WO2015001979A1 - Method for producing substrate with coating film - Google Patents

Method for producing substrate with coating film Download PDF

Info

Publication number
WO2015001979A1
WO2015001979A1 PCT/JP2014/066329 JP2014066329W WO2015001979A1 WO 2015001979 A1 WO2015001979 A1 WO 2015001979A1 JP 2014066329 W JP2014066329 W JP 2014066329W WO 2015001979 A1 WO2015001979 A1 WO 2015001979A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
coating film
coating
film
inorganic particles
Prior art date
Application number
PCT/JP2014/066329
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 ▲桑▼原
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015001979A1 publication Critical patent/WO2015001979A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/465Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific shape
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic

Definitions

  • the present invention relates to a method for producing a coated substrate.
  • a coating film (inorganic film) made of an inorganic material has an advantage of higher heat resistance and ultraviolet resistance than a coating film (organic film) made of an organic material. Therefore, if a thick (large) inorganic film can be formed on a substrate, it is useful as a binder for fixing particles that impart various optical characteristics, electrical characteristics, and chemical characteristics to the substrate. It is also possible to give the above properties to the inorganic film itself.
  • a method for forming an inorganic film As a method for forming an inorganic film, a method of forming a coating film containing a film forming precursor on a substrate using a liquid containing a film forming precursor and then baking and solidifying the coating film is known. ing. However, thermal shrinkage of the coating film is likely to occur during baking and solidification, thereby generating shrinkage stress. This shrinkage stress increases as the film thickness increases, causing cracks or film peeling. For this reason, a method that can suppress the occurrence of cracks or film peeling even when the film thickness increases is desired.
  • Patent Document 1 an organic substance that gels by heating or cooling, such as methylcellulose or agar, is contained in a dispersion of silica glass particles, the dispersion is applied onto a substrate, and the coating is gelled and dried. Thereafter, a method of firing at a temperature equal to or higher than the glass transition point of the silica glass particles is described, and in the examples, it is described that a silica film having a film thickness of about 60 to 200 ⁇ m is formed. In the examples, it is described that a series of steps of coating, gelation and drying was repeated three times, followed by firing to form a silica film having a film thickness of about 0.3 to 0.6 mm.
  • Patent Document 2 an organic-inorganic composite coating film is formed using a sol solution containing an organic molecular assembly and an inorganic precursor, and then the coating film is dried to remove moisture, followed by organic irradiation by ultraviolet irradiation. It describes a method of forming an inorganic film having nanopores with a film thickness of 1 ⁇ m or more while removing cracking or peeling by removing components. However, since this method includes many steps for film formation, productivity is low.
  • a method of spraying a liquid containing a film formation precursor onto a substrate heated to a firing temperature or higher is known.
  • This method is different from the conventional method in which a coating film is formed on a substrate with a liquid containing a film-forming precursor and then fired and solidified, and the droplets sprayed on the substrate are immediately fired and solidified.
  • the number is small and the productivity is good.
  • the solvent component and the organic component in the sprayed droplets are easily removed before the droplets reach the substrate. For this reason, the shrinkage stress which arises in a film
  • Patent Document 3 discloses that a film forming solution containing an organometallic compound and an organosilicon compound is sprayed onto a substrate heated to a temperature higher than the firing temperature, and a refractive index-reducing transparent coating comprising a silicon oxide thin film containing a metal oxide. A method of forming is described.
  • Patent Document 4 a coating liquid containing an organopolysiloxane, inorganic particles, and a liquid medium is applied to a glass substrate in a temperature range of 400 to 650 ° C. by a spray method or the like to oxidize containing inorganic particles.
  • Patent Document 5 describes a method for obtaining glass with an infrared shielding film by dispersing ITO fine particles in a hydrolyzate of tetramethoxysilane using ethanol or 2-propanol, and baking after applying by spin coating or the like. Has been. Further, in Patent Document 6, ethanol or 2-propanol is used, and metal oxide fine particles such as tin oxide and titania are dispersed in a hydrolyzate of tetramethoxysilane. A method for obtaining a glass of is described.
  • Patent Document 3 does not contain inorganic particles in the film forming solution, and the film deposition efficiency expressed by the film thickness of the formed film per unit volume of the spray amount of the coating liquid is inferior, It is difficult to efficiently thicken the coating film.
  • the organopolysiloxane since the organopolysiloxane is nonpolar, the liquid medium of the coating liquid is limited to a nonpolar one, and the inorganic particles can be dispersed in the nonpolar liquid medium or previously hydrophobized. Limited to processed.
  • the methods described in Patent Documents 5 and 6 have a problem that cracks are likely to occur when the film thickness increases.
  • the present invention has been made in view of the above circumstances, and is a method of forming a coating film made of an inorganic material on a substrate, which can efficiently increase the thickness of the coating film, and the thickness of the coating film is large. Even if it becomes, it aims at providing the manufacturing method of the board
  • the gist of the present invention is the following [1] to [11].
  • a coating liquid containing inorganic particles, an alkoxysilane hydrolyzate, a liquid medium containing at least one of a polyhydric hydroxyl group-containing compound and water, and having an average aggregate particle diameter of the inorganic particles of less than 100 nm is prepared. Preparing a substrate; holding the substrate at 200 to 650 ° C .; spraying the coating liquid onto the substrate; obtaining a substrate with a coating film;
  • [3] The method for producing a coated substrate according to [1] or [2], wherein the liquid medium is a polyvalent hydroxyl group-containing compound or a mixture of water and a polyvalent hydroxyl group-containing compound.
  • [4] The method for producing a coated substrate according to any one of [1] to [3], wherein the inorganic particles are silica particles.
  • [5] The method for producing a coated substrate according to any one of [1] to [4], wherein the inorganic particles are chain particles.
  • [6] The method for producing a coated substrate according to any one of [1] to [5], wherein the substrate is a glass substrate.
  • the method for manufacturing a substrate with a coating film of the present invention it is possible to efficiently and thickly form a coating film made of an inorganic material while preventing the occurrence of cracks or film peeling.
  • the average aggregate particle diameter of inorganic particles in the present specification is an average particle diameter obtained by measuring inorganic particles in a dispersion medium by a dynamic light scattering method.
  • the value of the average aggregated particle diameter obtained by this method means the value of the average primary particle diameter.
  • the temperature of the substrate in this specification is the surface temperature on the side where the coating liquid is applied.
  • the thickness (film thickness) of the coating film in this specification is defined by an interval in a direction parallel to the substrate surface (in-plane direction) in an image obtained by observing a cross section of the substrate with a coating film with a scanning electron microscope. The film thickness from the surface of the substrate to the surface of the coating film was measured at three points of 1.5 ⁇ m, and the average value (average film thickness) of the film thicknesses at the three points was determined as the film thickness (film thickness). It was.
  • the substrate with a coating film in the present invention is sprayed with a liquid containing inorganic particles, an alkoxysilane hydrolyzate and a liquid medium (hereinafter also referred to as a coating liquid (X)) on a substrate maintained at 200 to 650 ° C.
  • a coating film hereinafter sometimes referred to as a coating film (Y)
  • the substrate is not particularly limited as long as it can be heated to 200 to 650 ° C.
  • a glass substrate is suitable. Examples of the material for the glass substrate include soda lime silica glass, borosilicate glass, and aluminosilicate glass.
  • the substrate may have a layer other than the coating film (Y) on the surface of the substrate body.
  • you may have layers other than a coating film (Y) on a coating film (Y).
  • a functional layer may be provided on the surface of the substrate body, and a coating film (Y) may be formed on the functional layer.
  • the functional layer include an undercoat layer, a stress relaxation layer, an adhesion improving layer, and a protective layer.
  • the undercoat layer functions as an alkali barrier layer or a wide band low refractive index layer.
  • the undercoat layer is preferably a layer formed by applying an undercoat coating liquid containing alkoxysilane or a hydrolyzate thereof (sol-gel silica) to the surface of the substrate body.
  • the stress relaxation layer is a material for suppressing cracks arising from the difference in thermal expansion coefficient between the glass substrate and the coating film (Y), and is a material having a thermal expansion coefficient intermediate between the glass and the coating film (Y). Preferably it is formed.
  • the inorganic particles those having an average aggregate particle diameter of less than 100 nm are used.
  • the coating liquid (X) contains the inorganic particles, so that the film deposition efficiency is improved and the effect of increasing the film thickness of the coating film (Y) is sufficient. Easy to obtain.
  • the lower limit of the average agglomerated particle diameter is preferably 1 nm from the viewpoint of dispersion stability, and more preferably 3 nm.
  • Inorganic particles include metal oxide particles or metal particles. Inorganic particles may be used alone or in combination of two or more. From the viewpoint of availability, silica particles (silicon oxide particles) are preferably used as the inorganic particles. Moreover, when what has various functions as an inorganic particle is used, the coating film (Y) which acts as a functional layer will be obtained. As an example of the material of the inorganic particle which has a function, the following are mentioned according to a function. UV shielding: zinc oxide, cerium oxide, etc. Infrared shielding: Indium tin oxide (ITO), antimony tin oxide (ATO), tungsten oxide, erbium, etc. Antistatic: ITO, ATO, silver, etc.
  • ITO Indium tin oxide
  • ATO antimony tin oxide
  • Antistatic ITO, ATO, silver, etc.
  • Photocatalyst titanium oxide and the like. Wavelength conversion: zinc oxide, europium doped zinc oxide, zinc sulfide, europium doped zinc sulfide, indium phosphide, bismuth doped calcium sulfide, europium doped calcium fluoride, europium doped yttrium vanadate, and the like.
  • the function imparted to the coating film (Y) is a function that provides a higher effect as the film thickness is larger in that the effect of applying the present invention is greater. Examples of the functional layer having a higher effect as the film thickness is larger include a light scattering layer, an alkali barrier layer, an ultraviolet absorption layer, and an infrared absorption layer.
  • the shape of the inorganic particles examples include a spherical shape, an elliptical shape, a needle shape, a rod shape, a plate shape, a rod shape, a conical shape, a columnar shape, a cubic shape, a rectangular shape, a diamond shape, a star shape, and an indefinite shape.
  • the inorganic particles may exist in a state where each particle is independent, each particle may be linked in a chain, or each particle may be aggregated.
  • chain particles in which each inorganic particle is connected in a chain the coating efficiency when forming a coating film by spraying the coating liquid (X) onto a heated substrate is greatly increased. To improve.
  • the alkoxysilane hydrolyzate produced when the coating liquid (X) is supplied onto the heated substrate by forming chain-structured inorganic particles and a network structure with the alkoxysilane hydrolyzate. It is conceivable that the vaporization or scattering of the water is suppressed.
  • the number of linked inorganic particles is preferably 2 to 1000, more preferably 3 to 500.
  • the inorganic particles may be linearly linked or branched.
  • the inorganic particles only have to have an average aggregate particle diameter of less than 100 nm, and may be core-shell type particles in which one component is coated with another component.
  • the aggregate particle diameter of the core-shell type particles means the outer diameter of the shell.
  • the inorganic particles may be surface-treated with a surfactant, a polymer dispersant, a silane coupling agent or the like.
  • the aggregate particle diameter of the inorganic particles after the surface treatment is preferably 1 to 100 nm.
  • Inorganic particles are inert to heat of 400 to 650 ° C., that is, when a dispersion liquid containing only inorganic particles and not containing an alkoxysilane hydrolyzate is supplied on a heated substrate, no film is formed. Or a film having a significantly low film deposition efficiency.
  • the alkoxysilane hydrolyzate is obtained by hydrolyzing alkoxysilane with a catalyst in the presence of one or more hydroxy compounds selected from the group consisting of water and a polyhydric hydroxyl group-containing compound.
  • the polyvalent hydroxyl group-containing compound used here is the same as that described later.
  • water is preferred.
  • the alkoxysilane hydrolyzate may contain unreacted alkoxysilane.
  • the hydrolyzate of alkoxysilane is a precursor of silicon oxide, and silicon oxide is obtained by firing this.
  • alkoxysilane examples include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), monoalkyltrialkoxysilane (methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltrimethoxysilane).
  • tetraalkoxysilane is preferable, and tetraethoxysilane or tetramethoxysilane is more preferable from the viewpoint of high hydrolysis rate and high productivity.
  • Alkoxysilane may be used alone or in combination of two or more.
  • Hydrolysis of the alkoxysilane is performed using a hydroxy compound (preferably water) and a catalyst. It is preferable to use an acid or an alkali as the catalyst.
  • the acid include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, tartaric acid, citric acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid).
  • the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like.
  • the catalyst is preferably an acid from the viewpoint of long-term storage. Moreover, as a catalyst, what does not prevent dispersion
  • a hydroxy medium is used as a liquid medium, and an alkoxysilane and a catalyst are present in the liquid medium, whereby a liquid medium containing an alkoxysilane hydrolyzate is obtained.
  • the liquid medium contains at least one of a polyhydric hydroxyl group-containing compound and water. That is, at least a polyvalent hydroxyl group-containing compound, water, or a mixture thereof is used as the liquid medium.
  • the liquid medium contains neither a polyvalent hydroxyl group-containing compound nor water, even if the coating liquid is sprayed onto the substrate, no coating film is formed on the substrate, or even if a coating film is formed, the film is deposited. Efficiency is significantly reduced.
  • the alkoxysilane is hydrolyzed in a liquid medium, it is preferable to use both a polyhydric hydroxyl group-containing compound and water as the liquid medium.
  • the polyhydric hydroxyl group-containing compound is a compound having two or more hydroxyl groups in one molecule, and for example, one or more selected from the group consisting of polyhydric alcohols, alkanolamines, and phenol derivatives can be used.
  • the polyhydric alcohol is preferably one or more selected from the group consisting of (poly) alkylene glycol, trimethylolpropane, trimethylolethane, glycerin, pentaerythritol, sorbitol, dipentaerythritol, and sucrose.
  • the alkanolamine is preferably at least one selected from the group consisting of monoethanolamine, propanolamine, and diethanolamine.
  • the phenol derivative is preferably at least one selected from the group consisting of bisphenol A, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, and hexahydroxybenzene.
  • the (poly) alkylene glycol in this specification is an alkylene glycol represented by HO—C n H 2n —OH (n is an integer of 1 or more), or HO— (C n H 2n —O—) m H ( n is an integer of 1 or more, and m is an integer of 2 or more).
  • (poly) alkylene glycol is preferable in that good film formation efficiency of the coating film can be easily obtained.
  • the (poly) alkylene glycol a (poly) alkylene glycol having a molecular weight of 300 or less is preferable.
  • trialkylene glycol or tetraalkylene glycol is preferable, and tetraalkylene glycol is preferable from the viewpoint that good film formation efficiency of the coating film can be easily obtained.
  • the carbon number (n) of the alkylene group (—C n H 2n —) in the (poly) alkylene glycol is preferably 2 to 6 in terms of being able to disperse the inorganic fine particles satisfactorily and in terms of viscosity (handleability). 4 is more preferable.
  • (Poly) alkylene glycol is preferably (poly) ethylene glycol, (poly) propylene glycol, or (poly) tetramethylene glycol. Diethylene glycol, triethylene glycol, or tetraethylene glycol is particularly preferred.
  • the liquid medium may contain other components other than water or (poly) alkylene glycol as long as the effects of the present invention are not impaired.
  • examples of other components include monohydric alcohols such as ethanol and 2-propanol, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
  • the content thereof is preferably more than 0% by mass and 30% by mass or less, and more preferably 10% by mass or less with respect to the total amount of the liquid medium.
  • a coating liquid containing inorganic particles, an alkoxysilane hydrolyzate, and a liquid medium is prepared.
  • the inorganic particles are preferably used in the form of a dispersion previously dispersed in a liquid medium.
  • a commercially available silica sol colloidal silica in which silica particles are dispersed in water can be used for preparing the coating liquid.
  • alkoxysilane is hydrolyzed in a liquid medium containing at least a hydroxy compound in the presence of a catalyst to obtain a liquid medium containing an alkoxysilane hydrolyzate, and a dispersion liquid of inorganic particles is added to this to obtain a uniform medium.
  • a method of obtaining a coating liquid by mixing with the above can be used.
  • the solid content concentration of coating liquid (total concentration of inorganic particles and alkoxysilane hydrolyzate (in terms of SiO 2 ) in the coating liquid) is based on the film deposition efficiency of the coating film and the viscosity (handleability) of the coating liquid. 0.3 to 70% by mass is preferable, and 3 to 25% by mass is more preferable.
  • the proportion of inorganic particles is preferably 1 to 60 mass%, more preferably 3 to 30 mass%.
  • the coating liquid (X) contains the inorganic particles, so that the deposition efficiency is improved and the film thickness of the coating film (Y) is sufficiently increased. Easy to obtain.
  • the proportion of the inorganic particles is 60% by mass or less, the aggregation of the inorganic particles is satisfactorily suppressed and a film in which the inorganic particles are uniformly dispersed is easily obtained.
  • the proportion of the alkoxysilane hydrolyzate is 40 to 99 mass% of 100 mass% of the solid content of the coating liquid (total of inorganic particles and alkoxysilane hydrolyzate in the coating liquid). 70 to 97% by mass is more preferable.
  • the proportion of the alkoxysilane hydrolyzate is 40% by mass or more, the deposition efficiency is likely to be sufficiently high, and a thick coating film is easily obtained.
  • the ratio of the alkoxysilane hydrolyzate is 99% by mass or less, the coating liquid (X) contains inorganic particles, so that the effect of increasing the film thickness of the coating film (Y) is easily obtained.
  • the prepared coating solution is applied to the substrate by spraying.
  • the spraying method of the coating liquid is preferably a spraying method in which the coating liquid is sprayed using a nozzle (such as a spray gun).
  • Specific application methods by the spray method include the following methods (i), (ii), (iii) and the like.
  • the method (ii) is preferable because the number of steps is small and a substrate with a coating film can be produced more efficiently.
  • (I) A method of spraying the coating liquid from the nozzle onto the substrate while moving the nozzle above the fixed substrate.
  • (Ii) A method of spraying a coating liquid from a nozzle onto a belt-like substrate (for example, a glass ribbon) moving in one direction.
  • (Iii) A method in which the coating liquid is sprayed from the nozzle onto the substrate while moving the nozzle over a belt-like substrate (for example, a glass ribbon) moving in one direction.
  • the temperature of the substrate when applying the coating liquid is 200 to 650 ° C., preferably 300 to 600 ° C.
  • the alkoxysilane hydrolyzate is baked to become silicon oxide, and a coating film (Y) is formed on the substrate. Since the alkoxysilane hydrolyzate on a board
  • the temperature of the substrate is preferably 300 ° C. or higher.
  • the upper limit of the temperature of the substrate is not particularly limited, but if it is too high, the equipment for heating becomes large and the material of the substrate is also limited.
  • the temperature of the substrate is maintained at a predetermined temperature within the range of 200 to 650 ° C., and the coating liquid is sprayed thereon.
  • the temperature of the substrate may be controlled to a predetermined temperature within a range of 200 to 650 ° C. at least immediately before the coating liquid is sprayed.
  • the molten glass is formed into a glass ribbon, the glass ribbon is slowly cooled, and then cut to produce a glass substrate.
  • a method of forming a coating film (Y) on the glass ribbon by applying a coating liquid to the glass ribbon can be used.
  • the glass ribbon is then cut.
  • the glass substrate in this case is preferably a green glass substrate that is not strengthened. That is, a method of forming a coating film (Y) on a glass ribbon by applying a coating liquid (X) to a glass ribbon to be a glass substrate and baking a hydrolyzate of alkoxysilane can be used.
  • the glass ribbon obtained by molding the molten glass in a float bath has a glass ribbon of 200 to 650 between the float bath and the slow cooling step or during the slow cooling step. It is preferable to spray the coating liquid at a position in the temperature range of ° C.
  • the temperature of the glass ribbon at the position immediately after the float bath is usually about 650 ° C., although it depends on the glass composition of the glass substrate, and the glass ribbon exiting the float bath is a slow cooling step. And is cooled to 400 ° C. or lower during the slow cooling process.
  • the temperature of the substrate when spraying the coating liquid is 650 ° C. or less. It is preferable that In this method (ii) or (iii), the glass ribbon obtained by forming molten glass by drawing down is coated at a position where the glass ribbon is in the temperature range of 200 to 650 ° C. during the slow cooling process. It is also preferable to spray the liquid.
  • the draw down molding method include a fusion draw method, a tube draw method, and a slot draw method.
  • the coating film (Y) thus formed on the substrate comprises a silicon oxide phase obtained by baking the alkoxysilane hydrolyzate at a predetermined temperature of 200 to 650 ° C. and inorganic particles.
  • the phase of silicon oxide plays a role of a binder for fixing inorganic particles to the substrate. Therefore, superior heat resistance and weather resistance can be obtained as compared with the case where the binder is an organic material.
  • the coating film (Y) may be a film composed of silicon oxide and inorganic particles, and may be a film formed by continuously spraying one type of coating liquid on the substrate.
  • the thickness (film thickness) of the coating film (Y) is preferably 100 nm or more, and more preferably 1000 nm or more (1 ⁇ m or more). When the thickness of the coating film (Y) is 100 nm or more, the function of the coating film (Y) is sufficiently exhibited. In addition, when a coating film (Y) is a multilayer film, let the thickness of a coating film (Y) be the film thickness of the layer formed by one spraying. However, one spray means a continuous series of sprays.
  • the upper limit of the integrated thickness when the coating film (Y) is a multilayer film is not particularly limited, but is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and particularly preferably 10 ⁇ m or less from the viewpoint of productivity.
  • Hardness of the coating film (Y) is preferably from 200 ⁇ 3000N / mm 2 in Martens hardness, and more preferably 400 ⁇ 1200N / mm 2. By increasing the temperature at the time of spraying, the hardness of the film can be increased.
  • FIG. 7 is a schematic view showing an example of a glass production apparatus suitable for producing a glass substrate with a coating film in which a coating film is formed on the glass substrate using the method of the present invention.
  • the glass manufacturing apparatus 20 melts the glass raw material to form the molten glass 30 and floats the molten glass 30 supplied from the melting furnace 22 on the surface of the molten tin 24, thereby causing the molten glass 30 to become the glass ribbon 32.
  • a spray gun 34 of the type is the type.
  • a coating liquid is sprayed from a spray gun 34 onto a glass ribbon 32 moving at a predetermined conveying speed at a position where the surface temperature of the glass ribbon 32 is 200 to 650 ° C. between the float bath 26 and the slow cooling furnace 28.
  • An inorganic film is formed on the glass ribbon 32.
  • the glass ribbon 32 exiting the slow cooling furnace 28 is cut by a cutting device (not shown) to form a glass substrate with a coating film.
  • a coating liquid containing inorganic particles of less than 100 nm, an alkoxysilane hydrolyzate, and a specific liquid medium is sprayed on a substrate maintained at 200 to 650 ° C.
  • the inorganic film can be formed thick while preventing the occurrence of cracks or film peeling.
  • inorganic particles having an average aggregate particle diameter of less than 100 nm by using inorganic particles having an average aggregate particle diameter of less than 100 nm, a structure in which inorganic particles are stacked on a substrate via a continuous phase made of silicon oxide is easily obtained, and a film It is easy to obtain a coating film having a large thickness.
  • the larger the average aggregated particle diameter of the inorganic particles contained in the coating liquid the higher the film deposition efficiency, and the smaller the average aggregated particle diameter.
  • the surface smoothness is improved and a denser coating film is obtained.
  • the use of chain particles can dramatically increase the deposition efficiency.
  • a polar liquid medium can be used.
  • Select inorganic particles because inorganic particles that can be dispersed in a polar liquid medium have more types than inorganic particles that can be dispersed in a non-polar liquid medium, and there is no need for surface treatment such as hydrophobization. The width of becomes wide.
  • Example 1 To triethylene glycol, tetraethoxysilane (manufactured by Kanto Chemical Co., Inc., SiO 2 conversion solid content: 99.9% by mass) is added so as to be 30% by mass in the coating liquid, and nitric acid (70% by mass aqueous solution) is further added. It added so that it might become 0.35 mass% in a coating liquid, and it stirred for 1 hour.
  • tetraethoxysilane manufactured by Kanto Chemical Co., Inc., SiO 2 conversion solid content: 99.9% by mass
  • nitric acid 70% by mass aqueous solution
  • a chain silica sol manufactured by Nissan Chemical Industries, (product name: Snowtex OUP), average aggregated particle size: 65 nm, solid content: 15% by mass, medium: water
  • the mixture was stirred for 5 to 10 minutes, the solid content concentration in terms of SiO 2 : 9.65% by mass, the ratio of silica particles in the solid content: 10.4% by mass, the hydrolyzate of alkoxysilane in the solid content ( Ratio of solid content in terms of SiO 2 : A coating liquid of 89.6% by mass was obtained.
  • KM-100 manufactured by SPD Laboratory
  • glass substrate 10 cm ⁇ 10 cm ⁇ 4 mm high transmission glass (soda lime silica glass, manufactured by Asahi Glass Co., Ltd.) was used.
  • a glass substrate was placed on the stage, and a heater was installed on the back side of the stage without contact with the stage.
  • the glass substrate was heated to 400 ° C. through the stage by the radiant heat of the heater.
  • the temperature of the glass substrate was measured by bringing a thermocouple into contact with one side of the glass substrate. Since the glass substrate was heated for a sufficient time before spraying the coating liquid with the spray gun, the temperature measured here may be regarded as almost the same as the surface temperature of the glass substrate.
  • the coating liquid was sprayed onto the glass substrate from a spray gun disposed above the glass substrate.
  • the liquid feed pressure to the spray gun was adjusted so that the liquid feed speed was 0.3 to 0.6 mL / second, and the spray pressure was 1 MPa.
  • the coating time was 45 seconds.
  • the stage, glass substrate, and spray gun were sprayed in a state surrounded by an explosion-proof device, and the ambient temperature was not adjusted.
  • a substrate with a coating film was obtained, in which a coating film composed of silica particles and a calcined product of hydrolyzed alkoxysilane (silicon oxide) was formed on the glass substrate.
  • FIG. 1 is a photograph of an image obtained by observing the obtained substrate with a coating film with a scanning electron microscope, where (A) is a cross-sectional image and (B) is a surface image (hereinafter the same). It was 1.7 micrometers when the average value of the film thickness (distance illustrated with an arrow in a figure) from the surface of a glass substrate to the surface of a coating film was measured from the cross-sectional image of (A).
  • the shape of the silica particles used in this example, the average aggregate particle diameter, the coating time, and the film thickness (average film thickness) of the obtained coating film are shown in Table 1 (hereinafter the same).
  • Table 1 hereinafter the same.
  • the surface smoothness of the coating film was evaluated by the following method. The results are shown in Table 1.
  • the obtained coating film had a Martens hardness of 830 N / mm 2 .
  • the Martens hardness was measured with a microhardness measuring device (PICODERTOR HM500 manufactured by Fischer Instruments). An indentation depth of 0.1 ⁇ m and an indentation time of 20 seconds were measured at five points at different locations to obtain an average value.
  • Example 2 instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Industries, (product name: Snowtex OS), average aggregated particle size: 11 nm, solid content: 20% by mass, medium: water) This was added so that it might become 5.0 mass% in a coating liquid.
  • Example 3 instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Co., Ltd., (product name: Snowtex O-40), average aggregate particle size: 30 nm, solid content: 40% by mass, medium: This was added to 2.5% by mass in the coating solution.
  • Example 4 instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Industries, (product name: Snowtex OL), average aggregated particle size: 50 nm, solid content: 20% by mass, medium: water) This was added so that it might become 5.0 mass% in a coating liquid.
  • spherical silica sol instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Co., Ltd. (product name: Snowtex MP-2040), average aggregate particle size: 200 nm, solid content: 40% by mass, medium: This was added to 2.5% by mass in the coating solution. Except for the above, a substrate with a coating film was obtained in the same manner as in Example 1, observed with a scanning electron microscope, measured for film thickness, and evaluated surface smoothness. The results are shown in Table 1.
  • Reference Example 2 In Reference Example 2, instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Co., Ltd., (Product name: Snowtex MP-4540M), average aggregate particle size: 450 nm, solid content: 40% by mass, medium: This was added to 2.5% by mass in the coating solution. The application time was changed to 21 seconds. Except for the above, a substrate with a coating film was obtained in the same manner as in Example 1, observed with a scanning electron microscope, measured for film thickness, and evaluated surface smoothness. The results are shown in Table 1.
  • Comparative Example 1 is an example in which the coating liquid does not contain inorganic particles. That is, tetraethoxysilane (manufactured by Kanto Chemical Co., Inc., SiO 2 conversion solid content: 99.9% by mass) was added to triethylene glycol so as to be 33.5% by mass in the coating solution, and nitric acid (70% by mass) was further added. the aqueous solution), added in an amount of 0.35 wt% in the coating solution, and stirred for 1 hour, SiO 2 in terms of solid concentration: was obtained 9.65 mass% of the coating solution. Using the obtained coating solution, a substrate with a coating film was obtained in the same manner as in Example 1, and observed with a scanning electron microscope, the film thickness was measured, and the surface smoothness was evaluated. The results are shown in Table 1.
  • Example 1 As shown in the results of Table 1, in Examples 1 to 4, an inorganic film having a thickness of 400 nm or more could be formed on the substrate in a coating time of 45 seconds, and good film deposition efficiency was obtained. Further, no cracks or film peeling occurred in the coating film. Comparing Examples 2 to 4, it can be seen that the larger the average aggregate particle size of the silica particles, the larger the film thickness of the coating film, that is, the higher the film deposition efficiency in the same coating time. On the other hand, the smaller the average agglomerated particle diameter of the silica particles, the higher the smoothness of the surface, and a denser coating film can be obtained as can be seen from the photograph. It can be seen that Example 1 using chain silica had a larger film thickness than Examples 2 to 4, and the deposition efficiency was dramatically improved. The coating film of Example 1 also had good surface smoothness.
  • the coated substrate produced in the present invention has high visible light transmittance and good UV durability, and covers solar cells, display protective plates, automotive glass, railway vehicle glass, and ships. Widely used as glass for construction and glass for building materials. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-142052 filed on July 5, 2013 is cited herein as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 Provided is a method for forming a coating film comprising an inorganic material on a substrate, wherein it is possible to efficiently thicken the coating film, and the development of film cracking or peeling is made difficult, even if the thickness of the coating film increases. A method for producing a substrate with a coating film, having a step for spraying a coating solution containing inorganic particles, alkoxysilane hydrolyzate, and a liquid medium on a substrate kept at 200-650°C, the average aggregate diameter of the inorganic particles being less than 100 nm and the liquid medium containing a polyvalent hydroxyl group-containing compound and/or water.

Description

塗膜付き基板の製造方法Manufacturing method of substrate with coating film
 本発明は塗膜付き基板の製造方法に関する。 The present invention relates to a method for producing a coated substrate.
 無機材料からなる塗膜(無機膜)は、有機材料からなる塗膜(有機膜)に比べて耐熱性および耐紫外線性が高いという利点を有する。したがって、基板上に膜厚が厚い(大きい)無機膜を形成できれば、種々の光学特性、電気的特性、化学的特性を基板に付与する粒子を固定するためのバインダとして有用である。また無機膜自体に上記特性を持たせることも可能である。 A coating film (inorganic film) made of an inorganic material has an advantage of higher heat resistance and ultraviolet resistance than a coating film (organic film) made of an organic material. Therefore, if a thick (large) inorganic film can be formed on a substrate, it is useful as a binder for fixing particles that impart various optical characteristics, electrical characteristics, and chemical characteristics to the substrate. It is also possible to give the above properties to the inorganic film itself.
 無機膜を形成する方法として、従来より、膜形成前駆体を含む液を用いて、基板上に該膜形成前駆体を含む塗膜を形成した後、該塗膜を焼成固化させる方法が知られている。
 しかしながら、焼成固化時に塗膜の熱収縮が生じやすく、それによって収縮応力が発生する。この収縮応力は膜厚が増加するにしたがって大きくなり、クラックまたは膜剥がれが発生する原因となる。このため、膜厚が増してもクラックまたは膜剥がれの発生を抑制できる方法が望まれる。
As a method for forming an inorganic film, a method of forming a coating film containing a film forming precursor on a substrate using a liquid containing a film forming precursor and then baking and solidifying the coating film is known. ing.
However, thermal shrinkage of the coating film is likely to occur during baking and solidification, thereby generating shrinkage stress. This shrinkage stress increases as the film thickness increases, causing cracks or film peeling. For this reason, a method that can suppress the occurrence of cracks or film peeling even when the film thickness increases is desired.
 特許文献1には、シリカガラス粒子の分散液に、メチルセルロースや寒天等、加熱または冷却によってゲル化する有機物を含有させ、該分散液を基板上に塗布し、塗膜をゲル化および乾燥させた後、シリカガラス粒子のガラス転移点以上の温度で焼成する方法が記載されており、実施例において膜厚およそ60~200μmのシリカ膜を形成したことが記載されている。また実施例には、塗布、ゲル化および乾燥の一連の工程を3回繰り返した後に焼成して膜厚およそ0.3~0.6mmのシリカ膜を形成したことが記載されている。
 しかしこの方法では、極めて高い温度で処理する必要があるため、生産性が低く、また使用できる基板の種類も制限される。
 特許文献2には、有機分子集合体および無機前駆体を含むゾル溶液を用いて、有機-無機複合体被膜を形成した後、該被膜を乾燥させて水分を除去し、続いて紫外線照射により有機成分を除去することにより、クラックまたは剥離の発生を抑制しつつ、膜厚が1μm以上の、ナノ細孔を有する無機膜を形成する方法が記載されている。
 しかしこの方法は、膜形成に多くの工程を含むため、生産性が低い。
In Patent Document 1, an organic substance that gels by heating or cooling, such as methylcellulose or agar, is contained in a dispersion of silica glass particles, the dispersion is applied onto a substrate, and the coating is gelled and dried. Thereafter, a method of firing at a temperature equal to or higher than the glass transition point of the silica glass particles is described, and in the examples, it is described that a silica film having a film thickness of about 60 to 200 μm is formed. In the examples, it is described that a series of steps of coating, gelation and drying was repeated three times, followed by firing to form a silica film having a film thickness of about 0.3 to 0.6 mm.
However, this method requires processing at an extremely high temperature, so that the productivity is low and the types of substrates that can be used are limited.
In Patent Document 2, an organic-inorganic composite coating film is formed using a sol solution containing an organic molecular assembly and an inorganic precursor, and then the coating film is dried to remove moisture, followed by organic irradiation by ultraviolet irradiation. It describes a method of forming an inorganic film having nanopores with a film thickness of 1 μm or more while removing cracking or peeling by removing components.
However, since this method includes many steps for film formation, productivity is low.
 クラックまたは膜剥がれの無い無機膜を形成する方法として、膜形成前駆体を含む液を焼成温度以上に加熱した基板上に噴霧する方法が知られている。この方法は、基板上に膜形成前駆体を含む液で塗膜を形成した後に焼成固化させる従来の方法とは異なり、基板上に噴霧された液滴が直ちに焼成されて固化するため、製造工程数が少なくて生産性が良い。また噴霧された液滴中の溶媒成分および有機成分が、該液滴が基板に到達する前に除去されやすい。このため、膜に生じる収縮応力が大幅に低減され、クラック、膜剥がれの発生が抑制される。さらに、噴霧時間を長くするなどして厚膜化した場合にも収縮応力が一定に保たれやすく、クラックまたは剥離が発生しにくい。
 例えば特許文献3には、有機金属化合物、及び有機ケイ素化合物を含む被膜形成溶液を、焼成温度以上に加熱した基板上に吹き付けて、金属酸化物を含有する酸化ケイ素薄膜からなる屈折率低減透明被膜を形成する方法が記載されている。
 また特許文献4には、オルガノポリシロキサン、無機粒子、および液状媒体を含むコーティング液を、400~650℃の温度範囲にあるガラス基板に、スプレー法等で塗布して、無機粒子を含有する酸化ケイ素膜を形成する方法が記載されている。
 また特許文献5には、エタノールや2-プロパノールを用い、テトラメトキシシランの加水分解物中にITO微粒子を分散させ、スピンコート等で塗布後に焼成し、赤外線遮蔽膜付きのガラスを得る方法が記載されている。
 また特許文献6には、エタノールや2-プロパノールを用い、テトラメトキシシランの加水分解物中に酸化錫やチタニア等の金属酸化物微粒子を分散させ、スピンコート等で塗布後に焼成し、防眩性のガラスを得る方法が記載されている。
As a method of forming an inorganic film free from cracks or film peeling, a method of spraying a liquid containing a film formation precursor onto a substrate heated to a firing temperature or higher is known. This method is different from the conventional method in which a coating film is formed on a substrate with a liquid containing a film-forming precursor and then fired and solidified, and the droplets sprayed on the substrate are immediately fired and solidified. The number is small and the productivity is good. Further, the solvent component and the organic component in the sprayed droplets are easily removed before the droplets reach the substrate. For this reason, the shrinkage stress which arises in a film | membrane is reduced significantly and generation | occurrence | production of a crack and film | membrane peeling is suppressed. Furthermore, even when the film thickness is increased by increasing the spraying time, the shrinkage stress is easily kept constant, and cracking or peeling is unlikely to occur.
For example, Patent Document 3 discloses that a film forming solution containing an organometallic compound and an organosilicon compound is sprayed onto a substrate heated to a temperature higher than the firing temperature, and a refractive index-reducing transparent coating comprising a silicon oxide thin film containing a metal oxide. A method of forming is described.
In Patent Document 4, a coating liquid containing an organopolysiloxane, inorganic particles, and a liquid medium is applied to a glass substrate in a temperature range of 400 to 650 ° C. by a spray method or the like to oxidize containing inorganic particles. A method of forming a silicon film is described.
Patent Document 5 describes a method for obtaining glass with an infrared shielding film by dispersing ITO fine particles in a hydrolyzate of tetramethoxysilane using ethanol or 2-propanol, and baking after applying by spin coating or the like. Has been.
Further, in Patent Document 6, ethanol or 2-propanol is used, and metal oxide fine particles such as tin oxide and titania are dispersed in a hydrolyzate of tetramethoxysilane. A method for obtaining a glass of is described.
日本特開2013-035723号公報Japanese Unexamined Patent Publication No. 2013-035723 日本特開2006-130889号公報Japanese Unexamined Patent Publication No. 2006-130889 日本特開平07-097237号公報Japanese Unexamined Patent Publication No. 07-097237 国際公開第2011/155545号International Publication No. 2011/155545 日本特開2005-194169号公報Japanese Unexamined Patent Publication No. 2005-194169 日本特開2013-136496号公報Japanese Unexamined Patent Publication No. 2013-136696
 特許文献3に記載の方法は、被膜形成溶液に無機粒子が含まれておらず、コーティング液の噴霧量の単位体積当たりの、形成された膜の膜厚で表される着膜効率が劣り、塗膜を効率良く厚膜化することが難しい。
 特許文献4に記載の方法は、オルガノポリシロキサンが非極性であるため、コーティング液の液状媒体が非極性のものに限定され、無機粒子は非極性の液状媒体に分散できるもの、または予め疎水化処理されたものに限定される。
 特許文献5や6に記載の方法では、膜厚が厚くなるとクラックが生じやすいという課題があった。
The method described in Patent Document 3 does not contain inorganic particles in the film forming solution, and the film deposition efficiency expressed by the film thickness of the formed film per unit volume of the spray amount of the coating liquid is inferior, It is difficult to efficiently thicken the coating film.
In the method described in Patent Document 4, since the organopolysiloxane is nonpolar, the liquid medium of the coating liquid is limited to a nonpolar one, and the inorganic particles can be dispersed in the nonpolar liquid medium or previously hydrophobized. Limited to processed.
The methods described in Patent Documents 5 and 6 have a problem that cracks are likely to occur when the film thickness increases.
 本発明は前記事情に鑑みてなされたもので、基板上に無機材料からなる塗膜を形成する方法であって、塗膜を効率良く厚膜化することができ、塗膜の膜厚が大きくなってもクラックまたは膜剥がれが生じ難い、塗膜付き基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a method of forming a coating film made of an inorganic material on a substrate, which can efficiently increase the thickness of the coating film, and the thickness of the coating film is large. Even if it becomes, it aims at providing the manufacturing method of the board | substrate with a coating film which a crack or film | membrane peeling does not produce easily.
 本発明は、下記の[1]~[11]を要旨とする。
[1]無機粒子と、アルコキシシラン加水分解物と、多価水酸基含有化合物および水の少なくとも一方を含む液状媒体とを含み、前記無機粒子の平均凝集粒子径が100nm未満であるコーティング液を準備し;基板を準備し;前記基板を200~650℃に保持し;前記基板に前記コーティング液を噴霧し;塗膜付き基板を得る、塗膜付き基板の製造方法。
The gist of the present invention is the following [1] to [11].
[1] A coating liquid containing inorganic particles, an alkoxysilane hydrolyzate, a liquid medium containing at least one of a polyhydric hydroxyl group-containing compound and water, and having an average aggregate particle diameter of the inorganic particles of less than 100 nm is prepared. Preparing a substrate; holding the substrate at 200 to 650 ° C .; spraying the coating liquid onto the substrate; obtaining a substrate with a coating film;
[2]無機粒子、アルコキシシラン加水分解物、および液状媒体を含むコーティング液を、200~650℃に保持された基板に噴霧する工程を有し、前記無機粒子の平均凝集粒子径が100nm未満であり、前記液状媒体が多価水酸基含有化合物および水の少なくとも一方を含む、塗膜付き基板の製造方法。 [2] A step of spraying a coating liquid containing inorganic particles, an alkoxysilane hydrolyzate, and a liquid medium onto a substrate maintained at 200 to 650 ° C., wherein the average aggregate particle diameter of the inorganic particles is less than 100 nm A method for producing a coated substrate, wherein the liquid medium contains at least one of a polyhydric hydroxyl group-containing compound and water.
[3]前記液状媒体が、多価水酸基含有化合物、または、水と多価水酸基含有化合物の混合物である、前記[1]または[2]に記載の塗膜付き基板の製造方法。
[4]前記無機粒子がシリカ粒子である、前記[1]~[3]のいずれか一項に記載の塗膜付き基板の製造方法。
[5]前記無機粒子が鎖状粒子である、前記[1]~[4]のいずれか一項に記載の塗膜付き基板の製造方法。
[6]前記基板がガラス基板である、前記[1]~[5]のいずれか一項に記載の塗膜付き基板の製造方法。
[7]前記アルコキシシラン加水分解物が、テトラエトキシシランまたはテトラメトキシシランの加水分解物である、前記[1]~[6]のいずれか一項に記載の塗膜付き基板の製造方法。
[8]前記多価水酸基含有化合物が、ジエチレングリコール、トリエチレングリコール、またはテトラエチレングリコールである、前記[1]~[7]のいずれか一項に記載の塗膜付き基板の製造方法。
[9]前記無機粒子の割合が、コーティング液の固形分(コーティング液中の無機粒子およびアルコキシシラン加水分解物の合計)の100質量%のうち3~30質量%である、前記[1]~[8]のいずれか一項に記載の塗膜付き基板の製造方法。
[10]前記塗膜の厚さが、100nm以上10μm以下である、前記[1]~[9]のいずれか一項に記載の塗膜付き基板の製造方法。
[11]前記塗膜の硬さが、マルテンス硬さで400~1200N/mmである、前記[1]~[10]のいずれか一項に記載の塗膜付き基板の製造方法。
[3] The method for producing a coated substrate according to [1] or [2], wherein the liquid medium is a polyvalent hydroxyl group-containing compound or a mixture of water and a polyvalent hydroxyl group-containing compound.
[4] The method for producing a coated substrate according to any one of [1] to [3], wherein the inorganic particles are silica particles.
[5] The method for producing a coated substrate according to any one of [1] to [4], wherein the inorganic particles are chain particles.
[6] The method for producing a coated substrate according to any one of [1] to [5], wherein the substrate is a glass substrate.
[7] The method for producing a coated substrate according to any one of [1] to [6], wherein the alkoxysilane hydrolyzate is tetraethoxysilane or a tetramethoxysilane hydrolyzate.
[8] The method for producing a coated substrate according to any one of [1] to [7], wherein the polyvalent hydroxyl group-containing compound is diethylene glycol, triethylene glycol, or tetraethylene glycol.
[9] The ratio of the inorganic particles is 3 to 30% by mass out of 100% by mass of the solid content of the coating liquid (total of inorganic particles and alkoxysilane hydrolyzate in the coating liquid). The manufacturing method of the board | substrate with a coating film as described in any one of [8].
[10] The method for producing a substrate with a coating film according to any one of [1] to [9], wherein the thickness of the coating film is 100 nm or more and 10 μm or less.
[11] The method for producing a substrate with a coating film according to any one of [1] to [10], wherein the coating film has a Martens hardness of 400 to 1200 N / mm 2 .
 本発明の塗膜付き基板の製造方法によれば、クラック、または膜剥がれの発生を防止しつつ、無機材料からなる塗膜を、効率良く、厚く形成することができる。 According to the method for manufacturing a substrate with a coating film of the present invention, it is possible to efficiently and thickly form a coating film made of an inorganic material while preventing the occurrence of cracks or film peeling.
実施例で得られた塗膜付き基板の走査型電子顕微鏡写真であり、(A)は断面像、(B)は表面像である。It is a scanning electron micrograph of the board | substrate with a coating film obtained in the Example, (A) is a cross-sectional image, (B) is a surface image. 実施例で得られた塗膜付き基板の走査型電子顕微鏡写真であり、(A)は断面像、(B)は表面像である。It is a scanning electron micrograph of the board | substrate with a coating film obtained in the Example, (A) is a cross-sectional image, (B) is a surface image. 実施例で得られた塗膜付き基板の走査型電子顕微鏡写真であり、(A)は断面像、(B)は表面像である。It is a scanning electron micrograph of the board | substrate with a coating film obtained in the Example, (A) is a cross-sectional image, (B) is a surface image. 実施例で得られた塗膜付き基板の走査型電子顕微鏡写真であり、(A)は断面像、(B)は表面像である。It is a scanning electron micrograph of the board | substrate with a coating film obtained in the Example, (A) is a cross-sectional image, (B) is a surface image. 参考例で得られた塗膜付き基板の走査型電子顕微鏡写真であり、(A)は断面像、(B)は表面像である。It is a scanning electron micrograph of the board | substrate with a coating film obtained by the reference example, (A) is a cross-sectional image, (B) is a surface image. 参考例で得られた塗膜付き基板の走査型電子顕微鏡写真であり、(A)は断面像、(B)は表面像である。It is a scanning electron micrograph of the board | substrate with a coating film obtained by the reference example, (A) is a cross-sectional image, (B) is a surface image. ガラス製造装置の一例を示す概略図である。It is the schematic which shows an example of a glass manufacturing apparatus.
 本明細書における無機粒子の平均凝集粒子径は、分散媒中における無機粒子を動的光散乱法で測定した平均粒子径である。分散媒中における無機粒子が、凝集していない単分散の粒子である場合、本方法で得られる平均凝集粒子径の値は平均一次粒子径の値を意味する。
 本明細書における基板の温度は、コーティング液を塗布する側の表面温度である。
 本明細書における塗膜の厚さ(膜厚)は、塗膜付き基板の断面を走査型電子顕微鏡にて観察して得られる像において、基板表面に平行な方向(面内方向)における間隔が1.5μmである3点で、基板の表面から塗膜の表面までの膜厚を測定し、該3点の膜厚の平均値(平均膜厚)を、塗膜の厚さ(膜厚)とした。
The average aggregate particle diameter of inorganic particles in the present specification is an average particle diameter obtained by measuring inorganic particles in a dispersion medium by a dynamic light scattering method. When the inorganic particles in the dispersion medium are monodispersed particles that are not aggregated, the value of the average aggregated particle diameter obtained by this method means the value of the average primary particle diameter.
The temperature of the substrate in this specification is the surface temperature on the side where the coating liquid is applied.
The thickness (film thickness) of the coating film in this specification is defined by an interval in a direction parallel to the substrate surface (in-plane direction) in an image obtained by observing a cross section of the substrate with a coating film with a scanning electron microscope. The film thickness from the surface of the substrate to the surface of the coating film was measured at three points of 1.5 μm, and the average value (average film thickness) of the film thicknesses at the three points was determined as the film thickness (film thickness). It was.
<塗膜付き基板>
 本発明における塗膜付き基板は、200~650℃に保持された基板に、無機粒子、アルコキシシラン加水分解物および液状媒体を含む液(以下、コーティング液(X)ということもある。)を噴霧することによって塗膜(以下、塗膜(Y)いうこともある。)が形成されたものである。
<基板>
 基板は200~650℃に加熱できるものであればよく、特に限定されない。例えば、ガラス基板が好適である。
 ガラス基板の材料としては、ソーダライムシリカガラス、ホウケイ酸ガラス、アルミノシリケートガラス等が挙げられる。
<Substrate with coating film>
The substrate with a coating film in the present invention is sprayed with a liquid containing inorganic particles, an alkoxysilane hydrolyzate and a liquid medium (hereinafter also referred to as a coating liquid (X)) on a substrate maintained at 200 to 650 ° C. By doing so, a coating film (hereinafter sometimes referred to as a coating film (Y)) is formed.
<Board>
The substrate is not particularly limited as long as it can be heated to 200 to 650 ° C. For example, a glass substrate is suitable.
Examples of the material for the glass substrate include soda lime silica glass, borosilicate glass, and aluminosilicate glass.
 基板は、基板本体の表面に塗膜(Y)以外の層を有してもよい。また、塗膜(Y)上に、塗膜(Y)以外の層を有していてもよい。
 例えば、基板本体の表面に機能層が設けられており、該機能層の上に、塗膜(Y)が形成されてもよい。
 機能層としては、アンダーコート層、応力緩和層、密着改善層、保護層等が挙げられる。アンダーコート層は、アルカリバリア層やワイドバンドの低屈折率層としての機能を有する。アンダーコート層としては、アルコキシシランまたはその加水分解物(ゾルゲルシリカ)を含むアンダーコート用コーティング液を基板本体の表面に塗布することによって形成される層が好ましい。応力緩和層とは、ガラス基板と塗膜(Y)間の熱膨張率差から生じるクラックを抑制するためのものであり、ガラスと塗膜(Y)との中間の熱膨張係数を有する材料で形成されることが好ましい。
The substrate may have a layer other than the coating film (Y) on the surface of the substrate body. Moreover, you may have layers other than a coating film (Y) on a coating film (Y).
For example, a functional layer may be provided on the surface of the substrate body, and a coating film (Y) may be formed on the functional layer.
Examples of the functional layer include an undercoat layer, a stress relaxation layer, an adhesion improving layer, and a protective layer. The undercoat layer functions as an alkali barrier layer or a wide band low refractive index layer. The undercoat layer is preferably a layer formed by applying an undercoat coating liquid containing alkoxysilane or a hydrolyzate thereof (sol-gel silica) to the surface of the substrate body. The stress relaxation layer is a material for suppressing cracks arising from the difference in thermal expansion coefficient between the glass substrate and the coating film (Y), and is a material having a thermal expansion coefficient intermediate between the glass and the coating film (Y). Preferably it is formed.
<無機粒子>
 無機粒子は、平均凝集粒子径が100nm未満であるものを用いる。無機粒子の平均凝集粒子径が100nm未満であると、コーティング液(X)が無機粒子を含有することによって、着膜効率が向上して、塗膜(Y)の膜厚が増大する効果が十分に得られやすい。該平均凝集粒子径の下限値は、分散安定性の点で1nmが好ましく、3nmがより好ましい。
<Inorganic particles>
As the inorganic particles, those having an average aggregate particle diameter of less than 100 nm are used. When the average agglomerated particle diameter of the inorganic particles is less than 100 nm, the coating liquid (X) contains the inorganic particles, so that the film deposition efficiency is improved and the effect of increasing the film thickness of the coating film (Y) is sufficient. Easy to obtain. The lower limit of the average agglomerated particle diameter is preferably 1 nm from the viewpoint of dispersion stability, and more preferably 3 nm.
 無機粒子としては金属酸化物粒子または金属粒子が挙げられる。無機粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
 入手容易性の点で、無機粒子としてシリカ粒子(酸化ケイ素粒子)を用いることが好ましい。
 また無機粒子として各種機能を有するものを用いると、機能層として作用する塗膜(Y)が得られる。機能を有する無機粒子の材質の例としては、機能別に下記のものが挙げられる。
 紫外線遮蔽:酸化亜鉛、酸化セリウム等。
 赤外線遮蔽:酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)、酸化タングステン、エルビウム等。
 帯電防止:ITO、ATO、銀等。
 光触媒:酸化チタン等。
 波長変換:酸化亜鉛、ユーロピウムドープ酸化亜鉛、硫化亜鉛、ユーロピウムドープ硫化亜鉛、リン化インジウム、ビスマスドープ硫化カルシウム、ユーロピウムドープフッ化カルシウム、ユーロピウムドープバナジン酸イットリウム等。
 塗膜(Y)に付与する機能が、膜厚が大きいほど高い効果が得られる機能であると、本発明を適用することによる効果が大きい点で好ましい。膜厚が大きいほど高い効果が得られる機能層として、例えば、光散乱層、アルカリバリア層、紫外線吸収層、赤外線吸収層などが挙げられる。
Inorganic particles include metal oxide particles or metal particles. Inorganic particles may be used alone or in combination of two or more.
From the viewpoint of availability, silica particles (silicon oxide particles) are preferably used as the inorganic particles.
Moreover, when what has various functions as an inorganic particle is used, the coating film (Y) which acts as a functional layer will be obtained. As an example of the material of the inorganic particle which has a function, the following are mentioned according to a function.
UV shielding: zinc oxide, cerium oxide, etc.
Infrared shielding: Indium tin oxide (ITO), antimony tin oxide (ATO), tungsten oxide, erbium, etc.
Antistatic: ITO, ATO, silver, etc.
Photocatalyst: titanium oxide and the like.
Wavelength conversion: zinc oxide, europium doped zinc oxide, zinc sulfide, europium doped zinc sulfide, indium phosphide, bismuth doped calcium sulfide, europium doped calcium fluoride, europium doped yttrium vanadate, and the like.
It is preferable that the function imparted to the coating film (Y) is a function that provides a higher effect as the film thickness is larger in that the effect of applying the present invention is greater. Examples of the functional layer having a higher effect as the film thickness is larger include a light scattering layer, an alkali barrier layer, an ultraviolet absorption layer, and an infrared absorption layer.
 無機粒子の形状としては、球状、楕円上、針状、棒状、板状、棒状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状、不定形状が挙げられる。また無機粒子は、各粒子が独立した状態で存在していてもよく、各粒子が鎖状に連結していてもよく、各粒子が凝集していてもよい。
 特に、各無機粒子が鎖状に連結している鎖状粒子を用いることにより、コーティング液(X)を、加熱した基板上に噴霧供給して塗膜を形成する際の、着膜効率が大幅に向上する。その理由としては、鎖状に連結した無機粒子がアルコキシシラン加水分解物とネットワーク構造を形成することによって、コーティング液(X)が加熱した基板上に供給される際に生じる、アルコキシシラン加水分解物の気化または飛散が抑制されることが考えられる。
 鎖状粒子において、連結している無機粒子の数は2~1000が好ましく、3~500がより好ましい。鎖状粒子において、無機粒子は直鎖状に連結していてもよく、枝分かれ状であってもよい。
Examples of the shape of the inorganic particles include a spherical shape, an elliptical shape, a needle shape, a rod shape, a plate shape, a rod shape, a conical shape, a columnar shape, a cubic shape, a rectangular shape, a diamond shape, a star shape, and an indefinite shape. In addition, the inorganic particles may exist in a state where each particle is independent, each particle may be linked in a chain, or each particle may be aggregated.
In particular, by using chain particles in which each inorganic particle is connected in a chain, the coating efficiency when forming a coating film by spraying the coating liquid (X) onto a heated substrate is greatly increased. To improve. The reason is that the alkoxysilane hydrolyzate produced when the coating liquid (X) is supplied onto the heated substrate by forming chain-structured inorganic particles and a network structure with the alkoxysilane hydrolyzate. It is conceivable that the vaporization or scattering of the water is suppressed.
In the chain particles, the number of linked inorganic particles is preferably 2 to 1000, more preferably 3 to 500. In the chain particles, the inorganic particles may be linearly linked or branched.
 無機粒子は、平均凝集粒子径が100nm未満であればよく、一つの成分が別の成分によって被覆されたコア-シェル型粒子であってもよい。コア-シェル型粒子の凝集粒子径は、シェルの外径を意味する。
 無機粒子は、界面活性剤、高分子分散剤、シランカップリング剤等によって表面処理されていてもよい。表面処理後の無機粒子の凝集粒子径は、1~100nmが好ましい。
 無機粒子は、400~650℃の熱に対して不活性なもの、つまりアルコキシシラン加水分解物を含まず無機粒子のみが分散した分散液を、加熱した基板上に供給した場合に膜を形成しないもの、または著しく着膜効率の低いものであってもよい。
The inorganic particles only have to have an average aggregate particle diameter of less than 100 nm, and may be core-shell type particles in which one component is coated with another component. The aggregate particle diameter of the core-shell type particles means the outer diameter of the shell.
The inorganic particles may be surface-treated with a surfactant, a polymer dispersant, a silane coupling agent or the like. The aggregate particle diameter of the inorganic particles after the surface treatment is preferably 1 to 100 nm.
Inorganic particles are inert to heat of 400 to 650 ° C., that is, when a dispersion liquid containing only inorganic particles and not containing an alkoxysilane hydrolyzate is supplied on a heated substrate, no film is formed. Or a film having a significantly low film deposition efficiency.
<アルコキシシラン加水分解物>
 アルコキシシラン加水分解物は、水および多価水酸基含有化合物からなる群から選ばれる1種以上のヒドロキシ化合物の存在下、アルコキシシランを触媒によって加水分解することによって得られるものである。ここで用いる多価水酸基含有化合物は後述するものと同じである。ヒドロキシ化合物としては水が好ましい。アルコキシシラン加水分解物は、未反応のアルコキシシランを含んでいてもよい。アルコキシシランの加水分解物は酸化ケイ素の前駆体であり、これを焼成することにより酸化ケイ素が得られる。
<Alkoxysilane hydrolyzate>
The alkoxysilane hydrolyzate is obtained by hydrolyzing alkoxysilane with a catalyst in the presence of one or more hydroxy compounds selected from the group consisting of water and a polyhydric hydroxyl group-containing compound. The polyvalent hydroxyl group-containing compound used here is the same as that described later. As the hydroxy compound, water is preferred. The alkoxysilane hydrolyzate may contain unreacted alkoxysilane. The hydrolyzate of alkoxysilane is a precursor of silicon oxide, and silicon oxide is obtained by firing this.
 アルコキシシランとしては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等)、モノアルキルトリアルコキシシラン(メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン等)、ジアルキルジアルコキシシラン(ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン等)、トリアルキルモノアルコキシシラン(トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリプロピルメトキシシラン、トリプロピルエトキシシラン等)、モノアリールトリアルコキシシラン(フェニルトリメトキシシラン、フェニルトリエトキシシラン等)、ジアリールジアルコキシシラン(ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等)、トリアリールモノアルコキシシラン(トリフェニルメトキシシラン、トリフェニルエトキシシラン等)、ペルフルオロポリエーテル基を有するアルコキシシラン(ペルフルオロポリエーテルトリエトキシシラン等)、ペルフルオロアルキル基を有するアルコキシシラン(ペルフルオロエチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。
 これらのうち、加水分解速度が速く生産性が高い等の点から、テトラアルコキシシランが好ましく、テトラエトキシシラン、またはテトラメトキシシランがより好ましい。
 アルコキシシランは1種のみを単独で用いてもよく、2種以上を併用してもよい。
Examples of the alkoxysilane include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), monoalkyltrialkoxysilane (methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltrimethoxysilane). Ethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, etc.), dialkyl dialkoxysilane (dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, etc.) , Trialkyl monoalkoxysilane (trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, triethylethoxy Run, tripropylmethoxysilane, tripropylethoxysilane, etc.), monoaryltrialkoxysilane (phenyltrimethoxysilane, phenyltriethoxysilane, etc.), diaryl dialkoxysilane (diphenyldimethoxysilane, diphenyldiethoxysilane, etc.), triaryl Monoalkoxysilane (triphenylmethoxysilane, triphenylethoxysilane, etc.), alkoxysilane having a perfluoropolyether group (perfluoropolyethertriethoxysilane, etc.), alkoxysilane having a perfluoroalkyl group (perfluoroethyltriethoxysilane, etc.), Alkoxysilanes having vinyl groups (vinyltrimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilanes having epoxy groups (2- 3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane), having acryloyloxy group Examples include alkoxysilane (3-acryloyloxypropyltrimethoxysilane and the like).
Of these, tetraalkoxysilane is preferable, and tetraethoxysilane or tetramethoxysilane is more preferable from the viewpoint of high hydrolysis rate and high productivity.
Alkoxysilane may be used alone or in combination of two or more.
 アルコキシシランの加水分解は、ヒドロキシ化合物(好ましくは水)、および触媒を用いて行う。触媒としては酸またはアルカリを用いることが好ましい。酸としては、無機酸(硝酸、硫酸、塩酸等)、有機酸(ギ酸、しゅう酸、酒石酸、クエン酸、モノクロル酢酸、ジクロルム酢酸、トリクロル酢酸等)が挙げられる。アルカリとしては、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。触媒としては、長期保存性の点から酸が好ましい。また、触媒としては、無機粒子の分散を妨げないものが好ましい。
 コーティング液(X)を調製する際に、液状媒体としてヒドロキシ化合物を用いるとともに、該液状媒体中にアルコキシシランおよび触媒を存在させることにより、アルコキシシラン加水分解物を含む液状媒体が得られる。
Hydrolysis of the alkoxysilane is performed using a hydroxy compound (preferably water) and a catalyst. It is preferable to use an acid or an alkali as the catalyst. Examples of the acid include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, tartaric acid, citric acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid). Examples of the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like. The catalyst is preferably an acid from the viewpoint of long-term storage. Moreover, as a catalyst, what does not prevent dispersion | distribution of an inorganic particle is preferable.
When the coating liquid (X) is prepared, a hydroxy medium is used as a liquid medium, and an alkoxysilane and a catalyst are present in the liquid medium, whereby a liquid medium containing an alkoxysilane hydrolyzate is obtained.
<液状媒体>
 液状媒体は、多価水酸基含有化合物および水の少なくとも一方を含む。すなわち液状媒体として、少なくとも、多価水酸基含有化合物、水、またはこれらの混合物を用いる。
 液状媒体が、多価水酸基含有化合物および水をいずれも含まない場合、コーティング液を基板上に噴霧しても、基板上に塗膜が形成されないか、または塗膜が形成されたとしても着膜効率が著しく低くなる。
 特に、コーティング液を基板上に噴霧したときに良好な着膜効率が得られやすい点で、液状媒体として多価水酸基含有化合物を用いることが好ましい。
 また、液状媒体中でアルコキシシランの加水分解を行う場合には、液状媒体として多価水酸基含有化合物と水の両方を用いることが好ましい。
<Liquid medium>
The liquid medium contains at least one of a polyhydric hydroxyl group-containing compound and water. That is, at least a polyvalent hydroxyl group-containing compound, water, or a mixture thereof is used as the liquid medium.
When the liquid medium contains neither a polyvalent hydroxyl group-containing compound nor water, even if the coating liquid is sprayed onto the substrate, no coating film is formed on the substrate, or even if a coating film is formed, the film is deposited. Efficiency is significantly reduced.
In particular, it is preferable to use a polyvalent hydroxyl group-containing compound as the liquid medium in that good film formation efficiency is easily obtained when the coating liquid is sprayed onto the substrate.
In addition, when the alkoxysilane is hydrolyzed in a liquid medium, it is preferable to use both a polyhydric hydroxyl group-containing compound and water as the liquid medium.
 多価水酸基含有化合物は1分子中に水酸基を2個以上有する化合物であり、例えば、多価アルコール、アルカノールアミン、およびフェノール誘導体からなる群から選ばれる1種以上を用いることができる。
 多価アルコールとしては、(ポリ)アルキレングリコール、トリメチロールプロパン、トリメチロールエタン、グリセリン、ペンタエリスリトール、ソルビトール、ジペンタエリスリトール、およびショ糖からなる群から選ばれる1種以上が好ましい。
 アルカノールアミンとしては、モノエタノールアミン、プロパノールアミン、およびジエタノールアミンからなる群から選ばれる1種以上が好ましい。
 フェノール誘導体としては、ビスフェノールA、カテコール、レゾルシノール、ヒドロキノン、ピロガロール、フロログルシノール、ヘキサヒドロキシベンゼンからなる群から選ばれる1種以上が好ましい。
 本明細書における(ポリ)アルキレングリコールとは、HO-C2n-OH(nは1以上の整数)で表されるアルキレングリコール、またはHO-(C2n-O-)H(nは1以上の整数であり、mは2以上の整数である。)で表されるポリアルキレングリコールを意味する。
The polyhydric hydroxyl group-containing compound is a compound having two or more hydroxyl groups in one molecule, and for example, one or more selected from the group consisting of polyhydric alcohols, alkanolamines, and phenol derivatives can be used.
The polyhydric alcohol is preferably one or more selected from the group consisting of (poly) alkylene glycol, trimethylolpropane, trimethylolethane, glycerin, pentaerythritol, sorbitol, dipentaerythritol, and sucrose.
The alkanolamine is preferably at least one selected from the group consisting of monoethanolamine, propanolamine, and diethanolamine.
The phenol derivative is preferably at least one selected from the group consisting of bisphenol A, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, and hexahydroxybenzene.
The (poly) alkylene glycol in this specification is an alkylene glycol represented by HO—C n H 2n —OH (n is an integer of 1 or more), or HO— (C n H 2n —O—) m H ( n is an integer of 1 or more, and m is an integer of 2 or more).
 これらのうちでも、塗膜の良好な着膜効率が得られやすい点で(ポリ)アルキレングリコールが好ましい。(ポリ)アルキレングリコールとしては、分子量300以下の(ポリ)アルキレングリコールが好ましい。
 (ポリ)アルキレングリコールは、アルキレングリコール、ジアルキレングリコール(m=2)、トリアルキレングリコール(m=3)、およびテトラアルキレングリコール(m=4)からなる群から選ばれる1種以上がより好ましい。特に、塗膜の良好な着膜効率が得られやすい点から、トリアルキレングリコールまたはテトラアルキレングリコールが好ましく、テトラアルキレングリコールが好ましい。
 (ポリ)アルキレングリコールにおけるアルキレン基(-C2n-)の炭素数(n)は、良好に無機微粒子を分散できる点、および粘性(取り扱い性)の点で2~6が好ましく、2~4がより好ましい。
 (ポリ)アルキレングリコールとしては、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、または(ポリ)テトラメチレングリコールが好ましい。ジエチレングリコール、トリエチレングリコール、またはテトラエチレングリコールが特に好ましい。
Among these, (poly) alkylene glycol is preferable in that good film formation efficiency of the coating film can be easily obtained. As the (poly) alkylene glycol, a (poly) alkylene glycol having a molecular weight of 300 or less is preferable.
The (poly) alkylene glycol is more preferably at least one selected from the group consisting of alkylene glycol, dialkylene glycol (m = 2), trialkylene glycol (m = 3), and tetraalkylene glycol (m = 4). In particular, trialkylene glycol or tetraalkylene glycol is preferable, and tetraalkylene glycol is preferable from the viewpoint that good film formation efficiency of the coating film can be easily obtained.
The carbon number (n) of the alkylene group (—C n H 2n —) in the (poly) alkylene glycol is preferably 2 to 6 in terms of being able to disperse the inorganic fine particles satisfactorily and in terms of viscosity (handleability). 4 is more preferable.
(Poly) alkylene glycol is preferably (poly) ethylene glycol, (poly) propylene glycol, or (poly) tetramethylene glycol. Diethylene glycol, triethylene glycol, or tetraethylene glycol is particularly preferred.
 液状媒体は、本発明の効果を損なわない範囲内で、水または(ポリ)アルキレングリコール以外の他の成分を含んでいてもよい。
 他の成分としては、例えばエタノール、2-プロパノール等の1価のアルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。
 液状媒体が他の成分を含む場合、その含有量は、液状媒体の合計量に対して0質量%超、30質量%以下が好ましく、10質量%以下がより好ましい。
The liquid medium may contain other components other than water or (poly) alkylene glycol as long as the effects of the present invention are not impaired.
Examples of other components include monohydric alcohols such as ethanol and 2-propanol, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
When the liquid medium contains other components, the content thereof is preferably more than 0% by mass and 30% by mass or less, and more preferably 10% by mass or less with respect to the total amount of the liquid medium.
<塗膜付き基板の製造方法>
[コーティング液の調製]
 まず、無機粒子、アルコキシシラン加水分解物、および液状媒体を含むコーティング液を調製する。
 無機粒子は、予め液状媒体に分散した分散液の状態で用いることが好ましい。例えばシリカ粒子が水に分散している市販のシリカゾル(コロイダルシリカ)を、コーティング液の調製に用いることができる。
 好ましくは、少なくともヒドロキシ化合物を含む液状媒体中で、触媒の存在下、アルコキシシランの加水分解を行って、アルコキシシラン加水分解物を含む液状媒体を得、これに無機粒子の分散液を加えて均一に混合してコーティング液を得る方法を用いることができる。
<Manufacturing method of substrate with coating film>
[Preparation of coating solution]
First, a coating liquid containing inorganic particles, an alkoxysilane hydrolyzate, and a liquid medium is prepared.
The inorganic particles are preferably used in the form of a dispersion previously dispersed in a liquid medium. For example, a commercially available silica sol (colloidal silica) in which silica particles are dispersed in water can be used for preparing the coating liquid.
Preferably, alkoxysilane is hydrolyzed in a liquid medium containing at least a hydroxy compound in the presence of a catalyst to obtain a liquid medium containing an alkoxysilane hydrolyzate, and a dispersion liquid of inorganic particles is added to this to obtain a uniform medium. A method of obtaining a coating liquid by mixing with the above can be used.
 コーティング液の固形分濃度(コーティング液中の無機粒子およびアルコキシシラン加水分解物(SiO換算)の合計の濃度)は、塗膜の着膜効率およびコーティング液の粘度(取扱性)の点から、0.3~70質量%が好ましく、3~25質量%がより好ましい。 The solid content concentration of coating liquid (total concentration of inorganic particles and alkoxysilane hydrolyzate (in terms of SiO 2 ) in the coating liquid) is based on the film deposition efficiency of the coating film and the viscosity (handleability) of the coating liquid. 0.3 to 70% by mass is preferable, and 3 to 25% by mass is more preferable.
 コーティング液の固形分(コーティング液中の無機粒子およびアルコキシシラン加水分解物の合計)の100質量%のうち、無機粒子の割合は1~60質量%が好ましく、3~30質量%がより好ましい。無機粒子の割合が1質量%以上であると、コーティング液(X)が無機粒子を含有することによって、着膜効率が向上して、塗膜(Y)の膜厚が増大する効果が十分に得られやすい。無機粒子の割合が60質量%以下であると、無機粒子の凝集が良好に抑制され、無機粒子が均一に分散した膜が得られやすい。 Of the solid content of the coating liquid (total of inorganic particles and alkoxysilane hydrolyzate in the coating liquid), the proportion of inorganic particles is preferably 1 to 60 mass%, more preferably 3 to 30 mass%. When the ratio of the inorganic particles is 1% by mass or more, the coating liquid (X) contains the inorganic particles, so that the deposition efficiency is improved and the film thickness of the coating film (Y) is sufficiently increased. Easy to obtain. When the proportion of the inorganic particles is 60% by mass or less, the aggregation of the inorganic particles is satisfactorily suppressed and a film in which the inorganic particles are uniformly dispersed is easily obtained.
 アルコキシシラン加水分解物(SiO換算固形分)の割合は、コーティング液の固形分(コーティング液中の無機粒子およびアルコキシシラン加水分解物の合計)の100質量%のうち、40~99質量%が好ましく、70~97質量%がより好ましい。アルコキシシラン加水分解物の割合が40質量%以上であると、着膜効率が十分に高くなりやすく、厚膜の塗膜が得られやすい。アルコキシシラン加水分解物の割合が99質量%以下であると、コーティング液(X)が無機粒子を含有することによって、塗膜(Y)の膜厚が増大する効果が十分に得られやすい。 The proportion of the alkoxysilane hydrolyzate (SiO 2 equivalent solid content) is 40 to 99 mass% of 100 mass% of the solid content of the coating liquid (total of inorganic particles and alkoxysilane hydrolyzate in the coating liquid). 70 to 97% by mass is more preferable. When the proportion of the alkoxysilane hydrolyzate is 40% by mass or more, the deposition efficiency is likely to be sufficiently high, and a thick coating film is easily obtained. When the ratio of the alkoxysilane hydrolyzate is 99% by mass or less, the coating liquid (X) contains inorganic particles, so that the effect of increasing the film thickness of the coating film (Y) is easily obtained.
[コーティング液の塗布]
 調製したコーティング液を、基板に噴霧する方法で塗布する。
 コーティング液の噴霧方法は、コーティング液を、ノズル(スプレーガン等)を用いて噴霧するスプレー法が好ましい。
 スプレー法による具体的な塗布方法としては、下記の方法(i)、(ii)、(iii)等が挙げられる。工程数が少なく、塗膜付き基板をより生産効率よく製造できる点から、方法(ii)が好ましい。
[Application of coating solution]
The prepared coating solution is applied to the substrate by spraying.
The spraying method of the coating liquid is preferably a spraying method in which the coating liquid is sprayed using a nozzle (such as a spray gun).
Specific application methods by the spray method include the following methods (i), (ii), (iii) and the like. The method (ii) is preferable because the number of steps is small and a substrate with a coating film can be produced more efficiently.
 (i)固定された基板の上方でノズルを移動させながら、ノズルから基板にコーティング液を噴霧する方法。
 (ii)一方向に移動している帯状の基板(例えばガラスリボン)に、ノズルからコーティング液を噴霧する方法。
 (iii)一方向に移動している帯状の基板(例えばガラスリボン)の上方でノズルを移動させながら、ノズルから基板にコーティング液を噴霧する方法。
(I) A method of spraying the coating liquid from the nozzle onto the substrate while moving the nozzle above the fixed substrate.
(Ii) A method of spraying a coating liquid from a nozzle onto a belt-like substrate (for example, a glass ribbon) moving in one direction.
(Iii) A method in which the coating liquid is sprayed from the nozzle onto the substrate while moving the nozzle over a belt-like substrate (for example, a glass ribbon) moving in one direction.
 コーティング液を塗布する際の基板の温度は、200~650℃であり、300~600℃が好ましい。該温度範囲にある基板にコーティング液が噴霧されると、アルコキシシラン加水分解物が焼成されて酸化ケイ素となり、基板上に塗膜(Y)が形成される。
 基板の温度が200℃以上であると、基板上のアルコキシシラン加水分解物が短時間で焼成されるため、生産性が良い。該基板の温度は300℃以上が好ましい。該基板の温度の上限は特に限定されないが、高すぎると、加熱するための設備が大がかりになり、基板の材質も制限されるため、これらの不都合が生じない温度とすることが好ましく、例えば650℃が好ましい。
 本発明においては、基板の温度を200~650℃範囲内の所定の温度に保持し、そこにコーティング液を噴霧する。基板の温度は、少なくともコーティング液が噴霧される直前において、200~650℃の範囲内の所定の温度に温度制御されていればよい。
The temperature of the substrate when applying the coating liquid is 200 to 650 ° C., preferably 300 to 600 ° C. When the coating liquid is sprayed onto the substrate in the temperature range, the alkoxysilane hydrolyzate is baked to become silicon oxide, and a coating film (Y) is formed on the substrate.
Since the alkoxysilane hydrolyzate on a board | substrate is baked in a short time as the temperature of a board | substrate is 200 degreeC or more, productivity is good. The temperature of the substrate is preferably 300 ° C. or higher. The upper limit of the temperature of the substrate is not particularly limited, but if it is too high, the equipment for heating becomes large and the material of the substrate is also limited. Therefore, it is preferable that the temperature does not cause these disadvantages, for example, 650 ° C is preferred.
In the present invention, the temperature of the substrate is maintained at a predetermined temperature within the range of 200 to 650 ° C., and the coating liquid is sprayed thereon. The temperature of the substrate may be controlled to a predetermined temperature within a range of 200 to 650 ° C. at least immediately before the coating liquid is sprayed.
 上記方法(ii)または(iii)として、例えば、基板がガラス基板である場合、溶融ガラスをガラスリボンに成形し、ガラスリボンを徐冷し、ついで切断してガラス基板を製造するガラス基板の製造方法において、ガラスリボンにコーティング液を塗布して、ガラスリボン上に塗膜(Y)を形成する方法を用いることができる。ガラスリボンは、その後切断される。この場合のガラス基板は、強化されていない生板ガラス基板が好ましい。
 すなわち、ガラス基板となるガラスリボンに、コーティング液(X)を塗布し、アルコキシシランの加水分解物を焼成することによって、ガラスリボン上に塗膜(Y)を形成する方法を用いることができる。
As the above method (ii) or (iii), for example, when the substrate is a glass substrate, the molten glass is formed into a glass ribbon, the glass ribbon is slowly cooled, and then cut to produce a glass substrate. In the method, a method of forming a coating film (Y) on the glass ribbon by applying a coating liquid to the glass ribbon can be used. The glass ribbon is then cut. The glass substrate in this case is preferably a green glass substrate that is not strengthened.
That is, a method of forming a coating film (Y) on a glass ribbon by applying a coating liquid (X) to a glass ribbon to be a glass substrate and baking a hydrolyzate of alkoxysilane can be used.
 この方法(ii)または(iii)において、フロートバス中で溶融ガラスを成形して得られたガラスリボンに対し、フロートバスと徐冷工程との間または徐冷工程中、ガラスリボンが200~650℃の温度範囲にある位置にてコーティング液を噴霧することが好ましい。フロート法でガラス基板を製造する場合、フロートバス直後の位置のガラスリボンの温度は、ガラス基板のガラス組成にもよるが、通常650℃程度であり、フロートバスを出たガラスリボンは徐冷工程で徐冷され、徐冷工程中で400℃以下に冷却される。
 コーティング液を噴霧する位置をフロートバス内とすることは、フロートバス内の雰囲気を汚染するおそれがあるため現実的ではなく、この点からもコーティング液を噴霧する際の基板の温度が650℃以下であることが好ましい。
 またこの方法(ii)または(iii)において、ドローダウンで溶融ガラスを成形して得られたガラスリボンに対し、徐冷工程中、ガラスリボンが200~650℃の温度範囲にある位置にてコーティング液を噴霧することも好ましい。ドローダウンでの成形方法としては、フュージョンドロー法、チューブドロー法、スロットドロー法等が挙げられる。
In this method (ii) or (iii), the glass ribbon obtained by molding the molten glass in a float bath has a glass ribbon of 200 to 650 between the float bath and the slow cooling step or during the slow cooling step. It is preferable to spray the coating liquid at a position in the temperature range of ° C. When manufacturing a glass substrate by the float process, the temperature of the glass ribbon at the position immediately after the float bath is usually about 650 ° C., although it depends on the glass composition of the glass substrate, and the glass ribbon exiting the float bath is a slow cooling step. And is cooled to 400 ° C. or lower during the slow cooling process.
Setting the spraying position of the coating liquid in the float bath is not practical because it may contaminate the atmosphere in the float bath. Also from this point, the temperature of the substrate when spraying the coating liquid is 650 ° C. or less. It is preferable that
In this method (ii) or (iii), the glass ribbon obtained by forming molten glass by drawing down is coated at a position where the glass ribbon is in the temperature range of 200 to 650 ° C. during the slow cooling process. It is also preferable to spray the liquid. Examples of the draw down molding method include a fusion draw method, a tube draw method, and a slot draw method.
<塗膜(Y)>
 このようにして基板上に形成される塗膜(Y)は、アルコキシシラン加水分解物が200~650℃の所定温度で焼成されることによって得られる酸化ケイ素の相と、無機粒子とからなる。酸化ケイ素の相は、無機粒子を基板に固着させるバインダの役割を果たしている。したがって、該バインダが有機材料である場合に比べて、優れた耐熱性、耐侯性が得られる。
 塗膜(Y)は酸化ケイ素と無機粒子とからなる膜であればよく、基板上に1種のコーティング液を連続的に噴霧して形成された膜であってもよく、1種のコーティング液を、間欠的に噴霧して形成された多層膜であってもよく、無機粒子の種類が異なる2種以上のコーティング液を順に噴霧して形成された多層膜であってもよい。
 塗膜(Y)の厚さ(膜厚)は、100nm以上が好ましく、1000nm以上(1μm以上)がより好ましい。塗膜(Y)の厚さが100nm以上であると、塗膜(Y)が有する機能が十分に発揮されやすい。なお、塗膜(Y)が多層膜である場合、塗膜(Y)の厚さは1回の噴霧で形成された層の膜厚とする。ただし1回の噴霧とは連続した一連の噴霧を意味する。すなわち噴霧後に充分な時間間隔を空け再度の噴霧を行った場合には複数回と考える。塗膜(Y)が多層膜である場合の積算での厚さの上限値は特に限定されないが、生産性の点からは50μm以下が好ましく、30μm以下がより好ましく、10μm以下が特に好ましい。
 塗膜(Y)の硬さはマルテンス硬さで200~3000N/mmが好ましく、400~1200N/mmがより好ましい。噴霧時の温度を高くすることで膜の硬さを硬くすることができる。
<Coating film (Y)>
The coating film (Y) thus formed on the substrate comprises a silicon oxide phase obtained by baking the alkoxysilane hydrolyzate at a predetermined temperature of 200 to 650 ° C. and inorganic particles. The phase of silicon oxide plays a role of a binder for fixing inorganic particles to the substrate. Therefore, superior heat resistance and weather resistance can be obtained as compared with the case where the binder is an organic material.
The coating film (Y) may be a film composed of silicon oxide and inorganic particles, and may be a film formed by continuously spraying one type of coating liquid on the substrate. May be a multilayer film formed by intermittent spraying, or may be a multilayer film formed by spraying two or more types of coating liquids having different kinds of inorganic particles in order.
The thickness (film thickness) of the coating film (Y) is preferably 100 nm or more, and more preferably 1000 nm or more (1 μm or more). When the thickness of the coating film (Y) is 100 nm or more, the function of the coating film (Y) is sufficiently exhibited. In addition, when a coating film (Y) is a multilayer film, let the thickness of a coating film (Y) be the film thickness of the layer formed by one spraying. However, one spray means a continuous series of sprays. That is, when spraying is performed again after a sufficient time interval after spraying, it is considered as multiple times. The upper limit of the integrated thickness when the coating film (Y) is a multilayer film is not particularly limited, but is preferably 50 μm or less, more preferably 30 μm or less, and particularly preferably 10 μm or less from the viewpoint of productivity.
Hardness of the coating film (Y) is preferably from 200 ~ 3000N / mm 2 in Martens hardness, and more preferably 400 ~ 1200N / mm 2. By increasing the temperature at the time of spraying, the hardness of the film can be increased.
(ガラス製造装置)
 図7は、本発明の方法を用いて、ガラス基板上に塗膜が形成された塗膜付きガラス基板を製造するのに好適な、ガラス製造装置の一例を示す概略図である。
 ガラス製造装置20は、ガラス原料を溶解して溶融ガラス30とする溶解窯22と、溶解窯22から供給された溶融ガラス30を溶融スズ24の表面に浮かべることで、溶融ガラス30をガラスリボン32に成形するフロートバス26と、該ガラスリボン32を徐冷する徐冷窯28と、フロートバス26の出口と徐冷窯28の入り口との間で、かつガラスリボン32の上方に設置されたエアー式のスプレーガン34とを備える。
(Glass manufacturing equipment)
FIG. 7 is a schematic view showing an example of a glass production apparatus suitable for producing a glass substrate with a coating film in which a coating film is formed on the glass substrate using the method of the present invention.
The glass manufacturing apparatus 20 melts the glass raw material to form the molten glass 30 and floats the molten glass 30 supplied from the melting furnace 22 on the surface of the molten tin 24, thereby causing the molten glass 30 to become the glass ribbon 32. A float bath 26 for forming the glass ribbon 32, a slow cooling furnace 28 for gradually cooling the glass ribbon 32, and an air disposed between the outlet of the float bath 26 and the entrance of the slow cooling furnace 28 and above the glass ribbon 32. A spray gun 34 of the type.
 所定の搬送速度で移動するガラスリボン32に、フロートバス26と徐冷窯28の間でガラスリボン32の表面温度が200~650℃にある位置にて、スプレーガン34からコーティング液を噴霧し、ガラスリボン32上に無機膜を形成する。
 徐冷窯28を出たガラスリボン32は図示されていない切断装置により切断されて、塗膜付きガラス基板とされる。
A coating liquid is sprayed from a spray gun 34 onto a glass ribbon 32 moving at a predetermined conveying speed at a position where the surface temperature of the glass ribbon 32 is 200 to 650 ° C. between the float bath 26 and the slow cooling furnace 28. An inorganic film is formed on the glass ribbon 32.
The glass ribbon 32 exiting the slow cooling furnace 28 is cut by a cutting device (not shown) to form a glass substrate with a coating film.
<作用効果>
 本発明の塗膜付き基板の製造方法にあっては、100nm未満の無機粒子と、アルコキシシラン加水分解物、および特定の液状媒体を含むコーティング液を、200~650℃に保持された基板に噴霧することで、クラック、または膜剥がれの発生を防止しつつ、無機膜を厚く形成することができる。
<Effect>
In the method for producing a substrate with a coating film of the present invention, a coating liquid containing inorganic particles of less than 100 nm, an alkoxysilane hydrolyzate, and a specific liquid medium is sprayed on a substrate maintained at 200 to 650 ° C. By doing so, the inorganic film can be formed thick while preventing the occurrence of cracks or film peeling.
 後述の実施例に示されるように、平均凝集粒子径が100nm未満の無機粒子を用いることにより、基板上に酸化ケイ素からなる連続相を介して無機粒子が積み重なった構造が得られやすくなり、膜厚が大きい塗膜が得られやすい。
 かかる酸化ケイ素からなる連続相を介して無機粒子が積み重なった構造が得られるとき、コーティング液に含まれる無機粒子の平均凝集粒子径が大きいほど着膜効率が高くなり、平均凝集粒子径が小さいほど、表面平滑性が向上し、より緻密な塗膜が得られる。
 さらに、鎖状粒子を用いることで着膜効率を飛躍的に高めることができる。
As shown in Examples described later, by using inorganic particles having an average aggregate particle diameter of less than 100 nm, a structure in which inorganic particles are stacked on a substrate via a continuous phase made of silicon oxide is easily obtained, and a film It is easy to obtain a coating film having a large thickness.
When a structure in which inorganic particles are stacked through a continuous phase composed of such silicon oxide is obtained, the larger the average aggregated particle diameter of the inorganic particles contained in the coating liquid, the higher the film deposition efficiency, and the smaller the average aggregated particle diameter. The surface smoothness is improved and a denser coating film is obtained.
Furthermore, the use of chain particles can dramatically increase the deposition efficiency.
 また、コーティング液に含まれる酸化ケイ素の前駆体として、従来のオルガノポリシロキサンの代わりに、アルコキシシランの加水分解物を用いているため、液状媒体として極性のものを用いることができる。非極性の液状媒体に分散できる無機粒子よりも、極性の液状媒体に分散できる無機粒子のほうが、その種類が多く、疎水化等の表面処理が施されている必要もないため、無機粒子の選択の幅が広くなる。 Also, since a hydrolyzate of alkoxysilane is used as a precursor of silicon oxide contained in the coating liquid instead of the conventional organopolysiloxane, a polar liquid medium can be used. Select inorganic particles because inorganic particles that can be dispersed in a polar liquid medium have more types than inorganic particles that can be dispersed in a non-polar liquid medium, and there is no need for surface treatment such as hydrophobization. The width of becomes wide.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
〔実施例1〕
 トリエチレングリコールに、テトラエトキシシラン(関東化学社製、SiO換算固形分:99.9質量%)を、コーティング液中30質量%となるように加え、さらに硝酸(70質量%水溶液)を、コーティング液中0.35質量%となるように加え、1時間撹拌した。次いで、鎖状シリカゾル(日産化学社製、(製品名:スノーテックスOUP)、平均凝集粒子径:65nm、固形分:15質量%、媒体:水)を、コーティング液中6.7質量%となるように加え、5~10分撹拌し、SiO換算固形分濃度:9.65質量%、固形分中のシリカ粒子の割合:10.4質量%、固形分中のアルコキシシランの加水分解物(SiO換算固形分)の割合:89.6質量%のコーティング液を得た。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
[Example 1]
To triethylene glycol, tetraethoxysilane (manufactured by Kanto Chemical Co., Inc., SiO 2 conversion solid content: 99.9% by mass) is added so as to be 30% by mass in the coating liquid, and nitric acid (70% by mass aqueous solution) is further added. It added so that it might become 0.35 mass% in a coating liquid, and it stirred for 1 hour. Next, a chain silica sol (manufactured by Nissan Chemical Industries, (product name: Snowtex OUP), average aggregated particle size: 65 nm, solid content: 15% by mass, medium: water) becomes 6.7% by mass in the coating liquid. In addition, the mixture was stirred for 5 to 10 minutes, the solid content concentration in terms of SiO 2 : 9.65% by mass, the ratio of silica particles in the solid content: 10.4% by mass, the hydrolyzate of alkoxysilane in the solid content ( Ratio of solid content in terms of SiO 2 : A coating liquid of 89.6% by mass was obtained.
 塗布装置としては、KM-100(SPD研究所社製)を用いた。ガラス基板としては、10cm×10cm×4mmの高透過ガラス(ソーダライムシリカガラス、旭硝子社製)を用いた。
 ガラス基板をステージ上に載置し、ステージ裏面側にステージと非接触でヒーターを設置した。ヒーターの放射熱により、ステージを介してガラス基板を400℃に加熱した。
 ガラス基板の温度は、ガラス基板の一側面に熱電対を接触させることにより測定した。スプレーガンでコーティング液を噴霧する前にガラス基板を充分な時間加熱したため、ここで測定された温度はガラス基板の表面温度とほぼ同じとみなしてよい。
 ガラス基板を400℃まで昇温した後、ガラス基板の上方に配置したスプレーガンからガラス基板上にコーティング液を噴霧した。スプレーガンからコーティング液を噴霧する際、送液速度が0.3~0.6mL/秒となるようにスプレーガンへの送液圧力を調節し、噴霧圧力は1MPaとした。塗布時間は45秒とした。なお、ステージ、ガラス基板、スプレーガンは防爆装置で囲われた状態で噴霧を行い、雰囲気温度は調整しなかった。
 こうしてガラス基板上に、シリカ粒子と、アルコキシシランの加水分解物の焼成物(酸化ケイ素)とからなる塗膜が形成された、塗膜付き基板を得た。
As a coating apparatus, KM-100 (manufactured by SPD Laboratory) was used. As the glass substrate, 10 cm × 10 cm × 4 mm high transmission glass (soda lime silica glass, manufactured by Asahi Glass Co., Ltd.) was used.
A glass substrate was placed on the stage, and a heater was installed on the back side of the stage without contact with the stage. The glass substrate was heated to 400 ° C. through the stage by the radiant heat of the heater.
The temperature of the glass substrate was measured by bringing a thermocouple into contact with one side of the glass substrate. Since the glass substrate was heated for a sufficient time before spraying the coating liquid with the spray gun, the temperature measured here may be regarded as almost the same as the surface temperature of the glass substrate.
After the temperature of the glass substrate was raised to 400 ° C., the coating liquid was sprayed onto the glass substrate from a spray gun disposed above the glass substrate. When spraying the coating liquid from the spray gun, the liquid feed pressure to the spray gun was adjusted so that the liquid feed speed was 0.3 to 0.6 mL / second, and the spray pressure was 1 MPa. The coating time was 45 seconds. The stage, glass substrate, and spray gun were sprayed in a state surrounded by an explosion-proof device, and the ambient temperature was not adjusted.
Thus, a substrate with a coating film was obtained, in which a coating film composed of silica particles and a calcined product of hydrolyzed alkoxysilane (silicon oxide) was formed on the glass substrate.
 図1は、得られた塗膜付き基板を走査型電子顕微鏡にて観察して得られる像の写真であり、(A)は断面像、(B)は表面像である(以下、同様)。(A)の断面像より、ガラス基板の表面から塗膜の表面までの膜厚(図中、矢印で例示する距離)の平均値を測定したところ1.7μmであった。
 本例で用いたシリカ粒子の形状および平均凝集粒子径、塗布時間、得られた塗膜の膜厚(平均膜厚)を表1に示す(以下、同様)。
 また、下記の方法で塗膜の表面平滑性を評価した。その結果を表1に示す。
 また、得られた塗膜の硬さはマルテンス硬さで830N/mmであった。なおマルテンス硬さは微小硬さ測定装置(フィッシャー・インストルメンツ社製 PICODENTOR HM500)により測定した。押し込み深さ0.1μm、押し込み時間20秒で、場所を変えて5点測定しその平均値を求めた。
FIG. 1 is a photograph of an image obtained by observing the obtained substrate with a coating film with a scanning electron microscope, where (A) is a cross-sectional image and (B) is a surface image (hereinafter the same). It was 1.7 micrometers when the average value of the film thickness (distance illustrated with an arrow in a figure) from the surface of a glass substrate to the surface of a coating film was measured from the cross-sectional image of (A).
The shape of the silica particles used in this example, the average aggregate particle diameter, the coating time, and the film thickness (average film thickness) of the obtained coating film are shown in Table 1 (hereinafter the same).
Moreover, the surface smoothness of the coating film was evaluated by the following method. The results are shown in Table 1.
The obtained coating film had a Martens hardness of 830 N / mm 2 . The Martens hardness was measured with a microhardness measuring device (PICODERTOR HM500 manufactured by Fischer Instruments). An indentation depth of 0.1 μm and an indentation time of 20 seconds were measured at five points at different locations to obtain an average value.
[表面平滑性の評価方法]
 キーエンス社製、形状測定レーザーマイクロスコープ(コントローラ部VK-100(製品名)、顕微鏡部VK-110(製品名))を用い、倍率100倍で膜表面を観察し、任意の3点で、100μm長さにおける最大高さ粗さ(Rz)をそれぞれ測定し、該3点のRzの平均値を求めた。
[Method for evaluating surface smoothness]
Using a shape measurement laser microscope (controller part VK-100 (product name), microscope part VK-110 (product name)) manufactured by Keyence Corporation, the film surface was observed at a magnification of 100 times, and 100 μm at three arbitrary points. The maximum height roughness (Rz) in the length was measured, and the average value of Rz at the three points was determined.
〔実施例2~4、参考例1〕
 実施例2では、実施例1における鎖状シリカゾルの代わりに球状シリカゾル(日産化学社製、(製品名:スノーテックスOS)、平均凝集粒子径:11nm、固形分:20質量%、媒体:水)を用い、これをコーティング液中5.0質量%となるように加えた。
 実施例3では、実施例1における鎖状シリカゾルの代わりに球状シリカゾル(日産化学社製、(製品名:スノーテックスO-40)、平均凝集粒子径:30nm、固形分:40質量%、媒体:水)を用い、これをコーティング液中2.5質量%となるように加えた。
 実施例4では、実施例1における鎖状シリカゾルの代わりに球状シリカゾル(日産化学社製、(製品名:スノーテックスOL)、平均凝集粒子径:50nm、固形分:20質量%、媒体:水)を用い、これをコーティング液中5.0質量%となるように加えた。
 参考例1では、実施例1における鎖状シリカゾルの代わりに球状シリカゾル(日産化学社製、(製品名:スノーテックスMP-2040)、平均凝集粒子径:200nm、固形分:40質量%、媒体:水)を用い、これをコーティング液中2.5質量%となるように加えた。
 上記以外は実施例1と同様にして塗膜付き基板を得、走査型電子顕微鏡にて観察し、膜厚を測定し、表面平滑性を評価した。結果を表1に示す。
[Examples 2 to 4, Reference Example 1]
In Example 2, instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Industries, (product name: Snowtex OS), average aggregated particle size: 11 nm, solid content: 20% by mass, medium: water) This was added so that it might become 5.0 mass% in a coating liquid.
In Example 3, instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Co., Ltd., (product name: Snowtex O-40), average aggregate particle size: 30 nm, solid content: 40% by mass, medium: This was added to 2.5% by mass in the coating solution.
In Example 4, instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Industries, (product name: Snowtex OL), average aggregated particle size: 50 nm, solid content: 20% by mass, medium: water) This was added so that it might become 5.0 mass% in a coating liquid.
In Reference Example 1, instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Co., Ltd. (product name: Snowtex MP-2040), average aggregate particle size: 200 nm, solid content: 40% by mass, medium: This was added to 2.5% by mass in the coating solution.
Except for the above, a substrate with a coating film was obtained in the same manner as in Example 1, observed with a scanning electron microscope, measured for film thickness, and evaluated surface smoothness. The results are shown in Table 1.
〔参考例2〕
 参考例2では、実施例1における鎖状シリカゾルの代わりに球状シリカゾル(日産化学社製、(製品名:スノーテックスMP-4540M)、平均凝集粒子径:450nm、固形分:40質量%、媒体:水)を用い、これをコーティング液中2.5質量%となるように加えた。また塗布時間を21秒に変更した。
 上記以外は実施例1と同様にして塗膜付き基板を得、走査型電子顕微鏡にて観察し、膜厚を測定し、表面平滑性を評価した。結果を表1に示す。
[Reference Example 2]
In Reference Example 2, instead of the chain silica sol in Example 1, spherical silica sol (manufactured by Nissan Chemical Co., Ltd., (Product name: Snowtex MP-4540M), average aggregate particle size: 450 nm, solid content: 40% by mass, medium: This was added to 2.5% by mass in the coating solution. The application time was changed to 21 seconds.
Except for the above, a substrate with a coating film was obtained in the same manner as in Example 1, observed with a scanning electron microscope, measured for film thickness, and evaluated surface smoothness. The results are shown in Table 1.
〔比較例1〕
 比較例1は、コーティング液に無機粒子を含有させない例である。すなわち、トリエチレングリコールに、テトラエトキシシラン(関東化学社製、SiO換算固形分:99.9質量%)を、コーティング液中33.5質量%となるように加え、さらに硝酸(70質量%水溶液)を、コーティング液中0.35質量%となるように加え、1時間撹拌し、SiO換算固形分濃度:9.65質量%のコーティング液を得た。
 得られたコーティング液を用い、実施例1と同様にして塗膜付き基板を得、走査型電子顕微鏡にて観察し、膜厚を測定し、表面平滑性を評価した。結果を表1に示す。
[Comparative Example 1]
Comparative Example 1 is an example in which the coating liquid does not contain inorganic particles. That is, tetraethoxysilane (manufactured by Kanto Chemical Co., Inc., SiO 2 conversion solid content: 99.9% by mass) was added to triethylene glycol so as to be 33.5% by mass in the coating solution, and nitric acid (70% by mass) was further added. the aqueous solution), added in an amount of 0.35 wt% in the coating solution, and stirred for 1 hour, SiO 2 in terms of solid concentration: was obtained 9.65 mass% of the coating solution.
Using the obtained coating solution, a substrate with a coating film was obtained in the same manner as in Example 1, and observed with a scanning electron microscope, the film thickness was measured, and the surface smoothness was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果に示されるように実施例1~4は、45秒の塗布時間で、基板上に400nm以上の無機膜を形成することができ、良好な着膜効率が得られた。また塗膜にクラックまたは膜剥がれは生じなかった。
 実施例2~4を比べると、シリカ粒子の平均凝集粒子径が大きいほど、同じ塗布時間で塗膜の膜厚が大きい、すなわち着膜効率が高いことがわかる。一方、シリカ粒子の平均凝集粒子径が小さいほど表面の平滑性がより高くなり、写真からわかるように、より緻密な塗膜が得られる。
 鎖状シリカを用いた実施例1は、実施例2~4に比べて膜厚が大きく、着膜効率が飛躍的に向上したことがわかる。実施例1の塗膜は表面平滑性も良好であった。
As shown in the results of Table 1, in Examples 1 to 4, an inorganic film having a thickness of 400 nm or more could be formed on the substrate in a coating time of 45 seconds, and good film deposition efficiency was obtained. Further, no cracks or film peeling occurred in the coating film.
Comparing Examples 2 to 4, it can be seen that the larger the average aggregate particle size of the silica particles, the larger the film thickness of the coating film, that is, the higher the film deposition efficiency in the same coating time. On the other hand, the smaller the average agglomerated particle diameter of the silica particles, the higher the smoothness of the surface, and a denser coating film can be obtained as can be seen from the photograph.
It can be seen that Example 1 using chain silica had a larger film thickness than Examples 2 to 4, and the deposition efficiency was dramatically improved. The coating film of Example 1 also had good surface smoothness.
 参考例1、2の結果からわかるように、シリカ粒子の平均凝集粒子径が100nmn以上に大きくなると、酸化ケイ素からなる連続相を介してシリカ粒子が積み重なった構造が得られ難くなり、膜厚を厚くすることが難しくなることがわかる。
 シリカ粒子を添加しなかった比較例1は、実施例1~4に比べて膜厚が顕著に小さく、ほとんど塗着していなかった。
As can be seen from the results of Reference Examples 1 and 2, when the average aggregate particle diameter of the silica particles is increased to 100 nmn or more, it becomes difficult to obtain a structure in which the silica particles are stacked through a continuous phase made of silicon oxide, and the film thickness is reduced. It turns out that it becomes difficult to make it thick.
In Comparative Example 1 in which no silica particles were added, the film thickness was significantly smaller than in Examples 1 to 4, and almost no coating was applied.
 本発明で製造される塗膜付き基板は、可視光の透過率が高く、かつ紫外線耐久性が良好であり、太陽電池用カバーガラス、ディスプレイ用保護板、自動車用ガラス、鉄道車両用ガラス、船舶用ガラス、建材用ガラス等として広く利用される。
 なお、2013年7月5日に出願された日本特許出願2013-142052号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The coated substrate produced in the present invention has high visible light transmittance and good UV durability, and covers solar cells, display protective plates, automotive glass, railway vehicle glass, and ships. Widely used as glass for construction and glass for building materials.
It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-142052 filed on July 5, 2013 is cited herein as the disclosure of the specification of the present invention. Incorporated.
 20 ガラス製造装置
 22 溶解窯
 24 溶融スズ
 26 フロートバス
 28 徐冷窯
 30 溶融ガラス
 32 ガラスリボン
 34 スプレーガン
20 Glass Manufacturing Equipment 22 Melting Kiln 24 Molten Tin 26 Float Bath 28 Slow Cooling Kiln 30 Molten Glass 32 Glass Ribbon 34 Spray Gun

Claims (11)

  1.  無機粒子と、アルコキシシラン加水分解物と、多価水酸基含有化合物および水の少なくとも一方を含む液状媒体とを含み、前記無機粒子の平均凝集粒子径が100nm未満であるコーティング液を準備し;
     基板を準備し;
     前記基板を200~650℃に保持し;
     前記基板に前記コーティング液を噴霧し;
     塗膜付き基板を得る、塗膜付き基板の製造方法。
    Preparing a coating liquid comprising inorganic particles, an alkoxysilane hydrolyzate, a liquid medium containing at least one of a polyhydric hydroxyl group-containing compound and water, and having an average aggregate particle diameter of the inorganic particles of less than 100 nm;
    Preparing a substrate;
    Holding the substrate at 200-650 ° C .;
    Spraying the coating liquid onto the substrate;
    The manufacturing method of a board | substrate with a coating film which obtains a board | substrate with a coating film.
  2.  無機粒子、アルコキシシラン加水分解物、および液状媒体を含むコーティング液を、200~650℃に保持された基板に噴霧する工程を有し、
     前記無機粒子の平均凝集粒子径が100nm未満であり、前記液状媒体が多価水酸基含有化合物および水の少なくとも一方を含む、塗膜付き基板の製造方法。
    Spraying a coating liquid containing inorganic particles, an alkoxysilane hydrolyzate, and a liquid medium onto a substrate maintained at 200 to 650 ° C .;
    The average particle diameter of the said inorganic particle is less than 100 nm, The said liquid medium contains the polyhydric hydroxyl group containing compound and at least one of water, The manufacturing method of the board | substrate with a coating film.
  3.  前記液状媒体が、多価水酸基含有化合物、または、水と多価水酸基含有化合物の混合物である、請求項1または2に記載の塗膜付き基板の製造方法。 The method for producing a substrate with a coating film according to claim 1 or 2, wherein the liquid medium is a polyvalent hydroxyl group-containing compound or a mixture of water and a polyvalent hydroxyl group-containing compound.
  4.  前記無機粒子がシリカ粒子である、請求項1~3のいずれか一項に記載の塗膜付き基板の製造方法。 The method for producing a substrate with a coating film according to any one of claims 1 to 3, wherein the inorganic particles are silica particles.
  5.  前記無機粒子が鎖状粒子である、請求項1~4のいずれか一項に記載の塗膜付き基板の製造方法。 The method for producing a substrate with a coating film according to any one of claims 1 to 4, wherein the inorganic particles are chain particles.
  6.  前記基板がガラス基板である、請求項1~5のいずれか一項に記載の塗膜付き基板の製造方法。 The method for producing a substrate with a coating film according to any one of claims 1 to 5, wherein the substrate is a glass substrate.
  7.  前記アルコキシシラン加水分解物が、テトラエトキシシランまたはテトラメトキシシランの加水分解物である、請求項1~6のいずれか一項に記載の塗膜付き基板の製造方法。 The method for producing a coated substrate according to any one of claims 1 to 6, wherein the alkoxysilane hydrolyzate is tetraethoxysilane or a tetramethoxysilane hydrolyzate.
  8.  前記多価水酸基含有化合物が、ジエチレングリコール、トリエチレングリコール、またはテトラエチレングリコールである、請求項1~7のいずれか一項に記載の塗膜付き基板の製造方法。 The method for producing a coated substrate according to any one of claims 1 to 7, wherein the polyvalent hydroxyl group-containing compound is diethylene glycol, triethylene glycol, or tetraethylene glycol.
  9.  前記無機粒子の割合が、コーティング液の固形分(コーティング液中の無機粒子およびアルコキシシラン加水分解物の合計)の100質量%のうち3~30質量%である、請求項1~8のいずれか一項に記載の塗膜付き基板の製造方法。 The ratio of the inorganic particles is 3 to 30% by mass out of 100% by mass of the solid content of the coating liquid (total of inorganic particles and alkoxysilane hydrolyzate in the coating liquid). The manufacturing method of the board | substrate with a coating film of one term.
  10.  前記塗膜の厚さが、100nm以上10μm以下である、請求項1~9のいずれか一項に記載の塗膜付き基板の製造方法。 The method for producing a substrate with a coating film according to any one of claims 1 to 9, wherein the thickness of the coating film is 100 nm or more and 10 µm or less.
  11.  前記塗膜の硬さが、マルテンス硬さで400~1200N/mmである、請求項1~10のいずれか一項に記載の塗膜付き基板の製造方法。 The method for producing a substrate with a coating film according to any one of claims 1 to 10, wherein the hardness of the coating film is 400 to 1200 N / mm 2 in terms of Martens hardness.
PCT/JP2014/066329 2013-07-05 2014-06-19 Method for producing substrate with coating film WO2015001979A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013142052A JP2016163847A (en) 2013-07-05 2013-07-05 Manufacturing method of substrate with coated film
JP2013-142052 2013-07-05

Publications (1)

Publication Number Publication Date
WO2015001979A1 true WO2015001979A1 (en) 2015-01-08

Family

ID=52143557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066329 WO2015001979A1 (en) 2013-07-05 2014-06-19 Method for producing substrate with coating film

Country Status (2)

Country Link
JP (1) JP2016163847A (en)
WO (1) WO2015001979A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053934A (en) * 2015-04-02 2016-10-26 Ls产电株式会社 Power measurement system and load power monitoring system using the same and operating method thereof
WO2022196218A1 (en) * 2021-03-19 2022-09-22 日本電気硝子株式会社 Coating fluid for spray coating, production method therefor, and method for producing substrate coated with antiglare layer
CN116897194A (en) * 2021-03-19 2023-10-17 日本电气硝子株式会社 Coating liquid for spraying, method for producing same, and method for producing base material with antiglare layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7252011B2 (en) * 2019-02-28 2023-04-04 株式会社カーメイト coating composition.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797237A (en) * 1993-09-30 1995-04-11 Nippon Sheet Glass Co Ltd Formation of transparent coating film reduced in refractive index
WO1999052986A1 (en) * 1998-04-10 1999-10-21 Matsushita Electric Works, Ltd. Method of forming hydrophilic inorganic coating film and inorganic coating composition
JP2002019007A (en) * 2000-07-11 2002-01-22 Sumitomo Osaka Cement Co Ltd Inorganic molding, metal molding, and resin molding having high antifouling and easy cleaning properties and method for producing them
WO2006090795A1 (en) * 2005-02-25 2006-08-31 Ishihara Sangyo Kaisha, Ltd. Coating method for forming coating film containing photocatalyst
WO2007058016A1 (en) * 2005-11-15 2007-05-24 Central Glass Company, Limited Process for producing base material for forming heat shielding film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797237A (en) * 1993-09-30 1995-04-11 Nippon Sheet Glass Co Ltd Formation of transparent coating film reduced in refractive index
WO1999052986A1 (en) * 1998-04-10 1999-10-21 Matsushita Electric Works, Ltd. Method of forming hydrophilic inorganic coating film and inorganic coating composition
JP2002019007A (en) * 2000-07-11 2002-01-22 Sumitomo Osaka Cement Co Ltd Inorganic molding, metal molding, and resin molding having high antifouling and easy cleaning properties and method for producing them
WO2006090795A1 (en) * 2005-02-25 2006-08-31 Ishihara Sangyo Kaisha, Ltd. Coating method for forming coating film containing photocatalyst
WO2007058016A1 (en) * 2005-11-15 2007-05-24 Central Glass Company, Limited Process for producing base material for forming heat shielding film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106053934A (en) * 2015-04-02 2016-10-26 Ls产电株式会社 Power measurement system and load power monitoring system using the same and operating method thereof
JP2016197988A (en) * 2015-04-02 2016-11-24 エルエス産電株式会社Lsis Co., Ltd. Power measuring system and load power monitoring system using the same and operation method therefor
US9787248B2 (en) 2015-04-02 2017-10-10 Lsis Co., Ltd. Power measurement system and load power monitoring system using the same and operating method thereof
WO2022196218A1 (en) * 2021-03-19 2022-09-22 日本電気硝子株式会社 Coating fluid for spray coating, production method therefor, and method for producing substrate coated with antiglare layer
CN116897194A (en) * 2021-03-19 2023-10-17 日本电气硝子株式会社 Coating liquid for spraying, method for producing same, and method for producing base material with antiglare layer

Also Published As

Publication number Publication date
JP2016163847A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP5645435B2 (en) Aluminum oxide precursor sol and method for producing optical member
JP4107050B2 (en) Coating material composition and article having a coating formed thereby
WO2013161827A1 (en) Method for producing glass substrate with silicon oxide film containing inorganic fine particles
WO2009107665A1 (en) Organosol containing magnesium fluoride hydroxide, and manufacturing method therefor
WO2015041257A1 (en) Tempered glass plate with low reflective coating and production method therfor
WO2015001979A1 (en) Method for producing substrate with coating film
WO2010007956A1 (en) Water-repellent substrate and process for production thereof
Katagiri et al. Preparation of Transparent Thick Films by Electrophoretic Sol‐Gel Deposition Using Phenyltriethoxysilane‐Derived Particles
EP3109290A1 (en) Water-repellant/oil-repellant film and production method therefor
JP2010256871A (en) Optical member, method for producing the same, and optical system
JP6879929B2 (en) Photofunctional film and its manufacturing method
JP4251093B2 (en) Lighting device
JPWO2008059844A1 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
WO2015046260A1 (en) Method for manufacturing substrate having porous film attached thereto
JP2008119924A (en) Article having water-repellent surface
JP2013160799A (en) Manufacturing method of article with low reflection film
JP2013133264A (en) Water-repellent substrate, method for producing the same, and transportation apparatus
JP6206418B2 (en) Coating liquid and article for alkali barrier layer formation
TW201704346A (en) Polysiloxane formulations and coatings for optoelectronic applications
CN117735854A (en) Self-cleaning heat-insulating coated glass and preparation method thereof
JP6468696B2 (en) Optical member and manufacturing method thereof
WO2011155545A1 (en) Method for producing glass substrate provided with inorganic-microparticle-containing silicon oxide film
TWI523919B (en) Anti-fogging and heat insulating coating composition, method for preparing therefof and film formed from the composition
JP2015116772A (en) Method of producing water-repellent film, and water-repellent film
JP5310549B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14820660

Country of ref document: EP

Kind code of ref document: A1