JP2006333563A - Load following operation controlling method by various type of distributed power supply - Google Patents

Load following operation controlling method by various type of distributed power supply Download PDF

Info

Publication number
JP2006333563A
JP2006333563A JP2005150323A JP2005150323A JP2006333563A JP 2006333563 A JP2006333563 A JP 2006333563A JP 2005150323 A JP2005150323 A JP 2005150323A JP 2005150323 A JP2005150323 A JP 2005150323A JP 2006333563 A JP2006333563 A JP 2006333563A
Authority
JP
Japan
Prior art keywords
power
load
storage device
following operation
distributed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005150323A
Other languages
Japanese (ja)
Other versions
JP4852885B2 (en
Inventor
Takayuki Tanabe
隆之 田邊
Hiroshi Shishido
洋 宍道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2005150323A priority Critical patent/JP4852885B2/en
Publication of JP2006333563A publication Critical patent/JP2006333563A/en
Application granted granted Critical
Publication of JP4852885B2 publication Critical patent/JP4852885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To separate fluctuations in a load and a distributed power supply into frequency bands, enables a load following operation, and compensate a rapid load fluctuation and a power fluctuation hardly followed. <P>SOLUTION: A power system 11 is connected to a wind force power generating facility 15, a solar photovoltaic power generating facility 16 as a natural energy power supply 10 and a power load 17 through a main bus bar 13 and an auxiliary bus bar 14. A total power calculating section 19 sums power from the natural energy power supply 10, and calculates the total power. The main bus bar 13 is connected to a power storage apparatus 22 comprising an engine power generator 21 and a secondary battery as the distributed power supply for implementing the load following operation through the auxiliary bus bar. A deviation between a load power detection value and a setting of power received by a system linking point is separated into a low frequency component and a high frequency component by a low pass filter 27. The engine power generator 21 is controlled by the low frequency component. The power storage apparatus 22 is controlled by the high frequency component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電力系統に連系された、エンジン発電機、タービン発電機、電力貯蔵装置、燃料電池等、複数種類の分散型電源の制御方法であって、特に、特性の異なる複数種類の分散型電源を用いて、ある任意の箇所の電力潮流を一定に保ちながら負荷追従運転を行う複数種類の分散型電源による負荷追従運転制御方法に関するものである。   The present invention relates to a method for controlling a plurality of types of distributed power sources, such as engine generators, turbine generators, power storage devices, fuel cells, etc., which are linked to a power system. The present invention relates to a load follow-up operation control method using a plurality of types of distributed power sources that perform load follow-up operation while maintaining a constant power flow at a given location using a power source.

分散型電源を電力系統に連系する場合、その連系形態により、分散型電源を設置する需要家受電点の電力潮流を、常に電力系統から受電する順潮流とする場合と、電力系統に対して電力を供給する逆潮流とする場合とがある。常に順潮流のみとする場合には、分散型電源の発電出力が負荷電力よりも常に小さいことが要求される。   When connecting a distributed power source to the power system, depending on the connection form, the power flow at the customer receiving point where the distributed power source is installed is always a forward flow that receives power from the power system, In some cases, reverse power flow is used to supply power. When always having only a forward power flow, it is required that the power generation output of the distributed power source is always smaller than the load power.

また、エンジン発電機やタービン発電機などの分散型電源においては、発電出力が大きいほどエネルギー効率が高く経済的である等の理由からできる限り高い負荷率での運転が要求される。よって、この場合、分散型電源の発電出力は需要家受電点の電力潮流が一定となるように制御される事が望ましく、受電点の電力潮流はできる限り小さな値とされることが望ましい。   In addition, distributed power sources such as engine generators and turbine generators are required to operate at a load factor as high as possible for reasons such as higher power output and higher energy efficiency and economy. Therefore, in this case, it is desirable to control the power generation output of the distributed power source so that the power flow at the consumer power reception point is constant, and it is desirable that the power flow at the power reception point be as small as possible.

一方、連系形態が逆潮流有りとする場合においては、分散型電源の発電出力を一定として最も発電効率の高い運転を行うことが可能である。ただし、今後の電力自由化の拡大に応じて分散型電源が増加して行くと、これまで電力系統に頼っていた負荷変動への追従を、分散型電源が担うことで新たな付加価値が生まれることから、連系形態が逆潮流有りの場合であっても、分散型電源の発電出力を負荷変動に追従させる負荷追従運転が望まれている。   On the other hand, in the case where the interconnected configuration has a reverse power flow, it is possible to perform the operation with the highest power generation efficiency while keeping the power generation output of the distributed power source constant. However, as the number of distributed power sources increases as power liberalization increases in the future, new added value is born by the distributed power sources being able to follow the load fluctuations that had previously relied on the power system. Therefore, load follow-up operation is desired in which the power generation output of the distributed power source follows load fluctuations even when the interconnection form has a reverse power flow.

何れの場合においても、電力系統上のある一点の電力潮流、または負荷電力と発電出力との偏差を一定に保つ制御方法が必要であり、瞬時的な電力偏差が小さいほど好ましい。   In any case, a certain power flow on the power system or a control method that keeps the deviation between the load power and the power generation output constant is necessary. The smaller the instantaneous power deviation, the better.

分散型電源を負荷追従運転する場合、同一特性の分散型電源のみで負荷追従運転する場合と、特性の異なる分散型電源を組み合わせて負荷追従運転する場合とがある。   When performing a load following operation of a distributed power source, there are a case where a load following operation is performed only with a distributed power source having the same characteristics and a case where a load following operation is performed by combining distributed power sources having different characteristics.

なお、前者の同一特性の分散型電源であるエンジン発電機やタービン発電機のように電力貯蔵が不可能な分散型電源が使用される場合と、電力貯蔵が可能な分散型電源が使用される場合に分類される。   In addition, when the distributed power source that cannot store power is used, such as the engine generator and the turbine generator that are the distributed power sources having the same characteristics as the former, the distributed power source that can store power is used. Classified into cases.

また、後者の特性の異なる分散型電源を使用する鉄鋼プラントの場合、鉄鋼プラントの電力消費は、比較的に大きいために、特性の異なる分散型電源を組み合わせて負荷追従運転をする方法が提案されている(例えば、特許文献1参照。)。   In the case of an iron and steel plant using a distributed power source with different characteristics, the power consumption of the steel plant is relatively large, so a method of performing load following operation by combining distributed power sources with different characteristics has been proposed. (For example, refer to Patent Document 1).

この他に、風力発電機の発電出力の変動を複数の電力貯蔵装置を用いて補償する方式も提案されている。この提案では、風力発電機の発電出力を、低域通過フィルタ(LPF)で平滑化した電力検出値とし、この電力検出値を蓄電池と風力発電機の合成発電出力目標値とする事で風力発電機の発電出力変動を補償する方式である(例えば、特許文献2参照。)。   In addition, a method for compensating for fluctuations in the power generation output of the wind power generator using a plurality of power storage devices has been proposed. In this proposal, the power generation output of the wind power generator is used as a power detection value smoothed by a low-pass filter (LPF), and this power detection value is used as the combined power generation output target value of the storage battery and the wind power generator. This is a method for compensating for fluctuations in the power generation output of the machine (see, for example, Patent Document 2).

例えば、2台の電力貯蔵装置を用いて発電出力の変動を補償する方式としては、LPFを多段に組み合わせ、各LPFの出力を各蓄電池の目標電力とすることで、各々の電力貯蔵装置が補償する周波数帯域を独立とする事が可能となる。   For example, as a method of compensating for fluctuations in power generation output using two power storage devices, each power storage device compensates by combining LPFs in multiple stages and using the output of each LPF as the target power of each storage battery. The frequency band to be made can be made independent.

なお、上記方式は、2台目のLPFを,1台目の電力貯蔵装置の制御応答を模擬した特性とすることで、1台目の電力貯蔵装置が補償した結果である電力の検出を省略可能としている。
特開2000−014012号公報 特開2002−349417号公報
In the above method, the second LPF has a characteristic that simulates the control response of the first power storage device, thereby omitting the detection of power as a result of compensation by the first power storage device. It is possible.
JP 2000-014012 A JP 2002-349417 A

電力貯蔵が不可能な同一特性の分散型電源のみで負荷追従運転を行う場合には、その原動機の種類によっては、発電出力が急激には変えられない場合や、発電出力設定値の変更に対する応答速度が遅い場合がある。この場合には、急峻な負荷変動や周期の短い負荷変動には追従できない。   When load following operation is performed only with a distributed power source with the same characteristics that cannot store power, depending on the type of prime mover, the power generation output cannot be changed suddenly, or the response to changes in the power generation output setting value The speed may be slow. In this case, it cannot follow a steep load fluctuation or a load fluctuation with a short cycle.

よって、電力系統への逆潮流がない範囲で負荷追従運転を行う場合などにおいては、吸収できない負荷変動分によって逆潮流が生じないように、受電電力一定制御の目標値を、急峻な負荷変動を考慮して大きめに設定する必要があり、このため、分散型電源の負荷率が悪化する惧れがある。   Therefore, when performing load-following operation in a range where there is no reverse power flow to the power system, the target value of the received power constant control is set to a steep load fluctuation so that reverse power flow does not occur due to load fluctuations that cannot be absorbed. It is necessary to set a larger value in consideration of this, and there is a possibility that the load factor of the distributed power source deteriorates.

従って、同一特性の電力貯蔵装置のみで負荷追従運転を行う場合には、電力貯蔵装置が蓄電可能な電力量が有限であるため、蓄電量が上限または下限に達した場合には、それ以上蓄電または放電することが不可能となり、それらが上下限値に到達した場合には、負荷変動を吸収することができなくなる。   Therefore, when the load following operation is performed only with the power storage device having the same characteristics, the amount of power that can be stored in the power storage device is limited. Alternatively, it becomes impossible to discharge, and when they reach the upper and lower limit values, it becomes impossible to absorb the load fluctuation.

よって、通常、電力貯蔵装置は、昼夜の負荷電力の差を抑制するための負荷平準化運転が行われるのは一般的である。   Therefore, normally, the power storage device is generally subjected to load leveling operation for suppressing the difference in load power between day and night.

上述した特許文献1は、基本的には、発電出力を一定として運転するタービン発電機と、急峻な負荷変動や周期の短い負荷変動に追従可能なフライホール蓄電装置を用いた負荷追従運転制御方法である。   Patent document 1 mentioned above is basically a load following operation control method using a turbine generator that operates with a constant power generation output and a flyhole power storage device that can follow steep load fluctuations and short period load fluctuations. It is.

しかし、上記運転制御方法では、比較的周期の短い負荷変動に対しては負荷電力の平均値との差を、フライホイール蓄電装置の入出力目標値としており、タービン発電機は予め既知である負荷電力の推移に対して発電出力が決定され、一定の発電出力目標値が与えられるため負荷追従運転ができない問題がある。   However, in the operation control method described above, for load fluctuations with a relatively short cycle, the difference from the average value of the load power is used as the input / output target value of the flywheel power storage device, and the turbine generator has a known load. There is a problem that load follow-up operation cannot be performed because the power generation output is determined with respect to the transition of power and a constant power generation output target value is given.

従って、上記運転制御方法は、特定の需要家の負荷であって、負荷電力がある程度計画通りに使用される場合に適用可能な方法であり、べ一スとなる負荷電力をタービン発電機から供給し、比較的周期の短い負荷変動をフライホイール蓄電装置で追従する事により実現されるものである。   Therefore, the above operation control method is a method applicable to a load of a specific customer and the load power is used to some extent as planned, and the base load power is supplied from the turbine generator. However, this is realized by following a load fluctuation with a relatively short cycle with a flywheel power storage device.

実際の負荷変動は、特殊な場合を除いて計画通りに使用されることはなく、上記運転制御方法を適用するためには、負荷変動の予測が必要となり、汎用的な方法ではない。   Actual load fluctuations are not used as planned except in special cases, and in order to apply the above operation control method, it is necessary to predict load fluctuations, which is not a general-purpose method.

また、上記運転制御方法では、フライホイール蓄電装置が追従可能な短周期の負荷変動を除く長周期の負荷変動分が計画通りに使用されない場合にはフライホイール蓄電装置で追従する必要がある。   Further, in the above operation control method, when a long-cycle load fluctuation except for a short-cycle load fluctuation that can be followed by the flywheel power storage device is not used as planned, it is necessary to follow the flywheel power storage device.

しかし、フライホイール蓄電装置などの電力貯蔵装置は、前述のように蓄電可能な電力量が有限であるため、その量が上限または下限に到達した場合には、蓄電または放電ができなくなり、この場合には負荷追従運転ができなくなる問題がある。   However, since the power storage device such as the flywheel power storage device has a finite amount of power that can be stored as described above, when the amount reaches the upper limit or the lower limit, it cannot be stored or discharged. However, there is a problem that load following operation cannot be performed.

また、上記特許文献2では、補償したい電力変動を複数台の電力貯蔵装置で補償可能としているため、以下のような制約がある。   Moreover, in the said patent document 2, since the fluctuation | variation of the electric power to compensate can be compensated with several electric power storage apparatuses, there exist the following restrictions.

第1は、電力貯蔵装置の補償電力を含まない平滑化したい電力変動の計測が必要であること、
第2は、最も高い周波数成分を補償する装置(電力貯蔵装置)から順に変動の発生源の近傍に電力貯蔵装置を置く必要があることである。
First, it is necessary to measure power fluctuations to be smoothed without including the compensation power of the power storage device,
Secondly, it is necessary to place the power storage device in the vicinity of the fluctuation source in order from the device (power storage device) that compensates for the highest frequency component.

以上により、上記特許文献2の制御方法を負荷変動の補償に応用し、負荷追従運転に使用することは可能であるが、高い周波数成分から順に変動を補償し平滑化する構成であるため、負荷追従運転で要求される低い周波数成分の補償方法は考慮されておらず、低い周波数成分を補償する装置が追従できない変動については補償することが出来ない問題がある。   As described above, the control method of Patent Document 2 can be applied to load fluctuation compensation and used for load following operation. However, since the fluctuation is compensated in order from a high frequency component and smoothed, A compensation method for low frequency components required in the follow-up operation is not taken into consideration, and there is a problem that fluctuations that cannot be followed by a device that compensates for low frequency components cannot be compensated.

本発明は、上記の事情に鑑みてなされたもので、特性の異なる複数種類の分散型電源を組み合わせ、負荷や分散型電源の変動を周波数帯域で分離して負荷追従運転を可能とし、かつ急峻な負荷変動や追従できない電力変動を補償可能とする複数種類の分散型電源による負荷追従運転制御方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and by combining a plurality of types of distributed power sources having different characteristics, it is possible to perform load following operation by separating loads and fluctuations of the distributed power sources in a frequency band, and steeply. It is an object of the present invention to provide a load following operation control method using a plurality of types of distributed power sources that can compensate for various load fluctuations and power fluctuations that cannot be followed.

本発明は、上記の課題を達成するために、第1発明は、複数の分散型電源を電力系統に連系する場合、任意の箇所の電力潮流を一定に保持しながら、複数の分散型電源を組み合わせて負荷追従運転を行う制御方法において、
前記複数の分散型電源として負荷追従の応答特性の異なる分散型電源を用いて、負荷追従運転を行う際に、追従すべき電力変動を、前記分散型電源の応答特性に合わせて予め設定した周波数帯域に分離し、分離した周波数毎に電力制御の電力目標値を生成し、その目標値で分散型電源の負担する負荷を分担するように負荷追従運転制御することを特徴とする。
In order to achieve the above object, according to the present invention, when a plurality of distributed power sources are connected to a power system, the first invention maintains a plurality of distributed power sources while maintaining a constant power flow at an arbitrary location. In a control method for performing load following operation by combining
When a load following operation is performed using a distributed power source having different load tracking response characteristics as the plurality of distributed power sources, a power frequency to be tracked is set in advance according to the response characteristics of the distributed power source. A power target value for power control is generated for each separated frequency, and load follow-up operation control is performed so that the load borne by the distributed power source is shared by the target value.

第2発明は、前記周波数帯域が、ローパスフィルタにより低周波数成分と高周波数成分とに分離し、低周波数成分ではエンジン発電機を制御する電力目標値を生成し、高周波数成分では電力貯蔵装置を制御する電力目標値を生成することを特徴とする。   According to a second aspect of the invention, the frequency band is separated into a low frequency component and a high frequency component by a low pass filter, a power target value for controlling the engine generator is generated at the low frequency component, and a power storage device is provided at the high frequency component. A power target value to be controlled is generated.

第3発明は、前記追従すべき電力変動が電力貯蔵装置で追従できない急峻な変動成分であるときには、この変動成分に追従しこれを補償する電気二重層キャパシタを設けて、連系点受電電力設定値の偏差が零となるように、電気二重層キャパシタを電流制御にて動作させることを特徴とする。   According to a third aspect of the present invention, when the power fluctuation to be followed is a steep fluctuation component that cannot be followed by the power storage device, an electric double layer capacitor that follows and compensates for the fluctuation component is provided to set the interconnection power receiving power. The electric double layer capacitor is operated by current control so that the deviation of the value becomes zero.

第4発明は、複数の分散型電源を電力系統に連系する場合、任意の箇所の電力潮流を一定に保持しながら、複数の分散型電源を組み合わせて負荷追従運転を行う制御方法において、前記複数の分散型電源として負荷追従の応答特性の異なる分散型電源を用いて、負荷追従運転を行う際に、追従すべき電力変動を、長周期の負荷変動に対してはエンジン発電機で追従し、短周期の負荷変動に対しては電力貯蔵装置で追従し、電力貯蔵装置が追従しきれない急峻な負荷変動を電気二重層キャパシタが補償するように制御するときに、電力貯蔵装置と電気二重層キャパシタとの間で制御干渉が起こらないように、電気二重層キャパシタの出力電流の計測値を、非干渉補償要素を介して前記電力貯蔵装置を制御する電力目標値に加算することを特徴とする。   The fourth invention is a control method for performing load following operation by combining a plurality of distributed power sources while maintaining a constant power flow at a given location when connecting a plurality of distributed power sources to a power system. When using a distributed power source with different load tracking response characteristics as a plurality of distributed power sources, the power fluctuation to be followed is tracked by the engine generator for long-period load fluctuations when performing load following operation. The power storage device follows the short cycle load fluctuation, and when the electric double layer capacitor is controlled to compensate for the steep load fluctuation that cannot be followed by the power storage device, The measurement value of the output current of the electric double layer capacitor is added to a power target value for controlling the power storage device through a non-interference compensation element so that control interference with the multilayer capacitor does not occur. That.

第5発明は、複数の分散型電源を電力系統に連系する場合、任意の箇所の電力潮流を一定に保持しながら制御するとともに、電力量を一定に保持しながら制御し、複数の分散型電源を組み合わせて負荷追従の応答特性の異なる分散型電源により負荷追従運転を行う際に、追従すべき電力変動を、長周期の負荷変動に対してはエンジン発電機で追従し、短周期の負荷変動に対しては電力貯蔵装置で追従し、電力貯蔵装置が追従しきれない急峻な負荷変動を電気二重層キャパシタが補償するように制御するときに、電力貯蔵装置と電気二重層キャパシタとの間で制御干渉が起こらないように、電気二重層キャパシタの出力電流の計測値を、非干渉補償要素を介して前記電力貯蔵装置を制御する電力目標値に加算し、前記電力潮流を積分して電力量を算出した後に、電力量を一定に保持する電力量制御器により補償量を算出し、この算出値を前記エンジン発電機の電力目標値または前記電力貯蔵装置の電力目標値に加算することを特徴とする。   In the fifth aspect of the present invention, when a plurality of distributed power sources are connected to the power system, the power flow at an arbitrary location is controlled while maintaining a constant amount, and the power amount is controlled while maintaining a constant amount. When performing load following operation with a distributed power source with different load following response characteristics by combining power sources, the power fluctuation to be followed is followed by the engine generator for long period load fluctuations, and short period load When the electric double layer capacitor is controlled so that the electric double layer capacitor compensates for the steep load fluctuation that the electric power storage device cannot follow, and the fluctuation is followed by the electric power storage device. In order to prevent control interference, the measured value of the output current of the electric double layer capacitor is added to a power target value for controlling the power storage device via a non-interference compensation element, and the power flow is integrated to obtain power. amount After the calculation, a compensation amount is calculated by a power amount controller that keeps the power amount constant, and the calculated value is added to a power target value of the engine generator or a power target value of the power storage device. To do.

以上述べたように、本発明によれば、電力負荷や自然エネルギー(分散)型電源による電力変動に対して、複数の負荷追従特性の異なる分散型電源を用いて、電力変動の周波数成分毎に負荷追従運転を行うことができるとともに、それぞれの分散型電源の特長を生かし、例えば、エンジン発電機のように応答速度の遅い分散型電源のみで負荷追従運転を行う場合に比べて、より高精度の電力一定制御が可能となるため、発電機の運転効率を高めることが可能となる。   As described above, according to the present invention, a plurality of distributed power sources having different load follow-up characteristics are used for each frequency component of power fluctuations with respect to power fluctuations caused by power loads or natural energy (distributed) power supplies. In addition to being able to perform load-following operation, take advantage of the features of each distributed power source, for example, more accurate than when performing load-following operation with only a distributed power source with a slow response speed, such as an engine generator Therefore, it is possible to increase the operation efficiency of the generator.

また、電力変動の連続量をLPFにより低周波数成分と高周波数成分に分離するため、電力変動移動平均値を用いる場合に比べ、制御応答の遅れを小さくすることが可能となるとともに、予め負荷追従すべき電力の大きさが既知でなくとも負荷追従運転が可能となる。   In addition, since the continuous amount of power fluctuation is separated into a low frequency component and a high frequency component by LPF, the delay in control response can be reduced as compared with the case where a power fluctuation moving average value is used, and load follow-up is performed in advance. Even if the magnitude of the power to be used is not known, load following operation is possible.

さらに、電力貯蔵装置として電気二重層キャパシタを用いることにより、より高い周波数成分の変動が追従可能となり、上記エンジン発電機の場合と同様な効果が得られるとともに、電力貯蔵装置と電気二重層キャパシタの電力または電流の検出点が異なるため、両制御の干渉が原理的に発生しない。しかも、電力貯蔵装置またはエンジン発電機が追従できない電力変動を補償可能としている。   Furthermore, by using an electric double layer capacitor as a power storage device, it becomes possible to follow fluctuations in higher frequency components, and the same effect as in the case of the engine generator can be obtained, and the power storage device and the electric double layer capacitor can be Since the detection points of electric power or current are different, interference between both controls does not occur in principle. In addition, it is possible to compensate for power fluctuations that cannot be followed by the power storage device or the engine generator.

上記のほかに、負荷追従運転を行う複数の分散型電源の電力変動と、電力負荷や自然エネルギー型電源の電力変動を完全に分離できない場合においても、上記と同様な効果が得られる。さらにまた、電力貯蔵装置と電気二重層キャパシタが、同一点の電力潮流を検出することに起因する両制御の干渉の問題が回避可能となり、電力貯蔵装置と電気二重層キャパシタの制御器の制御パラメータの設計が容易となるとともに、電力量を同時に一定に保つ機能が実現できる。   In addition to the above, even when the power fluctuations of a plurality of distributed power sources that perform load following operation and the power fluctuations of a power load or a natural energy power source cannot be completely separated, the same effect as described above can be obtained. Furthermore, the problem of interference between the two controls caused by the power storage device and the electric double layer capacitor detecting the power flow at the same point can be avoided, and the control parameters of the controller of the power storage device and the electric double layer capacitor can be avoided. This makes it possible to realize a function that keeps the electric energy constant at the same time.

以下本発明の実施の形態を図面に基づいて説明するに当たり、本発明が実現する負荷追従運転とは、ある任意の箇所の電力潮流を、直接的または間接的に一定に保つ運転方法を指し、発電出力や入出力電力を、制御可能な分散型電源が負担する負荷電力を制御する方法であって、想定される変動要因は電力負荷のみでなく自然エネルギー型分散型電源の発電出力の変動も含むものとする。
[実施の形態1]
図1は本発明の実施の形態1である負荷や自然エネルギー型電源の変動を周波数帯域で分離して負荷追従運転する制御方法を示す構成図で、図1において、電力系統11は遮断器12aを介して主母線13に接続される。VTaは変圧器、CTaは変流器、Paは電力検出器である。
In the following description of embodiments of the present invention with reference to the drawings, the load following operation realized by the present invention refers to an operation method for keeping the power flow at a certain arbitrary position directly or indirectly constant, This is a method for controlling the load power borne by the distributed power source that can control the power generation output and input / output power. Shall be included.
[Embodiment 1]
FIG. 1 is a block diagram showing a control method for performing load following operation by separating fluctuations of a load and a natural energy type power source in a frequency band according to Embodiment 1 of the present invention. In FIG. 1, an electric power system 11 includes a circuit breaker 12a. To the main bus 13. VTa is a transformer, CTa is a current transformer, and Pa is a power detector.

主母線13には、遮断器12bを介して補助母線14が接続され、この補助母線14には、自然エネルギー型電源10である風力発電設備15と太陽光発電設備16の他に電力負荷17が接続される。   An auxiliary bus 14 is connected to the main bus 13 via a circuit breaker 12b, and an electric load 17 is connected to the auxiliary bus 14 in addition to the wind power generation facility 15 and the solar power generation facility 16 that are the natural energy type power source 10. Connected.

なお、18は電力変換器、VTc〜VTeは変圧器、CTc〜CTeは変流器、Pc〜Peは電力検出器、12c〜12eは遮断器である。各電力検出器Pc〜Peの出力電力は合計電力算出部19に供給され、ここで合計電力が算出される。   Reference numeral 18 denotes a power converter, VTc to VTe are transformers, CTc to CTe are current transformers, Pc to Pe are power detectors, and 12c to 12e are circuit breakers. The output power of each of the power detectors Pc to Pe is supplied to the total power calculation unit 19 where the total power is calculated.

また、前記主母線13には、補助母線20が接続され、この補助母線20には、負荷追従運転を行う分散型電源として、エンジン発電機21や二次電池からなる電力貯蔵装置22が設けられ、何れも発電出力または入出力電力が制御可能に構成される。   Further, an auxiliary bus 20 is connected to the main bus 13, and an electric power storage device 22 including an engine generator 21 and a secondary battery is provided on the auxiliary bus 20 as a distributed power source for performing load following operation. In either case, the power generation output or the input / output power can be controlled.

電力貯蔵装置22は電力変換器23、遮断器12fを介して、また、エンジン発電機21は遮断器12gを介してそれぞれ補助母線20に接続される。なお、VTf,VTgは変圧器、CTf,CTeは変流器、PfPgは電力検出器、24は入出力電力制御器、25は出力電力制御器である。   The power storage device 22 is connected to the auxiliary bus 20 via the power converter 23 and the circuit breaker 12f, and the engine generator 21 is connected to the auxiliary bus 20 via the circuit breaker 12g. VTf and VTg are transformers, CTf and CTe are current transformers, PfPg is a power detector, 24 is an input / output power controller, and 25 is an output power controller.

26は負荷電力検出値と連系点受電電力設定値との偏差を取る偏差器で、この偏差器26の出力(電力の計測値)は、ローパスフィルタ27に与えられ、このローパスフィルタ27により計測値を低周波数成分と高周波数成分に分離し、低周波数成分をエンジン発電機21の出力電力制御の発電出力設定値として出力電力制御器25に与えてエンジン発電機21を制御し、また、高周波数成分を偏差器28から得て、その高周波数成分を電力貯蔵装置22の入出力電力設定値として入出力電力制御器24に与え、電力変換器23を制御する。このようにして制御することにより、両電源が負担する負荷を分担することができる。   26 is a deviator that takes the deviation between the load power detection value and the connection point received power set value. The output (measured value of power) of the deviator 26 is given to the low-pass filter 27 and is measured by the low-pass filter 27. The value is separated into a low-frequency component and a high-frequency component, and the low-frequency component is given to the output power controller 25 as a power generation output set value for output power control of the engine generator 21 to control the engine generator 21. The frequency component is obtained from the deviation unit 28, and the high frequency component is given to the input / output power controller 24 as the input / output power setting value of the power storage device 22 to control the power converter 23. By controlling in this way, it is possible to share the load borne by both power sources.

次に上記実施の形態1の動作を述べる。図1に示すように、電力負荷17や自然エネルギー型電源10等の合計電力が計測可能である場合において、これらの合計電力分散型電源の発電電力の合計を一致させる負荷追従運転を実現するには、合計電力の合計が、合流点の潮流または電力負荷17や自然エネルギー型電源10毎の計測値の合計値を偏差器26で求める。また、負荷追従運転を行う分散型電源として、何れも発電出力または入出力電力が制御可能なエンジン発電機21と電力貯蔵装置22を用いる。   Next, the operation of the first embodiment will be described. As shown in FIG. 1, when the total power of the power load 17 and the natural energy type power source 10 can be measured, the load following operation for matching the total generated power of these total power distributed type power sources is realized. The sum of the total power is determined by the deviator 26 with the flow of the junction or the total value of the measured values for each of the power load 17 and the natural energy type power supply 10. In addition, as a distributed power source that performs load following operation, an engine generator 21 and a power storage device 22 that can control power generation output or input / output power are used.

エンジン発電機21は発電出力目標値に対する応答速度が比較的遅く、一方電力貯蔵装置22はエンジン発電機21に比して入出力電力目標値に対する応答速度が速いことから、周期の長い負荷変動(低周波数成分)に対してはエンジン発電機21で追従し、周期の短い負荷変動(高周波数成分)に対しては電力貯蔵装置22で追従する。   The engine generator 21 has a relatively slow response speed with respect to the power generation output target value, while the power storage device 22 has a faster response speed with respect to the input / output power target value than the engine generator 21, so that the load fluctuation ( The low frequency component) is followed by the engine generator 21, and the load storage (high frequency component) having a short cycle is followed by the power storage device 22.

このとき、1つの制御対象(一定とすべき全体の電力潮流)に対して複数の発電機を制御すると、発電機間の干渉や応答速度の速い電源への負担が大きくなることから、これを避けるため、図2に示すように、電力の計測値(図2の負荷変動)を偏差器26で得た後、ローパスフィルタ27により低周波数成分と高周波数成分に分離する。   At this time, if a plurality of generators are controlled for one control target (the entire power flow to be constant), the interference between the generators and the burden on the power supply with a fast response speed increase. In order to avoid this, as shown in FIG. 2, the measured power value (load fluctuation in FIG. 2) is obtained by the deviator 26 and then separated into a low frequency component and a high frequency component by the low pass filter 27.

そして、分離して得た低周波数成分をエンジン発電機21の出力電力制御の出力電力設定値としてエンジン発電機21を制御し、また高周波数成分を偏差器28で得て、この高周波数成分を電力貯蔵装置22の入出力電力設定値として電力貯蔵装置22を制御することにより、両電源の負担する負荷を分担することができる。   Then, the engine generator 21 is controlled using the low frequency component obtained by the separation as the output power setting value of the output power control of the engine generator 21, and the high frequency component is obtained by the deviator 28. By controlling the power storage device 22 as the input / output power setting value of the power storage device 22, it is possible to share the load borne by both power sources.

図3は、ステップ状の負荷変動が生じた場合のエンジン発電機21の負荷分担(図中斜線部分A)と、電力貯蔵装置22の負荷分担(図中網線部分B)の様子を示す説明図である。この図3からエンジン発電機21が、追従できない急峻な変動成分の一部を電力貯蔵装置22が図示のように負担している。しかし、図3に示すように、未だ吸収できない負荷変動(図中白抜き部分C)が残る。   FIG. 3 is an explanation showing the load sharing of the engine generator 21 (shaded portion A in the figure) and the load sharing of the power storage device 22 (shaded line portion B in the figure) when a step-like load change occurs. FIG. As shown in FIG. 3, the power generator 22 bears a part of the steep fluctuation component that the engine generator 21 cannot follow. However, as shown in FIG. 3, load fluctuations (outlined portion C in the figure) that cannot be absorbed yet remain.

例えば、電力一定とした点が需要家の受電点であり、電力系統への逆潮流発生時に分散型電源を解列する逆電力継電器(図1の連系点に設置:図示省略)が設置されている場合、三相電力が実施の形態1の制御により一定に保たれ、三相電力の合計値に逆潮流が発生していなくても、逆電力継電器が検出する相の電流に常時逆潮流が発生する可能性があり、この場合には継電器が動作することとなる。   For example, the point where the power is constant is the power receiving point of the customer, and a reverse power relay (installed at the connection point in FIG. 1: not shown) that disconnects the distributed power source when reverse power flow to the power system occurs is installed The three-phase power is kept constant by the control of the first embodiment, and even if no reverse flow occurs in the total value of the three-phase power, the reverse current always flows into the phase current detected by the reverse power relay. May occur, and in this case, the relay operates.

上記実施の形態1の構成で、上述のことを避けるためには、設定する受電電力量のマージンを大きめにする必要があることから、分散型電源の負担する負荷率が小さくなり非効率的となるのを改良したのが、次の実施の形態2である。
[実施の形態2]
図4は本発明の実施の形態2における急峻な負荷変動と不平衡を補償して負荷追従運転する制御方法を示す構成図で、この実施の形態2は,上記実施の形態1において電力貯蔵装置で追従できない負荷変動や不平衡電力を補償するため、より高速な電力貯蔵装置である電気二重層キャパシタを用いて負荷追従運転を行うものである。
In the configuration of the first embodiment, in order to avoid the above, it is necessary to increase the margin of the amount of received power to be set. The second embodiment is improved from the above.
[Embodiment 2]
FIG. 4 is a block diagram showing a control method for performing load following operation by compensating for steep load fluctuations and unbalance in the second embodiment of the present invention. This second embodiment is a power storage device in the first embodiment. In order to compensate for load fluctuations and unbalanced power that cannot be followed by load, a load following operation is performed using an electric double layer capacitor that is a faster power storage device.

図4に示す実施の形態2において、実施の形態1と同一部分には同一符号を付して詳細な説明を省略して説明する。図4において、31は電気二重層キャパシタで、この電気二重層キャパシタ31は交流−直流電力変換装置32と直流−直流電力変換装置33を介して充放電される。   In the second embodiment shown in FIG. 4, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 4, 31 is an electric double layer capacitor, and this electric double layer capacitor 31 is charged and discharged via an AC-DC power converter 32 and a DC-DC power converter 33.

34は連系点受電電力設定値を電流換算する演算部で、この演算部34の出力に得られた受電電流設定値と連系点受電電流は偏差部35に入力され、偏差出力として出力電流設定値が得られる。この設定値と電力系統の出力電流が偏差部36に入力され、偏差出力が交流−直流電力変換装置32を制御する電流制御部37に与えられる。38は変流器、39は直流コンデンサである。   Reference numeral 34 denotes a calculation unit for converting the connection point received power set value into a current. The received current set value obtained at the output of the calculation unit 34 and the connection point received current are input to the deviation unit 35, and output current is output as a deviation output. A set value is obtained. The set value and the output current of the power system are input to the deviation unit 36, and the deviation output is provided to the current control unit 37 that controls the AC-DC power converter 32. 38 is a current transformer and 39 is a DC capacitor.

上記のように構成された実施の形態2の制御においても、実施の形態1と同様に、自然エネルギー型電源(以下の実施の形態においては、自然エネルギー型電源に電力負荷等の負荷を含める)10による電力変動と連系点受電電力設定値との偏差分を、エンジン発電機21と電力貯蔵装置22で分担して負担する。これにより、連系点の電力は連系点受電電力設定値にほぼ一定に保たれるようになる。   Also in the control of the second embodiment configured as described above, a natural energy type power source (in the following embodiments, a load such as an electric power load is included in the natural energy type power source) as in the first embodiment. The engine generator 21 and the power storage device 22 share and bear the deviation between the power fluctuation due to 10 and the connection point received power set value. As a result, the power at the interconnection point is kept substantially constant at the interconnection point received power set value.

そして、実施の形態2では、上記したように電気二重層キャパシタ31が設置されているので、電力貯蔵装置22が追従でいないより急峻な変動成分に追従してこれを補償することができるようになる。   In the second embodiment, since the electric double layer capacitor 31 is installed as described above, the power storage device 22 can follow and compensate for a steeper fluctuation component that is not following. Become.

すなわち、急峻な変動成分は、連系点受電電力設定値からの偏差として現れるため、電気二重層キャパシタ31はこれを零とするように動作させる。このとき、電気二重層キャパシタ31の高速応答性を生かすため、電気二重層キャパシタ31は電流制御部37からの電流制御にて動作される。また、急峻な負荷変動への追従と共に不平衡電流(逆相電流)の補償も可能となる。   That is, since the steep fluctuation component appears as a deviation from the connection point received power set value, the electric double layer capacitor 31 is operated so as to make it zero. At this time, the electric double layer capacitor 31 is operated by current control from the current control unit 37 in order to make use of the high-speed response of the electric double layer capacitor 31. Further, it is possible to compensate for an unbalanced current (reverse phase current) as well as to follow a steep load change.

図5は実施の形態2による負荷がステップ状に急変した際の各分散型電源による負荷追従の分担の様子を示す説明図で、この図5からも明らかのように、電気二重層キャパシタによる追従Dにより実施の形態1よりもさらに変動分が低減する。なお、実施の形態2では、電力貯蔵装置22と電気二重層キャパシタ31の計測点が異なるため、両者に干渉が起こらないことが利点となる。   FIG. 5 is an explanatory diagram showing how load distribution is shared by each distributed power source when the load according to the second embodiment suddenly changes stepwise. As is apparent from FIG. 5, tracking by an electric double layer capacitor is also shown. D reduces the variation further than in the first embodiment. In the second embodiment, since the measurement points of the power storage device 22 and the electric double layer capacitor 31 are different, there is an advantage that no interference occurs between the two.

上記実施の形態1,2では、電力負荷や自然エネルギー型電源等の合計電力(負荷変動)が計測可能な場合には、有効な方法であり、応答の速い電力貯蔵装置と電気二重層キャパシタの制御が干渉しないため制御が容易である利点を有している。   In the first and second embodiments, when total power (load fluctuation) such as a power load or a natural energy type power source can be measured, this is an effective method. Since the control does not interfere, there is an advantage that the control is easy.

しかし、実際には合計電力が計測不可能な場合があり、この場合には電力潮流を一定に保ちたい点の計測値を用いてエンジン発電機、電力貯蔵装置、電気二重層キャパシタ等の異なる特性を持つ複数の分散型電源を制御する必要がある。   However, there are cases where the total power cannot actually be measured. In this case, different characteristics such as an engine generator, a power storage device, and an electric double layer capacitor are used by using the measured value of the point where it is desired to keep the power flow constant. Need to control multiple distributed power supplies with

この場合には、1つの計測値(電力潮流)を異なる応答特性を持つ複数の分散型電源で一定に保つため、各々が電力潮流を検出して発電出力を制御した場合には、応答の速い分散型電源の負荷分担率が大きくなる不具合や、検出点の電力に負荷変動成分と分散型電源自身の発電出力の変動が含まれるため、複数の分散型電源でこれを制御した場合には干渉が生じる不具合がある。そこで、次に上記のような不具合を改良した実施の形態3について述べる。
[実施の形態3]
図6は本発明の実施の形態3における負荷や自然エネルギー型電源10等の電力変動の合計電力が計測不可能な場合の負荷追従運転制御方法を示す構成図で、図6において、実施の形態1、2と同一部分には同一符号を付して詳細な説明を省略して説明する。
In this case, since one measurement value (power flow) is kept constant by a plurality of distributed power sources having different response characteristics, when each detects the power flow and controls the power generation output, the response is fast. There is a problem that the load sharing ratio of the distributed power source becomes large, and the power at the detection point includes load fluctuation components and fluctuations in the power generation output of the distributed power source itself. There is a problem that causes Therefore, a third embodiment in which the above problems are improved will be described below.
[Embodiment 3]
FIG. 6 is a configuration diagram showing a load following operation control method when the total power of the power fluctuations of the load, the natural energy type power supply 10 and the like in the third embodiment of the present invention cannot be measured. The same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals and will not be described in detail.

図6に示す実施の形態3は、連系点の電力潮流から、電力貯蔵装置が追従する変動成分と電気二重層キャパシタが追従する変動成分をそれぞれハイパスフィルタ(HPF)により分離し負荷追従運転を行うための制御方法である。   In the third embodiment shown in FIG. 6, the fluctuation component followed by the power storage device and the fluctuation component followed by the electric double layer capacitor are separated from the power flow at the interconnection point by a high-pass filter (HPF), respectively. It is a control method for performing.

図6において、連系点の電力を電力検出器Paで検出し、その検出電力と連系点受電電力設定値との偏差を偏差器41で得て、その偏差を発電出力設定値としてエンジン発電機21に与えて、前記検出電力を一定に保つように制御している。   In FIG. 6, the power at the connection point is detected by the power detector Pa, the deviation between the detected power and the connection point received power set value is obtained by the deviator 41, and the deviation is used as the power generation output set value for engine power generation. The detected power is given to the machine 21 so as to keep it constant.

エンジン発電機21の応答は遅いため、エンジン発電機21単独では急峻な負荷変動を吸収できず、連系点に負荷変動が残る。電力貯蔵装置22は連系点の電力(偏差器41の出力)から第1ハイパスフィルタ42により変動成分のみを分離し、これを入出力電力制御部24への入出力電力設定値として供給して電力貯蔵装置22が制御される。   Since the response of the engine generator 21 is slow, the engine generator 21 alone cannot absorb a steep load change, and the load change remains at the interconnection point. The power storage device 22 separates only the fluctuation component from the power at the connection point (output of the deviation unit 41) by the first high-pass filter 42, and supplies this as the input / output power setting value to the input / output power control unit 24. The power storage device 22 is controlled.

なお、第1ハイパスフィルタ42は、エンジン発電機21の応答速度程度の遮断周波数を持つハイパスフィルタとする。   The first high-pass filter 42 is a high-pass filter having a cutoff frequency that is about the response speed of the engine generator 21.

電力貯蔵装置22への入出力電力設定値は、急峻な変動成分も含む設定値となるが、電力貯蔵装置22は全ての変動成分には追従できず、電力貯蔵装置22の応答速度より急峻な変動成分は連系点の電力変動として残る。   The input / output power setting value to the power storage device 22 is a setting value including a steep fluctuation component, but the power storage device 22 cannot follow all the fluctuation components and is steeper than the response speed of the power storage device 22. The fluctuation component remains as power fluctuation at the interconnection point.

この電力貯蔵装置22が追従できない電力変動を電気二重層キャパシタ31により追従させるため、連系点電流(偏差器35からの出力)から第2ハイパスフィルタ43により急峻な変動成分のみを分離(高周波数成分)し、この高周波成分と変流器38で検出した出力電流とを偏差器44に与えて、その偏差出力を入出力電流設定として電流制御部37に入力する。   In order to cause the electric double layer capacitor 31 to follow the power fluctuation that the power storage device 22 cannot follow, only the steep fluctuation component is separated from the interconnection point current (output from the deviation unit 35) by the second high-pass filter 43 (high frequency This high frequency component and the output current detected by the current transformer 38 are applied to the deviation unit 44, and the deviation output is input to the current control unit 37 as an input / output current setting.

電流制御部37は、入力された入出力電流設定に基づいて交流−直流電力変換装置32を制御する。31は電気二重層キャパシタで、この電気二重層キャパシタ31は交流−直流電力変換装置32と直流−直流電力変換装置33を介して充放電される。39は直流コンデンサである。   The current control unit 37 controls the AC-DC power converter 32 based on the input / output current setting. Reference numeral 31 denotes an electric double layer capacitor, and the electric double layer capacitor 31 is charged and discharged via an AC-DC power converter 32 and a DC-DC power converter 33. Reference numeral 39 denotes a DC capacitor.

なお、電気二重層キャパシタ31側の第2ハイパスフィルタ43は、電力貯蔵装置22の応答速度程度の遮断周波数を持つハイパスフィルタとする。   The second high-pass filter 43 on the electric double layer capacitor 31 side is a high-pass filter having a cutoff frequency that is about the response speed of the power storage device 22.

実施の形態3では、上記のように連系点の電力潮流のみの計測により複数の分散型電源の干渉を回避した負荷追従運転が可能となる。   In the third embodiment, as described above, it is possible to perform load following operation that avoids interference between a plurality of distributed power sources by measuring only the power flow at the interconnection point.

図7は、実施の形態3による負荷がステップ状に急変した際の各分散型電源による負荷追従の分担の様子を示す説明図である。
[実施の形態4]
図8は本発明の実施の形態4を示す構成図で、この実施の形態4は同一計測点において周波数帯域分離による負荷追従運転の非干渉化制御方法である。上述した実施の形態3は電力潮流を一定に保ちたい一点のみの計測から複数の分散型電源による負荷追従運転を可能とする制御方法である。なお、図8において、実施の形態1〜3と同一部分には同一符号を付して詳細な説明を省略して説明する。
FIG. 7 is an explanatory diagram showing how load distribution is shared by each distributed power source when the load according to the third embodiment changes stepwise.
[Embodiment 4]
FIG. 8 is a block diagram showing Embodiment 4 of the present invention. This Embodiment 4 is a non-interference control method for load following operation by frequency band separation at the same measurement point. Embodiment 3 described above is a control method that enables load following operation by a plurality of distributed power sources from measurement of only one point where the power flow is desired to be kept constant. In FIG. 8, the same parts as those in the first to third embodiments are denoted by the same reference numerals and will not be described in detail.

負荷追従運転を行う際の電力貯蔵装置と電気二重層キャパシタの分担は、電力貯蔵装置が主に短周期の負荷変動に追従し、電力貯蔵装置が追従しきれない急峻な負荷変動を電気二重層キャパシタが補償する制御方法である。   The power storage device and the electric double layer capacitor are shared when performing load following operation. The power storage device mainly follows short cycle load fluctuations, and steep load fluctuations that the power storage device cannot fully follow. This is a control method compensated by the capacitor.

この場合、実施の形態3のハイパスフィルタ(HPF)のパラメータ設定方法、電力貯蔵装置及び電気二重層キャパシタの制御パラメータの設定方法によっては、両者の分担が崩れ、より応答が高速である電気二重層キャパシタが負荷変動の多くを負担し、場合によっては電力貯蔵装置から放電された電力を電気二重層キャパシタが充電する様な制御の干渉が起こる可能性がある。   In this case, depending on the parameter setting method of the high pass filter (HPF), the power storage device, and the control parameter setting method of the electric double layer capacitor according to the third embodiment, the sharing of the two collapses, and the electric double layer has a faster response. The capacitor bears much of the load fluctuation, and in some cases, there is a possibility of control interference such that the electric double layer capacitor charges the electric power discharged from the power storage device.

HPFと制御パラメータの最適な設計により、このような問題は回避可能であるが、実施の形態4では、より容易に両制御の干渉を回避する方法を示す。   Such a problem can be avoided by optimal design of HPF and control parameters, but the fourth embodiment shows a method of more easily avoiding interference between both controls.

図8に示す構成図は、電力貯蔵装置22と電気二重層キャパシタ31の干渉回避の機能を施したもので、その干渉回避の機能構成は、非干渉補償部51、電力換算部52及びHPF42の出力と非干渉補償部51からの出力を加算する加算部53からなる。   The configuration diagram shown in FIG. 8 is provided with a function of avoiding interference between the power storage device 22 and the electric double layer capacitor 31, and the functional configuration of the interference avoidance is that of the non-interference compensation unit 51, the power conversion unit 52, and the HPF 42. It comprises an adder 53 that adds the output and the output from the non-interference compensation unit 51.

すなわち、電気二重層キャパシタ31の出力電流の計測値を、電力換算部52を介して非干渉補償部51に入力し、得た補償出力とHPF42の出力とを加算して、電力貯蔵装置22の入出力電力目標値とする事により実現される。なお、非干渉補償部51の要素は、比例ゲインのみ、または進み遅れ補償により構成される。
[実施の形態5]
図9は本発明の実施の形態5を示す構成図で、この実施の形態5は、電力潮流一定制御に加え、同時同量制御を可能とする負荷追従運転制御方法である。なお、図9において、実施の形態1〜4と同一部分には同一符号を付して詳細な説明を省略して説明する。
That is, the measured value of the output current of the electric double layer capacitor 31 is input to the non-interference compensation unit 51 via the power conversion unit 52, and the obtained compensation output and the output of the HPF 42 are added to determine the power storage device 22. This is realized by setting the input / output power target value. The elements of the non-interference compensation unit 51 are configured by only proportional gain or lead / lag compensation.
[Embodiment 5]
FIG. 9 is a block diagram showing a fifth embodiment of the present invention. This fifth embodiment is a load following operation control method that enables simultaneous and same amount control in addition to constant power flow control. In FIG. 9, the same parts as those in the first to fourth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

上記した実施の形態1〜4では、ある一点の電力潮流(例えば需要家の連系点)を複数の特性の異なる分散型電源を用いて、一定に保つ運転制御方法であるが、近年では電力の自由化が進み電力会社と需要家との契約形態によっては電力量(Wh)を一定に保つ同時同量制御の実現が要求される場合がある。同時同量制御は、30分間の電力積算値をある一定値以内に納めることが要求される。   Embodiments 1 to 4 described above are operation control methods for keeping a certain power flow (for example, a customer connection point) constant by using a plurality of distributed power sources having different characteristics. Depending on the contract form between the power company and the consumer, there is a case where it is required to realize the same amount control that keeps the power amount (Wh) constant. The same amount control is required to keep the integrated power value for 30 minutes within a certain value.

図9に示した実施の形態5は、実施の形態1〜4に示した電力潮流(W)を一定に保つ制御に、電力量(Wh)を一定に保つ機能を付加したもので、電力量(Wh)は電力潮流(W)の積分により算出する事が可能であり、電力量を一定に保つ電力量一定制御部55により補償量を算出し、これをエンジン発電機21の出力電力目標値または電力貯蔵装置22の入出力電力目標値に加えることで負荷追従運転を行いながら同時同量制御の機能を付加するようにしたものである。   The fifth embodiment shown in FIG. 9 is obtained by adding a function of keeping the power amount (Wh) constant to the control for keeping the power flow (W) constant shown in the first to fourth embodiments. (Wh) can be calculated by integration of the power flow (W), the compensation amount is calculated by the constant power amount control unit 55 that keeps the power amount constant, and this is calculated as the output power target value of the engine generator 21. Alternatively, the function of simultaneous equal amount control is added while performing load following operation by adding to the input / output power target value of the power storage device 22.

図9に示す実施の形態5は、上記実施の形態4で示した構成図に同時同量制御機能である電力量一定制御部55を付加したものであるが、同様の方法で実施の形態1〜3の何れにも同時同量制御機能の付加が可能である。なお、56は積分器、57、58は偏差器である。   The fifth embodiment shown in FIG. 9 is obtained by adding a constant power amount control unit 55 that is a simultaneous and same amount control function to the configuration diagram shown in the fourth embodiment, but the same method is used in the first embodiment. It is possible to add a simultaneous and same amount control function to any of .about.3. Reference numeral 56 denotes an integrator, and 57 and 58 denote deviators.

本発明の実施の形態1を示す構成図。The block diagram which shows Embodiment 1 of this invention. 電力の計測値をローパスフィルタにより低周波数成分と高周波数成分に分離したときの特性図。The characteristic figure when the measured value of electric power is separated into a low frequency component and a high frequency component by a low pass filter. ステップ状の負荷変動が生じた時の負荷分担の様子を示す特性図。The characteristic view which shows the mode of load sharing when the step-like load fluctuation arises. 本発明の実施の形態2を示す構成図。The block diagram which shows Embodiment 2 of this invention. ステップ状の負荷変動が生じた時の負荷分担の様子を示す特性図。The characteristic view which shows the mode of load sharing when the step-like load fluctuation arises. 本発明の実施の形態3を示す構成図。The block diagram which shows Embodiment 3 of this invention. ステップ状の負荷変動が生じた時の負荷分担の様子を示す特性図。The characteristic view which shows the mode of load sharing when the step-like load fluctuation arises. 本発明の実施の形態4を示す構成図。The block diagram which shows Embodiment 4 of this invention. 本発明の実施の形態5を示す構成図。The block diagram which shows Embodiment 5 of this invention.

符号の説明Explanation of symbols

10…自然エネルギー型電源
11…電力系統
15…風力発電設備
16…太陽光発電設備
17…電力負荷
19…合計電力算出部
21…エンジン発電機
22…電力貯蔵装置
24…入出力電力制御器
25…出力電力制御器
27…ローパスフィルタ
31…電気二重層キャパシタ
42,43…ハイパスフィルタ
51…非干渉補償部
DESCRIPTION OF SYMBOLS 10 ... Natural energy type power supply 11 ... Electric power system 15 ... Wind power generation equipment 16 ... Solar power generation equipment 17 ... Electric power load 19 ... Total electric power calculation part 21 ... Engine generator 22 ... Electric power storage device 24 ... Input / output electric power controller 25 ... Output power controller 27 ... Low pass filter 31 ... Electric double layer capacitor 42, 43 ... High pass filter 51 ... Non-interference compensator

Claims (5)

複数の分散型電源を電力系統に連系する場合、任意の箇所の電力潮流を一定に保持しながら、複数の分散型電源を組み合わせて負荷追従運転を行う制御方法において、
前記複数の分散型電源として負荷追従の応答特性の異なる分散型電源を用いて、負荷追従運転を行う際に、追従すべき電力変動を、前記分散型電源の応答特性に合わせて予め設定した周波数帯域に分離し、分離した周波数毎に電力制御の電力目標値を生成し、その目標値で分散型電源の負担する負荷を分担するように負荷追従運転制御することを特徴とする複数種類の分散型電源による負荷追従運転制御方法。
In the case of connecting a plurality of distributed power sources to a power system, in a control method for performing load following operation by combining a plurality of distributed power sources while maintaining a constant power flow at an arbitrary location,
When a load following operation is performed using a distributed power source having different load tracking response characteristics as the plurality of distributed power sources, a power frequency to be tracked is set in advance according to the response characteristics of the distributed power source. Multiple types of dispersion characterized by generating power target values for power control for each separated frequency and performing load following operation control so that the load borne by the distributed power source is shared by the target values Load follow-up operation control method using a type power supply.
前記周波数帯域は、ローパスフィルタにより低周波数成分と高周波数成分とに分離し、低周波数成分ではエンジン発電機を制御する電力目標値を生成し、高周波数成分では電力貯蔵装置を制御する電力目標値を生成することを特徴とする請求項1記載の複数種類の分散型電源による負荷追従運転制御方法。 The frequency band is separated into a low frequency component and a high frequency component by a low-pass filter, a power target value for controlling the engine generator is generated in the low frequency component, and a power target value for controlling the power storage device in the high frequency component. The load following operation control method using a plurality of types of distributed power sources according to claim 1. 前記追従すべき電力変動が電力貯蔵装置で追従できない急峻な変動成分であるときには、この変動成分に追従しこれを補償する電気二重層キャパシタを設け、連系点受電電力設定値の偏差が零となるように、前記電気二重層キャパシタを電流制御にて動作させることを特徴とする請求項1又は2に記載の複数種類の分散型電源による負荷追従運転制御方法。 When the power fluctuation to be followed is a steep fluctuation component that cannot be followed by the power storage device, an electric double layer capacitor that follows and compensates for the fluctuation component is provided, and the deviation of the set power received by the interconnection point is zero. 3. The load following operation control method using a plurality of types of distributed power sources according to claim 1, wherein the electric double layer capacitor is operated by current control. 複数の分散型電源を電力系統に連系する場合、任意の箇所の電力潮流を一定に保持しながら、複数の分散型電源を組み合わせて負荷追従運転を行う制御方法において、
前記複数の分散型電源として負荷追従の応答特性の異なる分散型電源を用いて、負荷追従運転を行う際に、追従すべき電力変動を、長周期の負荷変動に対してはエンジン発電機で追従し、短周期の負荷変動に対しては電力貯蔵装置で追従し、電力貯蔵装置が追従しきれない急峻な負荷変動を電気二重層キャパシタが補償するように制御するときに、電力貯蔵装置と電気二重層キャパシタとの間で制御干渉が起こらないように、電気二重層キャパシタの出力電流の計測値を、非干渉補償要素を介して前記電力貯蔵装置を制御する電力目標値に加算することを特徴とする複数種類の分散型電源による負荷追従運転制御方法。
In the case of connecting a plurality of distributed power sources to a power system, in a control method for performing load following operation by combining a plurality of distributed power sources while maintaining a constant power flow at an arbitrary location,
When using a distributed power supply with different load tracking response characteristics as the plurality of distributed power supplies, follow the power fluctuation to be followed when performing load following operation, and follow the long-term load fluctuation with the engine generator. However, when the electric double layer capacitor is controlled so that the electric double layer capacitor compensates for the steep load fluctuation that the electric power storage device cannot follow, and the electric power storage device follows the short cycle load fluctuation. The measurement value of the output current of the electric double layer capacitor is added to a power target value for controlling the power storage device via a non-interference compensation element so that control interference with the double layer capacitor does not occur. A load following operation control method using a plurality of distributed power sources.
複数の分散型電源を電力系統に連系する場合、任意の箇所の電力潮流を一定に保持しながら制御するとともに、電力量を一定に保持しながら制御し、前記複数の分散型電源を組み合わせて負荷追従の応答特性の異なる分散型電源により負荷追従運転を行う際に、
追従すべき電力変動を、長周期の負荷変動に対してはエンジン発電機で追従し、短周期の負荷変動に対しては電力貯蔵装置で追従し、電力貯蔵装置が追従しきれない急峻な負荷変動は、電気二重層キャパシタが補償するように制御する際、電力貯蔵装置と電気二重層キャパシタとの間で制御干渉が起こらないように、電気二重層キャパシタの出力電流の計測値を、非干渉補償要素を介して前記電力貯蔵装置を制御する電力目標値に加算し、
前記電力潮流を積分して電力量を算出した後に、電力量を一定に保持する電力量制御器により補償量を算出し、この算出値を前記エンジン発電機の電力目標値または前記電力貯蔵装置の電力目標値に加算することを特徴とする複数種類の分散型電源による負荷追従運転制御方法。
When connecting a plurality of distributed power sources to a power system, the power flow at an arbitrary location is controlled while keeping it constant, the power amount is kept constant, and the plurality of distributed power sources are combined. When performing load following operation with a distributed power source with different load following response characteristics,
The power fluctuation that should be followed is followed by the engine generator for long-cycle load fluctuations, followed by the power storage device for short-cycle load fluctuations, and the steep load that the power storage device cannot fully follow When the electric double layer capacitor is controlled to compensate, the measured value of the output current of the electric double layer capacitor is non-interfering so that no control interference occurs between the power storage device and the electric double layer capacitor. Adding to the power target value controlling the power storage device via a compensation element;
After calculating the amount of power by integrating the power flow, the amount of compensation is calculated by a power amount controller that keeps the amount of power constant, and this calculated value is used as the power target value of the engine generator or the power storage device. A load following operation control method using a plurality of types of distributed power sources, characterized by adding to a power target value.
JP2005150323A 2005-05-24 2005-05-24 Load following operation control method with multiple types of distributed power supply Active JP4852885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150323A JP4852885B2 (en) 2005-05-24 2005-05-24 Load following operation control method with multiple types of distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150323A JP4852885B2 (en) 2005-05-24 2005-05-24 Load following operation control method with multiple types of distributed power supply

Publications (2)

Publication Number Publication Date
JP2006333563A true JP2006333563A (en) 2006-12-07
JP4852885B2 JP4852885B2 (en) 2012-01-11

Family

ID=37554665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150323A Active JP4852885B2 (en) 2005-05-24 2005-05-24 Load following operation control method with multiple types of distributed power supply

Country Status (1)

Country Link
JP (1) JP4852885B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143225A (en) * 2005-11-15 2007-06-07 Osaka Gas Co Ltd Control system
WO2008029849A1 (en) * 2006-09-08 2008-03-13 Shimizu Corporation Microgrid system building method
JP2008228422A (en) * 2007-03-12 2008-09-25 Shimizu Corp Method for controlling dispersed power supplies
JP2009027861A (en) * 2007-07-20 2009-02-05 Shimizu Corp Control method of distributed power supply
JP2009071908A (en) * 2007-09-10 2009-04-02 Univ Of Ryukyus Simultaneous balancing controller having function of suppressing axial torsional vibration
JP2009141993A (en) * 2007-12-03 2009-06-25 Shimizu Corp Power controller
WO2009136641A1 (en) * 2008-05-09 2009-11-12 株式会社 明電舎 System stabilizing devices
JP2009273210A (en) * 2008-05-02 2009-11-19 Shimizu Corp Method of controlling distributed power supply
WO2009138152A1 (en) * 2008-05-12 2009-11-19 Mario La Rosa Wind-powered generator system
JP2010022101A (en) * 2008-07-09 2010-01-28 Toshiba Corp Supply and demand controller of small-scale electric power system
JP2010110088A (en) * 2008-10-29 2010-05-13 Shimizu Corp Distributed power supply system
JP2010119250A (en) * 2008-11-14 2010-05-27 Meidensha Corp System stabilizing apparatus
JP2010148336A (en) * 2008-12-22 2010-07-01 Hitachi Engineering & Services Co Ltd Wind power plant and power generation control method
WO2011016092A1 (en) * 2009-08-07 2011-02-10 清水建設株式会社 Island operating system for distributed power source
JP2011114899A (en) * 2009-11-25 2011-06-09 Fuji Electric Systems Co Ltd Method and apparatus for controlling load frequency
WO2011089854A1 (en) * 2010-01-25 2011-07-28 Sony Corporation Power management system, power management apparatus, and power management method
WO2011113219A1 (en) * 2010-03-15 2011-09-22 三一电气有限责任公司 Grid-connected wind-photovoltaic hybrid power generation system and power generation method thereof
JP2012010554A (en) * 2010-06-28 2012-01-12 Nishishiba Electric Co Ltd Private power generation system
JP2012016103A (en) * 2010-06-30 2012-01-19 Hitachi Ltd Storage battery control device, control method for storage battery, and specification determination method for storage battery
JP2012085469A (en) * 2010-10-13 2012-04-26 Osaka Gas Co Ltd Power generation system
JP2012085468A (en) * 2010-10-13 2012-04-26 Osaka Gas Co Ltd Power generation system
JP2012217240A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Method of controlling local power system having power generation system, and local power system
JP2012222908A (en) * 2011-04-06 2012-11-12 Kyocera Corp Power conditioner, power control system, and power control method
CN103501018A (en) * 2013-09-29 2014-01-08 天津理工大学 Hybrid energy storage system based on fuzzy algorithm and DSP (Digital Signal Processor) and power smoothing method
JP5465816B1 (en) * 2013-07-04 2014-04-09 中国電力株式会社 Frequency control system and frequency control method
JP2014072929A (en) * 2012-09-27 2014-04-21 Kyocera Corp Energy management system, control apparatus and control method
KR101413537B1 (en) * 2012-12-10 2014-08-07 한국전기연구원 Method and System of compensating for output of wind power generation
WO2014132659A1 (en) * 2013-03-01 2014-09-04 日本電気株式会社 Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
JP2014204577A (en) * 2013-04-05 2014-10-27 株式会社東芝 Supply and demand control system for power system, and supply and demand control device
KR20150037138A (en) * 2013-09-30 2015-04-08 한국전력공사 Apparatus and method for controlling drive of energy storage system considering both long term and short term characteristics
JP2015520599A (en) * 2013-01-24 2015-07-16 エヌイーシー ラボラトリーズ アメリカ インクNEC Laboratories America, Inc. Adaptive control of a hybrid ultracapacitor battery storage system to smooth the output of photovoltaic power generation
JP2015528266A (en) * 2012-06-04 2015-09-24 ケイ2アイピー ホールディングス、エルエルシー General power plant and data center
KR101563089B1 (en) * 2014-07-24 2015-10-23 에스케이이노베이션 주식회사 Apparatus for separation control of high frequenncy and ultra-high frequency power variation in energy storage system
JP2017028945A (en) * 2015-07-27 2017-02-02 株式会社東芝 Power plant power control apparatus and power control method
JP2017508428A (en) * 2014-01-08 2017-03-23 アーベーベー・リサーチ・リミテッドAbb Research Ltd. Method and apparatus for controlling a hybrid energy storage system
WO2017056139A1 (en) * 2015-09-28 2017-04-06 株式会社日立製作所 System stabilization device and method
JPWO2016024406A1 (en) * 2014-08-11 2017-04-27 京セラ株式会社 Power supply device, power supply system, and power supply method
JP2017139907A (en) * 2016-02-04 2017-08-10 清水建設株式会社 Power management system, and power management system control method
WO2019198353A1 (en) * 2018-04-10 2019-10-17 株式会社日立製作所 Power system stabilization device, power system stabilization method, and power system stabilization system
WO2020152752A1 (en) 2019-01-21 2020-07-30 東芝三菱電機産業システム株式会社 Wind power generation system provided together with power storage device
WO2022054441A1 (en) * 2020-09-11 2022-03-17 株式会社Ihi Power adjustment method and power adjustment device
WO2023157360A1 (en) * 2022-02-15 2023-08-24 株式会社Ihi Power system adjusting device and power system adjusting program
US12081028B2 (en) 2020-09-11 2024-09-03 Ihi Corporation Power adjustment method and power adjustment device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073931A (en) * 1998-08-28 2000-03-07 Hitachi Engineering & Services Co Ltd Wind power generating equipment
JP2000102174A (en) * 1998-09-28 2000-04-07 Nissin Electric Co Ltd Power supply device
JP2001161098A (en) * 1999-11-30 2001-06-12 Tokyo Gas Co Ltd Instantaneous incoming power control system wherein reverse power flow is permitted
JP2002349417A (en) * 2001-05-25 2002-12-04 Hitachi Ltd Wind power generation facility
JP2002374629A (en) * 2001-06-13 2002-12-26 Osaka Gas Co Ltd Received power regulating device, private power generating device, and method of controlling them
JP2004192899A (en) * 2002-12-10 2004-07-08 Hitachi Home & Life Solutions Inc Operation control device of fuel cell system
JP2006246584A (en) * 2005-03-02 2006-09-14 Shimizu Corp Control method for distributed power supply

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073931A (en) * 1998-08-28 2000-03-07 Hitachi Engineering & Services Co Ltd Wind power generating equipment
JP2000102174A (en) * 1998-09-28 2000-04-07 Nissin Electric Co Ltd Power supply device
JP2001161098A (en) * 1999-11-30 2001-06-12 Tokyo Gas Co Ltd Instantaneous incoming power control system wherein reverse power flow is permitted
JP2002349417A (en) * 2001-05-25 2002-12-04 Hitachi Ltd Wind power generation facility
JP2002374629A (en) * 2001-06-13 2002-12-26 Osaka Gas Co Ltd Received power regulating device, private power generating device, and method of controlling them
JP2004192899A (en) * 2002-12-10 2004-07-08 Hitachi Home & Life Solutions Inc Operation control device of fuel cell system
JP2006246584A (en) * 2005-03-02 2006-09-14 Shimizu Corp Control method for distributed power supply

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143225A (en) * 2005-11-15 2007-06-07 Osaka Gas Co Ltd Control system
JP4733503B2 (en) * 2005-11-15 2011-07-27 大阪瓦斯株式会社 Control system
WO2008029849A1 (en) * 2006-09-08 2008-03-13 Shimizu Corporation Microgrid system building method
JP2008228422A (en) * 2007-03-12 2008-09-25 Shimizu Corp Method for controlling dispersed power supplies
JP2009027861A (en) * 2007-07-20 2009-02-05 Shimizu Corp Control method of distributed power supply
JP2009071908A (en) * 2007-09-10 2009-04-02 Univ Of Ryukyus Simultaneous balancing controller having function of suppressing axial torsional vibration
JP2009141993A (en) * 2007-12-03 2009-06-25 Shimizu Corp Power controller
JP2009273210A (en) * 2008-05-02 2009-11-19 Shimizu Corp Method of controlling distributed power supply
WO2009136641A1 (en) * 2008-05-09 2009-11-12 株式会社 明電舎 System stabilizing devices
US8452462B2 (en) 2008-05-09 2013-05-28 Meidensha Corporation System stabilizing device
JP5141764B2 (en) * 2008-05-09 2013-02-13 株式会社明電舎 System stabilization device
WO2009138152A1 (en) * 2008-05-12 2009-11-19 Mario La Rosa Wind-powered generator system
JP2010022101A (en) * 2008-07-09 2010-01-28 Toshiba Corp Supply and demand controller of small-scale electric power system
JP2010110088A (en) * 2008-10-29 2010-05-13 Shimizu Corp Distributed power supply system
JP2010119250A (en) * 2008-11-14 2010-05-27 Meidensha Corp System stabilizing apparatus
JP2010148336A (en) * 2008-12-22 2010-07-01 Hitachi Engineering & Services Co Ltd Wind power plant and power generation control method
CN102484371A (en) * 2009-08-07 2012-05-30 清水建设株式会社 Island operating system for distributed power source
WO2011016092A1 (en) * 2009-08-07 2011-02-10 清水建設株式会社 Island operating system for distributed power source
JP2011114899A (en) * 2009-11-25 2011-06-09 Fuji Electric Systems Co Ltd Method and apparatus for controlling load frequency
WO2011089854A1 (en) * 2010-01-25 2011-07-28 Sony Corporation Power management system, power management apparatus, and power management method
JP2011155713A (en) * 2010-01-25 2011-08-11 Sony Corp Power management system, power management apparatus, and power management method
US9263916B2 (en) 2010-01-25 2016-02-16 Sony Corporation Power management system, power management apparatus, and power management method
CN102714415A (en) * 2010-01-25 2012-10-03 索尼公司 Power management system, power management apparatus, and power management method
WO2011113219A1 (en) * 2010-03-15 2011-09-22 三一电气有限责任公司 Grid-connected wind-photovoltaic hybrid power generation system and power generation method thereof
JP2012010554A (en) * 2010-06-28 2012-01-12 Nishishiba Electric Co Ltd Private power generation system
JP2012016103A (en) * 2010-06-30 2012-01-19 Hitachi Ltd Storage battery control device, control method for storage battery, and specification determination method for storage battery
US8831790B2 (en) 2010-06-30 2014-09-09 Hitachi, Ltd. Method and apparatus for control battery and specification determining method of battery
JP2012085468A (en) * 2010-10-13 2012-04-26 Osaka Gas Co Ltd Power generation system
JP2012085469A (en) * 2010-10-13 2012-04-26 Osaka Gas Co Ltd Power generation system
JP2012217240A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Method of controlling local power system having power generation system, and local power system
JP2012222908A (en) * 2011-04-06 2012-11-12 Kyocera Corp Power conditioner, power control system, and power control method
JP2016165218A (en) * 2011-04-06 2016-09-08 京セラ株式会社 Power conversion device, power control system, and power control method
JP2015528266A (en) * 2012-06-04 2015-09-24 ケイ2アイピー ホールディングス、エルエルシー General power plant and data center
JP2014072929A (en) * 2012-09-27 2014-04-21 Kyocera Corp Energy management system, control apparatus and control method
KR101413537B1 (en) * 2012-12-10 2014-08-07 한국전기연구원 Method and System of compensating for output of wind power generation
JP2015520599A (en) * 2013-01-24 2015-07-16 エヌイーシー ラボラトリーズ アメリカ インクNEC Laboratories America, Inc. Adaptive control of a hybrid ultracapacitor battery storage system to smooth the output of photovoltaic power generation
WO2014132659A1 (en) * 2013-03-01 2014-09-04 日本電気株式会社 Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
US10181737B2 (en) 2013-03-01 2019-01-15 Nec Corporation Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
US9859735B2 (en) 2013-03-01 2018-01-02 Nec Corporation Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
JPWO2014132659A1 (en) * 2013-03-01 2017-02-02 日本電気株式会社 Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
JP2014204577A (en) * 2013-04-05 2014-10-27 株式会社東芝 Supply and demand control system for power system, and supply and demand control device
JP5465816B1 (en) * 2013-07-04 2014-04-09 中国電力株式会社 Frequency control system and frequency control method
WO2015001651A1 (en) * 2013-07-04 2015-01-08 中国電力株式会社 Frequency control system and frequency control method
CN103501018A (en) * 2013-09-29 2014-01-08 天津理工大学 Hybrid energy storage system based on fuzzy algorithm and DSP (Digital Signal Processor) and power smoothing method
KR20150037138A (en) * 2013-09-30 2015-04-08 한국전력공사 Apparatus and method for controlling drive of energy storage system considering both long term and short term characteristics
KR102029030B1 (en) 2013-09-30 2019-11-08 한국전력공사 Apparatus and method for controlling drive of energy storage system considering both long term and short term characteristics
JP2017508428A (en) * 2014-01-08 2017-03-23 アーベーベー・リサーチ・リミテッドAbb Research Ltd. Method and apparatus for controlling a hybrid energy storage system
US10483758B2 (en) 2014-01-08 2019-11-19 Abb Research Ltd. Method and apparatus for controlling a hybrid energy storage system
KR101563089B1 (en) * 2014-07-24 2015-10-23 에스케이이노베이션 주식회사 Apparatus for separation control of high frequenncy and ultra-high frequency power variation in energy storage system
US10541537B2 (en) 2014-08-11 2020-01-21 Kyocera Corporation Power supply apparatus, power supply system, and power supply method
JPWO2016024406A1 (en) * 2014-08-11 2017-04-27 京セラ株式会社 Power supply device, power supply system, and power supply method
JP2017028945A (en) * 2015-07-27 2017-02-02 株式会社東芝 Power plant power control apparatus and power control method
WO2017056139A1 (en) * 2015-09-28 2017-04-06 株式会社日立製作所 System stabilization device and method
JP2017139907A (en) * 2016-02-04 2017-08-10 清水建設株式会社 Power management system, and power management system control method
WO2019198353A1 (en) * 2018-04-10 2019-10-17 株式会社日立製作所 Power system stabilization device, power system stabilization method, and power system stabilization system
WO2020152752A1 (en) 2019-01-21 2020-07-30 東芝三菱電機産業システム株式会社 Wind power generation system provided together with power storage device
JP6791406B1 (en) * 2019-01-21 2020-11-25 東芝三菱電機産業システム株式会社 Wind power generation system with power storage device
US11336097B2 (en) 2019-01-21 2022-05-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Wind power generation system with power storage device
WO2022054441A1 (en) * 2020-09-11 2022-03-17 株式会社Ihi Power adjustment method and power adjustment device
US12081028B2 (en) 2020-09-11 2024-09-03 Ihi Corporation Power adjustment method and power adjustment device
WO2023157360A1 (en) * 2022-02-15 2023-08-24 株式会社Ihi Power system adjusting device and power system adjusting program

Also Published As

Publication number Publication date
JP4852885B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4852885B2 (en) Load following operation control method with multiple types of distributed power supply
US8483885B2 (en) System stabilizing device
JP6335641B2 (en) Frequency stabilizer for single system
JP4306760B2 (en) Distributed power supply
JP5003819B2 (en) System stabilization device
JP5354840B2 (en) New energy generation system output fluctuation mitigation device
JP2007037226A (en) Power supply system and its control method
US9548690B2 (en) System and method for adjusting current regulator gains applied within a power generation system
JP6232899B2 (en) Power compensation device
US9391537B2 (en) Photovoltaic system and power supply system
JP2007244068A (en) Power converter
JP6020721B2 (en) Power stabilization system and control device
JP4246179B2 (en) Power system control device, power system control device, power system control method, and power system control method
JP5125274B2 (en) New energy generation system output fluctuation mitigation device
US9847647B2 (en) Solar power conversion system and method
US8452462B2 (en) System stabilizing device
JP4794523B2 (en) Voltage fluctuation suppression device for renewable energy power generation
JP2010071159A (en) Device for smoothing electric power generated by wind power generation using wind mill and storage battery
JP4783237B2 (en) Transmission loss reduction system and method using secondary battery
US20130155738A1 (en) System and method for controlling reactive power in a power conversion system
JP4866764B2 (en) Control method of distributed power supply
JP4993972B2 (en) Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system
JP2013212021A (en) Reactive power compensator
JP5537302B2 (en) Power storage device control device
JP6474017B2 (en) Frequency control method and frequency control system in power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4852885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150