WO2018038503A1 - 이동성 관리와 세션 관리가 분리된 무선 통신 시스템 운영 방법 및 장치 - Google Patents

이동성 관리와 세션 관리가 분리된 무선 통신 시스템 운영 방법 및 장치 Download PDF

Info

Publication number
WO2018038503A1
WO2018038503A1 PCT/KR2017/009142 KR2017009142W WO2018038503A1 WO 2018038503 A1 WO2018038503 A1 WO 2018038503A1 KR 2017009142 W KR2017009142 W KR 2017009142W WO 2018038503 A1 WO2018038503 A1 WO 2018038503A1
Authority
WO
WIPO (PCT)
Prior art keywords
session
terminal
function element
management function
pdu
Prior art date
Application number
PCT/KR2017/009142
Other languages
English (en)
French (fr)
Inventor
이진성
권기석
박중신
김대균
문상준
배범식
이주형
이지철
이형호
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US16/327,139 priority Critical patent/US11224079B2/en
Priority to KR1020197005242A priority patent/KR102379860B1/ko
Priority to EP17843923.8A priority patent/EP3490297A4/en
Publication of WO2018038503A1 publication Critical patent/WO2018038503A1/ko
Priority to US17/571,785 priority patent/US20220174759A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/32Release of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device

Definitions

  • the present invention relates to a 5G cellular communication system, and more particularly, to a method for supporting a structure in which mobility management and session management are separated in a control plane of a core device.
  • 3GPP which is in charge of the cellular mobile communication standard, is trying to standardize the new Core Network structure as NextGen Core (NG Core) in order to evolve from the existing 4G LTE system to the 5G system.
  • NG Core NextGen Core
  • NG Core intends to support the following differentiated features compared to the Evolved Packet Core (EPC), a network core for 4G.
  • EPC Evolved Packet Core
  • NG Core must support various terminal types and services; For example, terminal types and services such as Enhanced Mobile Broadband (eMBB), Ultra Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC) must be supported.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communications
  • mMTC Massive Machine Type Communications
  • an eMBB service may require a high data rate and a URLLC service may require a high stability and low latency.
  • the proposed technology to meet these various service requirements is the Network Slice scheme.
  • Network Slice is a method of creating multiple logical networks by virtualizing one physical network.
  • each Network Slice Instance may have different characteristics. This is possible by having a network function (NF) that matches each characteristic of each NSI. For example, by assigning NSI according to the characteristics of the service required for each terminal, it is possible to efficiently support various 5G services.
  • NF network function
  • mobility management function and session management function can be separated.
  • MME mobility management entity
  • 5G As the number of terminals explodes and the mobility and traffic / session characteristics to be supported according to the types of terminals are segmented, if all the functions are supported by a single device such as an MME, efficiency is inevitably deteriorated. Therefore, in order to improve efficiency in terms of function / implementation complexity and signaling load of the core equipment in charge of the control plane, an approach that separates the mobility management function and the session management function from each other is intensively focused. Is being discussed.
  • An object of the present invention is to define the essential signaling between these network entities in a structure in which the mobility management function and the session management function are separated in the core of the cellular mobile communication system.
  • PDU Protocol Data Unit
  • a method of a terminal may include selecting a PDU session for data transmission from at least one inactivated protocol data unit (PDU) session, and a service request message including identification information of the selected session. Transmitting to the mobility management function element managing mobility of the terminal and transmitting the data through the selected PDU session activated based on the service request message.
  • PDU protocol data unit
  • the method of the mobility management function element receiving a service request message including identification information of a specific protocol data unit (PDU) session from the terminal and identification information of the specific PDU session
  • the method may include transmitting a routing trigger message for data transmission to a user plane network functional element of the terminal as a specific session management function element corresponding to.
  • PDU protocol data unit
  • the method of the session management function element from the mobility management element to manage the mobility of the terminal, the path setting trigger message for data transmission to the user plane network function element of the terminal; Receiving and transmitting signaling related to the routing to the mobility management function element, wherein the routing trigger message includes a specific protocol data unit (PDU) for the data transmission by the mobility management function element.
  • PDU protocol data unit
  • the UE selects a PDU session for data transmission from a transceiver and at least one inactivated protocol data unit (PDU) session, and includes a service request message including identification information of the selected session.
  • a control unit controlling the transceiver to transmit the data to a mobility management function element managing mobility of the terminal, and controlling the transceiver to transmit the data through the selected PDU session activated based on the service request message. can do.
  • the mobility management function element includes a transceiver for receiving a service request message including identification information of a specific PDU session and a identification information of the specific PDU session from a terminal.
  • a corresponding session management function element may include a controller for controlling the transceiver to transmit a path triggering message for data transmission to the user plane network function element of the terminal.
  • the session management function element is configured to receive a routing trigger message for data transmission from the mobility management function element managing mobility of the terminal to a user plane network function entity of the terminal.
  • a protocol data unit (RSP) session is received when it is determined that the session management function element is managed.
  • the specific PDU session may be selected by the terminal among at least one protocol data unit (PDU) session which is deactivated.
  • the present invention reduces the complexity of the implementation of the core equipment in charge of the control plane (CP) to implement the network slice function and provide various levels of mobility, and minimizes the signaling load therebetween. It can bring an effect.
  • CP control plane
  • UP NF user plane entity
  • RAN Radio Access Network
  • FIG. 1 is a diagram illustrating a network structure of a cellular mobile communication system according to an embodiment of the present invention.
  • FIGS. 2A and 2B are diagrams for describing a process of setting up a session associated with a terminal according to an embodiment of the present invention.
  • 3A and 3B are diagrams for describing a process of setting up a session associated with a terminal according to another embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a PDU session release procedure according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a signaling and user plane transmission path setting process when uplink traffic occurs in an idle state of a terminal according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a process of receiving downlink traffic by a terminal in idle state from a data network according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a handover procedure when there is an X2 interface between a source base station and a target base station in a core structure in which MM and SM are separated according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a handover procedure when there is no X2 interface between a source base station and a target base station in a core structure in which MM and SM are separated according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a TAU procedure for updating a location of a terminal in a network according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an operation of a base station when there is no data transmission for a specific time while a PDU session is set up in a terminal according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a procedure of releasing a signaling connection between a terminal and an MM according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating information required for each entity in order to perform a process in an embodiment of the present invention.
  • FIG. 13 is a block diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • FIG. 14 is a block diagram illustrating a configuration of a mobility management function element according to an embodiment of the present invention.
  • FIG. 15 is a block diagram illustrating a configuration of a session management function element according to an embodiment of the present invention.
  • a base station is a subject that performs resource allocation of a terminal, and includes an evolved Node B (eNode B), a Node B, a Base Station (BS), a Radio Access Network, a Radio Access Unit, a base station controller, or a network. It may be at least one of the nodes.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • downlink is a radio transmission path of a signal transmitted from a base station to a terminal
  • uplink is a radio transmission path of a signal transmitted from a terminal to a base station.
  • LTE Long Term Evolution
  • UL uplink
  • the following describes an embodiment of the present invention using an LTE or LTE-A system as an example, but the embodiment of the present invention may be applied to other communication systems having a similar technical background or channel form.
  • the embodiment of the present invention may be applied to other communication systems through some modifications within the scope of the present invention without departing from the scope of the present invention by the judgment of those skilled in the art.
  • the main subject of the present invention is to define a new signaling between the mobility management device and the session management device in the core of the cellular mobile communication system, to propose a service providing procedure that satisfies various requirements of the network operator and the terminal.
  • the necessary components for this are as follows.
  • the terminal and the UE will be used interchangeably, and the base station and the RAN will be used interchangeably.
  • terms used to describe embodiments in the present invention may be replaced with other terms.
  • the User Plane Network Function Element (UP NF) may be replaced with a User Plane Function Element (UPF)
  • the Mobility Management Element (MM) may be a Mobility Management Network Funciton.
  • MM NF Mobility Management Function Element
  • MMF Mobility Management Function Element
  • AMF Access and Mobility Function
  • Session Management Element is a session management network function element ( Session Management Network Funciton (SM NF) and Session Management Function Element (Session Management Funciton, SMF) can be used.
  • FIG. 1 is a diagram illustrating a network structure of a cellular mobile communication system according to an embodiment of the present invention.
  • a network of a cellular mobile communication system may include a terminal (UE) 101, a base station (RAN) 102, and a user plane network function element (UP NF). 103), Data Network (DN) 104, Subscriber Data Management (SDM), 105, Mobility Management (MM) 107, Session Management (SM) , 108) and Policy Control (PC) 106.
  • the MM may include a control plane signaling routing function 107a.
  • UP NF 103 may be connected to the base station 102 in the network through the NG3 (or N3) interface, and may be connected through the DN 104 and the NG6 (or N6) interface.
  • the UP NF 103 includes a role of a gateway (GateWay, GW) that is directly connected to network equipment outside the network, and is located on the data transmission path with the base station 102 in the network, thereby providing the terminal 101 and the DN 104.
  • Enable data communication with e.g., the Internet).
  • the SDM 105 is a server managing terminal subscription information and may perform a process of acquiring information when determining a service level provided to a terminal in a network as well as registration and authentication.
  • PC 106 is a server that manages QoS (Qaulity of Service) rules, and is a core device that SM 108 needs to interact with when establishing a transmission path to UP NF 103 and RAN 102. .
  • QoS Quality of Service
  • the main core equipment in the present invention is the MM 107 in charge of mobility management of the terminal and the SM 108 in managing sessions associated with the terminal.
  • MM 107 may be connected to the terminal 101 through the NG1 (or N1) interface, and the base station 102 may be connected through the NG2 (or N2) interface.
  • the SM 108 according to an embodiment of the present invention may be connected to the UP NF 103 and the NG4 (or N4) interface.
  • the MM 107 in charge of mobility management of the terminal has a CP signaling routing function 107a. If the destination of the signaling sent by the UE 101 or the RAN 102 is the MM 107, the MM 107 is connected to the MM 107. 108 is responsible for routing to the SM 108. Since the routing function does not need to interpret what content the signaling message has, the MM 107 does not need to manage a context related to a session of the terminal, and thus has an advantage of low implementation complexity.
  • the present invention will be described on the assumption that a terminal is allocated a single network slice, and is associated with a plurality of SMs. However, the following procedures are applicable to a case where an SM is allocated per network slice.
  • the network entity name or interface name shown in FIG. 1 may be changed, but its role and function may be maintained. For example, in the case of an interface name, NG # may be described in the form of N #.
  • the state of a PDU session can be defined as follows. Define that the user plane (UP) connection of the PDU session is set up and activated to send data immediately, and the UP connection to send data because the UP connection of the PDU session does not exist.
  • UP user plane
  • a state that requires a procedure to set up a system can be defined as de-activated.
  • a session management function which is a core network entity managing the session, serves as a gateway (GW) for connecting the PDU session with an external data network.
  • a user plane function (UPF) is selected and an NG3 (or N3) tunnel, which is a data transmission path of the PDU session, is set up between the UPF and a base station (RAN) to which the current UE is connected.
  • a Data Radio Bearer is also set up between the terminal and the base station to support the PDU session.
  • the base station may set up a DRB satisfying a plurality of different QoS requirements in order for the DRB to satisfy the QoS requirements of the PDU session.
  • the user plane (UP) connection of the PDU session may consist of the N3 tunnel and the DRB.
  • a data transmission path is performed such that the N3 tunnel and the DRB constituting the UP connection of the PDU session pass from the source base station to the target base station.
  • Signaling occurs to change. Specifically, even if the traffic of the application using the PDU session does not actually occur, signaling for changing the N3 tunnel and DRB of the PDU session to the target base station whenever a handover occurs.
  • This signaling overhead problem may increase especially as the number of PDU sessions set up simultaneously by the UE increases.
  • FIG. 5 describing a UE triggered service request procedure
  • FIG. 6 describing a network triggered service request procedure.
  • FIGS. 2A and 2B are diagrams for describing a process of setting up a session associated with a terminal according to an embodiment of the present invention.
  • the MM 207 has already issued the ID (UE ID) of the terminal 201 and knows to which RAN 202 the UE 201 is attached (e.g., the MM is The ID (RAN ID) of the base station to which the terminal is attached).
  • the UE 201 according to an embodiment of the present disclosure may be in a state of knowing an ID (MM ID) of the mobility management 207 and a data network name (DNN).
  • the UE 201 describes a procedure for requesting a new protocol data unit session setup (PDU session setup) for data communication.
  • PDU session refers to an association between the terminal and the data network (DN), and is similar in concept to a packet data network (PDN) connection in 4G LTE. It can be divided into non-IP and Ethernet.
  • ID of each network entity may use not only an IP address and a system ID but also all possible identifiers for identifying each entity in the network.
  • the terminal 201 transmits a PDU session setup request message to the MM 207 (S201).
  • the PDU session establishment request message may be transmitted including UE ID, DNN, PDU type, UE capability, and session and service continuity mode information. have.
  • the MM 207 When the PDU session establishment request message is received, the MM 207 performs a signaling routing function (S202). If the SM ID is not specified, as a result of performing the signaling routing function, the MM 207 forwards or relays the PDU session establishment request message to the default SM 208a. relay) (S203). Here, the MM 207 and the Default SM 208a may be co-located. Through the forwarding process (S203), the UE ID, DNN, PDU type, UE capability and SSC mode information may be included in the PDU session establishment request message and transferred to the Default SM 208a.
  • the request and response process of the UE subscription information (S204). Through the UE ID and the DNN may be transmitted to the Default SM (208a).
  • the default SM 208a selects an appropriate SM by performing session management selection (SM selection) based on the UE subscription, the DNN, the PDU type, the UE capability, and the SSC mode. At this time, the Default SM 208a transmits the selected SM ID and UE ID to the MM 207 so that the selected SM ID and UE ID can be registered in the MM 207 (S206).
  • the MM 207 is also a selected SM (Chosen SM) 208b, and performs transmission for registering the MM ID and the RAN ID to which the terminal 201 belongs (S207).
  • the Default SM 207a transmits the previously received PDU session setup request to the Chosen SM 208b through the MM 207 (S208).
  • the Chosen SM 208b After receiving the PDU session setup request, the Chosen SM 208b performs a process of applying operator policy with the PC 206 (S209), and selects the UP NF 203 (S210). . The Chosen SM 208b then proceeds to establish a transmission path with the selected UP NF 203 and DN 204. For example, the Chosen SM 208b may transmit a session creation request to the selected UP NF 203, and receive a response to the session creation request from the UP NF 203 (S211).
  • the Chosen SM 208b proceeds to the transmission path setting to the RAN 202 as well.
  • the Chosen SM 208b may request an initial context establishment including a UE ID, SM ID, session ID, base station tunnel ID (RAN Tunnel endpoint ID (TEID)) for the uplink, and the RAN ID.
  • (initial context setup request) may be transmitted to the RAN 202 (S212).
  • the RAN 202 establishes a radio bearer with the UE 201 based on the radio bearer establishment (S213), and sends an initial context setup response to the Chosen SM 208b. Can be transmitted (S214).
  • the initial context setup response may include a UE ID, an SM ID, a session ID, a RAN TEID [DL], and a RAN ID.
  • the Chosen SM 208b Based on the reception of the initial context setup response, when the Chosen SM 208b performs a modify session request / response process with the UP NF 203 (S215), the DN ( 204) The transmission path establishment between the UP NF 203-the RAN 202-the UE 201 is completed.
  • the Chosen SM 208b is a MM 207, and a PDU session setup response including a UE ID, a DNN, an SM ID, a session ID, and an IP (UE IP) of the UE.
  • the MM 207 may transmit a PDU session setup response including the SM ID, the session ID, and the UE IP to the terminal 201 (S217).
  • the terminal 201 enables transmission and reception (data communication) of uplink and downlink IP traffic with the DN 204 through the established transmission path (S218).
  • 3A and 3B are diagrams for describing another example of setting up a session associated with a terminal according to another embodiment of the present invention.
  • the terminal 301 transmits a PDU session setup request to the MM 307 (S301).
  • the terminal has already registered in the MM by completing the attach to the network in the network structure according to the embodiment of the present invention. That is, the terminal 301 may know the MM ID and the DNN, and the MM 307 may be in a state of knowing the UE ID and the RAN ID.
  • the PDU session setup request may include a UE ID, a DNN, a PDU type, a UE capability, and an SSC mode.
  • the MM 307 performs a signaling routing function (S302). If the SM ID is not specified, the MM 307 may relay a PDU session setup request to the Default SM 308a. As described above in FIGS. 2A and 2B, the MM 307 and the Default SM 308a may be co-located in the same location. Accordingly, UE ID, DNN, PDU type, UE capability and SSC mode information may be included in the PDU session establishment request message and transmitted to the Default SM 308a.
  • the request and response process (S304) of the UE subscription information is performed between the MM 307 and the Default SM 308a.
  • UE ID and DNN may be transmitted to Default SM 308a through.
  • the Default SM 308a selects an appropriate SM 308b by performing session management selection (SM selection) based on the UE subscription, the DNN, the PDU type, the UE capability, and the SSC mode.
  • SM selection session management selection
  • the Chosen SM 308b may directly proceed with the registration process with the MM. More specifically, the Default SM 308a may transmit a PDU session setup request to the Chosen SM 308b.
  • the PDU session setup request may include a UE ID, a DNN, a PDU type, a UE capability, an SSC mode, and an MM ID.
  • the MM ID may be transmitted from the Default SM 308a to the Chosen SM 308b through other signaling.
  • the Chosen SM 308b performs a process for registering an SM ID to the MM through signaling including the UE ID and the SM ID to the MM 307 (S307).
  • the MM 307 may transmit signaling including the UE ID and the RAN ID to the Chosen SM 308b to perform a RAN ID registration process (S308) with the Chosen SM 308b.
  • the Chosen SM 308b performs apply operator policy with the PC 306 (S309), and selects the UP NF (S310). The Chosen SM 308b then proceeds to establish a transmission path with the selected UP NF 303 and the DN 304. For example, the Chosen SM 308b may transmit a session creation request to the selected UP NF 303, and receive a response to the session creation request from the UP NF 303 (S311).
  • the Chosen SM 308b proceeds to the transmission path setting to the RAN 302 as well.
  • the Chosen SM 308b may request an initial context setup including a UE ID, SM ID, session ID, base station tunnel ID (RAN Tunnel endpoint ID (TEID)) for the uplink, and the RAN ID.
  • (initial context setup request) may be transmitted to the RAN 302 (S312).
  • the RAN 302 establishes a radio bearer with the UE 301 (S313) based on this, and transmits an initial context setup response to the Chosen SM 308b. It may transmit (S314).
  • the initial context setup response may include a UE ID, an SM ID, a session ID, a RAN TEID [DL], and a RAN ID.
  • the Chosen SM 308b performs a modify session request / response process with the UP NF 303 (S315), the DN ( 304)-Transmission path establishment between UP NF 303-RAN 302-UE 301 is completed.
  • the Chosen SM 308b is a MM 307, and a PDU session setup response including a UE ID, a DNN, an SM ID, a session ID, and an IP of the terminal.
  • the MM 307 may transmit a PDU session setup response including the SM ID, the session ID, and the UE IP to the terminal 301 (S317).
  • the terminal 301 is capable of transmitting and receiving uplink and downlink IP traffic (data communication) with the DN 304 through the established transmission path (S318).
  • a PDU session release procedure according to an embodiment of the present invention will be described with reference to FIG.
  • This procedure may proceed based on what is requested by the terminal or SM.
  • the procedure requested by the terminal proceeds sequentially from S401, and the procedure requested by the SM proceeds from S403.
  • step S404 is skipped.
  • the MM 407 is requested to delete the SM ID through step S404.
  • the SM 408, which is requested to release the session performs a process of releasing a previously established transmission path with the UP NF 403 and the RAN 402, and when this is completed, finally signaling to the terminal 401 that the release is completed. Send it.
  • the terminal 401 transmits a PDU session delete request to the MM 407 (S401).
  • the PDU session delete request may include a UE ID, an SM ID, and a session ID.
  • the MM 407 may transmit the PDU session delete request received from the terminal 401 to the SM 408 (S402).
  • the SM 408 may identify an existing PDU session (S403) and perform signaling for SM ID registration delete to the MM 407 (S404).
  • SM ID registration delete may include a UE ID and an SM ID.
  • the SM 408 performs a delete session request including the UE ID, the SM ID, and the session ID to the UP NF 403 (S405), and includes the UE ID from the UP NF 403.
  • the session deletion response may be received.
  • the SM 408 may perform a deactivate session request to the MM 407 (S406). S407).
  • the deactivate session request may include a UE ID, SM ID, and session ID.
  • a radio bearer release procedure between the UE 401 and the RAN 402 (Radio bearer) release procedure) may be performed (S409).
  • the RAN 402 transmits a deactivate session response including a UE ID, an SM ID, and a session ID to the MM 407 (S410), and the MM 407 transmits a UE ID, SM ID, and the like.
  • the deactivate session response including the session ID may be transmitted to the SM 408 (S411).
  • the MM 407 receives a PDU session delete response including the UE ID, the SM ID, and the session ID from the SM 408, the MM 407 sends the SM ID and the session ID to the UE 401.
  • the signaling of the included PDU session delete response is transmitted (S413).
  • UL traffic uplink (UL) traffic is generated in a terminal in an idle state, and a control plane signaling connection with a network and a user plane transmission path are described.
  • the Idle state may be defined as whether or not a signaling connection state is set up in which a terminal can perform signaling exchange with a cellular network.
  • the terminal may distinguish between an idle state and a connected state based on a cellular base station and a radio resource control (RRC) connection state.
  • RRC radio resource control
  • the above procedure may be performed by a terminal receiving downlink (DL) traffic and receiving a paging message from the network in response to the paging message.
  • the terminal 501 transmits signaling to the MM 507 by including in a service request which SM the traffic generated by the application layer is directed to (SM501).
  • the terminal 501 may transmit a service request to the SM 508 managing the corresponding PDU session, including information for identifying the PDU session in order to activate a user plane (UP) connection of the PDU session.
  • UP user plane
  • the PDU session identification information may be a PDU session ID, or an activation flag corresponding thereto may be defined and used between the terminal and the network.
  • FIG. 5 illustrates a case in which the UE 501 transmits the service request including the SM ID as information for identifying the UE ID and the PDU session in the service request.
  • identification information of the PDU session may be unique within one SM.
  • an authentication / security procedure may be performed between the UE 501 and the SDM 505 (S502).
  • the MM 507 transmits a user plane path setup trigger message for setting a user plane transmission path to the corresponding SM 508 based on the service request (S503). More specifically, the MM 507 receiving the service request message from the terminal 501 checks the PDU session identification information included in the service request, and activates an UP connection to the SM 508 managing the session. Signaling may be transmitted.
  • the UP path setup trigger message which is a signaling for activating the UP connection, may include a UE ID and a RAN ID.
  • N2 session setup request signaling for the UP connection setup to the base station 502 currently connected to the UE 501 to activate the UP connection of the PDU session. Can be transmitted.
  • This signaling may be, for example, initial context setup request signaling as shown in FIG. 5, which is necessary for UE ID, PDU session ID for session identification and uplink traffic transmission.
  • Information related to the tunnel of the UP NF eg, the IP address of the UP NF and the tunnel ID of the UP NF may be included.
  • the base station 502 receiving the signaling allocates resources for setting up an N3 tunnel with the UP NF 503 and performs a procedure (radio bearer establishment) for generating a DRB capable of satisfying QoS of the UE and the PDU session. It may be performed (S505).
  • the terminal 501 may send uplink traffic (UL traffic) to the UP NF 503 via the RAN 502.
  • the base station 502 may generate N2 session setup response signaling for delivery to the SM 508 including the base station tunnel identification information configured for the N3 tunnel setup.
  • the N2 session setup response signaling (illustrated as initial context setup response signaling in the figure) is sent to the MM 507, confirms the PDU session identification information at the MM 507, and forwards it to the corresponding SM 508. It may be (S506).
  • the SM 508 transmits a modify session request signaling to the UP NF 503 (S507), and the UP NF 503 sends a modify session response to the SM 508. Thereafter, downlink (DL) traffic may be transmitted from the UP NF 503 to the terminal 501.
  • the SM 508 may deliver the base station tunnel identification information received in step S506 to the UP NF 503, and through this, N3 between the base station 502 and the UP NF 503 of the PDU session. Tunnel setup can be completed.
  • the UP NF 503 may transmit an N4 Session Modification response message for N4 Session Modification request signaling received in step S507.
  • FIG. 6 illustrates a procedure for waking a terminal in idle state and transmitting the traffic when downlink traffic comes from a DN (Data Network, e.g. Internet).
  • DN Data Network, e.g. Internet
  • the UP NF 603 having received the DN traffic may transmit a downlink data notification signaling indicating that DL data has arrived to the SM 608 managing the corresponding PDU session (S601).
  • the signaling may include the ID of the corresponding PDU session together with the UE ID.
  • the DL Data Notification message may be forwarded from the SM 608 to the MM 607 managing the mobility of the terminal 601 (S602). Thereafter, the MM 607 may register the ID of the SM 608 that has sent DL data notification in order to trigger the NG3 setup (S603).
  • S603 This means that when the UE triggered service request procedure is performed, even if a service request for which the SM ID is not specified is received from the terminal, the user plane transmission path is transmitted to the SM corresponding to the stored SM ID. To send a user path setup trigger for setup.
  • the MM 507 may store the PDU session identification information included in the DL Data Notification message and transmit the DL data notification response (ack) including the UE ID to the SM 608, S604)
  • the SM 508 may transmit a DL data notification ack to the UP NF 603 (S605).
  • the MM 507 transmits paging including the UE ID to the RAN 602 (S606), and the RAN 602 transmits paging to the UE 601 (S607).
  • a UE triggered service request procedure is performed between the UE 601, the RAN 602, the MM 607, the SM 608, and the UP NF 603 (S608).
  • the MM 607 may transmit signaling for activating an UP connection to the stored PDU session to the SM 608.
  • the UP connection may be completed in the same manner as described with reference to FIG. 5.
  • the network resource for the UP connection is effectively different from the existing LTE service request. Can be used.
  • FIG. 7 illustrates an interface between a source base station (Source RAN (eg, RAN1)) and a target base station (Target RAN (eg, RAN2)) in a core structure in which MM and SM are separated according to an embodiment of the present invention. If present (X2 interface), handover procedure is shown.
  • Source RAN eg, RAN1
  • target RAN eg, RAN2
  • uplink and downlink traffic may be transmitted and received between the UE 701, the RAN 1 702a, the UP NF 1 703a, and the DN 704.
  • a procedure for executing a handover between the UE 701, the RAN 1 702a and the RAN 2 702b, that is, the RAN 1 702a to the RAN 2 702b may be performed (S700).
  • the RAN ID update of the MM 707 is also performed in the handover execution step.
  • a path switch request may be sent from RAN 2 702b to SM 708.
  • the path switch request may include a UE ID, an SM ID, a session ID, a TEID [DL] for the RAN 2, and a RAN ID.
  • the path switch request is sent only to the SM where the UP Path is set up.
  • the SM 708 may perform an operation of determining whether to relocate the UP NF triggered by the path switch request (S702). In the present embodiment, a case in which the relocation of the UP NF is not performed will be described. However, SM 708, if necessary to relocate the UP NF may proceed with the additional procedure accordingly.
  • the SM 708 transmits a modify session request including a UE ID, an SM ID, a session ID, a RAN TEID, and a RAN ID to the UP NF 1 703a (S703), and the UP NF 1 703a. From, it may receive a session modify response (modify session response) including the UE ID, SM ID and session ID (S704). In this case, the UP NF 1 703a may transmit an “end marker” packet to the RAN 1 702a. Thereafter, the SM 708 may transmit a path switch response including the UE ID, the SM ID, and the session ID to the RAN 2 702b (S705).
  • the UE 701 may perform transmission and reception of uplink and downlink traffic (UL / DL traffic) with the RAN 2 702b and the UP NF 1 703a and the DN 704.
  • RAN 2 702b transmits release resource signaling including a UE ID to RAN 1 702a (S706), UE 701, RAN 1 702a, RAN 2 702b, and Between the MMs 707, a tracking area update procedure may be performed (S707).
  • FIG. 8 illustrates a procedure for handover from RAN 1 to RAN 2 using the MM when there is no X2 interface.
  • the RAN 2 transmits a path switch request only to the SM that sets the transmission path between the RAN and the UP NF.
  • UL / DL traffic may be transmitted and received between the UE 801, the RAN 1 802a, the UP NF 1 803a, and the DN 804.
  • the RAN 1 802a may transmit signaling indicating handover required to the MM 807 (S801).
  • the MM 807 may perform a handover request and response procedure with the RAN 2 802b based on the signaling (S802).
  • the RAN ID may be updated in the MM 807 by S802.
  • an indirect data forwarding tunnel setup procedure may be performed between the MM 807, the SM 808, and the UP NF 1 803a (S803).
  • signaling of a handover command may be transmitted from the MM 807 to the UE 801.
  • handover from RAN 1 802a to RAN 2 802b is executed between the UE 801, the RAN 1 802a, the RAN 2 802b, and the MM 807 (S805).
  • the UE 801 transmits a handover confirm signaling to the RAN 2 802b (S806), and the RAN 2 802b transmits a handover notify signaling to the MM 807.
  • the SM 808 may transmit a path switch request in operation S808.
  • the SM 808 may perform a UP NF relocation determination operation triggered by the path switch request (S809). In this embodiment, a case in which UP NF relocation is not performed will be described. However, when the relocation of the UP NF is required, the SM 808 may proceed with the additional procedure accordingly.
  • the SM 808 transmits a modify session request to the UP NF 1 803a (S810), and receives a session modify response from the UP NF 1 803a (S811). )can do.
  • the UE 801 may identify the RAN 2 802b, the UP NF 1 803a, and the DN. 804 may transmit and receive UL / DL traffic.
  • the SM 808 transmits signaling of a release resource to the RAN 1 802a (S813) and between the UE 801, the RAN 1 802a, the RAN 2 802b, and the MM 807.
  • a tracking area update procedure may be performed.
  • TAU 9 shows a tracking area update (TAU) procedure for updating the location of a UE in a network (eg, MM).
  • a network eg, MM
  • the UE 901 may transmit a TAU request to the MM 907 (S901).
  • the UE 901 may perform an authentication / security procedure between the MM 907 and the SDM 905.
  • the MM 907 When the location of the terminal is changed at the RAN level (or cell level), the MM 907 sends a state change notify message to all the SMs 908 associated with the UE 901. (S903).
  • the state change notify message may include RAN ID update information.
  • the SM 908 determines whether to perform UP NF relocation (S904), and if UP NF change is required (UP NF relocation required), for example, UP NF 903b at UP NF 1 903a. If a change is required), a state change notify ack message is indicated and sent to the MM 907 (S905). Based on the reception of the state change notify ack message, the MM 907 transmits a TAU accept message to the UE 901 (S906).
  • the TAU accept message may notify the terminal 901 by piggybacking the UP NF relocation required information and the flag for the UN NF relocation when the UP NF is sent.
  • a session establishment procedure between the UE 901, the RAN 902, the MM 907, the SM 908, the UP NF 1 903a, the UP NF 2 903b, the DN 904, and the SDM 905.
  • a session setup procedure is performed (S907), and the SM 908 performs a delete PDU session request / response process with the UP NF 1 903a (S908).
  • FIG. 10 illustrates a base station (e.g., when there is no data transmission for a specific time (e.g., user traffic inactivity) through a user plane (UP) transmission path of a PDU session already set up for a particular terminal.
  • RAN shows a process for clearing a data transmission path.
  • NG3 release since the NG3 interface is responsible for the transmission path between the RAN and the UP NF, this procedure will be referred to as NG3 release. However, the name of the procedure may be changed.
  • the base station 1002 connected to the terminal 1001 may transmit an NG3 release request to the SM 1008 (S1001).
  • the base station 1002 operates a data inactivity timer for each PDU session, and if the traffic does not occur until the timer expires, the base station 1002 includes identification information of the PDU session for which no traffic occurs.
  • NG3 release request signaling can be transmitted to the MM 1007.
  • the MM 1007 receiving the signaling may check PDU session identification information and forward the request signaling to the SM 1008 managing the corresponding PDU session.
  • the SM 1008 sends signaling to the UP NF 1003 and the RAN 1002 to release the established transmission path. More specifically, the SM 1008 may transmit signaling (eg, release session request signaling) to release the N3 tunnel to the UP NF 1003 in charge of data transmission of the corresponding PDU session. (S1002). The UP NF 1003 receiving the signaling may transmit a release session response signaling to the SM 1008 (S1003).
  • signaling eg, release session request signaling
  • the SM 1008 may transmit signaling including an NG3 release command allocated to the N3 tunnel of the corresponding PDU session to the base station 1002 (S1004).
  • the RAN 1002 may perform signaling exchange such as RRC connection reconfiguration with the terminal 1001 to release the DRB corresponding to the corresponding session.
  • the RAN 1002 may transmit radio bearer release signaling to the UE 1001 (S1005).
  • response signaling may be transmitted to the SM 1008 via the MM 1007.
  • the RAN 1002 may send NG3 release complete signaling to the SM 1008 via the MM 1007.
  • the terminal 1001 further proceeds with the MM 1007 and the NG2 release (S1007) to release the Non Access Stratum (NAS) connection and completely enter the Idle state. can do.
  • S1007 Non Access Stratum
  • FIG. 11 describes a procedure for releasing a signaling connection between a terminal and an MM.
  • the RAN 1102 may transmit an NG2 release request to the MM 1107 (S1101).
  • the RAN 1102 transmits to the MM 1107 including the SM ID in charge of the NG3 that has not yet been released in the NG2 release request.
  • the RAN 1102 may include PDU session identification information (eg, PDU session ID) and transmit it to the MM 1107.
  • the MM 1107 may transmit signaling of an NG3 release request to the SM 1108 in response to the signaling (S1102). If one SM 1108 manages a plurality of PDU sessions for one UE, the MM 1107 may correctly identify a PDU session based on the PDU session identification information. The MM 1107 may then send an NG3 release request to the identified SM 1108.
  • the SM 1108 Upon receiving the NG3 release request, the SM 1108 transmits a release session request to the UP NF 1103 (S1103), and receives a release session response from the UP NF 1103. (S1104).
  • the MM 1107 that receives the NG3 release response from the SM 1108 sends an NG2 release command message to the RAN 1102 (S1106).
  • the NG2 release command message may include an NG3 release command to release the NG3 resource toward the RAN 1102.
  • the RAN 1102 receiving the NG2 release command transmits an RRC connection release signaling to the UE 1101 (S1107), and transmits an NG2 release complete signaling to the MM 1107. (S1108).
  • the UE 1201 and the RAN 1202 manage the MM ID and the SM ID, respectively, so that signaling associated with the MM 1207 and signaling associated with the SM 1208 can be clearly distinguished and transmitted.
  • the terminal 1201 and the base station 1202 may manage state information on the PDU session for each SM 1208. In other words, it can be managed by NG3 setup and release.
  • a terminal 1300 may include a terminal controller 1302 and a terminal transceiver 1304.
  • the transceiver 1304 of the terminal may include a receiver 1304a of the terminal and a transmitter 1304b of the terminal.
  • the terminal transceiver unit 1304 may perform all functions related to the transmission / reception operation of the terminal in the embodiments described with reference to FIGS. 1 to 12.
  • the transceiver 1304 of the terminal may transmit and receive a radio signal with the base station.
  • the wireless signal may include control information and data.
  • data may be transmitted to a base station through the radio bearer.
  • the transmitter 1304b of the terminal may include an RF transmitter for upconverting and amplifying the frequency of the transmitted signal, and the receiver 1304a of the terminal low noise amplifies the received signal and downconverts the frequency. It may include an RF receiver. Also, the transceiver 1304 of the terminal may receive a signal through a wireless channel, output the signal to the terminal controller 1302, and transmit a signal output from the terminal controller 1302 through the wireless channel.
  • the terminal controller 1302 can control a series of processes to operate the terminal according to the embodiment of the present invention described above. For example, the terminal controller 1302 may select a PDU session for data transmission from among at least one inactivated protocol data unit (PDU) session, and may include a service request message including identification information of the selected session.
  • the transceiver 1304 may be controlled to transmit to a mobility management function element that manages mobility of a terminal.
  • the terminal controller 1302 may control the transceiver 1304 to transmit the data through the selected PDU session activated based on the service request message.
  • the mobility management function element 1400 may include a mobility management function control unit 1402 and a mobility management function transmission / reception unit 1404.
  • the mobility management function transceiver 1404 may include a mobility management function receiver 1404a and a mobility management function transmitter 1404b.
  • the mobility management function transmission / reception unit 1404 may perform all functions related to the transmission / reception operation of the mobility management function element in the embodiments described with reference to FIGS. 1 to 12.
  • the transceiver 1404 of the mobility management function may receive a service request message including identification information of a specific PDU session transmitted from the terminal.
  • the transceiver 1404 of the mobility management function may transmit a path setting trigger message for data transmission to a user plane network function element of the terminal as a specific session management function element corresponding to identification information of the specific PDU session.
  • the mobility management function control unit 1402 may control a series of processes such that the mobility management function element can operate according to the above-described embodiment of the present invention.
  • the mobility management function control unit 1402 may control the transceiver 1404 to forward the signaling to the base station when signaling related to path establishment is received from a specific session management function element.
  • the session management function element 1500 may include a session management function control unit 1502 and a session management function transmission / reception unit 1504.
  • the session management function transceiver 1504 may include a session management function receiver 1504a and a session management function transmitter 1504b.
  • the session management function transceiver 1504 may perform all functions related to the transmission / reception operation of the session management function element in the embodiments described with reference to FIGS. 1 to 12.
  • the transceiver 1504 of the session management function may receive a routing trigger message for data transmission from the mobility management function element to the user plane network function element of the terminal.
  • the session management function transceiver 1504 may transmit signaling related to path establishment to the mobility management function element.
  • the session management function controller 1502 may control a series of processes such that the session management function element may operate according to the above-described embodiment of the present invention. For example, when the path setting trigger message received from the mobility management function element is received, the session management function controller 1502 may control the transceiver 1504 such that signaling related to path setting is transmitted to the mobility management function element. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 다음 세대(Next Generation(NextGen)) 이동통신 시스템에서 제어 평면(Control Plane, CP)의 주요 기능인 이동성 관리(Mobility Management, MM) 및 세션 관리 (Session Management, SM)를 담당하는 네트워크 엔티티(Network Entity, NE)의 분리를 위해 필요한 시그널링을 정의하고, 이 시그널링을 포함하여 이동통신 서비스를 제공하기 위한 기본 절차를 제안하고자 한다. 이를 통해 네트워크 슬라이스(Network Slice) 기능 구현 및 다양한 이동성 수준(Level of Mobility) 제공을 위해 CP를 담당하는 코어 장비의 복잡도를 낮추고, 이들 간의 시그널링 부하를 최소화하는 효과를 가져올 수 있다. 또한, 기지국(Radio Access Network, RAN)과 사용자 평면 엔티티(User Plane Network Entity, UP NF)의 자원을 효율적으로 관리할 수 있다.

Description

이동성 관리와 세션 관리가 분리된 무선 통신 시스템 운영 방법 및 장치
본 발명은 5G 셀룰러(cellular) 통신 시스템에 대한 것으로서, 특히 코어 장비의 제어 평면에서 이동성 관리와 세션 관리가 분리된 구조를 지원하기 위한 방법에 관한 것이다.
셀룰러 이동통신 표준을 담당하는 3GPP는 기존 4G LTE 시스템에서 5G 시스템으로의 진화를 꾀하기 위해 새로운 코어 네트워크(Core Network) 구조를 NextGen Core (NG Core) 라는 이름으로 명명하고 표준화를 진행하고 있다.
NG Core는 기존 4G를 위한 네트워크 코어인 진화된 패킷 코어(Evolved Packet Core(EPC)) 대비 다음과 같은 차별화된 기능을 지원하고자 한다. 첫째, 네트워크 슬라이스(Network Slice) 기능의 도입이다. 5G의 요구조건으로, NG Core는 다양한 단말 타입 및 서비스를 지원해야 한다; 예를 들어, eMBB(enhanced Mobile Broadband), URLLC(Ultra Reliable Low Latency Communications) 및 mMTC(massive Machine Type Communications) 등의 단말 타입 및 서비스를 지원해야 한다.
이러한 단말/서비스는 각각 코어 네트워크에 요구하는 요구조건이 다르다. 예를 들면, eMBB 서비스인 경우에는 높은 데이터 전송속도(data rate)를 요구하고 URLLC 서비스인 경우에는 높은 안정성과 낮은 지연을 요구할 것이다. 이러한 다양한 서비스 요구조건을 만족하기 위해 제안된 기술이 Network Slice 방안이다.
Network Slice는 하나의 물리적인 네트워크를 가상화(Virtualization) 하여 여러 개의 논리적인 네트워크를 만드는 방법으로, 첫째, 각 네트워크 슬라이스 요소(Network Slice Instance, NSI)는 서로 다른 특성을 가질 수 있다. 이는 각 NSI마다 그 특성에 맞는 네트워크 기능(Network Function, NF)을 가짐으로써 가능하게 된다. 예를 들어, 각 단말마다 요구하는 서비스의 특성에 맞는 NSI를 할당하여 여러 5G 서비스를 효율적으로 지원할 수 있게 된다.
둘째, 이동성 관리 기능과 세션 관리 기능이 분리될 수 있다. 기존 4G LTE에서는 모든 단말이 등록, 인증, 이동성 관리 및 세션 관리 기능을 담당하는 이동성 관리 엔티티(Mobility Management Entity, MME)라는 단일 코어 장비와의 시그널링 교환을 통해서 망에서 서비스를 제공받을 수 있었다. 하지만, 5G에서는 단말의 수가 폭발적으로 늘어나고 단말의 타입에 따라 지원해야 하는 이동성 및 트래픽/세션 특성이 세분화됨에 따라 MME와 같은 단일 장비에서 모든 기능을 지원하게 되면 효율성이 떨어질 수 밖에 없다. 따라서, 제어 평면을 담당하는 코어 장비의 기능/구현 복잡도와 시그널링 부하 측면에서 효율성 개선을 위해 이동성 관리(Mobility Management) 기능과 세션 관리(Session Management) 기능을 분리(Separation)해서 구현하는 접근법이 집중적으로 논의되고 있다.
본 발명의 목적은 셀룰러 이동 통신 시스템의 코어에서 이동성 관리 기능과 세션 관리 기능이 분리된 구조에서 이들 네트워크 엔티티 간의 필수적인 시그널링을 정의하는 데 있다. 특히, 단말이 복수 개의 프로토콜 데이터 유닛(Protocol Data Unit, PDU)세션을 셋업한 경우, 이들 각각의 데이터 전송 경로를 선택적으로 운용하기 위해서 단말과 네트워크 엔티티 간의 절차를 정의한다.
본 발명의 일 실시 예에 따른 단말의 방법은, 비활성화된 적어도 하나의 PDU(Protocol Data Unit) 세션 중에서, 데이터 전송을 위한 PDU 세션을 선택하는 단계, 상기 선택된 세션의 식별 정보를 포함하는 서비스 요청 메시지를 상기 단말의 이동성을 관리하는 이동성 관리 기능 요소로 전송하는 단계 및 상기 서비스 요청 메시지에 기반하여 활성화된, 상기 선택된 PDU 세션을 통하여 상기 데이터를 전송하는 단계를 포함할 수 있다.
또한, 본 발명의 일 실시 예에 따른 이동성 관리 기능 요소의 방법은, 단말로부터, 특정 PDU(Protocol Data Unit) 세션의 식별 정보를 포함하는 서비스 요청 메시지를 수신하는 단계 및 상기 특정 PDU 세션의 식별 정보에 대응되는 특정 세션 관리 기능 요소로, 상기 단말의 사용자 평면 네트워크 기능 요소로의 데이터 전송을 위한, 경로 설정 트리거 메시지를 전송하는 단계를 포함할 수 있다.
또한, 본 발명의 일 실시 예에 따른 세션 관리 기능 요소의 방법은, 단말의 이동성을 관리하는 이동성 관리 기능 요소로부터, 상기 단말의 사용자 평면 네트워크 기능 요소로의 데이터 전송을 위한, 경로 설정 트리거 메시지를 수신하는 단계 및 상기 경로 설정과 관련된 시그널링을 상기 이동성 관리 기능 요소로 전송하는 단계를 포함하고, 상기 경로 설정 트리거 메시지는, 상기 이동성 관리 기능 요소에 의하여 상기 데이터 전송을 위한 특정 PDU(Protocol Data Unit) 세션이 상기 세션 관리 기능 요소에 의하여 관리되는 것으로 판단된 경우 수신되며, 상기 특정 PDU 세션은, 비활성화된 적어도 하나의 PDU(Protocol Data Unit) 세션 중 상기 단말에 의하여 선택될 수 있다.
본 발명의 일 실시 예에 따른 단말은, 송수신부 및 비활성화된 적어도 하나의 PDU(Protocol Data Unit) 세션 중에서, 데이터 전송을 위한 PDU 세션을 선택하고, 상기 선택된 세션의 식별 정보를 포함하는 서비스 요청 메시지를 상기 단말의 이동성을 관리하는 이동성 관리 기능 요소로 전송하도록 상기 송수신부를 제어하며, 상기 서비스 요청 메시지에 기반하여 활성화된, 상기 선택된 PDU 세션을 통하여 상기 데이터를 전송하도록 상기 송수신부를 제어하는 제어부를 포함할 수 있다.
또한, 본 발명의 일 실시 예에 따른 이동성 관리 기능 요소는, 단말로부터, 특정 PDU(Protocol Data Unit) 세션의 식별 정보를 포함하는 서비스 요청 메시지를 수신하는 송수신부 및 상기 특정 PDU 세션의 식별 정보에 대응되는 특정 세션 관리 기능 요소로, 상기 단말의 사용자 평면 네트워크 기능 요소로의 데이터 전송을 위한, 경로 설정 트리거 메시지를 전송하도록 상기 송수신부를 제어하는 제어부를 포함할 수 있다.
또한, 본 발명의 일 실시 예에 따른 세션 관리 기능 요소는, 단말의 이동성을 관리하는 이동성 관리 기능 요소로부터, 상기 단말의 사용자 평면 네트워크 기능 엔티티로의 데이터 전송을 위한, 경로 설정 트리거 메시지를 수신하는 송수신부 및 상기 경로 설정과 관련된 시그널링을 상기 이동성 관리 기능 요소로 전송하도록 상기 송수신부를 제어하는 제어부를 포함하고, 상기 경로 설정 트리거 메시지는, 상기 이동성 관리 기능 요소에 의하여 상기 데이터 전송을 위한 특정 PDU(Protocol Data Unit) 세션이 상기 세션 관리 기능 요소에 의하여 관리되는 것으로 판단된 경우 수신되며, 상기 특정 PDU 세션은, 비활성화된 적어도 하나의 PDU(Protocol Data Unit) 세션 중 상기 단말에 의하여 선택될 수 있다.
상술한 바와 같이 본 발명은 네트워크 슬라이스(Network Slice) 기능 구현 및 다양한 이동성 수준(Level of Mobility) 제공을 위해 제어 평면(CP)을 담당하는 코어 장비의 구현 복잡도를 낮추고, 이들 간의 시그널링 부하를 최소화하는 효과를 가져올 수 있다. 또한, 단말이 잦은 핸드오버를 수행할 지라도 기지국(Radio Access Network, RAN)과 코어망의 NF간에 시그널링 부하를 줄이면서 사용자 평면 엔티티(User Plane Network Entity, UP NF)의 자원을 효율적으로 관리할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 셀룰러 이동통신 시스템의 네트워크 구조를 도시한 도면이다.
도 2a 및 도 2b는 본 발명의 일 실시 예에 따른, 단말과 관련된 세션을 설정(set up)하는 과정을 설명하기 위한 도면이다.
도 3a 및 도 3b는 본 발명의 다른 일 실시 예에 따른, 단말과 관련된 세션을 설정(set up)하는 과정을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시 예에 따른 PDU 세션 해제(release) 절차를 설명하기 위한 도면이다.
도5는 본 발명의 일 실시 예에 따른 단말이 idle 상태에서 업링크 트래픽이 발생한 경우 시그널링 및 사용자 평면 전송 경로 설정 과정을 설명하기 위한 도면이다.
도 6은 본 발명의 일 실시 예에 따른 데이터 네트워크로부터, idle 상태의 단말이 다운링크 트래픽을 수신하는 과정을 설명하기 위한 도면이다.
도 7은 본 발명의 일 실시 예에 따라 MM과 SM이 분리된 코어 구조에서, 소스 기지국과 타겟 기지국 간 X2 인터페이스가 있는 경우의 핸드오버 절차를 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시 예에 따라 MM과 SM이 분리된 코어 구조에서, 소스 기지국과 타겟 기지국 간 X2 인터페이스가 없는 경우의 핸드오버 절차를 설명하기 위한 도면이다.
도 9는 본 발명의 일 실시 예에 따른 네트워크에서 단말의 위치를 업데이트 하기 위한 TAU 절차를 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시 예에 따른 단말에 PDU 세션이 셋업된 상태에서 특정 시간 동안 데이터 전송이 없는 경우 기지국 동작을 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시 예에 따른 단말과 MM간의 시그널링 연결을 해제하는 절차를 설명하기 위한 도면이다.
도 12는 본 발명의 일 실시 예에 과정을 수행하기 위하여, 각 엔티티별 필요한 정보를 도시한 도면이다.
도 13은 본 발명의 일 실시 예에 따른 단말의 구성을 도시한 블록도이다.
도 14는 본 발명의 일 실시 예에 따른 이동성 관리 기능 요소의 구성을 도시한 블록도이다.
도 15는 본 발명의 일 실시 예에 따른 세션 관리 기능 요소의 구성을 도시한 블록도이다.
이하 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 기지국은 단말의 자원할당을 수행하는 주체로서, eNode B(evolved Node B), Node B, BS(Base Station), 무선 접속 네트워크(Radio Access Network), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE(User Equipment), MS(Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다.
본 발명에서 하향링크(Downlink; DL)는 기지국이 단말에게 전송하는 신호의 무선 전송경로이고, 상향링크는(Uplink; UL)는 단말이 기국에게 전송하는 신호의 무선 전송경로를 의미한다. 또한, 이하에서 LTE 혹은 LTE-A 시스템을 일례로서 본 발명의 실시예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 발명의 실시예가 적용될 수 있다. 또한, 본 발명의 실시예는 숙련된 기술적 지식을 가진자의 판단으로써 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
본 발명의 주요한 요지는 셀룰러 이동 통신 시스템의 코어에서 이동성 관리 장비와 세션 관리 장비 간에 새로운 시그널링을 정의해서, 망 사업자 및 단말의 다양한 요구조건을 만족하는 서비스 제공 절차를 제안하는 것이다. 이를 위해 필요한 구성 요소는 다음과 같다.
이하에서는, 설명의 편의를 위하여 단말 및 UE를 혼용하여 사용하고, 기지국 및 RAN을 혼용하여 사용하기로 한다. 또한, 본 발명에서 실시 예를 설명하는데 사용되는 용어는, 다른 용어로 대체될 수 있다. 예를 들어, 사용자 평면 네트워크 기능 요소(UP NF)는, 사용자 평면 기능 요소(User Plane Function, UPF)로 대체될 수 있으며, 이동성 관리 요소 (MM)는, 이동성 관리 네트워크 기능 요소(Mobility Management Network Funciton, MM NF), 이동성 관리 기능 요소(Mobility Manangement Function, MMF) 및 접근과 이동성 기능 요소 (Access and Mobility Function, AMF)으로 대체될 수 있고, 세션 관리 요소(SM)는, 세션 관리 네트워크 기능 요소(Session Management Network Funciton, SM NF) 및 세션 관리 기능 요소(Session Management Funciton, SMF)로 대체되어 사용될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 셀룰러 이동통신 시스템의 네트워크 구조를 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 셀룰러 이동통신 시스템의 네트워크는, 단말(UE, 101), 기지국(RAN, 102), 사용자 평면 네트워크 기능 요소(User Plane Network Function(UP NF), 103), 데이터 네트워크(Data Network (DN), 104), 가입자 데이터 관리(Subscriber Data Management (SDM), 105), 이동성 관리 엔티티(Mobility Management (MM), 107), 세션 관리(Session Management (SM), 108) 및 정책 제어(Policy Control (PC), 106)를 포함할 수 있다. 또한, 본 발명의 일 실시 예에 따른 MM은 제어 평면 시그널링 라우팅 기능(Control Plane (CP) signaling routing function, 107a)을 포함할 수 있다.
본 발명의 일 실시 예에 따른 UP NF(103)는 망 내부의 기지국(102)과 NG3(또는 N3) 인터페이스를 통하여 연결되고, DN(104)과 NG6(또는 N6) 인터페이스를 통하여 연결될 수 있다. UP NF(103)는 망 외부의 네트워크 장비와 직접 연결되는 게이트웨이(GateWay, GW) 역할을 포함하고, 망 내부의 기지국(102)과 데이터 전송 경로 상에 위치해서 단말(101)과 DN(104)(예를 들어, Internet)와의 데이터 통신이 가능하도록 한다.
SDM(105)은 단말 가입 정보를 관리하는 서버로써, 등록, 인증 뿐만 아니라 망에서 단말에 제공하는 서비스 수준을 결정하는 경우 정보를 획득하는 과정을 수행할 수 있다. PC(106)는 QoS(Qaulity of Service) 규칙을 관리하는 서버로써, SM(108)이 UP NF(103) 및 RAN(102)에 전송 경로를 설정할 때 상호작용(interaction)을 해야 하는 코어 장비이다.
본 발명에서 주요한 코어 장비는 단말의 이동성 관리를 담당하는 MM(107)과 단말과 관련된 세션을 관리하는 SM(108)이다. 본 발명의 일 실시 예에 따른 MM(107)은 단말(101)과 NG1(또는 N1) 인터페이스를 통하여 연결되고, 기지국(102)과는 NG2(또는 N2) 인터페이스를 통하여 연결될 수 있다. 또한, 본 발명의 일 실시 예에 따른 SM(108)은 UP NF(103)와 NG4(또는 N4) 인터페이스를 통하여 연결될 수 있다.
단말의 이동성 관리를 담당하는 MM(107)에는 CP signaling routing function(107a)이 있어서, UE(101) 또는 RAN(102)이 보내는 시그널링의 목적지가 MM(107)이면 MM(107)으로, SM(108)이면 SM(108)으로 라우팅하는 기능을 담당한다. 이 라우팅 기능(routing function)은 시그널링 메시지가 무슨 내용(content)을 가지고 있는지 해석하지 않아도 되므로, MM(107)은 단말의 세션과 관련된 context를 관리할 필요가 없어 구현 복잡도가 낮은 장점이 있다.
본 발명은 단말이 단일 network slice를 할당 받은 경우, 복수 개의 SM과 관련(association)되어 있는 경우를 가정하여 설명하나, network slice당 SM이 할당되는 경우로도 아래의 절차들은 모두 적용 가능하다. 상기 도 1에 표시된 네트워크 엔티티명 또는 인터페이스명은 변경될 수 있으나 그 역할 및 기능은 유지될 수 있다. 예를 들면, 인터페이스명의 경우, NG # 는 N #의 형태로도 기술될 수 있을 것이다.
본 발명의 또다른 주요한 요지는 단말이 복수 개의 PDU 세션을 셋업(Establishment)한 경우, 이들 PDU 세션을 효율적으로 운용하는 데 있다. 우선, PDU 세션의 상태를 다음과 같이 정의할 수 있다. PDU 세션의 사용자 평면(User Plane, UP) 연결(Connection)이 셋업되어 데이터를 즉시 보낼 수 있는 상태를 활성화(activated) 되었다고 정의하고, 상기 PDU 세션의 UP 연결이 존재하지 않아서 데이터를 보내기 위해서 UP 연결을 셋업하는 절차를 필요로 하는 상태를 비활성화(de-activated) 되었다고 정의할 수 있다.
단말 또는 네트워크의 요청으로 PDU 세션이 셋업되면, 세션을 관리하는 코어망 엔티티인 SMF(Session Management Function)는 해당 PDU 세션을 외부 데이터망(Data Network)과 연결하기 위한 게이트웨이(Gateway, GW) 역할을 하는 UPF(User Plane Function)를 선택하고, 상기 UPF와 현재 단말이 접속한 기지국(RAN) 간에는, 상기 PDU 세션의 데이터 전송 경로인 NG3(또는 N3) 터널을 셋업하게 된다.
또한, 단말과 기지국 사이에는 상기 PDU 세션을 지원하기 위한 데이터 라디오 베어러(Data Radio Bearer, DRB)를 함께 셋업한다. 이때, 기지국에서는, DRB가 상기 PDU 세션의 QoS 요구조건을 만족하도록 하기 위해, 복수 개의 서로 다른 QoS 요구조건을 만족하는 DRB를 셋업할 수도 있다. 상기 PDU 세션의 사용자 평면(User Plane, UP) 연결은 상기 N3 터널과 상기 DRB로 구성될 수 있다.
만약 단말이 상기 PDU 세션의 UP 연결을 활성화한 상태에서 이동에 의해서 잦은 핸드오버를 수행하게 되면, 상기 PDU 세션의 UP 연결을 구성하는 N3 터널 및 DRB가 소스 기지국에서 타겟 기지국을 경유하도록 데이터 전송 경로를 변경하기 위한 시그널링이 발생한다. 구체적으로, 상기 PDU 세션을 이용하는 애플리케이션의 트래픽이 실제로 발생하지 않더라도, PDU 세션의 N3 터널 및 DRB를 핸드오버가 발생할 때마다 타겟 기지국으로 변경해주기 위한 시그널링이 수반되어야 한다. 이러한 시그널링 오버헤드 문제는, 특히 단말이 동시에 셋업한 PDU 세션의 개수가 증가함에 따라 더 늘어날 수 있다. 이를 해결하기 위해 실제 트래픽이 전송되는 PDU 세션의 UP 연결을 선택적으로 활성화해서 운용하는 방안을 제안한다.
상세한 내용은 단말 트리거된 서비스 요청(UE triggered service request) 절차를 설명하는 도 5 및 네트워크 트리거된 서비스 요청(NW triggered service request) 절차를 설명하는 도 6을 참조하여 후술하기로 한다.
도 2a 및 도 2b는 본 발명의 일 실시 예에 따른, 단말과 관련된 세션을 설정(set up)하는 과정을 설명하기 위한 도면이다.
도 2a 및 도 2b는 도 1에 도시된 네트워크 구조에서 단말이 네트워크에 접속(attach)을 완료해서 MM에 이미 등록되어 있는 상태를 전제로 한다. 따라서, 본 실시 예에서, MM(207)은 단말(201)의 ID(UE ID)를 이미 발급했고, UE(201)가 어떤 RAN(202)에 붙어있는지를 알고 있다(예를 들어, MM은 단말이 붙어있는 기지국의 ID(RAN ID)를 알고 있다). 또한, 본 발명의 일 실시 예에 따른 UE(201)는 이동성 관리(207)의 ID(MM ID) 및 데이터 네트워크의 이름(Data Network Name, DNN)을 알고 있는 상태일 수 있다.
이때, UE(201)가 데이터 통신을 위해 새로운 프로토콜 데이터 유닛 세션 설정(PDU session setup)을 요청하는 절차를 기술한다. 여기서, PDU session은 단말과 DN(data network) 간의 연관(association)을 의미하고, 4G LTE에서의 패킷 데이터 네트워크 연결(Packet Data Network (PDN) connection)과 유사한 개념이고, 크게 인터넷 프로토콜(IP), non-IP 및 이더넷(Ethernet)으로 구분할 수 있다. 또한, 각 네트워크 엔티티의 ID는 IP 주소, 시스템 ID 뿐 아니라 망 내에서 각 엔티티를 구분할 수 있는 가능한 모든 식별자를 사용할 수 있다.
도 2a 및 도 2b를 참조하면, 단말(201)은 PDU 세션 설정 요청(PDU session setup request) 메시지를 MM(207)으로 전송한다(S201). 여기에서, PDU 세션 설정 요청 메시지는, UE ID, DNN, PDU 타입(type), 단말의 능력(UE capability) 및 세션과 서비스 연속성(Session and Service Continuity) 모드(mode) 정보가 포함되어 전송될 수 있다.
상기 PDU 세션 설정 요청 메시지가 수신되면, MM(207)은 시그널링 라우팅 기능(signaling routing function)을 수행한다(S202). 만약, SM ID가 명시되어 있지 않은 경우라면, 상기 시그널링 라우팅 기능의 수행 결과로 MM(207)은, PDU 세션 설정 요청 메시지를 디폴트 세션 관리(default SM)(208a)로 전달(forwarding) 또는 릴레이(relay)한다(S203). 여기에서, MM(207)과 Default SM(208a)은 같은 곳에 위치(co-located)할 수 있다. 상기 포워딩과정(S203)을 통하여, UE ID, DNN, PDU type, UE capability 및 SSC mode 정보는 상기 PDU 세션 설정 요청 메시지에 포함되어 Default SM(208a)으로 전달될 수 있다.
만약, MM(207)이 단말의 attach 과정에서 단말의 가입 정보(UE subscription)를 가지고 있는 경우, MM(207)과 Default SM(208a) 사이에서, 단말의 가입 정보의 요청 및 응답과정(S204)을 통하여 UE ID 및 DNN이 Default SM(208a)으로 전송될 수 있다.
Default SM(208a)은, UE subscription, DNN, PDU type, UE capability 및 SSC mode 등에 기반하여, 세션 관리 선택(SM selection)을 수행함으로써, 적절한 SM을 선택(S205)한다. 이때, Default SM(208a)은 선택된 SM ID 및 UE ID가 MM(207)에 등록될 수 있도록, 선택된 SM ID 및 UE ID를 MM(207)으로 전송한다(S206). MM(207) 역시 선택된 SM(Chosen SM)(208b)으로, MM ID 및 단말(201)이 속한 RAN ID 등록을 위한 전송을 수행한다(S207). 그리고, Default SM(207a)은 기 수신한 PDU session setup request를 MM(207)을 통하여 Chosen SM(208b)으로 전달한다(S208).
Chosen SM(208b)은, PDU session setup request를 받은후, PC(206)와 사업자 정책 적용(apply operator policy) 과정(S209)을 수행하고, UP NF(203)을 선택(selection)한다(S210). 그리고, Chosen SM(208b)은, 선택된 UP NF(203) 및 DN(204)과의 전송 경로 설정을 진행한다. 예를 들어, Chosen SM(208b)은 선택된 UP NF(203)로 세션 생성 요청을 전송하고, UP NF(203)로부터 세션 생성 요청에 대한 응답을 수신할 수 있다(S211).
한편, Chosen SM(208b)은 RAN(202)으로도 전송 경로 설정을 진행한다. 예를 들어, Chosen SM(208b)은, UE ID, SM ID, 세션 ID(session ID), 업링크에 대한 기지국 터널 ID(RAN Tunnel endpoint ID(TEID)) 및 RAN ID를 포함하는 초기 컨텍스트 설정 요청(initial context setup request)을 RAN(202)으로 전송할 수 있다(S212). 이후, RAN(202)은 이에 기반하여, UE(201)와의 사이에서 라디오 베어러를 설립(Radio bearer establishment)하고(S213), Chosen SM(208b)으로, 초기 컨텍스트 설정 응답(initial context setup response)을 전송할 수 있다(S214). 이때, initial context setup response에는 UE ID, SM ID, session ID, RAN TEID[DL] 및 RAN ID가 포함될 수 있다.
initial context setup response의 수신에 기반하여, Chosen SM(208b)이 UP NF(203)와의 사이에서, 세션 수정 요청 및 응답(modify session request/response)과정을 수행(S215)하면, 최종적으로, DN(204) - UP NF(203) - RAN(202) - UE(201) 간의 전송 경로 설정이 완료된다. 상기 전송 경로 설정이 완료되면, Chosen SM(208b)은 MM(207)으로, UE ID, DNN, SM ID, session ID 및 단말의 IP(UE IP)를 포함하는 PDU 세션 설정 응답(PDU session setup response) 시그널링을 전송(S216)하고, MM(207)은 SM ID, session ID 및 UE IP를 포함하는 PDU 세션 설정 응답(PDU session setup response)을 단말(201)로 전송할 수 있다(S217). 이후, 단말(201)은 설정된 전송 경로를 통해 DN(204)과 상향링크 및 하향링크 IP 트래픽(traffic) 송수신(데이터 통신)이 가능하게 된다(S218).
도 3a 및 도 3b는 본 발명의 다른 일 실시 예에 따른, 단말과 관련된 세션을 설정 (set up)하는 또 다른 예를 설명하기 위한 도면이다.
도 3a 및 도 3b를 참조하면, 단말(301)은 MM(307)으로 PDU session setup request를 전송한다(S301). 도 2a 및 도 2b와 마찬가지로, 본 발명의 일 실시 예에 따른 네트워크 구조에서 단말이 네트워크에 접속(attach)을 완료해서 MM에 이미 등록되어 있는 상태를 전제로 한다. 즉, 단말(301)은 MM ID 및 DNN을 알고 있으며, MM(307)은 UE ID 및 RAN ID를 알고 있는 상태일 수 있다. 또한, 도 2a 및 도 2b와 마찬가지로, PDU session setup request는 UE ID, DNN, PDU type, UE capability 및 SSC mode를 포함할 수 있다.
MM(307)은 시그널링 라우팅 기능(signaling routing function)을 수행(S302)하고, 만약, SM ID가 명시되어 있지 않은 경우, PDU session setup request를 Default SM(308a)으로 릴레이(relay)할 수 있다. 도 2a 및 도 2b에 상술한 바와 같이, MM(307)과 Default SM(308a)은 같은 곳에 위치(co-located)할 수 있다. 이로 인하여, UE ID, DNN, PDU type, UE capability 및 SSC mode 정보는 상기 PDU 세션 설정 요청 메시지에 포함되어 Default SM(308a)으로 전달될 수 있다.
MM(307)이 단말의 attach 과정에서 단말의 가입 정보(UE subscription)를 가지고 있다고 가정하면, MM(307)과 Default SM(308a) 사이에서, 단말의 가입 정보의 요청 및 응답과정(S304)을 통하여 UE ID 및 DNN이 Default SM(308a)으로 전송될 수 있다. 그리고, Default SM(308a)은, UE subscription, DNN, PDU type, UE capability 및 SSC mode 등에 기반하여, 세션 관리 선택(SM selection)을 수행함으로써, 적절한 SM(308b)을 선택(S305)한다.
도 2a 및 도 2b와는 달리, 본 실시 예에서는 Chosen SM(308b)이, 직접 MM과 등록 절차를 진행할 수 있다. 보다 구체적으로, Default SM(308a)은, PDU session setup request를 Chosen SM(308b)으로 전송할 수 있다. 이때, PDU session setup request에는, UE ID, DNN, PDU type, UE capability, SSC mode 및 MM ID가 포함될 수 있다. 일 예로, MM ID는 다른 시그널링을 통하여 Default SM(308a)에서 Chosen SM(308b)으로 전송될 수 있다.
이후, Chosen SM(308b)은 MM(307)로, UE ID 및 SM ID를 포함한 시그널링을 통하여, MM에 SM ID 등록을 위한 과정을 수행한다(S307). 이에 대응하여 MM(307)은 UE ID 및 RAN ID를 포함하는 시그널링을 Chosen SM(308b)으로 전송하여, Chosen SM(308b)와의 RAN ID 등록 과정(S308)을 수행할 수 있다.
또한, Chosen SM(308b)은 PC(306)와의 사이에서, 사업자 정책 적용(apply operator policy)을 수행하고(S309), UP NF를 선택한다(S310). 그리고, Chosen SM(308b)은 선택된 UP NF(303) 및 DN(304)과의 전송 경로 설정을 진행한다. 예를 들어, Chosen SM(308b)은 선택된 UP NF(303)로 세션 생성 요청을 전송하고, UP NF(303)로부터 세션 생성 요청에 대한 응답을 수신할 수 있다(S311).
한편, Chosen SM(308b)은 RAN(302)으로도 전송 경로 설정을 진행한다. 예를 들어, Chosen SM(308b)은, UE ID, SM ID, 세션 ID(session ID), 업링크에 대한 기지국 터널 ID(RAN Tunnel endpoint ID(TEID)) 및 RAN ID를 포함하는 초기 컨텍스트 설정 요청(initial context setup request)을 RAN(302)으로 전송할 수 있다(S312). 이후, RAN(302)은 이에 기반하여, UE(301)와의 사이에서 라디오 베어러를 설립(Radio bearer establishment)하고(S313), Chosen SM(308b)으로, 초기 컨텍스트 설정 응답(initial context setup response)을 전송할 수 있다(S314). 이때, initial context setup response에는 UE ID, SM ID, session ID, RAN TEID[DL] 및 RAN ID가 포함될 수 있다.
initial context setup response의 수신에 기반하여, Chosen SM(308b)이 UP NF(303)와의 사이에서, 세션 수정 요청 및 응답(modify session request/response)과정을 수행(S315)하면, 최종적으로, DN(304) - UP NF(303) - RAN(302) - UE(301) 간의 전송 경로 설정이 완료된다. 상기 전송 경로 설정이 완료되면, Chosen SM(308b)은 MM(307)으로, UE ID, DNN, SM ID, session ID 및 단말의 IP(UE IP)를 포함하는 PDU 세션 설정 응답(PDU session setup response) 시그널링을 전송(S316)하고, MM(307)은 SM ID, session ID 및 UE IP를 포함하는 PDU 세션 설정 응답(PDU session setup response)을 단말(301)로 전송할 수 있다(S317). 이후, 단말(301)은 설정된 전송 경로를 통해 DN(304)과 상향링크 및 하향링크 IP 트래픽(traffic) 송수신(데이터 통신)이 가능하게 된다(S318).
도 4는 도 4를 참조하여, 본 발명의 일 실시 예에 따른 PDU 세션 해제(PDU session release) 절차를 설명하기로 한다. 이 절차는 단말 또는 SM에 의하여 요청되는 것에 기반하여 진행될 수 있다. 단말에 의하여 요청되어 진행되는 절차는 S401에서부터 순차적으로 진행되고, SM에 의하여 요청되어 진행되는 절차는 S403에서부터 진행된다.
만약, S403 단계에서 없애고자 하는 세션 이외에 다른 세션이 존재한다면 S404 단계는 생략(skip)하게 된다. 반면, 없애고자 하는 세션이 UE를 위한 마지막 세션이라면, S404 단계를 통해 MM(407)에게 SM ID를 지울 것을 요청한다. Session release를 요청받은 SM(408)은 UP NF(403) 및 RAN(402)과 기존에 셋업된 전송 경로를 해제하는 과정을 수행하고, 이것이 완료되면 최종적으로 단말(401)에게 release가 완료됐다는 시그널링을 보낸다.
보다 구체적으로, 도 4를 참조하면, 단말(401)은 MM(407)으로 PDU 세션 삭제 요청(PDU session delete request)을 전송한다(S401). 여기에서, PDU session delete request는 UE ID, SM ID 및 session ID를 포함할 수 있다. MM(407)은 단말(401)로부터 수신한 PDU session delete request를 SM(408)으로 전달할 수 있다(S402).
SM(408)은, 존재하는 PDU 세션을 확인(existing PDU session check)하고(S403), MM(407)으로 SM ID 등록 삭제(SM ID registration delete)를 위한 시그널링을 수행할 수 있다(S404). 여기에서, SM ID registration delete는 UE ID 및 SM ID를 포함할 수 있다. 그리고, SM(408)은, UP NF(403)로 UE ID, SM ID 및 session ID를 포함하는 세션 삭제 요청(delete session request)을 수행(S405)하고, UP NF(403)으로부터 UE ID를 포함하는 세션 삭제 응답(delete session response)을 수신할 수 있다(S406).상기 세션 삭제 응답이 수신되면, SM(408)은 MM(407)으로 세션 비활성화 요청(deactivate session request)을 수행할 수 있다(S407). 여기에서, deactivate session request는 UE ID, SM ID 및 session ID를 포함할 수 있다. MM(407)으로부터, UE ID, SM ID 및 session ID을 포함하는 deactivate session request가 RAN(402)으로 전달되면(S408), UE(401)와 RAN(402) 사이에서는 라디오 베어러 해제 절차(Radio bearer release procedure)가 수행될 수 있다(S409).
이후, RAN(402)은 MM(407)으로, UE ID, SM ID 및 session ID를 포함하는 세션 비활성화 응답(deactivate session response)을 전송하고(S410), MM(407)은 UE ID, SM ID 및 session ID를 포함하는 deactivate session response를 SM(408)으로 전달할 수 있다(S411). 또한, MM(407)은 SM(408)으로부터 UE ID, SM ID 및 session ID를 포함하는 PDU 세션 삭제 응답(PDU session delete response)이 수신되면, UE(401)로, SM ID, 및 session ID를 포함하는 PDU session delete response의 시그널링을 전송한다(S413).
도 5를 참조하여, 유휴(Idle) 상태에 있는 단말에서 업링크(uplink, UL) 트래픽이 발생하여, 네트워크와의 제어평면 시그널링 연결 및 사용자평면 전송 경로 설정을 위한 과정을 기술한다.
상기 Idle 상태는 단말이 셀룰러망과 시그널링 교환을 할 수 있는 시그널링 연결 상태가 셋업되어있는지의 유무로 정의될 수 있다. 예를 들면, 단말은 셀룰러 기지국과 RRC(Radio Resource Control) 연결 상태를 기반으로 Idle 상태와 연결(Connected) 상태를 구분할 수 있다. 상기 절차는 다운링크(downlink, DL) 트래픽이 발생해서 네트워크로부터 페이징 메시지를 수신한 단말이 상기 페이징 메시지의 응답으로 수행할 수도 있다.
도 5는, UE(501)와 MM(507) 사이의 NG1 시그널링 연결(signaling connection) 및 RAN(502)과 MM(507) 사이의 NG2 시그널링 연결이 셋업(set up)되었다 가정하고 설명하기로 한다. 먼저, 단말(501)은 응용계층에서 생성한 트래픽이 어떤 SM으로 향하는 것인지를 서비스 요청(service request)에 포함시켜 MM(507)으로 시그널링을 전송한다(S501). 이때, 단말(501)은, 해당 PDU 세션을 관리하는 SM(508)에게, PDU 세션의 사용자 평면(UP) 연결을 활성화하기 위해서 PDU 세션을 식별하기 위한 정보를 포함하여 service request를 전송할 수 있다.
예를 들어, 상기 PDU 세션 식별 정보는 PDU 세션 ID가 될 수 있고, 또는 그에 상응하는 활성화 플래그(activation flag)가 단말과 네트워크 사이에 정의되어 사용될 수도 있다. 일 예로, 도 5에서는, UE(501)가 service request에 UE ID 및 PDU 세션을 식별하기 위한 정보로써, SM ID를 포함하여 전송하는 경우를 도시하였다.
또한, SM(508)가 상기 단말(501)에 대하여 복수 개의 PDU 세션을 셋업한 경우를 처리하기 위해서, PDU 세션의 식별 정보는 하나의 SM 내에서는 유일무이(unique) 할 수 있다. MM((507)이 UE(501)로부터 service request를 수신한 이후, UE(501)와 SDM(505) 사이에는, 인증 및 보안(Authentication/Security) 절차가 수행될 수 있다(S502).
그리고, MM(507)은 service request에 기반하여, 해당 SM(508)으로 사용자평면 전송 경로 설정을 위한 사용자 평면 경로 설정 트리거(UP path setup trigger) 메시지를 전송한다(S503). 보다 구체적으로, 상기 service request 메시지를 단말(501)로부터 수신한 MM(507)은, 상기 service request에 포함된 PDU 세션 식별 정보를 확인하여, 상기 세션을 관리하는 SM(508)으로 UP 연결을 활성화하기 위한 시그널링을 송신할 수 있다. 여기에서, UP 연결을 활성화하기 위한 시그널링인 UP path setup trigger 메시지는, UE ID 및 RAN ID를 포함할 수 있다.
상기 PDU 세션에 대한 활성화 메시지를 수신한 SM(508)은, 해당 PDU 세션의 UP 연결을 활성화하기 위해서, 현재 UE(501)가 접속한 기지국(502)으로 UP 연결 셋업을 위한 N2 세션 셋업 요청 시그널링을 전송할 수 있다. 이 시그널링은, 예를 들어, 도 5에 도시된 것처럼 초기 컨텍스트 설정 요청(initial context setup request) 시그널링일 수 있으며, 이 시그널링에는 UE ID, 세션 식별을 위한 PDU 세션 ID 및 업링크 트래픽 전송을 위해 필요한 UP NF의 터널과 관련된 정보(e.g. UP NF의 IP 주소 및 UP NF의 터널 ID) 등이 포함될 수 있다.
상기 시그널링을 수신한 기지국(502)은 상기 UP NF(503)와 N3 터널을 셋업하기 위한 자원을 할당하고, 단말과 상기 PDU 세션의 QoS를 만족할 수 있는 DRB를 생성하는 절차(라디오 베어러 설립)를 수행할 수 있다(S505). S505 단계가 완료되면, 단말(501)은 RAN(502)을 거쳐 UP NF(503)로 업링크 트래픽(UL traffic)을 보낼 수 있다.
이후, 기지국(502)은 상기 N3 터널 셋업을 위해 설정한 기지국 터널 식별 정보를 포함하여, SM(508)으로 전달하기 위한 N2 세션 셋업 응답 시그널링을 생성할 수 있다. 상기 N2 세션 셋업 응답 시그널링(도면에서는, 초기 컨텍스트 셋업 응답 시그널링으로 도시되었음)은, MM(507)으로 전송되고, MM(507)에서 PDU 세션 식별 정보를 확인하여, 해당 SM(508)으로 포워딩될 수 있다(S506).
또한, SM(508)은, UP NF(503)로 세션 수정 요청(modify session request) 시그널링을 전송(S507)하고, UP NF(503)는 SM(508)으로 세션 수정 응답(modify session response)을 전송할 수 있다.이후, 다운링크(downlink, DL) 트래픽은, UP NF(503)에서 단말(501)로 전달될 수 있다. 구체적으로 S707 단계를 통해서 SM(508)은 UP NF(503)에게 상기 S506 단계에서 수신한 기지국 터널 식별 정보를 전달할 수 있고, 이를 통해 상기 PDU 세션의 기지국(502)과 UP NF(503) 간 N3 터널 셋업이 완료될 수 있다. S508 단계에서 UP NF(503)는 S507 단계에서 수신한 N4 세션 수정(Session Modification) 요청 시그널링에 대한 N4 Session Modification 응답 메시지를 전송할 수 있다.
상기 도 5의 절차를 통해서 단말은 복수 개의 PDU 세션을 가지고 있는 경우에도, 특정 PDU 세션의 UP 연결만을 선택적으로 활성화할 수 있게 된다.
도 6은 DN(Data Network, e.g. Internet)으로부터 다운링크 트래픽이 온 경우, Idle 상태에 있는 단말을 깨우고 이 트래픽을 전송하기 위한 절차를 보여준다.
구체적으로, DN 트래픽을 수신한 UP NF(603)는 해당 PDU 세션을 관리하는 SM(608)으로 DL 데이터가 도착했음을 알리는 다운링크 데이터 알림(DL Data Notification) 시그널링을 송신할 수 있다(S601). 이때 하나의 SM(608)이 같은 단말에 대해서 복수 개의 PDU 세션을 관리하는 경우를 대비하여, 상기 시그널링에, UE ID와 함께 해당 PDU 세션의 ID를 포함하여 전송할 수 있다.
또한, 상기 DL Data Notification 메시지는 SM(608)에서 상기 단말(601)의 이동성을 관리하는 MM(607)으로 포워딩될 수 있다(S602). 이후, MM(607)은 NG3 설정 트리거를 위하여, DL data notification을 보낸 SM(608)의 ID를 등록할 수 있다(S603). 이는, 이후 단말 트리거된 서비스 요청(UE triggered service request) 절차가 수행될 때, 단말로부터 SM ID가 지정되지 않은 service request 를 수신하는 경우라도, 저장한 SM ID에 대응되는 SM으로 사용자평면 전송 경로를 설정하기 위한 사용자 평면 설정 트리거(UP path setup trigger)를 보낼 수 있도록 하기 위함이다.
S603 단계에서 상기 MM(507)은, DL Data Notification 메시지에 포함된 PDU 세션 식별 정보를 저장한 뒤, SM(608)으로, UE ID를 포함하는 DL data notification 응답(ack)을 전송할 수 있으며,(S604) SM(508)은 UP NF(603)로 DL data notification ack을 전송할 수 있다(S605). 또한, MM(507)은 RAN(602)으로 UE ID를 포함하는 페이징(paging)을 전송하고(S606), RAN(602)은 UE(601)로 paging을 전송한다(S607).
이에 의하여, UE(601), RAN(602), MM(607), SM(608) 및 UP NF(603) 사이 단말 트리거된 서비스 요청 절차(UE triggered service request procedure)가 수행된다(S608). 예를 들어, 단말(601)이 전송한 service request 메시지를 수신했을 때, 상기 MM(607) 은 상기 저장한 PDU 세션에 대해서 UP 연결을 활성화하기 위한 시그널링을 해당 SM(608)으로 전송할 수 있다. 이후 동작은 상기 도 5에서 설명한 방법과 같은 방식으로 UP 연결 설정을 완료할 수 있다.
앞서 설명한 대로 상기 도 5와 도 6을 통해서, 단말은 트래픽 전송이 필요한 PDU 세션의 UP Path (또는 연결)만 다시 셋업할 수 있게 되므로, 기존 LTE의 service request와 다르게 효율적으로 UP 연결에 대한 네트워크 자원을 활용할 수 있다.
도 7은 본 발명의 일 실시 예에 따라 MM과 SM이 분리된 코어 구조에서 소스 기지국(Source RAN (예를 들어, RAN1))과 타겟 기지국(Target RAN (예를 들어, RAN2)) 간에 인터페이스가 있는 경우(X2 interface), 핸드오버 절차를 보여준다.
먼저, UE(701), RAN 1(702a), UP NF 1(703a) 및 DN(704) 사이에서, 상향링크 및 하향링크 트래픽(UL/DL traffic)이 송수신될 수 있다. 이때,UE(701), RAN 1(702a) 및 RAN 2(702b) 사이에서, 즉, RAN 1(702a)에서 RAN 2(702b)로 핸드오버를 실행하는 절차가 수행될 수 있다(S700). 이때, 상기 핸드오버 실행 단계에서, MM(707)의 RAN ID 업데이트도 수행됨을 가정한다.
핸드오버가 실행되면, RAN 2(702b)에서 SM(708)으로, 경로 스위치 요청(path switch request)이 전송될 수 있다. 이때, path switch request는 UE ID, SM ID, session ID, RAN 2에 대한 TEID[DL] 및 RAN ID를 포함할 수 있다. 여기에서, path switch request는 UP Path가 셋업되어 있는 SM으로만 전송 된다.
SM(708)은, path switch request에 의하여 트리거링된 UP NF 재배치(relocation) 여부를 결정하는 동작을 수행할 수 있다(S702). 본 실시 예에서는, UP NF의 재배치를 수행하지 않는 경우에 대하여 설명하기로 한다. 다만, SM(708)은, UP NF의 재배치가 필요한 경우, 이에 따른 추가적인 절차를 진행할 수 있다.
SM(708)은 UP NF 1(703a)로 UE ID, SM ID, session ID, RAN TEID 및 RAN ID를 포함하는 세션 수정 요청(modify session request)을 전송(S703)하고, UP NF 1(703a)로부터, UE ID, SM ID 및 session ID를 포함하는 세션 수정 응답(modify session response)을 수신(S704)할 수 있다. 이때, UP NF 1(703a)는 RAN 1(702a)으로 “종료 표시(end marker)” 패킷을 전송할 수 있다. 이후, SM(708)은 RAN 2(702b)로 UE ID, SM ID 및 session ID를 포함하는 경로 스위치 응답(path switch response)을 전송할 수 있다(S705).
상기 과정이 완료되면, UE(701)는 RAN 2(702b)와 UP NF 1(703a) 및 DN(704)과 상향링크 및 하향링크 트래픽(UL/DL traffic)의 송수신을 수행할 수 있다. 또한, RAN 2(702b)는 RAN 1(702a)으로 UE ID를 포함하는 자원 해제(release resource) 시그널링을 전송하고(S706), UE(701), RAN 1(702a), RAN 2(702b) 및 MM(707) 사이에서, 트래킹 구역 업데이트 절차(Tracking area update procedure)가 수행될 수 있다(S707).
도 8은 X2 인터페이스가 없는 경우, MM을 이용해서 RAN 1에서 RAN 2로 핸드오버하는 절차를 보여준다. 도 7의 경우와 마찬가지로, 단말이 RAN 2로 attach가 완료되면, RAN 2는 path switch request를 RAN과 UP NF간에 전송 경로를 설정해놓은 SM으로만 보내게 된다.
보다 구체적으로 도 8을 참조하면, UE(801), RAN 1(802a), UP NF 1(803a) 및 DN(804) 사이에서, UL/DL traffic이 송수신될 수 있다. 이때, RAN 1(802a)은 MM(807)으로 핸드오버의 필요(handover required)를 알리는 시그널링을 전송할 수 있다(S801). MM(807)은 상기 시그널링에 기반하여, RAN 2(802b)와의 사이에서 핸드오버 요청 및 응답(handover request/ack) 절차를 수행할 수 있다(S802). 이때, S802에 의하여 MM(807)에서 RAN ID가 업데이트될 수 있다.
이후, MM(807), SM(808) 및 UP NF 1(803a) 사이에서, 간접적인 데이터 포워딩 터널 설정(indirect data forwarding tunnel setup) 절차가 수행될 수 있다(S803). 그리고, MM(807)에서 UE(801)로 핸드오버 명령(handover command)의 시그널링이 전송될 수 있다(S804). 이에 따라, UE(801), RAN 1(802a), RAN 2(802b) 및 MM(807) 사이에서, RAN 1(802a)에서 RAN 2(802b)로의 핸드오버가 실행된다(S805).
UE(801)는 RAN 2(802b)로 핸드오버 확인(handover confirm)의 시그널링을 전송하고(S806), RAN 2(802b)는, MM(807)으로는 핸드오버 알림(handover notify) 시그널링을 전송하고(S807), SM(808)으로는 경로 스위치 요청(path switch request)을 전송할 수 있다(S808).
SM(808)은, path switch request에 의하여 트리거링된 UP NF relocation 여부 결정 동작을 수행할 수 있다(S809). 본 실시 예에서는, UP NF relocation을 수행하지 않는 경우에 대하여 설명하기로 한다. 다만, SM(808)은, UP NF의 relocation이 필요한 경우, 이에 따른 추가적인 절차를 진행할 수 있다.
또한, SM(808)은, UP NF 1(803a)으로 세션 수정 요청(modify session request)을 전송하고(S810), UP NF 1(803a)로부터, 세션 수정 응답(modify session response)을 수신(S811)할 수 있다.
이후, SM(808)에 의하여, RAN 2(802b)로 경로 스위치 응답(path switch response)이 전송(S812)되면, UE(801)는, RAN 2(802b)와 UP NF 1(803a) 및 DN(804)과 UL/DL traffic의 송수신을 수행할 수 있다. 또한, SM(808)은 RAN 1(802a)으로 자원 해제(release resource)의 시그널링을 전송하고(S813), UE(801), RAN 1(802a), RAN 2(802b) 및 MM(807) 사이에서, 트래킹 구역 업데이트 절차(Tracking area update procedure)가 수행될 수 있다(S814).
도 9는 네트워크(예를 들어, MM)에서 UE의 위치를 업데이트하기 위한 트래킹 구역 업데이트(tracking area update, TAU) 절차를 보여준다.
먼저, UE(901)는 MM(907)로 TAU 요청(request)를 전송할 수 있다(S901). 그리고, UE(901)는 MM(907)과 SDM(905) 사이에서 인증 및 보안(Authentication/security) 절차를 수행할 수 있다.
단말의 위치가 기지국 레벨(RAN level (or cell level))에서 변경된 경우, MM(907)은 상태 변화 알림(state change notify) 메시지를 UE(901)와 연관(association)된 모든 SM(908)에게 보낸다(S903). 이때, state change notify 메시지는, RAN ID update 정보를 포함할 수 있다.
이 메시지를 수신한 SM(908)은 UP NF relocation을 수행할지 판단하고(S904), UP NF 변경이 필요한 경우(UP NF relocation required), 예를 들어, UP NF 1(903a)에서 UP NF(903b)로 변경이 필요한 경우, 상태 변화 알림 응답(state change notify ack) 메시지에 이를 표기하여 MM(907)으로 보낸다(S905). 상기 state change notify ack 메시지의 수신에 기반하여, MM(907)은 TAU accept 메시지를 UE(901)로 전송한다(S906). 여기에서, TAU accept 메시지는 UP NF 보낼 때, UP NF relocation required 정보와 UN NF relocation에 대한 플래그를 함께 포함(piggyback)하여 단말(901)에게 알려줄 수 있다.
이후, UE(901), RAN(902), MM(907), SM(908), UP NF 1(903a), UP NF 2(903b), DN(904) 및 SDM(905) 사이에는 세션 설정 절차(session setup procedure)가 수행되고(S907), SM(908)은 UP NF 1(903a)과의 사이에서, PDU 세션 삭제 요청 및 응답(delete PDU session request/response) 과정을 수행한다(S908).
도 10은 특정 단말에 대해 이미 셋업된 PDU 세션의 사용자평면(UP) 전송 경로를 통해 데이터 전송이 특정 시간 동안 없는 경우(예를 들어, 사용자 트래픽이 비활성화(user traffic inactivity)된 경우)에 기지국(RAN)에 의해서 데이터 전송 경로를 지우기 위한 과정을 보여준다. 도 1에서 이미 기술한 바와 같이, NG3 인터페이스가 RAN과 UP NF 간의 전송 경로를 담당하므로, 본 절차를 NG3 release라고 명명하기로 한다. 다만, 상기 절차의 이름은 변경될 수 있다.
도 10을 참조하면, 상기 단말(1001)이 접속한 기지국(1002)은, SM(1008)에게 NG3 해제 요청(NG3 release request)을 전송할 수 있다(S1001). 예를 들어, 기지국(1002)은 PDU 세션 별로 데이터 비활성화 타이머(Data inactivity timer)를 운영하여, 상기 timer가 만료될 때까지 트래픽이 발생하지 않는다면, 트래픽이 발생하지 않은 PDU 세션에 대한 식별 정보를 포함해서, NG3 release request 시그널링을 MM(1007)으로 송신할 수 있다. 상기 시그널링을 수신한 MM(1007)은 PDU 세션 식별 정보를 확인하고, 해당 PDU 세션을 관리하는 SM(1008)으로 상기 request 시그널링을 포워딩할 수 있다.
이에 대응하여, SM(1008)은, UP NF(1003)와 RAN(1002)에게 설정된 전송 경로를 해제하기 위한 시그널링을 보낸다. 보다 구체적으로, SM(1008)은 해당 PDU 세션의 데이터 전송을 담당하는 UP NF(1003)에게 N3 터널을 해제하기 위한 시그널링(예를 들어, 세션 해제 요청(release session request) 시그널링)을 전송할 수 있다(S1002). 상기 시그널링을 수신한 UP NF(1003)는 SM(1008)으로 세션 해제 응답(release session response) 시그널링을 전송할 수 있다(S1003).
이후, 상기 SM(1008)은 상기 기지국(1002)으로, 해당 PDU 세션의 N3 터널을 위해 할당한 자원 해제 명령(NG3 release command)을 포함하는 시그널링을 전송할 수 있다(S1004). 그리고, 이에 응답하여, RAN(1002)은 해당 세션에 대응하는 DRB를 해제하기 위해 단말(1001)과 RRC 연결 재설정(RRC connection reconfiguration)과 같은 시그널링 교환을 수행할 수 있다. 예를 들어, RAN(1002)은 라디오 베어러 해제(radio bearer release) 시그널링을 UE(1001)로 전송할 수 있다(S1005).
상기 기지국(1002)에서 해당 PDU 세션에 대한 모든 UP 연결에 대한 자원 해제가 성공하면, 이에 대한 response 시그널링을 MM(1007)을 거쳐 SM(1008)으로 전달되도록 전송할 수 있다. 예를 들어, RAN(1002)은 NG3 해제 완료(NG3 release complete) 시그널링을 MM(1007)을 거쳐 SM(1008)으로 전송할 수 있다.
만약 UE(1001)에 대해 설정된 모든 NG3가 release되면, 단말(1001)은 MM(1007) 과 NG2 release를 추가로 진행(S1007)해서 NAS(Non Access Stratum) 연결을 해제하여 완전하게 Idle 상태에 진입할 수 있다.
도 11은 단말과 MM 간의 시그널링 연결(signaling connection)을 해제하기 위한 절차를 기술한다.
먼저, RAN(1102)은 MM(1107)으로 NG2 해제 요청(NG2 release request)을 전송할 수 있다(S1101). 이 절차가 수행될 때, 아직 해제되지 않은 NG3가 있는 경우, RAN(1102)은 NG2 release request에, 아직 해제되지 않은 NG3를 담당하는 SM ID를 포함해서 MM(1107)으로 전송한다. 예를 들어, RAN(1102)은 PDU 세션 식별 정보 (예를 들어, PDU session ID)를 함께 포함하여 MM(1107)으로 전송할 수 있다.
MM(1107)은, 상기 시그널링에 대응하여, SM(1108)으로 NG3 해제 요청(NG3 release request)의 시그널링을 전송할 수 있다(S1102). 만약, 한 단말에 대해서 하나의 SM(1108)이 복수 개의 PDU 세션을 관리하는 경우, MM(1107)은 상기 PDU 세션 식별 정보에 기반하여 PDU 세션을 정확하게 식별할 수 있게 된다. 그리고, MM(1107)은 식별된 해당 SM(1108)에게 NG3 release request를 보낼 수 있다.
NG3 release request를 수신한 SM(1108)은 UP NF(1103)로 세션 해제 요청(release session request)을 전송하고(S1103), 상기 UP NF(1103)로부터 세션 해제 응답(release session response)을 수신한다(S1104).
이후, 상기 SM(1108)으로부터 NG3 release response를 수신(S1105)한 MM(1107)은, RAN(1102)에게 NG2 release command 메시지를 보낸다(S1106). 이때, NG2 release command 메시지는 RAN(1102) 쪽의 NG3 자원을 해제하기 위해 NG3 release command를 포함할 수 있다.
NG2 release command를 수신한 RAN(1102)은 UE(1101)로 RRC 연결 해제(RRC connection release) 시그널링을 송신하고(S1107), MM(1107)으로는 NG2 해제 완료(NG2 release complete) 시그널링을 송신한다(S1108).
도 12는 앞서 설명한 절차에 필요한 정보를 각 엔티티 별로 정리한 것이다. UE(1201)와 RAN(1202)은 MM ID와 SM ID를 각각 관리하여, MM(1207)과 연관된 시그널링과 SM(1208)과 연관된 시그널링을 명확하게 구분하여 전송할 수 있게 된다.
상기 기술된 절차를 통해 단말(1201) 및 기지국(1202)은 SM(1208) 별로 PDU session에 대한 상태 정보를 관리할 수 있다. 즉, NG3가 setup되어 있는 경우와 release되어 있는 경우로 구분하여 관리가 가능하다.
도 13은 본 발명의 일 실시 예에 따른 단말의 구성을 도시한 블록도이다. 도 13을 참조하면, 본 발명의 일 실시 예예 따른 단말(1300)은 단말 제어부(1302) 및 단말 송수신부(1304)를 포함할 수 있다. 또한, 단말의 송수신부(1304)는 단말의 수신부(1304a) 및 단말의 송신부(1304b)를 포함할 수 있다.
본 발명의 일 실시 예에 따른 단말 송수신부(1304)는, 도 1 내지 도 12에서 설명한 실시 예들에서, 단말의 송수신 동작과 관련된 모든 기능을 수행할 수 있다. 일 예로, 단말의 송수신부(1304)는 기지국과 무선 신호를 송수신할 수 있다. 상기 무선 신호는 제어 정보 및 데이터를 포함할 수 있다. 예를 들어, 본 발명의 일 실시 예에 따른 무선 베어러가 형성되면, 상기 무선 베어러를 통하여 기지국으로 데이터를 전송할 수 있다.
도면에는 도시되지 않았으나, 단말의 송신부(1304b)는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기를 포함할 수 있고, 단말의 수신부(1304a)는 수신되는 신호를 저잡음 증폭하고 주파수를 하강 변환하는 RF 수신기를 포함할 수 있다. 또한, 단말의 송수신부(1304)는 무선 채널을 통해 신호를 수신하여 단말 제어부(1302)로 출력하고, 단말 제어부(1302)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다.
또한, 단말 제어부(1302)는 상술한 본 발명의 실시 예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 단말 제어부(1302)는, 비활성화된 적어도 하나의 PDU(Protocol Data Unit) 세션 중에서, 데이터 전송을 위한 PDU 세션을 선택할 수 있으며, 상기 선택된 세션의 식별 정보를 포함하는 서비스 요청 메시지를 상기 단말의 이동성을 관리하는 이동성 관리 기능 요소(element)로 전송하도록 상기 송수신부(1304)를 제어할 수 있다. 또한, 단말 제어부(1302)는, 상기 서비스 요청 메시지에 기반하여 활성화된, 상기 선택된 PDU 세션을 통하여 상기 데이터를 전송하도록 상기 송수신부(1304)를 제어할 수 있다.
도 14는 본 발명의 일 실시 예에 따른 이동성 관리 기능 요소의 구성을 도시한 블록도이다. 본 발명의 일 실시 예예 따른 이동성 관리 기능 요소(1400)는 이동성 관리 기능 제어부(1402) 및 이동성 관리 기능 송수신부(1404)를 포함할 수 있다. 또한, 이동성 관리 기능 송수신부(1404)는 이동성 관리 기능 수신부(1404a) 및 이동성 관리 기능 송신부(1404b)를 포함할 수 있다.
본 발명의 일 실시 예에 따른 이동성 관리 기능 송수신부(1404)는, 도 1 내지 도 12에서 설명한 실시 예들에서, 이동성 관리 기능 요소의 송수신 동작과 관련된 모든 기능을 수행할 수 있다. 일 예로, 이동성 관리 기능의 송수신부(1404)는 단말로부터 전송된 특정 PDU 세션의 식별 정보를 포함하는 서비스 요청 메시지를 수신할 수 있다. 또한, 이동성 관리 기능의 송수신부(1404)는 특정 PDU 세션의 식별 정보에 대응되는 특정 세션 관리 기능 요소로, 단말의 사용자 평면 네트워크 기능 요소로의 데이터 전송을 위한 경로 설정 트리거 메시지를 전송할 수 있다.
또한, 이동성 관리 기능 제어부(1402)는 상술한 본 발명의 실시 예에 따라 이동성 관리 기능 요소가 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 이동성 관리 기능 제어부(1402)는, 특정 세션 관리 기능 요소로부터 경로 설정과 관련된 시그널링이 수신되면, 상기 시그널링을 기지국으로 포워딩하도록 송수신부(1404)를 제어할 수 있다.
도 15는 본 발명의 일 실시 예에 따른 세션 관리 기능 요소의 구성을 도시한 블록도이다. 본 발명의 일 실시 예예 따른 세션 관리 기능 요소(1500)는 세션 관리 기능 제어부(1502) 및 세션 관리 기능 송수신부(1504)를 포함할 수 있다. 또한, 세션 관리 기능 송수신부(1504)는 세션 관리 기능 수신부(1504a) 및 세션 관리 기능 송신부(1504b)를 포함할 수 있다.
본 발명의 일 실시 예에 따른 세션 관리 기능 송수신부(1504)는, 도 1 내지 도 12에서 설명한 실시 예들에서, 세션 관리 기능 요소의 송수신 동작과 관련된 모든 기능을 수행할 수 있다. 일 예로, 세션 관리 기능의 송수신부(1504)는 이동성 관리 기능 요소로부터 단말의 사용자 평면 네트워크 기능 요소로의 데이터 전송을 위한 경로 설정 트리거 메시지를 수신할 수 있다. 또한, 세션 관리 기능 송수신부(1504)는 경로 설정과 관련된 시그널링을 이동성 관리 기능 요소로 전송할 수 있다.
또한, 세션 관리 기능 제어부(1502)는 상술한 본 발명의 실시 예에 따라 세션 관리 기능 요소가 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 세션 관리 기능 제어부(1502)는, 이동성 관리 기능 요소로부터 수신한 경로 설정 트리거 메시지가 수신되면, 경로 설정과 관련된 시그널링이 이동성 관리 기능 요소로 전송되도록 송수신부(1504)를 제어할 수 있다.
상술한 본 발명의 구체적인 실시 예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 발명이 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 즉 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 단말의 방법에 있어서,
    비활성화된 적어도 하나의 PDU(Protocol Data Unit) 세션 중에서, 데이터 전송을 위한 PDU 세션을 선택하는 단계;
    상기 선택된 세션의 식별 정보를 포함하는 서비스 요청 메시지를 상기 단말의 이동성을 관리하는 이동성 관리 기능 요소(element)로 전송하는 단계; 및
    상기 서비스 요청 메시지에 기반하여 활성화된, 상기 선택된 PDU 세션을 통하여 상기 데이터를 전송하는 단계를 포함하는 것을 특징으로 하는 단말의 방법.
  2. 제1항에 있어서,
    상기 선택된 PDU 세션에 대한 무선 베어러가 생성되면, 상기 무선 베어러를 통하여 데이터 네트워크로 상기 데이터를 전송하는 단계를 더 포함하는 것을 특징으로 하는 단말의 방법.
  3. 제1항에 있어서,
    상기 무선 베어러는, 상기 단말과 기지국 사이에서 형성되고,
    상기 데이터는, 상기 선택된 PDU 세션에 대하여 상기 기지국과 사용자 평면 네트워크 기능 요소(element) 사이에서 형성된 터널을 통하여 상기 데이터 네트워크로 전송되는 것을 특징으로 하는 단말의 방법.
  4. 제3항에 있어서,
    상기 터널은, 상기 선택된 PDU 세션의 식별 정보에 대응되는 세션 관리 기능 요소(element)에 의하여 형성되는 것을 특징으로 하는 단말 방법.
  5. 무선 통신 시스템에서 이동성 관리 기능 요소(element)의 방법에 있어서,
    단말로부터, 특정 PDU(Protocol Data Unit) 세션의 식별 정보를 포함하는 서비스 요청 메시지를 수신하는 단계; 및
    상기 특정 PDU 세션의 식별 정보에 대응되는 특정 세션 관리 기능 요소(element)로, 상기 단말의 사용자 평면 네트워크 기능 요소(element)로의 데이터 전송을 위한, 경로 설정 트리거 메시지를 전송하는 단계를 포함하는 것을 특징으로 하는 이동성 관리 기능 요소의 방법.
  6. 제5항에 있어서,
    상기 특정 세션 관리 기능 요소로부터, 상기 경로 설정과 관련된 시그널링을 수신하는 단계; 및
    상기 경로 설정과 관련된 시그널링을 상기 기지국으로 포워딩하는 단계를 포함하고,
    상기 포워딩된 시그널링은, 상기 기지국과 상기 사용자 평면 네트워크 기능 요소 사이의 전송 경로의 식별 정보를 포함하는 것을 특징으로 하는 이동성 관리 기능 요소의 방법.
  7. 무선 통신 시스템에서의 세션 관리 기능 요소(element)의 방법에 있어서,
    단말의 이동성을 관리하는 이동성 관리 기능 요소(element)로부터, 상기 단말의 사용자 평면 네트워크 기능 요소(element)로의 데이터 전송을 위한, 경로 설정 트리거 메시지를 수신하는 단계; 및
    상기 경로 설정과 관련된 시그널링을 상기 이동성 관리 기능 요소로 전송하는 단계를 포함하고,
    상기 경로 설정 트리거 메시지는, 상기 이동성 관리 기능 요소에 의하여 상기 데이터 전송을 위한 특정 PDU(Protocol Data Unit) 세션이 상기 세션 관리 기능 요소에 의하여 관리되는 것으로 판단된 경우 수신되며,
    상기 특정 PDU 세션은, 비활성화된 적어도 하나의 PDU(Protocol Data Unit) 세션 중 상기 단말에 의하여 선택되는 것을 특징으로 하는 세션 관리 기능 요소의 방법.
  8. 무선 통신 시스템에서 단말에 있어서,
    송수신부; 및
    비활성화된 적어도 하나의 PDU(Protocol Data Unit) 세션 중에서, 데이터 전송을 위한 PDU 세션을 선택하고, 상기 선택된 세션의 식별 정보를 포함하는 서비스 요청 메시지를 상기 단말의 이동성을 관리하는 이동성 관리 기능 요소(element)로 전송하도록 상기 송수신부를 제어하며, 상기 서비스 요청 메시지에 기반하여 활성화된, 상기 선택된 PDU 세션을 통하여 상기 데이터를 전송하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 하는 단말.
  9. 제8항에 있어서,
    상기 제어부는, 상기 선택된 PDU 세션에 대한 무선 베어러가 생성되면, 상기 무선 베어러를 통하여 데이터 네트워크로 상기 데이터를 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 단말.
  10. 제8항에 있어서,
    상기 무선 베어러는, 상기 단말과 기지국 사이에서 형성되고,
    상기 데이터는, 상기 선택된 PDU 세션에 대하여 상기 기지국과 사용자 평면 네트워크 기능 요소(element)사이에서 형성된 터널을 통하여 상기 데이터 네트워크로 전송되는 것을 특징으로 하는 단말.
  11. 제10항에 있어서,
    상기 터널은, 상기 선택된 PDU 세션의 식별 정보에 대응되는 세션 관리 기능 요소(element)에 의하여 형성되는 것을 특징으로 하는 단말.
  12. 무선 통신 시스템에서 이동성 관리 기능 요소(element)에 있어서,
    단말로부터, 특정 PDU(Protocol Data Unit) 세션의 식별 정보를 포함하는 서비스 요청 메시지를 수신하는 송수신부; 및
    상기 특정 PDU 세션의 식별 정보에 대응되는 특정 세션 관리 기능 요소(element)로, 상기 단말의 사용자 평면 네트워크 기능 요소(element)로의 데이터 전송을 위한, 경로 설정 트리거 메시지를 전송하도록 상기 송수신부를 제어하는 제어부를 포함하는 것을 특징으로 하는 이동성 관리 기능 요소.
  13. 제12항에 있어서,
    상기 제어부는, 상기 송수신부에 의하여 상기 특정 세션 관리 기능 요소로부터 상기 경로 설정과 관련된 시그널링이 수신되면, 상기 경로 설정과 관련된 시그널링을 상기 기지국으로 포워딩하도록 상기 송수신부를 제어하고,
    상기 포워딩된 시그널링은, 상기 기지국과 상기 사용자 평면 네트워크 기능 요소 사이의 전송 경로의 식별 정보를 포함하는 것을 특징으로 하는 이동성 관리 기능 요소.
  14. 무선 통신 시스템에서의 세션 관리 기능 요소(element)에 있어서,
    단말의 이동성을 관리하는 이동성 관리 기능 요소(element)로부터, 상기 단말의 사용자 평면 네트워크 기능 요소(element)로의 데이터 전송을 위한, 경로 설정 트리거 메시지를 수신하는 송수신부; 및
    상기 경로 설정과 관련된 시그널링을 상기 이동성 관리 기능 요소로 전송하도록 상기 송수신부를 제어하는 제어부를 포함하고,
    상기 경로 설정 트리거 메시지는, 상기 이동성 관리 기능 요소에 의하여 상기 데이터 전송을 위한 특정 PDU(Protocol Data Unit) 세션이 상기 세션 관리 기능 요소에 의하여 관리되는 것으로 판단된 경우 수신되며,
    상기 특정 PDU 세션은, 비활성화된 적어도 하나의 PDU(Protocol Data Unit) 세션 중 상기 단말에 의하여 선택되는 것을 특징으로 하는 세션 관리 기능 요소.
PCT/KR2017/009142 2016-08-22 2017-08-22 이동성 관리와 세션 관리가 분리된 무선 통신 시스템 운영 방법 및 장치 WO2018038503A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/327,139 US11224079B2 (en) 2016-08-22 2017-08-22 Method and apparatus for operating wireless communication system having separated mobility management and session management
KR1020197005242A KR102379860B1 (ko) 2016-08-22 2017-08-22 이동성 관리와 세션 관리가 분리된 무선 통신 시스템 운영 방법 및 장치
EP17843923.8A EP3490297A4 (en) 2016-08-22 2017-08-22 METHOD AND APPARATUS FOR OPERATING A WIRELESS COMMUNICATION SYSTEM WITH SEPARATE MOBILITY MANAGEMENT AND SESSION MANAGEMENT
US17/571,785 US20220174759A1 (en) 2016-08-22 2022-01-10 Method and apparatus for operating wireless communication system having separated mobility management and session management

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662377889P 2016-08-22 2016-08-22
US62/377,889 2016-08-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/327,139 A-371-Of-International US11224079B2 (en) 2016-08-22 2017-08-22 Method and apparatus for operating wireless communication system having separated mobility management and session management
US17/571,785 Continuation US20220174759A1 (en) 2016-08-22 2022-01-10 Method and apparatus for operating wireless communication system having separated mobility management and session management

Publications (1)

Publication Number Publication Date
WO2018038503A1 true WO2018038503A1 (ko) 2018-03-01

Family

ID=61246222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009142 WO2018038503A1 (ko) 2016-08-22 2017-08-22 이동성 관리와 세션 관리가 분리된 무선 통신 시스템 운영 방법 및 장치

Country Status (4)

Country Link
US (2) US11224079B2 (ko)
EP (1) EP3490297A4 (ko)
KR (1) KR102379860B1 (ko)
WO (1) WO2018038503A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110366219A (zh) * 2018-04-09 2019-10-22 华为技术有限公司 一种信令处理方法和装置
CN110519809A (zh) * 2018-05-21 2019-11-29 华为技术有限公司 管理pdu会话的方法、装置和系统
US10602415B2 (en) 2017-08-14 2020-03-24 Samsung Electronics Co., Ltd Method of processing anchor user plane function (UPF) for local offloading in 5G cellular network
CN112352460A (zh) * 2018-05-14 2021-02-09 三星电子株式会社 在5G移动通信系统中针对蜂窝IoT业务控制终端的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018093875A1 (en) * 2016-11-15 2018-05-24 Nokia Technologies Oy Hybrid release for processing user equipment transaction
WO2018112897A1 (zh) * 2016-12-23 2018-06-28 华为技术有限公司 一种会话激活方法及装置和系统
JP2020036055A (ja) * 2017-01-05 2020-03-05 シャープ株式会社 端末装置、コアネットワーク装置、及び通信制御方法
US11228949B2 (en) * 2017-01-06 2022-01-18 Samsung Electronics Co., Ltd. Intra-RAT handover for next generation system
EP4236586A3 (en) 2017-01-09 2023-10-04 Telefonaktiebolaget LM Ericsson (publ) Service request handling
JP2020057834A (ja) * 2017-02-07 2020-04-09 シャープ株式会社 端末装置、コアネットワーク装置、及び通信制御方法
CN108574969B (zh) * 2017-03-08 2021-04-09 华为技术有限公司 多接入场景中的连接处理方法和装置
CN110290471B (zh) * 2017-03-17 2020-06-19 华为技术有限公司 一种会话管理功能实体及计算机可读介质
EP3592059A4 (en) * 2017-03-21 2020-03-25 Huawei Technologies Co., Ltd. DYNAMIC SPECTRUM MANAGEMENT METHOD AND APPARATUS
CN109429276B (zh) * 2017-06-30 2021-03-30 华为技术有限公司 通信方法及装置
RU2738801C1 (ru) * 2017-10-16 2020-12-17 Телефонактиеболагет Лм Эрикссон (Пабл) Способы и узлы для обработки подключения к сети передачи данных 5g
CN110234112B (zh) * 2018-03-05 2020-12-04 华为技术有限公司 消息处理方法、系统及用户面功能设备
CN110324866B (zh) 2018-03-30 2021-02-12 华为技术有限公司 一种通信方法、设备及系统
WO2020018012A1 (en) * 2018-07-17 2020-01-23 Telefonaktiebolaget Lm Ericsson (Publ) Open network automation platform (onap) - fifth generation core (5gc) interaction for analytics
CN111769988B (zh) * 2020-06-30 2021-07-20 中国科学院计算技术研究所 一种多切片共享基站资源的管理方法
CN113973076B (zh) * 2020-07-24 2023-01-06 华为技术有限公司 一种多播切换方法及装置
CN115442791A (zh) * 2021-06-03 2022-12-06 华为技术有限公司 一种通信方法及装置
US11706614B2 (en) * 2021-07-16 2023-07-18 Cisco Technology, Inc. Direct SMF control plane with gNB

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080063844A (ko) * 2005-11-04 2008-07-07 인터디지탈 테크날러지 코포레이션 미디어 독립 핸드오버 이벤트 서비스에 3gpp 서비스프리미티브를 맵핑하는 방법 및 장치
KR20100037601A (ko) * 2007-07-13 2010-04-09 노오텔 네트웍스 리미티드 멀티홉 무선 통신 환경에서의 서비스 품질 제어
EP2214451B1 (en) * 2009-01-30 2012-10-03 Alcatel Lucent Method for managing resources in a wireless communication system, and control node for implementing the method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139530B2 (en) 2007-03-22 2012-03-20 Telefonaktiebolaget L M Ericsson (Publ) Mobility management (MM) and session management (SM) for SAE/LTE
KR102219415B1 (ko) * 2014-01-20 2021-02-25 삼성전자 주식회사 Lte 망에서 최적 데이터 경로를 위한 mme와 로컬 서버, 이들 간 인터페이스 및 데이터 송수신 방법
US20170127471A1 (en) * 2014-03-21 2017-05-04 Nokia Solutions And Networks Oy Resource release for proximity-based communications
US10375564B2 (en) 2015-01-14 2019-08-06 Lg Electronics Inc. Method for updating area in wireless communication system, and device therefor
US10356689B2 (en) * 2015-03-06 2019-07-16 Futurewei Technologies, Inc. Method and system with separation of session anchor and forwarding anchor
US10512001B2 (en) * 2015-08-17 2019-12-17 Lg Electronics Inc. Method for rearranging gateway and method for generating dedicated bearer
US10667181B2 (en) * 2016-04-04 2020-05-26 Motorola Mobility Llc PDU sessions with various types of session continuity
EP3479552B1 (en) * 2016-07-04 2020-01-01 Telefonaktiebolaget LM Ericsson (publ) Technique for internet protocol anchor relocation
WO2018008980A1 (ko) * 2016-07-05 2018-01-11 엘지전자(주) 무선 통신 시스템에서 사용자가 선호하는 자원 운용 선택 방법 및 이를 위한 장치
KR102430396B1 (ko) * 2017-05-09 2022-08-05 후아웨이 테크놀러지 컴퍼니 리미티드 세션 관리 방법, 단말, 및 시스템
WO2018215046A1 (en) * 2017-05-22 2018-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Edge cloud broker and method therein for allocating edge cloud resources
CN110731099B (zh) * 2017-06-06 2023-05-23 瑞典爱立信有限公司 用于用户平面功能分配的技术
US20200059989A1 (en) * 2017-08-16 2020-02-20 Lenovo (Singapore) Pte. Ltd. Indicating a packet data unit session as unavailable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080063844A (ko) * 2005-11-04 2008-07-07 인터디지탈 테크날러지 코포레이션 미디어 독립 핸드오버 이벤트 서비스에 3gpp 서비스프리미티브를 맵핑하는 방법 및 장치
KR20100037601A (ko) * 2007-07-13 2010-04-09 노오텔 네트웍스 리미티드 멀티홉 무선 통신 환경에서의 서비스 품질 제어
EP2214451B1 (en) * 2009-01-30 2012-10-03 Alcatel Lucent Method for managing resources in a wireless communication system, and control node for implementing the method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PENG, HAILAN ET AL.: "Extended User/Control Plane Architectures for Tightly Coupled LTE/WiGig interworking in Millimeter-wave Heterogeneous Networks", IN: 2015 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC): TRACK 3: MOBILE AND WIRELESS NETWORKS, 9 March 2015 (2015-03-09), pages 1548 - 1553, XP032786567 *
SAID ET AL.: "New Control Plane in 3GPP LTE/ EPC Architecture for On-Demand Connectivity Service", 2013: 2ND IEEE INTERNATIONAL CONFERENCE ON CLOUD NETWORKING (CLOUDNET), 11 November 2013 (2013-11-11), San Francisco, United States, pages 205 - 209, XP032550313 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10602415B2 (en) 2017-08-14 2020-03-24 Samsung Electronics Co., Ltd Method of processing anchor user plane function (UPF) for local offloading in 5G cellular network
US11044653B2 (en) 2017-08-14 2021-06-22 Samsung Electronics Co., Ltd Method of processing anchor user plane function (UPF) for local offloading in 5G cellular network
US11632703B2 (en) 2017-08-14 2023-04-18 Samsung Electronics Co., Ltd Method of processing anchor user plane function (UPF) for local offloading in 5G cellular network
CN110366219A (zh) * 2018-04-09 2019-10-22 华为技术有限公司 一种信令处理方法和装置
CN110366219B (zh) * 2018-04-09 2021-06-15 华为技术有限公司 一种信令处理方法和装置
US11405965B2 (en) 2018-04-09 2022-08-02 Huawei Technologies Co., Ltd. Signaling processing method and apparatus
CN112352460A (zh) * 2018-05-14 2021-02-09 三星电子株式会社 在5G移动通信系统中针对蜂窝IoT业务控制终端的方法
CN112352460B (zh) * 2018-05-14 2024-03-22 三星电子株式会社 在5G移动通信系统中针对蜂窝IoT业务控制终端的方法
CN110519809A (zh) * 2018-05-21 2019-11-29 华为技术有限公司 管理pdu会话的方法、装置和系统
CN110519809B (zh) * 2018-05-21 2020-12-15 华为技术有限公司 管理pdu会话的方法、网元、设备、装置、系统和存储介质

Also Published As

Publication number Publication date
US20200187277A1 (en) 2020-06-11
US11224079B2 (en) 2022-01-11
KR102379860B1 (ko) 2022-03-29
EP3490297A4 (en) 2019-06-12
KR20190034572A (ko) 2019-04-02
US20220174759A1 (en) 2022-06-02
EP3490297A1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2018038503A1 (ko) 이동성 관리와 세션 관리가 분리된 무선 통신 시스템 운영 방법 및 장치
WO2018174509A1 (en) Method for supporting efficient pdu session activation and deactivation in cellular networks
WO2018021873A1 (ko) 무선 통신 시스템에서 네트워크 슬라이스 기반 nr을 위한 셀 특정 절차 또는 이동성 절차를 수행하는 방법 및 장치
WO2011010869A2 (en) Method for switching session of user equipment in wireless communication system and system employing the same
WO2011099769A2 (ko) 무선 통신 시스템 및 그의 사용자 단말기와 이동성 관리 엔티티 간 연결 방법
WO2018021861A1 (ko) 무선 통신 시스템에서 네트워크 슬라이스 기반 nr을 위한 셀 특정 절차를 수행하는 방법 및 장치
WO2011021875A2 (en) Server for control plane at mobile communication network and method for controlling local ip access service
WO2016039579A1 (ko) 무선 통신 시스템에서 mcptt 그룹 콜 설정 방법 및 이를 위한 장치
EP3583824A1 (en) Method for supporting efficient pdu session activation and deactivation in cellular networks
WO2018174638A1 (ko) 무선 통신 시스템에서 단말의 위치에 따라서 세션의 상태를 관리하는 방법 및 장치
WO2014209007A1 (ko) Sdn 기반 lte network 구조 및 동작 방안
WO2011055999A2 (ko) 무선 통신 네트워크 시스템에서 데이터 전송 방법 및 장치
WO2015037857A1 (ko) Bbu의 rru 정보 획득 방법 및 bbu
WO2011139096A2 (en) Method and apparatus for performing handover
WO2010128773A2 (en) Server for control plane at mobile communication network and method for controlling establishment of connection thereof
WO2015115814A1 (en) Efficient session management method and apparatus guaranteeing terminal mobility
WO2011052994A2 (ko) 이동 통신 시스템에서의 통신 방법 및 이를 위한 시스템
WO2015057034A1 (ko) 무선통신 시스템에서 단말의 앵커링 방법 및 장치
WO2012002709A2 (ko) 무선 통신 시스템 및 그 시스템에서 핸드오버 수행 방법
WO2014069925A1 (ko) 무선 통신 시스템에서 로컬 영역 패킷 데이터 네트워크 연결을 관리하는 방법 및 장치
WO2019035641A1 (en) METHOD AND APPARATUS FOR SUPPORTING DATA SYNCHRONIZATION FOR A 4G / 5G DUAL RECORDING MOBILE COMMUNICATION TERMINAL
WO2016089082A1 (ko) 통신 시스템에서 분리된 tcp 연결을 설정하는 방법 및 장치와 이를 위한 핸드 오버 지원 방법 및 장치
WO2013109083A1 (en) Method for establishing an interface and communication between a relay node and a core network
WO2019194536A1 (en) Method and apparatus for providing local area data network service based on non-subscription model in wireless communication system
WO2012157959A2 (ko) 이동통신시스템에서 limonet 지원시 세션 연속 지원을 결정하는 장치 및 방법.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005242

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017843923

Country of ref document: EP

Effective date: 20190221