WO2019038954A1 - Device and method for controlling load frequency of power system - Google Patents

Device and method for controlling load frequency of power system Download PDF

Info

Publication number
WO2019038954A1
WO2019038954A1 PCT/JP2018/005917 JP2018005917W WO2019038954A1 WO 2019038954 A1 WO2019038954 A1 WO 2019038954A1 JP 2018005917 W JP2018005917 W JP 2018005917W WO 2019038954 A1 WO2019038954 A1 WO 2019038954A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
new energy
power
power system
lfc
Prior art date
Application number
PCT/JP2018/005917
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 辻井
古川 俊行
渡辺 雅浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019038954A1 publication Critical patent/WO2019038954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the present invention relates to a load frequency control apparatus and method for a power system.
  • LFC load frequency control
  • the amount of fluctuation is calculated at the central power supply command station, and the amount to follow this is calculated
  • the system frequency is suppressed within the allowable range by instructing the
  • the output command is not issued to all the generators, but is issued to a generator capable of changing the output in a short cycle (hereinafter referred to as LFC target generator).
  • LFC target generator a generator capable of changing the output in a short cycle
  • the following two LFC schemes are mainly adopted in each interconnected power system.
  • the first system is a constant frequency control system (hereinafter referred to as an FFC system).
  • FFC system a constant frequency control system
  • the system frequency deviation ⁇ f is detected, and the generator output command is sent to the LFC target generator to reduce the system frequency deviation ⁇ f, thereby keeping the frequency at the specified value.
  • the second system is a frequency bias connection line power flow control system (hereinafter referred to as a TBC system).
  • TBC system a frequency bias connection line power flow control system
  • the system frequency deviation ⁇ f and the interconnection line power flow deviation ⁇ Pt are detected, and the generator output command is sent to the LFC target generator in order to reduce the value determined by the system frequency deviation ⁇ f and the interconnection line power flow deviation ⁇ Pt. Keep the area within your area at the specified value.
  • the regional request amount AR in the TBC method is calculated by the following equation (1).
  • K is a systematic constant.
  • the FFC method is calculated by omitting the frequency deviation ⁇ f from the TBC method (1).
  • Patent Document 1 In the present technical field, the system of Patent Document 1 is known. According to Patent Document 1, supply and demand control performance is improved by separating the new energy and load fluctuation to calculate the area request amount AR, and switching the LFC target generator and the LFC target excluded generator according to the size of the area request amount AR. It is stated that it is possible to
  • the LFC adjustment force is obtained when the fluctuation rapidly increases due to feedback control using the area request amount AR to secure the LFC target generator. May not be secured.
  • the present invention is “a load frequency control device for an electric power system equipped with a new energy power generation facility, which comprises the output of the new energy power generation facility in the electric power system and the theoretical maximum output of the new energy power generation facility
  • the LFC adjustment force determination unit that determines the LFC adjustment power on the power system upside and downside, and the regional demand amount from the power system grid frequency deviation and interconnection power flow deviation, and the upside and downside LFC adjustment
  • a regional demand calculation unit for outputting a regional demand with a power restriction range, and a command value distribution unit for distributing an output command value to an LFC target generator using the regional demand from the regional demand calculation unit as an input
  • a load frequency control device for a power system characterized by comprising:
  • the present invention further provides “a load frequency control method for an electric power system equipped with a new energy power generation facility, comprising: an output of the new energy power generation facility in the electric power system; and a theoretical maximum output of the new energy power generation facility.
  • Determine the LFC adjustment power on the lower side calculate the regional demand from the grid frequency deviation of the power system and the interconnection power flow deviation, and based on the regional demand with the LFC adjustment power on the upper and lower sides as the limitation range
  • a method of controlling a load frequency of an electric power system characterized by distributing an output command value to an LFC target generator.
  • BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows the structural example of a frequency control apparatus of a typical electric power grid
  • the figure which shows the table which showed the image example of the calculated output fluctuation statistical-analysis result The figure which shows the function structural example of the frequency control apparatus 10 of the electric power grid
  • FIG. 1 is a diagram showing an example of a functional configuration of a frequency control device 10 of a power system according to a first embodiment of the present invention.
  • the frequency control device 10 of the power system includes a new energy output database DB1, a new energy theoretical maximum output database DB2, an output command value database DB3, an LFC adjustment force determination unit 11, a frequency detection unit 12, an interconnection power flow detection unit 13, The area request amount AR calculation unit 14 and the command value distribution unit 15 are provided.
  • the new energy output database DB1 stores outputs of new energy connected to the power system.
  • the output of the new energy may be an estimated value calculated from the facility capacity, the installation position, the weather data, etc. when the measured value can not be obtained.
  • the theoretical maximum output of new energy is stored in the new energy theoretical maximum output database DB2.
  • the theoretical maximum output of new energy is a value calculated from the installed capacity of new energy, installation position, weather data, etc.
  • output command value database DB3 among the generators connected to the electric power system, output command values to a generator targeted for LFC (generator targeted for LFC) are stored.
  • the LFC adjustment power determination unit 11 receives the output of the new energy and the theoretical maximum output of the new energy as input to determine the LFC adjustment power.
  • the frequency detection unit 12 detects the system frequency deviation ⁇ f.
  • the interconnection power flow detection unit 13 detects the interconnection power flow deviation ⁇ Pt.
  • the area request amount AR is calculated with the LFC adjustment power, the system frequency deviation ⁇ f, and the interconnection power flow deviation ⁇ Pt as inputs.
  • the command value distribution unit 15 receives the area request amount AR and distributes the output command value to each generator of the LFC target generator.
  • the output command value to each generator of the LFC target generator after allocation is recorded in the output command value database DB3.
  • FIG. 2 shows a configuration example of a power system in which a plurality of measurement data are stored in a database via a communication network, and a frequency control device of the power system according to the first embodiment of the present invention.
  • the electric power system illustrated at the upper side of FIG. 2 is a system in which a plurality of generators G and loads Ld are mutually connected via a node Bus, a transformer Tr, a transmission line L, and the like.
  • various measuring devices are appropriately installed for the purpose of protection, control and monitoring of the power system, and the signal detected by the measuring device is communicated by the load frequency control device 10 of the power system via the communication network 300. It is sent to the part 23.
  • node numbers shown in the drawing are appropriately assigned to the node Bus.
  • the frequency control device 10 of the electric power system illustrated on the lower side of FIG. 2 is configured by a computer system, and includes a display unit 21 such as a display device, an input unit 22 such as a keyboard or a mouse, a communication unit 23, a CPU 24, a memory 25, And various databases DB are connected to the bus line 26.
  • the database DB of the frequency control device 10 of the power system includes a new energy database DB1, a new energy theoretical maximum output database DB2, and an output command value database DB3.
  • the display unit 21 may be configured to use, for example, a printer device or an audio output device instead of or in addition to the display device.
  • the input unit 22 can include, for example, at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, and a voice instruction device.
  • the communication unit 23 includes a circuit for connecting to a communication network and a communication protocol.
  • the CPU 24 executes a calculation program to instruct image data to be displayed, search data in various databases, and the like. It may be configured as one or more semiconductor chips, or may be configured as a computer device such as a calculation server.
  • the memory 25 is configured as, for example, a RAM, and stores a computer program, and stores calculation result data, image data, and the like necessary for each process.
  • the screen data stored in the memory 25 is sent to the display unit 21 and displayed.
  • FIG. 3 shows a flowchart showing the process of LFC adjustment power determination.
  • a sum PA of the outputs of new energy connected to the power system is obtained.
  • the estimated value of the new energy output is calculated and used from the installed capacity, installation position, weather data, etc.
  • estimation is appropriately made by temporal interpolation processing etc., and the total sum PA of the new energy output is finally obtained.
  • the total sum PA of the output of the new energy is obtained as time-series information together with time information.
  • FIG. 4 is an image example of the output of new energy.
  • the horizontal axis represents time
  • the vertical axis represents the amount of solar power generation when assuming solar light as new energy
  • the estimated value PA of the total output of the new energy is, for example, from 6 am It shows the output fluctuation reflecting the weather from 6 o'clock in the evening.
  • the theoretical maximum output of new energy calculated from the facility capacity, the installation position, the weather data and the like is determined, and this is set as, for example, PB.
  • the theoretical maximum output of the new energy is a characteristic that excludes the influence of weather (a characteristic that assumes clear weather in all time zones), and is a characteristic that exhibits a sinusoidal change.
  • the theoretical maximum output of new energy at time t is PBt
  • PAt is measured as the amount of photovoltaic power generation due to the relationship of sunshine.
  • t is 11:30
  • the photovoltaic power generation amount PAt is 60% of the theoretical maximum output PBt of the new energy.
  • the photovoltaic power generation amount PAt is increased by 40% to become the theoretical maximum output PBt of new energy. If this is evaluated from the power system side, when the new energy output sharply increases, the power system Since supply power> load and the grid frequency tends to increase, it means that the LFC adjustment power by the LFC target generator necessary to suppress the grid frequency increase needs to be reduced by 40%. doing.
  • the LFC target generator As described above, if it is the sunny direction (the direction in which the output increases as sunlight), the LFC target generator is the amount of power generation in the downward direction, and if it is the cloudy direction (the direction in which the sunlight decreases the output), the LFC target generator As the amount of power generation in the upward direction.
  • the area request amount AR calculation unit 14 calculates the area request amount AR with the LFC adjustment force in the up and down directions, the system frequency deviation ⁇ f, and the interconnection line power flow deviation ⁇ Pt as inputs.
  • the process here is specifically implemented by the process flow of FIG. 5, for example.
  • step S11 of FIG. 5 information used by the area request amount AR calculation unit 14 is obtained. These are the down side LFC adjustment force (PBt-PAt), the up side LFC adjustment force PAt, the system frequency deviation ⁇ f, and the interconnection line power flow deviation ⁇ Pt.
  • processing step S12 equation (1) is executed to calculate the area request amount AR1.
  • the area request amount AR1 obtained here is calculated as a fluctuation amount from the present time.
  • the area request amount AR1 obtained from the equation (1) is adjusted within the range of the LFC adjustment power on the raising and lowering sides, and is output as the area request amount AR. Specifically, in the above example, it is obtained from the equation (1) within the range of 60% determined as the LFC adjustment force PAt on the higher side and -40% determined as the LFC adjustment force (PBt-PAt) on the lower side. Provides an output that limits the regional demand AR1. For example, when the area request amount AR1 is increased by 60% or more, the output value is limited with the upper limit of 60%. Conversely, if the regional demand AR1 decreases by 40% or more, the output value is limited to the lower limit of -40%.
  • the LFC adjustment power (PBt-PAt) on the lower side is compared with the area request amount AR1 obtained from the equation (1) with absolute values, and is increased at processing step S14.
  • the LFC adjustment power PAt on the side and the area request amount AR1 obtained from the equation (1) are compared by an absolute value.
  • step S13 If it is determined in the process of step S13 that the down side LFC adjustment force (PBt-PAt) is smaller than the area request amount AR1 obtained from the equation (1), the process proceeds to step S16, where the down side LFC adjustment is performed.
  • the force (PBt-PAt) is output as the regional request amount AR.
  • step S14 If it is determined in the process of step S14 that the LFC adjustment power PAt on the raising side is larger than the area request amount AR1 obtained from the equation (1), the process proceeds to processing step S17, and the region request obtained from the equation (1) The amount AR1 is output as the area request amount AR.
  • step S14 If it is determined in the process of processing step S14 that the LFC adjustment power PAt on the raising side is smaller than the area request amount AR1 obtained from the equation (1), the process proceeds to processing step S18, and the LFC adjustment power PAt on the raising side is required Output as the quantity AR.
  • the command value distribution unit 15 determines the distribution of the command value to the LFC target generator by receiving the area request amount AR determined from the LFC adjustment force on the raising and lowering sides and the area request amount AR1 obtained from the equation (1).
  • the output command value database DB3 records the output command values to the generators of the LFC target generator redefined or after allocation without limiting the method of distribution.
  • the first embodiment it is possible to suppress the frequency fluctuation by securing the LFC adjustment power in which the output fluctuation is expected, using the magnitude of the output with respect to the theoretical maximum output of the new energy.
  • the load frequency control apparatus of the electric power system of the second embodiment shown in FIG. 6 is obtained by adding an output fluctuation statistical analysis unit 16 and an output fluctuation statistical analysis result database DB4 to the configuration of the first embodiment.
  • the output fluctuation statistical analysis unit 16 calculates a statistical analysis result of the magnitude PA of the output with respect to the theoretical maximum output PB of the new energy.
  • the output fluctuation statistical analysis result database DB4 stores statistical analysis results of the output magnitude PB with respect to the theoretical maximum output PA of the new energy.
  • FIG. 7 shows a flowchart showing processing of LFC adjustment power determination according to the second embodiment.
  • the same reference numerals are given to the same processing contents as the processing of the flowchart in FIG. 3.
  • a sum PA of the outputs of new energy connected to the power system is obtained.
  • the estimated value of the new energy output is calculated and used from the installed capacity, installation position, weather data, etc.
  • estimation is appropriately performed by temporal interpolation processing to finally obtain the total sum PA of the new energy output.
  • the total sum PA of the output of the new energy is obtained as time-series information together with time information.
  • the theoretical maximum output of new energy calculated from the facility capacity, the installation position, the weather data and the like is determined, and this is set as, for example, PB.
  • the theoretical maximum output of the new energy is a characteristic that excludes the influence of weather (a characteristic that assumes clear weather in all time zones), and is a characteristic that exhibits a sinusoidal change.
  • the theoretical maximum output of new energy at time t is PBt, and it is actually shown that PAt is measured as the amount of photovoltaic power generation due to the relationship of sunshine.
  • processing step S6 a statistical analysis result of the magnitude C of the output PA with respect to the theoretical maximum output PB of the new energy is calculated.
  • the processing of processing step S5 and processing step S6 is executed in the output fluctuation statistical analysis unit 16 of FIG.
  • FIG. 8 is a table showing an image example of the calculated output fluctuation statistical analysis result.
  • the vertical axis indicates the rising side and the falling side of the photovoltaic power generation
  • the horizontal axis indicates the value of the size C of the output PA relative to the theoretical maximum output PB of new energy for each output band Is shown.
  • the value of the magnitude C is specified and shown in the range of 1 to 0, and an output band obtained by dividing this value by 0.1 width is defined on the horizontal axis.
  • the value of fluctuation range at 3 ⁇ is calculated. Note that t can be set to the current time, x can be set to 10 minutes after t, and so on, and x can be set to any time.
  • the output fluctuation ⁇ Z after x time is 3.2 when the raising width on the raising side is the standard deviation ⁇ . %
  • the output fluctuation ⁇ Z after x time is 6.4%
  • the output increase width on the increase side is the standard deviation 3 ⁇
  • the output after x time The variation ⁇ Z is 9.6%.
  • the output fluctuation ⁇ Z after x hours is 1.2% when the raising width on the lower side is the standard deviation ⁇ , and the raising width on the lower side is the standard deviation
  • the output fluctuation ⁇ Z after x time is 2.4% when it is 2 ⁇
  • the output fluctuation ⁇ Z after x time is 3.6% when the rising width on the lower side is 3 ⁇ .
  • the increase or decrease side output fluctuation ⁇ Z increases by a multiple of the standard deviation ⁇ .
  • the output fluctuation ⁇ Z on the large fluctuation side is a large numerical value. For example, when the output band is 0.1 or less, although the raising width on the raising side is large but the lowering width is small, the output fluctuation ⁇ Z on the lowering side shows a small value.
  • processing step S3 the LFC adjustment power on the lower side is determined in consideration of the output fluctuation statistical analysis result of the new energy in processing step S6.
  • processing step S4 the LFC adjustment power on the raising side is determined in consideration of the output fluctuation statistical analysis result of the new energy in processing step S6.
  • the numerical values of the output fluctuation ⁇ Z on the rising side and the falling side selected in this way are values on the rising side and the lowering side in the LFC adjustment force.
  • the AR calculation unit 14 uses the numerical value of the output fluctuation ⁇ Z on the rising side and the lowering side obtained from FIG. 8 as the limit value after x hours, and uses the area request amount AR1 obtained from the equation (1) as the limit value. Output regional demand AR within the range.
  • the frequency fluctuation can be obtained by securing the LFC adjustment power in consideration of the output fluctuation by using the output fluctuation statistical analysis result of the magnitude C of the actual output PB with respect to the theoretical maximum output PA of the new energy. It can be suppressed.
  • the new energy output database DB1 and the new energy theoretical maximum output database DB2 It has been changed to DB5.
  • the new energy output prediction database DB5 stores output prediction values of new energy.
  • the output prediction value of the new energy is, for example, a value obtained by predicting a value several minutes ahead of several hours using a method such as a neural network.
  • the frequency fluctuation can be suppressed by using the output predicted value of the new energy and securing the LFC adjustment power in which the output fluctuation is expected.
  • the load frequency control apparatus 10 of the power system of the fourth embodiment shown in FIG. 10 is the load frequency control apparatus 10 of the first embodiment with the LFC adjustment force determination basis output unit 17 added.
  • the LFC adjustment power determination basis output unit 17 outputs the results of a list that links new energy output, new energy theoretical maximum output, calculation method of LFC adjustment power, etc. to LFC adjustment power for each time cross section Do.
  • FIG. 11 is a table showing an example of an output image of the LFC adjustment power determination basis output unit. The LFC adjustment power on the upside and downside in each time section and the LFC adjustment power based on that are described.
  • a new energy output, theoretical maximum output, calculation method of LFC adjustment power, etc. are linked to LFC adjustment power for each time cross section, and output as LFC adjustment power determination basis, thereby making it fair. Security and transparency can be secured.
  • DB1 New energy output database
  • DB2 New energy theoretical maximum output database
  • DB3 Output command value database
  • DB4 Output fluctuation statistical analysis database
  • DB5 New energy output prediction database
  • 10 Load frequency controller for power system
  • 11 LFC adjustment force determination unit
  • 12 frequency detection unit
  • 13 interconnection power flow detection unit
  • 14 AR calculation unit
  • 15 command value distribution unit
  • 16 output fluctuation statistical analysis unit
  • 17 LFC adjustment force determination Base output unit
  • 22 input unit
  • 25 memory
  • 26 bus line
  • Bus node
  • Tr transformer
  • G generator
  • 140 power transmission line
  • Ld Load
  • 300 Communication network

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The present invention obtains LFC adjusted power even in cases such as when fluctuation suddenly becomes greater due to feedback control which uses an area requirement amount AR in order to secure an LFC subjected generator. This device for controlling load frequency of a power system provided with an alternate-energy power generation facility, is provided with: an LFC adjusted power determination unit that determines LFC adjusted power for the increase side and the decrease side of the power system on the basis of an output from the alternate-energy power generation facility of the power system and a theoretical maximum output from the alternate-energy power generation facility; an area requirement amount calculation unit that calculates an area requirement amount on the basis of the system frequency deviation and the interconnection-line current deviation of the power system, and outputs the area requirement amount in which the LFC adjusted power of the increase and decrease sides are set as a limit range; and a command value distribution unit that receives an input of the area requirement amount from the area requirement amount calculation unit, and distributes an output command value to the LFC subjected generator.

Description

電力系統の負荷周波数制御装置及び方法Power system load frequency control device and method
 本発明は、電力系統の負荷周波数制御装置及び方法に関する。 The present invention relates to a load frequency control apparatus and method for a power system.
 電力系統において負荷変動等により需給アンバランスが発生すると、周波数変動が発生する。負荷周波数制御(以下LFCという)では、数分~20分程度の負荷変動(新エネルギー変動を含む)に対して、中央給電指令所で変動量を計算し、これに追従する量を各発電機に指令することで、系統周波数を許容範囲に抑制する。この負荷変動量を地域要求量ARと定義し、この地域要求量ARを満たすように発電機に対し出力指令することで、需給平衡を保つことができる。出力指令は全ての発電機に出されるわけでなく、短周期で出力を変更できる発電機(以下LFC対象発電機という)に対して出される。なお、通常の運用では数分~20分程度の負荷変動の調整力(以下LFC調整力という)は系統容量の1~2%程度を確保するよう運用している。 When demand and supply imbalance occur in the power system due to load fluctuation and the like, frequency fluctuation occurs. In load frequency control (hereinafter referred to as LFC), for load fluctuations (including new energy fluctuations) in a few minutes to about 20 minutes, the amount of fluctuation is calculated at the central power supply command station, and the amount to follow this is calculated The system frequency is suppressed within the allowable range by instructing the By defining the load fluctuation amount as the regional request amount AR and instructing the generator to output so as to satisfy the regional request amount AR, balance between supply and demand can be maintained. The output command is not issued to all the generators, but is issued to a generator capable of changing the output in a short cycle (hereinafter referred to as LFC target generator). In normal operation, the adjustment of load fluctuation for several minutes to 20 minutes (hereinafter referred to as LFC adjustment ability) is operated to secure about 1 to 2% of the system capacity.
 連系された各電力系統では、主に次の2つのLFC方式が採用される。 The following two LFC schemes are mainly adopted in each interconnected power system.
 1つ目の方式は、定周波数制御方式(以下FFC方式という)である。FFC方式では、系統周波数偏差Δfを検出し、系統周波数偏差Δfを低減すべくLFC対象発電機に対して発電機出力指令を送ることで、周波数を規定値に保つ。 The first system is a constant frequency control system (hereinafter referred to as an FFC system). In the FFC method, the system frequency deviation Δf is detected, and the generator output command is sent to the LFC target generator to reduce the system frequency deviation Δf, thereby keeping the frequency at the specified value.
 2つ目の方式は、周波数バイアス連系線潮流制御方式(以下TBC方式という)である。TBC方式では、系統周波数偏差Δfと連系線潮流偏ΔPtを検出し、系統周波数偏差Δfと連系線潮流偏ΔPtで定まる値を低減すべくLFC対象発電機に対して発電機出力指令を送ることで、自エリア内を規定値に保つ。TBC方式における地域要求量ARは以下の(1)式で算出される。(1)式においてKは系統定数である。なおFFC方式ではTBC方式の(1)式から周波数偏差Δfを省略することで算出される。
[数1]
AR=-K×Δf+ΔPt・・・(1)
 ここで、電力系統に新エネルギー(太陽光発電や風力発電)が大量に導入され、それに伴う変動が大きくなると、系統容量の1~2%程度のLFC調整力では不足であり、周波数変動を防止できない恐れがある。一方で、LFC調整力を大量に確保すると、新エネルギーの出力が小さい時間帯において、過剰なLFC対象発電機を確保することになり、経済的でない運用に繋がる。
The second system is a frequency bias connection line power flow control system (hereinafter referred to as a TBC system). In the TBC method, the system frequency deviation Δf and the interconnection line power flow deviation ΔPt are detected, and the generator output command is sent to the LFC target generator in order to reduce the value determined by the system frequency deviation Δf and the interconnection line power flow deviation ΔPt. Keep the area within your area at the specified value. The regional request amount AR in the TBC method is calculated by the following equation (1). In equation (1), K is a systematic constant. The FFC method is calculated by omitting the frequency deviation Δf from the TBC method (1).
[Equation 1]
AR = −K × Δf + ΔPt (1)
Here, when a large amount of new energy (solar power generation and wind power generation) is introduced into the power system, and the fluctuation accompanying it is large, the LFC adjustment power of about 1 to 2% of the system capacity is insufficient, preventing frequency fluctuation. There is a fear that I can not do it. On the other hand, if a large amount of LFC adjustment power is secured, an excess LFC target generator will be secured in a time zone where the output of new energy is small, leading to uneconomical operation.
 本技術分野において、特許文献1の方式が知られている。特許文献1によると、新エネルギーと負荷変動を切り分けて地域要求量ARを算出し、地域要求量ARの大きさによりLFC対象発電機及びLFC対象除外発電機を切替えることで、需給制御性能を向上させることが可能と記載されている。 In the present technical field, the system of Patent Document 1 is known. According to Patent Document 1, supply and demand control performance is improved by separating the new energy and load fluctuation to calculate the area request amount AR, and switching the LFC target generator and the LFC target excluded generator according to the size of the area request amount AR. It is stated that it is possible to
特開2014-204577号公報JP, 2014-204577, A
 しかし、特許文献1の電力系統の需給制御システム及び需給制御装置では、LFC対象発電機確保のために地域要求量ARを用いるフィードバック制御のため、急激に変動が大きくなった場合等にLFC調整力を確保できない可能性がある。 However, in the supply and demand control system and the supply and demand control apparatus of the electric power system of Patent Document 1, the LFC adjustment force is obtained when the fluctuation rapidly increases due to feedback control using the area request amount AR to secure the LFC target generator. May not be secured.
 上記課題を解決する為に本発明は、「新エネルギー発電設備を備える電力系統の負荷周波数制御装置であって、電力系統における新エネルギー発電設備の出力と、新エネルギー発電設備の理論的最大出力から電力系統の上げ側と下げ側のLFC調整力を決定するLFC調整力決定部と、電力系統の系統周波数偏差と連系線潮流偏差から地域要求量を算出し、上げ側と下げ側のLFC調整力を制限範囲とする地域要求量を出力する地域要求量計算部と、地域要求量計算部からの地域要求量を入力としてLFC対象発電機への出力指令値を配分する指令値配分部とを備えることを特徴とする電力系統の負荷周波数制御装置。」としたものである。 In order to solve the above-mentioned problems, the present invention is “a load frequency control device for an electric power system equipped with a new energy power generation facility, which comprises the output of the new energy power generation facility in the electric power system and the theoretical maximum output of the new energy power generation facility The LFC adjustment force determination unit that determines the LFC adjustment power on the power system upside and downside, and the regional demand amount from the power system grid frequency deviation and interconnection power flow deviation, and the upside and downside LFC adjustment A regional demand calculation unit for outputting a regional demand with a power restriction range, and a command value distribution unit for distributing an output command value to an LFC target generator using the regional demand from the regional demand calculation unit as an input A load frequency control device for a power system characterized by comprising:
 また本発明は、「新エネルギー発電設備を備える電力系統の負荷周波数制御方法であって、電力系統における新エネルギー発電設備の出力と、新エネルギー発電設備の理論的最大出力から電力系統の上げ側と下げ側のLFC調整力を決定し、電力系統の系統周波数偏差と連系線潮流偏差から地域要求量を算出し、上げ側と下げ側のLFC調整力を制限範囲とする地域要求量に基づいて、LFC対象発電機への出力指令値を配分することを特徴とする電力系統の負荷周波数制御方法。」としたものである。 The present invention further provides “a load frequency control method for an electric power system equipped with a new energy power generation facility, comprising: an output of the new energy power generation facility in the electric power system; and a theoretical maximum output of the new energy power generation facility. Determine the LFC adjustment power on the lower side, calculate the regional demand from the grid frequency deviation of the power system and the interconnection power flow deviation, and based on the regional demand with the LFC adjustment power on the upper and lower sides as the limitation range A method of controlling a load frequency of an electric power system, characterized by distributing an output command value to an LFC target generator.
 本発明によれば、新エネルギーの理論的最大出力に対する出力の大きさを用いて、出力変動を見込んだLFC調整力を確保することで、周波数変動を抑制できる。 According to the present invention, it is possible to suppress frequency fluctuation by securing the LFC adjustment power that allows for output fluctuation using the magnitude of the output relative to the theoretical maximum output of new energy.
本発明の実施例1に係る電力系統の周波数制御装置10の機能構成例を示す図。The figure which shows the function structural example of the frequency control apparatus 10 of the electric power grid | system which concerns on Example 1 of this invention. 典型的な電力系統と、本発明の実施例1に係る電力系統の周波数制御装置の構成例を示す図。BRIEF DESCRIPTION OF THE DRAWINGS The figure which shows the structural example of a frequency control apparatus of a typical electric power grid | system and the electric power grid | system which concerns on Example 1 of this invention. 本発明の実施例1に係るLFC調整力決定の処理を示すフローチャート。The flowchart which shows the process of LFC adjustment power determination which concerns on Example 1 of this invention. 新エネルギーの出力のイメージ例を示す図。The figure which shows the image example of the output of new energy. 地域要求量AR計算部14の処理の一例を示すフローチャート。The flowchart which shows an example of processing of area demand AR calculation section 14. 本発明の実施例2に係る電力系統の周波数制御装置10の機能構成例を示す図。The figure which shows the function structural example of the frequency control apparatus 10 of the electric power grid | system which concerns on Example 2 of this invention. 本発明の実施例2に係るLFC調整力決定の処理を示すフローチャート。The flowchart which shows the processing of LFC adjustment power decision which relates to the execution example 2 of this invention. 算出した出力変動統計解析結果のイメージ例を示したテーブルを示す図。The figure which shows the table which showed the image example of the calculated output fluctuation statistical-analysis result. 本発明の実施例3に係る電力系統の周波数制御装置10の機能構成例を示す図。The figure which shows the function structural example of the frequency control apparatus 10 of the electric power grid | system which concerns on Example 3 of this invention. 本発明の実施例4に係る電力系統の周波数制御装置10の機能構成例を示す図。The figure which shows the function structural example of the frequency control apparatus 10 of the electric power grid | system which concerns on Example 4 of this invention. LFC調整力決定根拠出力部の出力イメージ例を示すテーブルを示す図。The figure which shows the table which shows the example of an output image of a LFC adjustment power determination reason output part.
 以下、本発明の実施に好適な実施例について説明する。尚、下記はあくまでも実施例に過ぎず、下記具体的内容に発明自体が限定されることを意図するものではない。 Hereinafter, preferred embodiments for carrying out the present invention will be described. The following is merely an example, and the invention itself is not intended to be limited to the following specific contents.
 図1は、本発明の実施例1に係る電力系統の周波数制御装置10の機能構成例を示す図である。電力系統の周波数制御装置10は、新エネルギー出力データベースDB1、新エネルギー理論的最大出力データベースDB2、出力指令値データベースDB3、LFC調整力決定部11、周波数検出部12、連系線潮流検出部13、地域要求量AR計算部14、指令値配分部15を備える。 FIG. 1 is a diagram showing an example of a functional configuration of a frequency control device 10 of a power system according to a first embodiment of the present invention. The frequency control device 10 of the power system includes a new energy output database DB1, a new energy theoretical maximum output database DB2, an output command value database DB3, an LFC adjustment force determination unit 11, a frequency detection unit 12, an interconnection power flow detection unit 13, The area request amount AR calculation unit 14 and the command value distribution unit 15 are provided.
 新エネルギー出力データベースDB1には、電力系統に接続されている新エネルギーの出力が格納されている。新エネルギーの出力は、測定値が得られない場合には設備容量、設置位置、気象データ等から算出した推定値でもよい。 The new energy output database DB1 stores outputs of new energy connected to the power system. The output of the new energy may be an estimated value calculated from the facility capacity, the installation position, the weather data, etc. when the measured value can not be obtained.
 新エネルギー理論的最大出力データベースDB2には、新エネルギーの理論的最大出力が格納されている。新エネルギーの理論的最大出力は、新エネルギーの設備容量、設置位置、気象データ等から算出した値とする。 The theoretical maximum output of new energy is stored in the new energy theoretical maximum output database DB2. The theoretical maximum output of new energy is a value calculated from the installed capacity of new energy, installation position, weather data, etc.
 出力指令値データベースDB3には、電力系統に接続されている発電機のうち、LFC対象とされた発電機(LFC対象発電機)への出力指令値が格納されている。 In the output command value database DB3, among the generators connected to the electric power system, output command values to a generator targeted for LFC (generator targeted for LFC) are stored.
 LFC調整力決定部11では、新エネルギーの出力と新エネルギーの理論的最大出力を入力としてLFC調整力を決定する。 The LFC adjustment power determination unit 11 receives the output of the new energy and the theoretical maximum output of the new energy as input to determine the LFC adjustment power.
 周波数検出部12では、系統周波数偏差Δfを検出する。 The frequency detection unit 12 detects the system frequency deviation Δf.
 連系線潮流検出部13では、連系線潮流偏ΔPtを検出する。 The interconnection power flow detection unit 13 detects the interconnection power flow deviation ΔPt.
 地域要求量AR計算部14では、LFC調整力と、系統周波数偏差Δfと、連系線潮流偏ΔPtを入力として地域要求量ARを計算する。 In the area request amount AR calculation unit 14, the area request amount AR is calculated with the LFC adjustment power, the system frequency deviation Δf, and the interconnection power flow deviation ΔPt as inputs.
 指令値配分部15では、地域要求量ARを入力としてLFC対象発電機の各発電機への出力指令値を配分する。 The command value distribution unit 15 receives the area request amount AR and distributes the output command value to each generator of the LFC target generator.
 出力指令値データベースDB3には、配分後のLFC対象発電機の各発電機への出力指令値が記録される。 The output command value to each generator of the LFC target generator after allocation is recorded in the output command value database DB3.
 図2は、複数の計測データが通信ネットワークを介してデータベースに格納される電力系統と、本発明の実施例1に係る電力系統の周波数制御装置の構成例図を表している。 FIG. 2 shows a configuration example of a power system in which a plurality of measurement data are stored in a database via a communication network, and a frequency control device of the power system according to the first embodiment of the present invention.
 図2の上側に例示した電力系統は、複数の発電機G及び負荷LdがノードBus、変圧器Tr、送電線路L等を介して相互に連系されたシステムである。ノードBusには、電力系統の保護、制御、監視の目的で各種の計測器が適宜設置されており、計測器で検知した信号は通信ネットワーク300を介して電力系統の負荷周波数制御装置10の通信部23に送られる。なお図2では、ノードBusに対して図示したノード番号を適宜付与して示している。 The electric power system illustrated at the upper side of FIG. 2 is a system in which a plurality of generators G and loads Ld are mutually connected via a node Bus, a transformer Tr, a transmission line L, and the like. In the node bus, various measuring devices are appropriately installed for the purpose of protection, control and monitoring of the power system, and the signal detected by the measuring device is communicated by the load frequency control device 10 of the power system via the communication network 300. It is sent to the part 23. In FIG. 2, node numbers shown in the drawing are appropriately assigned to the node Bus.
 図2の下側に例示した電力系統の周波数制御装置10は計算機システムで構成されており、ディスプレイ装置等の表示部21、キーボードやマウス等の入力部22、通信部23、CPU24、メモリ25、および各種データベースDBがバス線26に接続されている。 The frequency control device 10 of the electric power system illustrated on the lower side of FIG. 2 is configured by a computer system, and includes a display unit 21 such as a display device, an input unit 22 such as a keyboard or a mouse, a communication unit 23, a CPU 24, a memory 25, And various databases DB are connected to the bus line 26.
 電力系統の周波数制御装置10のデータベースDBとしては、新エネルギーデータベースDB1、新エネルギー理論的最大出力データベースDB2、出力指令値データベースDB3を備える。 The database DB of the frequency control device 10 of the power system includes a new energy database DB1, a new energy theoretical maximum output database DB2, and an output command value database DB3.
 表示部21は、例えば、ディスプレイ装置に代えて、またはディスプレイ装置と共に、プリンタ装置または音声出力装置等を用いる構成でもよい。 The display unit 21 may be configured to use, for example, a printer device or an audio output device instead of or in addition to the display device.
 入力部22は、例えば、キーボードスイッチ、マウス等のポインティング装置、タッチパネル、音声指示装置等の少なくともいずれか一つを備えて構成できる。 The input unit 22 can include, for example, at least one of a keyboard switch, a pointing device such as a mouse, a touch panel, and a voice instruction device.
 通信部23、通信ネットワークに接続するための回路及び通信プロトコルを備える。 The communication unit 23 includes a circuit for connecting to a communication network and a communication protocol.
 CPU24は、計算プログラムを実行して表示すべき画像データの指示や、各種データベース内のデータの検索等を行う。一つまたは複数の半導体チップとして構成してもよいし、または、計算サーバのようなコンピュータ装置として構成してもよい。 The CPU 24 executes a calculation program to instruct image data to be displayed, search data in various databases, and the like. It may be configured as one or more semiconductor chips, or may be configured as a computer device such as a calculation server.
 メモリ25は、例えば、RAMとして構成され、コンピュータプログラムを記憶したり、各処理に必要な計算結果データ及び画像データ等を記憶したりする。メモリ25に格納された画面データは、表示部21に送られて表示される。 The memory 25 is configured as, for example, a RAM, and stores a computer program, and stores calculation result data, image data, and the like necessary for each process. The screen data stored in the memory 25 is sent to the display unit 21 and displayed.
 図3は、LFC調整力決定の処理を示すフローチャートを表している。 FIG. 3 shows a flowchart showing the process of LFC adjustment power determination.
 処理ステップS1では、電力系統に接続されている新エネルギーの出力の総和PAを求める。なお、新エネルギーの出力の総和PAを求めるに際し、通信を介して新エネルギーの出力を入手可能である場合には測定値を用い、通信がないなどの理由により測定値が得られない新エネルギーである場合には、設備容量、設置位置、気象データ等から新エネルギーの出力の推定値を算出して用いる。あるいは通信はあるが通信周期、計測周期が十分でない場合については、適宜時間的補間処理などにより推定して、最終的に新エネルギーの出力の総和PAを求める。ここでは新エネルギーの出力の総和PAが時間情報と共に時系列的情報として得られる。 At processing step S1, a sum PA of the outputs of new energy connected to the power system is obtained. In addition, when obtaining the sum total PA of the output of the new energy, if the output of the new energy is available through the communication, the measured value is used, and the new energy can not be obtained because the communication is not available. In some cases, the estimated value of the new energy output is calculated and used from the installed capacity, installation position, weather data, etc. Alternatively, in the case where there is communication but the communication cycle and the measurement cycle are not sufficient, estimation is appropriately made by temporal interpolation processing etc., and the total sum PA of the new energy output is finally obtained. Here, the total sum PA of the output of the new energy is obtained as time-series information together with time information.
 図4は新エネルギーの出力のイメージ例である。図4は、横軸に時間、縦軸に新エネルギーとして太陽光を想定したときの太陽光発電量を示しており、新エネルギーの出力総和の推定値PAは、日照のある例えば朝6時から夕方6時までの間で、天候を反映した出力変動を示している。 FIG. 4 is an image example of the output of new energy. In FIG. 4, the horizontal axis represents time, and the vertical axis represents the amount of solar power generation when assuming solar light as new energy, and the estimated value PA of the total output of the new energy is, for example, from 6 am It shows the output fluctuation reflecting the weather from 6 o'clock in the evening.
 処理ステップS2では、設備容量、設置位置、気象データ等から算出した新エネルギーの理論的最大出力を求め、これを例えばPBとする。図4において、新エネルギーの理論的最大出力は天候の影響を排除した特性(全時間帯で快晴を想定した特性)であり、正弦状の変化を示す特性のものである。 In the processing step S2, the theoretical maximum output of new energy calculated from the facility capacity, the installation position, the weather data and the like is determined, and this is set as, for example, PB. In FIG. 4, the theoretical maximum output of the new energy is a characteristic that excludes the influence of weather (a characteristic that assumes clear weather in all time zones), and is a characteristic that exhibits a sinusoidal change.
 この図で例えば時刻tにおける新エネルギーの理論的最大出力はPBtであり、実際には日照の関係で太陽光発電量としてはPAtを計測していることを示している。なお図示の例では、tは11時30分であり、太陽光発電量PAtは新エネルギーの理論的最大出力PBtの60%であるとする。 In this figure, for example, the theoretical maximum output of new energy at time t is PBt, and it is actually shown that PAt is measured as the amount of photovoltaic power generation due to the relationship of sunshine. In the illustrated example, t is 11:30, and the photovoltaic power generation amount PAt is 60% of the theoretical maximum output PBt of the new energy.
 この時刻tの状態から、近未来において晴天に移行したとする。このときに、太陽光発電量PAtは40%増加して、新エネルギーの理論的最大出力PBtとなるが、このことを電力系統側から評価すると、新エネルギー出力が急増したとき、電力系統は、供給電力>負荷となり、系統周波数が高くなる傾向であることから、系統周波数上昇を抑制するために必要なLFC対象発電機によるLFC調整力は、40%相当分、低下させる必要があることを意味している。 It is assumed that the state of time t has shifted to a fine sky in the near future. At this time, the photovoltaic power generation amount PAt is increased by 40% to become the theoretical maximum output PBt of new energy. If this is evaluated from the power system side, when the new energy output sharply increases, the power system Since supply power> load and the grid frequency tends to increase, it means that the LFC adjustment power by the LFC target generator necessary to suppress the grid frequency increase needs to be reduced by 40%. doing.
 逆に時刻tの状態から、近未来において曇天に移行したとする。このときに、太陽光発電量PAtは60%減少して、0となるが、このことを電力系統側から評価すると、新エネルギー出力が急減したとき、電力系統は、供給電力<負荷となり、系統周波数が低くなる傾向であることから、系統周波数低下を回復するに必要なLFC対象発電機によるLFC調整力は、60%相当分、増加させる必要があることを意味している。 Conversely, it is assumed that the state of time t has shifted to cloudy in the near future. At this time, the photovoltaic power generation amount PAt decreases 60% and becomes 0. If this is evaluated from the power system side, when the new energy output sharply decreases, the power system becomes supply power <load, and the system Since the frequency tends to decrease, it means that the LFC adjustment power by the LFC target generator necessary to recover the system frequency drop needs to be increased by 60%.
 このように晴れ方向(太陽光としては出力増大方向)であれば、LFC対象発電機としては下げ方向の発電量とし、曇天方向(太陽光としては出力減少方向)であれば、LFC対象発電機としては上げ方向の発電量とするという関係にある。 As described above, if it is the sunny direction (the direction in which the output increases as sunlight), the LFC target generator is the amount of power generation in the downward direction, and if it is the cloudy direction (the direction in which the sunlight decreases the output), the LFC target generator As the amount of power generation in the upward direction.
 このことから処理ステップS3では、新エネルギーの出力増加方向の最大変動幅を想定し、下げ側のLFC調整力を例えば(PBt-PAt)とする。これは現在曇天であるが、快晴に転じた状態を想定したときに、新エネルギーの出力の増大量(PBt-PAt)を、下げ側のLFC調整力としたものである。 From this, in the processing step S3, a maximum fluctuation range in the output increase direction of new energy is assumed, and the LFC adjustment force on the lower side is, for example, (PBt-PAt). This is cloudy at present, but assuming a clear weather condition, the amount of increase in the output of new energy (PBt-PAt) is used as the LFC adjustment power on the lower side.
 処理ステップS4では、新エネルギーの出力減少方向の最大変動幅を想定し、上げ側のLFC調整力をPAとする。これは現在曇天であるが、暗天に転じた状態を想定したときに、新エネルギーの出力の減少量PAtを、上げ側のLFC調整力としたものである。 In the processing step S4, a maximum fluctuation range in the power reduction direction of the new energy is assumed, and the LFC adjustment power on the raising side is PA. Although this is currently cloudy, assuming that it has turned to dark, the amount of decrease PAt in the output of new energy is used as the LFC adjustment power on the raising side.
 図1に戻り、地域要求量AR計算部14では、上げ、下げ方向のLFC調整力と、系統周波数偏差Δfと、連系線潮流偏差ΔPtを入力として地域要求量ARを計算する。ここでの処理は、具体的には例えば図5の処理フローにより実施される。 Returning to FIG. 1, the area request amount AR calculation unit 14 calculates the area request amount AR with the LFC adjustment force in the up and down directions, the system frequency deviation Δf, and the interconnection line power flow deviation ΔPt as inputs. The process here is specifically implemented by the process flow of FIG. 5, for example.
 図5の最初の処理ステップS11では、地域要求量AR計算部14で使用する情報を入手する。これらは、下げ側のLFC調整力(PBt-PAt)と、上げ側のLFC調整力PAtと、系統周波数偏差Δfと、連系線潮流偏差ΔPtである。処理ステップS12では、(1)式を実行し、地域要求量AR1を算出する。ここで求めた地域要求量AR1は、現在時点からの変動量として算出されている。 In the first processing step S11 of FIG. 5, information used by the area request amount AR calculation unit 14 is obtained. These are the down side LFC adjustment force (PBt-PAt), the up side LFC adjustment force PAt, the system frequency deviation Δf, and the interconnection line power flow deviation ΔPt. In processing step S12, equation (1) is executed to calculate the area request amount AR1. The area request amount AR1 obtained here is calculated as a fluctuation amount from the present time.
 処理ステップS20では、上げ、及び下げ側のLFC調整力の範囲内に(1)式から求めた地域要求量AR1を調整し、地域要求量ARとして出力する。具体的には上記の例でいうと、上げ側のLFC調整力PAtとして定まる60%と、下げ側のLFC調整力(PBt-PAt)として定まる-40%の範囲内に(1)式から求めた地域要求量AR1を制限する出力を与える。例えば地域要求量AR1が60%以上増大するものである場合に、出力値は60%を上限として制限される。逆に地域要求量AR1が40%以上減少するものである場合に、出力値は-40%を下限として制限される。 In processing step S20, the area request amount AR1 obtained from the equation (1) is adjusted within the range of the LFC adjustment power on the raising and lowering sides, and is output as the area request amount AR. Specifically, in the above example, it is obtained from the equation (1) within the range of 60% determined as the LFC adjustment force PAt on the higher side and -40% determined as the LFC adjustment force (PBt-PAt) on the lower side. Provides an output that limits the regional demand AR1. For example, when the area request amount AR1 is increased by 60% or more, the output value is limited with the upper limit of 60%. Conversely, if the regional demand AR1 decreases by 40% or more, the output value is limited to the lower limit of -40%.
 図5の処理ステップS20内の処理ステップS13では、下げ側のLFC調整力(PBt-PAt)と(1)式から求めた地域要求量AR1を絶対値で大小比較し、処理ステップS14では、上げ側のLFC調整力PAtと(1)式から求めた地域要求量AR1を絶対値で大小比較している。 At processing step S13 in processing step S20 of FIG. 5, the LFC adjustment power (PBt-PAt) on the lower side is compared with the area request amount AR1 obtained from the equation (1) with absolute values, and is increased at processing step S14. The LFC adjustment power PAt on the side and the area request amount AR1 obtained from the equation (1) are compared by an absolute value.
 処理ステップS13の処理で、下げ側のLFC調整力(PBt-PAt)が(1)式から求めた地域要求量AR1よりも大きいと判定された場合、処理ステップS16に移り、(1)式から求めた地域要求量AR1を地域要求量ARとして出力する。 If it is determined that the LFC adjustment force (PBt-PAt) on the lower side is larger than the area request amount AR1 obtained from the equation (1) in the process of the process step S13, the process proceeds to the process step S16, and from the equation (1) The calculated area request amount AR1 is output as the area request amount AR.
 処理ステップS13の処理で、下げ側のLFC調整力(PBt-PAt)が(1)式から求めた地域要求量AR1よりも小さいと判定された場合、処理ステップS16に移り、下げ側のLFC調整力(PBt-PAt)を地域要求量ARとして出力する。 If it is determined in the process of step S13 that the down side LFC adjustment force (PBt-PAt) is smaller than the area request amount AR1 obtained from the equation (1), the process proceeds to step S16, where the down side LFC adjustment is performed. The force (PBt-PAt) is output as the regional request amount AR.
 処理ステップS14の処理で、上げ側のLFC調整力PAtが(1)式から求めた地域要求量AR1よりも大きいと判定された場合、処理ステップS17に移り、(1)式から求めた地域要求量AR1を地域要求量ARとして出力する。 If it is determined in the process of step S14 that the LFC adjustment power PAt on the raising side is larger than the area request amount AR1 obtained from the equation (1), the process proceeds to processing step S17, and the region request obtained from the equation (1) The amount AR1 is output as the area request amount AR.
 処理ステップS14の処理で、上げ側のLFC調整力PAtが(1)式から求めた地域要求量AR1よりも小さいと判定された場合、処理ステップS18に移り、上げ側のLFC調整力PAt地域要求量ARとして出力する。 If it is determined in the process of processing step S14 that the LFC adjustment power PAt on the raising side is smaller than the area request amount AR1 obtained from the equation (1), the process proceeds to processing step S18, and the LFC adjustment power PAt on the raising side is required Output as the quantity AR.
 指令値配分部15では、上げ、及び下げ側のLFC調整力と(1)式から求めた地域要求量AR1から定めた地域要求量ARを受け、LFC対象発電機に対する指令値の配分を決定する。本発明では、配分の手法を限定しない
 出力指令値データベースDB3には、再定義され、或は配分後のLFC対象発電機の各発電機への出力指令値が記録される。
The command value distribution unit 15 determines the distribution of the command value to the LFC target generator by receiving the area request amount AR determined from the LFC adjustment force on the raising and lowering sides and the area request amount AR1 obtained from the equation (1). . In the present invention, the output command value database DB3 records the output command values to the generators of the LFC target generator redefined or after allocation without limiting the method of distribution.
 実施例1によれば、新エネルギーの理論的最大出力に対する出力の大きさを用いて、出力変動を見込んだLFC調整力を確保することで、周波数変動を抑制できる。 According to the first embodiment, it is possible to suppress the frequency fluctuation by securing the LFC adjustment power in which the output fluctuation is expected, using the magnitude of the output with respect to the theoretical maximum output of the new energy.
 本発明の実施例2について、以下に説明する。なお、実施例1で説明した内容と重複する説明については省略する。 The second embodiment of the present invention will be described below. The description overlapping with the contents described in the first embodiment is omitted.
 図6に示す実施例2の電力系統の負荷周波数制御装置は、実施例1の構成に出力変動統計解析部16、出力変動統計解析結果データベースDB4を追加したものである。 The load frequency control apparatus of the electric power system of the second embodiment shown in FIG. 6 is obtained by adding an output fluctuation statistical analysis unit 16 and an output fluctuation statistical analysis result database DB4 to the configuration of the first embodiment.
 出力変動統計解析部16では、新エネルギーの理論的最大出力PBに対する出力の大きさPAの統計解析結果を算出する。 The output fluctuation statistical analysis unit 16 calculates a statistical analysis result of the magnitude PA of the output with respect to the theoretical maximum output PB of the new energy.
 出力変動統計解析結果データベースDB4には、新エネルギーの理論的最大出力PAに対する出力の大きさPBの統計解析結果が格納されている。 The output fluctuation statistical analysis result database DB4 stores statistical analysis results of the output magnitude PB with respect to the theoretical maximum output PA of the new energy.
 図7は、実施例2に係るLFC調整力決定の処理を示すフローチャートを表している。なお、図3のフローチャートの処理と同じ処理内容のものについては、同一符号を付与している。 FIG. 7 shows a flowchart showing processing of LFC adjustment power determination according to the second embodiment. The same reference numerals are given to the same processing contents as the processing of the flowchart in FIG. 3.
 図7の最初の処理ステップS1では、電力系統に接続されている新エネルギーの出力の総和PAを求める。なお、新エネルギーの出力の総和PAを求めるに際し、通信を介して新エネルギーの出力を入手可能である場合には測定値を用い、通信がないなどの理由により測定値が得られない新エネルギーである場合には、設備容量、設置位置、気象データ等から新エネルギーの出力の推定値を算出して用いる。あるいは通信はあるが通信周期、計測周期が十分でない場合については、適宜時間的補間処理により推定して、最終的に新エネルギーの出力の総和PAを求める。ここでは新エネルギーの出力の総和PAが時間情報と共に時系列的情報として得られる。 In the first processing step S1 of FIG. 7, a sum PA of the outputs of new energy connected to the power system is obtained. In addition, when obtaining the sum total PA of the output of the new energy, if the output of the new energy is available through the communication, the measured value is used, and the new energy can not be obtained because the communication is not available. In some cases, the estimated value of the new energy output is calculated and used from the installed capacity, installation position, weather data, etc. Alternatively, in the case where there is communication but the communication cycle and the measurement cycle are not sufficient, estimation is appropriately performed by temporal interpolation processing to finally obtain the total sum PA of the new energy output. Here, the total sum PA of the output of the new energy is obtained as time-series information together with time information.
 処理ステップS2では、設備容量、設置位置、気象データ等から算出した新エネルギーの理論的最大出力を求め、これを例えばPBとする。図4において、新エネルギーの理論的最大出力は天候の影響を排除した特性(全時間帯で快晴を想定した特性)であり、正弦状の変化を示す特性のものである。この図で例えば時刻tにおける新エネルギーの理論的最大出力はPBtであり、実際には日照の関係で太陽光発電量としてはPAtを計測していることを示している。 In the processing step S2, the theoretical maximum output of new energy calculated from the facility capacity, the installation position, the weather data and the like is determined, and this is set as, for example, PB. In FIG. 4, the theoretical maximum output of the new energy is a characteristic that excludes the influence of weather (a characteristic that assumes clear weather in all time zones), and is a characteristic that exhibits a sinusoidal change. In this figure, for example, the theoretical maximum output of new energy at time t is PBt, and it is actually shown that PAt is measured as the amount of photovoltaic power generation due to the relationship of sunshine.
 処理ステップS5では、新エネルギー理論的最大出力PBに対する新エネルギー出力PAの大きさZをZ=PA/PBとする。処理ステップS6では、新エネルギーの理論的最大出力PBに対する出力PAの大きさCの統計解析結果を算出する。なお処理ステップS5および処理ステップS6の処理は、図7の出力変動統計解析部16において実行される。 In the processing step S5, the magnitude Z of the new energy output PA with respect to the new energy theoretical maximum output PB is set to Z = PA / PB. At processing step S6, a statistical analysis result of the magnitude C of the output PA with respect to the theoretical maximum output PB of the new energy is calculated. The processing of processing step S5 and processing step S6 is executed in the output fluctuation statistical analysis unit 16 of FIG.
 図8は、算出した出力変動統計解析結果のイメージ例を示したテーブルである。図8のテーブルでは縦軸側に太陽光発電量の上げ側と下げ側を示し、横軸側に新エネルギーの理論的最大出力PBに対する出力PAの大きさCの値を出力帯ごとに区分して示している。具体的には、大きさCの値を1から0の範囲で規定化して示し、これを0.1幅で区分した出力帯を横軸に定義している。また太陽光発電量の上げ側(:PB-PA)についての単位時間x当たりの出力変動ΔZをΔZ=Z(t+x)―Z(t)として定めて、標準偏差σについてσ、2σ、3σの時の変動幅の値を算出し、下げ側(:PA)についての単位時間x当たりの出力変動ΔZをΔZ=Z(t)―Z(t+x)として定めて、標準偏差σについてσ、2σ、3σの時の変動幅の値を算出している。なお、tは現在時刻、xはtの10分後と設定する等、xは任意の時刻を設定できるものとする。 FIG. 8 is a table showing an image example of the calculated output fluctuation statistical analysis result. In the table of FIG. 8, the vertical axis indicates the rising side and the falling side of the photovoltaic power generation, and the horizontal axis indicates the value of the size C of the output PA relative to the theoretical maximum output PB of new energy for each output band Is shown. Specifically, the value of the magnitude C is specified and shown in the range of 1 to 0, and an output band obtained by dividing this value by 0.1 width is defined on the horizontal axis. Further, the output fluctuation ΔZ per unit time x for the increase side (: PB-PA) of the photovoltaic power generation amount is defined as ΔZ = Z (t + x) −Z (t), and the standard deviation σ is σ, 2σ, 3σ The value of fluctuation range at the time of calculation is calculated, and the output fluctuation .DELTA.Z per unit time x for the down side (: PA) is defined as .DELTA.Z = Z (t) -Z (t + x). The value of fluctuation range at 3σ is calculated. Note that t can be set to the current time, x can be set to 10 minutes after t, and so on, and x can be set to any time.
 図8のテーブルによる出力変動統計解析結果によれば、出力帯が例えば0.1以下である時に、上げ側の上げ幅が標準偏差σである時の、x時間後の出力変動ΔZは3.2%であり、上げ側の上げ幅が標準偏差2σである時の、x時間後の出力変動ΔZは6.4%であり、上げ側の上げ幅が標準偏差3σである時の、x時間後の出力変動ΔZは9.6%である。同様に、出力帯が例えば0.1以下である時に、下げ側の上げ幅が標準偏差σである時の、x時間後の出力変動ΔZは1.2%であり、下げ側の上げ幅が標準偏差2σである時の、x時間後の出力変動ΔZは2.4%であり、下げ側の上げ幅が標準偏差3σである時の、x時間後の出力変動ΔZは3.6%である。 According to the output fluctuation statistical analysis result by the table in FIG. 8, when the output band is, for example, 0.1 or less, the output fluctuation ΔZ after x time is 3.2 when the raising width on the raising side is the standard deviation σ. %, When the increase width on the increase side is the standard deviation 2σ, the output fluctuation ΔZ after x time is 6.4%, and the output increase width on the increase side is the standard deviation 3σ, the output after x time The variation ΔZ is 9.6%. Similarly, when the output band is, for example, 0.1 or less, the output fluctuation ΔZ after x hours is 1.2% when the raising width on the lower side is the standard deviation σ, and the raising width on the lower side is the standard deviation The output fluctuation ΔZ after x time is 2.4% when it is 2σ, and the output fluctuation ΔZ after x time is 3.6% when the rising width on the lower side is 3σ.
 このテーブルによれば、同一出力帯であれば、上げまたは下げ側の出力変動ΔZは標準偏差σの倍数で増加する。また同一出力帯であれば、変動幅の大きい側での出力変動ΔZが大きな数値となる。例えば出力帯が0.1以下である時に、上げ側の上げ幅は大きいが、下げ幅は小さいことから、下げ側の出力変動ΔZが小さな値を示す。 According to this table, in the case of the same output band, the increase or decrease side output fluctuation ΔZ increases by a multiple of the standard deviation σ. In the case of the same output band, the output fluctuation ΔZ on the large fluctuation side is a large numerical value. For example, when the output band is 0.1 or less, although the raising width on the raising side is large but the lowering width is small, the output fluctuation ΔZ on the lowering side shows a small value.
 処理ステップS3では、処理ステップS6の新エネルギーの出力変動統計解析結果を考慮して下げ側のLFC調整力を決定する。処理ステップS4では、処理ステップS6の新エネルギーの出力変動統計解析結果を考慮して上げ側のLFC調整力を決定する。 In processing step S3, the LFC adjustment power on the lower side is determined in consideration of the output fluctuation statistical analysis result of the new energy in processing step S6. In processing step S4, the LFC adjustment power on the raising side is determined in consideration of the output fluctuation statistical analysis result of the new energy in processing step S6.
 なお処理ステップS3、S4の処理に関し、例えば出力帯が0.1以下である時に、上げ側、あるいは下げ側の標準偏差σとして、σ、2σ、3σのいずれを選択するのかについては、人為的判断で行われ、あるいは需給バランスと経済性を考慮して自動的に決定される。小さい標準偏差σを選択すれば、需給バランスは悪いが経済性上は有利に働く、逆に大きい標準偏差3σを選択すれば、需給バランスは良いが経済性上は不利であることから、何らかの指針をもって、適宜の数値を選択して使用する。 Regarding the processing of the processing steps S3 and S4, for example, it is artificially selected which of σ, 2σ, and 3σ is selected as the standard deviation σ on the raising side or the lowering side when the output band is 0.1 or less. It is made by judgment or automatically determined in consideration of supply and demand balance and economy. If a small standard deviation σ is selected, the balance between supply and demand is bad, but it is economically advantageous. Conversely, if a large standard deviation 3σ is selected, the balance between supply and demand is good but the economic disadvantage is disadvantageous. The appropriate numerical value is selected and used.
 このようにして選択された上げ側と下げ側の出力変動ΔZの数値が、LFC調整力における上げ側と下げ側での値とされる。 The numerical values of the output fluctuation ΔZ on the rising side and the falling side selected in this way are values on the rising side and the lowering side in the LFC adjustment force.
 AR計算部14においては、図8から得られた上げ側、下げ側の出力変動ΔZの数値を、x時間後における制限値として用い、(1)式から求めた地域要求量AR1を制限値とする範囲内の地域要求量ARを出力する。 The AR calculation unit 14 uses the numerical value of the output fluctuation ΔZ on the rising side and the lowering side obtained from FIG. 8 as the limit value after x hours, and uses the area request amount AR1 obtained from the equation (1) as the limit value. Output regional demand AR within the range.
 実施例2によれば、新エネルギーの理論的最大出力PAに対する実出力PBの大きさCの出力変動統計解析結果を用いて、出力変動を見込んだLFC調整力を確保することで、周波数変動を抑制できる。 According to the second embodiment, the frequency fluctuation can be obtained by securing the LFC adjustment power in consideration of the output fluctuation by using the output fluctuation statistical analysis result of the magnitude C of the actual output PB with respect to the theoretical maximum output PA of the new energy. It can be suppressed.
 本発明の実施例3について、以下に説明する。なお、実施例1で説明した内容と重複する説明については省略する。 The third embodiment of the present invention will be described below. The description overlapping with the contents described in the first embodiment is omitted.
 図9に示す実施例3の電力系統の負荷周波数制御装置10は、実施例1の負荷周波数制御装置10において、新エネルギー出力データベースDB1と新エネルギー理論的最大出力データベースDB2を、新エネルギー出力予測データベースDB5に変更したものである。 In the load frequency control apparatus 10 of the power system of the third embodiment shown in FIG. 9, in the load frequency control apparatus 10 of the first embodiment, the new energy output database DB1 and the new energy theoretical maximum output database DB2 It has been changed to DB5.
 新エネルギー出力予測データベースDB5には、新エネルギーの出力予測値が格納されている。新エネルギーの出力予測値は、ニューラルネットワーク等の手法を用いて、数分、数時間先の値を予測したもの等である。 The new energy output prediction database DB5 stores output prediction values of new energy. The output prediction value of the new energy is, for example, a value obtained by predicting a value several minutes ahead of several hours using a method such as a neural network.
 実施例3によれば、新エネルギーの出力予測値を使用し、出力変動を見込んだLFC調整力を確保することで、周波数変動を抑制できる。 According to the third embodiment, the frequency fluctuation can be suppressed by using the output predicted value of the new energy and securing the LFC adjustment power in which the output fluctuation is expected.
 本発明の実施例4について、以下に説明する。なお、実施例1で説明した内容と重複する説明については省略する。 The fourth embodiment of the present invention will be described below. The description overlapping with the contents described in the first embodiment is omitted.
 図10に示す実施例4の電力系統の負荷周波数制御装置10は、実施例1の負荷周波数制御装置10において、LFC調整力決定根拠出力部17を追加したものである。 The load frequency control apparatus 10 of the power system of the fourth embodiment shown in FIG. 10 is the load frequency control apparatus 10 of the first embodiment with the LFC adjustment force determination basis output unit 17 added.
 LFC調整力決定根拠出力部17において、時間断面毎のLFC調整力に対して、新エネルギー出力、新エネルギー理論的最大出力、LFC調整力の算出方法等を紐付けた一覧表等の結果を出力する。 The LFC adjustment power determination basis output unit 17 outputs the results of a list that links new energy output, new energy theoretical maximum output, calculation method of LFC adjustment power, etc. to LFC adjustment power for each time cross section Do.
 図11はLFC調整力決定根拠出力部の出力イメージ例を示すテーブルである。各時間断面における上げ側と下げ側のLFC調整力とそれに基づくLFC調整力決定根拠を記載している。 FIG. 11 is a table showing an example of an output image of the LFC adjustment power determination basis output unit. The LFC adjustment power on the upside and downside in each time section and the LFC adjustment power based on that are described.
 実施例4によれば、時間断面毎のLFC調整力に対して、新エネルギー出力、理論的最大出力、LFC調整力の算出方法等を紐付け、LFC調整力決定根拠として出力することで、公平性・透明性を担保することができる。 According to the fourth embodiment, a new energy output, theoretical maximum output, calculation method of LFC adjustment power, etc. are linked to LFC adjustment power for each time cross section, and output as LFC adjustment power determination basis, thereby making it fair. Security and transparency can be secured.
DB1:新エネルギー出力データベース,DB2:新エネルギー理論的最大出力データベース,DB3:出力指令値データベース,DB4:出力変動統計解析データベース,DB5:新エネルギー出力予測データベース,10:電力系統の負荷周波数制御装置,11:LFC調整力決定部,12:周波数検出部,13:連系線潮流検出部,14:AR計算部,15:指令値配分部,16:出力変動統計解析部,17:LFC調整力決定根拠出力部,21:表示部,22:入力部,23:通信部,24:CPU,25:メモリ,26:バス線,Bus:ノード,Tr:変圧器,G:発電機,140:送電線路,Ld:負荷,300:通信ネットワーク DB1: New energy output database, DB2: New energy theoretical maximum output database, DB3: Output command value database, DB4: Output fluctuation statistical analysis database, DB5: New energy output prediction database, 10: Load frequency controller for power system, 11: LFC adjustment force determination unit, 12: frequency detection unit, 13: interconnection power flow detection unit, 14: AR calculation unit, 15: command value distribution unit, 16: output fluctuation statistical analysis unit, 17: LFC adjustment force determination Base output unit, 21: display unit, 22: input unit, 23: communication unit, 24: CPU, 25: memory, 26: bus line, Bus: node, Tr: transformer, G: generator, 140: power transmission line , Ld: Load, 300: Communication network

Claims (9)

  1.  新エネルギー発電設備を備える電力系統の負荷周波数制御装置であって、
     電力系統における新エネルギー発電設備の出力と、新エネルギー発電設備の理論的最大出力から電力系統の上げ側と下げ側のLFC調整力を決定するLFC調整力決定部と、電力系統の系統周波数偏差と連系線潮流偏差から地域要求量を算出し、前記上げ側と下げ側のLFC調整力を制限範囲とする前記地域要求量を出力する地域要求量計算部と、該地域要求量計算部からの地域要求量を入力としてLFC対象発電機への出力指令値を配分する指令値配分部とを備えることを特徴とする電力系統の負荷周波数制御装置。
    A load frequency controller for a power system including a new energy power generation facility,
    LFC adjustment force determination unit that determines the LFC adjustment power of the power system upside and downside from the output of the new energy power generation facility in the power system and the theoretical maximum output of the new energy power generation facility, the system frequency deviation of the power system An area request amount calculation unit that calculates the area request amount from the interconnection line power flow deviation and outputs the area request amount with the LFC adjustment power on the up side and the down side as the limitation range, and the area request amount calculation unit A load frequency control apparatus for an electric power system, comprising: a command value distribution unit that receives an area request amount and distributes an output command value to an LFC target generator.
  2.  請求項1に記載の電力系統の負荷周波数制御装置であって、
     前記LFC調整力決定部は、新エネルギー発電設備の理論的最大出力と新エネルギー発電設備の出力の差を下げ側のLFC調整力とし、新エネルギー発電設備の出力を上げ側のLFC調整力として決定することを特徴とする電力系統の負荷周波数制御装置。
    The load frequency controller for a power system according to claim 1, wherein
    The LFC adjustment power determination unit determines the difference between the theoretical maximum output of the new energy power generation facility and the output of the new energy power generation facility as LFC adjustment power on the lower side, and determines the output of the new energy power generation facility as LFC adjustment power on the higher side A load frequency controller for a power system characterized by:
  3.  請求項1に記載の電力系統の負荷周波数制御装置であって、
     新エネルギー発電設備の理論的最大出力に対する新エネルギー発電設備の出力の大きさの出力変動統計解析結果を解析により求め記憶する出力変動統計解析部を備え、前記LFC調整力決定部は前記出力変動統計解析部からの解析結果を用いて電力系統の上げ側と下げ側のLFC調整力を決定することを特徴とする電力系統の負荷周波数制御装置。
    The load frequency controller for a power system according to claim 1, wherein
    An output fluctuation statistical analysis unit for calculating and storing an output fluctuation statistical analysis result of a size of an output of the new energy power generation equipment with respect to a theoretical maximum output of the new energy power generation equipment, the LFC adjustment force determination unit is the output fluctuation statistics A load frequency control device for an electric power system, which determines LFC adjustment powers on the upper and lower sides of the electric power system using an analysis result from an analysis unit.
  4.  請求項1に記載の電力系統の負荷周波数制御装置であって、
     前記LFC調整力決定部は、電力系統における新エネルギー発電設備の出力の予測値と、新エネルギー発電設備の理論的最大出力の予測値から電力系統の上げ側と下げ側のLFC調整力を決定することを特徴とする電力系統の負荷周波数制御装置。
    The load frequency controller for a power system according to claim 1, wherein
    The LFC adjustment power determination unit determines the LFC adjustment power on the rising side and the lowering side of the power system from the predicted value of the output of the new energy power generation facility in the power system and the predicted value of the theoretical maximum output of the new energy power generation facility Load frequency control device for electric power system characterized by the above.
  5.  請求項1から請求項4のいずれか1項に記載の電力系統の負荷周波数制御装置であって、
     時間断面毎のLFC調整力に対して、新エネルギー発電設備の出力、理論的最大出力、LFC調整力の算出方法等を紐付け、LFC調整力決定根拠として出力するLFC調整力決定根拠出力部を備えることを特徴とする電力系統の負荷周波数制御装置。
    A load frequency control apparatus for an electric power system according to any one of claims 1 to 4, wherein
    LFC adjustment power determination basis output unit that outputs LFC adjustment power determination grounds by linking output power of new energy power generation equipment, theoretical maximum output, calculation method of LFC adjustment power, etc. to LFC adjustment power for each time cross section A load frequency control device for a power system, comprising:
  6.  新エネルギー発電設備を備える電力系統の負荷周波数制御方法であって、
     電力系統における新エネルギー発電設備の出力と、新エネルギー発電設備の理論的最大出力から電力系統の上げ側と下げ側のLFC調整力を決定し、電力系統の系統周波数偏差と連系線潮流偏差から地域要求量を算出し、前記上げ側と下げ側のLFC調整力を制限範囲とする前記地域要求量に基づいて、LFC対象発電機への出力指令値を配分することを特徴とする電力系統の負荷周波数制御方法。
    A load frequency control method of an electric power system provided with a new energy power generation facility, comprising:
    From the output of the new energy power generation facility in the power system and the theoretical maximum output of the new energy power generation facility, the LFC adjustment power of the power system upside and downside is determined, and from the power system frequency deviation and interconnection power flow deviation An electric power system characterized by calculating an area request amount and distributing an output command value to an LFC target generator based on the area request amount having the LFC adjustment power of the up side and the down side as a limitation range. Load frequency control method.
  7.  請求項6に記載の電力系統の負荷周波数制御方法であって、
     新エネルギー発電設備の理論的最大出力と新エネルギー発電設備の出力の差を下げ側のLFC調整力とし、新エネルギー発電設備の出力を上げ側のLFC調整力とすることを特徴とする電力系統の負荷周波数制御方法。
    7. A load frequency control method for a power system according to claim 6, wherein
    The difference between the theoretical maximum output of the new energy power generation facility and the output of the new energy power generation facility is the LFC adjustment power on the lower side, and the output of the new energy power generation facility is the LFC adjustment power on the higher side Load frequency control method.
  8.  請求項6に記載の電力系統の負荷周波数制御方法であって、
     新エネルギー発電設備の理論的最大出力に対する新エネルギー発電設備の出力の大きさの出力変動統計解析結果を求め、解析結果を用いて電力系統の上げ側と下げ側のLFC調整力を決定することを特徴とする電力系統の負荷周波数制御方法。
    7. A load frequency control method for a power system according to claim 6, wherein
    Determining the output fluctuation statistical analysis result of the size of the output of the new energy power generation facility with respect to the theoretical maximum output of the new energy power generation facility, and using the analysis result to determine the LFC adjustment power of the power system upside and downside The load frequency control method of the electric power system characterized by the above.
  9.  請求項6に記載の電力系統の負荷周波数制御方法であって、
     電力系統における新エネルギー発電設備の出力の予測値と、新エネルギー発電設備の理論的最大出力の予測値から電力系統の上げ側と下げ側のLFC調整力を決定することを特徴とする電力系統の負荷周波数制御方法。
    7. A load frequency control method for a power system according to claim 6, wherein
    The power system's LFC adjustment power is determined from the predicted value of the output of the new energy power generation facility in the power system and the predicted value of the theoretical maximum output of the new energy power generation facility. Load frequency control method.
PCT/JP2018/005917 2017-08-23 2018-02-20 Device and method for controlling load frequency of power system WO2019038954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017160124A JP6778665B2 (en) 2017-08-23 2017-08-23 Power system load frequency control device and method
JP2017-160124 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019038954A1 true WO2019038954A1 (en) 2019-02-28

Family

ID=65438606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005917 WO2019038954A1 (en) 2017-08-23 2018-02-20 Device and method for controlling load frequency of power system

Country Status (2)

Country Link
JP (1) JP6778665B2 (en)
WO (1) WO2019038954A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125287A1 (en) * 2019-12-20 2021-06-24 株式会社 東芝 Power control system, power control device, computer program for power control, and power control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6751797B1 (en) * 2019-05-24 2020-09-09 九州電力株式会社 Power control system and power control method
JP7193427B2 (en) * 2019-08-02 2022-12-20 株式会社日立製作所 Adjustability Procurement Device and Adjustability Procurement Method
CN111668858B (en) * 2020-06-15 2021-07-27 中国电力科学研究院有限公司 Demand side resource optimal coordination control method and system considering intermittent characteristics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204577A (en) * 2013-04-05 2014-10-27 株式会社東芝 Supply and demand control system for power system, and supply and demand control device
WO2015001651A1 (en) * 2013-07-04 2015-01-08 中国電力株式会社 Frequency control system and frequency control method
JP2017060325A (en) * 2015-09-17 2017-03-23 株式会社東芝 Load frequency controller, load frequency control method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204577A (en) * 2013-04-05 2014-10-27 株式会社東芝 Supply and demand control system for power system, and supply and demand control device
WO2015001651A1 (en) * 2013-07-04 2015-01-08 中国電力株式会社 Frequency control system and frequency control method
JP2017060325A (en) * 2015-09-17 2017-03-23 株式会社東芝 Load frequency controller, load frequency control method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125287A1 (en) * 2019-12-20 2021-06-24 株式会社 東芝 Power control system, power control device, computer program for power control, and power control method
WO2021124567A1 (en) * 2019-12-20 2021-06-24 株式会社 東芝 Power control system, power control device, computer program for controlling power, and power control method

Also Published As

Publication number Publication date
JP2019041457A (en) 2019-03-14
JP6778665B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2019038954A1 (en) Device and method for controlling load frequency of power system
US20180301907A1 (en) Systems, methods and controllers for control of power distribution devices and systems
US20100008119A1 (en) Solar power generation stabilization system and method
JP5393934B1 (en) Voltage monitoring control device, voltage control device, and voltage monitoring control method
KR101689315B1 (en) System and method for controlling in multi-frequency microgrid
US9660451B1 (en) Islanded operation of distributed power sources
JP5978088B2 (en) Reactive power compensator
SA516370646B1 (en) Elevator installation and a method for controlling elevators
JP6265281B2 (en) Solar power plant control system
KR20170125291A (en) Apparatus of controlling power generation for blocking reverse power of photovoltaics system and method thereof
JP2011060921A (en) Solar power generation facility
JP6149275B2 (en) Power fluctuation suppression device using multiple power storage devices
WO2020218191A1 (en) Power control device, method of controlling power control device, and distributed power generation system
WO2014167830A1 (en) Power control system
JP6519783B2 (en) Autonomous distributed voltage control system
JP2018160993A (en) Power control device, method, and power generating system
JP2017060325A (en) Load frequency controller, load frequency control method, and program
JP2013212021A (en) Reactive power compensator
JP2020162255A (en) Load frequency controller and load frequency control method
JP6474017B2 (en) Frequency control method and frequency control system in power system
JP6713237B2 (en) Solar power system
JP2017118738A (en) Power variation controller and power variation control method for renewable energy power generation device
KR20210081092A (en) Intelligent operation methods and apparatuses of energy storage system linked with heterogeneous distributed resource
US20230369889A1 (en) Power control device, power control method, and power control program
KR102107290B1 (en) System and method for controlling solar power output

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847785

Country of ref document: EP

Kind code of ref document: A1