたときには、溶融混練されている溶融樹脂の温度を継続的に安定的に保つ必要があるため、ステップ240に移行する。一方、ステップ220において、運転停止要求がされていると判定されたときには、樹脂温度を継続的に制御する必要がないため、そのまま本ルーチンを終了する。
 尚、ステップ340において、ヘイズ値の変動率が閾値Q3以下であると判定されたときには、そのままステップ220に移行する。
Thereafter, in step 220, it is determined whether or not there is a request for stopping the operation of the twin-screw extruder, and when it is determined that a request for stopping the operation is not made, the temperature of the melted and kneaded molten resin is continuously maintained stably. Since it is necessary, the process proceeds to step 240. On the other hand, when it is determined in step 220 that the operation stop request has been made, it is not necessary to continuously control the resin temperature, and thus this routine is ended as it is.
If it is determined in step 340 that the variation rate of the haze value is equal to or less than the threshold value Q3, the process proceeds to step 220 as it is.
 ステップ240では、ステップ160での供給開始から次の供給開始までの時間、すなわち冷媒の供給周期が、あらかじめ定めた所定の周期Sに達したか否かが判定される。ステップ240において、あらかじめ定めた所定の周期Sに達したと判定されたときは、所定の周期での断続的な冷媒供給を行なうため、再びステップ100に戻って上記と同様の制御が継続される。ここで、あらかじめ定めた所定の周期Sに達していないと判定されたときには、所定の周期での断続供給が行なえないため、所定の周期Sまで待機し、周期Sに達した時点で再びステップ100に戻って上記と同様の制御を継続する。 In step 240, it is determined whether the time from the start of supply in step 160 to the start of the next supply, that is, the refrigerant supply cycle has reached a predetermined cycle S set in advance. When it is determined in step 240 that the predetermined period S has been reached, the refrigerant is intermittently supplied in the predetermined period, so that the process returns to step 100 and the same control as described above is continued. . Here, when it is determined that the predetermined period S has not been reached, since intermittent supply in the predetermined period cannot be performed, the process waits until the predetermined period S, and when the period S is reached, the step 100 again. The control similar to the above is continued after returning to step S2.
(第3実施形態)
 本発明の二軸押出装置の第3実施形態を図8を参照して説明する。本実施形態は、上記の第1実施形態における断続注水制御ルーチンを、溶融樹脂の設定温度tへの到達の有無に照らして実行するシステム構成となっている。
(Third embodiment)
A third embodiment of the twin-screw extruder of the present invention will be described with reference to FIG. The present embodiment has a system configuration that executes the intermittent water injection control routine in the first embodiment in the light of whether or not the molten resin reaches the set temperature t.
 なお、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。 The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の二軸押出装置を制御する樹脂温度制御手段である制御装置60による制御ルーチンのうち、冷却配管の冷媒給排口37aへ水(冷媒)を断続的に供給する断続注水制御ルーチンについて、溶融樹脂の設定温度tとの関係を考慮して樹脂温度に修正をかける態様を図8を参照して説明する。 Among the control routines by the control device 60 that is a resin temperature control means for controlling the biaxial extrusion device of the present embodiment, an intermittent water injection control routine for intermittently supplying water (refrigerant) to the refrigerant supply / exhaust port 37a of the cooling pipe. A mode in which the resin temperature is corrected in consideration of the relationship with the set temperature t of the molten resin will be described with reference to FIG.
 本ルーチンが実行されると、ステップ100からステップ120までの制御が、第1実施形態におけるステップ100から120までの制御と同様に行なわれる。ステップ120において、検出した樹脂温度から設定温度tを減算した温度差Δtが閾値温度T以上であると判定されると、ステップ400において、本ルーチン実行後の最初のステップ120での判定から経過した時間の積算を開始する。 When this routine is executed, the control from Step 100 to Step 120 is performed in the same manner as the control from Step 100 to Step 120 in the first embodiment. In step 120, if it is determined that the temperature difference Δt obtained by subtracting the set temperature t from the detected resin temperature is equal to or higher than the threshold temperature T, in step 400, the determination from the first step 120 after execution of this routine has elapsed. Start accumulating time.
 次のステップ420において、最初のステップ120での判定から経過した積算時間が、閾値時間tを超えているか否かが判定される。ステップ420において、積算時間が閾値時間tを超えていると判定されたときには、樹脂温度が、あらかじめ設定しておいた溶融樹脂の設定温度tに到達し得ない状況にあるため、ステップ440において、スクリュ回転数を下げる。これにより、樹脂温度がより低下する効果が期待される。 In the next step 420, the accumulated time that has elapsed from the determination of the first step 120, whether or not exceeded the threshold time t 2 it is determined. In step 420, when the integration time is determined to exceed the threshold time t 2, since the resin temperature is in a situation where not reach the set temperature t of the molten resin that has been previously set, in step 440 Reduce the screw speed. Thereby, the effect that resin temperature falls more is anticipated.
 ステップ420において、積算時間が閾値時間t以下であると判定されたときには、予め定められた所定の量の冷媒を断続的に、予め定められた供給時間供給する制御を継続すればよいため、ステップ140に移行する。 In step 420, since when the integration time is determined to be the threshold time t 2 below, intermittently a predetermined amount of the refrigerant predetermined may be continued supply time for supplying predetermined control, The process proceeds to step 140.
 続いて、ステップ140からステップ240までの制御が、第1実施形態におけるステップ140から240までの制御と同様に行なわれる。 Subsequently, the control from step 140 to step 240 is performed similarly to the control from step 140 to 240 in the first embodiment.
 以上のように、冷媒の供給制御とスクリュ回転制御を行なうことで、溶融樹脂の温度ムラをより軽減することができる。 As described above, the temperature variation of the molten resin can be further reduced by performing the refrigerant supply control and the screw rotation control.
(第4実施形態)
 本発明の二軸押出装置の第4実施形態を図9~図10を参照して説明する。本実施形態は、上記の第1実施形態における断続注水制御ルーチンを、冷却配管における冷媒の流通方向を切り換える流通切換制御ルーチンに代えたシステム構成となっている。なお、第1実施形態と同様の構成要素には同一の参照符号を付してその詳細な説明を省略する。
(Fourth embodiment)
A fourth embodiment of the twin-screw extruder according to the present invention will be described with reference to FIGS. This embodiment has a system configuration in which the intermittent water injection control routine in the first embodiment is replaced with a flow switching control routine for switching the flow direction of the refrigerant in the cooling pipe. In addition, the same referential mark is attached | subjected to the component similar to 1st Embodiment, and the detailed description is abbreviate | omitted.
 本実施形態の二軸押出装置を制御する樹脂温度制御手段である制御装置60による制御ルーチンのうち、冷却配管の冷媒流路に流通させる冷媒を、冷媒流路での流通方向を切り換えて供給する流通切換制御ルーチンを中心に図9~図10を参照して説明する。 In the control routine by the control device 60 which is a resin temperature control means for controlling the twin-screw extrusion device of the present embodiment, the refrigerant to be circulated through the refrigerant flow path of the cooling pipe is supplied by switching the flow direction in the refrigerant flow path. The flow switching control routine will be mainly described with reference to FIGS.
 本実施形態のフィルム製造装置の起動スイッチのオンにより制御装置60の電源がオンされると、二軸押出装置100Aの制御システムが起動され、断続注水制御ルーチンが実行される。なお、システムの起動は、自動で行なう以外に手動で行なってもよい。 When the power of the control device 60 is turned on by turning on the start switch of the film manufacturing apparatus of the present embodiment, the control system of the biaxial extrusion device 100A is started, and the intermittent water injection control routine is executed. Note that the system may be started manually in addition to being automatically performed.
 フィルム製造装置の起動により、はじめに例えば冷却循環系に設けられた供給停止バルブV1を開き、流量調整バルブV3の開度を調節することで、冷却流路の冷媒給排口37aに冷媒である水が、0.001L/樹脂1kg~0.150L/樹脂1kgの供給量の範囲に調節されて供給される。 By starting the film manufacturing apparatus, first, for example, the supply stop valve V1 provided in the cooling circulation system is opened, and the opening of the flow rate adjusting valve V3 is adjusted, so that the coolant supply / exhaust port 37a has water as a coolant. Is adjusted to a supply amount range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg.
 本ルーチンが実行されると、まず樹脂温度が高くなって制御する必要があるか否かを判断するため、ステップ500において、温度検出センサS1により溶融樹脂の温度を検出する。次に、ステップ520において、検出した樹脂温度が、あらかじめ設定しておいた溶融樹脂の設定温度tの値を超えており、検出した樹脂温度から設定温度tを減算した温度差Δtが閾値温度T未満であるか否かが判定される。 When this routine is executed, first, in step 500, the temperature of the molten resin is detected by the temperature detection sensor S1 in order to determine whether or not it is necessary to control the resin temperature. Next, in step 520, the detected resin temperature exceeds the preset set temperature t of the molten resin, and the temperature difference Δt obtained by subtracting the set temperature t from the detected resin temperature is the threshold temperature T. Whether it is less than or not is determined.
 ステップ520において、温度差Δtが閾値温度T以上であると判定されたときには、樹脂温度が高すぎて末端カルボキシル基量が増え、製膜される樹脂の耐加水分解性が低くなるおそれがあるため、ステップ540に移行し、設定温度に対する樹脂温度の検出値の偏差に応じ、PID制御により水量(冷媒)の出力を決定する。ステップ520において、温度差Δtが閾値温度T未満であると判定されたときには、樹脂温度が上がり過ぎておらず末端カルボキシル基量が著しく増えるおそれが小さいため、ステップ620に移行する。 If it is determined in step 520 that the temperature difference Δt is equal to or higher than the threshold temperature T, the resin temperature is too high and the amount of terminal carboxyl groups increases, which may reduce the hydrolysis resistance of the resin to be formed. Then, the process proceeds to step 540, and the output of the water amount (refrigerant) is determined by PID control according to the deviation of the detected value of the resin temperature with respect to the set temperature. If it is determined in step 520 that the temperature difference Δt is less than the threshold temperature T, the process proceeds to step 620 because the resin temperature is not excessively increased and the amount of terminal carboxyl groups is unlikely to increase significantly.
 次のステップ560では、図10に示すように、供給停止バルブV1を閉じ、供給停止バルブV2を開き、流量調整バルブV4の開度を調節する。このようにバルブを切り換えることにより、冷媒給排口37aに供給していた冷媒を冷媒給排口37bに供給する。これにより、冷媒給排口37a側の樹脂に比べて温度の高い冷媒給排口37b側の樹脂の温度が下げられることで、溶融樹脂の温度の均一化が図られ、溶融樹脂の温度ムラが軽減される。 In the next step 560, as shown in FIG. 10, the supply stop valve V1 is closed, the supply stop valve V2 is opened, and the opening degree of the flow rate adjustment valve V4 is adjusted. By switching the valves in this way, the refrigerant that has been supplied to the refrigerant supply / exhaust port 37a is supplied to the refrigerant supply / exhaust port 37b. Thereby, the temperature of the resin on the refrigerant supply / exhaust port 37b side, which is higher than that on the refrigerant supply / exhaust port 37a side, is lowered, so that the temperature of the molten resin is made uniform, and the temperature unevenness of the molten resin occurs. It is reduced.
 続いて、ステップ580において、冷媒を供給する周期と冷却に必要な出力と制御定数とから供給時間が算出され、冷媒の供給時間が経過したか否かが判定される。ステップ580において、冷媒の供給時間が経過したと判定されたときには、冷却に必要な出力に見合う冷媒の供給が完了したため、次のステップ600において、供給停止バルブV2を閉じ、循環用ポンプを停止することにより、冷媒の供給が停止される。これと同時に、流量調整バルブV4を閉じてもよい。このとき、供給停止バルブV2及び流量調整バルブV4も閉状態である。 Subsequently, in Step 580, the supply time is calculated from the cycle of supplying the refrigerant, the output required for cooling, and the control constant, and it is determined whether or not the supply time of the refrigerant has passed. If it is determined in step 580 that the refrigerant supply time has elapsed, the supply of refrigerant commensurate with the output required for cooling has been completed. Therefore, in the next step 600, the supply stop valve V2 is closed and the circulation pump is stopped. As a result, the supply of the refrigerant is stopped. At the same time, the flow rate adjusting valve V4 may be closed. At this time, the supply stop valve V2 and the flow rate adjustment valve V4 are also closed.
 なお、ステップ580において、冷媒の供給時間が未だ経過していないと判定されたときには、予め定められた供給時間が経過するまでそのまま冷媒の供給を継続する。 In Step 580, when it is determined that the supply time of the refrigerant has not yet elapsed, the supply of the refrigerant is continued until a predetermined supply time elapses.
 その後、ステップ620において、二軸押出装置の運転停止要求の有無が判定され、運転停止要求がされていないと判定されたときには、溶融混練されている溶融樹脂の温度を継続的に安定的に保つ必要があるため、ステップ640に移行する。一方、ステップ620において、運転停止要求がされていると判定されたときには、樹脂温度を継続的に制御する必要がないため、そのまま本ルーチンを終了する。 Thereafter, in step 620, it is determined whether or not there is a request for stopping the operation of the twin-screw extruder, and when it is determined that a request for stopping the operation is not made, the temperature of the melted and kneaded molten resin is continuously maintained stably. Since it is necessary, the process proceeds to step 640. On the other hand, when it is determined in step 620 that the operation stop request has been made, it is not necessary to continuously control the resin temperature, and thus this routine is ended as it is.
 ステップ640では、ステップ160での供給開始から次の供給開始までの時間、すなわち冷媒の供給周期が、あらかじめ定めた所定の周期Sに達したか否かが判定される。ステップ640において、あらかじめ定めた所定の周期Sに達したと判定されたときは、所定の周期での断続的な冷媒供給を行なうため、再びステップ500に戻って上記と同様の制御が継続される。ここで、あらかじめ定めた所定の周期Sに達していないと判定されたときには、所定の周期での断続供給が行なえないため、所定の周期Sまで待機し、周期Sに達した時点で再びステップ500に戻って上記と同様の制御を継続する。 In step 640, it is determined whether the time from the start of supply in step 160 to the start of the next supply, that is, the refrigerant supply cycle has reached a predetermined cycle S set in advance. If it is determined in step 640 that the predetermined period S has been reached, the refrigerant is intermittently supplied in the predetermined period, so that the process returns to step 500 and the same control as described above is continued. . Here, when it is determined that the predetermined cycle S has not been reached, since the intermittent supply in the predetermined cycle cannot be performed, the process waits until the predetermined cycle S, and when the cycle S is reached, the step 500 is performed again. The control similar to the above is continued after returning to step S2.
 以上のように、冷媒量の供給制御と、冷却流路内を流通する冷媒の流通方向の切換制御を行なうことで、溶融樹脂の温度ムラをより軽減することができる。 As described above, the temperature unevenness of the molten resin can be further reduced by performing the supply control of the refrigerant amount and the switching control of the flow direction of the refrigerant flowing in the cooling flow path.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
-ポリエステル製造装置-
 図1と同様に構成されたポリエステル製造装置を準備し、押出機として、図2に示すように、原料供給口12と2つのベント16A,16Bとが設けられたシリンダ10内に下記構成のスクリュ20A,20Bを備えたダブルベント式同方向回転噛合型の二軸押出機を用意した。シリンダ10は、温度調節器30が設けられてシリンダ壁を兼ねることによって形成されている。温度調節器30は、スクリュの回転軸方向(シリンダ長手方向)に9つに分割されたゾーン(加熱ゾーンZ1~Z7及び冷却ゾーンZ8~Z9)を有し、ゾーン毎に温度制御を行うことができる。シリンダ壁内には、図3及び図4に示すように、シリンダ10の周囲に沿って冷却配管35が埋設されている。
-Polyester production equipment-
As shown in FIG. 2, a polyester manufacturing apparatus having the same configuration as that in FIG. 1 is prepared, and a screw having the following configuration is provided in a cylinder 10 provided with a raw material supply port 12 and two vents 16 </ b> A and 16 </ b> B as an extruder. A double vent type co-rotating and meshing twin screw extruder equipped with 20A and 20B was prepared. The cylinder 10 is formed by providing a temperature controller 30 and also serving as a cylinder wall. The temperature controller 30 has nine zones (heating zones Z1 to Z7 and cooling zones Z8 to Z9) divided into nine in the screw rotation axis direction (cylinder longitudinal direction), and temperature control can be performed for each zone. it can. As shown in FIGS. 3 and 4, a cooling pipe 35 is embedded in the cylinder wall along the periphery of the cylinder 10.
 <二軸押出機の構成>
(a)スクリュ:
 ・スクリュ径D:200mm
 ・長さL[mm]/スクリュ径D[mm]:31.5(シリンダ1ゾーンの幅(スクリュ軸方向の長さ):3.5D)
 ・ベント:2ヶ所
 ・スクリュ形状:
  第1ベント直前に可塑化混練部(ニュートラルニーディング2D、逆スクリュ1D)
  第2ベント直前に脱気促進混練部(ニュートラルニーディング2D)
 ・スクリュ回転数:90rpm
(b)吐出量:3000kg/h
(c)シリンダ温度
 Z1ゾーン:60℃,Z2ゾーン:270℃,Z3ゾーン:270℃,Z4ゾーン:270℃,Z5ゾーン:270℃,Z6ゾーン:270℃,Z7ゾーン:270℃,Z8ゾーン:270℃,Z9ゾーン:下記表1に記載
 ここで、Z1ゾーンは、原料供給口12側の1番目のゾーンである。
(d)PET定量供給機:スクリュ式
<Configuration of twin screw extruder>
(A) Screw:
-Screw diameter D: 200mm
Length L [mm] / screw diameter D [mm]: 31.5 (Cylinder 1 zone width (length in the screw axis direction): 3.5 D)
・ Vent: 2 places ・ Screw shape:
Plasticization kneading section (neutral kneading 2D, reverse screw 1D) immediately before the first vent
Deaeration-promoting kneading section (neutral kneading 2D) just before the second vent
・ Screw rotation speed: 90rpm
(B) Discharge rate: 3000 kg / h
(C) Cylinder temperature Z1 zone: 60 ° C, Z2 zone: 270 ° C, Z3 zone: 270 ° C, Z4 zone: 270 ° C, Z5 zone: 270 ° C, Z6 zone: 270 ° C, Z7 zone: 270 ° C, Z8 zone: 270 ° C., Z9 zone: described in Table 1 below. Here, the Z1 zone is the first zone on the raw material supply port 12 side.
(D) PET metering machine: Screw type
 このポリエステル製造装置には、二軸押出機の溶融樹脂押出方向における押出機出口の下流側に、図1に示すように、下記構成を持つギアポンプ44、金属繊維フィルタ42、及び成形ダイ40が接続されている。成形ダイ40を加熱するヒータ30の設定温度は280℃とし、樹脂の平均滞留時間は10分とした。
 <二軸押出機以外の構成>
(f)ギアポンプ:2ギアタイプ(幅:500mm)
(g)温度検出器:
 押出機のZ9ゾーン(シリンダの最も押出口に近い部分)の冷却水量制御を行うため、下記2つのセンサを設置
 ・温度検出センサS1:シリンダ押出口下流の温度検出器50に取り付け
 ・温度検出センサS2:シリンダの壁材に取り付け
(h)フィルタ:金属繊維焼結フィルタ(孔径20μm)
(i)成形ダイ:リップ間隔4mm
As shown in FIG. 1, a gear pump 44, a metal fiber filter 42, and a molding die 40 having the following configuration are connected to the polyester manufacturing apparatus, as shown in FIG. 1, on the downstream side of the extruder outlet in the melt resin extrusion direction of the twin screw extruder. Has been. The set temperature of the heater 30 for heating the molding die 40 was 280 ° C., and the average residence time of the resin was 10 minutes.
<Configuration other than twin-screw extruder>
(F) Gear pump: 2-gear type (width: 500mm)
(G) Temperature detector:
The following two sensors are installed to control the amount of cooling water in the Z9 zone of the extruder (the part closest to the cylinder outlet) ・ Temperature detection sensor S1: Attached to the temperature detector 50 downstream of the cylinder outlet ・ Temperature detection sensor S2: Attached to the wall material of the cylinder (h) Filter: Sintered metal fiber filter (pore diameter 20 μm)
(I) Molding die: 4mm lip spacing
-原料樹脂-
 ・ペレット種:ポリエチレンテレフタレート(融点Tm:257℃、ガラス転移温度TgPol:79℃、極限粘度IV:0.78dL/g、末端COOH量:18当量/トン、ヘンシェルミキサーにて160℃で結晶化)のペレット(PETペレット)
 ・ペレットサイズ:平均長径=4.5mm、平均短径=1.8mm、平均長さ=4.0mm
-Raw resin-
Pellet type: polyethylene terephthalate (melting point Tm: 257 ° C., glass transition temperature Tg Pol : 79 ° C., intrinsic viscosity IV: 0.78 dL / g, terminal COOH amount: 18 equivalents / ton, crystallized at 160 ° C. with a Henschel mixer ) Pellets (PET pellets)
Pellet size: average major axis = 4.5 mm, average minor axis = 1.8 mm, average length = 4.0 mm
-ポリエステルフィルムの製造-
(溶融押出)
 上記のような二軸押出機を用い、PETペレットをホッパーに投入した。PETペレットの投入前には、あらかじめPETペレットを加熱乾燥することにより、投入時におけるPETペレットの樹脂温度及び含水量を、120℃、50ppmに調節した。そして、シリンダ壁の温度を下記表1に示す温度に調節しながら溶融混練し、押出機出口から押出した。溶融押出は、ギアポンプの吸入側圧力を1.0MPaに調節して行なった。続いて、押出機出口から押出された溶融体(メルト)を、ギアポンプ、金属繊維フィルタ(孔径20μm)を通した後、成形ダイから冷却ロールに押出した。押出されたメルトを静電印加法を用いて冷却ロールに密着させ、未延伸シートを作製した。この冷却ロールは、中空のチルロールを備えており、このチルロール中に熱媒として水を通すことで温調されるようになっている。なお、成形ダイの出口から冷却ロールまでの搬送域(エアギャップ)を取り囲み、取り囲んだ中に調湿空気を導入することによって湿度を30%RHに調節した。メルト厚みは、二軸押出機の押出量及び成形ダイのスリット幅を調整することで、3000μmに調節した。
-Manufacture of polyester film-
(Melting extrusion)
Using the above twin screw extruder, the PET pellets were put into a hopper. Prior to the injection of the PET pellets, the resin temperature and water content of the PET pellets were adjusted to 120 ° C. and 50 ppm by heating and drying the PET pellets in advance. And it melt-kneaded adjusting the temperature of a cylinder wall to the temperature shown in following Table 1, and extruded from the extruder exit. Melt extrusion was performed by adjusting the suction side pressure of the gear pump to 1.0 MPa. Subsequently, the melt (melt) extruded from the exit of the extruder was passed through a gear pump and a metal fiber filter (pore diameter: 20 μm), and then extruded from a forming die onto a cooling roll. The extruded melt was brought into close contact with a cooling roll using an electrostatic application method to produce an unstretched sheet. This cooling roll is provided with a hollow chill roll, and the temperature is adjusted by passing water as a heat medium in the chill roll. In addition, the humidity was adjusted to 30% RH by surrounding the conveyance area (air gap) from the exit of the forming die to the cooling roll, and introducing humidity-conditioned air into the enclosed area. The melt thickness was adjusted to 3000 μm by adjusting the extrusion amount of the twin screw extruder and the slit width of the molding die.
 このとき、シリンダにおける冷却制御条件を以下のように調節した。
・冷媒給排口37aへの供給量:0.001~0.150L/樹脂1kg
・冷媒供給周期:下記表1に記載の周期
・供給方法:上記周期での断続供給
・1周期(定常時)における水量(秒/回):下記表1に記載の量
 (設定温度に対する制御温度の偏差に応じて水量の出力が変化)
At this time, the cooling control conditions in the cylinder were adjusted as follows.
-Supply amount to the refrigerant supply / discharge port 37a: 0.001 to 0.150 L / kg of resin
-Refrigerant supply cycle: cycle described in Table 1 below-Supply method: intermittent supply in the above cycle-Water amount in one cycle (steady time) (seconds / time): Amount described in Table 1 below (control temperature relative to set temperature) The output of the water volume changes according to the deviation of
 上記のようにして冷却ロールに密着させて固化することで得られた未延伸シートに対して、下記条件にて縦延伸及び横延伸を逐次行なうことで2軸延伸を施し、厚み250μmのポリエステルフィルムを作製した。
 (a)縦延伸
 未延伸フィルムを周速の異なる2対のニップロールの間に通し、MD方向(搬送方向)に延伸した。このとき、予熱温度を80℃、延伸温度を90℃、延伸倍率を3.4倍、延伸速度を3000%/秒とした。
 (b)横延伸
 縦延伸後、テンターを用いて下記条件にて横延伸した。
 <条件>
・予熱温度:110℃
・延伸温度:120℃
・延伸倍率:3.8倍
・延伸速度:70%/秒
A polyester film having a thickness of 250 μm is obtained by biaxially stretching the unstretched sheet obtained by sticking to a cooling roll and solidifying as described above by sequentially performing longitudinal stretching and lateral stretching under the following conditions. Was made.
(A) Longitudinal stretching The unstretched film was stretched in the MD direction (conveying direction) through two pairs of nip rolls having different peripheral speeds. At this time, the preheating temperature was 80 ° C., the stretching temperature was 90 ° C., the stretching ratio was 3.4 times, and the stretching speed was 3000% / second.
(B) Transverse stretching After longitudinal stretching, transverse stretching was performed under the following conditions using a tenter.
<Condition>
-Preheating temperature: 110 ° C
-Stretching temperature: 120 ° C
-Stretch ratio: 3.8 times-Stretch speed: 70% / second
 縦延伸及び横延伸を終えた後の延伸フィルムを下記条件で熱固定した。熱固定後、テンター幅を縮め、下記条件にて熱緩和を施した。熱固定及び熱緩和の後、ポリエステルフィルムの両端を10cmずつトリミングした。その後、両端に幅10mmで押出加工(ナーリング)を行ない、25kg/mの張力で巻き取った。なお、幅は1.3m、巻長は1000mとした。
 <熱固定条件>
・熱固定温度:205℃
・熱固定時間:2秒
 <熱緩和条件>
・熱緩和温度:200℃
・熱緩和率:5%
The stretched film after finishing the longitudinal stretching and the transverse stretching was heat-set under the following conditions. After heat setting, the tenter width was reduced and thermal relaxation was performed under the following conditions. After heat setting and heat relaxation, both ends of the polyester film were trimmed by 10 cm. Thereafter, extrusion (knurling) was performed at both ends with a width of 10 mm, and the film was wound up with a tension of 25 kg / m. The width was 1.3 m and the winding length was 1000 m.
<Heat setting conditions>
・ Heat setting temperature: 205 ℃
・ Heat setting time: 2 seconds <thermal relaxation conditions>
-Thermal relaxation temperature: 200 ° C
-Thermal relaxation rate: 5%
 以上のようにして、二軸延伸ポリエチレンテレフタレート(PET)フィルムを作製した。 A biaxially stretched polyethylene terephthalate (PET) film was produced as described above.
-評価-
 上記の製膜時のシリンダ温度及び水量の測定、及び製膜したPETフィルムの性状について、下記の測定及び評価を行なった。測定、評価の結果を下記表1に示す。
-Evaluation-
The following measurements and evaluations were performed on the measurement of the cylinder temperature and the amount of water during film formation and the properties of the formed PET film. The results of measurement and evaluation are shown in Table 1 below.
(1)シリンダ温度の測定
 シリンダのZ9ゾーンにおいて、図11に示すようにシリンダのヒータ固定用ボルトに熱電対を取り付け、周方向における上面、下面、左側面、及び右側面の8点の温度を測定した。その測定値の平均値を求め、シリンダ温度とした。
(1) Measurement of cylinder temperature In the Z9 zone of the cylinder, a thermocouple is attached to the cylinder heater fixing bolt as shown in Fig. 11, and the temperatures of the upper, lower, left and right sides in the circumferential direction are measured. It was measured. The average value of the measured values was obtained and used as the cylinder temperature.
(2)シリンダ水量の測定
 シリンダの冷媒給排口37aに流量計を取り付け、流量計の測定値から電磁弁1回の開動作で供給される水量(冷媒)を算出した。
(2) Measurement of cylinder water amount A flow meter was attached to the refrigerant supply / exhaust port 37a of the cylinder, and the amount of water (refrigerant) supplied by one opening operation of the solenoid valve was calculated from the measured value of the flow meter.
(3)末端COOH量
 製膜されたPETフィルムから、図12に示すように、全ロール長における巻き始めを0mとして、200mごとに1mのサンプルを複数採取した後、各々の幅方向を5等分し、各幅方向について5個の5cm×5cmサイズのサンプル片を切り取った。そして、このサンプル片をベンジルアルコールに溶解し、溶液の酸価をKOH溶液で滴定することにより、末端COOH量を求め、複数の末端COOH量の平均を求めた。
 なお、表1中の「変動」は、平均値とこの平均値から最も離れた値(全ての測定点の最大値と最小値のうち平均値からより離れている方の値)との差を示す。
(3) Terminal COOH amount As shown in FIG. 12, from the formed PET film, the start of winding in all roll lengths was set to 0 m, and a plurality of 1 m samples were taken every 200 m, and then each width direction was set to 5 etc. 5 pieces of 5 cm × 5 cm size samples were cut in each width direction. And this sample piece was melt | dissolved in benzyl alcohol, the acid value of the solution was titrated with a KOH solution, the terminal COOH amount was calculated | required, and the average of several terminal COOH amount was calculated | required.
“Variation” in Table 1 is the difference between the average value and the value farthest from this average value (the maximum value and the minimum value of all measurement points that are further from the average value). Show.
(4)ヘイズ
 製膜されたPETフィルムから、上記の「(3)末端COOH量」と同様に、200mごとに1mのサンプルを複数採取した後、各々の幅方向を5等分し、各幅方向について5個の5cm×5cmサイズのサンプル片を切り取った。そして、各サンプル片のヘイズ値をヘイズメーター(スガ試験機株式会社製のHZ-1)を用いて測定し、複数値の平均を求めた。
 なお、表1中の「変動」は、平均値とこの平均値から最も離れた値(全ての測定点の最大値と最小値のうち平均値からより離れている方の値)との差を示す。
 
す。
(4) Haze After taking a plurality of 1 m samples every 200 m from the formed PET film in the same manner as “(3) Terminal COOH amount”, each width direction is divided into five equal parts, Five 5 cm × 5 cm sample pieces were cut in the direction. And the haze value of each sample piece was measured using the haze meter (HZ-1 by Suga Test Instruments Co., Ltd.), and the average of multiple values was obtained.
“Variation” in Table 1 is the difference between the average value and the value farthest from this average value (the maximum value and the minimum value of all measurement points that are further from the average value). Show.

The
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 表1に示されるように、実施例では、低ヘイズを維持しながら、比較例に比べて末端COOH量が少なく耐候性により優れたPETフィルムが得られた。 As shown in Table 1, in the Examples, PET films having less terminal COOH amount and superior weather resistance were obtained as compared with Comparative Examples while maintaining low haze.
 日本出願2013-139304及び日本出願2014-037490の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese application 2013-139304 and Japanese application 2014-037490 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (17)

  1.  溶融樹脂を押し出す押出口を有するシリンダと、
     前記シリンダ内に回転可能に配された外径φ100mm以上の2つのスクリュと、
     第1の冷媒給排口、及びシリンダ内の溶融樹脂と熱交換する冷媒が流通する冷媒流路を有し、シリンダ壁に配設された冷却系統と、
     溶融樹脂流通方向における、シリンダの前記押出口の下流側で、かつ溶融樹脂をフィルム製膜するためのフィルム製膜装置上流側に配置され、前記押出口から押し出された溶融樹脂の温度を検出する温度検出手段と、
     前記冷媒の前記第1の冷媒給排口への供給量を調節することにより、前記温度検出手段で検出された溶融樹脂の温度と樹脂設定温度との温度差を、予め定められた閾値以下に制御する樹脂温度制御手段と、
     を備えた二軸押出装置。
    A cylinder having an extrusion port for extruding molten resin;
    Two screws with an outer diameter of φ100 mm or more arranged rotatably in the cylinder;
    A cooling system disposed in the cylinder wall, having a first refrigerant supply / exhaust port and a refrigerant flow path through which a refrigerant that exchanges heat with the molten resin in the cylinder flows;
    Detecting the temperature of the molten resin, which is disposed downstream of the extrusion port of the cylinder and upstream of the film forming apparatus for forming the molten resin into a film, in the molten resin distribution direction, and extruded from the extrusion port Temperature detection means;
    By adjusting the supply amount of the refrigerant to the first refrigerant supply / exhaust port, the temperature difference between the temperature of the molten resin detected by the temperature detecting means and the resin set temperature is set to a predetermined threshold value or less. Resin temperature control means to control;
    A twin-screw extruder equipped with.
  2.  溶融樹脂流通方向における、シリンダの前記押出口の下流側で、かつ溶融樹脂をフィルム製膜するためのフィルム製膜装置上流側に、溶融樹脂が流通する樹脂流通管を有し、
     前記温度検出手段は、少なくとも、前記樹脂流通管の内壁面から管内部方向に10mm以上離れた位置に配置された測温部と、該測温部の破損を防ぐ破損防止材と、を有する請求項1に記載の二軸押出装置。
    In the molten resin distribution direction, on the downstream side of the extrusion port of the cylinder, and on the upstream side of the film forming apparatus for forming a film of the molten resin, a resin distribution pipe through which the molten resin flows is provided.
    The temperature detection means includes at least a temperature measuring part disposed at a position separated by 10 mm or more from the inner wall surface of the resin flow pipe in the pipe inner direction, and a damage preventing material for preventing the temperature measuring part from being damaged. Item 2. The twin-screw extruder according to item 1.
  3.  前記冷媒は、蒸発潜熱により溶融樹脂と熱交換する作動流体である請求項1又は請求項2に記載の二軸押出装置。 The twin-screw extrusion apparatus according to claim 1 or 2, wherein the refrigerant is a working fluid that exchanges heat with the molten resin by latent heat of vaporization.
  4.  前記樹脂温度制御手段は、前記冷媒の前記第1の冷媒給排口への供給量を、0.001L/樹脂1kg~0.150L/樹脂1kgの範囲で調節する請求項1~請求項3のいずれか1項に記載の二軸押出装置。 The resin temperature control means adjusts the supply amount of the refrigerant to the first refrigerant supply / exhaust port in a range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg. The twin-screw extrusion apparatus of any one of Claims.
  5.  前記冷媒が水である請求項1~請求項4のいずれか1項に記載の二軸押出装置。 The twin-screw extruder according to any one of claims 1 to 4, wherein the refrigerant is water.
  6.  前記樹脂温度制御手段は、前記冷媒の前記第1の冷媒給排口への供給を、10秒/回以上120秒/回以下の周期で供給時間を前記周期の0%超40%以下として断続的に行なうことにより、溶融樹脂の温度と樹脂設定温度との温度差を、予め定められた閾値以下に制御する請求項1~請求項5のいずれか1項に記載の二軸押出装置。 The resin temperature control means intermittently supplies the refrigerant to the first refrigerant supply / exhaust port at a period of 10 seconds / time to 120 seconds / time with a supply time of more than 0% and not more than 40%. 6. The twin-screw extruder according to claim 1, wherein the temperature difference between the temperature of the molten resin and the set temperature of the resin is controlled to be equal to or less than a predetermined threshold value by performing the operation.
  7.  前記樹脂温度制御手段は、フィルム製膜装置で製膜された樹脂フィルムのヘイズ値が予め定められた上限閾値Q1を超える又はフィルム製膜装置で製膜された樹脂フィルムのヘイズ値の変動率が予め定められた閾値Q3を超える場合は、樹脂設定温度を上げ、
     フィルム製膜装置で製膜された樹脂フィルムのヘイズ値が予め定められた下限閾値Q2未満である場合は、樹脂設定温度を下げる、請求項1~請求項6のいずれか1項に記載の二軸押出装置。
    The resin temperature control means is such that the haze value of the resin film formed by the film film forming apparatus exceeds a predetermined upper threshold Q1, or the variation rate of the haze value of the resin film formed by the film film forming apparatus is If it exceeds a predetermined threshold Q3, increase the resin set temperature,
    The resin set temperature is lowered when the haze value of the resin film formed by the film forming apparatus is less than a predetermined lower threshold Q2. A shaft extrusion device.
  8.  前記樹脂温度制御手段は、溶融樹脂の温度と樹脂設定温度との温度差が予め定められた時間内に予め定められた閾値以下に達しない場合には、スクリュの回転数を変化させることにより、溶融樹脂の温度を樹脂設定温度に制御する請求項1~請求項7のいずれか1項に記載の二軸押出装置。 The resin temperature control means, when the temperature difference between the temperature of the molten resin and the resin set temperature does not reach a predetermined threshold value or less within a predetermined time, by changing the rotational speed of the screw, The twin-screw extruder according to any one of claims 1 to 7, wherein the temperature of the molten resin is controlled to a resin set temperature.
  9.  前記冷却系統は、更に、冷媒を前記冷媒流路から排出する第2の冷媒給排口、及び冷媒の流通方向を切り換える流通切換弁を有し、
     前記樹脂温度制御手段は、前記流通切換弁を切り換えることにより、冷媒を前記第1の冷媒給排口に供給して前記第2の冷媒給排口から排出する第1の冷却と、冷媒を前記第2の冷媒給排口に供給して前記第1の冷媒給排口から排出する第2の冷却と、を予め定められた周期で切り換える請求項1~請求項8のいずれか1項に記載の二軸押出装置。
    The cooling system further includes a second refrigerant supply / exhaust port for discharging the refrigerant from the refrigerant flow path, and a flow switching valve for switching a flow direction of the refrigerant,
    The resin temperature control means supplies the refrigerant to the first refrigerant supply / exhaust port by switching the flow switching valve, and discharges the refrigerant from the second refrigerant supply / exhaust port. The second cooling supplied to the second refrigerant supply / discharge port and discharged from the first refrigerant supply / discharge port is switched at a predetermined cycle. Twin screw extrusion equipment.
  10.  回転可能に配された外径φ100mm以上の2つのスクリュを備えたシリンダ内で溶融される樹脂の温度を制御しながら、熱可塑性樹脂を溶融する工程と、
     溶融された熱可塑性樹脂を成形ダイより膜状に押出す工程と、
     押出された熱可塑性樹脂を冷却ロール上で固化する工程と、
    を有し、
     前記溶融する工程は、前記シリンダの押出口から押し出された溶融樹脂の温度を、前記膜状に押出す工程前に検出し、検出された溶融樹脂の温度と樹脂設定温度との温度差を、前記シリンダ壁に配設された冷却系統に供給される冷媒の供給量を調節することにより、予め定められた閾値以下に制御する、フィルム製造方法。
    A step of melting the thermoplastic resin while controlling the temperature of the resin melted in a cylinder provided with two screws having an outer diameter of φ100 mm or more arranged rotatably;
    A process of extruding a molten thermoplastic resin from a molding die into a film,
    A step of solidifying the extruded thermoplastic resin on a cooling roll;
    Have
    In the melting step, the temperature of the molten resin extruded from the extrusion port of the cylinder is detected before the step of extruding into the film shape, and the temperature difference between the detected temperature of the molten resin and the resin set temperature is determined. The film manufacturing method of controlling below the predetermined threshold value by adjusting the supply amount of the refrigerant | coolant supplied to the cooling system arrange | positioned at the said cylinder wall.
  11.  前記冷媒は、蒸発潜熱により溶融樹脂と熱交換する作動流体である請求項10に記載のフィルム製造方法。 The film manufacturing method according to claim 10, wherein the refrigerant is a working fluid that exchanges heat with the molten resin by latent heat of vaporization.
  12.  前記溶融する工程は、前記冷媒の供給量を0.001L/樹脂1kg~0.150L/樹脂1kgの範囲で調節する請求項10又は請求項11に記載のフィルム製造方法。 12. The film manufacturing method according to claim 10, wherein in the melting step, the supply amount of the refrigerant is adjusted in a range of 0.001 L / resin 1 kg to 0.150 L / resin 1 kg.
  13.  前記冷媒が水である請求項10~請求項12のいずれか1項に記載のフィルム製造方法。 13. The film manufacturing method according to claim 10, wherein the refrigerant is water.
  14.  前記溶融する工程は、前記冷媒の冷却系統への供給を、10秒/回以上120秒/回以下の周期で供給時間を前記周期の0%超40%以下として断続的に行なうことにより、溶融樹脂の温度と樹脂設定温度との温度差を、予め定められた閾値以下に制御する請求項10~請求項13のいずれか1項に記載のフィルム製造方法。 The melting step is performed by intermittently supplying the refrigerant to the cooling system at a cycle of 10 seconds / time to 120 seconds / time and with a supply time of more than 0% and 40% or less of the cycle. The film manufacturing method according to any one of claims 10 to 13, wherein the temperature difference between the resin temperature and the resin set temperature is controlled to be equal to or less than a predetermined threshold value.
  15.  前記溶融する工程は、フィルム製膜装置で製膜された樹脂フィルムのヘイズ値が予め定められた上限閾値Q1を超える又はフィルム製膜装置で製膜された樹脂フィルムのヘイズ値の変動率が予め定められた閾値Q3を超える場合は、樹脂設定温度を上げ、
     フィルム製膜装置で製膜された樹脂フィルムのヘイズ値が予め定められた下限閾値Q2未満である場合は、樹脂設定温度を下げる、請求項10~請求項14のいずれか1項に記載のフィルム製造方法。
    In the melting step, the haze value of the resin film formed by the film forming apparatus exceeds a predetermined upper limit threshold Q1, or the variation rate of the haze value of the resin film formed by the film forming apparatus is previously set. If it exceeds the defined threshold Q3, increase the resin set temperature,
    The film according to any one of claims 10 to 14, wherein the resin set temperature is decreased when the haze value of the resin film formed by the film forming apparatus is less than a predetermined lower threshold Q2. Production method.
  16.  前記溶融する工程は、溶融樹脂の温度と樹脂設定温度との温度差が予め定められた時間内に予め定められた閾値以下に達しない場合には、スクリュの回転数を変化させることにより、溶融樹脂の温度を樹脂設定温度に制御する請求項10~請求項15のいずれか1項に記載のフィルム製造方法。 The melting step is performed by changing the number of rotations of the screw when the temperature difference between the temperature of the molten resin and the resin set temperature does not reach a predetermined threshold value within a predetermined time. The film production method according to any one of claims 10 to 15, wherein the temperature of the resin is controlled to a resin set temperature.
  17.  前記冷却系統は、第1の冷媒給排口、冷媒が流通する冷媒流路、冷媒を前記冷媒流路から排出する第2の冷媒給排口、及び冷媒の流通方向を切り換える流通切換弁を有し、
     前記溶融する工程は、前記流通切換弁を切り換えることにより、冷媒を前記第1の冷媒給排口に供給して前記第2の冷媒給排口から排出する第1の冷却と、冷媒を前記第2の冷媒給排口に供給して前記第1の冷媒給排口から排出する第2の冷却と、を予め定められた周期で切り換える請求項10~請求項16のいずれか1項に記載のフィルム製造方法。
    The cooling system includes a first refrigerant supply / exhaust port, a refrigerant flow path through which the refrigerant flows, a second refrigerant supply / discharge port through which the refrigerant is discharged from the refrigerant flow path, and a flow switching valve that switches a flow direction of the refrigerant. And
    In the melting step, by switching the flow switching valve, the first cooling for supplying the refrigerant to the first refrigerant supply / exhaust port and discharging the refrigerant from the second refrigerant supply / exhaust port, The second cooling that is supplied to the second refrigerant supply / exhaust port and discharged from the first refrigerant supply / exhaust port is switched at a predetermined cycle. Film manufacturing method.
PCT/JP2014/066747 2013-07-02 2014-06-24 Twin-screw extrusion device and method for manufacturing film WO2015002035A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480035773.1A CN105339156B (en) 2013-07-02 2014-06-24 Double screw extruder and film-forming method
KR1020157036538A KR101810856B1 (en) 2013-07-02 2014-06-24 Twin-screw extrusion device and method for manufacturing film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-139304 2013-07-02
JP2013139304 2013-07-02
JP2014-037490 2014-02-27
JP2014037490A JP6049648B2 (en) 2013-07-02 2014-02-27 Twin screw extrusion apparatus and film manufacturing method

Publications (1)

Publication Number Publication Date
WO2015002035A1 true WO2015002035A1 (en) 2015-01-08

Family

ID=52143614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066747 WO2015002035A1 (en) 2013-07-02 2014-06-24 Twin-screw extrusion device and method for manufacturing film

Country Status (4)

Country Link
JP (1) JP6049648B2 (en)
KR (1) KR101810856B1 (en)
CN (1) CN105339156B (en)
WO (1) WO2015002035A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680006B1 (en) * 2016-03-10 2016-12-06 (주)한도기공 Mobile extruder having cooling water circulation hole in the inner of the extrueion cylinder
DE102018112939A1 (en) * 2018-05-30 2019-12-05 Inmex Gmbh Plasticizing cylinder of a plastic extruder and plastic extruder with such a plasticizing cylinder
CN108705804A (en) * 2018-06-13 2018-10-26 鲍振宇 A kind of automatic biological fuel forming device
KR102086085B1 (en) * 2019-01-21 2020-04-23 구승회 Extruding apparatus for conical twin screw of special type
CN114521170A (en) * 2019-10-16 2022-05-20 株式会社瑞光 Rotary extruder
JP7459735B2 (en) 2019-11-27 2024-04-02 Agc株式会社 Film manufacturing method and laminate manufacturing method
WO2021181533A1 (en) * 2020-03-10 2021-09-16 マクセルホールディングス株式会社 Biodegradable-resin decomposition device
CN112248395A (en) * 2020-09-25 2021-01-22 安徽德尔电气集团有限公司 Extruder temperature control system for cable production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104814A (en) * 1986-10-22 1988-05-10 Sekisui Chem Co Ltd Resin temperature control device for extruder
JPH07144354A (en) * 1993-11-24 1995-06-06 Japan Steel Works Ltd:The Method and apparatus for controlling temperature of cylinder
JP2012091494A (en) * 2010-09-27 2012-05-17 Fujifilm Corp Method of manufacturing polyester film, and polyester film for solar cell member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2518666Y (en) * 2000-03-17 2002-10-30 莱芜市模具厂 Molten plastic pump
JP4316109B2 (en) 2000-06-12 2009-08-19 大日本印刷株式会社 Cooling roll temperature control method, control device, and control system
JP4025772B2 (en) * 2004-12-28 2007-12-26 株式会社日本製鋼所 Temperature control apparatus and plasticized resin manufacturing method
CN101920552B (en) * 2009-06-17 2013-02-06 北京化工大学 Screw extruder barrel and temperature control method thereof
CN101947847A (en) * 2010-09-15 2011-01-19 南京欧立挤出机械有限公司 Twin-screw extruder
CN202079765U (en) * 2011-04-28 2011-12-21 嘉兴市博腾塑业有限公司 Water cooling system of extruder
CN202129978U (en) * 2011-06-20 2012-02-01 宁波康润机械科技有限公司 Automatic cooling device for plastic extruder
EP2749399B1 (en) * 2011-08-25 2016-11-30 Fujifilm Corporation Biaxially stretched polyester film, method of producing same, and solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104814A (en) * 1986-10-22 1988-05-10 Sekisui Chem Co Ltd Resin temperature control device for extruder
JPH07144354A (en) * 1993-11-24 1995-06-06 Japan Steel Works Ltd:The Method and apparatus for controlling temperature of cylinder
JP2012091494A (en) * 2010-09-27 2012-05-17 Fujifilm Corp Method of manufacturing polyester film, and polyester film for solar cell member

Also Published As

Publication number Publication date
KR20160015278A (en) 2016-02-12
CN105339156B (en) 2017-04-05
CN105339156A (en) 2016-02-17
KR101810856B1 (en) 2017-12-20
JP6049648B2 (en) 2016-12-21
JP2015027785A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP6049648B2 (en) Twin screw extrusion apparatus and film manufacturing method
KR102013606B1 (en) Manufacturing method of thermoplastic resin film and cyclic olefin resin film
CN101664991B (en) Method for producing film and optical film
JP5738792B2 (en) Method for producing polyester film, polyester film, protective sheet for solar cell, and solar cell module
JP6651398B2 (en) Method and apparatus for manufacturing optical film
JP5512749B2 (en) Production method of polyester film
KR101589389B1 (en) Method for producing polyester film, polyester film, back sheet for solar cell, and solar cell module
KR102051724B1 (en) Polyester film, process for producing same, back-protective sheet for solar cell, and solar cell module
JP5547142B2 (en) Production method of polyester film
US20230331983A1 (en) Liquid crystal polymer film and substrate for high-speed communication
JP2014193604A (en) Manufacturing method of a sheet and manufacturing apparatus of a sheet
JP5653951B2 (en) Production method of polyester film
JP3996876B2 (en) Production method of polyester resin
KR20100063727A (en) Melt extruder and process for producing thermoplastic resin film
JP5676526B2 (en) Method for producing polyester resin, protective sheet for solar cell, and solar cell module
US20230257533A1 (en) Heat-shrinkable polyester-based film roll
US20230022144A1 (en) Polymer film and substrate for communication
JP4967997B2 (en) Method for producing thermoplastic resin film
JP2013043411A (en) Polyester film, method for manufacturing the same, back sheet for solar cell, and solar cell module
JP2012256632A (en) Method for manufacturing resin film, polyester film, back sheet for solar cell, and solar cell module
JP2024059082A (en) Biaxially oriented polyester film, biaxially oriented polyester film roll, and method for producing biaxially oriented polyester film
JP2017140758A (en) Method for producing film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035773.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036538

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820243

Country of ref document: EP

Kind code of ref document: A1