WO2015001651A1 - Frequency control system and frequency control method - Google Patents

Frequency control system and frequency control method Download PDF

Info

Publication number
WO2015001651A1
WO2015001651A1 PCT/JP2013/068417 JP2013068417W WO2015001651A1 WO 2015001651 A1 WO2015001651 A1 WO 2015001651A1 JP 2013068417 W JP2013068417 W JP 2013068417W WO 2015001651 A1 WO2015001651 A1 WO 2015001651A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
adjustment gain
power
value
gain value
Prior art date
Application number
PCT/JP2013/068417
Other languages
French (fr)
Japanese (ja)
Inventor
一成 真木
征二 西村
勝司 津田
真二 谷川
弘章 杉原
充浩 竹下
健二 米井
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2013/068417 priority Critical patent/WO2015001651A1/en
Priority to JP2013543463A priority patent/JP5465816B1/en
Publication of WO2015001651A1 publication Critical patent/WO2015001651A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a frequency control system and a frequency control method suitable for maintaining a frequency in a power system in which a plurality of power systems are linked by a linkage line (hereinafter referred to as a linked system).
  • each power system in Japan in Japan is operated based on the following two systems as frequency control systems.
  • a frequency deviation ( ⁇ F) is detected regardless of the grid line power flow, the generator output is adjusted so as to reduce the detected frequency deviation ⁇ F, and only the system frequency is maintained at a specified value.
  • FFC frequency control
  • TBC frequency bias interconnection power flow control
  • the frequency deviation ( ⁇ F) and the interconnecting line power flow deviation ( ⁇ PT) are detected, and the detected frequency deviation ( ⁇ F) and the interconnecting line power flow deviation ( ⁇ PT) are used in the own system (own system).
  • the regional demand power hereinafter referred to as the regional demand amount (AR)
  • the generator output is adjusted (Patent Documents 1 to 3). Note that this TBC method automatically changes the setting value of the interconnection power flow control in proportion to the frequency deviation ⁇ f in response to a load change in the other interconnected system, and sends out the support power. It also functions to cooperate in system frequency adjustment.
  • the regional required power (AR) can be calculated by the following equation (1) using the frequency deviation ( ⁇ F), the interconnection power flow deviation ( ⁇ PT), and K: system constant K.
  • AR ⁇ K ⁇ f + ⁇ PT (1)
  • the regional required power AR is a positive value, that is, the interconnection power flow deviation ( ⁇ PT) is larger than the product (K ⁇ ⁇ f) of the frequency deviation ⁇ f and the system constant K ( ⁇ P> K ⁇ ⁇ f).
  • the generator output of the own system is increased, and conversely, the regional required power AR is a negative value, that is, the interconnection power flow deviation ( ⁇ PT) is the product of the frequency deviation ⁇ f and the system constant K (K ⁇ When smaller than ( ⁇ f) ( ⁇ PT ⁇ K ⁇ ⁇ f), it means that the generator output of the own system is lowered.
  • the regional required power AR is filtered by exponential smoothing using the past regional required power AR, and the output change speed ratio or output of the generator is adjusted for all the generators whose load frequency is adjusted. It is distributed according to the margin ratio.
  • An object of the present invention is to provide a frequency control system and a frequency control method for maintaining the frequency of an electric power system by using an adjustment power based on output power of a generator that does not use natural energy in other areas.
  • the invention described in claim 1 includes a natural energy generator and an area power management device that manages the operating state of a non-natural energy generator disposed in the same area.
  • a wide-area power system connected via the network to the area power management devices respectively disposed in a plurality of areas and interconnected between the plurality of areas by receiving the operating state from the area power management devices
  • a wide area power monitoring device that monitors the operation state of the area, wherein the area power management device calculates a total value of power outputs of a plurality of the generators of the natural energy system in the area.
  • short cycle constraint range calculation means for calculating a short cycle constraint range in the own area based on adjustment power of the non-renewable energy generator, Transmission means for adding an area number related to the own area to the total value and the short cycle restriction range and transmitting the same to the wide area power monitoring apparatus, and the wide area power monitoring apparatus from the area power management apparatus of each area
  • a receiving unit that receives the total value, the short cycle restriction range, and the area number; a short cycle variation value calculating unit that calculates a short cycle variation value from the total value for each area; and the short cycle variation value in at least one area.
  • Control means for controlling to transmit a value greater than 1 or an adjustment gain value ON signal as a predetermined adjustment gain value relating to the term to the area power management device in the area includes: When a predetermined adjustment gain value or adjustment gain value ON signal or adjustment gain value OFF signal related to the frequency term is received from a wide area power monitoring device, the frequency deviation ( ⁇ F) of the power system in the area, the interconnection power flow deviation ( [Delta] PT), regional demand power calculation means for calculating the regional demand power (AR) based on the predetermined adjustment gain value or the adjustment gain value ON signal or the adjustment gain value OFF signal, and the regional demand power as the non
  • a generator that does not use the natural energy of another area that is connected only when the fluctuation due to the output power of the generator that uses natural energy exceeds the frequency adjustment capability of the area. It is possible to maintain the frequency of the power system by using the adjustment power due to the output power of the power system.
  • FIG. 4 is a diagram illustrating a structure of a flag table stored in a memory provided in an adjustment gain management unit 32.
  • FIG. 4 is a flowchart for explaining the operation of the wide area power monitoring apparatus 30 shown in FIG. 1.
  • FIG. 7 is a flowchart for explaining the operation of the wide area power monitoring apparatus 30 as a modification of the first embodiment.
  • 6 is a flowchart for explaining the operation of the area power management apparatus 10 as a modification of the first embodiment.
  • FIG. 12 is a flowchart for explaining an output process by an adjustment gain calculation unit 36 shown in FIG. 11 as a second embodiment. 12 is a flowchart for explaining the operation of the wide area power monitoring apparatus 40 shown in FIG. 11.
  • FIG. 1 is a diagram showing a functional block configuration of a power system load frequency control system 1 according to the first embodiment of the present invention.
  • a 60 Hz power system 3 from the Kyushu area in Japan and the China area to the Chubu area is shown.
  • Areas # 1 to # 6 are areas under control of a plurality of power companies. Assume that one electric power company exists in one area.
  • the description is simplified by treating the number of areas as six, but the present invention is not limited to such a number of areas.
  • the power systems 3 # 1 to 3 # 6 arranged in the areas # 1 to # 6 include a plurality of power generators G1, G2,..., Gn for supplying power.
  • G1 to Gk are thermal power generators
  • Gk + 1 to Gn are hydraulic power generators
  • Gm + 1 to Gn (1 ⁇ k ⁇ m ⁇ n) are wind power generators.
  • the generators Gm + 1 to Gn may be solar power generators or tidal power generators instead of wind power generators.
  • the power system 3 is connected to another system (an other power system 3 excluding its own area) via a connection line 4 to form a connection system.
  • a form of power generation (natural energy system) that uses natural energy to convert to electric power
  • the generators Gm + 1 to Gn may have these power generation modes.
  • a power generation form for converting into electric power without using natural energy
  • a power generation form capable of controlling the amount of power to be generated such as thermal power generation, hydroelectric power generation, and nuclear power generation, is known.
  • the power system load frequency control system 1 outputs the outputs of the generators G1 to Gn in other areas excluding the area where the power system 3 is present according to a command value received from the area where the power system 3 is present. It is a system for maintaining the frequency (system frequency) of the entire power system 3 at a specified value by adjusting (generated power).
  • the power system load frequency control system 1 is connected to the area power management devices 10 # 1 to 10 # 6 provided for each area and the area power management devices 10 # 1 to 10 # 6 via a dedicated network N. And a wide area power monitoring device 30 for managing the power in areas # 1 to # 6.
  • the generator output input units 11e1 to 11em receive the output values (generated power values) output from the generators G1 to Gm through the signal lines 11b1 to 11bm and output them to the data bus 20.
  • the command value transmission units 11d1 to 11dm transmit (transmit) target command values corresponding to the outputs of the generators G1 to Gn transmitted from the control unit 19 to the corresponding generators G1 to Gm via the signal lines 11a1 to 11am.
  • the generator output input units 11fm + 1 to 11fn input wind power output data (generated power values) output from the generators Gm + 1 to Gn using natural energy via the signal lines 11cm + 1 to 11bn and output them to the data bus 20. .
  • the detection unit 12 is provided in the power system 3 # 1, and the frequency deviation ⁇ F of the power system 3 # 1 is set for each timing based on a predetermined control cycle (for example, every 10 seconds as a control cycle; A frequency deviation ( ⁇ F) detector 12a for detecting at a control cycle timing) and a tidal current deviation ( ⁇ PT) detector 12b for detecting a power flow deviation ⁇ PT of the interconnection line 4 at each control cycle timing.
  • the detection data respectively detected by the ⁇ F detection unit 12a and the ⁇ PT detection unit 12b is input to the AR calculation unit 13 at each detection timing.
  • the AR calculation unit 13 includes a frequency deviation ( ⁇ F) detected by a detection unit 12 ( ⁇ F detection unit 12a, ⁇ PT detection unit 12b) provided on the connection line 4 of the power system 3, and a connection line power flow deviation ( ⁇ PT). Based on the system constant K and the adjustment gain K f of the frequency term received from the wide area power monitoring device 30, the calculation process of the local requirement amount (regional required power) AR is executed for each input timing, that is, for each control cycle timing. The calculation result (region required power (AR) for each control cycle timing) is stored in the memory 13a.
  • the AR calculation unit 13 calculates the regional required power (AR) for each control cycle timing calculated by the AR calculation process, for example, the regional required power at the control cycle timing in the past from the current control cycle timing stored in the memory 13a. Is filtered by a known filtering process such as an exponential smoothing process using.
  • the AR distribution unit 14 distributes the regional required power AR filtered for each control cycle timing by the AR calculation unit 13 to each of the generators G1 to Gn, and sets the AR allocation amount to a target command corresponding to each of the generators G1 to Gn.
  • the data is sent to the value creation unit 15.
  • the target command value creation unit 15 outputs the outputs of the generators G1 to Gm based on the AR distribution amount of the generators G1 to Gm transmitted at each control cycle timing and the load distribution amount received from the operation planning unit 16.
  • a target command value is calculated for each control cycle timing and output to the command value transmission unit 11.
  • the calculated target command values of the generators G1 to Gm are transmitted to the generators G1 to Gm at each control cycle timing, and are transmitted to the generators G1 to Gm.
  • the output of each of the generators G1 to Gm is controlled so that the frequency fluctuation of the power system 1 can be suppressed within a specified value and is optimal in terms of economic load.
  • the operation plan unit 16 is a short-term constraint range indicating a short-term constraint range of the current adjustment power as a driving plan including today's (current) predicted total demand on the previous day based on past demand trends and the like.
  • a long-term restriction range indicating a limited restriction range is calculated, and the operation plan data (predicted total demand data) is stored in the memory 16a.
  • the operation plan unit 16 corrects the predicted total demand data that is planned for operation using the predicted current total demand (current total demand data), the predicted total demand data based on the operation plan data, and the load sharing amount correction value. .
  • the operation planning unit 16 based on the corrected predicted total demand data and various characteristics of the generators G1 to Gm (output upper and lower limit values, etc.), for example, an equal incremental fuel method using Lagrange's undetermined multiplier method, etc.
  • the load sharing amount calculation is executed by the calculation method to calculate the economical load sharing amount of each of the generators G1 to Gm, and the calculated load sharing amount of each of the generators G1 to Gm corresponds to each of the generators G1 to Gm. This is sent to the target command value creation unit 15.
  • the short cycle constraint range calculation unit 17 includes non-natural energy such as the thermal power generators G1 to Gk and the hydroelectric generators Gk + 1 to Gm that are currently operating in parallel among the operation plan data (predicted total demand data) acquired from the operation plan unit 16.
  • a short cycle restriction range which is operation plan data corresponding to the output of the power generator of the system, is extracted and transmitted to the wide area power monitoring apparatus 30 via the communication processing unit 18 and the dedicated network N.
  • the short cycle constraint range calculation unit 17 calculates the short cycle constraint range based on the adjustment power of non-natural energy generators such as the thermal power generators G1 to Gk and the hydropower generators Gk + 1 to Gm currently operating in parallel. You may comprise.
  • the short cycle constraint range calculation unit 17 may be configured to calculate a value obtained by multiplying the short cycle component of the operation plan data (predicted total demand data) acquired from the operation plan unit 16 by a certain ratio. Good.
  • the communication processing unit 18 is connected to the wide area power monitoring apparatus 30 via the dedicated network N, performs packet communication according to a communication protocol, and transmits and receives data.
  • the control unit 19 includes an HDD, a ROM, a RAM, and a CPU. The control unit 19 reads an operating system OS from the HDD, expands the operating system on the RAM, starts the OS, and manages application software (frequency control from the HDD under OS management). Program) and execute various processes.
  • the short cycle variation calculation unit 31 performs high-pass filtering on the total power outputs D # 1 to D # 6 of the plurality of generators using natural energy, and performs short cycle variation values DS # 1 to DS #. 6 is calculated for each.
  • the adjustment gain management unit 32 indicates whether to set 1 or a value larger than 1 as the adjustment gain K f of the frequency term for the plurality of area power management devices 10 # 1 to 10 # 6 Is stored and managed in a flag table (FIG. 5) on the memory 32a.
  • the management DB unit 33 manages the connection state and the like of the interconnection line 4 arranged between the areas as data.
  • the management DB unit 33 manages the operating state, power generation capacity, and the like of the wind power generators arranged in each area as data.
  • the communication processing unit 34 is connected to the plurality of area power management apparatuses 10 # 1 to 10 # 6 via the dedicated network N, performs packet communication according to the communication protocol, and transmits / receives data.
  • the control unit 35 includes an HDD, a ROM, a RAM, and a CPU. The controller 35 reads an operating system OS from the HDD, expands the operating system on the RAM, starts the OS, and manages application software (frequency control from the HDD under OS management. Program) and execute various processes.
  • the area power management apparatus 10 # 1 that manages the power system of the area # 1 aggregates wind power output data acquired from a plurality of wind power generators arranged in the area # 1, and the total value of these data Is transmitted to the wide area power monitoring device 30 as wind power output total data.
  • the area power management apparatus 10 # 1 transmits the short period restriction range S # 1 indicating the short-term restriction range of the current adjustment power to the wide area power monitoring apparatus 30.
  • the area power management devices 10 # 2 to 10 # 6 arranged in the areas # 2 to # 6 use the wind power total data and the short cycle constraint ranges S # 2 to S # 6 in each area as the wide area power. Transmit to the monitoring device 30.
  • the wide area power monitoring apparatus 30 stores the total wind power output data and the short cycle constraint ranges S # 1 to S # 6 received from the area power management apparatuses 10 # 1 to 10 # 6 in the management DB unit 33, and then Filtering is performed on the total wind power output data acquired from the areas # 1 to # 6, and the short cycle fluctuation value of the wind is calculated for each of the areas # 1 to # 6. For each of the areas # 1 to # 6, it is determined whether the deviation state is such that the short cycle variation value falls below the short cycle restriction range or the normal state.
  • the present invention is not limited to such a value, and other values or variable values may be used.
  • the generator output input units 11fm + 1 to 11fn are connected to the natural energy generators Gm + 1 to Gn via signal lines 11cm + 1 to 11bn.
  • the output wind power output data (generated power value) is input and output to the data bus 20.
  • the control unit 19 sums up the wind power output data of the natural energy generators Gm + 1 to Gn input via the data bus 20, and calculates the wind power total data of the area.
  • the short cycle constraint range calculation unit 17 is based on the adjustment power of non-natural energy generators such as the thermal power generators G1 to Gk and the hydropower generators Gk + 1 to Gm that are currently operating in parallel. 1 is calculated.
  • the control unit 19 adds the area number (# 1) to the total wind power output data and the short cycle constraint range S # 1 of the area, and outputs the communication processing unit 18.
  • the communication processing unit 18 performs packet communication with the wide area power monitoring apparatus 30 connected via the dedicated network N according to the communication protocol, and the total wind power output data, the short cycle constraint range S # 1, and the area number (# 1). ).
  • the area power management apparatuses 10 # 2 to 10 # 6 arranged in the areas # 2 to # 6 include total wind power output data, short cycle constraint ranges S # 2 to S # 6, and areas in the respective areas.
  • the number is transmitted to the wide area power monitoring apparatus 30.
  • the wide area power monitoring apparatus 30 stores the total wind power output data and the short cycle restriction ranges S # 1 to S # 6 received from the area power management apparatuses 10 # 1 to 10 # 6 in the management DB unit 33, and outputs the wind power output. Filtering is performed on the total data, and the short-term fluctuation value of the wind force is calculated for each of the areas # 1 to # 6.
  • the flag table shown in FIG. 5 is managed by the adjustment gain management unit 32 provided in the wide area power monitoring apparatus 30.
  • the adjustment gain management unit 32 indicates whether to set 1 or a value larger than 1 as the adjustment gain K f of the frequency term for the plurality of area power management devices 10 # 1 to 10 # 6 Are stored in a flag table on the memory 32a for management.
  • a flag A shown in FIG. 5 indicates that the corresponding area is in a departure state, and a flag B indicates that the corresponding area is in a normal state.
  • step S1 the communication processing unit 34 receives the total wind power output data and the area number from the area power management apparatus 10 # 1 via the dedicated network N. Similarly, the total wind power output data and the area number are received from the area power management apparatuses 10 # 2 to 10 # 6 via the dedicated network N.
  • the control unit 35 classifies each wind power output total data received from the area power management apparatuses 10 # 1 to 10 # 6 for each area number and stores the data in the management DB unit 33.
  • step S5 the short cycle variation calculation unit 31 performs a filtering process on the wind power output total data to calculate a short cycle variation value of the wind force. That is, the short cycle variation calculation unit 31 performs high-pass filtering on the total power outputs D # 1 to D # 6 of the plurality of generators using natural energy, and performs short cycle variation values DS # 1 to DS # 1 to DS # 1 to D # 6. DS # 6 is calculated for each.
  • the control unit 35 classifies the short cycle variation values DS # 1 to DS # 6 for each area number and stores them in the management DB unit 33.
  • the short cycle variation calculation unit 31 outputs a component of a frequency component obtained by removing a low frequency component including a direct current component from a total value D of the power outputs of a plurality of generators using natural energy in a certain area. D.
  • step S10 the communication processing unit 34 receives the short cycle restriction range and the area number from the area power management apparatus 10 # 1 via the dedicated network N. Similarly, the short cycle restriction range and the area number are received from the area power management apparatuses 10 # 2 to 10 # 6 via the dedicated network N.
  • the control unit 35 classifies each short cycle restriction range received from the area power management apparatuses 10 # 1 to 10 # 6 for each area number and stores the classified range in the management DB unit 33.
  • step S15 the control unit 35 sets a flag B to areas # 1 to # 6 for the flag table under the control of the adjustment gain management unit 32, and stores this flag table on the memory 32a. .
  • the flag B indicates that the adjustment gain value of the frequency term is a predetermined value larger than 1.
  • step S20 the control unit 35 sets 1 to the loop variable j (j is an integer).
  • step S25 the control unit 35 reads the short cycle variation value DS # j and the short cycle constraint range S # j related to the area #j from the management DB unit 33, and the short cycle variation value DS # j ⁇ short cycle constraint range.
  • S # j that is, whether or not the short period fluctuation value DS # j is a deviation state that is smaller than the short period constraint range S # j is determined.
  • the control unit 35 has a short cycle variation value that is out of the short cycle constraint range of the area #j. It progresses to step S30.
  • step S30 the control unit 35 sets a flag A to the area #j in a deviating state with respect to the flag table managed by the adjustment gain management unit 32, and stores this flag table on the memory 32a.
  • step S35 the control unit 35 increments the loop variable j by setting j + 1 to the loop variable j.
  • step S40 the control unit 35 determines whether or not the value of the loop variable j has reached the maximum value 7. If the loop variable j becomes 7, the process proceeds to step S45. On the other hand, if the value of the loop variable j has not reached the maximum value 7, the control unit 35 returns to step S25 and repeats the above processing.
  • step S40 when the value of the loop variable j reaches the maximum value 7, it is configured to exit the loop processing. However, the maximum value of the loop variable j is set according to the number of areas monitored by the wide area engine. It may be changed. As a result of the processing in steps S20 to S40, a flag table is generated on the memory 32a as shown in FIG.
  • step S43 the control unit 35 reads the flag table managed by the adjustment gain management unit 32 from the memory 32a. Then, the control unit 35 refers to the flag table and determines whether there is at least one flag A in the flag table. With this determination process, it can be determined whether or not at least one area is in a departure state. When at least one area is in a departure state, the process proceeds to step S45. On the other hand, when all the areas are not in the deviating state, the process proceeds to step S50. Next, when the short cycle variation value is in a deviating state indicating that the short cycle variation value has deviated from the short cycle restriction range in at least one area, in step S45, the control unit 35 manages the flag table managed by the adjustment gain management unit 32.
  • the control unit 35 sequentially outputs a set of data including the area number and the adjustment gain value K f related to the frequency term to the communication processing unit 34.
  • the communication processing unit 34 sequentially receives a set of data including the area number and the adjustment gain value K f related to the frequency term from the control unit 35, and receives these data via the dedicated network N and the area power corresponding to the area number.
  • step S50 the control unit 35 reads the current time from the built-in timer 35t, and determines whether or not a fixed period (for example, 10 minutes) has come. If it is not the time of the fixed cycle, the control unit 35 returns to step S50 and repeats this process. On the other hand, the control unit 35 returns to step S1 and repeats the above process when the time of the fixed period comes.
  • a fixed period for example, 10 minutes
  • the area power management device of the area in the deviating state has a predetermined adjustment gain value related to the frequency term. 1 and a value larger than 1 can be transmitted as a predetermined adjustment gain value related to the frequency term to the area power management apparatus in the area in the normal state.
  • FIG. 7 shows the situation when the short cycle variation value is in the deviating state and the normal state with respect to the short cycle restriction range of a certain area
  • the vertical axis indicates power
  • the horizontal axis indicates time.
  • (a) shows the wind power generation output and is the total area of the output actually generated by the wind power generation
  • (b) shows the long-term fluctuation of the wind power generation output
  • the wind power output is expressed by LPF (low pass filter).
  • (C) shows the short-term fluctuation of the wind power output, and the wind power output passed through the HPF (high pass filter) (wind power output-long-period fluctuation is acceptable)
  • d) shows the long-cycle constraint range, and is the range showing the difference between the total output when the power output of the company's thermal power generator or the like is lowered to the limit and the current total output, and (e) is 30% of the wind power output. This is a predicted value used for long cycle control, and (f) is a short cycle constraint range.
  • the short period fluctuation (c) is in a deviating state indicating that the short period variation range (f) has been deviated in the time period between 3:00 and 3:30. It shows that it is in a normal state except the time zone.
  • the short cycle fluctuation value when the short cycle fluctuation value is in a deviating state with respect to the short cycle constraint range related to the natural energy system (wind power generator) in a certain area, it is arranged in another area connected to the linkage line 4.
  • the non-natural energy generator so as to increase its output, it is possible to suppress frequency fluctuations in the entire system power.
  • the control according to the present invention has an effect that the frequency recovery is faster than the case where there is no control.
  • step S ⁇ b> 101 the communication processing unit 18 receives the adjustment gain value K f related to the frequency term from the wide area power monitoring device 30 provided in the wide area engine, and transfers the adjustment gain value K f to the control unit 19.
  • the AR calculation unit 13 calculates the regional request amount AR according to Expression (2).
  • K is the system constant
  • P is the system capacity
  • ⁇ f is the frequency deviation
  • ⁇ PT is the interconnection power flow deviation.
  • the frequency deviation ( ⁇ F) detection unit 12a provided in the detection unit 12 illustrated in FIG. 1 sets the frequency deviation ⁇ F of the power system 3 # 1 for each timing based on a predetermined control cycle (for example, 10 seconds as a control cycle). Every; hereinafter referred to as control cycle timing).
  • the tidal current deviation ( ⁇ PT) detection unit 12b detects the tidal current deviation ⁇ PT of the interconnection line 4 at each control cycle timing.
  • the detection data detected by the ⁇ F detection unit 12a and the ⁇ PT detection unit 12b is output to the AR calculation unit 13 at each detection timing.
  • step S110 the AR calculation unit 13 determines the frequency deviation ( ⁇ F) detected by the detection unit 12 ( ⁇ F detection unit 12a, ⁇ PT detection unit 12b) provided in the connection line 4 of the power system 3, and the connection line power flow. Based on the deviation ( ⁇ PT), the system constant K, and the adjustment gain K f (1) of the frequency term received from the wide area power monitoring device 30, the above equation (2) is followed for each input timing, that is, for each control cycle timing.
  • the calculation process of the area required amount (area required power) AR is executed, and the calculation result (area required power (AR) for each control cycle timing) is stored in the memory 13a.
  • step S120 the process proceeds to step S120.
  • the AR calculation unit 13 The regional requirement amount AR is calculated according to the equation (3).
  • AR ⁇ KK f P ⁇ f + ⁇ PT (3)
  • the frequency deviation ( ⁇ F) detection unit 12a provided in the detection unit 12 illustrated in FIG. 1 sets the frequency deviation ⁇ F of the power system 3 # 1 for each timing based on a predetermined control cycle (for example, 10 seconds as a control cycle). Every; hereinafter referred to as control cycle timing).
  • the tidal current deviation ( ⁇ PT) detection unit 12b detects the tidal current deviation ⁇ PT of the interconnection line 4 at each control cycle timing.
  • the detection data detected by the ⁇ F detection unit 12a and the ⁇ PT detection unit 12b is output to the AR calculation unit 13 at each detection timing.
  • step S115 the AR calculation unit 13 determines the frequency deviation ( ⁇ F) detected by the detection unit 12 ( ⁇ F detection unit 12a, ⁇ PT detection unit 12b) provided in the connection line 4 of the power system 3, and the connection line power flow. Based on the deviation ( ⁇ PT), the system constant K, and the adjustment gain K f (1.2) of the frequency term received from the wide area power monitoring device 30, the above equation (2) is obtained for each input timing, that is, for each control cycle timing. The calculation process of the required area demand (area required power) AR is executed, and the calculation result (area required power (AR) for each control cycle timing) is stored in the memory 13a. At this time, since the adjustment gain value K f is slightly from 1 to 1.2, also slightly increased area required power AR accordingly. Next, the process proceeds to step S120.
  • step S120 the regional required power AR including the slight increment is distributed and distributed to each generator. That is, the AR calculation unit 13 calculates the regional required power (AR) for each control cycle timing calculated by the AR calculation process, for example, the regional required power at a control cycle timing in the past from the current control cycle timing stored in the memory 13a. Is filtered by a known filtering process such as an exponential smoothing process using.
  • the AR distribution unit 14 distributes the regional required power AR filtered for each control cycle timing by the AR calculation unit 13 to each of the generators G1 to Gn, and sets the AR allocation amount to a target command corresponding to each of the generators G1 to Gn.
  • the data is sent to the value creation unit 15.
  • the target command value creation unit 15 outputs the outputs of the generators G1 to Gm based on the AR distribution amount of the generators G1 to Gm transmitted at each control cycle timing and the load distribution amount received from the operation planning unit 16.
  • a target command value is calculated for each control cycle timing and output to the command value transmission unit 11.
  • the calculated target command values of the generators G1 to Gm are transmitted to the generators G1 to Gm at each control cycle timing, and are transmitted to the generators G1 to Gm.
  • the output of each of the generators G1 to Gm increases slightly, and the frequency fluctuations of the entire power system including other areas can be suppressed via the interconnection line 4 and controlled so as to be optimal in terms of economic load. .
  • step S125 the control unit 19 reads the current time from the built-in timer 19t, and determines whether or not a fixed period (for example, 10 minutes) has come. When it is not the time of the fixed cycle, the control unit 35 returns to step S125 and repeats this process. On the other hand, the control unit 19 returns to step S101 when the time of the fixed period comes, and repeats the above processing.
  • a fixed period for example, 10 minutes
  • the frequency can be maintained by using the adjustment power of non-natural energy generators.
  • the level of immediacy and reliability can be set lower than in the conventional AR allocation method.
  • since the follow-up control is performed even when the prediction regarding wind power generation is lost, there is an advantage that the frequency is not disturbed because the output power is not reduced.
  • FIG. 9 is a flowchart for explaining the operation of the wide area power monitoring apparatus 30, and is characterized in that step S245 shown in FIG. 9 is included in the flowchart shown in FIG. That is, in step S245, the control unit 35 reads the flag table managed by the adjustment gain management unit 32 from the memory 32a. Then, the control unit 35 refers to the flag table and controls the communication processing unit 34 so as to transmit the adjustment gain value OFF signal to the area in the departure state indicated by the flag A. On the other hand, the control unit 35 enters the normal state indicated by the flag B. The communication processing unit 34 is controlled to transmit the adjustment gain value ON signal to a certain area.
  • control unit 35 sequentially outputs a set of data including the area number and the adjustment gain value ON signal or the adjustment gain value OFF signal related to the frequency term to the communication processing unit 34.
  • the communication processing unit 34 sequentially receives a set of data including an adjustment gain value ON signal or an adjustment gain value OFF signal related to the area number and the frequency term from the control unit 35, and receives these data via the dedicated network N in the area.
  • the information is sequentially transmitted to the area power management apparatuses 10 # 1 to 10 # 6 corresponding to the numbers.
  • FIG. 10 is a flowchart for explaining the operation of the area power management apparatus 10 provided in a certain area, and is characterized in that step S255 shown in FIG. 10 is included in the flowchart shown in FIG.
  • the control unit 19 determines whether or not an adjustment gain value OFF signal has been received from the wide area engine. If the adjustment gain value OFF signal from the wide area engine is received, the process proceeds to step S110. On the other hand, if the adjustment gain value OFF signal from the wide area engine is not received (the adjustment gain value ON signal is received). Advances to step S115.
  • the natural power generators arranged in the same area and the area power management device that manages the operating state of the non-renewable energy generators, and the above-mentioned each arranged in a plurality of areas A wide-area power monitoring apparatus that is connected to the area power management apparatus via a network and that monitors the operation state of a wide-area power system that is interconnected between a plurality of areas by receiving the operation state from the area power management apparatus.
  • the area power management device calculates a total value of the power outputs of a plurality of renewable energy generators in its own area, and determines its own area based on the adjustment power of the non-renewable energy generator.
  • the short cycle constraint range is calculated, and an area number related to the own area is added to the total value and the short cycle constraint range and transmitted to the wide area power monitoring apparatus.
  • the wide area power monitoring device receives the total value, the short cycle restriction range, and the area number from the area power management device of each area, calculates the short cycle variation value from the total value for each area, and the short cycle variation in at least one area
  • control is performed so as to transmit a 1 or an adjusted gain value OFF signal as a predetermined adjusted gain value related to the frequency term to the area power management apparatus in the area.
  • a value greater than 1 or an adjustment gain value ON signal as a predetermined adjustment gain value related to the frequency term Is transmitted to the area power management apparatus in the area.
  • the area power management device When the area power management device receives a predetermined adjustment gain value or adjustment gain value ON signal or adjustment gain value OFF signal related to the frequency term from the wide area power monitoring device, the frequency deviation ( ⁇ F) of the power system of the area, Based on the system power flow deviation ( ⁇ PT), the predetermined adjustment gain value or the adjustment gain value ON signal or the adjustment gain value OFF signal, the area request power (AR) is calculated, and the area request power is calculated as a plurality of non-natural energy systems. Distribute to the generator. As a result, the output power of the generator that does not use the natural energy of other areas that are connected to the area only when the fluctuation due to the output power of the generator that uses natural energy exceeds the frequency adjustment capability of its own area. It is possible to maintain the frequency of the power system by using the adjustment force by.
  • the load fluctuation in the supply area of the own power company is basically controlled by the own power company. Only when the power fluctuation by the generator of natural energy such as wind power exceeds the frequency adjustment capability of the own power company, the adjustment power of the other power company linked with the command from the wide-area organization is utilized, and the frequency It is characterized by maintaining.
  • the adjustment gain value K f about frequency terms, for example, 1.2 in some cases 1.0, the normal state when in departure state By using, there was an effect that the frequency was stabilized.
  • AR i ⁇ KP i ⁇ f + ⁇ PT i (4)
  • AR i (MW) is the regional requirement (supply error) of i company
  • P i (MVA) is the system capacity of i company
  • ⁇ f (Hz) is the frequency deviation
  • ⁇ P Ti (MW) is the interconnection of i company It is a line tidal current deviation.
  • K ⁇ f is a value obtained by multiplying the system constant K by a frequency deviation ⁇ f, and is a ratio of supply and demand errors (adjustment required) of the entire system accompanying the frequency deviation ⁇ f. Therefore, KP i ⁇ f (MW) in the formula of the regional requirement amount AR is the company's capacity ratio, which means that the adjustment is shared.
  • the company k that does not participate in the adjustment also participates in the adjustment within the range allowed by the adjustment power (the output change width of the generator).
  • the adjustment force of company k is ⁇ P max
  • the wide area power monitoring device 40 is newly provided with an adjustment gain calculation unit 36, a keyboard 37, a display control unit 38, and a monitor 39 with respect to the wide area power monitoring device 30 used in the first embodiment.
  • the display control unit 38 displays various data input from the keyboard 37 on the monitor 39 and displays the adjustment gain value calculated by the adjustment gain calculation unit 36.
  • step S205 the adjustment gain calculation unit 36 assumes that k company has insufficient adjustment power as an assumption of insufficient adjustment power.
  • step S215 the adjustment gain calculation unit 36 estimates or measures the frequency deviation ⁇ f. That is, the adjustment gain calculation unit 36 communicates with the communication processing unit 18 of the area power management apparatus provided in each area from the communication processing unit 34 via the dedicated network N, and acquires the frequency deviation ⁇ f in each area. Then, in step S220, the adjustment gain computing unit 36 calculates an adjustment gain value K f about frequency term in accordance with equation (14). Then, in step S225, the adjustment gain computing section 36 stores the adjusted gain value K f about calculated frequency term to the memory 32a is managed by adjusting the gain control section 32 as K fm. Next, the adjustment gain value calculated by the adjustment gain calculation unit 36 is displayed on the monitor 39.
  • step S340 reads the K fm from memory.
  • control unit 35 sequentially outputs a set of data including the area number and the adjustment gain value K f related to the frequency term to the communication processing unit 34.
  • the communication processing unit 34 sequentially receives a set of data including the area number and the adjustment gain value K f related to the frequency term from the control unit 35, and receives these data via the dedicated network N and the area power corresponding to the area number.
  • the data is sequentially transmitted to the management devices 10 # 1 to 10 # 6.
  • SYMBOLS 1 Electric power system load frequency control system, 3 ... Electric power system, 10 ... Area power management apparatus, 11 ... External interface part, 11 ... Command value transmission part, 11d ... Command value transmission part, 11e ... Generator output input part, 11f ... Generator output input unit, 12 ... detection unit, 13 ... AR calculation unit, 13a ... memory, 14 ... AR distribution unit, 15 ... target command value creation unit, 16 ... operation planning unit, 16a ... memory, 17 ... short cycle Restriction range calculation unit, 18 ... communication processing unit, 19 ... control unit, 19t ... timer, 30 ... wide area power monitoring device, 31 ... short cycle fluctuation calculation unit, 32 ... adjustment gain management unit, 32a ...

Abstract

Devices (10) calculate a total value for power output from generators in a natural energy grid inside a local area, calculate a short-cycle restriction range for the local area on the basis of the adjusting force of non-natural energy grid generators, apply an area number to the total value and the short-cycle restriction range, and send same to a device (30). The device (30) receives this information from devices (10) in each area, calculates a short-cycle fluctuation value from the total value for each area, sends 1 as an adjustment gain value if the short-cycle fluctuation value has deviated in at least one area, to the device (10) in the relevant area, and sends a value greater than 1 as the adjustment gain value to devices (10) in other areas if said areas are in a normal state. The devices (10) calculate an area requirement (AR) on the basis of a frequency deviation (ΔF), a tie line tidal deviation (ΔPT), and adjustment gain values for power grids arranged in the relevant areas, and distributes the area requirement to non-natural energy grid generators.

Description

周波数制御システム、及び周波数制御方法Frequency control system and frequency control method
 本発明は、複数の電力系統が連係線で連係された電力系統(以下、連系系統という)における周波数を維持するのに好適な周波数制御システム、及び周波数制御方法に関する。 The present invention relates to a frequency control system and a frequency control method suitable for maintaining a frequency in a power system in which a plurality of power systems are linked by a linkage line (hereinafter referred to as a linked system).
 電力系統を運用する場合、負荷変動があっても常に系統周波数を規定値に保持する必要があり、そのために負荷変動に応じて発電機の出力を調整するようにしている。これを周波数調整という。
 現在、我が国日本における各電力系統は、周波数制御方式として、次の2つの方式に基づいて運用されている。
 第1の方式として、連系線潮流とは無関係に周波数偏差(ΔF)を検出し、検出周波数偏差ΔFを小さくするように発電機出力を調整し、系統周波数のみを規定値に保とうとする定周波数制御(FFC)方式がある。
 第2の方式として、周波数バイアス連系線潮流制御(TBC;Tie Line Bias Control(以下、TBC方式と略称する))方式がある。
When operating an electric power system, it is necessary to always maintain the system frequency at a specified value even when there is a load change. For this reason, the output of the generator is adjusted according to the load change. This is called frequency adjustment.
Currently, each power system in Japan in Japan is operated based on the following two systems as frequency control systems.
As a first method, a frequency deviation (ΔF) is detected regardless of the grid line power flow, the generator output is adjusted so as to reduce the detected frequency deviation ΔF, and only the system frequency is maintained at a specified value. There is a frequency control (FFC) system.
As a second method, there is a frequency bias interconnection power flow control (TBC) method (hereinafter referred to as a TBC method).
 このTBC方式では、周波数偏差(ΔF)と連系線潮流偏差(ΔPT)とを検出し、検出した周波数偏差(ΔF)と連系線潮流偏差(ΔPT)とを用いて自系統内(自系統に対応する地域内)の負荷変動量を調整するために必要な需給調整量、すなわち地域要求電力(以下、地域要求量(AR)と記載する)を算出し、その算出した要求量に応じて発電機出力を調整する(特許文献1~3)。
 なお、このTBC方式は、連系する他系統内での負荷変化に対しては、周波数偏差Δfに比例して連系線潮流制御の設定値を自動的に変更して応援電力を送り出し、相手系統の周波数調整に協力するようにも機能する。
In this TBC method, the frequency deviation (ΔF) and the interconnecting line power flow deviation (ΔPT) are detected, and the detected frequency deviation (ΔF) and the interconnecting line power flow deviation (ΔPT) are used in the own system (own system). Calculate the demand and supply adjustment amount necessary to adjust the load fluctuation amount in the region corresponding to the above, that is, the regional demand power (hereinafter referred to as the regional demand amount (AR)), and according to the calculated demand amount The generator output is adjusted (Patent Documents 1 to 3).
Note that this TBC method automatically changes the setting value of the interconnection power flow control in proportion to the frequency deviation Δf in response to a load change in the other interconnected system, and sends out the support power. It also functions to cooperate in system frequency adjustment.
 TBC方式では、以下の手順(プロセス)に基づいて実行されている。
 すなわち、地域要求電力(AR)は、周波数偏差(ΔF)、連系線潮流偏差(ΔPT)、K:系統定数Kを用いた次式(1)により算出することができる。
 AR=-KΔf + ΔPT          (1)
 この式(1)により、地域要求電力ARが正の値、すなわち連系線潮流偏差(ΔPT)が周波数偏差Δfと系統定数Kとの積(K・Δf)よりも大(ΔP>K・Δf)のときは、自系統の発電機出力を上昇させ、逆に、地域要求電力ARが負の値、すなわち連系線潮流偏差(ΔPT)が周波数偏差Δfと系統定数Kとの積(K・Δf)よりも小(ΔPT<K・Δf)のときは、自系統の発電機出力を下降させることを意味する。
In the TBC method, it is executed based on the following procedure (process).
In other words, the regional required power (AR) can be calculated by the following equation (1) using the frequency deviation (ΔF), the interconnection power flow deviation (ΔPT), and K: system constant K.
AR = −KΔf + ΔPT (1)
From this equation (1), the regional required power AR is a positive value, that is, the interconnection power flow deviation (ΔPT) is larger than the product (K · Δf) of the frequency deviation Δf and the system constant K (ΔP> K · Δf). ), The generator output of the own system is increased, and conversely, the regional required power AR is a negative value, that is, the interconnection power flow deviation (ΔPT) is the product of the frequency deviation Δf and the system constant K (K · When smaller than (Δf) (ΔPT <K · Δf), it means that the generator output of the own system is lowered.
 上記地域要求電力ARは、過去の地域要求電力ARを用いて指数平滑等によりフィルタリングされ、負荷周波数調整が行われている全ての発電機に対して、その発電機の出力変化速度比あるいは、出力余裕比等に応じて配分される。 The regional required power AR is filtered by exponential smoothing using the past regional required power AR, and the output change speed ratio or output of the generator is adjusted for all the generators whose load frequency is adjusted. It is distributed according to the margin ratio.
特開2001-238355号公報JP 2001-238355 A 特開2002-209336号公報JP 2002-209336 A 特開2005-20916号公報JP 2005-20916 A
 近年、自然エネルギーを利用した太陽光発電、風力発電、潮力発電等の導入が急速に進んでいる。自然エネルギーを利用した出力電力を既存の火力発電や水力発電の電力系統に連系する場合や、自然エネルギーを利用した出力電力を例えば60Hz系の各電力会社が連系して連系系統に連系する場合がある。
 ところで、上述した自然エネルギーを利用した発電は二酸化炭素COを排出しないクリーンな電源である。しかし、自然エネルギーを利用するため、出力電力が時々刻々と変動する。また、日本全体としては地理的な条件から電力会社が縦列する系統(くし形系統と呼ばれる)会社間の連系線に大電力を流すと長距離送電となるため、安定度に問題が生じ易い。このため、電力の需要と供給のバランスを取ることが困難となり、電力の周波数が不安定になるといった問題がある。
 そこで、現行の制御方式と同様に、自電力会社の供給区域の負荷変動については、自電力会社で制御することを基本とし、自然エネルギーを利用した出力電力による変動が自電力会社の周波数調整能力を上回ってしまった場合のみ、連系他電力会社の調整力を活用し、電力系統の周波数を維持することが切望されている。
In recent years, the introduction of solar power generation, wind power generation, tidal power generation, etc. using natural energy has been rapidly progressing. When the output power using natural energy is linked to an existing thermal power generation system or hydropower generation power system, or the output power using natural energy is connected to a grid connection system by, for example, 60 Hz power companies. There are times when it is related.
By the way, the above-described power generation using natural energy is a clean power source that does not emit carbon dioxide CO 2 . However, since natural energy is used, output power fluctuates every moment. In addition, as a whole in Japan, long-distance power transmission is likely to occur due to long-distance transmission due to long-distance transmission when a large amount of power is passed through a grid (called a comb grid) between power companies due to geographical conditions. . For this reason, it becomes difficult to balance power demand and supply, and there is a problem that the frequency of power becomes unstable.
Therefore, as with the current control method, load fluctuations in the supply area of the own power company are basically controlled by the own power company, and fluctuations due to output power using natural energy are the frequency adjustment capability of the own power company. Only when it exceeds the limit, it is eager to maintain the frequency of the power grid by utilizing the coordination power of other power companies.
 本発明は、上記に鑑みてなされたもので、その目的としては、自然エネルギーを利用した発電機の出力電力による変動が自エリアの周波数調整能力を上回ってしまった場合のみ、連系している他エリアの自然エネルギーを利用していない発電機の出力電力による調整力を利用し、電力系統の周波数を維持する周波数制御システム、及び周波数制御方法を提供することにある。 The present invention has been made in view of the above, and as its purpose, it is linked only when the fluctuation due to the output power of the generator using natural energy exceeds the frequency adjustment capability of its own area. An object of the present invention is to provide a frequency control system and a frequency control method for maintaining the frequency of an electric power system by using an adjustment power based on output power of a generator that does not use natural energy in other areas.
 上記課題を解決するたに、請求項1記載の発明は、同一エリア内に配置されている自然エネルギー系の発電機、及び非自然エネルギー系の発電機の運転状態を管理するエリア電力管理装置と、複数のエリアに夫々配置されている前記エリア電力管理装置とネットワークを介して接続され、前記エリア電力管理装置から前記運転状態を受信することにより前記複数のエリア間で連系された広域電力系統の運転状態を監視する広域電力監視装置と、を備えたシステムであって、前記エリア電力管理装置は、自エリア内の複数の前記自然エネルギー系の発電機の電力出力の合計値を算出する合計値算出手段と、前記非自然エネルギー系の発電機の調整力に基づいて、前記自エリアにおける短周期制約範囲を算出する短周期制約範囲算出手段と、前記合計値及び前記短周期制約範囲に自エリアに関するエリア番号を付加して前記広域電力監視装置に送信する送信手段と、を備え、前記広域電力監視装置は、前記各エリアの前記エリア電力管理装置から前記合計値、前記短周期制約範囲、前記エリア番号を受信する受信手段と、前記エリア毎に前記合計値から短周期変動値を算出する短周期変動値算出手段と、少なくとも1つのエリアにおいて前記短周期変動値が前記短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、周波数項に関する所定の調整ゲイン値として1又は調整ゲイン値OFF信号を当該エリアの前記エリア電力管理装置に送信するように制御し、かつ、他のエリアにおいて前記短周期変動値が前記短周期制約範囲内にあることを示す正常状態にある場合に、周波数項に関する所定の調整ゲイン値として1よりも大きい値又は調整ゲイン値ON信号を当該エリアの前記エリア電力管理装置に送信するように制御する制御手段と、を備え、前記エリア電力管理装置は、前記広域電力監視装置から前記周波数項に関する所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号を受信した場合に、当該エリアの電力系統の周波数偏差(ΔF)、連系線潮流偏差(ΔPT)、前記所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号に基づいて、地域要求電力(AR)を算出する地域要求電力算出手段と、前記地域要求電力を前記非自然エネルギー系の複数の発電機に分配する分配手段と、を備えたことを特徴とする。 In order to solve the above-mentioned problems, the invention described in claim 1 includes a natural energy generator and an area power management device that manages the operating state of a non-natural energy generator disposed in the same area. A wide-area power system connected via the network to the area power management devices respectively disposed in a plurality of areas and interconnected between the plurality of areas by receiving the operating state from the area power management devices A wide area power monitoring device that monitors the operation state of the area, wherein the area power management device calculates a total value of power outputs of a plurality of the generators of the natural energy system in the area. Value calculation means, short cycle constraint range calculation means for calculating a short cycle constraint range in the own area based on adjustment power of the non-renewable energy generator, Transmission means for adding an area number related to the own area to the total value and the short cycle restriction range and transmitting the same to the wide area power monitoring apparatus, and the wide area power monitoring apparatus from the area power management apparatus of each area A receiving unit that receives the total value, the short cycle restriction range, and the area number; a short cycle variation value calculating unit that calculates a short cycle variation value from the total value for each area; and the short cycle variation value in at least one area. When the cycle variation value is in a deviating state indicating that it deviates from the short cycle constraint range, 1 or an adjustment gain value OFF signal is transmitted to the area power management apparatus in the area as a predetermined adjustment gain value relating to the frequency term. And in a normal state indicating that the short cycle fluctuation value is within the short cycle constraint range in other areas Control means for controlling to transmit a value greater than 1 or an adjustment gain value ON signal as a predetermined adjustment gain value relating to the term to the area power management device in the area, and the area power management device includes: When a predetermined adjustment gain value or adjustment gain value ON signal or adjustment gain value OFF signal related to the frequency term is received from a wide area power monitoring device, the frequency deviation (ΔF) of the power system in the area, the interconnection power flow deviation ( [Delta] PT), regional demand power calculation means for calculating the regional demand power (AR) based on the predetermined adjustment gain value or the adjustment gain value ON signal or the adjustment gain value OFF signal, and the regional demand power as the non-natural energy Distribution means for distributing to a plurality of generators of the system.
 本発明によれば、自然エネルギーを利用した発電機の出力電力による変動が自エリアの周波数調整能力を上回ってしまった場合のみ、連系している他エリアの自然エネルギーを利用していない発電機の出力電力による調整力を利用し、電力系統の周波数を維持することができる。 According to the present invention, a generator that does not use the natural energy of another area that is connected only when the fluctuation due to the output power of the generator that uses natural energy exceeds the frequency adjustment capability of the area. It is possible to maintain the frequency of the power system by using the adjustment power due to the output power of the power system.
本発明の第1実施形態に係わる電力系統負荷周波数制御システム1の機能ブロック構成を示す図である。It is a figure which shows the functional block structure of the electric power grid load frequency control system 1 concerning 1st Embodiment of this invention. 図1に示す外部インタフェース部11の構成を示す図である。It is a figure which shows the structure of the external interface part 11 shown in FIG. 図1に示す電力系統負荷周波数制御システム1に備えられている各装置間で通信される情報について説明するための図である。It is a figure for demonstrating the information communicated between each apparatus with which the electric power grid load frequency control system 1 shown in FIG. 1 is equipped. 図1に示す電力系統負荷周波数制御システム1に備えられている各装置間で通信される情報のシーケンスについて説明するためのシーケンス図である。It is a sequence diagram for demonstrating the sequence of the information communicated between each apparatus with which the electric power system load frequency control system 1 shown in FIG. 1 is equipped. 調整ゲイン管理部32に設けられたメモリに記憶されているフラグテーブルの構造を示す図である。4 is a diagram illustrating a structure of a flag table stored in a memory provided in an adjustment gain management unit 32. FIG. 図1に示す広域電力監視装置30の動作について説明するためのフローチャートである。4 is a flowchart for explaining the operation of the wide area power monitoring apparatus 30 shown in FIG. 1. あるエリアの短周期制約範囲に対して短周期変動値が逸脱状態にある場合と正常状態にある場合の状況について説明するためのグラフ図である。It is a graph for demonstrating the situation when the short cycle fluctuation value is in a deviation state with respect to the short cycle restriction range of a certain area and in the normal state. 図1に示すエリア電力管理装置10の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the area power management apparatus 10 shown in FIG. 第1実施形態の変形例として、広域電力監視装置30の動作について説明するためのフローチャートである。7 is a flowchart for explaining the operation of the wide area power monitoring apparatus 30 as a modification of the first embodiment. 第1実施形態の変形例として、エリア電力管理装置10の動作について説明するためのフローチャートである。6 is a flowchart for explaining the operation of the area power management apparatus 10 as a modification of the first embodiment. 本発明の第2実施形態に係わる電力系統負荷周波数制御システムの広域電力監視装置40の機能ブロック構成を示す図である。It is a figure which shows the functional block structure of the wide area power monitoring apparatus 40 of the electric power grid load frequency control system concerning 2nd Embodiment of this invention. 第2実施形態として、図11に示す調整ゲイン算出部36による出処理について説明するためのフローチャートである。FIG. 12 is a flowchart for explaining an output process by an adjustment gain calculation unit 36 shown in FIG. 11 as a second embodiment. 図11に示す広域電力監視装置40の動作について説明するためのフローチャートである。12 is a flowchart for explaining the operation of the wide area power monitoring apparatus 40 shown in FIG. 11.
 本発明の実施形態について、図面を参照して説明する。
<第1実施形態>
 図1は、本発明の第1実施形態に係わる電力系統負荷周波数制御システム1の機能ブロック構成を示す図である。図1においては、例えば日本国の九州エリア、中国エリアから中部エリアに至る60Hz系の電力系統3を示しており、エリア#1~#6には複数の電力会社が夫々に管轄するエリアであり、1つのエリアに1つの電力会社が存在することとする。なお、本実施形態においては、エリア数を6つとして扱うことで説明を簡略化しているが、本発明はこのようなエリア数に限定されるものはない。
 このエリア#1~#6に配置されている電力系統3#1~3#6は、その内部に電力供給用の複数の発電機G1、G2、…、Gnを備えている。G1~Gkは火力発電機であり、Gk+1~Gnは水力発電機であり、Gm+1~Gn(1<k<m<n)は風力発電機である。発電機Gm+1~Gnは、風力発電機に代わって、太陽光発電機や潮力発電機であってもよい。また、電力系統3は、他系統(自エリアを除く他の電力系統3)との間で連系線4を介在して連系されており、連系系統を構成している。
Embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a diagram showing a functional block configuration of a power system load frequency control system 1 according to the first embodiment of the present invention. In FIG. 1, for example, a 60 Hz power system 3 from the Kyushu area in Japan and the China area to the Chubu area is shown. Areas # 1 to # 6 are areas under control of a plurality of power companies. Assume that one electric power company exists in one area. In the present embodiment, the description is simplified by treating the number of areas as six, but the present invention is not limited to such a number of areas.
The power systems 3 # 1 to 3 # 6 arranged in the areas # 1 to # 6 include a plurality of power generators G1, G2,..., Gn for supplying power. G1 to Gk are thermal power generators, Gk + 1 to Gn are hydraulic power generators, and Gm + 1 to Gn (1 <k <m <n) are wind power generators. The generators Gm + 1 to Gn may be solar power generators or tidal power generators instead of wind power generators. In addition, the power system 3 is connected to another system (an other power system 3 excluding its own area) via a connection line 4 to form a connection system.
 なお、自然エネルギーを利用して電力に変換する発電形態(自然エネルギー系)としては、地熱発電、太陽熱発電、海洋温度差発電、波力発電、潮力発電、海洋温度差発電、塩分濃度差発電、海流発電、陸上風力発電、洋上風力発電、浮体式洋上風力発電、凧型風力発電、燃料電池発電、太陽光発電、宇宙太陽光発電、MHD発電、熱電発電、振動発電などが知られており、上記発電機Gm+1~Gnはこれらの発電形態であってもよい。
 自然エネルギーを利用しないで電力に変換する発電形態(非自然エネルギー系)としては、火力発電、水力発電、原子力発電など、発電する電力量を制御できる発電形態が知られている。
In addition, as a form of power generation (natural energy system) that uses natural energy to convert to electric power, geothermal power generation, solar thermal power generation, ocean temperature difference power generation, wave power generation, tidal power generation, ocean temperature difference power generation, salinity difference power generation , Ocean current power generation, onshore wind power generation, offshore wind power generation, floating offshore wind power generation, vertical wind power generation, fuel cell power generation, solar power generation, space solar power generation, MHD power generation, thermoelectric power generation, vibration power generation, etc. The generators Gm + 1 to Gn may have these power generation modes.
As a power generation form (non-natural energy system) for converting into electric power without using natural energy, a power generation form capable of controlling the amount of power to be generated, such as thermal power generation, hydroelectric power generation, and nuclear power generation, is known.
 第1実施形態に係る電力系統負荷周波数制御システム1は、電力系統3のあるエリアから受信した指令値に応じて該電力系統3のあるエリアを除く他のエリアの各発電機G1~Gnの出力(発電電力)を調整することにより、電力系統3全体の周波数(系統周波数)を規定値に維持するためのシステムである。
 この電力系統負荷周波数制御システム1は、エリア毎に設けられたエリア電力管理装置10#1~10#6と、エリア電力管理装置10#1~10#6と専用ネットワークNを介して接続され、エリア#1~#6の電力を管理する広域電力監視装置30とを備えている。
The power system load frequency control system 1 according to the first embodiment outputs the outputs of the generators G1 to Gn in other areas excluding the area where the power system 3 is present according to a command value received from the area where the power system 3 is present. It is a system for maintaining the frequency (system frequency) of the entire power system 3 at a specified value by adjusting (generated power).
The power system load frequency control system 1 is connected to the area power management devices 10 # 1 to 10 # 6 provided for each area and the area power management devices 10 # 1 to 10 # 6 via a dedicated network N. And a wide area power monitoring device 30 for managing the power in areas # 1 to # 6.
 ここで、エリア電力管理装置10の構成について説明する。
 まず、図2を参照して、外部インタフェース部11の構成について説明する。
 発電機出力入力部11e1~11emは、発電機G1~Gmから信号線11b1~11bmを介して出力された出力値(発電電力値)を入力してデータバス20に出力する。
 指令値伝送部11d1~11dmは、制御部19から送信された発電機G1~Gnの出力に対応する目標指令値を信号線11a1~11amを介して対応する発電機G1~Gmに送信(伝送)する。
 発電機出力入力部11fm+1~11fnは、自然エネルギーを利用する発電機Gm+1~Gnから信号線11cm+1~11bnを介して出力された風力出力データ(発電電力値)を入力してデータバス20に出力する。
Here, the configuration of the area power management apparatus 10 will be described.
First, the configuration of the external interface unit 11 will be described with reference to FIG.
The generator output input units 11e1 to 11em receive the output values (generated power values) output from the generators G1 to Gm through the signal lines 11b1 to 11bm and output them to the data bus 20.
The command value transmission units 11d1 to 11dm transmit (transmit) target command values corresponding to the outputs of the generators G1 to Gn transmitted from the control unit 19 to the corresponding generators G1 to Gm via the signal lines 11a1 to 11am. To do.
The generator output input units 11fm + 1 to 11fn input wind power output data (generated power values) output from the generators Gm + 1 to Gn using natural energy via the signal lines 11cm + 1 to 11bn and output them to the data bus 20. .
 図1に戻り、検出部12は、電力系統3#1に設けられており、電力系統3#1の周波数偏差ΔFを所定の制御周期に基づくタイミング毎(例えば、制御周期として10秒毎;以下、制御周期タイミングと記載する)に検出するための周波数偏差(ΔF)検出部12a、連系線4の潮流偏差ΔPTを制御周期タイミング毎に検出するための潮流偏差(ΔPT)検出部12bを備え、このΔF検出部12aおよびΔPT検出部12bによりそれぞれ検出された検出データは、AR計算部13に検出タイミング毎に入力される。 Returning to FIG. 1, the detection unit 12 is provided in the power system 3 # 1, and the frequency deviation ΔF of the power system 3 # 1 is set for each timing based on a predetermined control cycle (for example, every 10 seconds as a control cycle; A frequency deviation (ΔF) detector 12a for detecting at a control cycle timing) and a tidal current deviation (ΔPT) detector 12b for detecting a power flow deviation ΔPT of the interconnection line 4 at each control cycle timing. The detection data respectively detected by the ΔF detection unit 12a and the ΔPT detection unit 12b is input to the AR calculation unit 13 at each detection timing.
 AR計算部13は、電力系統3の連系線4に設けられた検出部12(ΔF検出部12a、ΔPT検出部12b)により検出された周波数偏差(ΔF)、連系線潮流偏差(ΔPT)、系統定数K、及び広域電力監視装置30から受信した周波数項の調整ゲインKに基づいて、入力タイミング毎、すなわち制御周期タイミング毎に地域要求量(地域要求電力)ARの計算処理を実行し、その計算結果(制御周期タイミング毎の地域要求電力(AR))をメモリ13aに記憶する。 The AR calculation unit 13 includes a frequency deviation (ΔF) detected by a detection unit 12 (ΔF detection unit 12a, ΔPT detection unit 12b) provided on the connection line 4 of the power system 3, and a connection line power flow deviation (ΔPT). Based on the system constant K and the adjustment gain K f of the frequency term received from the wide area power monitoring device 30, the calculation process of the local requirement amount (regional required power) AR is executed for each input timing, that is, for each control cycle timing. The calculation result (region required power (AR) for each control cycle timing) is stored in the memory 13a.
 さらに、AR計算部13はAR計算処理により計算された制御周期タイミング毎の地域要求電力(AR)を、例えばメモリ13aに記憶された現在の制御周期タイミングよりも過去の制御周期タイミングにおける地域要求電力を用いた指数平滑化処理等の公知のフィルタリング処理によりフィルタリングする。
 AR分配部14は、AR計算部13により制御周期タイミング毎にフィルタリングされた地域要求電力ARを各発電機G1~Gnに配分し、そのAR配分量を各発電機G1~Gnに対応する目標指令値作成部15に送る。
Furthermore, the AR calculation unit 13 calculates the regional required power (AR) for each control cycle timing calculated by the AR calculation process, for example, the regional required power at the control cycle timing in the past from the current control cycle timing stored in the memory 13a. Is filtered by a known filtering process such as an exponential smoothing process using.
The AR distribution unit 14 distributes the regional required power AR filtered for each control cycle timing by the AR calculation unit 13 to each of the generators G1 to Gn, and sets the AR allocation amount to a target command corresponding to each of the generators G1 to Gn. The data is sent to the value creation unit 15.
 目標指令値作成部15は、制御周期タイミング毎に送信されてきた各発電機G1~GmのAR配分量、運転計画部16から受信した負荷配分量に基づいて、各発電機G1~Gm出力の目標指令値を制御周期タイミング毎に算出し、指令値伝送部11に出力する。指令値伝送部11d1~11dmの処理として、算出した各発電機G1~Gm出力の目標指令値を制御周期タイミング毎に各発電機G1~Gmに向けて伝送し、その各発電機G1~Gmに目標指令値(数値)を出力する。この結果、各発電機G1~Gmの出力は、電力系統1の周波数変動を規定値以内に抑制でき、かつ経済負荷的に最適になるように制御される。 The target command value creation unit 15 outputs the outputs of the generators G1 to Gm based on the AR distribution amount of the generators G1 to Gm transmitted at each control cycle timing and the load distribution amount received from the operation planning unit 16. A target command value is calculated for each control cycle timing and output to the command value transmission unit 11. As the processing of the command value transmission units 11d1 to 11dm, the calculated target command values of the generators G1 to Gm are transmitted to the generators G1 to Gm at each control cycle timing, and are transmitted to the generators G1 to Gm. Outputs the target command value (numerical value). As a result, the output of each of the generators G1 to Gm is controlled so that the frequency fluctuation of the power system 1 can be suppressed within a specified value and is optimal in terms of economic load.
 運転計画部16は、過去の需要傾向等に基づいて前日に本日(現在)の予測総需要を含む運転計画として、現在の調整力のうち短期的な制約範囲を示す短周期制約範囲、長期的な制約範囲を示す長期期制約範囲を算出し、その運転計画データ(予測総需要データ)をメモリ16aに記憶している。
 運転計画部16は、予測した現在の総需要(現在総需要データ)、運転計画データに基づく予測総需要データ、負荷分担量補正値とを用いて、運転計画された予測総需要データを補正する。
 そして、運転計画部16は、補正した予測総需要データおよび各発電機G1~Gmの諸特性(出力上下限値等)に基づいて、例えばLagrangeの未定乗数法を用いた等増分燃料法等の計算方法により負荷分担量計算を実行して各発電機G1~Gmの経済的な負荷分担量を算出し、算出した各発電機G1~Gmの負荷分担量を各発電機G1~Gmに対応する目標指令値作成部15に送る。
The operation plan unit 16 is a short-term constraint range indicating a short-term constraint range of the current adjustment power as a driving plan including today's (current) predicted total demand on the previous day based on past demand trends and the like. A long-term restriction range indicating a limited restriction range is calculated, and the operation plan data (predicted total demand data) is stored in the memory 16a.
The operation plan unit 16 corrects the predicted total demand data that is planned for operation using the predicted current total demand (current total demand data), the predicted total demand data based on the operation plan data, and the load sharing amount correction value. .
Then, the operation planning unit 16, based on the corrected predicted total demand data and various characteristics of the generators G1 to Gm (output upper and lower limit values, etc.), for example, an equal incremental fuel method using Lagrange's undetermined multiplier method, etc. The load sharing amount calculation is executed by the calculation method to calculate the economical load sharing amount of each of the generators G1 to Gm, and the calculated load sharing amount of each of the generators G1 to Gm corresponds to each of the generators G1 to Gm. This is sent to the target command value creation unit 15.
 短周期制約範囲算出部17は、運転計画部16から取得した運転計画データ(予測総需要データ)のうち現在並列運転中の火力発電機G1~Gk、水力発電機Gk+1~Gm等の非自然エネルギー系の発電機の出力分の運転計画データである短周期制約範囲を抽出し、通信処理部18、専用ネットワークNを介して広域電力監視装置30に送信する。
 なお、短周期制約範囲算出部17は、現在並列運転中の火力発電機G1~Gk、水力発電機Gk+1~Gm等の非自然エネルギー系の発電機の調整力に基づいて短周期制約範囲を算出するように構成してもよい。また、短周期制約範囲算出部17は、運転計画部16から取得した運転計画データ(予測総需要データ)の短周期成分に対して一定の割合を乗算した値を算出するように構成してもよい。
 通信処理部18は、広域電力監視装置30と専用ネットワークNを介して接続し、通信プロトコルに従ってパケット通信を行い、データを送受信する。
 制御部19は、内部にHDD、ROM、RAM及びCPUを有し、HDDからオペレーティングシステムOSを読み出してRAM上に展開し、OSを起動してOS管理下において、HDDからアプリケーションソフトウエア(周波数制御プログラム)を読み出し、各種処理を実行する。
The short cycle constraint range calculation unit 17 includes non-natural energy such as the thermal power generators G1 to Gk and the hydroelectric generators Gk + 1 to Gm that are currently operating in parallel among the operation plan data (predicted total demand data) acquired from the operation plan unit 16. A short cycle restriction range, which is operation plan data corresponding to the output of the power generator of the system, is extracted and transmitted to the wide area power monitoring apparatus 30 via the communication processing unit 18 and the dedicated network N.
The short cycle constraint range calculation unit 17 calculates the short cycle constraint range based on the adjustment power of non-natural energy generators such as the thermal power generators G1 to Gk and the hydropower generators Gk + 1 to Gm currently operating in parallel. You may comprise. The short cycle constraint range calculation unit 17 may be configured to calculate a value obtained by multiplying the short cycle component of the operation plan data (predicted total demand data) acquired from the operation plan unit 16 by a certain ratio. Good.
The communication processing unit 18 is connected to the wide area power monitoring apparatus 30 via the dedicated network N, performs packet communication according to a communication protocol, and transmits and receives data.
The control unit 19 includes an HDD, a ROM, a RAM, and a CPU. The control unit 19 reads an operating system OS from the HDD, expands the operating system on the RAM, starts the OS, and manages application software (frequency control from the HDD under OS management). Program) and execute various processes.
 次に、図1に示す広域電力監視装置30の構成について説明する。
 短周期変動算出部31は、自然エネルギーを利用した複数の発電機の電力出力の合計値D#1~D#6に対して夫々にハイパスフィルタ処理を行い短周期変動値DS#1~DS#6を夫々に算出する。
 調整ゲイン管理部32は、複数のエリア電力管理装置10#1~10#6に対して周波数項の調整ゲインKとして1を設定すべきか、1よりも大きい値を設定するべきかを示すフラグをメモリ32a上のフラグテーブル(図5)に記憶して管理する。
 管理DB部33は、エリア間に配置されている連系線4の接続状態等をデータ化して管理する。管理DB部33は、各エリアに配置されている風力発電機の運転状態や発電能力等をデータ化して管理する。
 通信処理部34は、複数のエリア電力管理装置10#1~10#6と専用ネットワークNを介して接続し、通信プロトコルに従ってパケット通信を行い、データを送受信する。
 制御部35は、内部にHDD、ROM、RAM及びCPUを有し、HDDからオペレーティングシステムOSを読み出してRAM上に展開し、OSを起動してOS管理下において、HDDからアプリケーションソフトウエア(周波数制御プログラム)を読み出し、各種処理を実行する。
Next, the configuration of the wide area power monitoring apparatus 30 shown in FIG. 1 will be described.
The short cycle variation calculation unit 31 performs high-pass filtering on the total power outputs D # 1 to D # 6 of the plurality of generators using natural energy, and performs short cycle variation values DS # 1 to DS #. 6 is calculated for each.
The adjustment gain management unit 32 indicates whether to set 1 or a value larger than 1 as the adjustment gain K f of the frequency term for the plurality of area power management devices 10 # 1 to 10 # 6 Is stored and managed in a flag table (FIG. 5) on the memory 32a.
The management DB unit 33 manages the connection state and the like of the interconnection line 4 arranged between the areas as data. The management DB unit 33 manages the operating state, power generation capacity, and the like of the wind power generators arranged in each area as data.
The communication processing unit 34 is connected to the plurality of area power management apparatuses 10 # 1 to 10 # 6 via the dedicated network N, performs packet communication according to the communication protocol, and transmits / receives data.
The control unit 35 includes an HDD, a ROM, a RAM, and a CPU. The controller 35 reads an operating system OS from the HDD, expands the operating system on the RAM, starts the OS, and manages application software (frequency control from the HDD under OS management. Program) and execute various processes.
 次に、図3を参照して、図1に示す電力系統負荷周波数制御システム1に備えられている各装置間で通信される情報について説明する。
 例えば、エリア#1の電力系統を管理するエリア電力管理装置10#1は、エリア#1内に配置されている複数の風力発電機から取得した風力出力データを集約しており、これらの合計値を風力出力合計データとして広域電力監視装置30に送信する。また、エリア電力管理装置10#1は、現在の調整力のうち短期的な制約範囲を示す短周期制約範囲S#1を広域電力監視装置30に送信する。
 同様に、エリア#2~#6に配置されているエリア電力管理装置10#2~10#6は、夫々のエリアにおける風力出力合計データ、短周期制約範囲S#2~S#6を広域電力監視装置30に送信する。
Next, with reference to FIG. 3, the information communicated between each apparatus with which the electric power system load frequency control system 1 shown in FIG. 1 is provided is demonstrated.
For example, the area power management apparatus 10 # 1 that manages the power system of the area # 1 aggregates wind power output data acquired from a plurality of wind power generators arranged in the area # 1, and the total value of these data Is transmitted to the wide area power monitoring device 30 as wind power output total data. In addition, the area power management apparatus 10 # 1 transmits the short period restriction range S # 1 indicating the short-term restriction range of the current adjustment power to the wide area power monitoring apparatus 30.
Similarly, the area power management devices 10 # 2 to 10 # 6 arranged in the areas # 2 to # 6 use the wind power total data and the short cycle constraint ranges S # 2 to S # 6 in each area as the wide area power. Transmit to the monitoring device 30.
 一方、広域電力監視装置30は、エリア電力管理装置10#1~10#6から受信した風力出力合計データ、短周期制約範囲S#1~S#6を管理DB部33に記憶し、次いで、エリア#1~#6から取得した風力出力合計データに対してフィルタ処理を行い、エリア#1~#6の夫々について風力の短周期変動値を算出する。エリア#1~#6の夫々について短周期変動値が短周期制約範囲を下回るような逸脱状態にあるか正常状態にあるかを判断する。そして、少なくとも1つのエリアにおいて短周期変動値が短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、広域電力監視装置30は、逸脱状態にあるエリアのエリア電力管理装置に対してK=1を送信する。かつ、正常状態にあるエリアのエリア電力管理装置に対してK=1.2を送信する。
 なお、本実施形態では、K=1.2として扱ったが、本発明はこのような値に限定されるものではなく、他の値や、可変値を用いるようにしてもよい。
On the other hand, the wide area power monitoring apparatus 30 stores the total wind power output data and the short cycle constraint ranges S # 1 to S # 6 received from the area power management apparatuses 10 # 1 to 10 # 6 in the management DB unit 33, and then Filtering is performed on the total wind power output data acquired from the areas # 1 to # 6, and the short cycle fluctuation value of the wind is calculated for each of the areas # 1 to # 6. For each of the areas # 1 to # 6, it is determined whether the deviation state is such that the short cycle variation value falls below the short cycle restriction range or the normal state. When the short cycle fluctuation value is in a deviating state indicating that the short cycle variation value has deviated from the short cycle restriction range in at least one area, the wide area power monitoring device 30 performs K on the area power management device in the area in the deviating state. Send f = 1. In addition, K f = 1.2 is transmitted to the area power management apparatus in the area in the normal state.
In this embodiment, K f = 1.2. However, the present invention is not limited to such a value, and other values or variable values may be used.
 次に、図4に示すシーケンス図を参照して、図1に示す電力系統負荷周波数制御システム1に備えられている各装置間で通信される情報のシーケンスについて説明する。
 まず、図1に示すエリア#1に設けられたエリア電力管理装置10#1において、発電機出力入力部11fm+1~11fnは、自然エネルギー系の発電機Gm+1~Gnから信号線11cm+1~11bnを介して出力された風力出力データ(発電電力値)を入力してデータバス20に出力する。制御部19は、データバス20を介して入力される自然エネルギー系の発電機Gm+1~Gnの夫々の風力出力データを合計し、当該エリアの風力出力合計データを算出する。
 一方、短周期制約範囲算出部17は、現在並列運転中の火力発電機G1~Gk、水力発電機Gk+1~Gm等の非自然エネルギー系の発電機の調整力に基づいて短周期制約範囲S#1を算出する。
 次いで、制御部19は、当該エリアの風力出力合計データと短周期制約範囲S#1にエリア番号(#1)を付加し、通信処理部18出力する。
 次いで、通信処理部18は、専用ネットワークNを介して接続された広域電力監視装置30と通信プロトコルに従ってパケット通信を行い、風力出力合計データ、短周期制約範囲S#1、及びエリア番号(#1)を送信する。
Next, with reference to a sequence diagram shown in FIG. 4, a sequence of information communicated between the devices provided in the power system load frequency control system 1 shown in FIG. 1 will be described.
First, in the area power management apparatus 10 # 1 provided in the area # 1 shown in FIG. 1, the generator output input units 11fm + 1 to 11fn are connected to the natural energy generators Gm + 1 to Gn via signal lines 11cm + 1 to 11bn. The output wind power output data (generated power value) is input and output to the data bus 20. The control unit 19 sums up the wind power output data of the natural energy generators Gm + 1 to Gn input via the data bus 20, and calculates the wind power total data of the area.
On the other hand, the short cycle constraint range calculation unit 17 is based on the adjustment power of non-natural energy generators such as the thermal power generators G1 to Gk and the hydropower generators Gk + 1 to Gm that are currently operating in parallel. 1 is calculated.
Next, the control unit 19 adds the area number (# 1) to the total wind power output data and the short cycle constraint range S # 1 of the area, and outputs the communication processing unit 18.
Next, the communication processing unit 18 performs packet communication with the wide area power monitoring apparatus 30 connected via the dedicated network N according to the communication protocol, and the total wind power output data, the short cycle constraint range S # 1, and the area number (# 1). ).
 同様に、エリア#2~#6に配置されているエリア電力管理装置10#2~10#6は、夫々のエリアにおける風力出力合計データ、短周期制約範囲S#2~S#6、及びエリア番号を広域電力監視装置30に送信する。
 一方、広域電力監視装置30は、エリア電力管理装置10#1~10#6から受信した風力出力合計データ、短周期制約範囲S#1~S#6を管理DB部33に記憶し、風力出力合計データに対してフィルタ処理を行い、エリア#1~#6の夫々について風力の短周期変動値を算出する。エリア#1~#6の夫々について短周期変動値が短周期制約範囲を下回るような逸脱状態にあるか正常状態にあるかを判断する。
 次いで、少なくとも1つのエリアにおいて短周期変動値が短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、広域電力監視装置30は、逸脱状態にあるエリアのエリア電力管理装置に対してK=1を送信する。かつ、正常状態にあるエリアのエリア電力管理装置に対してK=1.2を送信する
 なお、上述した説明では、エリア電力管理装置では、風力出力合計データ、短周期制約範囲、及びエリア番号を広域電力監視装置30に送信するように説明したが、風力出力合計データとエリア番号、短周期制約範囲とエリア番号を別々に送信してもよい。
Similarly, the area power management apparatuses 10 # 2 to 10 # 6 arranged in the areas # 2 to # 6 include total wind power output data, short cycle constraint ranges S # 2 to S # 6, and areas in the respective areas. The number is transmitted to the wide area power monitoring apparatus 30.
On the other hand, the wide area power monitoring apparatus 30 stores the total wind power output data and the short cycle restriction ranges S # 1 to S # 6 received from the area power management apparatuses 10 # 1 to 10 # 6 in the management DB unit 33, and outputs the wind power output. Filtering is performed on the total data, and the short-term fluctuation value of the wind force is calculated for each of the areas # 1 to # 6. For each of the areas # 1 to # 6, it is determined whether the deviation state is such that the short cycle variation value falls below the short cycle restriction range or the normal state.
Next, when the short cycle variation value is in a deviating state indicating that the short cycle variation value has deviated from the short cycle restriction range in at least one area, the wide area power monitoring device 30 performs K for the area power management device of the area in the deviating state. Send f = 1. And Kf = 1.2 is transmitted with respect to the area power management apparatus of the area which is in a normal state In addition, in the above-mentioned description, in an area power management apparatus, a wind power output total data, a short cycle constraint range, and an area number Is transmitted to the wide area power monitoring device 30. However, the total wind power output data and the area number, the short cycle restriction range, and the area number may be transmitted separately.
 次に、図5に示すフラグテーブルを参照して、図1に示す広域電力監視装置30において、あるサンプリング時刻でのエリア電力管理装置10#1~10#6についての管理状態を説明する。
 図5に示すフラグテーブルは、広域電力監視装置30に設けられた調整ゲイン管理部32により管理されている。調整ゲイン管理部32は、複数のエリア電力管理装置10#1~10#6に対して周波数項の調整ゲインKとして1を設定すべきか、1よりも大きい値を設定するべきかを示すフラグをメモリ32a上のフラグテーブルに記憶して管理する。図5に示すフラグAは該当するエリアが逸脱状態にあることを示し、フラグBは該当するエリアが正常状態にあることを示す。
Next, with reference to the flag table shown in FIG. 5, the management state of the area power management devices 10 # 1 to 10 # 6 at a certain sampling time in the wide area power monitoring device 30 shown in FIG. 1 will be described.
The flag table shown in FIG. 5 is managed by the adjustment gain management unit 32 provided in the wide area power monitoring apparatus 30. The adjustment gain management unit 32 indicates whether to set 1 or a value larger than 1 as the adjustment gain K f of the frequency term for the plurality of area power management devices 10 # 1 to 10 # 6 Are stored in a flag table on the memory 32a for management. A flag A shown in FIG. 5 indicates that the corresponding area is in a departure state, and a flag B indicates that the corresponding area is in a normal state.
 次に、図6に示すフローチャートを参照して、広域電力監視装置30の動作について説明する。
 まず、ステップS1では、通信処理部34は、専用ネットワークNを介してエリア電力管理装置10#1から風力出力合計データとエリア番号を受信する。同様に、専用ネットワークNを介してエリア電力管理装置10#2~10#6から風力出力合計データとエリア番号を受信する。ここで、制御部35は、エリア電力管理装置10#1~10#6から受信した夫々の風力出力合計データをエリア番号毎に分類して管理DB部33に記憶する。
Next, the operation of the wide area power monitoring apparatus 30 will be described with reference to the flowchart shown in FIG.
First, in step S1, the communication processing unit 34 receives the total wind power output data and the area number from the area power management apparatus 10 # 1 via the dedicated network N. Similarly, the total wind power output data and the area number are received from the area power management apparatuses 10 # 2 to 10 # 6 via the dedicated network N. Here, the control unit 35 classifies each wind power output total data received from the area power management apparatuses 10 # 1 to 10 # 6 for each area number and stores the data in the management DB unit 33.
 次いで、ステップS5では、短周期変動算出部31は、風力出力合計データに対してフィルタ処理を行い、風力の短周期変動値を算出する。すなわち、短周期変動算出部31は、自然エネルギーを利用した複数の発電機の電力出力の合計値D#1~D#6に対して夫々にハイパスフィルタ処理を行い短周期変動値DS#1~DS#6を夫々に算出する。ここで、制御部35は、短周期変動値DS#1~DS#6をエリア番号毎に分類して管理DB部33に記憶する。
 ここで、短周期変動算出部31において行われるハイパスフィルタ処理について説明する。
 短周期変動算出部31は、あるエリアにおける自然エネルギーを利用した複数の発電機の電力出力の合計値Dから直流成分を含む低周波成分を除いた周波数成分のものを出力し、短周期変動値Dとする。
Next, in step S5, the short cycle variation calculation unit 31 performs a filtering process on the wind power output total data to calculate a short cycle variation value of the wind force. That is, the short cycle variation calculation unit 31 performs high-pass filtering on the total power outputs D # 1 to D # 6 of the plurality of generators using natural energy, and performs short cycle variation values DS # 1 to DS # 1 to DS # 1 to D # 6. DS # 6 is calculated for each. Here, the control unit 35 classifies the short cycle variation values DS # 1 to DS # 6 for each area number and stores them in the management DB unit 33.
Here, the high-pass filter process performed in the short cycle variation calculation unit 31 will be described.
The short cycle variation calculation unit 31 outputs a component of a frequency component obtained by removing a low frequency component including a direct current component from a total value D of the power outputs of a plurality of generators using natural energy in a certain area. D.
 次いで、ステップS10では、通信処理部34は、専用ネットワークNを介してエリア電力管理装置10#1から短周期制約範囲とエリア番号を受信する。同様に、専用ネットワークNを介してエリア電力管理装置10#2~10#6から短周期制約範囲とエリア番号を受信する。ここで、制御部35は、エリア電力管理装置10#1~10#6から受信した夫々の短周期制約範囲をエリア番号毎に分類して管理DB部33に記憶する。
 次いで、ステップS15では、制御部35は、調整ゲイン管理部32の管理下にあるフラグテーブルに対して、エリア#1~#6へフラグBを設定し、メモリ32a上にこのフラグテーブルを記憶させる。なお、フラグBは周波数項の調整ゲイン値が1よりも大きい所定の値であることを示す。
 次いで、ステップS20では、制御部35は、ループ変数j(jは整数)に対して1を設定する。
Next, in step S10, the communication processing unit 34 receives the short cycle restriction range and the area number from the area power management apparatus 10 # 1 via the dedicated network N. Similarly, the short cycle restriction range and the area number are received from the area power management apparatuses 10 # 2 to 10 # 6 via the dedicated network N. Here, the control unit 35 classifies each short cycle restriction range received from the area power management apparatuses 10 # 1 to 10 # 6 for each area number and stores the classified range in the management DB unit 33.
Next, in step S15, the control unit 35 sets a flag B to areas # 1 to # 6 for the flag table under the control of the adjustment gain management unit 32, and stores this flag table on the memory 32a. . The flag B indicates that the adjustment gain value of the frequency term is a predetermined value larger than 1.
Next, in step S20, the control unit 35 sets 1 to the loop variable j (j is an integer).
 次いで、ステップS25では、制御部35は、管理DB部33からエリア#jに関する短周期変動値DS#j、短周期制約範囲S#jを読み出し、短周期変動値DS#j<短周期制約範囲S#j、すなわち、短周期変動値DS#jが短周期制約範囲S#jよりも小さくなる逸脱状態であるか否かを判断する。
 このとき、制御部35は、短周期変動値DS#jが短周期制約範囲S#jよりも小さくなる状態である場合、エリア#jの短周期制約範囲から短周期変動値が逸脱状態にあると判断し、ステップS30に進む。一方、制御部35は、短周期変動値DS#jが短周期制約範囲S#j以上になる状態である場合、エリア#jの短周期制約範囲から短周期変動値が正常状態にあると判断し、ステップS35に進む。
 次いで、ステップS30では、制御部35は、調整ゲイン管理部32の管理下にあるフラグテーブルに対して、逸脱状態にあるエリア#jへフラグAを設定し、メモリ32a上にこのフラグテーブルを記憶させる。
Next, in step S25, the control unit 35 reads the short cycle variation value DS # j and the short cycle constraint range S # j related to the area #j from the management DB unit 33, and the short cycle variation value DS # j <short cycle constraint range. S # j, that is, whether or not the short period fluctuation value DS # j is a deviation state that is smaller than the short period constraint range S # j is determined.
At this time, when the short cycle variation value DS # j is smaller than the short cycle constraint range S # j, the control unit 35 has a short cycle variation value that is out of the short cycle constraint range of the area #j. It progresses to step S30. On the other hand, when the short cycle variation value DS # j is equal to or greater than the short cycle constraint range S # j, the control unit 35 determines that the short cycle variation value is in the normal state from the short cycle constraint range of the area #j. Then, the process proceeds to step S35.
Next, in step S30, the control unit 35 sets a flag A to the area #j in a deviating state with respect to the flag table managed by the adjustment gain management unit 32, and stores this flag table on the memory 32a. Let
 次いで、ステップS35では、制御部35は、ループ変数jに対してj+1を設定することで、ループ変数jをインクリメントする。
 次いで、ステップS40では、制御部35は、ループ変数jの値が最大値7になったか否かを判断する。ループ変数jが7になった場合にはステップS45に進む。一方、制御部35は、ループ変数jの値が最大値7に到達していない場合にはステップS25に戻り、上記処理を繰り返す。
 なお、ステップS40では、ループ変数jの値が最大値7になった場合に上記ループ処理を抜けるように構成しているが、広域機関が監視するエリア数に応じてループ変数jの最大値を変更してもよい。
 上記ステップS20~S40での処理の結果、図5に示すように、メモリ32a上にフラグテーブルが生成される。
Next, in step S35, the control unit 35 increments the loop variable j by setting j + 1 to the loop variable j.
Next, in step S40, the control unit 35 determines whether or not the value of the loop variable j has reached the maximum value 7. If the loop variable j becomes 7, the process proceeds to step S45. On the other hand, if the value of the loop variable j has not reached the maximum value 7, the control unit 35 returns to step S25 and repeats the above processing.
In step S40, when the value of the loop variable j reaches the maximum value 7, it is configured to exit the loop processing. However, the maximum value of the loop variable j is set according to the number of areas monitored by the wide area engine. It may be changed.
As a result of the processing in steps S20 to S40, a flag table is generated on the memory 32a as shown in FIG.
 次いで、ステップS43では、制御部35は、調整ゲイン管理部32において管理されているフラグテーブルをメモリ32aから読み出す。そして、制御部35は、フラグテーブルを参照し、フラグテーブルに少なくとも1つのフラグAがあるか否かを判断する。この判断処理により少なくとも1つのエリアが逸脱状態にあるか否かを判断することができる。少なくとも1つのエリアが逸脱状態にある場合にステップS45に進む。一方、全てのエリアが逸脱状態にない場合にステップS50に進む。
 次いで、少なくとも1つのエリアにおいて短周期変動値が短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、ステップS45では、制御部35は、調整ゲイン管理部32において管理されているフラグテーブルをメモリ32aから読み出す。そして、制御部35は、フラグテーブルを参照し、フラグAで示す逸脱状態にあるエリアへK=1.0を送信するように通信処理部34を制御し、かつ、フラグBで示す正常状態にあるエリアへK=1.2を送信するように通信処理部34を制御する。
 ここで、制御部35は、エリア番号と周波数項に関する調整ゲイン値Kとを含む1組のデータを順次に通信処理部34に出力する。通信処理部34は、制御部35からエリア番号と周波数項に関する調整ゲイン値Kとを含む1組のデータを順次に受け付け、これらのデータを専用ネットワークNを介してエリア番号に対応するエリア電力管理装置10#1~10#6に順次に送信する。
 次いで、ステップS50では、制御部35は、内蔵されているタイマ35tから現在の時刻を読み出し、定周期(例えば、10分)の時刻になったか否かを判断する。制御部35は、定周期の時刻になっていない場合にはステップS50に戻り、この処理を繰り返す。一方、制御部35は、定周期の時刻になった場合にはステップS1に戻り、上記処理を繰り返す。
Next, in step S43, the control unit 35 reads the flag table managed by the adjustment gain management unit 32 from the memory 32a. Then, the control unit 35 refers to the flag table and determines whether there is at least one flag A in the flag table. With this determination process, it can be determined whether or not at least one area is in a departure state. When at least one area is in a departure state, the process proceeds to step S45. On the other hand, when all the areas are not in the deviating state, the process proceeds to step S50.
Next, when the short cycle variation value is in a deviating state indicating that the short cycle variation value has deviated from the short cycle restriction range in at least one area, in step S45, the control unit 35 manages the flag table managed by the adjustment gain management unit 32. Are read from the memory 32a. Then, the control unit 35 refers to the flag table, controls the communication processing unit 34 to transmit K f = 1.0 to the area in the departure state indicated by the flag A, and is in a normal state indicated by the flag B The communication processing unit 34 is controlled so as to transmit K f = 1.2 to an area located at.
Here, the control unit 35 sequentially outputs a set of data including the area number and the adjustment gain value K f related to the frequency term to the communication processing unit 34. The communication processing unit 34 sequentially receives a set of data including the area number and the adjustment gain value K f related to the frequency term from the control unit 35, and receives these data via the dedicated network N and the area power corresponding to the area number. The data is sequentially transmitted to the management devices 10 # 1 to 10 # 6.
Next, in step S50, the control unit 35 reads the current time from the built-in timer 35t, and determines whether or not a fixed period (for example, 10 minutes) has come. If it is not the time of the fixed cycle, the control unit 35 returns to step S50 and repeats this process. On the other hand, the control unit 35 returns to step S1 and repeats the above process when the time of the fixed period comes.
 この結果、少なくとも1つのエリアにおいて短周期変動値が短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、逸脱状態にあるエリアのエリア電力管理装置に、周波数項に関する所定の調整ゲイン値として1を送信し、かつ、正常状態にあるエリアのエリア電力管理装置に、周波数項に関する所定の調整ゲイン値として1よりも大きい値を送信することができる。 As a result, when at least one area is in a deviating state indicating that the short cycle variation value has deviated from the short cycle constraint range, the area power management device of the area in the deviating state has a predetermined adjustment gain value related to the frequency term. 1 and a value larger than 1 can be transmitted as a predetermined adjustment gain value related to the frequency term to the area power management apparatus in the area in the normal state.
 次に、図7に示すグラフ図を参照して、あるエリアの短周期制約範囲に対して短周期変動値が逸脱状態にある場合と正常状態にある場合の状況について説明する。
 図7において、縦軸は電力を示し、横軸は時刻を示す。図7において、(a)は風力発電出力を示し、風力発電が実際に発電した出力のエリア合計であり、(b)は風力発電出力の長期間変動を示し、風力発電出力をLPF(ローパスフィルタ)を通したものであり、(c)は風力発電出力の短周期変動を示し、風力発電出力をHPF(ハイパスフィルタ)を通したもの(風力発電出力-長周期変動 でも可)であり、(d)は長周期制約範囲を示し、自社の火力発電機等の電力出力を限界まで下げたときの出力合計と現在の出力合計の差を示す範囲であり、(e)は風力発電出力の30分予測値を示し、長周期制御に用いる予測値であり、(f)は短周期制約範囲である。
 図7に示すように、短周期変動(c)は時刻3:00~3:30の間の時間帯において短周期制約範囲(f)を逸脱したことを示す逸脱状態にあり、この時間帯を除く時間帯では正常状態にあることを示す。
Next, with reference to the graph shown in FIG. 7, the situation when the short cycle variation value is in the deviating state and the normal state with respect to the short cycle restriction range of a certain area will be described.
In FIG. 7, the vertical axis indicates power, and the horizontal axis indicates time. In FIG. 7, (a) shows the wind power generation output and is the total area of the output actually generated by the wind power generation, (b) shows the long-term fluctuation of the wind power generation output, and the wind power output is expressed by LPF (low pass filter). (C) shows the short-term fluctuation of the wind power output, and the wind power output passed through the HPF (high pass filter) (wind power output-long-period fluctuation is acceptable) d) shows the long-cycle constraint range, and is the range showing the difference between the total output when the power output of the company's thermal power generator or the like is lowered to the limit and the current total output, and (e) is 30% of the wind power output. This is a predicted value used for long cycle control, and (f) is a short cycle constraint range.
As shown in FIG. 7, the short period fluctuation (c) is in a deviating state indicating that the short period variation range (f) has been deviated in the time period between 3:00 and 3:30. It shows that it is in a normal state except the time zone.
 本実施形態では、あるエリアの自然エネルギー系(風力発電機)に関する短周期制約範囲に対して短周期変動値が逸脱状態にある場合に、連係線4に接続されている他のエリアに配置された非自然エネルギー系の発電機に対してその出力を上昇するように制御することで、全系電力での周波数変動を抑制することができる。
 この結果、風力発電の出力変動により周波数が乱れている場合に、本発明による制御では、制御がない場合に比べて、周波数の回復が早くなるという効果がある。
In the present embodiment, when the short cycle fluctuation value is in a deviating state with respect to the short cycle constraint range related to the natural energy system (wind power generator) in a certain area, it is arranged in another area connected to the linkage line 4. In addition, by controlling the non-natural energy generator so as to increase its output, it is possible to suppress frequency fluctuations in the entire system power.
As a result, when the frequency is disturbed by the output fluctuation of the wind power generation, the control according to the present invention has an effect that the frequency recovery is faster than the case where there is no control.
 次に、図8に示すフローチャートを参照して、あるエリアに設けられたエリア電力管理装置10の動作について説明する。
 まず、ステップS101では、通信処理部18は、広域機関に設けられた広域電力監視装置30から周波数項に関する調整ゲイン値Kを受信し、この調整ゲイン値Kを制御部19に転送する。
 次いで、ステップS105では、制御部19は、広域機関からの調整ゲイン値K=1を受信したか否かを判断する。ここで、広域機関からの調整ゲイン値K=1を受信した場合にはステップS110に進み、一方、広域機関からの調整ゲイン値K=1を受信していない場合にはステップS115に進む。
Next, the operation of the area power management apparatus 10 provided in a certain area will be described with reference to the flowchart shown in FIG.
First, in step S <b> 101, the communication processing unit 18 receives the adjustment gain value K f related to the frequency term from the wide area power monitoring device 30 provided in the wide area engine, and transfers the adjustment gain value K f to the control unit 19.
Next, in step S105, the control unit 19 determines whether or not the adjustment gain value K f = 1 from the wide area engine has been received. If the adjustment gain value K f = 1 from the wide area engine is received, the process proceeds to step S110. On the other hand, if the adjustment gain value K f = 1 from the wide area engine is not received, the process proceeds to step S115. .
 広域機関からの調整ゲイン値K=1を受信した場合、ステップS110では、AR計算部13は、式(2)に従って地域要求量ARを算出する。
 AR=-KKPΔf+ΔPT=-KPΔf+ΔPT      (2)
 ここで、ARは地域要求量(需給誤差)、Kは系統定数、Pは系統容量、Δfは周波数偏差、ΔPTは連系線潮流偏差を示している。
 詳しくは、図1に示す検出部12に設けられた周波数偏差(ΔF)検出部12aは、電力系統3#1の周波数偏差ΔFを所定の制御周期に基づくタイミング毎(例えば、制御周期として10秒毎;以下、制御周期タイミングと記載する)に検出する。また、潮流偏差(ΔPT)検出部12bは、連系線4の潮流偏差ΔPTを制御周期タイミング毎に検出する。このΔF検出部12aおよびΔPT検出部12bによりそれぞれ検出された検出データは、AR計算部13に検出タイミング毎に出力する。
When the adjustment gain value K f = 1 from the wide-area organization is received, in step S110, the AR calculation unit 13 calculates the regional request amount AR according to Expression (2).
AR = −KK f PΔf + ΔPT = −KPΔf + ΔPT (2)
Here, AR is the regional demand (supply / demand error), K is the system constant, P is the system capacity, Δf is the frequency deviation, and ΔPT is the interconnection power flow deviation.
Specifically, the frequency deviation (ΔF) detection unit 12a provided in the detection unit 12 illustrated in FIG. 1 sets the frequency deviation ΔF of the power system 3 # 1 for each timing based on a predetermined control cycle (for example, 10 seconds as a control cycle). Every; hereinafter referred to as control cycle timing). Moreover, the tidal current deviation (ΔPT) detection unit 12b detects the tidal current deviation ΔPT of the interconnection line 4 at each control cycle timing. The detection data detected by the ΔF detection unit 12a and the ΔPT detection unit 12b is output to the AR calculation unit 13 at each detection timing.
 ステップS110では、AR計算部13は、電力系統3の連系線4に設けられた検出部12(ΔF検出部12a、ΔPT検出部12b)により検出された周波数偏差(ΔF)、連系線潮流偏差(ΔPT)、系統定数K、及び広域電力監視装置30から受信した周波数項の調整ゲインK(1)に基づいて、入力タイミング毎、すなわち制御周期タイミング毎に上記(2)式に従った地域要求量(地域要求電力)ARの計算処理を実行し、その計算結果(制御周期タイミング毎の地域要求電力(AR))をメモリ13aに記憶する。次いで、ステップS120に進む。 In step S110, the AR calculation unit 13 determines the frequency deviation (ΔF) detected by the detection unit 12 (ΔF detection unit 12a, ΔPT detection unit 12b) provided in the connection line 4 of the power system 3, and the connection line power flow. Based on the deviation (ΔPT), the system constant K, and the adjustment gain K f (1) of the frequency term received from the wide area power monitoring device 30, the above equation (2) is followed for each input timing, that is, for each control cycle timing. The calculation process of the area required amount (area required power) AR is executed, and the calculation result (area required power (AR) for each control cycle timing) is stored in the memory 13a. Next, the process proceeds to step S120.
 一方、広域機関からの調整ゲイン値K=1を受信していない場合、すなわち、広域機関からの調整ゲイン値K=1.2を受信した場合、ステップS115では、AR計算部13は、式(3)に従って地域要求量ARを算出する。
 AR=-KKPΔf+ΔPT             (3)
 詳しくは、図1に示す検出部12に設けられた周波数偏差(ΔF)検出部12aは、電力系統3#1の周波数偏差ΔFを所定の制御周期に基づくタイミング毎(例えば、制御周期として10秒毎;以下、制御周期タイミングと記載する)に検出する。また、潮流偏差(ΔPT)検出部12bは、連系線4の潮流偏差ΔPTを制御周期タイミング毎に検出する。このΔF検出部12aおよびΔPT検出部12bによりそれぞれ検出された検出データは、AR計算部13に検出タイミング毎に出力する。
On the other hand, when the adjustment gain value K f = 1 from the wide area engine is not received, that is, when the adjustment gain value K f = 1.2 from the wide area engine is received, in step S115, the AR calculation unit 13 The regional requirement amount AR is calculated according to the equation (3).
AR = −KK f PΔf + ΔPT (3)
Specifically, the frequency deviation (ΔF) detection unit 12a provided in the detection unit 12 illustrated in FIG. 1 sets the frequency deviation ΔF of the power system 3 # 1 for each timing based on a predetermined control cycle (for example, 10 seconds as a control cycle). Every; hereinafter referred to as control cycle timing). Moreover, the tidal current deviation (ΔPT) detection unit 12b detects the tidal current deviation ΔPT of the interconnection line 4 at each control cycle timing. The detection data detected by the ΔF detection unit 12a and the ΔPT detection unit 12b is output to the AR calculation unit 13 at each detection timing.
 ステップS115では、AR計算部13は、電力系統3の連系線4に設けられた検出部12(ΔF検出部12a、ΔPT検出部12b)により検出された周波数偏差(ΔF)、連系線潮流偏差(ΔPT)、系統定数K、及び広域電力監視装置30から受信した周波数項の調整ゲインK(1.2)に基づいて、入力タイミング毎、すなわち制御周期タイミング毎に上記(2)式に従った地域要求量(地域要求電力)ARの計算処理を実行し、その計算結果(制御周期タイミング毎の地域要求電力(AR))をメモリ13aに記憶する。
 このとき、調整ゲイン値Kが1から1.2に微増するので、これに応じて地域要求電力ARも微増する。次いで、ステップS120に進む。
In step S115, the AR calculation unit 13 determines the frequency deviation (ΔF) detected by the detection unit 12 (ΔF detection unit 12a, ΔPT detection unit 12b) provided in the connection line 4 of the power system 3, and the connection line power flow. Based on the deviation (ΔPT), the system constant K, and the adjustment gain K f (1.2) of the frequency term received from the wide area power monitoring device 30, the above equation (2) is obtained for each input timing, that is, for each control cycle timing. The calculation process of the required area demand (area required power) AR is executed, and the calculation result (area required power (AR) for each control cycle timing) is stored in the memory 13a.
At this time, since the adjustment gain value K f is slightly from 1 to 1.2, also slightly increased area required power AR accordingly. Next, the process proceeds to step S120.
 ステップS120では、微増分を含む地域要求電力ARを分配し、各発電機に配信する。
 すなわち、AR計算部13はAR計算処理により計算された制御周期タイミング毎の地域要求電力(AR)を、例えばメモリ13aに記憶された現在の制御周期タイミングよりも過去の制御周期タイミングにおける地域要求電力を用いた指数平滑化処理等の公知のフィルタリング処理によりフィルタリングする。
 AR分配部14は、AR計算部13により制御周期タイミング毎にフィルタリングされた地域要求電力ARを各発電機G1~Gnに配分し、そのAR配分量を各発電機G1~Gnに対応する目標指令値作成部15に送る。
In step S120, the regional required power AR including the slight increment is distributed and distributed to each generator.
That is, the AR calculation unit 13 calculates the regional required power (AR) for each control cycle timing calculated by the AR calculation process, for example, the regional required power at a control cycle timing in the past from the current control cycle timing stored in the memory 13a. Is filtered by a known filtering process such as an exponential smoothing process using.
The AR distribution unit 14 distributes the regional required power AR filtered for each control cycle timing by the AR calculation unit 13 to each of the generators G1 to Gn, and sets the AR allocation amount to a target command corresponding to each of the generators G1 to Gn. The data is sent to the value creation unit 15.
 目標指令値作成部15は、制御周期タイミング毎に送信されてきた各発電機G1~GmのAR配分量、運転計画部16から受信した負荷配分量に基づいて、各発電機G1~Gm出力の目標指令値を制御周期タイミング毎に算出し、指令値伝送部11に出力する。指令値伝送部11d1~11dmの処理として、算出した各発電機G1~Gm出力の目標指令値を制御周期タイミング毎に各発電機G1~Gmに向けて伝送し、その各発電機G1~Gmに目標指令値(数値)を出力する。この結果、各発電機G1~Gmの出力が微増し、連系線4を介して他のエリアを含む全電力系統の周波数変動を抑制でき、かつ経済負荷的に最適になるように制御される。 The target command value creation unit 15 outputs the outputs of the generators G1 to Gm based on the AR distribution amount of the generators G1 to Gm transmitted at each control cycle timing and the load distribution amount received from the operation planning unit 16. A target command value is calculated for each control cycle timing and output to the command value transmission unit 11. As the processing of the command value transmission units 11d1 to 11dm, the calculated target command values of the generators G1 to Gm are transmitted to the generators G1 to Gm at each control cycle timing, and are transmitted to the generators G1 to Gm. Outputs the target command value (numerical value). As a result, the output of each of the generators G1 to Gm increases slightly, and the frequency fluctuations of the entire power system including other areas can be suppressed via the interconnection line 4 and controlled so as to be optimal in terms of economic load. .
 次いで、ステップS125では、制御部19は、内蔵されているタイマ19tから現在の時刻を読み出し、定周期(例えば、10分)の時刻になったか否かを判断する。制御部35は、定周期の時刻になっていない場合にはステップS125に戻り、この処理を繰り返す。一方、制御部19は、定周期の時刻になった場合にはステップS101に戻り、上記処理を繰り返す。
 この結果、自然エネルギーを利用した発電機の出力電力による変動が自エリアの周波数調整能力を上回ってしまった場合のみ、連系している他エリアの自然エネルギーを利用していない発電機の出力電力による調整力を利用し、電力系統の周波数を維持することができる。
Next, in step S125, the control unit 19 reads the current time from the built-in timer 19t, and determines whether or not a fixed period (for example, 10 minutes) has come. When it is not the time of the fixed cycle, the control unit 35 returns to step S125 and repeats this process. On the other hand, the control unit 19 returns to step S101 when the time of the fixed period comes, and repeats the above processing.
As a result, only when the fluctuation due to the output power of the generator using natural energy exceeds the frequency adjustment capability of its own area, the output power of the generator not using the natural energy of other areas connected to it. It is possible to maintain the frequency of the power system by using the adjustment force by.
 本発明では、風力など自然エネルギーを利用した発電機の出力電力の変動が自エリアの非自然エネルギー系の周波数調整能力を上回ってしまった場合のみ、広域機関の指令により連系している他エリアの非自然エネルギー系の発電機の調整力を活用し、周波数を維持することができる。
 これにより、従来のAR配分方式よりも即時性と信頼性のレベルを低く設定することができる。また、本発明によれば、後追い制御であるため、風力発電に関する予測が外れた場合でも、出力電力を低下させないので、周波数を乱すことにはならないという利点がある。
In the present invention, only when the output power fluctuation of the generator using natural energy such as wind power exceeds the frequency adjustment capability of the non-natural energy system of the own area, other areas linked by the command of the wide-area engine The frequency can be maintained by using the adjustment power of non-natural energy generators.
Thereby, the level of immediacy and reliability can be set lower than in the conventional AR allocation method. In addition, according to the present invention, since the follow-up control is performed, even when the prediction regarding wind power generation is lost, there is an advantage that the frequency is not disturbed because the output power is not reduced.
<変形例>
 次に、図9に示すフローチャートを参照して、第1実施形態の変形例について説明する。図9は、広域電力監視装置30の動作について説明するためのフローチャートであり、図6に示すフローチャートに対して、図9に示すステップS245を有することに特徴がある。
 すなわち、ステップS245では、制御部35は、調整ゲイン管理部32において管理されているフラグテーブルをメモリ32aから読み出す。そして、制御部35は、フラグテーブルを参照し、フラグAで示す逸脱状態にあるエリアへ調整ゲイン値OFF信号を送信するように通信処理部34を制御し、一方、フラグBで示す正常状態にあるエリアへ調整ゲイン値ON信号を送信するように通信処理部34を制御する。
 ここで、制御部35は、エリア番号と周波数項に関する調整ゲイン値ON信号又は調整ゲイン値OFF信号とを含む1組のデータを順次に通信処理部34に出力する。通信処理部34は、制御部35からエリア番号と周波数項に関する調整ゲイン値ON信号又は調整ゲイン値OFF信号とを含む1組のデータを順次に受け付け、これらのデータを専用ネットワークNを介してエリア番号に対応するエリア電力管理装置10#1~10#6に順次に送信する。
<Modification>
Next, a modification of the first embodiment will be described with reference to the flowchart shown in FIG. FIG. 9 is a flowchart for explaining the operation of the wide area power monitoring apparatus 30, and is characterized in that step S245 shown in FIG. 9 is included in the flowchart shown in FIG.
That is, in step S245, the control unit 35 reads the flag table managed by the adjustment gain management unit 32 from the memory 32a. Then, the control unit 35 refers to the flag table and controls the communication processing unit 34 so as to transmit the adjustment gain value OFF signal to the area in the departure state indicated by the flag A. On the other hand, the control unit 35 enters the normal state indicated by the flag B. The communication processing unit 34 is controlled to transmit the adjustment gain value ON signal to a certain area.
Here, the control unit 35 sequentially outputs a set of data including the area number and the adjustment gain value ON signal or the adjustment gain value OFF signal related to the frequency term to the communication processing unit 34. The communication processing unit 34 sequentially receives a set of data including an adjustment gain value ON signal or an adjustment gain value OFF signal related to the area number and the frequency term from the control unit 35, and receives these data via the dedicated network N in the area. The information is sequentially transmitted to the area power management apparatuses 10 # 1 to 10 # 6 corresponding to the numbers.
 次に、図10に示すフローチャートを参照して、第1実施形態の変形例について説明する。図10は、あるエリアに設けられたエリア電力管理装置10の動作について説明するためのフローチャートであり、図8に示すフローチャートに対して、図10に示すステップS255を有することに特徴がある。
 ステップS255では、制御部19は、広域機関からの調整ゲイン値OFF信号を受信したか否かを判断する。ここで、広域機関からの調整ゲイン値OFF信号を受信した場合にはステップS110に進み、一方、広域機関からの調整ゲイン値OFF信号を受信していない場合(調整ゲイン値ON信号を受信)にはステップS115に進む。
 広域機関からの調整ゲイン値OFF信号を受信した場合、ステップS110では、AR計算部13は、K=1とし、上記式(2)に従って地域要求量ARを算出する。
 一方、広域機関からの調整ゲイン値OFF信号を受信していない場合(調整ゲイン値ON信号を受信)、ステップS115では、AR計算部13は、メモリ13aから調整ゲイン値として例えばK=1.2を読み出し、上記式(3)に従って地域要求量ARを算出する。
 この結果、自然エネルギーを利用した発電機の出力電力による変動が自エリアの周波数調整能力を上回ってしまった場合のみ、連系している他エリアの自然エネルギーを利用していない発電機の出力電力による調整力を利用し、電力系統の周波数を維持することができる。
Next, a modification of the first embodiment will be described with reference to the flowchart shown in FIG. FIG. 10 is a flowchart for explaining the operation of the area power management apparatus 10 provided in a certain area, and is characterized in that step S255 shown in FIG. 10 is included in the flowchart shown in FIG.
In step S255, the control unit 19 determines whether or not an adjustment gain value OFF signal has been received from the wide area engine. If the adjustment gain value OFF signal from the wide area engine is received, the process proceeds to step S110. On the other hand, if the adjustment gain value OFF signal from the wide area engine is not received (the adjustment gain value ON signal is received). Advances to step S115.
When the adjustment gain value OFF signal from the wide-area organization is received, in step S110, the AR calculation unit 13 sets K f = 1 and calculates the regional requirement amount AR according to the above equation (2).
On the other hand, when the adjustment gain value OFF signal from the wide-area engine has not been received (the adjustment gain value ON signal is received), in step S115, the AR calculation unit 13 sets, for example, K f = 1. 2 is read, and the regional requirement amount AR is calculated according to the above equation (3).
As a result, only when the fluctuation due to the output power of the generator using natural energy exceeds the frequency adjustment capability of its own area, the output power of the generator not using the natural energy of other areas connected to it. It is possible to maintain the frequency of the power system by using the adjustment force by.
 以上のように、同一エリア内に配置されている自然エネルギー系の発電機、及び非自然エネルギー系の発電機の運転状態を管理するエリア電力管理装置と、複数のエリアに夫々配置されている前記エリア電力管理装置とネットワークを介して接続され、エリア電力管理装置から運転状態を受信することにより複数のエリア間で連系された広域電力系統の運転状態を監視する広域電力監視装置と、を備えたシステムであって、エリア電力管理装置は、自エリア内の複数の自然エネルギー系の発電機の電力出力の合計値を算出し、非自然エネルギー系の発電機の調整力に基づいて、自エリアにおける短周期制約範囲を算出し、合計値及び短周期制約範囲に自エリアに関するエリア番号を付加して広域電力監視装置に送信する。広域電力監視装置は、各エリアのエリア電力管理装置から合計値、短周期制約範囲、エリア番号を受信し、エリア毎に合計値から短周期変動値を算出し、少なくとも1つのエリアにおいて短周期変動値が短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、周波数項に関する所定の調整ゲイン値として1又は調整ゲイン値OFF信号を当該エリアの前記エリア電力管理装置に送信するように制御し、かつ、他のエリアにおいて短周期変動値が短周期制約範囲内にあることを示す正常状態にある場合に、周波数項に関する所定の調整ゲイン値として1よりも大きい値又は調整ゲイン値ON信号を当該エリアの前記エリア電力管理装置に送信するように制御する。エリア電力管理装置は、広域電力監視装置から周波数項に関する所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号を受信した場合に、当該エリアの電力系統の周波数偏差(ΔF)、連系線潮流偏差(ΔPT)、所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号に基づいて、地域要求電力(AR)を算出し、地域要求電力を非自然エネルギー系の複数の発電機に分配する。
 これにより、自然エネルギーを利用した発電機の出力電力による変動が自エリアの周波数調整能力を上回ってしまった場合のみ、連系している他エリアの自然エネルギーを利用していない発電機の出力電力による調整力を利用し、電力系統の周波数を維持することができる。
As described above, the natural power generators arranged in the same area and the area power management device that manages the operating state of the non-renewable energy generators, and the above-mentioned each arranged in a plurality of areas A wide-area power monitoring apparatus that is connected to the area power management apparatus via a network and that monitors the operation state of a wide-area power system that is interconnected between a plurality of areas by receiving the operation state from the area power management apparatus. The area power management device calculates a total value of the power outputs of a plurality of renewable energy generators in its own area, and determines its own area based on the adjustment power of the non-renewable energy generator. The short cycle constraint range is calculated, and an area number related to the own area is added to the total value and the short cycle constraint range and transmitted to the wide area power monitoring apparatus. The wide area power monitoring device receives the total value, the short cycle restriction range, and the area number from the area power management device of each area, calculates the short cycle variation value from the total value for each area, and the short cycle variation in at least one area When the value is in a deviating state indicating that the value deviates from the short-term constraint range, control is performed so as to transmit a 1 or an adjusted gain value OFF signal as a predetermined adjusted gain value related to the frequency term to the area power management apparatus in the area. In addition, when the short period fluctuation value is in a normal state indicating that the short period fluctuation value is within the short period constraint range in another area, a value greater than 1 or an adjustment gain value ON signal as a predetermined adjustment gain value related to the frequency term Is transmitted to the area power management apparatus in the area. When the area power management device receives a predetermined adjustment gain value or adjustment gain value ON signal or adjustment gain value OFF signal related to the frequency term from the wide area power monitoring device, the frequency deviation (ΔF) of the power system of the area, Based on the system power flow deviation (ΔPT), the predetermined adjustment gain value or the adjustment gain value ON signal or the adjustment gain value OFF signal, the area request power (AR) is calculated, and the area request power is calculated as a plurality of non-natural energy systems. Distribute to the generator.
As a result, the output power of the generator that does not use the natural energy of other areas that are connected to the area only when the fluctuation due to the output power of the generator that uses natural energy exceeds the frequency adjustment capability of its own area. It is possible to maintain the frequency of the power system by using the adjustment force by.
<第2実施形態>
 上述した第1実施形態にあっては、自電力会社の供給エリアにおける負荷変動については、自電力会社で制御することを基本とする。風力などの自然エネルギー系の発電機による電力変動が自電力会社の周波数調整能力を上回ってしまった場合のみ、広域機関からの指令により連系している他電力会社の調整力を活用し、周波数を維持することを特徴としている。
 詳しくは、第1実施形態にあっては、上述した式(3)において、周波数項に関する調整ゲイン値Kとして、逸脱状態にある場合に1.0、正常状態にある場合に例えば1.2を用いることで、周波数が安定するという効果があった。
 しかし、実際に運用する場合、周波数項に関する調整ゲイン値Kの値を適切に設定しなければ、様々な変動要因があるため、周波数の安定化という効果が低い場合や、過制御により不安定となる場合も考えられる。
 そこで、系統データや実測データに基づくシミュレーション等により適切な値を高精度に決定することが切望される。
Second Embodiment
In the first embodiment described above, the load fluctuation in the supply area of the own power company is basically controlled by the own power company. Only when the power fluctuation by the generator of natural energy such as wind power exceeds the frequency adjustment capability of the own power company, the adjustment power of the other power company linked with the command from the wide-area organization is utilized, and the frequency It is characterized by maintaining.
For more information, in the first embodiment, in Formula (3) described above, as the adjustment gain value K f about frequency terms, for example, 1.2 in some cases 1.0, the normal state when in departure state By using, there was an effect that the frequency was stabilized.
However, when operating actually, if appropriately setting the value of the adjustment gain values K f about frequency terms, since there are various variation factors, or when the effect of stabilizing the frequency is low, unstable by oversteering In some cases,
Therefore, it is anxious to determine an appropriate value with high accuracy by simulation or the like based on system data or actual measurement data.
 まず、周波数項に関する調整ゲイン値Kの求め方について原理的に説明する。
 地域要求量ARの算出式を再度記載すると、
 AR=-KPΔf+ΔPT         (4)
 なお、AR(MW)はi社の地域要求量(供給誤差)、P(MVA)はi社の系統容量、Δf(Hz)は周波数偏差、ΔPTi(MW)はi社の連系線潮流偏差である。
 ここで、KΔfとは、系統定数Kに周波数偏差Δfを乗じた値であり、周波数偏差Δfに伴う全系の需給誤差(要調整分)の割合である。従って、地域要求量ARの式中のKPΔf(MW)は自社の容量比であり、その調整を分担することを意味する。
First, theoretically described method of obtaining the adjustment gain value K f about frequency term.
If the formula for calculating the regional requirement AR is described again,
AR i = −KP i Δf + ΔPT i (4)
AR i (MW) is the regional requirement (supply error) of i company, P i (MVA) is the system capacity of i company, Δf (Hz) is the frequency deviation, and ΔP Ti (MW) is the interconnection of i company It is a line tidal current deviation.
Here, KΔf is a value obtained by multiplying the system constant K by a frequency deviation Δf, and is a ratio of supply and demand errors (adjustment required) of the entire system accompanying the frequency deviation Δf. Therefore, KP i Δf (MW) in the formula of the regional requirement amount AR is the company's capacity ratio, which means that the adjustment is shared.
 換言すると、連系されている全社が参加することで全系の調整量が確保される。すなわち、全系容量をPとすると、
Figure JPOXMLDOC01-appb-I000003
 となる。なお、KPΔf(i=1・・・・n)は各社の調整量を示す。
 ここで、はじめにk社(i=k)が全く調整に参加しないと仮定すると、式(5)は以下のように書き直すことができる。
Figure JPOXMLDOC01-appb-I000004
In other words, the amount of adjustment for the entire system is ensured by the participation of all companies connected to the system. That is, when the entire system capacity and P G,
Figure JPOXMLDOC01-appb-I000003
It becomes. Note that KP i Δf (i = 1... N) indicates the adjustment amount of each company.
Here, assuming that company k (i = k) does not participate in the adjustment at all, equation (5) can be rewritten as follows.
Figure JPOXMLDOC01-appb-I000004
 このときの周波数項に関する調整ゲイン値Kを用いて他社だけで調整力を確保すると仮定すると、
Figure JPOXMLDOC01-appb-I000005
If it is assumed that the adjustment force is secured only by other companies using the adjustment gain value K f related to the frequency term at this time,
Figure JPOXMLDOC01-appb-I000005
 ここで、例えば、エリアkに配置されているk社の発電機の出力容量が全系の1/9であればKは9/8=1.125となる。
 しかるに、WFCにおいては、調整に参加していないk社も、調整力の許す範囲(発電機の出力変化幅)では調整に参加している。
 ここで、k社の調整力をΔPmaxとすると、k社はΔfmax=ΔPmax/Kまでは調整に参加しているはずであるので、式(10)を修正して、
Figure JPOXMLDOC01-appb-I000006
 ただし、Δf>Δfmax
Here, for example, K f is nine / 8 = 1.125 if 1/9 output capacitance of k's generator which is arranged in the area k is the entire system.
However, in the WFC, the company k that does not participate in the adjustment also participates in the adjustment within the range allowed by the adjustment power (the output change width of the generator).
Here, assuming that the adjustment force of company k is ΔP max , company k should have participated in the adjustment until Δf max = ΔP max / K.
Figure JPOXMLDOC01-appb-I000006
However, Δf> Δf max
 ∴PΔf=KΔf-KΔf+PΔfmax  (11)
となる。
 Δfが式(5)の中に含まれるため、一定のK値を求めることはできないが、Δfの大きさをある程度仮定すると、K値を求めることができる。
 例えば、k社の容量が全系の1/9で、Δf=0.2、Δfmax=0.1であれば、Kは(17/18)/(8/9)、すなわち、K=1.063と求められる。
∴ P G Δf = K f P G Δf−K f P k Δf + P k Δf max (11)
It becomes.
Since Δf is included in equation (5), a constant K f value cannot be obtained, but if the magnitude of Δf is assumed to some extent, the K f value can be obtained.
For example, if the capacity of company k is 1/9 of the entire system, Δf = 0.2, Δf max = 0.1, K f is (17/18) / (8/9), that is, K f = 1.063.
 図11を参照して、本発明の第2実施形態に係わる電力系統負荷周波数制御システムの広域電力監視装置40の機能ブロック構成について説明する。
 広域電力監視装置40は、第1実施形態に用いた広域電力監視装置30に対して、新たに調整ゲイン算出部36、キーボード37、表示制御部38、モニタ39を備えている。
 調整ゲイン算出部36は、系統定数K、全系系統容量P、各社系統容量P、各電力会社の調整力Pmax(i=1…n)を入力し、系統定数K、k社の調整力ΔPmaxkに基づいて、k社の調整力Δfmaxを算出し、専用ネットワークNを介して各エリアに設けられたエリア電力管理装置から各エリアにおける周波数偏差Δfを取得し、所定の数式に従って周波数項に関する調整ゲイン値Kを算出する。キーボード37は、系統定数K、全系系統容量P、各社系統容量P、各電力会社の調整力Pmax(i=1…n)を入力するために用いる。表示制御部38は、キーボード37から入力された各種データをモニタ39に表示するとともに、調整ゲイン算出部36により算出された調整ゲイン値を表示する。
With reference to FIG. 11, the functional block configuration of the wide area power monitoring device 40 of the power system load frequency control system according to the second embodiment of the present invention will be described.
The wide area power monitoring device 40 is newly provided with an adjustment gain calculation unit 36, a keyboard 37, a display control unit 38, and a monitor 39 with respect to the wide area power monitoring device 30 used in the first embodiment.
The adjustment gain calculation unit 36 inputs the system constant K, the total system capacity P G , the system capacity P i of each company, and the adjustment power P max (i = 1... N) of each power company, Based on the adjustment force ΔP maxk , the k company's adjustment force Δf max is calculated, the frequency deviation Δf in each area is obtained from the area power management device provided in each area via the dedicated network N, and according to a predetermined formula An adjustment gain value K f related to the frequency term is calculated. The keyboard 37 is used for inputting the system constant K, the total system capacity P G , the system capacity P i of each company, and the adjustment power P max (i = 1... N) of each power company. The display control unit 38 displays various data input from the keyboard 37 on the monitor 39 and displays the adjustment gain value calculated by the adjustment gain calculation unit 36.
 第2実施形態として、図12に示すフローチャートを参照して、図1に示す調整ゲイン算出部36による出処理について説明する。
 まず、ステップS201では、調整ゲイン算出部36は、キーボード37から設定定数を入力し、メモリ32aに記憶する。すなわち、調整ゲイン算出部36は、設定定数として、系統定数K、全系系統容量P、各社系統容量P(i=1…n)、各電力会社の調整力Pmax(i=1…n)をキーボード37から入力する。
 次いで、ステップS205では、調整ゲイン算出部36は、調整力不足の仮定として、k社が調整力不足であると仮定する。
 次いで、ステップS210では、調整ゲイン算出部36は、系統定数K、k社の調整力ΔPmaxk、k社の調整力Δfmaxを算出する。
 Δfmax=ΔPmaxk/K              (13)
As the second embodiment, the output processing by the adjustment gain calculation unit 36 shown in FIG. 1 will be described with reference to the flowchart shown in FIG.
First, in step S201, the adjustment gain calculation unit 36 inputs a set constant from the keyboard 37 and stores it in the memory 32a. That is, the adjustment gain calculation unit 36 sets the system constant K, the total system capacity P G , the system capacity P i (i = 1... N), and the adjustment power P max (i = 1. n) is input from the keyboard 37.
Next, in step S205, the adjustment gain calculation unit 36 assumes that k company has insufficient adjustment power as an assumption of insufficient adjustment power.
Next, in step S210, the adjustment gain calculation unit 36 calculates the system constant K, the adjustment force ΔP maxk of the k company, and the adjustment force Δf max of the k company.
Δf max = ΔP maxk / K (13)
 次いで、ステップS215では、調整ゲイン算出部36は、周波数偏差Δfの見積もりまたは計測を行う。
 すなわち、調整ゲイン算出部36は、通信処理部34から専用ネットワークNを介して各エリアに設けられたエリア電力管理装置の通信処理部18と通信し、各エリアにおける周波数偏差Δfを取得する。
 次いで、ステップS220では、調整ゲイン算出部36は、式(14)に従って周波数項に関する調整ゲイン値Kを算出する。
Figure JPOXMLDOC01-appb-I000008
 次いで、ステップS225では、調整ゲイン算出部36は、算出した周波数項に関する調整ゲイン値KをKfmとして調整ゲイン管理部32により管理されるメモリ32aに記憶する。
 次いで、調整ゲイン算出部36により算出された調整ゲイン値をモニタ39に表示する。
Next, in step S215, the adjustment gain calculation unit 36 estimates or measures the frequency deviation Δf.
That is, the adjustment gain calculation unit 36 communicates with the communication processing unit 18 of the area power management apparatus provided in each area from the communication processing unit 34 via the dedicated network N, and acquires the frequency deviation Δf in each area.
Then, in step S220, the adjustment gain computing unit 36 calculates an adjustment gain value K f about frequency term in accordance with equation (14).
Figure JPOXMLDOC01-appb-I000008
Then, in step S225, the adjustment gain computing section 36 stores the adjusted gain value K f about calculated frequency term to the memory 32a is managed by adjusting the gain control section 32 as K fm.
Next, the adjustment gain value calculated by the adjustment gain calculation unit 36 is displayed on the monitor 39.
 次に、図13に示すフローチャートを参照して、広域電力監視装置40の動作について説明する。
 なお、図13に示すフローチャートは、第1実施形態において参照した図6に示すフローチャートと一部が同様であるので、特徴となるステップのみ説明する。
 ステップS340では、メモリからKfmを読み出す。
 次いで、ステップS345では、制御部35は、調整ゲイン管理部32において管理されているフラグテーブルをメモリ32aから読み出す。そして、制御部35は、フラグテーブルを参照し、フラグAで示す逸脱状態にあるエリアへK=1.0を送信するように通信処理部34を制御し、一方、フラグBで示す正常状態にあるエリアへKfmを送信するように通信処理部34を制御する。
Next, the operation of the wide area power monitoring apparatus 40 will be described with reference to the flowchart shown in FIG.
Note that the flowchart shown in FIG. 13 is partially the same as the flowchart shown in FIG. 6 referred to in the first embodiment, so only the characteristic steps will be described.
In step S340, reads the K fm from memory.
Next, in step S345, the control unit 35 reads the flag table managed by the adjustment gain management unit 32 from the memory 32a. Then, the control unit 35 refers to the flag table and controls the communication processing unit 34 to transmit K f = 1.0 to the area in the departure state indicated by the flag A. On the other hand, the normal state indicated by the flag B The communication processing unit 34 is controlled so as to transmit K fm to an area in the area.
 ここで、制御部35は、エリア番号と周波数項に関する調整ゲイン値Kとを含む1組のデータを順次に通信処理部34に出力する。通信処理部34は、制御部35からエリア番号と周波数項に関する調整ゲイン値Kとを含む1組のデータを順次に受け付け、これらのデータを専用ネットワークNを介してエリア番号に対応するエリア電力管理装置10#1~10#6に順次に送信する。
 この結果、周波数項に関する調整ゲイン値を適切に設定することにより、自然エネルギーを利用した発電機の出力電力による変動が自エリアの周波数調整能力を上回ってしまった場合でも、連系している他エリアの自然エネルギーを利用していない発電機の出力電力による調整力を利用し、全電力系統の周波数を精度よく調整して維持することができる。
Here, the control unit 35 sequentially outputs a set of data including the area number and the adjustment gain value K f related to the frequency term to the communication processing unit 34. The communication processing unit 34 sequentially receives a set of data including the area number and the adjustment gain value K f related to the frequency term from the control unit 35, and receives these data via the dedicated network N and the area power corresponding to the area number. The data is sequentially transmitted to the management devices 10 # 1 to 10 # 6.
As a result, by appropriately setting the adjustment gain value related to the frequency term, even if the fluctuation due to the output power of the generator using natural energy exceeds the frequency adjustment capability of its own area, It is possible to adjust and maintain the frequency of the entire power system with high accuracy by using the adjustment power by the output power of the generator that does not use the natural energy of the area.
 以上のように、広域電力監視装置は、系統定数K、全系系統容量P、各社系統容量P、各電力会社の調整力Pmax(i=1…n)を入力し、系統定数K、k社の調整力ΔPmaxkに基づいて、k社の調整力Δfmaxを算出し、専用ネットワークNを介して各エリアに設けられたエリア電力管理装置から各エリアにおける周波数偏差Δfを取得し、次式に従って周波数項に関する調整ゲイン値Kを算出し、
Figure JPOXMLDOC01-appb-I000009
 算出された周波数項に関する調整ゲイン値を用いて制御することで、周波数項に関する調整ゲイン値を適切に設定することができる。
As described above, the wide area power monitoring apparatus inputs the system constant K, the total system capacity P G , the system capacity P i of each company, and the adjustment power P max (i = 1... N) of each power company, and the system constant K , Based on the adjustment force ΔP maxk of the k company, the adjustment force Δf max of the k company is calculated, and the frequency deviation Δf in each area is obtained from the area power management device provided in each area via the dedicated network N, Calculate the adjustment gain value K f related to the frequency term according to the following equation:
Figure JPOXMLDOC01-appb-I000009
By performing control using the calculated adjustment gain value related to the frequency term, the adjustment gain value related to the frequency term can be appropriately set.
1…電力系統負荷周波数制御システム、3…電力系統、10…エリア電力管理装置、11…外部インタフェース部、11…指令値伝送部、11d…指令値伝送部、11e…発電機出力入力部、11f…発電機出力入力部、12…検出部、13…AR計算部、13a…メモリ、14…AR分配部、15…目標指令値作成部、16…運転計画部、16a…メモリ、17…短周期制約範囲算出部、18…通信処理部、19…制御部、19t…タイマ、30…広域電力監視装置、31…短周期変動算出部、32…調整ゲイン管理部、32a…メモリ、33…管理DB、33…管理DB部、34…通信処理部、35…制御部、35t…タイマ、36…調整ゲイン管理部、37…キーボード、38…表示制御部、39…モニタ、40…広域電力監視装置 DESCRIPTION OF SYMBOLS 1 ... Electric power system load frequency control system, 3 ... Electric power system, 10 ... Area power management apparatus, 11 ... External interface part, 11 ... Command value transmission part, 11d ... Command value transmission part, 11e ... Generator output input part, 11f ... Generator output input unit, 12 ... detection unit, 13 ... AR calculation unit, 13a ... memory, 14 ... AR distribution unit, 15 ... target command value creation unit, 16 ... operation planning unit, 16a ... memory, 17 ... short cycle Restriction range calculation unit, 18 ... communication processing unit, 19 ... control unit, 19t ... timer, 30 ... wide area power monitoring device, 31 ... short cycle fluctuation calculation unit, 32 ... adjustment gain management unit, 32a ... memory, 33 ... management DB , 33 ... management DB section, 34 ... communication processing section, 35 ... control section, 35t ... timer, 36 ... adjustment gain management section, 37 ... keyboard, 38 ... display control section, 39 ... monitor, 40 ... wide area power monitoring device

Claims (9)

  1.  同一エリア内に配置されている自然エネルギー系の発電機、及び非自然エネルギー系の発電機の運転状態を管理するエリア電力管理装置と、複数のエリアに夫々配置されている前記エリア電力管理装置とネットワークを介して接続され、前記エリア電力管理装置から前記運転状態を受信することにより前記複数のエリア間で連系された広域電力系統の運転状態を監視する広域電力監視装置と、を備えたシステムであって、
     前記エリア電力管理装置は、
     自エリア内の複数の前記自然エネルギー系の発電機の電力出力の合計値を算出する合計値算出手段と、
     前記非自然エネルギー系の発電機の調整力に基づいて、前記自エリアにおける短周期制約範囲を算出する短周期制約範囲算出手段と、
     前記合計値及び前記短周期制約範囲に自エリアに関するエリア番号を付加して前記広域電力監視装置に送信する送信手段と、を備え、
     前記広域電力監視装置は、
     前記各エリアの前記エリア電力管理装置から前記合計値、前記短周期制約範囲、前記エリア番号を受信する受信手段と、
     前記エリア毎に前記合計値から短周期変動値を算出する短周期変動値算出手段と、
     少なくとも1つのエリアにおいて前記短周期変動値が前記短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、周波数項に関する所定の調整ゲイン値として1又は調整ゲイン値OFF信号を当該エリアの前記エリア電力管理装置に送信するように制御し、かつ、他のエリアにおいて前記短周期変動値が前記短周期制約範囲内にあることを示す正常状態にある場合に、周波数項に関する所定の調整ゲイン値として1よりも大きい値又は調整ゲイン値ON信号を当該エリアの前記エリア電力管理装置に送信するように制御する制御手段と、を備え、
     前記エリア電力管理装置は、
     前記広域電力監視装置から前記周波数項に関する所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号を受信した場合に、当該エリアの電力系統の周波数偏差(ΔF)、連系線潮流偏差(ΔPT)、前記所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号に基づいて、地域要求電力(AR)を算出する地域要求電力算出手段と、
     前記地域要求電力を前記非自然エネルギー系の複数の発電機に分配する分配手段と、を備えたことを特徴とする周波数制御システム。
    An area power management device that manages the operating state of a natural energy generator and a non-natural energy generator that are arranged in the same area, and the area power management device that is arranged in each of a plurality of areas A wide area power monitoring device that is connected via a network and that monitors the operating state of a wide area power system interconnected between the plurality of areas by receiving the operating state from the area power management device. Because
    The area power management device
    A total value calculating means for calculating the total value of the power output of the plurality of renewable energy generators in the area;
    A short cycle constraint range calculating means for calculating a short cycle constraint range in the area based on the adjusting power of the non-natural energy generator;
    Transmitting means for adding an area number related to its own area to the total value and the short cycle constraint range and transmitting to the wide area power monitoring device,
    The wide area power monitoring device is:
    Receiving means for receiving the total value, the short cycle constraint range, and the area number from the area power management device of each area;
    Short cycle variation value calculating means for calculating a short cycle variation value from the total value for each area;
    When the short cycle variation value is in a deviating state indicating that the short cycle variation value has deviated from the short cycle constraint range in at least one area, 1 or an adjustment gain value OFF signal is set as the predetermined adjustment gain value for the frequency term in the area. A predetermined adjustment gain value related to the frequency term when it is controlled to transmit to the area power management device and in a normal state indicating that the short cycle variation value is within the short cycle constraint range in another area Control means for controlling to transmit a value greater than 1 or an adjustment gain value ON signal to the area power management device in the area,
    The area power management device
    When a predetermined adjustment gain value or adjustment gain value ON signal or adjustment gain value OFF signal related to the frequency term is received from the wide area power monitoring device, the frequency deviation (ΔF) of the power system in the area, the interconnection power flow deviation (ΔPT), a region required power calculation means for calculating a region required power (AR) based on the predetermined adjustment gain value or the adjustment gain value ON signal or the adjustment gain value OFF signal;
    A frequency control system comprising: distribution means for distributing the regional required power to the plurality of non-natural energy generators.
  2.  前記エリア電力管理装置に設けられた地域要求電力算出手段は、
     調整ゲイン値を記憶する調整ゲイン値記憶手段を備え、
     前記広域電力監視装置から調整ゲイン値ON信号を受信した場合には、前記調整ゲイン値記憶手段から予め設定された調整ゲイン値として1よりも大きい値を読み出して設定し、前記広域電力監視装置から調整ゲイン値OFF信号を受信した場合には、調整ゲイン値として1を設定することで、地域要求電力(AR)を算出することを特徴とする請求項1記載の周波数制御システム。
    The area required power calculation means provided in the area power management device is:
    Adjustment gain value storage means for storing the adjustment gain value;
    When the adjustment gain value ON signal is received from the wide area power monitoring apparatus, a value larger than 1 is read and set as a preset adjustment gain value from the adjustment gain value storage means, 2. The frequency control system according to claim 1, wherein, when the adjustment gain value OFF signal is received, the regional required power (AR) is calculated by setting 1 as the adjustment gain value.
  3.  同一エリア内に配置されている自然エネルギー系の発電機、及び非自然エネルギー系の発電機の運転状態を管理するエリア電力管理装置と、複数のエリアに夫々配置されている前記エリア電力管理装置とネットワークを介して接続され、前記エリア電力管理装置から前記運転状態を受信することにより前記複数のエリア間で連系された広域電力系統の運転状態を監視する広域電力監視装置と、を備えたシステムであって、
     前記広域電力監視装置は、
     前記各エリアの前記エリア電力管理装置からエリア内の前記自然エネルギー系の複数の発電機の電力出力の合計値、非自然エネルギー系の発電機の調整力に基づいて算出された前記エリアにおける前記短周期制約範囲、エリア番号を受信する受信手段と、
     前記エリア毎に前記合計値から短周期変動値を算出する短周期変動値算出手段と、
     少なくとも1つのエリアにおいて前記短周期変動値が前記短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、周波数項に関する所定の調整ゲイン値として1又は調整ゲイン値OFF信号を当該エリアの前記エリア電力管理装置に送信するように制御し、かつ、他のエリアにおいて前記短周期変動値が前記短周期制約範囲内にあることを示す正常状態にある場合に、周波数項に関する所定の調整ゲイン値として1よりも大きい値又は調整ゲイン値ON信号を当該エリアの前記エリア電力管理装置に送信するように制御する制御手段と、を備えたことを特徴とする周波数制御システム。
    An area power management device that manages the operating state of a natural energy generator and a non-natural energy generator that are arranged in the same area, and the area power management device that is arranged in each of a plurality of areas A wide area power monitoring device that is connected via a network and that monitors the operating state of a wide area power system interconnected between the plurality of areas by receiving the operating state from the area power management device. Because
    The wide area power monitoring device is:
    The short in the area calculated from the area power management device in each area based on the total value of the power output of the plurality of generators in the natural energy system in the area and the adjustment power of the non-natural energy generator. Receiving means for receiving the period restriction range and area number;
    Short cycle variation value calculating means for calculating a short cycle variation value from the total value for each area;
    When the short cycle variation value is in a deviating state indicating that the short cycle variation value has deviated from the short cycle constraint range in at least one area, 1 or an adjustment gain value OFF signal is set as the predetermined adjustment gain value for the frequency term in the area. A predetermined adjustment gain value related to the frequency term when it is controlled to transmit to the area power management device and in a normal state indicating that the short cycle variation value is within the short cycle constraint range in another area And a control means for controlling to transmit a value greater than 1 or an adjustment gain value ON signal to the area power management device in the area.
  4.  前記エリア電力管理装置は、
     前記広域電力監視装置から前記周波数項に関する所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号を受信した場合に、当該エリアの電力系統の周波数偏差(ΔF)、連系線潮流偏差(ΔPT)、前記所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号に基づいて、地域要求電力(AR)を算出する地域要求電力算出手段と、
     前記地域要求電力を前記非自然エネルギー系の複数の発電機に分配する分配手段と、を備えたことを特徴とする請求項3記載の周波数制御システム。
    The area power management device
    When a predetermined adjustment gain value or adjustment gain value ON signal or adjustment gain value OFF signal related to the frequency term is received from the wide area power monitoring device, the frequency deviation (ΔF) of the power system in the area, the interconnection power flow deviation (ΔPT), a region required power calculation means for calculating a region required power (AR) based on the predetermined adjustment gain value or the adjustment gain value ON signal or the adjustment gain value OFF signal;
    The frequency control system according to claim 3, further comprising distribution means for distributing the regional required power to the plurality of non-natural energy generators.
  5.  前記エリア電力管理装置に設けられた地域要求電力算出手段は、
     調整ゲイン値を記憶する調整ゲイン値記憶手段を備え、
     前記広域電力監視装置から調整ゲイン値ON信号を受信した場合には、前記調整ゲイン値記憶手段から予め設定された調整ゲイン値として1よりも大きい値を読み出して設定し、前記広域電力監視装置から調整ゲイン値OFF信号を受信した場合には、調整ゲイン値として1を設定することで、地域要求電力(AR)を算出することを特徴とする請求項4記載の周波数制御システム。
    The area required power calculation means provided in the area power management device is:
    Adjustment gain value storage means for storing the adjustment gain value;
    When the adjustment gain value ON signal is received from the wide area power monitoring apparatus, a value larger than 1 is read and set as a preset adjustment gain value from the adjustment gain value storage means, 5. The frequency control system according to claim 4, wherein when the adjustment gain value OFF signal is received, the regional required power (AR) is calculated by setting 1 as the adjustment gain value.
  6.  前記広域電力監視装置は、
     系統定数K、全系系統容量P、各社系統容量P、各電力会社の調整力Pmax(i=1…n)を入力する入力手段と、
     系統定数K、k社の調整力ΔPmaxkに基づいて、k社の調整力Δfmaxを算出する算出手段と、
     ネットワークを介して各エリアに設けられた前記エリア電力管理装置から各エリアにおける周波数偏差Δfを取得する取得手段と、
     次式に従って周波数項に関する調整ゲイン値Kを算出する調整ゲイン算出手段と、
    Figure JPOXMLDOC01-appb-I000001
     前記制御手段は、前記調整ゲイン算出手段により算出された周波数項に関する調整ゲイン値を用いて制御することを特徴とする請求項1又は3記載の周波数制御システム。
    The wide area power monitoring device is:
    Input means for inputting the system constant K, the total system capacity P G , the system capacity P i of each company, and the adjustment power P max (i = 1... N) of each power company;
    A calculation means for calculating the adjustment force Δf max of the k company based on the system constant K, the adjustment force ΔP maxk of the k company;
    Obtaining means for obtaining a frequency deviation Δf in each area from the area power management device provided in each area via a network;
    An adjustment gain calculating means for calculating an adjustment gain value K f related to the frequency term according to the following equation;
    Figure JPOXMLDOC01-appb-I000001
    4. The frequency control system according to claim 1, wherein the control unit performs control using an adjustment gain value related to a frequency term calculated by the adjustment gain calculation unit.
  7.  同一エリア内に配置されている自然エネルギー系の発電機、及び非自然エネルギー系の発電機の運転状態を管理するエリア電力管理装置と、複数のエリアに夫々配置されている前記エリア電力管理装置とネットワークを介して接続され、前記エリア電力管理装置から前記運転状態を受信することにより前記複数のエリア間で連系された広域電力系統の運転状態を監視する広域電力監視装置と、を備えたシステムの周波数制御方法であって、
     前記エリア電力管理装置は、
     自エリア内の複数の前記自然エネルギー系の発電機の電力出力の合計値を算出する合計値算出ステップと、
     前記非自然エネルギー系の発電機の調整力に基づいて、前記自エリアにおける短周期制約範囲を算出する短周期制約範囲算出ステップと、
     前記合計値及び前記短周期制約範囲に自エリアに関するエリア番号を付加して前記広域電力監視装置に送信する送信ステップと、を備え、
     前記広域電力監視装置は、
     前記各エリアの前記エリア電力管理装置から前記合計値、前記短周期制約範囲、前記エリア番号を受信する受信ステップと、
     前記エリア毎に前記合計値から短周期変動値を算出する短周期変動値算出ステップと、
     少なくとも1つのエリアにおいて前記短周期変動値が前記短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、周波数項に関する所定の調整ゲイン値として1又は調整ゲイン値OFF信号を当該エリアの前記エリア電力管理装置に送信するように制御し、かつ、他のエリアにおいて前記短周期変動値が前記短周期制約範囲内にあることを示す正常状態にある場合に、周波数項に関する所定の調整ゲイン値として1よりも大きい値又は調整ゲイン値ON信号を当該エリアの前記エリア電力管理装置に送信するように制御する制御ステップと、を備え、
     前記エリア電力管理装置は、
     前記広域電力監視装置から前記周波数項に関する所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号を受信した場合に、当該エリアの電力系統の周波数偏差(ΔF)、連系線潮流偏差(ΔPT)、前記所定の調整ゲイン値又は調整ゲイン値ON信号又は調整ゲイン値OFF信号に基づいて、地域要求電力(AR)を算出する地域要求電力算出ステップと、
     前記地域要求電力を前記非自然エネルギー系の複数の発電機に分配する分配ステップと、を備えたことを特徴とする周波数制御方法。
    An area power management device that manages the operating state of a natural energy generator and a non-natural energy generator that are arranged in the same area, and the area power management device that is arranged in each of a plurality of areas A wide area power monitoring device that is connected via a network and that monitors the operating state of a wide area power system interconnected between the plurality of areas by receiving the operating state from the area power management device. The frequency control method of
    The area power management device
    A total value calculating step for calculating a total value of power outputs of the plurality of renewable energy generators in the area;
    Based on the adjustment power of the non-natural energy generator, a short cycle constraint range calculating step for calculating a short cycle constraint range in the own area;
    A transmission step of adding an area number related to its own area to the total value and the short cycle constraint range and transmitting the same to the wide area power monitoring device, and
    The wide area power monitoring device is:
    A receiving step of receiving the total value, the short cycle constraint range, and the area number from the area power management device of each area;
    A short cycle variation value calculating step for calculating a short cycle variation value from the total value for each area;
    When the short cycle variation value is in a deviating state indicating that the short cycle variation value has deviated from the short cycle constraint range in at least one area, 1 or an adjustment gain value OFF signal is set as the predetermined adjustment gain value for the frequency term in the area. A predetermined adjustment gain value related to the frequency term when it is controlled to transmit to the area power management device and in a normal state indicating that the short cycle variation value is within the short cycle constraint range in another area And a control step for controlling to transmit a value greater than 1 or an adjustment gain value ON signal to the area power management device in the area,
    The area power management device
    When a predetermined adjustment gain value or adjustment gain value ON signal or adjustment gain value OFF signal related to the frequency term is received from the wide area power monitoring device, the frequency deviation (ΔF) of the power system in the area, the interconnection power flow deviation (ΔPT), a regional required power calculation step of calculating a regional required power (AR) based on the predetermined adjustment gain value or the adjustment gain value ON signal or the adjustment gain value OFF signal;
    A distribution step of distributing the regional required power to the plurality of non-natural energy generators.
  8.  同一エリア内に配置されている自然エネルギー系の発電機、及び非自然エネルギー系の複数の発電機に関する運転状態を管理するエリア電力管理装置と、複数のエリアに夫々配置されている前記エリア電力管理装置とネットワークを介して接続され、前記エリア電力管理装置から前記運転状態を受信することにより前記複数のエリア間で連系された広域電力系統の運転状態を監視する広域電力監視装置と、を備えたシステムの周波数制御方法あって、
     前記広域電力監視装置は、
     前記各エリアの前記エリア電力管理装置からエリア内の前記自然エネルギー系の複数の発電機の電力出力の合計値、非自然エネルギー系の発電機の調整力に基づいて算出された前記エリアにおける前記短周期制約範囲、エリア番号を受信する受信ステップと、
     前記エリア毎に前記合計値から短周期変動値を算出する短周期変動値算出ステップと、
     少なくとも1つのエリアにおいて前記短周期変動値が前記短周期制約範囲から逸脱したことを示す逸脱状態にある場合に、周波数項に関する所定の調整ゲイン値として1又は調整ゲイン値OFF信号を当該エリアの前記エリア電力管理装置に送信するように制御し、かつ、他のエリアにおいて前記短周期変動値が前記短周期制約範囲内にあることを示す正常状態にある場合に、周波数項に関する所定の調整ゲイン値として1よりも大きい値又は調整ゲイン値ON信号を当該エリアの前記エリア電力管理装置に送信するように制御する制御ステップと、を備えたことを特徴とする周波数制御方法。
    An area power management device that manages the operating state of a plurality of non-natural energy generators and a natural energy generator arranged in the same area, and the area power management that is arranged in each of a plurality of areas A wide-area power monitoring device that is connected to a device via a network and that monitors the operating state of a wide-area power system interconnected between the plurality of areas by receiving the operating state from the area power management device. System frequency control method,
    The wide area power monitoring device is:
    The short in the area calculated from the area power management device in each area based on the total value of the power output of the plurality of generators in the natural energy system in the area and the adjustment power of the non-natural energy generator. A reception step for receiving a period restriction range and an area number;
    A short cycle variation value calculating step for calculating a short cycle variation value from the total value for each area;
    When the short cycle variation value is in a deviating state indicating that the short cycle variation value has deviated from the short cycle constraint range in at least one area, 1 or an adjustment gain value OFF signal is set as the predetermined adjustment gain value for the frequency term in the area. A predetermined adjustment gain value related to the frequency term when it is controlled to transmit to the area power management device and in a normal state indicating that the short cycle variation value is within the short cycle constraint range in another area And a control step for controlling to transmit a value greater than 1 or an adjustment gain value ON signal to the area power management device in the area.
  9.  前記広域電力監視装置は、
     系統定数K、全系系統容量P、各社系統容量P、各電力会社の調整力Pmax(i=1…n)を入力する入力ステップと、
     前記系統定数K、k社の調整力ΔPmaxkに基づいて、k社の調整力Δfmaxを算出する算出ステップと、
     ネットワークを介して各エリアに設けられた前記エリア電力管理装置から各エリアにおける周波数偏差Δfを取得する取得ステップと、
     次式に従って周波数項に関する調整ゲイン値Kを算出する調整ゲイン算出ステップと、
    Figure JPOXMLDOC01-appb-I000002
     前記制御ステップは、前記調整ゲイン算出ステップにより算出された周波数項に関する調整ゲイン値を用いて制御することを特徴とする請求項7又は8記載の周波数制御方法。
    The wide area power monitoring device is:
    An input step for inputting the system constant K, the total system capacity P G , the system capacity P i of each company, and the adjustment power P max (i = 1... N) of each power company;
    A calculation step of calculating the adjustment force Δf max of the k company based on the system constant K, the adjustment force ΔP maxk of the k company;
    An acquisition step of acquiring a frequency deviation Δf in each area from the area power management device provided in each area via a network;
    An adjustment gain calculating step for calculating an adjustment gain value K f related to the frequency term according to the following equation;
    Figure JPOXMLDOC01-appb-I000002
    9. The frequency control method according to claim 7, wherein the control step performs control using an adjustment gain value related to the frequency term calculated by the adjustment gain calculation step.
PCT/JP2013/068417 2013-07-04 2013-07-04 Frequency control system and frequency control method WO2015001651A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/068417 WO2015001651A1 (en) 2013-07-04 2013-07-04 Frequency control system and frequency control method
JP2013543463A JP5465816B1 (en) 2013-07-04 2013-07-04 Frequency control system and frequency control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068417 WO2015001651A1 (en) 2013-07-04 2013-07-04 Frequency control system and frequency control method

Publications (1)

Publication Number Publication Date
WO2015001651A1 true WO2015001651A1 (en) 2015-01-08

Family

ID=50619447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068417 WO2015001651A1 (en) 2013-07-04 2013-07-04 Frequency control system and frequency control method

Country Status (2)

Country Link
JP (1) JP5465816B1 (en)
WO (1) WO2015001651A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038954A1 (en) * 2017-08-23 2019-02-28 株式会社日立製作所 Device and method for controlling load frequency of power system
JP7444709B2 (en) 2020-06-22 2024-03-06 一般財団法人電力中央研究所 Wide area load frequency control device, wide area load frequency control system, and wide area load frequency control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410520B2 (en) * 2014-08-21 2018-10-24 三菱電機株式会社 Wide area system controller
US9893523B2 (en) 2014-11-21 2018-02-13 Siemens Industry, Inc. Systems, methods and apparatus for improved regulation of energy delivery systems
JP6367754B2 (en) 2015-05-13 2018-08-01 株式会社日立製作所 Load frequency control device and load frequency control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333563A (en) * 2005-05-24 2006-12-07 Meidensha Corp Load following operation controlling method by various type of distributed power supply
JP2009112148A (en) * 2007-10-31 2009-05-21 Toshiba Corp Method and system of adjusting frequency of power system
JP2011259668A (en) * 2010-06-11 2011-12-22 Chugoku Electric Power Co Inc:The Control method of power supply system, and power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333563A (en) * 2005-05-24 2006-12-07 Meidensha Corp Load following operation controlling method by various type of distributed power supply
JP2009112148A (en) * 2007-10-31 2009-05-21 Toshiba Corp Method and system of adjusting frequency of power system
JP2011259668A (en) * 2010-06-11 2011-12-22 Chugoku Electric Power Co Inc:The Control method of power supply system, and power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038954A1 (en) * 2017-08-23 2019-02-28 株式会社日立製作所 Device and method for controlling load frequency of power system
JP2019041457A (en) * 2017-08-23 2019-03-14 株式会社日立製作所 Power system load frequency control device and method
JP7444709B2 (en) 2020-06-22 2024-03-06 一般財団法人電力中央研究所 Wide area load frequency control device, wide area load frequency control system, and wide area load frequency control method

Also Published As

Publication number Publication date
JP5465816B1 (en) 2014-04-09
JPWO2015001651A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5465816B1 (en) Frequency control system and frequency control method
JP4635207B2 (en) Power system stabilization system using communication line
US9124138B2 (en) Power grid operation control system, device, and method
JP6163494B2 (en) Power converter and method for controlling power converter
KR101545143B1 (en) Auto Generation Control Method based on maximum power transmission
JP6548570B2 (en) POWER SUPPLY SYSTEM, CONTROL DEVICE AND PROGRAM FOR POWER SUPPLY SYSTEM
JP2011114899A (en) Method and apparatus for controlling load frequency
JP5561058B2 (en) Power stabilization method, charge control method, charging device, and electric vehicle
CN108631301A (en) A kind of safety margin division methods considering a variety of fast frequency resource responses
JP6892349B2 (en) Power supply and demand control device, power supply and demand control system, computer program for power supply and demand control, and power supply and demand control method
CN103104931A (en) Primary frequency modulation method and primary frequency modulation system based on boiler primary wind pressure dynamic compensation
JP2016194849A (en) Tidal flow calculation device, tidal flow calculation method, and program
EP2410654B1 (en) Grid frequency rate limiting system
CN103887813A (en) Control method of wind power system operation based on wind power prediction uncertainty
JPWO2014203388A1 (en) Renewable energy power generation facility control system, control method therefor, and renewable energy power generation system
JP5820240B2 (en) Power system control system and power system control method
JP2002209336A (en) Power system load frequency control method and system, and computer-readable storage medium
CN105610200A (en) Synchronous coordinated control based full-power control method for thermal power plant
US9970417B2 (en) Wind converter control for weak grid
JP2019161845A (en) Processor, control device for power storage system, power storage system, processing method and program
JP3930218B2 (en) Power system load frequency control system
CN102971528B (en) Windmill control apparatus and method thereof and wind-power generating system
US10074984B2 (en) Electric power control system
JP2014204577A (en) Supply and demand control system for power system, and supply and demand control device
JP2015173570A (en) Automatic frequency controller and automatic frequency control method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013543463

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888710

Country of ref document: EP

Kind code of ref document: A1