WO2014209007A1 - Sdn 기반 lte network 구조 및 동작 방안 - Google Patents

Sdn 기반 lte network 구조 및 동작 방안 Download PDF

Info

Publication number
WO2014209007A1
WO2014209007A1 PCT/KR2014/005623 KR2014005623W WO2014209007A1 WO 2014209007 A1 WO2014209007 A1 WO 2014209007A1 KR 2014005623 W KR2014005623 W KR 2014005623W WO 2014209007 A1 WO2014209007 A1 WO 2014209007A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
ofs
sdn
traffic
Prior art date
Application number
PCT/KR2014/005623
Other languages
English (en)
French (fr)
Inventor
전영기
강성룡
김우재
김종현
최정아
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US14/901,465 priority Critical patent/US9949272B2/en
Publication of WO2014209007A1 publication Critical patent/WO2014209007A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/20Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/40Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/64Routing or path finding of packets in data switching networks using an overlay routing layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to a network structure for effectively applying SDN technology to an LTE network and to operation of a system based thereon.
  • the present invention relates to a technique for effectively applying the SDN to the LTE network without changing the terminal and the base station by defining changes of existing Network Elements (NE), added NEs and their functions.
  • NE Network Elements
  • the present invention defines the structure and operation of the SDN-based LTE network that can coexist with the existing network in consideration of the interworking with the LTE network to which the SDN is not applied.
  • the prior art discloses a patent for an Openflow-based communication technique for implementing SDN and a technology for transmitting traffic based on Openflow after placing an EPC in the cloud in an LTE network.
  • SDN Software-Defined Networking
  • the data plane is simply responsible for traffic forwarding and centralizes how and where to send traffic. Determined by the controller.
  • the controller provides various APIs through the northbound API and enables programming using them to enable various traffic control based on network information.
  • Openflow protocol is a protocol that supports the operation of SDN as described above. It is a southbound protocol that transfers forwarding information between the controller and the switch and delivers the switch status and traffic information to the controller.
  • the first patent is about Openflow technology, and it relates to the operation of Openflow and how to operate it in a switch to which Openflow is applied.
  • the second patent is about how to implement EPC in the cloud.
  • As a method of implementing the EPC in the cloud separate the control plane and the data plane, implement the control plane in the cloud, and if a virtualized control function is needed according to traffic load, additionally execute the control function in the cloud, A method of realizing the interworking of a data plane and a control plane using openflow technology has been proposed.
  • the present invention proposes the following three service examples in the SDN-based LTE network.
  • the first is about interworking with cache installed in base station
  • the second is about transmitting VoLTE traffic
  • the third is about 1: N media sharing service.
  • the existing research on each is as follows.
  • the access cache and core cache that provides the content caching function in the base station and the core.
  • the access cache located in the base station site first checks whether the same content is stored, and if the same content is stored, delivers the corresponding content to the terminal.
  • the traffic transmission method may vary according to the implementation method of the core cache and the access cache.
  • the core cache In case of using byte caching technique, even if the content of the terminal is stored in the access cache, the core cache must inform the core cache what content is sent in order to transmit the content to the terminal. To do this, the access cache sends a small packet called a label to the core cache.
  • the access cache After receiving the label, the access cache extracts the content corresponding to the label from the storage, makes it into a packet, and sends it to the terminal.
  • the access cache plays the role of a content source so that the user directly transmits the content to the terminal and the core cache does not deliver the content to the terminal.
  • the basic operations defined in the standard for VoLTE services are as follows.
  • the transmitting terminal transmits the voice packet to the network based on the information of the receiving terminal to be called.
  • This packet is delivered to the receiving terminal via the EPC again via the IMS located on the top of the EPC.
  • the response of the receiving terminal is also transmitted in the same path.
  • the 1: N media sharing service is a situation in which one terminal becomes a content providing source and is received by several terminals, which means an environment such as personal broadcasting.
  • the transmitting terminal needs a procedure for registering content to be delivered by the transmitting terminal, and the receiving terminal should inform the server of the fact that the receiving terminal wants to receive the content.
  • the content transmitted by the transmitting terminal is delivered to the media sharing server, and is copied to each receiving terminal as a unicast.
  • the Openflow protocol which is the basis of SDN technology, has already been standardized and defines a method of transmitting traffic, but at present, it is not clear what kind of gains can be obtained by only traffic transmission.
  • SDN technology is mainly applied to switches that connect servers in the data center to date, and there is little discussion about how to apply it in the LTE network.
  • the present invention is a technology that has not been addressed in existing SDN related studies.
  • SDN is applied to an LTE network
  • a basic network structure, functions of each NE, and additional NEs are defined, and an interworking scheme with an existing LTE network is defined.
  • openflow is applied to a switch connecting the eNB to the backhaul, and when there is a server providing a service at the base station, the pool is bundled with the pool and the traffic of the terminal is delivered to an appropriate server to increase the service quality of the terminal, Reduce the amount of use and increase the server utilization of the base station.
  • the present invention includes an embodiment for improving service performance by utilizing a previously submitted caching function of the base station.
  • the present invention includes an embodiment of traffic transmission optimization in 1: N media sharing service together with VoLTE traffic transmission optimization.
  • the present invention provides a communication control method of an SDN controller in a software-defined networking (SDN) -based wireless communication network, the method comprising: receiving information about the terminal from a gateway controller when a terminal is initially connected to a base station; Selecting at least one OpenFlow Switch (OFS) to process traffic of the terminal based on the information; And transmitting a request for setting a packet forwarding rule to process the traffic of the terminal to the at least one OFS.
  • SDN software-defined networking
  • the present invention also provides a communication control method of a gateway controller in a Software-Defined Networking (SDN) based wireless communication network, the method comprising: allocating an IP address to the terminal when a base station access request is received from the terminal; Transmitting information about the terminal to an SDN controller; And receiving, from the SDN controller, information on at least one OpenFlow Switch (OFS) selected to process traffic of the terminal based on the information on the terminal.
  • SDN Software-Defined Networking
  • the terminal IP packet can be transmitted by minimizing the GTP tunnel interval. Accordingly, the present invention can provide a service while minimizing the use of backhaul when providing an application service in an access period by delivering a terminal IP packet through an optimal path in an access period.
  • the entire LTE network is configured as an OpenFlow Switch based on the SDN controller, signal traffic for control will increase, but there is an advantage that the network becomes simple and easy to manage. This is a gain that can be obtained by applying SDN / OpenFlow to LTE network.
  • the role of SGW / PGW plays a role of A-OFS / C-OFS, reducing the number of entities constituting the network, and virtualizing the control plane of SGW / PGW so that it can be installed in the cloud. You can configure a possible network.
  • the effects that can be obtained by linking the smart cache system and the SDN-based LTE network are as follows.
  • the existing Smart Cache system when the UE requests content that is not stored in the EN associated with the base station, the backhaul must be used because the corresponding content must be received from the origin server via the CN. do.
  • the content stored in the EN of the neighboring base station is grasped, and if there is content in the neighboring BS, the EN of the neighboring BS transmits the content to the UE, thereby reducing backhaul usage and receiving the content closer.
  • the UX of the terminal is improved.
  • by enabling adjacent ENs to share limited storage capacity by operating in a pooling form efficient storage utilization is possible. As a result, the storage capacity is increased compared to the storage of each EN.
  • the effects that can be achieved by linking VoLTE service and SDN-based LTE network are as follows.
  • the packet is delivered to the counterpart terminal more quickly, and consequently, the voice quality can be improved.
  • the voice packet is transmitted only in the necessary section in the backhaul network, the effect of congestion that can occur in the backhaul network section is minimized along with the reduction of backhaul traffic.
  • the following effects can be obtained by interworking 1: N Media Sharing service and SDN-based LTE Network.
  • N Media Sharing service
  • the same traffic which was previously generated by transmitting data to each receiving terminal by unicast in the 1: N video traffic transmission process, does not occur several times, and the traffic transmission path is transmitted along the optimum path.
  • the UX at the receiving terminal is improved.
  • media relay server equipment which was previously required for 1: N video transmission, is no longer needed, thereby reducing the CAPEX.
  • FIG. 1 is a diagram briefly illustrating an LTE network structure according to a first embodiment of the present invention.
  • FIG. 2 is a diagram briefly illustrating an LTE network structure according to a second embodiment of the present invention.
  • FIG. 3 is a diagram briefly illustrating an LTE network structure according to a third embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a call flow of an initial attach operation of a terminal according to the present invention.
  • 5A and 5B are diagrams showing a call flow of an X2-based terminal handover operation according to the present invention.
  • 6A and 6B illustrate a call flow of a terminal paging operation according to the present invention.
  • FIG. 7 is a view showing a call flow of the detach operation of the terminal according to the present invention.
  • FIG. 8 is a diagram illustrating a call flow of a dedicated bearer activation operation according to the present invention.
  • FIG. 9 is a diagram illustrating a call flow of a bearer modification operation according to the present invention.
  • 10A and 10B illustrate a call flow of an X2-based handover operation when a terminal according to the present invention is handovered from an SDN-based LTE network to an existing LTE network.
  • 11 to 13 are diagrams illustrating a call flow of an S1-based handover operation when a terminal according to the present invention is handovered from an SDN-based LTE network to an existing LTE network.
  • 14A and 14B are diagrams illustrating a call flow of an X2-based handover operation when a terminal according to the present invention is handovered from an existing LTE network to an SDN-based LTE network.
  • 15 to 17 are diagrams illustrating a call flow of an S1-based handover operation when a terminal according to the present invention is handovered from an existing LTE network to an SDN-based LTE network.
  • FIG. 18 is a diagram illustrating a process of establishing a TCP connection by a terminal according to the present invention.
  • FIG. 19 is a diagram illustrating a first embodiment in which a terminal processes an initial HTTP GET request message according to the present invention.
  • FIG. 20 is a diagram illustrating a second embodiment in which a terminal processes an initial HTTP GET request message according to the present invention.
  • FIG. 21 is a diagram illustrating a process of transmitting an HTTP response packet to a terminal via EN # 2 along a set path.
  • 22 is a diagram illustrating an HTTP packet path after a cache HIT.
  • FIG. 23 is a diagram illustrating a Mobile SDN Network Architecture for a VoLTE service.
  • FIG. 24 illustrates a VoLTE path setup process between UE # 1 and UE # 2 according to the present invention.
  • FIG. 25 is a diagram illustrating a path for transmitting VoLTE traffic between two UEs set as optimal paths by the SDNC.
  • FIG. 26 is a diagram illustrating a Mobile SDN Network Architecture for 1: N media transmission.
  • 27 is a view showing a video call setup process for 1: N media transmission according to the prior art.
  • 29 is a diagram illustrating a video call setup process for 1: N media transmission when SDN is applied according to the present invention.
  • FIG. 30 is a diagram illustrating a transmission method when SDN is applied according to the present invention.
  • the present invention defines three network structures to apply SDN in LTE network.
  • FIG. 1 is a diagram briefly illustrating an LTE network structure according to a first embodiment of the present invention.
  • the LTE network structure defined in FIG. 1 is the simplest form.
  • an open flow switch is additionally installed at the top of the PGW, and the SDN controller manages this.
  • This structure does not allow all traffic in the core network to go through DPI (Deep Packet Inspection), NAT (Network Address Translator) and FW (FireWall). It can improve resource efficiency and speed up traffic.
  • the SDN controller may acquire traffic characteristic information in conjunction with a PCRF, thereby ensuring QoS according to traffic characteristics in the core network as well as in the LTE network.
  • SDN Controller delivers policy information for traffic processing to PCRF so that PCRF can handle traffic according to policy within LTE Network.
  • the SDN Controller enables end-to-end policy to be applied to traffic.
  • FIG. 2 is a diagram briefly illustrating an LTE network structure according to a second embodiment of the present invention.
  • the LTE network structure defined in FIG. 2 is a structure including EPC virtualization, which separates the control plane and data plane of the SGW and PGW, and performs control between the control plane and the data plane using the Openflow Protocol.
  • LTE network structure defined in FIG. 2 is a structure that can be applied to the cloud by virtualizing the control plane of the EPC compared to the network structure defined in FIG.
  • the LTE network structure defined in FIG. 2 is a structure in which the traffic steering function possible in FIG. 1 is equally applicable.
  • FIG. 3 is a diagram briefly illustrating an LTE network structure according to a third embodiment of the present invention.
  • the LTE network structure defined in FIG. 3 is a structure that separates the control planes of the SGW and the PGW and processes the data plane functions in the Openflow Switch. To this end, the LTE network structure of FIG. 3 defines A-OFS and C-OFS and performs operations such as GTP tunnel processing in the LTE network.
  • the control function of SGW and PGW delivers the necessary information in conjunction with the SDN controller, and the SDN Controller controls all Openflow Switches to ensure that terminal traffic is properly delivered to the desired destination.
  • the LTE network defined in FIG. 3 is the most advanced SDN structure.
  • various embodiments of the present invention will be described using the LTE network defined in FIG. 3 as an example.
  • NE added in the LTE SDN Network is A-OFS, C-OFS, SDNC and EPC Control and their functions are as follows.
  • -MME performs the same function as existing but additionally for S-GW relocation and P-GW relocation.
  • S-GW relocation When interlocking with EPC GW Control, the existing S11 Interface is extended.
  • A-A-OFS is in charge of bearer setup, resource allocation and flow processing according to PCC-rule of UE.
  • A-OFS performs the data plane function of EPC and sets control information such as path setup based on control information delivered from SDNC.
  • A-OFS reports this to the SDNC and acquires control information of the SDNC to set the path of the unconfigured flow packet.
  • As a switch that can handle protocol it acquires forward path setup information from SDNC and sets path based on it.
  • the C-OFS may perform GTP tunnel processing to operate as a GTP tunnel anchor of the UE.
  • SDNC controls and manages Openflow Switches.
  • the SDNC acquires mobility information, GTP session information, etc. of the UE in conjunction with the GW control function, and sets forwarding information of the UE packet in the Openflow Switch using the acquired information. If necessary, the SDNC configures packet forwarding information in the Openflow Switch for traffic steering.
  • the SDNC can perform packet processing specific to each application in association with the application. To this end, SDNC provides a northbound API and, if necessary, configures packet forwarding information in the corresponding Openflow Switch in conjunction with the application.
  • -EPC GW Control function is a control plane of SGW and PGW and performs terminal IP address allocation or paging request and packet forwarding when Idle is called.
  • the EPC GW Control function supports inter-eNB handover and control functions when relocating SGW and handles Inter-PGW handover.
  • the EPC GW Control function delivers the terminal IP address, IMSI information, eNB IP address information, GTP tunnel information, etc. to the SDNC when the SDNC requests it.
  • FIG. 4 is a diagram illustrating a call flow of an initial attach operation of a terminal according to the present invention.
  • FIG. 4 the initial attach process defined in the standard and a call flow newly added according to the present invention are displayed together.
  • the terminal is assigned an IP address by the SAE GW Control function at the first access.
  • the IP address and IMSI information of the terminal, and the IP address information of the eNB attached to the terminal should be delivered to the SDN Controller.
  • the SDN controller may set a forwarding rule for processing the packet associated with the IP address of the UE in A-OFS connected to the eNB. Accordingly, as shown in FIG. 4, the SAE GW Control function delivers corresponding information to the SDN Controller through an OFS Allocation Request message.
  • the SDN Controller acquires the policy information necessary to process the terminal traffic in conjunction with the PCRF, and sets the A-OFS, C-OFS, and backbone / backhaul to set the forwarding rule of the terminal packet based on the information. Select the constituent OFS.
  • the SDN Controller delivers the A-OFS IP address and policy information to the SAE GW Control through the OFS Allocation Response message.
  • the SAE GW Control function delivers the IMSI information, the IP address information, and the TEID information of the terminal to the SDN controller.
  • the SDN Controller sets a rule for forwarding UE packets to the OFSs selected in the previous process.
  • the SDN controller configures GTP encapsulation / decapsulation operations based on the TEID information in order to process the GTP tunnel in the A-OFS connected to the eNB.
  • 5A and 5B are diagrams showing a call flow of an X2-based terminal handover operation according to the present invention.
  • the GW Control function receiving the “Modify Bearer Request” from the MME sends a “Modify Path Request” to the SDNC to notify that the DL link TEID has been changed.
  • the SDNC selects a new target A-OFS based on the DL link change information (eNB address and TEID for DL) and updates the flow table by including the eNB address and TEID information in the selected A-OFS for downlink data transmission. Perform.
  • SDNC performs a flow table update so that the downlink flow can be transmitted to the target A-OFS.
  • the SDNC may select a new C-OFS according to the network topology. From this point, downlink data traffic is delivered through C-OFS ⁇ target A-OFS ⁇ target eNB.
  • the SDNC notifies the GW control function of target A-OFS address information.
  • the GW control function assigns a target A-OFS and a new TEID for UL to notify the MME (Modify Bearer Response).
  • the GW control function notifies the SDNC of the TEID for UL information allocated to the SDNC to apply the flow to the UL data flow, and the SDNC performs a flow table update for the UL data to the target A-OFS and the C-OFS. . From this point, uplink data traffic passes through target eNB ⁇ target A-OFS ⁇ C-OFS.
  • the SDNC then performs the corresponding UL and DL flow entry delete of the source A-OFS to end the X2 based terminal handover process.
  • 6A and 6B illustrate a call flow of a terminal paging operation according to the present invention.
  • the GW Control function notified of the transition to the UE Idle state from the MME notifies related information to the SDNC.
  • the GW control function requests configuration of forwarding DL data to the GW control function for the corresponding UE IP address (Modify path Request).
  • the SDNC Upon receiving the setup request, the SDNC configures the C-OFS to forward the DL flow to the GW control function (OFP: Update Forward Table (Modify)).
  • the SDNC may request the A-OFS to delete UL and DL flow entries.
  • SGW relocation may be performed. In this case, a new C-OFS may be allocated according to the network topology.
  • the C-OFS forwards the packet to the GW control function, and the GW control function transmits the "Downlink Data Notification" to the MME when the incoming packet is received.
  • the MME that performs this performs a paging request to the eNBs and performs NAS setup with the eNB that receives the response from the UE.
  • the MME requests SGW address and TEID allocation to the GW control function before transmitting the SGW address and the TEID for UL for UL traffic (TEID Request).
  • TEID Request the MME transfers previously known information to the eNB without interworking with the SGW.
  • the MME may change the A-OFS serving as the SGW. Acquire related information through SDNC.
  • the GW Control function receiving the request from the MME requests an A-OFS allocation to the SDNC (OFS allocation request), and notifies the MME of the A-OFS address and the assigned TEID for UL from the SDNC (OFS allocation response and TEID Response). ).
  • the MME transmits the "S1-AP: Initial Context Setup Request" to the eNB including the notified A-OFS (SGW) address and TEID information.
  • SGW A-OFS
  • the GW Control function notifies the SDNC of the S1 bearer Setup information including the allocated TEID for UL information.
  • the SDNC performs a forward table update (or may be referred to as a flow table update) including UE IP address and TEID for UL information through A-OFS. SDNC also selects C-OFS to perform flow table update.
  • a forward table update or may be referred to as a flow table update
  • C-OFS to perform flow table update.
  • the GW Control function notifies the SDNC of the S1 Bearer Setup information including the eNB address and the TEID for DL information, and the SDNC updates the forward table for downlink data flow to the A-OFS. (Or can be called a flow table update).
  • FIG. 7 is a view showing a call flow of the detach operation of the terminal according to the present invention.
  • the MME When the terminal sends a detach request message to the MME, the MME transmits a Delete Session Request to the GW control function.
  • the received GW control function transmits a response to the MME, and then transmits S1 bearer release information to the SDNC.
  • the SDNC Upon receiving the S1 bearer release information, the SDNC performs the PCEF initiated IP-CAN session termination procedure defined in TS23.203. Thereafter, the SDNC sends a forward table delete command to A-OFS, C-OFS and, if necessary, other OFSs (OFP: Update Forward Table (Delete)). OFSs receiving this delete the corresponding flow table entry.
  • OFSs Update Forward Table (Delete)
  • FIG. 8 is a diagram illustrating a call flow of a dedicated bearer activation operation according to the present invention.
  • the SDNC allows the OFSs to process the traffic according to QoS through a flow table update command (OFP: Flow Table Update ( Modify QoS)).
  • OFFP Flow Table Update ( Modify QoS)
  • FIG. 9 is a diagram illustrating a call flow of a bearer modification operation according to the present invention.
  • the bearer modification process is similar to the bearer setup process, and finally, the SDNC delivers QoS change information to the corresponding OFS so that the packet can be processed according to the changed QoS information (OFP: Flow Table Update (Modify QoS)). ).
  • 10A and 10B illustrate a call flow of an X2-based handover operation when a terminal according to the present invention is handovered from an SDN-based LTE network to an existing LTE network.
  • the GW Control function communicating with the target SGW for handover operates as a PGW controller.
  • the GW Control function receiving the “Modify Bearer Request” from the Target SGW requests the SDNC to allocate C-OFS for the GW Control function to operate as the PGW Bearer (OFS Allocation Request).
  • the "OFS Allocation Request” may include Target SGW address and TEID for DL information.
  • the SDNC Upon receiving the OFS Allocation Request, the SDNC selects an appropriate C-OFS (which may be an existing C-OFS) and responds with C-OFS address information. In addition, the SDNC performs a flow table update of the selected C-OFS including the target SGW address and the TEID information received from the GW control function (OFP: Update Forward Table (Modify)). Accordingly, downlink data traffic is transmitted from the CN to the UE through the C-OFS ⁇ Target S-GW ⁇ target eNB.
  • C-OFS which may be an existing C-OFS
  • OFP Update Forward Table (Modify)
  • the GW Control function assigns TEID for UL (S5 / S8) and includes the allocated information in the "Modify Bearer Response" and responds with the Target SGW. Also, referring to FIG. 10B, the GW Control function notifies the SDNC of the C-OFS address and the TEID information to set uplink data path (S5 / S8 bearer Info). Upon receiving this, the SDNC performs a flow table update for the uplink data path to C-OFS (OFP: Update Forward Table (Modify)). Accordingly, uplink data traffic is transmitted from the UE to the CN through the target eNB ⁇ Target SGW ⁇ C-OFS.
  • OFFP Update Forward Table
  • 11 to 13 are diagrams illustrating a call flow of an S1-based handover operation when a terminal according to the present invention is handovered from an SDN-based LTE network to an existing LTE network.
  • a source MME that has received a “Handover Required” from a source eNB, requests a PGW address and a TEID through a GW control function before transmitting a “Forward Relocation Request” message to the target MME (P-GW).
  • P-GW target MME
  • TEID Request The PGW address and TEID should be delivered to the Target MME.
  • the received GW Control function requests the SDNC to allocate C-OFS to perform the PGW function (OFS Allocation Request).
  • SDNC selects C-OFS to perform PGW function and responds C-OFS address to GW Control function (OFS Allocation Response), and GW Control function responds to TEID for UL and C-OFS (PGW) address as source MME (P-GW TEID Response).
  • GW Control function responds to TEID for UL and C-OFS (PGW) address as source MME (P-GW TEID Response).
  • the GW control function notifies the SDNC of the UE IP address, the C-OFS address, and the TEID (S5 / S8) to set uplink traffic paths (S5 / S8 Bearer Info.).
  • the SDNC updates the C-OFS flow table including the UE IP address, PGW address, and TEID information so that the uplink data path is set (OFP: Update Flow Table (Modify)).
  • the C-OFS also processes uplink data received from the existing source A-OFS.
  • a handover procedure between the target MME and the target base station is performed, and the target MME and the target serving gateway may perform indirect data forwarding.
  • the Source MME transmits a “Create Indirect Data Forwarding Request” to the GW Control function.
  • This request message includes the target SGW address and TEID.
  • the received GW control function sends indirect tunneling to the SDNC (Bearer Info Noti), and the SDNC performs source A-OFS flow table update for tunneling based on the information received from the GW control function (OFP: Update Flow Table). (Modify)).
  • the data forwarding path includes a source eNB ⁇ source A-OFS ⁇ Target SGW ⁇ target eNB.
  • the Target SGW After Handover Notify is transmitted from the Target eNB to the Target MME, as shown in FIG. 13, the Target SGW transmits a "Modify Bearer Request" including the Target S-GW address and TEID information to the GW Control function (PGW role). do.
  • the GW Control function receives the S5 / S8 Tunnel information to the SDNC for setting downlink data path (Bearer Info Noti), and the SDND performs the flow table update of C-OFS (P-GW role) (OFP). : Update Flow Table (Modify)). Accordingly, the downlink data is delivered to the C-OFS ⁇ Target SGW ⁇ Target eNB.
  • C-OFS performs IP anchoring for UE handed over to Non SDN network and performs legacy SGW and S5 / S8 Tunneling.
  • 14A and 14B are diagrams illustrating a call flow of an X2-based handover operation when a terminal according to the present invention is handovered from an existing LTE network to an SDN-based LTE network.
  • the GW Control function receiving the session create request after handover of the UE requests the SDNC to allocate C-OFS to perform the SGW role (OFS Allocation Request), where the IMSI, IP address, Delivers SGW address, TEID information, etc.
  • SDNC allocates C-OFS and transfers IP address to GW Control function (OFS Allocation Response), and also sends C-OFS a flow table update command to perform SGW function.
  • OFP Update Forward Table (Add or Modify)
  • A-OFS since the C-OFS operates as the SGW, it does not perform the GTP encapsulation / decapsulation function for the packet of the terminal. Accordingly, referring to FIG. 14b, the packet of the terminal is simply bypassed.
  • 15 to 17 are diagrams illustrating a call flow of an S1-based handover operation when a terminal according to the present invention is handovered from an existing LTE network to an SDN-based LTE network.
  • the GW Control function receiving the “Create Session Request” from the target MME makes a C-OFS allocation request to perform the target SGW role to the SDNC (OFS Allocation Request).
  • the SDNC responds to the C-OFS address after the appropriate C-OFS allocation (OFS Allocation Response).
  • the GW Control responds to the target MME by assigning a TEID to be used for S1-U (Create Session Response).
  • the GW Control function notifies the SDNC of S1-U Bearer Information.
  • the SDNC performs the flow table update of the C-OFS and the target A-OFS (target eNB correspondence) to enable processing of the UE packet (OFP: Update Flow Table).
  • SDNC transmits GTP tunnel information to C-OFS and GTP bypass information to A-OFS.
  • the C-OFS can receive the uplink data and transmit it to the PGW (it plays the role of target S-GW).
  • the MME when operating in the indirect data forwarding mode, transmits a "Create Indirect Data Forwarding Tunnel Request" to the GW Control function. Receiving this, the GW Control function performs a C-OFS allocation request to the SDNC for forwarding (OFS Allocation Request). This process is an optional process. The GW Control function may use the previously received C-OFS address without performing a C-OFS allocation request.
  • the GW Control function After receiving the C-OFS, the GW Control function generates a TEID for forwarding and responds to the target MME (Create Indirect Data Forwarding Tunnel Response), and notifies the SDNC of the tunnel information for forwarding (Bearer Info Noti.) .
  • the SDNC which receives this performs a C-OFS flow table update using the corresponding information (OFP: Update Flow Table (Modify)).
  • the C-OFS may forward downlink data from the source SGW and transmit the downlink data to the target eNB.
  • the target MME that has received “Handover Notify” from the target eNB transmits a “Modify Bearer Request” to the GW Control function, and the GW Control function exchanges a Modify Bearer message with the PGW.
  • the GW Control function transmits Bearer exchange information with the PGW to the SDNC (Bearer Info Noti.).
  • the SDNC updates the A-OFS and C-OFS flow tables based on the information (OFP: Update Flow Table (Modify)).
  • A-OFS operates in GTP bypass mode and C-OFS performs GTP tunneling with target eNB and PGW, respectively.
  • the downlink data is then transmitted to PGW ⁇ C-OFS (target S-GW) ⁇ target eNB.
  • A-OFS can operate as a switch and perform GTP processing (de-capsulation / encapsulation) for Edge app transmission under the control of SDNC.
  • the SDNC should be able to receive the relevant information in conjunction with the smart cache manager.
  • the smart cache manager operates as an application using the northbound API from the SDNC point of view.
  • the required DPI functions are as follows.
  • -Smart Cache Manager works with CN to acquire and manage content information stored in each EN.
  • the content targeted by the present invention is content preloaded by the CP, and this information is stored / managed by the CN according to the operation of the Smart Cache. Therefore, the Smart Cache Manager acquires this information and manages the actual content, URL, and address information of the stored EN, and identifies which EN is stored in the content corresponding to the URL requested by the terminal, and delivers it to the SDNC.
  • DPI is the same role that general DPI performs, and performs additional functions required by the present invention. That is, the content to which the present invention is applied may be a media file with a large amount of content pre-loaded by CP.
  • the DPI analyzes the HTTP request message requested by the terminal to determine whether the requested content is content preloaded by the CP, and informs the Smart Cache Manager of the result of the determination.
  • FIG. 18 is a diagram illustrating a process of establishing a TCP connection by a terminal according to the present invention.
  • the terminal establishes a TCP connection before delivering an HTTP request message.
  • the TCP connection of the terminal is established with the origin server.
  • the openflow switch operates like a normal switch.
  • the A-OFS transmits the terminal packet according to the path established in the previous step.
  • FIG. 19 is a diagram illustrating a first embodiment in which a terminal processes an initial HTTP GET request message according to the present invention.
  • A-OFS When A-OFS receives the HTTP GET request packet of the UE, it recognizes this as a new packet and sends the packet in DPI to analyze the packet. In this case, the A-OFS may transmit the packet transmitted by the terminal in DPI or may transmit the packet transmitted by the terminal only after transmitting the header information in the DIP along a preset path. 19 illustrates a case in which A-OFS transmits a packet requiring an analysis in DPI without buffering a packet of a terminal and then transmits a packet of the terminal along a set path.
  • the DPI analyzes the HTTP header information included in the HTTP request message based on the received information. At this time, DPI extracts URL, IP address and TCP information from HTTP header information and sends it to Smart Cache Manager.
  • the Smart Cache Manager checks whether the content corresponding to the URL sent by DPI is already stored. If content is not stored in EN # 1 of the base station to which the terminal is currently connected, and content is stored in EN # 2 of the neighboring base station, the Smart Cache Manager sets the forward path of the openflow flow switch so that the terminal packet passes through EN # 2. do.
  • FIG. 20 is a diagram illustrating a second embodiment in which a terminal processes an initial HTTP GET request message according to the present invention.
  • FIG. 20 illustrates a case where the DPI buffers the HTTP request packet in the switch (A-OFS) until the forward path setup command of the SDNC is transmitted by the Smart Cache Manager after analyzing the initial HTTP request packet.
  • the switch buffers the request message so that the switch forwards the request message to the origin server via EN # 2 according to the configured path.
  • FIG. 21 is a diagram illustrating a process of transmitting an HTTP response packet to a terminal via EN # 2 along a set path.
  • 22 is a diagram illustrating an HTTP packet path after a cache HIT.
  • EN # 2 since the corresponding content is stored in EN # 2, a cache HIT is performed, and accordingly, EN # 2 operates directly as a content providing server.
  • EN # 2 informs CN of cache HIT fact so that CN disconnects from origin server, creates TCP state to operate as TCP source by using TCP state information transmitted by CN, and then sends content directly to UE. send.
  • the operation of EN and CN after Cache HIT follows the operation defined in Smart Cache system.
  • FIG. 24 illustrates a VoLTE path setup process between UE # 1 and UE # 2 according to the present invention.
  • the IMS sets up a path based on the IP of the UE for a VoLTE call setup request of UE # 1. And IMS delivers 5 tuple information and QoS information of the flow to PCRF.
  • PCRF transfers 5 tuple information and QoS information received from IMS to SDNC using RESTful API. Based on this information, SDNC calculates the optimal path in the network structure previously identified and sets forward path of each switch.
  • FIG. 25 is a diagram illustrating a path for transmitting VoLTE traffic between two UEs set as optimal paths by the SDNC.
  • VoLTE packets can be exchanged through the shortest distance if only paths are set up between A-OFS connected to eNB # 1 and eNB # 2. As a result, delays required to deliver voice packets are reduced, and service quality can be improved.
  • FIG. 27 is a view showing a video call setup process for 1: N media transmission according to the prior art.
  • UE # 1 is a video transmission source and that UE # 2 to UE # 4 are terminals receiving video.
  • UE # 1 knows terminal group information to receive video, and transmits request information for transmitting video to each terminal to receive video.
  • the 1: N video controller receives the request information transmitted from UE # 1, the video controller sets up a bearer to each terminal of UE # 2 to UE # 4, and informs the server to relay the video transmitted by UE # 1. To pass.
  • FIG. 28 is a diagram illustrating a 1: N media transmission method according to the prior art. Specifically, FIG. 28 shows a process in which a media relay server relays video traffic transmitted by UE # 1 to respective terminals based on the path established in FIG. 27.
  • the video traffic transmitted by UE # 1 is delivered to the relay server, and the relay server delivers the corresponding video to each terminal by unicast using the path set up through the video controller in the call setup step.
  • the same video traffic is duplicated and delivered to the terminal through the LTE network, which can cause a load on the backhaul, and wastes resources by transmitting the same traffic multiple times.
  • 29 is a diagram illustrating a video call setup process for 1: N media transmission when SDN is applied according to the present invention.
  • the video controller sets up a path for each terminal based on the group information.
  • the video controller delivers the terminal information related to the video call to the SDNC using a RESTful API.
  • the group information related to the video call may include source / destination IP address information of UE # 1 to UE # 4.
  • the SDNC delivers packet mirroring and forward commands to each openflow switch in order to deliver video traffic transmitted from UE # 1 to UE # 2 to UE # 4 based on the address of the transmitted source and destination nodes. Based on this information, each openflow switch can know where to forward the packet for that flow.
  • FIG. 30 is a diagram illustrating a transmission method when SDN is applied according to the present invention. Specifically, FIG. 30 shows a process in which video traffic transmitted by UE # 1 is delivered to UE # 2 to UE # 4 by mirroring and forward policies set by the SDNC.
  • the video packet transmitted by UE # 1 is delivered to A-OFS connected to eNB # 1.
  • A-OFS is based on the information sent by the SDNC in the call setup phase, the fact that the received packet should be delivered to UE # 2 and A-OFS connected to eNB # 2 to be delivered to UE # 3 and UE # 4 It can be seen that it must be delivered. Therefore, A-OFS copies the packet transmitted by UE # 1 and delivers it to A # OFS connected to UE # 2 and eNB # 2.
  • the A-OFS connected to the eNB # 2 may know that the received information should be transmitted to the UE3 and the UE # 4 based on the information transmitted by the SDNC in the call setup step.
  • A-OFS connected to eNB # 2 copies the received packet and transmits the received packet to UE # 3 and UE # 4.
  • 1: N video traffic can be transmitted using a minimum path and a minimum network resource.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 SDN 기술을 LTE Network에 효과적으로 적용하기 위한 Network 구조와 이에 기반한 시스템의 동작에 대한 것이다. 이에 따른 본 발명은, SDN(Software-Defined Networking) 기반 무선통신 네트워크에서 SDN 컨트롤러의 통신 제어 방법으로, 기지국으로 단말이 최초 접속함에 따라 게이트웨이 제어부(Gateway Controller)로부터 상기 단말에 관한 정보를 수신하는 단계; 상기 정보를 기초로 상기 단말의 트래픽을 처리할 적어도 하나의 오픈플로우 스위치(OpenFlow Switch; OFS)를 선정하는 단계; 및 상기 적어도 하나의 OFS로 상기 단말의 트래픽을 처리하기 위한 패킷 포워딩 룰(Packet forwarding rule)의 설정 요청을 전송하는 단계를 포함하는 것을 특징으로 하는 통신 제어 방법에 관한 것이다.

Description

SDN 기반 LTE NETWORK 구조 및 동작 방안
본 발명은 SDN 기술을 LTE Network에 효과적으로 적용하기 위한 Network 구조와 이에 기반한 시스템의 동작에 대한 것이다. 특히 본 발명은 기존 Network Element (NE)들의 변경사항, 추가되는 NE들 및 이들의 기능을 정의함으로써 단말과 기지국의 변경 없이 SDN을 LTE Network에 효과적으로 적용하기 위한 기술에 대한 것이다. 또한 본 발명은, SDN 기술을 LTE Network에 적용할 때, SDN이 적용되지 않은 LTE Network와의 연동에 대해서도 고려하여 기존망과 공존이 가능한 SDN 기반 LTE Network의 구조 및 동작에 대해서 정의한다.
종래 기술은 SDN을 구현하는 Openflow 기반의 통신 기법에 대한 특허와 LTE network에서 EPC를 cloud에 위치시킨 후 Openflow를 기반으로 하여 traffic을 전송하는 기술에 대한 특허가 공개되어 있다.
- US, 13/176619, Openflow Communication System and Openflow Communication Method, Kiyohisa Ichino (NEC Corporation)
- US, 13/536838, Implementing EPC in a Cloud Computer with Openflow Data Plane, James Kempf 외 4명 (Telefonaktiebolaget LM Ericsson)
SDN(Software-Defined Networking)은 control plane과 data plane을 분리하고, control plane을 하나의 controller에 집중시키는 기술로써, SDN 방식에서 data plane은 단순히 traffic forwarding을 담당하고, traffic을 어디로 어떻게 전송할 것인지에 대해서는 중앙 controller에서 결정한다. 특히 controller는 northbound API를 통하여 다양한 API를 제공하고 이를 이용한 programming이 가능하도록 하여 network 정보를 기반으로 다양한 traffic 제어가 가능하도록 한다. Openflow protocol은 위와 같은 SDN의 동작이 가능하도록 지원해주는 protocol로서 Controller와 switch사이에서 forwarding 정보를 전달하고 switch의 상태나 traffic 정보 등을 controller로 전달하는 southbound protocol이다.
첫번째 특허는 Openflow 기술에 대한 것으로 Openflow의 동작과 Openflow가 적용된 switch에서의 동작 방법에 대한 것이다. 두 번째 특허는 EPC를 cloud에서 구현하는 방법에 관한 것이다. EPC를 cloud에서 구현하는 방법으로는, control plane과 data plane을 분리하고 control plane을 cloud에 구현한 후, 가상화된 control function이 traffic load에 따라 더 필요한 경우에는 cloud 내에서 추가적으로 control function을 실행시키고, data plane과 control plane의 연동을 openflow 기술을 이용하여 실현하는 방법이 제시되고 있다.
본 발명에서는 SDN 기반 LTE Network에서의 서비스 실시 예로 다음의 세 가지를 제안한다. 첫 번째는 기지국에 설치된 cache와의 연동에 대한 것이고, 두 번째는 VoLTE traffic 전송에 대한 것, 그리고 세 번째는 1:N media sharing 서비스에 대한 것이다. 각각에 대해서 기존 연구는 다음과 같다.
기지국 및 core에서 content caching 기능을 제공해주는 access cache 및 core cache에 대한 종래 기술의 동작을 살펴보면 다음과 같다. 단말이 content를 요청하면, 기지국 사이트에 위치한 access cache가 먼저 동일 content가 저장되어 있는지 확인하고, 동일 content가 저장되어 있는 경우 해당 content를 단말로 전달한다. 이때 core cache와 access cache의 구현 방법에 따라서 traffic의 전달 방법이 달라질 수 있다. Byte caching 이라는 기법을 이용할 경우 access cache에 단말의 content가 저장되어 있더라도 access cache가 그 content를 단말로 전송하기 위해서는 어떠한 content를 보내는지 core cache에게 알려 주어야 한다. 이를 위해서 access cache는 label이라는 작은 packet을 core cache로 전송한다. access cache는 label을 수신한 후 label에 해당하는 content를 storage에서 추출하고 packet으로 만들어 단말로 전송한다. 반면, object caching이라는 기법을 사용할 경우 access cache는 content source의 역할을 수행하여, 자신이 직접 content를 단말로 전송하고 core cache는 content를 단말로 전달하지 않는다.
VoLTE 서비스에 대하여 표준에 정의되어 있는 기본 동작은 다음과 같다. 송신 단말은 통화하고자 하는 수신 단말의 정보를 기반으로 음성 packet을 네트워크에 전송한다. 이 packet은 EPC 상단에 위치하고 있는 IMS를 거쳐서 다시 EPC를 거쳐서 수신 단말에게 전달된다. 수신 단말의 응답도 마찬가지 경로로 전달된다.
1:N media sharing 서비스는 하나의 단말이 content 제공 source가 되고, 여러 단말이 수신하는 상황으로 개인 방송과 같은 환경을 의미한다. 이 경우 송신 단말은 자신이 전달하고자 하는 content를 등록하는 절차가 필요하고, 수신하는 단말들은 그 content를 수신하고자 하는 사실을 server로 알려야 한다. 그리고 송신 단말이 전송하는 content는 media sharing server로 전달되어 수신 단말 각각에게 unicast로 복사되어 전달된다.
SDN 기술의 기반이 되는 Openflow protocol은 이미 표준화가 진행되고 있고, traffic을 전송하는 방법을 정의하고 있으나, 현재로써는 traffic 전송 방법만으로 어떠한 이득을 얻을 수 있는지 명확하지 않다. 또한 SDN 기술은 현재까지 주로 data center내의 서버들을 연결하는 switch에 적용되고 있어 LTE network 에서 어떻게 적용하여야 하는지에 대해서는 논의가 활발하지 않다.
또한, 종래에는 LTE network에서 Openflow를 활용하는 방법을 제시하고 있으나 이는 EPC 가상화에 초점을 맞춘 것으로, 주된 내용은 EPC를 가상화하였을 때 필요한 기술에 openflow를 적용한 것이다.기존 content caching의 기술은 기지국 사이트에 설치된 access cache에 단말이 요구하는 content가 저장되어 있을 때 효과를 발휘한다. 종래 기술에 따르면, 만약 단말이 연결된 기지국과 연동되어 있는 access cache에 해당 content가 저장되어 있지 않으나 인접 기지국에 연동되어 있는 access cache에 해당 content가 저장되어 있는 경우 그 content를 단말로 전달할 수 있는 방법이 없다. 따라서 비록 인접 기지국의 access cache에 해당 content가 있더라도 단말 traffic은 core까지 전달되어야 하고, 또한 Access cache에 해당 content를 저장하기 위하여 모든 content가 backhaul을 통해서 전달되어야 한다.
VoLTE traffic의 경우, 종래 기술에 따르면, 송수신 단말이 모두 하나의 기지국 내에 있거나 혹은 서로 인접한 기지국 내에 있더라도 음성 traffic은 EPC 상단에 설치되어 있는 Switch/Router를 거쳐서 전달되어야 하므로 불필요한 packet 전송 latency가 발생하고, backhaul을 낭비하는 결과를 발생시킨다. 이러한 문제는 1:N media sharing 서비스에서도 마찬가지로 발생한다. 즉, 송신단말과 수신단말이 모두 하나의 기지국에 존재하는 경우 media packet은 하나의 기지국 내에서, 혹은 기지국 상단의 switch에서 모두 처리될 수 있고, backhaul을 낭비하지 않아도 되지만 현재의 LTE network에서는 이러한 방법이 가능하지 않다.
본 발명은 기존 SDN 관련 연구들에서 다루지 않았던 기술로, LTE Network에 SDN을 적용하였을 경우 기본적인 Network 구조와 각 NE들의 기능, 그리고 추가되는 NE들을 정의하고 기존 LTE Network와의 연동 방안을 정의한다. 특히 본 발명에서는, eNB를 backhaul로 연결하는 switch에 openflow를 적용하고 기지국단에서 service를 제공하는 server가 존재할 때 이들을 pool로 묶어 단말의 traffic을 적절한 server로 전달함으로써 단말의 service quality를 높이고, backhaul의 사용양을 줄이며, 기지국단의 server 활용을 높인다. 또한, 본 발명은 기 제출된 기지국단의 caching 기능을 활용하여 서비스 성능을 향상시키는 실시 예를 포함한다. 또한 본 발명은 VoLTE traffic 전송 최적화와 함께 1:N media sharing 서비스에서의 traffic 전송 최적화에 대한 실시 예를 포함한다.
본 발명은, SDN(Software-Defined Networking) 기반 무선통신 네트워크에서 SDN 컨트롤러의 통신 제어 방법으로, 기지국으로 단말이 최초 접속함에 따라 게이트웨이 제어부(Gateway Controller)로부터 상기 단말에 관한 정보를 수신하는 단계; 상기 정보를 기초로 상기 단말의 트래픽을 처리할 적어도 하나의 오픈플로우 스위치(OpenFlow Switch; OFS)를 선정하는 단계; 및 상기 적어도 하나의 OFS로 상기 단말의 트래픽을 처리하기 위한 패킷 포워딩 룰(Packet forwarding rule)의 설정 요청을 전송하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 발명은, SDN(Software-Defined Networking) 기반 무선통신 네트워크에서 게이트웨이 제어부(Gateway Controller)의 통신 제어 방법으로, 단말의 기지국 접속 요청이 수신되면, 상기 단말에 IP address를 할당하는 단계; 상기 단말에 대한 정보를 SDN 컨트롤러로 전송하는 단계; 및 상기 SDN 컨트롤러로부터, 상기 단말에 대한 정보를 기초로 상기 단말의 트래픽을 처리하기 위해 선정된 적어도 하나의 오픈플로우 스위치(OpenFlow Switch; OFS)에 관한 정보를 수신하는 단계를 포함하는 것을 특징으로 한다.
본 발명에서 정의하는 SDN 기반 LTE Network의 구조에서는 GTP tunnel 구간을 최소화하여 단말 IP Packet을 전송할 수 있도록 하였다. 이에 따라 본 발명은, Access 구간에서 단말 IP packet을 최적의 path를 통하여 전달함으로써 Access 구간에서 application 서비스를 제공하는 경우 backhaul의 사용을 최소화하면서 서비스를 제공할 수 있도록 한다. 또한 본 발명에서는 전체 LTE Network가 SDN controller를 기반으로 OpenFlow Switch로 구성되므로 control을 위한 signal traffic은 증가하겠으나 망이 단순해지고 관리가 쉬워진다는 장점이 있다. 이는 LTE Network에 SDN/OpenFlow를 적용함으로 얻을 수 있는 이득이다. 또한 본 발명에 따르면, SGW/PGW의 역할을 A-OFS/C-OFS가 수행하게 되어 network을 구성하는 entity가 줄어들게 되고 SGW/PGW의 control plane을 가상화하여 cloud 등에 설치할 수 있으므로 자원의 효율적인 활용이 가능한 network를 구성할 수 있다.
Smart cache 시스템과 SDN 기반 LTE Network의 연동으로 얻을 수 있는 효과는 다음과 같다. 기존 Smart Cache 시스템에서는 기지국과 연동된 EN에 저장되어 있지 않은 content를 단말이 요청하는 경우, 해당 content를 CN을 거쳐서 origin server로부터 수신하여야 하기 때문에 backhaul을 사용하여야 하고, response time도 길어져 UX가 감소하게 된다. 하지만 본 발명에서는 인접 기지국의 EN에 저장된 content를 파악하여 만약 인접 기지국에 content가 있는 경우에는 인접 기지국의 EN이 단말로 content를 전송하도록 함으로써 backhaul 사용량을 줄일 수 있고, content를 보다 가까운 곳에서 수신하게 되어 단말의 UX가 향상되는 효과가 있다. 또한 본 발명에 따르면, 인접 EN들이 pooling 형태로 동작하여 제한된 storage capacity를 서로 공유할 수 있도록 함으로써 효율적인 storage 활용이 가능하다. 이에 따라 각 EN의 storage 대비 저장 용량이 증가하는 효과가 있다.
VoLTE 서비스와 SDN 기반 LTE Network의 연동으로 얻을 수 있는 효과는 다음과 같다. 본 발명에 따르면, 기존의 VoLTE packet의 전송 경로를 최단 path로 설정함으로써 packet이 보다 빠르게 상대 단말에게 전달되도록 함으로써, 결론적으로 음성 품질의 향상을 얻을 수 있다. 또한 본 발명에 따르면, backhaul network에서 필요한 구간에서만 음성 packet이 전송되므로 backhaul traffic 감소와 함께 backhaul network 구간에서 발생할 수 있는 congestion의 영향이 최소화되는 효과가 있다.
1:N Media Sharing 서비스와 SDN 기반 LTE Network의 연동으로 얻을 수 있는 효과는 다음과 같다. 본 발명에 따르면, 기존에 1:N video traffic 전송 과정에서 각 수신 단말에 unicast로 데이터를 전송하여 발생하였던 동일 traffic을 여러번 전송하는 경우는 발생하지 않으며, 또한 traffic 전송 경로가 최적의 경로를 따라서 전송됨으로써 수신 단말에서의 UX가 향상되는 효과가 있다. 특히 본 발명에 따르면, 기존에 1:N video 전송을 위해서 필수적으로 필요하였던 media relay server 장비가 더 이상 필요하지 않게 됨으로써 CAPEX를 줄이는 효과도 있다.
도 1은 본 발명의 제1 실시 예에 따른 LTE Network 구조를 간략히 나타낸 도면이다.
도 2는 본 발명의 제2 실시 예에 따른 LTE Network 구조를 간략히 나타낸 도면이다.
도 3은 본 발명의 제3 실시 예에 따른 LTE Network 구조를 간략히 나타낸 도면이다.
도 4는 본 발명에 따른 단말의 Initial attach 동작의 call flow를 나타낸 도면이다.
도 5a 및 도 5b는 본 발명에 따른 X2-based 단말 handover 동작의 call flow를 나타낸 도면이다.
도 6a 및 도 6b는 본 발명에 따른 단말 paging 동작의 call flow를 나타낸 도면이다.
도 7은 본 발명에 따른 단말의 detach 동작의 call flow를 나타낸 도면이다.
도 8은 본 발명에 따른 dedicated bearer activation 동작의 call flow를 나타낸 도면이다.
도 9는 본 발명에 따른 Bearer modification 동작의 call flow를 나타낸 도면이다.
도 10a 및 도 10b는 본 발명에 따른 단말이 SDN 기반 LTE Network에서 기존 LTE Network로 handover하는 경우에 있어서, X2 기반 handover 동작의 call flow를 나타낸 도면이다.
도 11 내지 도 13은 본 발명에 따른 단말이 SDN 기반 LTE Network에서 기존 LTE Network으로 handover하는 경우에 있어서, S1 기반 handover 동작의 call flow를 나타낸 도면이다.
도 14a 및 도 14b는 본 발명에 따른 단말이 기존 LTE Network에서 SDN 기반 LTE Network으로 handover하는 경우에 있어서, X2 기반 handover 동작의 call flow를 나타낸 도면이다.
도 15 내지 도 17은 본 발명에 따른 단말이 기존 LTE Network에서 SDN 기반 LTE Network으로 handover하는 경우에 있어서, S1기반 handover 동작의 call flow를 나타낸 도면이다.
도 18은 본 발명에 따른 단말이 TCP connection을 설립하는 과정을 나타낸 도면이다.
도 19는 본 발명에 따른 단말이 최초 HTTP GET request message를 처리하는 제1 실시 예를 보여주는 도면이다.
도 20은 본 발명에 따른 단말이 최초 HTTP GET request message를 처리하는 제2 실시 예를 보여주는 도면이다.
도 21은 설정된 path를 따라서 HTTP response packet이 EN #2를 거쳐서 단말로 전달되는 과정을 나타낸 도면이다.
도 22는 Cache HIT 후 HTTP packet path를 나타낸 도면이다.
도 23은 VoLTE 서비스를 위한 Mobile SDN Network Architecture를 나타낸 도면이다.
도 24는 본 발명에 따른 UE#1과 UE#2간의 VoLTE path setup과정을 나타낸 도면이다.
도 25는 SDNC에 의해서 최적의 path로 setup된 두 단말이 서로 VoLTE traffic을 전달하는 경로를 나타낸 도면이다.
도 26은 1:N media 전송을 위한 Mobile SDN Network Architecture를 나타낸 도면이다.
도 27은 종래 기술에 따른 1:N media 전송을 위한 video call setup 과정을 나타낸 도면이다.
도 28은 종래 기술에 따른 1:N media 전송 방법을 나타낸 도면이다.
도 29는 본 발명에 따라 SDN을 적용한 경우 1:N media 전송을 위한 video call setup과정을 나타낸 도면이다.
도 30은 본 발명에 따라 SDN을 적용한 경우 전송 방법을 나타낸 도면이다.
본 발명은 LTE Network에서 SDN을 적용하기 위해서 3 개의 Network 구조를 정의한다.
도 1은 본 발명의 제1 실시 예에 따른 LTE Network 구조를 간략히 나타낸 도면이다.
도 1에서 정의하는 LTE Network 구조는 가장 단순한 형태로, LTE Network의 기본 구조에서 PGW 상단에 Openflow Switch가 추가로 설치되고, 이를 SDN Controller가 관리하는 구조이다. 이러한 구조는 core network에서 모든 traffic이 core network을 구성하는 DPI (Deep Packet Inspection), NAT (Network Address Translator), FW (FireWall)를 거치도록 하지 않고 단말이나 traffic 특성에 따라서 필요한 traffic만 해당 NE를 통과하도록 하여 자원 효율성을 높임과 동시에 traffic 처리를 빠르게 할 수 있도록 한다. 도 1의 네트워크 구조에서 SDN Controller는 PCRF와 연동하여 traffic의 특성 정보를 획득할 수 있고 이에 따라 LTE Network내에서 뿐만 아니라 core network에서도 traffic 특성에 따른 QoS를 보장해 줄 수 있다. 또한 SDN Controller는 PCRF로 traffic 처리를 위한 policy 정보를 전달하여 PCRF가 LTE Network 내에서 policy에 알맞게 traffic을 처리할 수 있도록 한다. 또한, SDN Controller는 이를 통해서 traffic에 end-to-end policy를 적용할 수 있도록 한다.
도 2는 본 발명의 제2 실시 예에 따른 LTE Network 구조를 간략히 나타낸 도면이다.
도 2에서 정의하는 LTE Network 구조는 EPC 가상화를 포함하는 구조로서 SGW와 PGW의 control plane과 data plane을 분리하고, Openflow Protocol을 이용하여 control plane과 data plane간 control을 수행하는 구조이다. 도 2에서 정의하는 LTE Network 구조는 도 1에서 정의한 Network 구조와 비교하여 EPC의 control plane을 가상화하여 cloud 등에 적용할 수 있는 구조이다. 또한, 도 2에서 정의하는 LTE Network 구조는 도 1에서 가능한 traffic steering 기능도 동일하게 적용할 수 있는 구조이다.
도 3은 본 발명의 제3 실시 예에 따른 LTE Network 구조를 간략히 나타낸 도면이다.
도 3에서 정의하는 LTE Network 구조는 SGW와 PGW의 control plane을 분리하고 data plane의 기능을 Openflow Switch에서 처리하도록 한 구조이다. 이를 위해서 도 3의 LTE Network 구조는 A-OFS와 C-OFS를 정의하고 LTE Network에서의 GTP tunnel 처리와 같은 작업을 수행하도록 한다. SGW와 PGW의 control function은 SDN controller와 연동하여 필요한 정보를 전달하고 SDN Controller는 모든 Openflow Switch를 control하여 단말 traffic이 원하는 목적지로 제대로 전달되도록 한다. 도 3에서 정의하는 LTE Network는 가장 진화된 형태의 SDN 구조로서 이하에서는, 도 3에서 정의한 LTE Network를 예로 들어 본 발명의 다양한 실시 예를 설명하도록 한다.
본 발명에 따른 LTE SDN Network에서 추가되는 NE는 A-OFS, C-OFS, SDNC 및 EPC Control 이며 이들의 기능은 다음과 같다.
- 기존 PCRF, eNB의 기능은 변화가 없다.
- MME는 기존의 기능을 동일하게 수행하되, 추가로 S-GW relocation, P-GW relocation을 위해. EPC GW Control과 연동 시, 기존 S11 Interface를 Extension하여 사용한다.
- A-OFS는 단말의 bearer setup과 자원 할당, PCC-rule에 따른 flow 처리 등의 기능을 담당한다. 또한, A-OFS는 EPC의 data plane 기능을 수행하며 SDNC에서 전달하는 control 정보를 기준으로 path setup 등의 control 정보를 설정한다. Openflow agent가 실행되고, 이에 따라 설정되지 않은 flow packet이 수신되면 A-OFS는 이를 SDNC로 보고하고 SDNC의 control 정보를 획득하여 설정되지 않은 flow packet의 path를 설정한다.- C-OFS는 일반적인 openflow protocol을 처리할 수 있는 switch로써 SDNC로부터 forward path setup 정보를 획득하고 이를 기반으로 path 설정을 수행한다. 또한 Non-SDN LTE Network에서 attach된 단말이 handover하는 경우, 혹은 반대의 경우에 C-OFS는 단말의 GTP tunnel anchor로서 동작하기 위해서 GTP tunnel 처리를 수행할 수 있다.
- SDNC는 Openflow Switch들을 control하고 관리한다. 또한 SDNC는 GW control function과 연동하여 단말의 mobility 정보, GTP session 정보 등을 획득하고 획득한 정보를 이용하여 단말 packet의 forwarding 정보를 Openflow Switch에 설정한다. 그리고 필요한 경우 SDNC는 traffic steering을 위한 packet forwarding 정보를 Openflow Switch에 설정한다. SDNC는 application과 연동하여 각 application에 특화된 packet 처리를 수행할 수 있다. 이를 위하여 SDNC는 northbound API를 제공하며 필요한 경우 application과 연동하여 해당되는 Openflow Switch에 packet forwarding 정보를 설정한다.
- EPC GW Control function은 SGW와 PGW의 control plane으로써 단말 IP address 할당이나 Idle 착신 시 paging request와 packet forwarding 기능 등을 수행한다. 또한 EPC GW Control function은 Inter-eNB handover와 SGW relocation시 control 기능을 지원하며, Inter-PGW handover를 처리한다. EPC GW Control function은 SDNC가 요청하는 경우 단말 IP address와 IMSI 정보 및 eNB IP address 정보, GTP tunnel 정보 등을 SDNC로 전달한다.
이하에서는, SDN 기반 LTE Network에서 단말의 attach와 detach, 단말 handover 지원, bearer setup과 modification, paging 등을 위한 call flow를 설명하고, 이러한 구조에서 기지국 caching 서비스, VoLTE 서비스, 1:N media sharing 서비스를 제공할 때의 동작에 대해서 각각 설명하도록 한다. 앞서 설명하였듯이 이하에서는, 도 3에서 정의한 LTE Network를 예로 들어 각각의 실시 예를 설명하도록 한다.
도 4는 본 발명에 따른 단말의 Initial attach 동작의 call flow를 나타낸 도면이다.
도 4에서는, 표준에 정의된 initial attach 과정과 본 발명에 따라 새롭게 추가되는 call flow를 함께 표시하였다.
단말은 최초 접속 시에 SAE GW Control function에 의해서 IP address를 할당받는다. 이때 단말의 IP address와 IMSI 정보, 그리고 단말이 attach한 eNB의 IP address 정보는 SDN Controller에게 전달되어야 한다. SDN Controller는 이 정보를 기반으로 eNB와 연결된 A-OFS에 단말의 IP address와 연관된 packet을 처리하기 위한 forwarding rule을 설정할 수 있다. 따라서 도 4에 도시된 바와 같이 SAE GW Control function은 OFS Allocation Request message를 통하여 SDN Controller에게 해당 정보를 전달한다. 이 정보를 기반으로 SDN Controller는 PCRF와 연동하여 단말 traffic을 처리하기 위해 필요한 policy 정보를 획득하고, 해당 정보를 기반으로 단말 packet의 forwarding rule을 설정할 A-OFS와 C-OFS, 그리고 backbone/backhaul을 구성하는 OFS를 선정한다. 그리고 SDN Controller는 SAE GW Control에게 A-OFS의 IP address와 policy 정보 등을 OFS Allocation Response message를 통하여 전달한다. 이후 TEID 할당과정과 단말 IP address 할당 및 bearer setup 과정이 끝나면 SAE GW Control function은 SDN Controller에게 단말의 IMSI 정보와 IP address 정보, TEID 정보 등을 전달한다. SDN Controller는 이 정보를 기반으로 이전 과정에서 선정하였던 OFS들에게 단말 packet을 forwarding하기 위한 rule을 설정한다. 또한 SDN Controller는 eNB와 연결된 A-OFS에서 GTP tunnel을 처리할 수 있도록 하기 위하여 TEID 정보를 기반으로 GTP encapsulation/decapsulation 동작을 설정한다.
도 5a 및 도 5b는 본 발명에 따른 X2-based 단말 handover 동작의 call flow를 나타낸 도면이다.
도 5a를 참조하면, MME로부터 "Modify Bearer Request"를 수신한 GW Control function은 SDNC에 "Modify Path Request"를 전송하여 DL link TEID가 변경되었음을 통보한다. SDNC는 DL link변경정보 (eNB address 및 TEID for DL)를 기반으로 새로운(target) A-OFS를 선택하고, Downlink data 전송을 위해 선택된 A-OFS에 eNB address, TEID정보를 포함하여 flow table update를 수행한다. 또한 SDNC는 downlink data전송을 위해 C-OFS에 해당 Downlink flow가 target A-OFS로 전송될 수 있도록 flow table update 수행한다. 이때 SDNC는 network topology에 따라 새로운 C-OFS를 선택할 수도 있다. 이때부터 Downlink Data traffic은 C-OFS → target A-OFS →target eNB를 통해서 전달된다.
이후, 도 5b를 참조하면, SDNC는 target A-OFS address정보를 GW Control function에게 통보한다. GW control function은 target A-OFS 및 새로운 TEID for UL를 할당하여 MME에 통보한다(Modify Bearer Response). 또한 GW control function은 UL data flow에 대한 flow적용을 위해 SDNC로 할당된 TEID for UL정보를 SDNC로 통보하게 되고, SDNC는 target A-OFS 및 C-OFS로 UL data를 위한 flow table update를 수행한다. 이때부터 Uplink Data traffic이 target eNB → target A-OFS → C-OFS를 경유한다. 이후 SDNC는 source A-OFS의 해당 UL, DL flow entry delete를 수행하여 X2 based 단말 handover 과정을 끝낸다.
도 6a 및 도 6b는 본 발명에 따른 단말 paging 동작의 call flow를 나타낸 도면이다.
도 6a를 참조하면, MME로부터 UE Idle state로 천이되었음을 통보 받은 GW Control function은 SDNC로 관련 정보를 통보한다. 또한 GW Control function은 해당 UE IP address에 대해서 DL data를 GW control function으로 forwarding하도록 설정을 요청한다(Modify path Request).
설정 요청을 수신한 SDNC는 C-OFS가 DL flow를 GW control function으로 forward하도록 설정한다(OFP: Update Forward Table(Modify)). 그리고 optional 과정으로 SDNC는 A-OFS에게 UL, DL flow entry를 삭제하도록 요청할 수 있다. 이때 규격상 Idle UE의 TAU가 수행되면 SGW relocation이 수행될 수 있으며 이 경우 Network topology에 따라 새로운 C-OFS가 할당될 수도 있다.
Idle상태인 UE로 packet 착신이 되면 C-OFS는 GW control function으로 packet을 forwarding하고 GW control function은 착신 packet이 수신되면 MME로 "Downlink Data Notification"을 전송한다. 이를 수신한 MME는 eNB들로 Paging요청을 수행하고 UE로부터 응답을 수신한 eNB와 NAS Setup을 수행한다.
이후 MME는, UL traffic을 위한 SGW address, TEID for UL 전송 전에, GW Control function에 SGW address, TEID 할당을 요청한다(TEID Request). 규격에는 MME는 SGW와 연동 없이 이전에 알고 있는 정보를 eNB로 전달하도록 되어 있으나 본 발명의 network 구조에서는 단말이 idle 상태에서 이동한 경우 SGW 역할을 수행하는 A-OFS가 변경되었을 수도 있기 때문에 MME는 SDNC를 통하여 관련 정보를 획득한다.
MME로부터 요청을 받은 GW Control function은 SDNC로 A-OFS 할당을 요청하고(OFS allocation request), SDNC로부터 통보받은 A-OFS address와 할당한 TEID for UL을 MME로 통보한다(OFS allocation response, TEID Response).
이를 수신한 MME는 통보 받은 A-OFS(SGW에 해당) address 및 TEID정보를 포함하여 eNB로 "S1-AP: Initial Context Setup Request"를 전송한다.
이때, GW Control function은 할당한 TEID for UL정보를 포함하여 S1 bearer Setup정보를 SDNC로 통보한다.
이후, 도 6b를 참조하면, SDNC는 A-OFS로 UE IP address, TEID for UL정보를 포함한 forward table update(또는 flow table update로 명명될 수 있음)를 수행한다. 또한 SDNC는 C-OFS를 선택하여 flow table update수행한다.
이후, MME로부터 "Modify Bearer Request"가 수신되면, GW Control function은 SDNC로 eNB address, TEID for DL정보를 포함한 S1 Bearer Setup정보를 통보하고, SDNC는 A-OFS로 downlink data flow를 위한 forward table update(또는 flow table update로 명명될 수 있음)를 수행한다.
도 7은 본 발명에 따른 단말의 detach 동작의 call flow를 나타낸 도면이다.
단말이 detach request message를 MME로 전송하면, MME는 GW control function으로 Delete Session Request를 전송한다. 이를 수신한 GW control function은 MME로 응답을 전송한 후, SDNC로 S1 bearer release information을 전달한다. S1 bearer release information을 수신한 SDNC는 TS23.203에 정의된 PCEF initiated IP-CAN session termination 절차를 수행한다. 이후, SDNC는 A-OFS와 C-OFS, 그리고 필요한 경우 다른 OFS들에게 forward table delete 명령을 전송한다(OFP: Update Forward Table(Delete)). 이를 수신한 OFS들은 해당되는 flow table entry를 삭제한다.
도 8은 본 발명에 따른 dedicated bearer activation 동작의 call flow를 나타낸 도면이다.
dedicated bearer activation 동작의 기본적인 과정은 기존 규격의 내용과 동일하게 수행된다. 다만 본 발명의 실시 예에서는, bearer가 activation 된 경우 해당되는 traffic이 전달될 수 있도록 하기 위하여 SDNC가 flow table update 명령을 통하여 OFS들이 QoS에 알맞게 traffic을 처리할 수 있도록 한다(OFP: Flow Table Update(Modify QoS)).
도 8에 도시된 call flow에서 PCRF와 GW Control function간의 통신이 SDNC를 거쳐서 이루어지게 된다. 이는 도 3의 network 구조에서 설명하였듯이, 기존 Network에서 PCRF와 GW Control function가 직접 연동하는 것과 달리, 본 발명에서는, GW Control function이 SDNC를 통하여 연동되기 때문이다.
도 9는 본 발명에 따른 Bearer modification 동작의 call flow를 나타낸 도면이다.
Bearer modification 과정도 bearer setup과정과 유사하게 이루어지며, 최종적으로 SDNC는 해당되는 OFS들에게 QoS 변경 정보를 전달함으로써 변경된 QoS 정보에 따라 packet이 처리될 수 있도록 한다(OFP: Flow Table Update(Modify QoS)).
도 10a 및 도 10b는 본 발명에 따른 단말이 SDN 기반 LTE Network에서 기존 LTE Network로 handover하는 경우에 있어서, X2 기반 handover 동작의 call flow를 나타낸 도면이다.
도 10a 및 도 10b에 도시된 handover 과정에서 target SGW와 handover를 위해 통신하는 GW Control function은 PGW Controller로 동작한다.
먼저, 도 10a를 참조하면, Target SGW로부터 "Modify Bearer Request"를 수신한 GW Control function은 SDNC에게 GW Control function가 PGW Bearer로 동작하기 위한 C-OFS할당을 요청한다(OFS Allocation Request). 이때 "OFS Allocation Request"에는 Target SGW address, TEID for DL정보가 포함될 수 있다.
OFS Allocation Request를 수신한 SDNC는 적당한 C-OFS를 선택(기존 C-OFS일 수 있음) 하여 C-OFS address정보를 응답한다. 또한, SDNC는 GW Control function으로부터 수신한 Target SGW address, TEID정보를 포함하여 선택된 C-OFS의 flow table update를 수행한다(OFP: Update Forward Table(Modify)). 이에 따라, Downlink data traffic은 CN으로부터 C-OFS →Target S-GW → target eNB를 통해서 UE로 전달된다.
GW Control function은 TEID for UL (S5/S8)을 할당하고 할당된 정보를 "Modify Bearer Response"에 포함시켜 Target SGW로 응답한다. 또한 도 10b를 참조하면, GW Control function은 Uplink data path설정을 위해 SDNC로 C-OFS address, TEID정보를 통보한다(S5/S8 bearer Info). 이를 수신한 SDNC는 C-OFS로 Uplink data path를 위한 flow table update를 수행한다(OFP: Update Forward Table(Modify)). 이에 따라, Uplink data traffic은 UE로부터 target eNB → Target SGW → C-OFS를 통해서 CN으로 전달된다.
도 11 내지 도 13은 본 발명에 따른 단말이 SDN 기반 LTE Network에서 기존 LTE Network으로 handover하는 경우에 있어서, S1 기반 handover 동작의 call flow를 나타낸 도면이다.
먼저, 도 11a를 참조하면, Source eNB로부터 "Handover Required"를 받은 Source MME는, Target MME로 "Forward Relocation Request" message를 전송하기 전에, GW Control function으로 PGW address 및 TEID를 요청한다(P-GW TEID Request). (PGW address 및 TEID는 Target MME로 전달되어야 한다.) 이를 수신한 GW Control function은 SDNC에게 PGW기능을 수행할 C-OFS의 할당을 요청한다(OFS Allocation Request). SDNC는 PGW기능을 수행할 C-OFS를 선택하여 C-OFS address를 GW Control function으로 응답하고(OFS Allocation Response), GW Control function은 TEID for UL 및 C-OFS(PGW) address를 source MME로 응답한다(P-GW TEID Response).
또한 GW Control function은 Uplink Traffic path설정을 위해 SDNC로 UE IP address, C-OFS address 및 TEID(S5/S8)을 통보한다(S5/S8 Bearer Info.). 이를 수신한 SDNC는 UE IP address, PGW address, TEID정보를 포함한 C-OFS의 flow table에 대한 update를 수행하여 Uplink data path가 설정되도록 한다(OFP: Update Flow Table(Modify)). 이때 C-OFS는 기존 Source A-OFS로부터 수신되는 uplink data에 대한 처리도 수행한다.
이후, 도 11b를 참조하면, 타겟 MME와 타겟 기지국간 핸드오버 절차가 수행되며, 타겟 MME와 타겟 서빙 게이트웨이는 Indirect Data Forwarding을 수행할 수 있다.
다음으로, 도 12a를 참조하면, Indirect Data Forwarding의 경우 Source MME는 GW Control function에 "Create Indirect Data Forwarding Request"를 전송한다. 이 Request message에는 target SGW address와 TEID가 포함된다. 이를 수신한 GW Control function은 Indirect tunneling을 SDNC에 전송하고(Bearer Info Noti), SDNC는 GW Control function으로부터 받은 정보를 기반으로 Tunneling을 위해 Source A-OFS flow table update를 수행한다(OFP: Update Flow Table(Modify)). 이에 따라 도 12b를 차조하면, Data forwarding path는 Source eNB → source A-OFS → Target SGW → target eNB로 구성된다.
Target eNB로부터 Target MME로 Handover Notify가 전송된 이후에, 도 13에 도시된 바와 같이, Target SGW는 GW Control function(PGW역할)으로 Target S-GW address, TEID 정보를 포함한 "Modify Bearer Request"를 전송한다. 이를 수신한 GW Control function은 Downlink data path설정을 위해 SDNC로 S5/S8 Tunnel정보를 전달하여(Bearer Info Noti), SDND가 C-OFS (P-GW역할)의 flow table update를 수행하도록 한다(OFP: Update Flow Table(Modify)). 이에 따라, Downlink data는 C-OFS → Target SGW → Target eNB로 전달된다. Handover후 C-OFS는 Non SDN망으로 Handover한 UE에 대한 IP anchoring을 수행하며, legacy SGW와 S5/S8 Tunneling을 수행하게 된다.
도 14a 및 도 14b는 본 발명에 따른 단말이 기존 LTE Network에서 SDN 기반 LTE Network으로 handover하는 경우에 있어서, X2 기반 handover 동작의 call flow를 나타낸 도면이다.
도 14a를 참조하면, 단말의 handover 이후 session create 요청을 수신한 GW Control function은 SDNC에게 SGW 역할을 수행할 C-OFS의 할당을 요청하게 되며(OFS Allocation Request), 이때 단말의 IMSI, IP address, SGW address, TEID 정보 등을 전달한다. SDNC는 C-OFS를 할당한 후 IP address를 GW Control function으로 전달하며(OFS Allocation Response), 또한 C-OFS에게 SGW 기능의 수행을 위한 flow table update 명령을 전송하여 C-OFS가 단말 packet을 처리하도록 한다(OFP: Update Forward Table(Add or Modify)). A-OFS의 경우 C-OFS가 SGW로 동작하기 때문에 단말의 packet에 대해 GTP encapsulation/decapsulation 기능을 수행하지 않으며, 이에 따라 도 14b를 참조하면, 단말의 packet을 단지 bypass하게 된다.
도 15 내지 도 17은 본 발명에 따른 단말이 기존 LTE Network에서 SDN 기반 LTE Network으로 handover하는 경우에 있어서, S1기반 handover 동작의 call flow를 나타낸 도면이다.
먼저, 도 15를 참조하면, Target MME로부터 "Create Session Request"를 수신한 GW Control function은 SDNC로 target SGW역할을 수행할 C-OFS할당 요청을 한다(OFS Allocation Request). 이를 수신한 SDNC는 적당한 C-OFS할당 후 C-OFS address를 응답한다(OFS Allocation Response).
GW Control는 S1-U에 사용될 TEID를 할당하여 Target MME에게 응답한다(Create Session Response).
이후, GW Control function은 SDNC에 S1-U Bearer Information을 통보한다. SDNC는 C-OFS 및 target A-OFS(target eNB대응)의 flow table update를 수행하여 단말 packet의 처리가 가능하도록 한다(OFP: Update Flow Table). 이를 위해서 SDNC는 C-OFS로는 GTP Tunnel 정보를 전송하고, A-OFS로는 GTP bypass 정보를 전송한다. 이 후 C-OFS는 Uplink data를 받아 PGW로 전송할 수 있다(target S-GW 역할을 수행함).
다음으로, 도 16을 참조하면, Indirect Data forwarding 모드로 동작하는 경우, MME는 GW Control function으로 "Create Indirect Data Forwarding Tunnel Request"를 전송한다. 이를 수신한 GW Control function은 Forwarding을 위해 SDNC로 C-OFS 할당 요청을 수행한다(OFS Allocation Request). 이 과정은 optional 과정으로 GW Control function은 C-OFS 할당 요청을 수행하지 않고, 기존에 받은 C-OFS address를 그대로 이용할 수도 있다.
C-OFS를 할당받은 이후, GW Control function은 forwarding을 위한 TEID를 생성한 후 Target MME로 응답하고(Create Indirect Data Forwarding Tunnel Response), Forwarding을 위한 Tunnel 정보를 SDNC로 통보한다(Bearer Info Noti.). 이를 수신한 SDNC는 해당 정보를 이용하여 C-OFS flow table update를 수행한다(OFP: Update Flow Table(Modify)).
이후, 도 17a를 참조하면, C-OFS는 Source SGW로부터 downlink data를 forwarding받아서 target eNB로 전송할 수 있다. 도 17b를 참조하면, Target eNB로부터 "Handover Notify"를 수신한 target MME는 GW Control function에 "Modify Bearer Request"를 전송하고, GW Control function은 PGW와 Modify Bearer message를 교환한다. GW Control function은 Modify Bearer 과정을 완료한 후, PGW와의 Bearer 교환 정보를 SDNC로 전송한다(Bearer Info Noti.). 이를 수신한 SDNC는 해당 정보를 기반으로 A-OFS, C-OFS flow table을 update한다(OFP: Update Flow Table(Modify)). 이때 A-OFS는 GTP bypass mode로 동작하고 C-OFS는 target eNB 및 PGW와 각각 GTP Tunneling을 수행한다. 이후 Downlink data는 PGW → C-OFS (target S-GW) → target eNB로 전송된다. 이때 A-OFS는 switch로 동작하면서 SDNC의 제어를 통해 Edge app전송을 위한 GTP 처리(de-capsulation/encapsulation)를 수행할 수 있다.
상기에서는, SDN based LTE Network에서 기본 동작에 필요한 call flow들이 어떻게 이루어지는지 정의하였다. 이하에서는, 기지국이 cache 서비스, VoLTE 서비스, 그리고 1:N media sharing 서비스를 제공하는데 있어서 본 발명에서 정의하는 SDN 기반 LTE network의 동작을 도면을 참조하여 설명하도록 한다.
우선 기지국 cache 서비스와 연동하는 실시 예에 대해서 설명한다. 기지국 cache와 연동하는 경우 SDNC는 smart cache manager와 연동하여 관련 정보를 수신할 수 있어야 하며, 이때 smart cache manager는 SDNC 입장에서 northbound API를 이용하는 application으로 동작한다. smart cache manager의 기능과 함께 필요한 DPI의 기능은 다음과 같다.
- Smart Cache Manager는 CN과 연동하여 각 EN에 저장된 content 정보를 획득하고 관리한다. 현재 발명에서 대상으로 하고 있는 content는 CP에 의해서 preload된 content로써 이 정보는 Smart Cache의 동작에 따라 CN에서 저장/관리된다. 따라서 Smart Cache Manager는 이 정보를 획득하여 실제 content와 URL, 그리고 저장된 EN의 address 정보 등을 관리하며, 단말이 요청한 URL에 해당하는 content가 어느 EN에 저장되어 있는지를 파악하여 이를 SDNC로 전달한다.
- DPI는 일반적인 DPI가 수행하는 역할과 동일하며, 본 발명에서 요구하는 추가적인 기능을 수행한다. 즉 본 발명이 적용되는 content는 CP가 preload한 content로써 대용량의 media 파일일 수 있다. DPI는 단말이 요청한 HTTP request message를 분석하여 요청된 content가 CP가 preload한 content인지를 판단하고, 판단 결과를 Smart Cache Manager에게 알려주는 역할을 수행한다.
이하에서는 상술한 내용을 기초로 Smart Cache와의 연동과정에 관한 실시 예를 구체적으로 설명한다.
도 18은 본 발명에 따른 단말이 TCP connection을 설립하는 과정을 나타낸 도면이다. 도 18을 참조하면, 단말은 HTTP request message를 전달하기 전에 TCP connection을 설립한다. 단말의 TCP connection은 origin server와 설립되며 이 과정에서 openflow switch는 일반 switch와 동일하게 동작한다. 또한 A-OFS도 GTP 종단을 한 후 단말 packet을 이전 단계에서 설립된 path에 따라서 전송한다.
도 19는 본 발명에 따른 단말이 최초 HTTP GET request message를 처리하는 제1 실시 예를 보여주는 도면이다.
A-OFS는 단말의 HTTP GET request packet을 수신하면, 이를 새로운 packet으로 인지하고 DPI로 packet을 보내 분석하도록 한다. 이때 A-OFS는 DPI로 단말이 전송한 packet을 그대로 전송할 수도 있고, 또는 DIP로 header 정보만을 전송한 후 단말이 전송한 packet은 미리 설정된 path를 따라서 전송할 수도 있다. 도 19에서는 A-OFS가 단말의 packet을 buffering하지 않고 분석이 필요한 부분을 DPI로 전송한 후, 설정된 path를 따라서 단말의 packet을 전송하는 경우를 나타낸다.
DPI는 수신한 정보를 기반으로 HTTP request message에 포함되어 있는 HTTP header 정보를 분석한다. 이때 DPI는 HTTP header 정보로부터 URL과 IP address, TCP 정보 등을 추출하고 이를 Smart Cache Manager로 전송한다. Smart Cache Manager는 DPI가 전송한 URL에 해당하는 content가 이미 저장되어 있는지를 확인한다. 만약 현재 단말이 연결된 기지국의 EN #1에 content가 저장되어 있지 않고 인접 기지국의 EN #2에 content가 저장되어 있으면 Smart Cache Manager는 단말 packet이 EN #2를 거치도록 openflow flow switch의 forward path를 설정한다.
도 20은 본 발명에 따른 단말이 최초 HTTP GET request message를 처리하는 제2 실시 예를 보여주는 도면이다.
구체적으로, 도 20은 DPI가 최초 HTTP request packet을 분석한 후 Smart Cache Manager에 의해서 SDNC의 forward path setup 명령이 전달될 때까지 HTTP request packet을 switch(A-OFS)에서 buffering하는 경우를 나타낸다. 이 경우는 앞서 설명한 것과 동일하게 동작하되, 다만 switch에서 request message를 buffering하고 있기 때문에 switch가 request message를 설정된 path에 따라서 EN #2를 거쳐서 origin server로 전달하게 된다.
도 21은 설정된 path를 따라서 HTTP response packet이 EN #2를 거쳐서 단말로 전달되는 과정을 나타낸 도면이다.
도 22는 Cache HIT 후 HTTP packet path를 나타낸 도면이다.
도 22의 실시 예에서, 해당 content가 EN #2에 저장되어 있기 때문에 cache HIT가 이루어지고, 이에 따라 EN #2는 직접 content 제공 server로 동작하게 된다. EN #2는 CN으로 cache HIT 사실을 알려주어 CN이 origin server와의 연결을 끊도록 하며, CN이 전송하던 TCP 상태 정보를 이용하여 TCP source로 동작하기 위한 TCP state를 생성한 후 단말로 content를 직접 전송한다. Cache HIT 이후 EN과 CN의 동작은 Smart Cache 시스템에 정의된 동작을 따른다.
이하에서는 본 발명에 따른 VoLTE 서비스에 대한 실시 예를 설명한다. 후술할 실시 예들은, 도 23에 도시된 VoLTE 서비스를 위한 Mobile SDN Network Architecture를 기반으로 설명된다.
도 24는 본 발명에 따른 UE#1과 UE#2간의 VoLTE path setup과정을 나타낸 도면이다.
UE#1이 송신자, UE#2가 수신자라고 가정하면 IMS는 UE#1의 VoLTE call setup 요청에 대해서 해당 단말의 IP를 기반으로 path를 setup한다. 그리고 IMS는 해당 flow의 5 tuple 정보와 QoS 정보를 PCRF로 전달한다. PCRF는 IMS로부터 전달 받은 5 tuple 정보와 QoS 정보를 RESTful API를 이용해서 SDNC로 전달하며, SDNC는 이 정보를 바탕으로 미리 파악한 network 구조에서 최적의 path를 계산하여 각 switch의 forward path를 설정한다.
도 25는 SDNC에 의해서 최적의 path로 setup된 두 단말이 서로 VoLTE traffic을 전달하는 경로를 나타낸 도면이다.
UE#1과 UE#2는 인접한 기지국에 있기 때문에 eNB#1 및 eNB#2와 연결된 A-OFS간에 path만 setup되면 최단 거리를 통하여 VoLTE packet을 교환할 수 있다. 이에 따라 음성 packet이 전달되는데 소요되는 delay가 감소하고, 서비스 품질의 향상을 느낄 수 있다.
이하에서는 본 발명에 따른 1:N media sharing에 대한 실시 예를 설명한다. 후술할 실시 예들은, 도 26에 도시된 1:N media 전송을 위한 Mobile SDN Network Architecture를 기반으로 설명된다.
도 27은 종래 기술에 따른 1:N media 전송을 위한 video call setup 과정을 나타낸 도면이다. 본 예시에서는 UE#1이 video 전송 source가 되고 UE#2 ~ UE#4가 video를 수신하는 단말이라고 가정한다. UE#1은 video를 수신하고자 하는 단말 group 정보를 알고 있으며, video를 수신하고자 하는 각 단말에 video를 전송하기 위한 request 정보를 전송한다. UE#1이 전송한 request 정보를 1:N video controller가 수신하면 video controller는 UE#2 내지 UE#4의 각 단말로 bearer를 setup하고, UE#1이 전송하는 video를 relay할 server에게 해당 정보를 전달한다.
도 28은 종래 기술에 따른 1:N media 전송 방법을 나타낸 도면이다. 구체적으로, 도 28은 도 27에서 설립된 path를 기반으로 UE#1이 전송한 video traffic을 media relay server가 각 단말들에게 relay하는 과정을 보여준다.
UE#1이 전송한 video traffic은 relay server로 전달되고, relay server는, call setup단계에서 video controller를 통하여 setup된 path를 이용하여, 각 단말들에게 unicast로 해당 video를 전달한다. 이러한 과정을 거치게 되면 동일한 video traffic이 중복하여 LTE 망을 거쳐 단말에게 전달되므로 backhaul에 부하를 유발할 수 있게 되고, 동일 traffic을 여러 번 전송하게 됨으로써 resource를 낭비하게 된다.
도 29는 본 발명에 따라 SDN을 적용한 경우 1:N media 전송을 위한 video call setup과정을 나타낸 도면이다.
UE#1이 video call setup을 요청하면 video controller는 group 정보를 기반으로 각 단말에 대한 path를 setup한다. 이와 더불어 video controller는 RESTful API를 이용하여 video call과 관련된 단말 정보를 SDNC로 전달한다. Video call과 관련된 group 정보는 UE#1 내지 UE#4의 source/destination IP address 정보를 포함할 수 있다. SDNC는, 전달된 source node와 destination node들의 address를 기반으로 UE#1이 전송한 video traffic을 UE#2 내지 UE#4까지 전달하기 위하여, packet mirroring과 forward 명령을 각 openflow switch에 전달한다. 이 정보를 기반으로 각 openflow switch는 해당 flow에 대해서 어느 곳으로 packet을 전달하여야 하는지 알 수 있게 된다.
도 30은 본 발명에 따라 SDN을 적용한 경우 전송 방법을 나타낸 도면이다. 구체적으로, 도 30은 UE#1이 전송한 video traffic이 SDNC에 의해서 설정된 mirroring 및 forward 정책에 의해서 UE#2 내지 UE#4까지 전달되는 과정을 보여준다.
UE#1이 전송한 video packet은 eNB#1과 연결된 A-OFS로 전달된다. A-OFS는 call setup 단계에서 SDNC가 전송하여준 정보를 기초로, 수신한 packet이 UE#2로 전달되어야 한다는 사실 및 UE#3과 UE#4로 전달되기 위해서 eNB#2에 연결된 A-OFS로 전달되어야 한다는 사실을 알 수 있다. 따라서 A-OFS는 UE#1이 전송한 packet을 copy하여 UE#2, 및 eNB#2와 연결된 A-OFS로 전달한다. eNB#2와 연결된 A-OFS는 call setup 단계에서 SDNC가 전송하여준 정보를 기초로, 수신한 정보를 UE3과 UE#4로 각각 전달하여야 하는 것을 알 수 있다. 따라서 eNB#2와 연결된 A-OFS는 수신된 packet을 copy하여 UE#3과 UE#4로 전달한다. 이러한 과정을 통하여 본 발명의 실시 예에 따르면, 최소한의 경로와 최소한의 network resource를 사용하여 1:N video traffic을 전송할 수 있다.
본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. SDN(Software-Defined Networking) 기반 무선통신 네트워크에서 SDN 컨트롤러의 통신 제어 방법으로,
    기지국으로 단말이 최초 접속함에 따라 게이트웨이제어부(Gateway Controller)로부터 상기 단말에 관한 정보를 수신하는 단계;
    상기 정보를 기초로 상기 단말의 트래픽을 처리할 적어도 하나의 오픈플로우 스위치(OpenFlow Switch; OFS)를 선정하는 단계; 및
    상기 적어도 하나의 OFS로 상기 단말의 트래픽을 처리하기 위한 패킷포워딩 룰(Packet forwarding rule)의 설정 요청을 전송하는 단계를 포함하는 것을 특징으로 하는 통신 제어 방법.
  2. 제1항에 있어서,
    상기 단말에 관한 정보는, 상기 단말의 IP 주소, 상기 기지국의 주소, IMSI 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 통신 제어 방법.
  3. 제1항에 있어서,
    상기 게이트웨이제어부로부터 상기 단말과 상기 기지국의 접속 해제에 관한 정보를 수신하는 단계; 및
    상기 적어도 하나의 OFS로 상기 패킷포워딩 룰의 삭제 요청을 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  4. 제1항에 있어서,
    상기 게이트웨이제어부로부터 상기 단말의 대기 상태 천이에 관한 정보가 수신되면, 상기 정보를 기초로 상기 적어도 하나의 OFS로 상기 패킷포워딩 룰의 갱신 요청을 전송하는 단계; 및
    상기 게이트웨이제어부로부터 상기 단말의 페이징 정보가 수신되면, 상기 페이징 정보를 기초로 상기 적어도 하나의 OFS에 대하여 상기 패킷포워딩 룰의 갱신 요청을 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  5. 제1항에 있어서,
    상기 단말을 위한 베어러(bearer)가 설정되면, 상기 설정된 베어러의 정보를 기초로 상기 적어도 하나의 OFS로 상기 패킷포워딩 룰의 갱신 요청을 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  6. 제5에 있어서,
    상기 설정된 베어러가 수정되면, 상기 수정된 베어러의 정보를 기초로 상기 적어도 하나의 OFS로 상기 패킷포워딩 룰의 갱신 요청을 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  7. 제1항에 있어서,
    상기 단말의 핸드오버 수행 시, 상기 게이트웨이제어부로부터 상기 핸드오버에 관한 정보를 수신하는 단계;
    상기 핸드오버에 관한 정보를 기초로, 새로운 적어도 하나의 OFS를 선정하는 단계; 및
    상기 새로운 적어도 하나의 OFS로 상기 패킷포워딩 룰의 설정 요청을 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  8. 제1항에 있어서,
    캐시 서버로부터 상기 단말이 요청한 콘텐츠의 경로 정보를 수신하는 단계; 및
    상기 콘텐츠의 경로 정보를 기초로, 상기 적어도 하나의 OFS로 상기 패킷포워딩 룰의 갱신 요청을 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  9. 제1항에 있어서,
    정책 관리 서버로부터 수신된 정보를 기초로 제1 단말 및 제2 단말 간 트래픽 교환을 위한 트래픽 경로를 결정하는 단계; 및
    상기 결정된 트래픽 경로를 기초로, 상기 적어도 하나의 OFS로 상기 패킷포워딩 룰의 갱신 요청을 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  10. 제1항에 있어서,
    상기 단말이 트래픽을 전송하고자 하는 적어도 하나의 다른 단말에 대한 정보를 수신하는 단계;
    상기 적어도 하나의 다른 단말에 대한 정보를 기초로, 상기 트래픽의 전송 경로를 결정하는 단계; 및
    상기 트래픽의 전송 경로를 기초로 상기 적어도 하나의 다른 단말 각각에 대한 OFS에게 상기 패킷포워딩 룰의 갱신 요청을 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  11. SDN(Software-Defined Networking) 기반 무선통신 네트워크에서 게이트웨이제어부(Gateway Controller)의 통신 제어 방법으로,
    단말의 기지국 접속 요청이 수신되면, 상기 단말에 IP address를 할당하는 단계;
    상기 단말에 대한 정보를 SDN 컨트롤러로 전송하는 단계; 및
    상기 SDN 컨트롤러로부터, 상기 단말에 대한 정보를 기초로 상기 단말의 트래픽을 처리하기 위해 선정된 적어도 하나의 오픈플로우 스위치(OpenFlow Switch; OFS)에 관한 정보를 수신하는 단계를 포함하는 것을 특징으로 하는 통신 제어 방법.
  12. 제11항에 있어서,
    상기 단말에 관한 정보는, 상기 단말의 IP 주소, 상기 기지국의 주소, IMSI 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 통신 제어 방법.
  13. 제11항에 있어서,
    상기 단말의 접속 해제 요청이 수신되면, 상기 SDN 컨트롤러로 상기 단말과 상기 기지국의 접속 해제에 관한 정보를 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  14. 제11항에 있어서,
    상기 단말이 대기 상태로 천이하면, 상기 SDN 컨트롤러로 상기 단말의 대기 상태 천이에 관한 정보를 전송하는 단계; 및
    상기 단말의 대기 상태 천이에 정보를 기초로 상기 SDN 컨트롤러에 의하여 패킷포워딩 룰이 설정된 적어도 하나의 OFS로부터 상기 단말에 대한 패킷이 수신되면, 상기 단말에 대한 페이징을 수행하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  15. 제11항에 있어서,
    상기 단말을 위한 베어러(bearer)가 설정 또는 수정되면, 상기 설정 또는 수정된 베어러의 정보를 상기 SDN 컨트롤러로 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  16. 제11항에 있어서,
    상기 단말의 핸드오버 수행 시, 상기 핸드오버에 관한 정보를 상기 SDN 컨트롤러로 전송하는 단계; 및
    상기 SDN 컨트롤러로부터 상기 핸드오버에 관한 정보를 기초로 선정된 새로운 적어도 하나의 OFS에 관한 정보를 수신하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  17. 제11항에 있어서,
    HTTP 요청이 수신되면, 상기 HTTP 요청을 DPI로 전송하는 단계; 및
    상기 HTTP 요청을 기초로 상기 SDN 컨트롤러에 의하여 결정된 트래픽 전송 경로로 상기 HTTP 요청에 대응하는 콘텐츠를 전송하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  18. 제11항에 있어서,
    정책 관리 서버로부터 수신된 정보를 기초로 상기 SDN 컨트롤러에 의하여 결정된 제1 단말 및 제2 단말 간 트래픽 경로를 설정하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  19. 제11항에 있어서,
    상기 단말이 트래픽을 전송하고자 하는 적어도 하나의 다른 단말에 대한 정보를 기초로 상기 SDN 컨트롤러에 의하여 결정된 상기 트래픽의 전송 경로를 설정하는 단계를 더 포함하는 것을 특징으로 하는 통신 제어 방법.
  20. SDN(Software-Defined Networking) 기반의 무선통신 네트워크에 있어서,
    Control Function과 User Function으로 논리적으로 분리된 게이트 웨이;
    상기 User Function을 포함하여 구성되며 단말에 대한 트래픽의 경로를 제어하는 적어도 하나의 SDN 스위치; 및
    상기 적어도 하나의 SDN 스위치의 트래픽 포워딩을 제어하는 SDN 제어부를 포함하되,
    상기 Control Function은 상기 무선통신 네트워크의 MME 및 상기 SDN 제어부와 데이터 통신을 수행하고,
    상기 SDN 제어부는,
    상기 무선 통신 네트워크의 정책 관리 시스템(Policy and Charging Rules Function; PCRF)로부터 상기 단말의 정책 정보를 수신하고, 상기 단말의 정책 정보를 기초로 상기 SDN 스위치를 제어하는 것을 특징으로 하는 무선 통신 네트워크.
PCT/KR2014/005623 2013-06-25 2014-06-25 Sdn 기반 lte network 구조 및 동작 방안 WO2014209007A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/901,465 US9949272B2 (en) 2013-06-25 2014-06-25 SDN-based LTE network structure and operation scheme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0073329 2013-06-25
KR1020130073329A KR102088721B1 (ko) 2013-06-25 2013-06-25 SDN 기반 LTE Network 구조 및 동작 방안

Publications (1)

Publication Number Publication Date
WO2014209007A1 true WO2014209007A1 (ko) 2014-12-31

Family

ID=52142265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005623 WO2014209007A1 (ko) 2013-06-25 2014-06-25 Sdn 기반 lte network 구조 및 동작 방안

Country Status (3)

Country Link
US (1) US9949272B2 (ko)
KR (1) KR102088721B1 (ko)
WO (1) WO2014209007A1 (ko)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170086115A1 (en) * 2015-09-23 2017-03-23 Google Inc. Systems and methods for mobility management in a distributed software defined network packet core system
EP3177099A3 (en) * 2015-12-04 2017-08-16 Quortus Limited A network element system
EP3254440A1 (en) * 2015-02-03 2017-12-13 Telefonaktiebolaget LM Ericsson (publ) Control signalling in sdn architecture networks
US9860339B2 (en) 2015-06-23 2018-01-02 At&T Intellectual Property I, L.P. Determining a custom content delivery network via an intelligent software-defined network
US9871725B2 (en) 2016-01-21 2018-01-16 International Business Machines Corporation Wireless data transfer as an alternative method to overcome errors or noise in a storage environment
WO2018018631A1 (zh) * 2016-07-29 2018-02-01 华为技术有限公司 一种锚点网关的切换方法、装置及系统
CN107925933A (zh) * 2015-07-31 2018-04-17 华为技术有限公司 节点切换方法、装置及系统
US9961014B2 (en) 2015-11-13 2018-05-01 Nanning Fugui Precision Industrial Co., Ltd. Network communication method based on software-defined networking and server using the method
CN108028799A (zh) * 2015-12-01 2018-05-11 华为技术有限公司 业务流转发功能部署方法、装置及系统
EP3334227A4 (en) * 2015-08-31 2018-07-11 Huawei Technologies Co., Ltd. Paging method and apparatus for distributed gateway
EP3451721A4 (en) * 2016-05-09 2019-06-26 China Mobile Communication Ltd. Research Institute SWITCHING METHOD, NETWORK ELEMENT, GATEWAY, BASE STATION, FRAME, APPARATUS, AND STORAGE MEDIUM
JPWO2018078987A1 (ja) * 2016-10-31 2019-09-12 日本電気株式会社 移動管理エンティティ、ネットワーク・エンティティ、及びこれらの方法
US10887130B2 (en) 2017-06-15 2021-01-05 At&T Intellectual Property I, L.P. Dynamic intelligent analytics VPN instantiation and/or aggregation employing secured access to the cloud network device
CN113950117A (zh) * 2021-10-13 2022-01-18 国网江苏省电力有限公司无锡供电分公司 一种隧道环境下基于软件定义网络的低时延图像传输方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018323A1 (en) * 2013-08-05 2015-02-12 Huawei Technologies Co., Ltd. Method for packet tunneling through software defined network, method of intelligently controlling flow of a packet through software defined network and system
KR101528544B1 (ko) * 2014-08-07 2015-06-12 주식회사 이노와이어리스 SDN을 이용한 WiFi 서비스 영역 사이의 핸드오버 방법
KR101627805B1 (ko) 2015-01-13 2016-06-07 콘텔라 주식회사 제어와 데이터 처리 기능이 분리된 epc 게이트웨이 시스템에서의 eps 베어러 자원 할당 방법 및 이를 위한 장치
JP6465200B2 (ja) * 2015-02-23 2019-02-06 富士通株式会社 無線通信システム、通信装置、端末および基地局
KR102203734B1 (ko) * 2015-02-27 2021-01-15 에스케이텔레콤 주식회사 서비스 체이닝 제어 장치 및 방법과 이를 이용한 서비스 체이닝 실행 방법
US20170012866A1 (en) * 2015-07-09 2017-01-12 Infinera Corporation Systems, methods, and apparatus for forwarding a data flow
KR102165237B1 (ko) * 2015-10-15 2020-10-13 에스케이 텔레콤주식회사 네트워크 환경에서 서비스 기반의 트래픽 라우팅 방법 및 장치
EP3355615B1 (en) * 2015-10-21 2019-08-28 Huawei Technologies Co., Ltd. Mec platform handover
EP3799355A1 (en) 2015-10-22 2021-03-31 Huawei Technologies Co., Ltd. Service processing method, apparatus, and system
CN108353033A (zh) * 2015-11-30 2018-07-31 英特尔公司 移动终接分组发送
US10263886B2 (en) * 2016-02-23 2019-04-16 Avaya Inc. Mobile endpoint network interface selection using merged policies
US10826999B2 (en) * 2016-06-24 2020-11-03 At&T Intellectual Property I, L.P. Facilitation of session state data management
US10375744B2 (en) * 2016-12-06 2019-08-06 At&T Intellectual Property I, L.P. Session continuity between software-defined network-controlled and non-software-defined network-controlled wireless networks
US10548062B2 (en) * 2018-03-05 2020-01-28 At&T Intellectual Property I, L.P. Systems and methods for processing packet traffic without an explicit connection oriented signaling protocol
US11128682B2 (en) 2018-12-03 2021-09-21 At&T Intellectual Property I, L.P. Video streaming at mobile edge
US11044618B2 (en) 2019-04-18 2021-06-22 At&T Intellectual Property I, L.P. Facilitating automatic latency discovery and dynamic network selection using data analytics in advanced networks
CN111163180B (zh) * 2020-03-10 2023-04-07 重庆邮电大学 一种基于sdn的lte网络高效缓存方法及系统
KR102620678B1 (ko) * 2022-05-03 2024-01-04 인천대학교 산학협력단 사물인터넷을 위한 이기종 도메인간 핸드오프 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110261723A1 (en) * 2009-10-06 2011-10-27 Nec Corporation Network system, controller, method and program
US20110261825A1 (en) * 2009-03-09 2011-10-27 Nec Corporation OpenFlow COMMUNICATION SYSTEM AND OpenFlow COMMUNICATION METHOD
WO2012128487A2 (ko) * 2011-03-23 2012-09-27 삼성전자 주식회사 무선 통신 시스템 및 그 무선 통신 시스템에서 컨텐츠 전송 방법
US20120300615A1 (en) * 2011-05-23 2012-11-29 Telefonaktiebolaget L M Ericsson (Publ) Implementing EPC in a Cloud Computer with OpenFlow Data Plane
US20130028091A1 (en) * 2011-07-27 2013-01-31 Nec Corporation System for controlling switch devices, and device and method for controlling system configuration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150122268A (ko) * 2012-04-27 2015-10-30 닛본 덴끼 가부시끼가이샤 통신 시스템 및 경로 제어 방법
JP5923393B2 (ja) * 2012-06-15 2016-05-24 株式会社Nttドコモ 移動通信網振り分けシステム及び移動通信網振り分け方法
US9203748B2 (en) * 2012-12-24 2015-12-01 Huawei Technologies Co., Ltd. Software defined network-based data processing method, node, and system
US9173158B2 (en) * 2013-03-08 2015-10-27 Tellabs Operations, Inc. Method and apparatus for improving LTE enhanced packet core architecture using openflow network controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110261825A1 (en) * 2009-03-09 2011-10-27 Nec Corporation OpenFlow COMMUNICATION SYSTEM AND OpenFlow COMMUNICATION METHOD
US20110261723A1 (en) * 2009-10-06 2011-10-27 Nec Corporation Network system, controller, method and program
WO2012128487A2 (ko) * 2011-03-23 2012-09-27 삼성전자 주식회사 무선 통신 시스템 및 그 무선 통신 시스템에서 컨텐츠 전송 방법
US20120300615A1 (en) * 2011-05-23 2012-11-29 Telefonaktiebolaget L M Ericsson (Publ) Implementing EPC in a Cloud Computer with OpenFlow Data Plane
US20130028091A1 (en) * 2011-07-27 2013-01-31 Nec Corporation System for controlling switch devices, and device and method for controlling system configuration

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3254440B1 (en) * 2015-02-03 2022-05-18 Telefonaktiebolaget LM Ericsson (publ) Control signalling in sdn architecture networks
EP3254440A1 (en) * 2015-02-03 2017-12-13 Telefonaktiebolaget LM Ericsson (publ) Control signalling in sdn architecture networks
US9860339B2 (en) 2015-06-23 2018-01-02 At&T Intellectual Property I, L.P. Determining a custom content delivery network via an intelligent software-defined network
CN107925933A (zh) * 2015-07-31 2018-04-17 华为技术有限公司 节点切换方法、装置及系统
US11122482B2 (en) 2015-07-31 2021-09-14 Huawei Technologies Co., Ltd. Node handover method, apparatus, and system in a software defined protocol network
CN107925933B (zh) * 2015-07-31 2019-11-01 华为技术有限公司 节点切换方法、装置及系统
EP3319367A4 (en) * 2015-07-31 2018-06-13 Huawei Technologies Co., Ltd. Node switching method, device, and system
EP3334227A4 (en) * 2015-08-31 2018-07-11 Huawei Technologies Co., Ltd. Paging method and apparatus for distributed gateway
US10499366B2 (en) 2015-08-31 2019-12-03 Huawei Technologies Co., Ltd. Paging method and apparatus for distributed gateway
US20170086115A1 (en) * 2015-09-23 2017-03-23 Google Inc. Systems and methods for mobility management in a distributed software defined network packet core system
KR20180035234A (ko) * 2015-09-23 2018-04-05 구글 엘엘씨 분산형 소프트웨어 정의 네트워크 패킷 코어 시스템에서 이동성 관리를 위한 시스템들 및 방법들
US10469391B2 (en) 2015-09-23 2019-11-05 Google Llc Distributed software defined wireless packet core system
US10868762B2 (en) * 2015-09-23 2020-12-15 Google Llc Systems and methods for mobility management in a distributed software defined network packet core system
KR101998355B1 (ko) 2015-09-23 2019-07-09 구글 엘엘씨 분산형 소프트웨어 정의 네트워크 패킷 코어 시스템에서 이동성 관리를 위한 시스템들 및 방법들
US10476799B2 (en) 2015-09-23 2019-11-12 Google Llc Systems and methods for load balancing in a distributed software defined network packet core system
US11070477B2 (en) 2015-09-23 2021-07-20 Google Llc Distributed software defined wireless packet core system
US9961014B2 (en) 2015-11-13 2018-05-01 Nanning Fugui Precision Industrial Co., Ltd. Network communication method based on software-defined networking and server using the method
TWI625050B (zh) * 2015-11-13 2018-05-21 新加坡商雲網科技新加坡有限公司 基於軟體定義網路的網路傳輸方法與系統
CN108028799A (zh) * 2015-12-01 2018-05-11 华为技术有限公司 业务流转发功能部署方法、装置及系统
US10541911B2 (en) 2015-12-01 2020-01-21 Huawei Technologies Co., Ltd. Method, apparatus, and system for deploying service flow forwarding function
EP3177099A3 (en) * 2015-12-04 2017-08-16 Quortus Limited A network element system
US9871725B2 (en) 2016-01-21 2018-01-16 International Business Machines Corporation Wireless data transfer as an alternative method to overcome errors or noise in a storage environment
US10326691B2 (en) 2016-01-21 2019-06-18 International Business Machines Corporation Wireless data transfer as an alternative method to overcome errors or noise in a storage environment
EP3451721A4 (en) * 2016-05-09 2019-06-26 China Mobile Communication Ltd. Research Institute SWITCHING METHOD, NETWORK ELEMENT, GATEWAY, BASE STATION, FRAME, APPARATUS, AND STORAGE MEDIUM
US11419029B2 (en) 2016-05-09 2022-08-16 China Mobile Communication Ltd, Research Institute Switching method, network element, gateway, base station, framework, apparatus, and storage medium
US10813036B2 (en) 2016-07-29 2020-10-20 Huawei Technologies Co., Ltd. Anchor gateway switching method, apparatus, and system
WO2018018631A1 (zh) * 2016-07-29 2018-02-01 华为技术有限公司 一种锚点网关的切换方法、装置及系统
US11116029B2 (en) 2016-10-31 2021-09-07 Nec Corporation Mobility management entity, network entity, and method and computer readable medium therefor
JP2021170818A (ja) * 2016-10-31 2021-10-28 日本電気株式会社 ネットワーク・エンティティ、移動管理エンティティ、及びネットワーク・エンティティにおける方法
JPWO2018078987A1 (ja) * 2016-10-31 2019-09-12 日本電気株式会社 移動管理エンティティ、ネットワーク・エンティティ、及びこれらの方法
EP3534632A4 (en) * 2016-10-31 2020-05-06 Nec Corporation MOBILE MANAGEMENT UNIT, NETWORK UNIT, METHOD FOR IT AND COMPUTER READABLE MEDIUM
JP7156462B2 (ja) 2016-10-31 2022-10-19 日本電気株式会社 ネットワーク・エンティティ、移動管理エンティティ、及びネットワーク・エンティティにおける方法
US10887130B2 (en) 2017-06-15 2021-01-05 At&T Intellectual Property I, L.P. Dynamic intelligent analytics VPN instantiation and/or aggregation employing secured access to the cloud network device
US11483177B2 (en) 2017-06-15 2022-10-25 At&T Intellectual Property I, L.P. Dynamic intelligent analytics VPN instantiation and/or aggregation employing secured access to the cloud network device
CN113950117A (zh) * 2021-10-13 2022-01-18 国网江苏省电力有限公司无锡供电分公司 一种隧道环境下基于软件定义网络的低时延图像传输方法
CN113950117B (zh) * 2021-10-13 2023-06-27 国网江苏省电力有限公司无锡供电分公司 一种隧道环境下基于软件定义网络的低时延图像传输方法

Also Published As

Publication number Publication date
US20160374095A1 (en) 2016-12-22
KR102088721B1 (ko) 2020-03-13
KR20150000781A (ko) 2015-01-05
US9949272B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2014209007A1 (ko) Sdn 기반 lte network 구조 및 동작 방안
WO2019160278A1 (ko) Ma pdu 세션의 수립을 처리하는 방안 그리고 amf 노드 및 smf 노드
WO2017164674A1 (ko) 기지국에서 연결 모드 변경 방법 및 기지국과, 사용자기기에서 연결 모드 변경 방법 및 사용자기기
EP2487959B1 (en) Communication system and communication controlling method
WO2018038503A1 (ko) 이동성 관리와 세션 관리가 분리된 무선 통신 시스템 운영 방법 및 장치
WO2011010869A2 (en) Method for switching session of user equipment in wireless communication system and system employing the same
US10149331B2 (en) Communication system, serving gateway, communication method therefor, and base station
WO2017176013A1 (ko) 단말의 접속 요청을 처리하는 방법 및 네트워크 노드
WO2015057034A1 (ko) 무선통신 시스템에서 단말의 앵커링 방법 및 장치
WO2010079984A2 (en) Local pdn access method in wireless communication system
WO2015170862A1 (ko) Csipto에 기인하여 복수의 pdn 커넥션을 수립하는 방법
WO2015152659A1 (ko) 이동 통신 시스템에서 셀룰러 망과 무선랜 망 간 트래픽 스티어링 방법 및 장치
CN106686572B (zh) 一种基于sdn的移动性管理的方法
WO2016089082A1 (ko) 통신 시스템에서 분리된 tcp 연결을 설정하는 방법 및 장치와 이를 위한 핸드 오버 지원 방법 및 장치
WO2013151334A1 (ko) 무선 통신 시스템에서 패킷 스위치 서비스 핸드오버 방법 및 장치
WO2013161178A1 (ja) 通信システム及び経路制御方法
WO2016186348A1 (en) Internet protocol address preservation in mobile operator networks
WO2018174427A1 (en) Method and device for controlling data transmission state
WO2017171189A1 (ko) 핸드오버 수행후에 서비스 연속성을 지원하는 방법 및 단말
WO2015122177A1 (ja) 情報処理装置、通信方法、ネットワーク制御装置、ネットワーク制御方法、およびプログラム
WO2015057035A1 (ko) 이동통신 시스템에서 게이트웨이 변경을 지원하기 위한 네트워크 장치 및 그 동작 방법
WO2015046957A1 (ko) 이중연결 방식을 이용하는 무선통신 시스템에서 서빙셀의 변경 방법 및 장치
WO2014171726A1 (en) Apparatus and method for optimizing data-path in mobile communication network
WO2014021581A1 (en) Method enabling an rn to support multiple wireless access systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14901465

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14817233

Country of ref document: EP

Kind code of ref document: A1