WO2014208755A1 - Cyclic azine compound, method for producing same, and organic electroluminescent element using same - Google Patents

Cyclic azine compound, method for producing same, and organic electroluminescent element using same Download PDF

Info

Publication number
WO2014208755A1
WO2014208755A1 PCT/JP2014/067277 JP2014067277W WO2014208755A1 WO 2014208755 A1 WO2014208755 A1 WO 2014208755A1 JP 2014067277 W JP2014067277 W JP 2014067277W WO 2014208755 A1 WO2014208755 A1 WO 2014208755A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
pyridyl
atom
phenyl
Prior art date
Application number
PCT/JP2014/067277
Other languages
French (fr)
Japanese (ja)
Inventor
信道 新井
まさみ 銭谷
桂甫 野村
田中 剛
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2014208755A1 publication Critical patent/WO2014208755A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/04Esters of boric acids
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to a cyclic azine compound characterized by having a specific heteroaromatic group consisting only of carbon atoms, hydrogen atoms, and Group 16 elements of the periodic table, a method for producing the same, and an organic electroluminescent device using the same.
  • An organic electroluminescent element is formed by sandwiching a light-emitting layer containing a light-emitting material between a hole transport layer and an electron transport layer, and further attaching an anode and a cathode to the outside, and recombination of holes and electrons injected into the light-emitting layer. It is an element that utilizes light emission (fluorescence or phosphorescence) when the excitons that are generated are deactivated, and is applied not only to small displays but also to large televisions and lighting.
  • the hole transport layer is divided into a hole transport layer and a hole injection layer
  • the light emitting layer is divided into an electron blocking layer, a light emitting layer and a hole blocking layer
  • the electron transport layer is divided into an electron transport layer and an electron injection layer. May be configured.
  • a co-deposited film doped with a metal, an organic metal compound, or another organic compound may be used as a carrier transport layer (electron transport layer or hole transport layer) of the organic electroluminescence device.
  • organic electroluminescent elements have a higher driving voltage than inorganic light emitting diodes, have low emission luminance and luminous efficiency, have extremely low element lifetime, and have not been put into practical use in a wide range of fields. Furthermore, although recent organic electroluminescence devices have been improved gradually, excellent materials are required for the purpose of further improving the light emission efficiency characteristics, drive voltage characteristics, and long life characteristics. Among them, improvement of element lifetime is an urgent need for widespread use in a wide range of fields, and material development for that is required.
  • An example of an electron transport material having excellent long life for an organic electroluminescence device is the cyclic azine compound disclosed in Patent Document 1. However, further improvements have been demanded in terms of improving the device life.
  • the present invention relates to a specific cyclic azine compound that significantly improves the lifetime of an organic electroluminescent device, a method for producing the same, and an organic material that is excellent in storage stability using the cyclic azine compound as compared with a conventionally known cyclic azine compound.
  • An object is to provide an electroluminescent device. Furthermore, it aims at providing a manufacturing intermediate required in manufacturing the said cyclic azine compound.
  • cyclic azine compound (1) An organic electroluminescent element using a novel cyclic azine compound (hereinafter referred to as cyclic azine compound (1)) characterized by having an electron transport material is significantly longer than when a conventionally known material is used. It has been found that the lifetime is excellent and the driving voltage and power efficiency are excellent, and the present invention has been completed.
  • the present invention relates to a cyclic azine compound represented by the following general formula (1), a production method thereof, and an organic electroluminescence device using the cyclic azine compound.
  • Ar 1 two Ar 1 represent the same substituent, an aromatic hydrocarbon group (fluorine atom number of 6 to 30 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an aromatic having 6 to 18 carbon atoms carbide
  • An aromatic hydrocarbon group (which may have an aromatic hydrocarbon group as a substituent), or a pyridyl group optionally substituted with a phenyl group or a methyl
  • Heteroaromatic group having 4 to 30 prime atoms (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aromatic hydrocarbon having 6 to 18 carbon atoms substituted by a fluorine atom) Substituted with a C3-C13 heteroaromatic group, a C6-C18 aromatic hydrocarbon group substituted with a C3-C13 heteroaromatic group, or a C1-C4 alkyl group. And a heteroaromatic group having 3 to 13 carbon atoms or an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, may be substituted).
  • the present invention relates to a cyclic azine compound represented by the following general formula (1), a production method thereof, and an organic electroluminescence device using the cyclic azine compound.
  • Ar 1 is .Ar 1 represent the same substituent, an aromatic hydrocarbon group having 6 to 10 carbon atoms (fluorine atom, may have a methyl group, a phenyl group or pyridyl group as a substituent) Or a pyridyl group optionally substituted with a phenyl group or a methyl group, Ar 2 is only C, H, and N formed of an aromatic hydrocarbon group having 6 to 18 carbon atoms or a 6-membered ring only And a heteroaromatic group having 3 to 13 carbon atoms (these substituents may be substituted with a fluorine atom, a methyl group or a phenyl group), and each X is independently substituted with a methyl group.
  • Z represents a nitrogen atom.
  • T is a heteroaromatic group having 4 to 20 carbon atoms consisting of only a carbon atom, a hydrogen atom and a group 16 element (a nitrogen-containing complex having 3 to 9 carbon atoms which may have a methyl group, a phenyl group, or a methyl group).
  • An aromatic group may be included as a substituent).
  • heteroaromatic group having 4 to 20 carbon atoms consisting only of carbon atom, hydrogen atom and group 16 element enhances the electron donor property of the compound, and enhances the electron transport ability without impairing the durability and device lifetime of the compound. It becomes possible to improve.
  • the cyclic azine compound of the present invention is used as an electron transport material excellent in durability, driving voltage, and power efficiency. Furthermore, according to the present invention, an organic EL element with low power consumption and excellent element lifetime can be provided.
  • the substituents in the cyclic azine compound (1) of the present invention are defined as follows.
  • two Ar 1 represent the same substituent.
  • Ar 1 is as defined above.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms in Ar 1 is not particularly limited, but phenyl group, biphenyl group, naphthyl group, phenanthryl group, anthryl group, pyrenyl group, triphenylenyl group, chrysenyl group, fullyl group, An oranthenyl group, an acenaphthylenyl group, a fluorenyl group, a benzofluorenyl group, or the like is preferable.
  • the alkyl group having 1 to 4 carbon atoms in Ar 1 is not particularly limited, but a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, or the like is preferable.
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms in Ar 1 is not particularly limited, but includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a pyrenyl group, a triphenylenyl group, a chrysenyl group, a fullyl group.
  • An oranthenyl group, an acenaphthylenyl group, a fluorenyl group, a benzofluorenyl group, or the like is preferable.
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom in Ar 1 is not particularly limited, but includes fluorophenyl group, difluorobiphenyl group, fluoronaphthyl, difluoronaphthyl group, fluorophenanthryl.
  • a fluorofluoranthenyl group, a difluorofluoranthenyl group, a fluoroacenaphthylenyl group, a difluoroacenaphthyl group, or the like is preferable.
  • the heteroaromatic group having 3 to 13 carbon atoms in Ar 1 is not particularly limited.
  • a benzoquinolyl group or an acridyl group is preferred.
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a heteroaromatic group having 3 to 13 carbon atoms in Ar 1 is not particularly limited, but includes a pyridylphenyl group, a pyridylbiphenyl group, and a pyridylnaphthyl group.
  • the heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms in Ar 1 is not particularly limited, but is a methylpyridyl group, a methylpyrazyl group, a methylpyrimidyl group, a methylpyridyl group, a methyl group.
  • Triazyl group methylquinolyl group, methylisoquinolyl group, methylphenanthridyl group, methylbenzoquinolyl group, methylacridyl group, dimethylpyridyl group, dimethylpyrazyl group, dimethylpyrimidyl group, dimethylpyridazyl group
  • a dimethyltriazyl group, a dimethylquinolyl group, a dimethylisoquinolyl group, a dimethylphenanthridyl group, a dimethylbenzoquinolyl group, a dimethylacridyl group, or the like is preferable.
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms in Ar 1 is not particularly limited, but is a methylphenyl group, a methylbiphenyl group, a methylnaphthyl group, a methyl group Phenanthryl group, anthryl group, methylpyrenyl group, methyltriphenylenyl group, methylchrycenyl group, methylfluoranthenyl group, methylacenaphthylenyl group, dimethylphenyl group, dimethylbiphenyl group, dimethylnaphthyl group, dimethylphenanthryl group Anthryl group, dimethylpyrenyl group, dimethyltriphenylenyl group, dimethylchrysenyl group, dimethylfluoranthenyl group, dimethylacenaphthylenyl group, didimethylfluorenyl group, dimethylbenzofluoreny
  • the pyridyl group optionally substituted with a phenyl group or a methyl group in Ar 1 is not particularly limited, but includes a pyridyl group, a 3-phenylpyridin-2-yl group, and a 4-phenylpyridin-2-yl group.
  • 5-phenylpyridin-2-yl group, 3-methylpyridin-2-yl group, 4-methylpyridin-2-yl group, 5-methylpyridin-2-yl group and the like are preferable.
  • Ar 1 is a phenyl group, a biphenyl group, or a naphthyl group (these groups are an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a nitrogen-containing heteroaromatic group having 1 to 13 carbon atoms) in terms of excellent electron transporting material characteristics.
  • Group which may have a group as a substituent
  • a phenyl group which may have a phenyl group, a methyl group or a pyridyl group as a substituent
  • a phenyl group which may have a phenyl group, a methyl group or a pyridyl group as a substituent
  • Ar 1 is substituted with an aromatic hydrocarbon group having 6 to 10 carbon atoms (which may have a fluorine atom, a methyl group, a phenyl group or a pyridyl group as a substituent), or a phenyl group or a methyl group. It may preferably be a pyridyl group which may be a phenyl group, a biphenyl group or a naphthyl group (these groups may have a fluorine atom, a methyl group, a phenyl group or a pyridyl group as a substituent). More preferred.
  • the aromatic hydrocarbon group having 6 to 10 carbon atoms in Ar 1 is not particularly limited, but a phenyl group, a biphenyl group, a naphthyl group, or the like is preferable.
  • Ar 1 examples include a phenyl group, a p-tolyl group, an m-tolyl group, an o-tolyl group, a 2,4-dimethylphenyl group, a 3,5-dimethylphenyl group, a mesityl group, and a 2-ethylphenyl group.
  • a phenyl group, a p-tolyl group, a biphenyl-3-yl group, or a biphenyl-4-yl group a 3- (2-
  • Ar 2 is substituted with a hydrogen atom or a nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or a fluorine atom).
  • Ar 2 is a heteroaromatic group having 3 to 13 carbon atoms consisting of C, H, and N formed only by a 6-membered ring (these groups are substituted with a fluorine atom, a methyl group or a phenyl group) It may preferably be).
  • the following substituents for Ar 2 are the same as the substituents exemplified for Ar 1 .
  • an alkyl group having 1 to 4 carbon atoms (2) an aromatic hydrocarbon group having 6 to 18 carbon atoms, (3) an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom, (4) a heteroaromatic group having 3 to 13 carbon atoms, (5) an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a heteroaromatic group having 3 to 13 carbon atoms, (6) a heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, (7) An aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms.
  • the nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms in Ar 2 is not particularly limited.
  • a quinazolyl group, a quinoxalyl group, a benzoquinolyl group, an acridyl group, a phenanthridyl group, or a phenanthroyl group is preferable.
  • the heteroaromatic group having 3 to 13 carbon atoms composed of only C, H, and N formed only by a 6-membered ring in Ar 2 is not particularly limited, but includes a pyridyl group, a pyrazyl group, a pyrimidyl group, A pyridazyl group, a triazyl group, a quinolyl group, an isoquinolyl group, a naphthyridyl group, a quinazolyl group, a quinoxalyl group, a benzoquinolyl group, an acridyl group, a phenanthridyl group, a phenanthroyl group, and the like are preferable.
  • Ar 2 is preferably a hydrogen atom or a nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms which may be substituted with a phenyl group or a methyl group in terms of excellent electron transporting material properties. Or an unsubstituted nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms.
  • Ar 2 include, but are not limited to, hydrogen atom, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-3-yl group, 2-methylpyridine-4 -Yl group, 2-methylpyridin-5-yl group, 2-methylpyridin-6-yl group, 3-methylpyridin-2-yl group, 3-methylpyridin-4-yl group, 3-methylpyridin-5 -Yl group, 3-methylpyridin-6-yl group, 4-methylpyridin-2-yl group, 4-methylpyridin-3-yl group, 2,6-dimethylpyridin-3-yl group, 2,6- Dimethylpyridin-4-yl group, 3,6-dimethylpyridin-2-yl group, 3,6-dimethylpyridin-4-yl group, 3,6-dimethylpyridin-5-yl group, pyridin-6-yl group 5-phenylpyridine-6 -Yl group, 2-phenylpyridin
  • Ar 2 is a hydrogen atom, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-6-yl group, 3-methylpyridine in terms of excellent electron transporting material characteristics.
  • 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, 2-pyrimidyl group, 4,6-dimethylpyrimidyl group, or pyrazyl group are preferable, and 2-pyridyl group , 3-pyridyl group, 2-quinolyl group, 3-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, or 4-isoquinolyl group are more preferable, a hydrogen atom, 3-pyridyl group, 2- A pyridyl group, a 3-quinolyl group, or a 4-isoquinolyl group is more preferable.
  • Ar 2 is preferably an aromatic hydrocarbon group having 6 to 18 carbon atoms (which may be substituted with a fluorine atom, a methyl group or a phenyl group) from the viewpoint of excellent electron transporting material properties, In combination with the above examples, the following groups can be mentioned.
  • a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a fluoranthenyl group, a chrycenyl group or a triphenylenyl group (these groups may be substituted with a methyl group or a phenyl group), or It is preferably a pyridyl group, a pyrimidyl group, a pyrazyl group, a triazyl group, a quinolyl group, an isoquinolyl group, or a phenanthridyl group (these substituents may be substituted with a methyl group or a phenyl group).
  • phenyl group More preferably a triazyl group, a diphenyl-triazyl group (for example, 3,5-diphenyltriazyl group, etc.), a quinolyl group, an isoquinolyl group, or a phenanthrid
  • Ar 2 include, but are not limited to, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-3-yl group, 2-methylpyridin-4-yl group 2-methylpyridin-5-yl group, 2-methylpyridin-6-yl group, 3-methylpyridin-2-yl group, 3-methylpyridin-4-yl group, 3-methylpyridin-5-yl group 3-methylpyridin-6-yl group, 4-methylpyridin-2-yl group, 4-methylpyridin-3-yl group, 2,6-dimethylpyridin-4-yl group, 4,6-dimethylpyridine- 2-yl group, pyridin-6-yl group, 5-phenylpyridin-6-yl group, 2-phenylpyridin-3-yl group, 2-phenylpyridin-5-yl group, 3-phenylpyridin-5-yl Group, 4-phenyl Pyridin-3-yl group, 3-phenylpyridi
  • phenyl group, 1-naphthyl group, 2-naphthyl group, 2-phenanthryl group, 9-phenanthryl group, 9-anthryl group, 1-pyrenyl group, fluoranthene-3 are excellent in electron transporting material characteristics.
  • -Yl group triphenylene-1-yl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-6-yl group, 3-methylpyridin-6-yl group, 2-methylpyridine -5-yl group, 2,6-dimethylpyridin-4-yl group, 4,6-dimethylpyridin-2-yl group, 2,6-diphenylpyridin-4-yl group, 4,6-diphenylpyridin-2 -Yl group, 4,6-dimethylpyrimidin-2-yl group, 4,6-diphenylpyrimidin-2-yl group, 2,4-diphenyltriazin-6-yl group, 2-quinolyl group, - quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group.
  • 4-isoquinolyl group 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, 2-pyrimidyl group, 4,6-dimethylpyrimidyl group or pyrazyl group are preferred.
  • phenyl group, 9-phenanthryl group, 1-naphthyl group, 2-naphthyl group, 3-pyridyl group, 2-pyridyl group, 2,6-diphenylpyridin-4-yl group, 4,6-diphenylpyridine- 2-yl group, 4,6-dimethylpyrimidin-2-yl group, 1-pyrenyl group, 2-quinolyl group, or 3-quinolyl group are more preferable.
  • Each X independently represents a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a methyl group, or a carbon group having 3 to 13 carbon atoms which may be substituted with a methyl group or a phenyl group.
  • X may be substituted with a methyl group or a divalent aromatic hydrocarbon group having 6 to 10 carbon atoms which may be substituted with a methyl group in terms of excellent electron transporting material characteristics.
  • a good divalent nitrogen-containing heteroaromatic group having 5 to 9 carbon atoms is preferable.
  • the divalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a methyl group in X is not particularly limited, and examples thereof include a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group, Anthrylene group, pyrenylene group, triphenylenylene group, chrysenylene group, fluoranthenylene group, acenaphthyleneylene group, fluorenylene group, benzofluorenylene group, dimethylfluorenylene group, or dimethylbenzofluorenylene group are preferable. .
  • the divalent nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms which may be substituted with a methyl group or a phenyl group in X is not particularly limited, and examples thereof include a pyridylene group, a methylpyridylene group, a dimethylpyridene group, and the like.
  • the divalent aromatic hydrocarbon group having 6 to 10 carbon atoms which may be substituted with a methyl group in X is not particularly limited, but for example, a phenylene group, a tolylene group or a naphthylene group is preferable. .
  • the divalent nitrogen-containing heteroaromatic group having 5 to 9 carbon atoms which may be substituted with a methyl group or a phenyl group in X is not particularly limited, and examples thereof include a pyridylene group, a methylpyridylene group, a dimethylpyrylene group, and the like.
  • Dilene group pyrazylene group, methylpyrazylene group, dimethylpyrazylene group, pyrimidylene group, dipyrimidylene group, methylpyrimidylene group, phenylpyrimidylene group, pyridazylene group, methylpyridazilene group, triadylene group, methyltriazilene group, phenyl Preferred examples include triadylene group, quinolylene group, methylquinolylene group, isoquinolylene group, methylisoquinolylene group, naphthyridylene group, methylnaphthylidylene group, quinazolylene group, methylquinazolylene group, quinoxalylene group, or methylquinoxalylene group. Cited as
  • each X is independently a phenylene group or a biphenylene group (eg, 4,4′-biphenylene group, 4,3′-biphenylene group, 3,3′-biphenylene group, etc.) ), Naphthylene group, phenanthrylene group, anthrylene group, pyrenylene group, pyridylene group (for example, 2,5-pyridylene group, 3,6-pyridylene group, etc.), methylpyridylene group (for example, 6-methyl-2,5-pyridylene group) 2-methyl-3,6-pyridylene group, etc.), dimethylpyridylene group, pyrazylene group, methylpyrazylene group, dimethylpyrazylene group, pyrimidylene group, methylpyrimidylene group, or dimethylpyrimidylene group (for example, 4,4 6-dimethyl-2,4-pyrimidylene group and
  • each X is independently a phenylene group (1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, etc.) or pyridylene group (for example, 2,5-phenylene group). More preferred are a pyridylene group and a 3,6-pyridylene group).
  • p 0, 1 or 2.
  • P is preferably 0 or 1 in terms of excellent sublimation purification operability.
  • q 0, 1 or 2.
  • Q is preferably 0 or 1 in terms of excellent sublimation purification operability.
  • Z represents a nitrogen atom or a carbon atom.
  • Z is preferably a nitrogen atom from the viewpoint of excellent characteristics of the electron transporting material.
  • T represents a heteroaromatic group having 4 to 30 carbon atoms (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, and consisting of only a carbon atom, a hydrogen atom, and a group 16 element; Aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with fluorine atom, heteroaromatic group having 3 to 13 carbon atoms, aromatic having 6 to 18 carbon atoms substituted with heteroaromatic group having 3 to 13 carbon atoms Aromatic hydrocarbon group substituted with an aromatic hydrocarbon group, a C3-C13 heteroaromatic group substituted with a C1-C4 alkyl group, or a C1-C4 alkyl group Which may have a hydrogen group as a substituent.
  • T is a heteroaromatic group having 4 to 20 carbon atoms (having a methyl group, a phenyl group, or a methyl group consisting of only a carbon atom, a hydrogen atom, and a group 16 element because it has excellent characteristics of an electron transporting material. It may preferably have a nitrogen-containing heteroaromatic group having 3 to 9 carbon atoms as a substituent.
  • the following substituents for T are the same as the substituents exemplified for Ar 1 .
  • an alkyl group having 1 to 4 carbon atoms (2) an aromatic hydrocarbon group having 6 to 18 carbon atoms, (3) an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom, (4) a heteroaromatic group having 3 to 13 carbon atoms, (5) an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a heteroaromatic group having 3 to 13 carbon atoms, (6) a heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, (7) An aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms.
  • Heteroaromatic group having 4 to 30 carbon atoms consisting of only carbon atom, hydrogen atom and group 16 element in T (fluorine atom, alkyl group having 1 to 4 carbon atoms, aromatic hydrocarbon group having 6 to 18 carbon atoms, fluorine Aromatic hydrocarbon group having 6 to 18 carbon atoms substituted by atom, heteroaromatic group having 3 to 13 carbon atoms, aromatic having 6 to 18 carbon atoms substituted by heteroaromatic group having 3 to 13 carbon atoms
  • Group (which may have a group as a substituent) is not particularly limited, but consists of only carbon atoms, hydrogen atoms and oxygen atoms, only carbon atoms, hydrogen atoms and sulfur atoms, or carbon atom
  • More specific examples include a dibenzothiophenyl group, a dibenzofuranyl group, a benzothiophenyl group, a benzofuranyl group, a thiophenyl group, or a furanyl group (these groups are a fluorine atom, an alkyl group having 1 to 4 carbon atoms, C6-C18 aromatic hydrocarbon group, C6-C18 aromatic hydrocarbon group substituted with a fluorine atom, C3-C13 heteroaromatic group, C3-C13 heteroaromatic group
  • a substituted aromatic hydrocarbon group having 6 to 18 carbon atoms may be used as a substituent.
  • the group includes a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom, and 3 to 13 carbon atoms.
  • a heteroaromatic group or an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms may be used as a substituent.
  • dibenzothiophenyl group dibenzofuranyl group, benzothiophenyl group or benzofuranyl group (these groups are a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 6 to 18 carbon atoms).
  • the aromatic hydrocarbon group may be substituted as a substituent, and a dibenzothiophenyl group, a dibenzofuranyl group, a benzothiophenyl group or a benzofuranyl group (these groups are a methyl group, a pyridyl group or a phenyl group). May be substituted with a group) is more preferred.
  • the nitrogen-containing heteroaromatic group having 3 to 9 carbon atoms which may have a methyl group is not particularly limited, and examples thereof include imidazolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, Preferred examples include pyrazyl group, pyrimidyl group, dimethylpyrimidyl group, pyridazyl group, triazyl group, quinolyl group, methylquinolyl group, isoquinolyl group, methylisoquinolyl group, naphthyridyl group, quinazolyl group, or quinoxalyl group.
  • imidazolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, pyrimidyl group, dimethylpyrimidyl group, quinolyl group, methylquinolyl group, isoquinolyl group, methyl group are preferred because of their excellent electron transport properties.
  • An isoquinolyl group, a quinazolyl group, or a quinoxalyl group is more preferable.
  • T is a heteroaromatic group having 4 to 20 carbon atoms consisting of only a carbon atom, a hydrogen atom and a group 16 element (a nitrogen-containing complex having 3 to 9 carbon atoms which may have a methyl group, a phenyl group or a methyl group).
  • the electron transporting material characteristics in terms of excellent electron transporting material characteristics, it is composed of only a carbon atom, a hydrogen atom and an oxygen atom, or a heteroaromatic group having 4 to 20 carbon atoms (methyl group) consisting of only a carbon atom, a hydrogen atom and a sulfur atom.
  • a nitrogen-containing heteroaromatic group having 3 to 9 carbon atoms which may have a phenyl group or a methyl group may be preferable as a substituent.
  • a dibenzothiophenyl group, a dibenzofuranyl group, a benzothiophenyl group, or a benzofuranyl group (these groups may have a methyl group, a phenyl group, or a methyl group having 3 carbon atoms.
  • a dibenzothiophenyl group, a dibenzofuranyl group, a benzothiophenyl group or a benzofuranyl group (these groups are a methyl group, a pyridyl group). More preferably a group, optionally substituted with a quinolyl group, a methylpyridyl group, a dimethylpyridyl group, or a phenyl group.
  • thiophen-2-yl thiophen-3-yl, furan-2-yl, furan-3-yl
  • benzothiophen-2-yl benzo Thiophen-3-yl group
  • benzothiophen-4-yl group benzothiophen-5-yl group
  • benzothiophen-6-yl group benzothiophen-7-yl group
  • benzofuran-2-yl group benzofuran-3- Yl group
  • benzofuran-4-yl group benzofuran-5-yl group
  • benzofuran-6-yl group benzofuran-7-yl group
  • dibenzothiophen-1-yl group dibenzothiophen-2-yl group
  • dibenzothiophene- 3-yl group dibenzothiophen-4-yl group, dibenzofuran-1-yl group, dibenzothiophen-2-yl group, dibenzothiophene- 3-yl group, dibenzothiophen-4-yl group,
  • benzothiophen-2-yl group, benzothiophen-3-yl group, benzothiophen-4-yl group, benzothiophen-5-yl group, and benzothiophene-6 are excellent in electron transport material characteristics.
  • T is more preferably a substituent represented by the following general formula (T-3) or (T-4) (the bonding position in (T-1) and (T-2) is limited). preferable.
  • W 1 and W 2 each independently represents an oxygen atom or a sulfur atom.
  • Ar 3 represents a hydrogen atom, a methyl group, a pyridyl group, a quinolyl group, a methylpyridyl group, a dimethylpyridyl group, or a phenyl group. * Represents the bonding position.
  • the cyclic azine compound (1) of the present invention can be produced by any one of the following reaction formulas (1) to (4), optionally in the presence of a base and in the presence of a palladium catalyst.
  • Y 1 and Y 2 each independently represent a leaving group described later.
  • M 1 and M 2 represents each independently a substituent described later.
  • the compound (3) used in the reaction formula (1) or the reaction formula (2) is obtained by using, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2008-280330 or Japanese Patent Application Laid-Open No. 2001-335516. Can be manufactured.
  • Examples of compound (3) include (B-1) to (B-26) below, but are not limited thereto.
  • Examples of ZnR 1 and MgR 2 represented by M 1 include ZnCl, ZnBr, ZnI, MgCl, MgBr, and MgI.
  • Examples of Sn (R 3 ) 3 represented by M 1 include Sn (Me) 3 and Sn (Bu) 3 .
  • Examples of B (OR 4 ) 2 represented by M 1 include B (OH) 2 , B (OMe) 2 , B (O i Pr) 2 , and B (OBu) 2 .
  • Examples of B (OR 4 ) 2 in the case where two R 4 are combined to form a ring containing an oxygen atom and a boron atom include the following (C-1) to (C-6): The group shown can be exemplified, and the group shown by (C-2) is desirable from the viewpoint of good yield.
  • the compound (4) used in the reaction formula (1) or the reaction formula (2) is disclosed in, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2008-280330 or Japanese Patent Application Laid-Open No. 2001-335516. It can be manufactured using the method. Specific examples of the compound (4) include the following (D-1) to (D-30), but are not limited thereto. M 2 of the compound (4) can exemplify the same substituent as M 1 described above.
  • the compound (6) used in the reaction formula (3) can be exemplified by a compound in which M 2 in the compound (4) is replaced with Y 3 .
  • the compound (8) used in the reaction formula (4) can be exemplified by a compound in which M 1 of the compound (3) is replaced with Y 4 .
  • the Y 4 of Y 3 and compounds of the compound (6) (8), a leaving group independently is not particularly limited, and for example, a chlorine atom, a bromine atom, an iodine atom or a triflate and the like .
  • a bromine atom or a chlorine atom is preferable in that the reaction yield is good.
  • Y 1 and Y 2 of the compound (2) each independently represent a leaving group and are not particularly limited, and examples thereof include a chlorine atom, a bromine atom, an iodine atom, and a triflate. Among these, a bromine atom or a chlorine atom is preferable in that the reaction yield is good. In order to improve the selectivity of the reaction, Y 1 and Y 2 are more preferably different leaving groups.
  • Step 1 of the reaction formula (1), the compound (2) is reacted with the compound (3) in the presence of a palladium catalyst in the presence of a base in some cases, and the compound (9) as a synthetic intermediate is reacted.
  • reaction conditions of general coupling reactions such as Suzuki-Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the desired product can be obtained with good yield.
  • Examples of the palladium catalyst that can be used in “Step 1” include salts of palladium chloride, palladium acetate, palladium trifluoroacetate, palladium nitrate, and the like. Furthermore, ⁇ -allyl palladium chloride dimer, palladium acetylacetonate, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium and dichloro (1,1′-bis (diphenylphosphine). Examples include complex compounds such as fino) ferrocene) palladium.
  • a palladium complex having a tertiary phosphine as a ligand is more preferable in terms of a good reaction yield, is easily available, and in terms of a good reaction yield, a palladium complex having triphenylphosphine as a ligand. Is particularly preferred.
  • the palladium complex having tertiary phosphine as a ligand can also be prepared in a reaction system by adding tertiary phosphine to a palladium salt or complex compound.
  • the tertiary phosphine that can be used at this time is triphenylphosphine, trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine, 9,9-dimethyl-4,5.
  • 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl or triphenylphosphine is preferred because it is easily available and the reaction yield is good.
  • the molar ratio of the tertiary phosphine to the palladium salt or complex compound is preferably 1:10 to 10: 1, and more preferably 1: 2 to 5: 1 from the viewpoint of good reaction yield.
  • Bases that can be used in “Step 1” include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, fluorine. Examples thereof include cesium chloride. Potassium carbonate is desirable in terms of good yield.
  • the molar ratio of the base and the compound (3) is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
  • the molar ratio of the compound (2) and the compound (3) used in “Step 1” is preferably 1: 2 to 5: 1, and more preferably 1: 2 to 2: 1 in terms of a good yield.
  • Examples of the solvent that can be used in “Step 1” include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, toluene, benzene, diethyl ether, ethanol, methanol, and xylene. You may use it combining suitably. From the viewpoint of good yield, it is desirable to use a mixed solvent of dioxane or THF (tetrahydrofuran) and water.
  • Step 1 can be carried out at a temperature appropriately selected from 0 to 150 ° C., and is more preferably carried out at 50 to 100 ° C. in terms of a good yield.
  • Compound (9) can be obtained by carrying out a usual treatment after completion of “Step 1”. You may refine
  • Step 2 is a method in which the compound (9) is reacted with the compound (4) in the presence of a base and in the presence of a palladium catalyst to obtain the cyclic azine compound (1) of the present invention. -By applying reaction conditions of general coupling reactions such as Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the target product can be obtained in high yield.
  • reaction conditions are not necessarily the same as those in “Step 1”.
  • compound (4) can be added and reacted in the reaction system of “Step 1” without isolating compound (9), which is a synthetic intermediate, to synthesize cyclic azine compound (1).
  • the obtained cyclic azine compound (1) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
  • the compound (9) is excellent for industrially supplying a compound such as the compound (1) that remarkably improves the low driving voltage property, the high light emission efficiency, and the long life property of the organic electroluminescence device. It is an intermediate material for manufacturing and is very useful industrially.
  • Step 3 of the reaction formula (2), the compound (2) is reacted with the compound (4) in the presence of a palladium catalyst, optionally in the presence of a base, to give a compound (10) as a synthetic intermediate.
  • reaction conditions of general coupling reactions such as Suzuki-Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc.
  • the desired product can be obtained with good yield.
  • the same reaction conditions as those mentioned in “Step 1” can be selected. However, the reaction conditions are not necessarily the same as those in “Step 1”.
  • the obtained compound (10) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
  • Step 4 is a method in which the compound (10) is reacted with the compound (3) in the presence of a palladium catalyst in the presence of a base in some cases to obtain the cyclic azine compound (1) of the present invention. -By applying reaction conditions of general coupling reactions such as Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the target product can be obtained in high yield.
  • reaction conditions are not necessarily the same as those in “Step 1”.
  • the compound (3) can be added to the reaction system of “Step 3” and reacted to synthesize the cyclic azine compound (1) without isolating the compound (10) which is a synthetic intermediate. .
  • the obtained cyclic azine compound (1) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
  • Step 5 is a reaction for synthesizing a general organometallic compound from Compound (9) (for example, Angew. Chem. Int. Ed. 2007, 46, 5359-5363).
  • Step 5 is a method in which the compound (5) is reacted with the compound (6) in the presence of a palladium catalyst, optionally in the presence of a base, to obtain the cyclic azine compound (1) of the present invention.
  • reaction conditions of general coupling reactions such as Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc.
  • Examples of the palladium catalyst that can be used in “Step 5” include the same palladium catalysts as those mentioned in “Step 1”. Among them, a palladium complex having a tertiary phosphine as a ligand is more preferable in terms of a good reaction yield, is easily available, and has a triphenylphosphine as a ligand in terms of a good reaction yield. Palladium complexes are particularly preferred.
  • the palladium complex having tertiary phosphine as a ligand can also be prepared in a reaction system by adding tertiary phosphine to a palladium salt or complex compound.
  • tertiary phosphine examples include the same tertiary phosphine as that described in “Step 1”.
  • 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl or triphenylphosphine is preferred because it is easily available and the reaction yield is good.
  • the molar ratio of the tertiary phosphine to the palladium salt or complex compound is preferably 1:10 to 10: 1, and more preferably 1: 2 to 5: 1 from the viewpoint of good reaction yield.
  • Examples of the base that can be used in “Step 5” include the same bases as those mentioned in “Step 1”.
  • the molar ratio of base to compound (5) is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of good yield.
  • the molar ratio of the compound (5) and the compound (6) used in “Step 5” is preferably 1: 5 to 2: 1, and more preferably 1: 1 to 1: 3 in terms of a good yield.
  • Step 5 examples include the same solvents as those mentioned in “Step 1”. From the viewpoint of good yield, it is desirable to use dioxane or a mixed solvent of THF and water. “Step 5” can be performed at a temperature appropriately selected from 0 to 150 ° C., and is more preferably performed at 50 to 100 ° C. in terms of a good yield. After completion of “Step 5”, the obtained cyclic azine compound (1) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
  • Step 6 is a reaction for synthesizing a general organometallic compound from Compound (10) (for example, Angew. Chem. Int. Ed. 2007, 46, 5359). -5363).
  • Step 6 is a method in which the compound (7) is reacted with the compound (8) in the presence of a base, optionally in the presence of a palladium catalyst, to obtain the cyclic azine compound (1) of the present invention.
  • reaction conditions of general coupling reactions such as Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the target product can be obtained in high yield.
  • Step 6 the same reaction conditions as those described in “Step 5” can be selected. However, the reaction conditions are not necessarily the same as those in “Step 5”.
  • the obtained cyclic azine compound (1) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
  • the compound (7) is excellent for industrially supplying a compound such as the compound (1) that significantly improves the low driving voltage property, the high light emission efficiency, and the long life property of the organic electroluminescence device. It is a production intermediate material and is very useful industrially.
  • the cyclic azine compound (1) of the present invention is preferably used as a part of the components of the organic electroluminescence device.
  • effects such as longer life, higher efficiency, and lower voltage can be obtained than conventional devices.
  • it can also be used as a co-deposited film with any organic metal species, organic compound or inorganic compound.
  • the cyclic azine compound (1) of the present invention is preferable as a material for an organic thin film layer having electron transport properties such as a light-emitting layer, an electron transport layer, and an electron injection layer in an organic electroluminescence device because it exhibits good electron transport properties. Can be used.
  • the film-forming by a vacuum evaporation method is possible. Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus.
  • the vacuum degree of the vacuum chamber when forming a film by the vacuum deposition method is determined by taking into account the manufacturing tact time and manufacturing cost of manufacturing the organic electroluminescence device, and commonly used diffusion pumps, turbo molecular pumps, cryopumps, etc. Is preferably about 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 6 Pa, more preferably 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 6 Pa.
  • the deposition rate is preferably 0.005 to 1.0 nm / second, and more preferably 0.01 to 0.3 nm / second, depending on the thickness of the film to be formed.
  • the cyclic azine compound (1) of the present invention has high solubility in chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, ethyl acetate, tetrahydrofuran, or the like, a spin coating method using a general-purpose apparatus, Film formation by an inkjet method, a cast method, a dip method, or the like is also possible.
  • a typical structure of the organic electroluminescent device capable of obtaining the effects of the present invention includes a substrate, an anode, a hole injection layer, a hole transport layer light emitting layer, an electron transport layer, and a cathode.
  • the anode and cathode of the organic electroluminescent element are connected to a power source through an electrical conductor.
  • the organic electroluminescent device operates by applying a potential between the anode and the cathode. Holes are injected into the organic electroluminescent device from the anode, and electrons are injected into the organic electroluminescent device at the cathode.
  • the organic electroluminescent device is typically placed on a substrate, and the anode or cathode can be in contact with the substrate.
  • the electrode in contact with the substrate is called the lower electrode for convenience.
  • the lower electrode is an anode, but the organic electroluminescent element of the present invention is not limited to such a form.
  • the substrate may be light transmissive or opaque depending on the intended emission direction.
  • the light transmission property can be confirmed by electroluminescence emission through the substrate.
  • transparent glass or plastic is employed as such a substrate.
  • the substrate may be a composite structure including multiple material layers. When the electroluminescent emission is confirmed through the anode, the anode is formed by passing or substantially passing through the emission.
  • anode Common transparent anode (anode) materials used in the present invention include indium-tin oxide (ITO), indium-zinc oxide (IZO), or tin oxide. Further, other metal oxides such as aluminum or indium-doped tin oxide, magnesium-indium oxide, or nickel-tungsten oxide are also preferably used. In addition to these oxides, metal nitrides such as gallium nitride, metal selenides such as zinc selenide, or metal sulfides such as zinc sulfide can also be used as the anode. The anode can be modified with plasma deposited fluorocarbon.
  • ITO indium-tin oxide
  • IZO indium-zinc oxide
  • tin oxide other metal oxides such as aluminum or indium-doped tin oxide, magnesium-indium oxide, or nickel-tungsten oxide are also preferably used.
  • metal nitrides such as gallium nitride, metal selenides such as zinc selenide, or
  • the transmission properties of the anode are not critical and any conductive material that is transparent, opaque or reflective can be used.
  • Examples of conductors for this application include gold, iridium, molybdenum, palladium, platinum, and the like.
  • the hole injection layer can be provided between the anode and the hole transport layer.
  • the material of the hole injection layer is useful for improving the film formation characteristics of an organic material layer such as a hole transport layer and a hole injection layer, and facilitating injection of holes into the hole transport layer.
  • Examples of materials suitable for use in the hole injection layer include porphyrin compounds, plasma deposited fluorocarbon polymers, and amines having aromatic rings such as biphenyl groups and carbazole groups, such as m-MTDATA (4,4 ′ , 4 ′′ -tris [(3-methylphenyl) phenylamino] triphenylamine), 2T-NATA (4,4 ′, 4 ′′ -tris [(N-naphthalen-2-yl) -N-phenylamino ] Triphenylamine), triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N, N′N′-tetrakis (4-methylphenyl) -1,1′-biphenyl-4,4′-diamine, MeO-TPD N, N, N′
  • the hole transport layer of the organic electroluminescence device preferably contains one or more hole transport compounds (hole transport materials) such as aromatic tertiary amines.
  • An aromatic tertiary amine is a compound containing one or more trivalent nitrogen atoms, which are bonded only to carbon atoms, and one or more of these carbon atoms have an aromatic ring. Forming.
  • the aromatic tertiary amine is an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine.
  • An aromatic tertiary amine having one or more amine groups can be used as the hole transport material.
  • a polymeric hole transport material can be used.
  • PVK poly (N-vinylcarbazole)
  • PVK polythiophene
  • polypyrrole polyaniline
  • NPD N, N′-bis (naphthalen-1-yl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine
  • ⁇ -NPD N, N '-Di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine
  • TPBi 1,3,5-tris (1-phenyl-1H-benzimidazole) 2-yl) benzene
  • TPD N, N′-bis (3-methylphenyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine
  • a layer containing (HAT-CN) may be provided.
  • the light emitting layer of the organic electroluminescent element contains a phosphorescent material or a fluorescent material, and emits light as a result of recombination of electron / hole pairs in this region.
  • the light-emitting layer may be formed from a single material that includes both small molecules and polymers, but more commonly is formed from a host material doped with a guest compound, where light emission is primarily from a dopant, Any color can be emitted.
  • Examples of the host material for the light emitting layer include compounds having a biphenyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, a pyrenyl group, or an anthranyl group.
  • DPVBi 4,4′-bis (2,2-diphenylvinyl) -1,1′-biphenyl
  • BCzVBi 4,4′-bis (9-ethyl-3-carbazovinylene) 1,1 '-Biphenyl
  • TBADN (2-tert-butyl-9,10-di (2-naphthyl) anthracene
  • ADN (9,10-di (2-naphthyl) anthracene)
  • CBP 4,4'-bis ( Carbazol-9-yl) biphenyl
  • CDBP 4,4′-bis (carbazol-9-yl) -2,2′-dimethylbiphenyl
  • 9,10-bis (biphenyl) anthracene and the like.
  • the host material in the light emitting layer may be an electron transport material as defined below, a hole transport material as defined above, another material that supports hole / electron recombination (support), or a combination of
  • fluorescent dopants examples include anthracene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylenepyran compound, thiopyran compound, polymethine compound, pyrylium or thiapyrylium compound, fluorene derivative, perifuranthene derivative, indenoperylene derivative, Examples thereof include bis (azinyl) amine boron compounds, bis (azinyl) methane compounds, and carbostyryl compounds.
  • an organometallic complex of a transition metal such as iridium, platinum, palladium, or osmium can be given.
  • dopants include Alq 3 (tris (8-hydroxyquinoline) aluminum)), DPAVBi (4,4′-bis [4- (di-para-tolylamino) styryl] biphenyl), perylene, Ir (PPy) 3 (Tris (2-phenylpyridine) iridium (III), FlrPic (bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)) and the like.
  • the thin film forming material used for forming the electron transport layer of the organic electroluminescence device of the present invention is the cyclic azine compound (1) of the present invention.
  • the electron transporting layer may contain other electron transporting materials.
  • other electron transporting materials include alkali metal complexes, alkaline earth metal complexes, and earth metal complexes. Desirable alkali metal complexes, alkaline earth metal complexes, or earth metal complexes include, for example, 8-hydroxyquinolinate lithium (Liq), bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinate).
  • a hole blocking layer may be provided between the light emitting layer and the electron transport layer for the purpose of improving carrier balance.
  • Desirable compounds as a material for the hole blocking layer include BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), BAlq (bis (2-methyl-8-quinolinolato) -4- (phenylphenolate) aluminum) or bis (10-hydroxybenzo [h] quinolinato) beryllium).
  • an electron injection layer may be provided for the purpose of improving electron injection properties and improving device characteristics (for example, light emission efficiency, low voltage driving, or high durability).
  • Desirable compounds as the material for the electron injection layer are fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, or And anthrone.
  • the above metal complexes alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, SiO x , AlO x , SiN x , SiON, AlON, inorganic compounds such as GeO X, LiO X, LiON, TiO X, TiON, TaO X, TaON, TaN X, various oxides such as C, nitrides, and oxynitrides may be used.
  • the cathode used in the organic electroluminescent device of the present invention can be formed from any conductive material.
  • Desirable cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium , Lithium / aluminum mixtures, rare earth metals and the like.
  • phenacylpyridinium bromide (3.00 g, 8.40 mmol), (E) -chalcone (1.75 g, 8.40 mmol), ammonium acetate (32.3 g, 420 mmol), acetic acid (120 mL) and dimethylformamide (95 mL) was added to a 500 mL four-necked flask and stirred at 160 ° C. for 3 hours. After allowing to cool to room temperature, water (300 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with pure water to obtain a white powder.
  • 2-dibenzothiopheneboronic acid (3.00 g, 13.2 mmol), p-bromochlorobenzene (2.51 g, 13.2 mmol), tetrakistriphenylphosphine palladium (456 mg, 0.394 mmol) and potassium carbonate ( 5.45 g, 39.5 mmol) was suspended in a mixed solvent of tetrahydrofuran (79 mL) and water (39 mL), and the mixture was stirred at 70 ° C. for 17 hours. After cooling to room temperature, water (100 mL) and chloroform (200 mL) were added to the reaction mixture. After the obtained mixture was shaken and mixed, only the organic layer was taken out.
  • the obtained organic layer was dehydrated with magnesium sulfate, and then the low boiling point component was distilled off.
  • Synthesis Example-10 The target product, 5-chloro-2- (2-naphthyl) pyridine, was synthesized under the same reaction conditions and method as in Synthesis Example-8.
  • the obtained organic layer was dehydrated with magnesium sulfate, and then the low boiling point component was distilled off.
  • Element Example-1 As the substrate, a glass substrate with an ITO transparent electrode in which a 2 mm-wide indium-tin oxide (ITO) film was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface treated by ozone ultraviolet cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in the sectional view of FIG. Each organic material was formed by a resistance heating method.
  • ITO indium-tin oxide
  • the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa. Then, as an organic compound layer on the glass substrate with an ITO transparent electrode shown by 1 in FIG. 1, a hole injection layer 2, a charge generation layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and an electron injection layer 7 and the cathode layer 8 were both formed by vacuum vapor deposition while being laminated in this order. As the hole injection layer 2, a sublimated HIL film having a thickness of 65 nm was formed at a rate of 0.15 nm / second.
  • HAT sublimation-purified HAT was deposited to a thickness of 5 nm at a rate of 0.05 nm / second.
  • HTL was formed to a thickness of 10 nm at a rate of 0.15 nm / second.
  • EML-1 and EML-2 were deposited at a ratio of 95: 5 (weight ratio) to 25 nm (deposition rate of 0.18 nm / second).
  • the cathode layer 7 is formed of silver / magnesium (weight ratio 1/10) and silver in this order at 80 nm (film formation rate 0.5 nm / second) and 20 nm (film formation rate 0.2 nm / second), respectively. And a two-layer structure.
  • Each film thickness was measured with a stylus type film thickness meter (DEKTAK). Furthermore, this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. For the sealing, a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation) were used.
  • Element Example-7 In device example-1, 2- ⁇ 3- (dibenzofuran-4-yl) -5- [6- (2-naphthyl) pyridin-3-yl] obtained in synthesis example-9 was formed on the electron transport layer 6. ] An organic electroluminescent device was produced in the same manner as in Device Example 1 except that phenyl ⁇ -4,6-diphenyl-1,3,5-triazine (Compound A-493) was used.
  • Element Example-8 In device example-1, 2- [4 ′-(4-dibenzofuran) -5- (3-pyridyl) -biphenyl-3-yl] -4, obtained in synthesis example-12 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that 6-diphenyl-1,3,5-triazine (Compound A-556) was used.
  • Element Example-14 In device example-1, 2- [5- (dibenzothiophen-2-yl)-[1,1 ′: 4 ′, 1 ′′]-telomer obtained in synthesis example-13 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that phenyl-3-yl] -4,6-difer-1,3,5-triazine (Compound A-98) was used.
  • Device reference example-1 In device example-1, 2- [5- (9-phenanthryl) -4 ′-(2-pyrimidyl) biphenyl-3-yl] -4 described in Japanese Patent Application Laid-Open No. 2010-183145 is used for the electron transport layer 6.
  • An organic electroluminescence device was produced in the same manner as in Device Example 1 except that, 6-diphenyl-1,3,5-triazine (the above formula, represented by ETL-1) was used.
  • a direct current was applied to the produced organic electroluminescence device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • V voltage
  • cd / A current efficiency
  • the luminance decay time during continuous lighting when the initial luminance was driven at 800 cd / m 2 was measured.
  • the time when the luminance (cd / m 2 ) is reduced by 30% is shown as the element lifetime (h) below.
  • Device comparison example-1 In Device Example-1, 2- [3,5-bis (dibenzothiophen-2-yl)]-3,5-diphenyl-pyrimidine (in the above formula, disclosed in Japanese Patent Application No. 2007-550166) was used for the electron transport layer 6.
  • An organic electroluminescent device was produced in the same manner as in the device example-1 except that ETL-2) was used.
  • ETL-2 the initial luminance was driven at 800 cd / m 2 and the luminance decay time during continuous lighting was measured, the time when the luminance (cd / m 2 ) was reduced by 30% was 192 hours. This result can be said that there is a large difference in device lifetime as compared with the compound of the present invention.
  • the organic electroluminescent device using the azine compound of the present invention has improved characteristics in voltage, current efficiency and device lifetime as compared with the device reference example.
  • the cyclic azine compound of the present invention has a high Tg and good thermal stability during sublimation purification, and can be provided as a material with excellent impurities in sublimation purification and less impurities.
  • a material for a light-emitting element it is used as an electron transport material having little element deterioration, good stability of a deposited film, excellent heat resistance, and particularly excellent durability, driving voltage, and power efficiency.
  • the thin film comprising the cyclic azine compound (1) of the present invention has high surface smoothness, amorphousness, heat resistance, electron transport ability, hole blocking ability, redox resistance, water resistance, oxygen resistance, electron injection characteristics, etc. Therefore, it is useful as a material for organic electroluminescent elements.
  • it can be used as an electron transport agent, a hole blocking material, a light emitting host material, and the like, and since the cyclic azine compound (1) is a wide band gap material, it can be used not only for conventional fluorescent device applications but also to phosphorescent devices. There is also the possibility of application.
  • the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-136249 filed on June 28, 2013 and Japanese Patent Application No. 2013-259774 filed on December 17, 2013. The entire contents of this document are hereby incorporated by reference as the disclosure of the specification of the present invention.

Abstract

Provided is a cyclic azine compound which is used for organic electroluminescent elements that are capable of achieving improved luminous efficiency and longer service life at the same time. A cyclic azine compound which is represented by general formula (1); a method for producing the cyclic azine compound; and an organic electroluminescent element which uses the cyclic azine compound. (In the formula, two Ar1 moieties represent identical substituents, and each Ar1 represents an aromatic hydrocarbon group having 6-10 carbon atoms (which may have a fluorine atom, a methyl group, a phenyl group or a pyridyl group as a substituent); Ar2 represents an aromatic hydrocarbon group having 6-18 carbon atoms, or the like; each X independently represents a divalent aromatic hydrocarbon group having 6-10 carbon atoms, which may be substituted by a methyl group, or the like; each of p and q independently represents 0, 1 or 2; Z represents a nitrogen atom; and T represents a heteroaromatic group having 4-20 carbon atoms, which is composed only of carbon atoms, hydrogen atoms and group 16 elements (and may have, as a substituent, a methyl group, a phenyl group, or a nitrogen-containing heteroaromatic group having 3-9 carbon atoms, which may have a methyl group) or the like.)

Description

環状アジン化合物、その製造方法、及びそれを用いた有機電界発光素子Cyclic azine compound, method for producing the same, and organic electroluminescent device using the same
 本発明は、炭素原子、水素原子及び周期表16族元素のみからなる特定の複素芳香族基を有することを特徴とする環状アジン化合物とその製造方法、及びそれを用いた有機電界発光素子に関する。 The present invention relates to a cyclic azine compound characterized by having a specific heteroaromatic group consisting only of carbon atoms, hydrogen atoms, and Group 16 elements of the periodic table, a method for producing the same, and an organic electroluminescent device using the same.
 有機電界発光素子は、発光材料を含有する発光層を、正孔輸送層と電子輸送層で挟み、さらにその外側に陽極と陰極を取付け、発光層に注入された正孔及び電子の再結合により生ずる励起子が失活する際の光の放出(蛍光又はりん光)を利用する素子であり、小型のディスプレーだけでなく大型テレビや照明等へ応用されている。なお、正孔輸送層は正孔輸送層と正孔注入層に、発光層は、電子ブロック層と発光層と正孔ブロック層に、電子輸送層は電子輸送層と電子注入層に分割して構成される場合もある。また、有機電界発光素子のキャリア輸送層(電子輸送層又は正孔輸送層)として、金属、有機金属化合物又はその他有機化合物をドープ(dope)した共蒸着膜を用いる場合もある。 An organic electroluminescent element is formed by sandwiching a light-emitting layer containing a light-emitting material between a hole transport layer and an electron transport layer, and further attaching an anode and a cathode to the outside, and recombination of holes and electrons injected into the light-emitting layer. It is an element that utilizes light emission (fluorescence or phosphorescence) when the excitons that are generated are deactivated, and is applied not only to small displays but also to large televisions and lighting. The hole transport layer is divided into a hole transport layer and a hole injection layer, the light emitting layer is divided into an electron blocking layer, a light emitting layer and a hole blocking layer, and the electron transport layer is divided into an electron transport layer and an electron injection layer. May be configured. In some cases, a co-deposited film doped with a metal, an organic metal compound, or another organic compound may be used as a carrier transport layer (electron transport layer or hole transport layer) of the organic electroluminescence device.
 従来の有機電界発光素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低く、素子寿命も著しく低く、幅広い分野での実用化には至っていなかった。さらに、最近の有機電界発光素子は前記欠点が徐々に改良されているものの、発光効率特性、駆動電圧特性、長寿命特性の更なる改善を目的として、優れた材料が求められている。その中でも、素子寿命の改善が幅広い分野での普及に急務となっており、そのための材料開発が求められている。 Conventional organic electroluminescent elements have a higher driving voltage than inorganic light emitting diodes, have low emission luminance and luminous efficiency, have extremely low element lifetime, and have not been put into practical use in a wide range of fields. Furthermore, although recent organic electroluminescence devices have been improved gradually, excellent materials are required for the purpose of further improving the light emission efficiency characteristics, drive voltage characteristics, and long life characteristics. Among them, improvement of element lifetime is an urgent need for widespread use in a wide range of fields, and material development for that is required.
 有機電界発光素子用の長寿命性に優れる電子輸送材料として、特許文献1で開示された環状アジン化合物が挙げられる。しかし、素子寿命の改善の点で更なる改良が求められていた。 An example of an electron transport material having excellent long life for an organic electroluminescence device is the cyclic azine compound disclosed in Patent Document 1. However, further improvements have been demanded in terms of improving the device life.
日本特開2011-063584号公報Japanese Unexamined Patent Publication No. 2011-063584
 本発明は、従来公知の環状アジン化合物に比べて、有機電界発光素子寿命を顕著に向上させる特定の環状アジン化合物、その製造方法、及び当該環状アジン化合物を用いてなる保存安定性に優れた有機電界発光素子を提供することをその目的とする。
 さらに、当該環状アジン化合物を製造するのに必要な製造中間体を提供することを目的とする。
The present invention relates to a specific cyclic azine compound that significantly improves the lifetime of an organic electroluminescent device, a method for producing the same, and an organic material that is excellent in storage stability using the cyclic azine compound as compared with a conventionally known cyclic azine compound. An object is to provide an electroluminescent device.
Furthermore, it aims at providing a manufacturing intermediate required in manufacturing the said cyclic azine compound.
 本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、下記一般式(1)で表される、炭素原子、水素原子及び16族元素のみからなる特定の複素芳香族基を有することを特徴とする新規な環状アジン化合物(以下、環状アジン化合物(1)という)を電子輸送材料として用いた有機電界発光素子が、従来公知の材料を用いたときに比べて、顕著に長寿命であり、駆動電圧及び電力効率にも優れることを見いだし、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have obtained a specific heteroaromatic group consisting of only a carbon atom, a hydrogen atom and a group 16 element represented by the following general formula (1). An organic electroluminescent element using a novel cyclic azine compound (hereinafter referred to as cyclic azine compound (1)) characterized by having an electron transport material is significantly longer than when a conventionally known material is used. It has been found that the lifetime is excellent and the driving voltage and power efficiency are excellent, and the present invention has been completed.
 すなわち、本発明は、以下の一般式(1)で示される環状アジン化合物、その製造方法、及び該環状アジン化合物を用いた有機電界発光素子に関する。
Figure JPOXMLDOC01-appb-C000009
That is, the present invention relates to a cyclic azine compound represented by the following general formula (1), a production method thereof, and an organic electroluminescence device using the cyclic azine compound.
Figure JPOXMLDOC01-appb-C000009
(2つのArは同一の置換基を表す。Arは、炭素数6~30の芳香族炭化水素基(フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)、又はフェニル基若しくはメチル基で置換されていてもよいピリジル基を表す。Arは、水素原子又は炭素数3~13の含窒素複素芳香族基(フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。Xは、各々独立して、メチル基で置換されていてもよい炭素数6~18の二価の芳香族炭化水素基又はメチル基若しくはフェニル基で置換されていてもよい炭素数3~13の二価の含窒素複素芳香族基を表す。p及びqは、各々独立して、0、1又2を表す。Zは、窒素原子又は炭素原子を表す。Tは、炭素原子、水素原子及び16族元素のみからなる炭素数4~30の複素芳香族基(フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。) (.Ar 1 two Ar 1 represent the same substituent, an aromatic hydrocarbon group (fluorine atom number of 6 to 30 carbon atoms, an alkyl group having 1 to 4 carbon atoms, an aromatic having 6 to 18 carbon atoms carbide A hydrogen group, an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom, a heteroaromatic group having 3 to 13 carbon atoms, or a 6 to 6 carbon atom substituted with a heteroaromatic group having 3 to 13 carbon atoms An aromatic hydrocarbon group having 18 carbon atoms, a heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms An aromatic hydrocarbon group (which may have an aromatic hydrocarbon group as a substituent), or a pyridyl group optionally substituted with a phenyl group or a methyl group, Ar 2 represents a hydrogen atom or a nitrogen-containing heterocycle having 3 to 13 carbon atoms; Aromatic groups (fluorine atoms, alkyl groups having 1 to 4 carbon atoms, aromatic groups having 6 to 18 carbon atoms) Hydrocarbon group, aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom, heteroaromatic group having 3 to 13 carbon atoms, carbon number substituted with a heteroaromatic group having 3 to 13 carbon atoms 6-18 aromatic hydrocarbon group, C3-C13 heteroaromatic group substituted with an alkyl group having 1 to 4 carbon atoms, or 6-carbon atom substituted with an alkyl group having 1 to 4 carbon atoms And each X is independently a divalent aromatic hydrocarbon having 6 to 18 carbon atoms which may be substituted with a methyl group. Represents a divalent nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms which may be substituted with a group, a methyl group or a phenyl group, p and q each independently represent 0, 1 or 2; Z represents a nitrogen atom or a carbon atom, and T consists only of a carbon atom, a hydrogen atom and a group 16 element. Heteroaromatic group having 4 to 30 prime atoms (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aromatic hydrocarbon having 6 to 18 carbon atoms substituted by a fluorine atom) Substituted with a C3-C13 heteroaromatic group, a C6-C18 aromatic hydrocarbon group substituted with a C3-C13 heteroaromatic group, or a C1-C4 alkyl group. And a heteroaromatic group having 3 to 13 carbon atoms or an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, may be substituted).
 さらに、好ましくは、下記一般式(1)で示される環状アジン化合物、その製造方法、及び当該環状アジン化合物を用いた有機電界発光素子に関するものである。
Figure JPOXMLDOC01-appb-C000010
More preferably, the present invention relates to a cyclic azine compound represented by the following general formula (1), a production method thereof, and an organic electroluminescence device using the cyclic azine compound.
Figure JPOXMLDOC01-appb-C000010
(2つのArは同一の置換基を表す。Arは、炭素数6~10の芳香族炭化水素基(フッ素原子、メチル基、フェニル基又はピリジル基を置換基として有してもよい)、又はフェニル基若しくはメチル基で置換されていてもよいピリジル基を表す。Arは、炭素数6~18の芳香族炭化水素基又は6員環のみで形成されるC、H、及びNのみからなる炭素数3~13の複素芳香族基(これらの置換基はフッ素原子、メチル基又はフェニル基で置換されていてもよい)を表す。Xは、各々独立して、メチル基で置換されていてもよい炭素数6~10の二価の芳香族炭化水素基又はメチル基で置換されていてもよい炭素数5~9の二価の含窒素複素芳香族基を表す。p及びqは、各々独立して、0、1又2を表す。Zは、窒素原子を表す。Tは、炭素原子、水素原子及び16族元素のみからなる炭素数4~20の複素芳香族基(メチル基、フェニル基、又はメチル基を有してもよい炭素数3~9の含窒素複素芳香族基を置換基として有してもよい)を表す。) (Two Ar 1 is .Ar 1 represent the same substituent, an aromatic hydrocarbon group having 6 to 10 carbon atoms (fluorine atom, may have a methyl group, a phenyl group or pyridyl group as a substituent) Or a pyridyl group optionally substituted with a phenyl group or a methyl group, Ar 2 is only C, H, and N formed of an aromatic hydrocarbon group having 6 to 18 carbon atoms or a 6-membered ring only And a heteroaromatic group having 3 to 13 carbon atoms (these substituents may be substituted with a fluorine atom, a methyl group or a phenyl group), and each X is independently substituted with a methyl group. A divalent aromatic hydrocarbon group having 6 to 10 carbon atoms which may be optionally substituted or a divalent nitrogen-containing heteroaromatic group having 5 to 9 carbon atoms which may be substituted with a methyl group, p and q being Each independently represents 0, 1 or 2. Z represents a nitrogen atom. T is a heteroaromatic group having 4 to 20 carbon atoms consisting of only a carbon atom, a hydrogen atom and a group 16 element (a nitrogen-containing complex having 3 to 9 carbon atoms which may have a methyl group, a phenyl group, or a methyl group). An aromatic group may be included as a substituent).
 炭素原子、水素原子及び16族元素のみからなる炭素数4~20の複素芳香族基の導入によって化合物の電子ドナー性を増強し、化合物の耐久性や素子寿命を損なうことなく、電子輸送能力を向上させることが可能となる。
 本発明の環状アジン化合物は耐久性、駆動電圧、電力効率に優れる電子輸送材料として利用される。さらに、本発明によれば、消費電力が低く、素子寿命に優れる有機EL素子を提供することができる。
The introduction of heteroaromatic group having 4 to 20 carbon atoms consisting only of carbon atom, hydrogen atom and group 16 element enhances the electron donor property of the compound, and enhances the electron transport ability without impairing the durability and device lifetime of the compound. It becomes possible to improve.
The cyclic azine compound of the present invention is used as an electron transport material excellent in durability, driving voltage, and power efficiency. Furthermore, according to the present invention, an organic EL element with low power consumption and excellent element lifetime can be provided.
実施例で作製した有機電界発光素子の断面模式図である。It is a cross-sectional schematic diagram of the organic electroluminescent element produced in the Example.
 本発明の環状アジン化合物(1)における置換基は、それぞれ以下のように定義される。
 式(1)中、2つのArは同一の置換基を表す。Arは上記で定義したとおりである。
The substituents in the cyclic azine compound (1) of the present invention are defined as follows.
In formula (1), two Ar 1 represent the same substituent. Ar 1 is as defined above.
 Arにおける炭素数6~30の芳香族炭化水素基としては、特に限定するものではないが、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、アントリル基、ピレニル基、トリフェニレニル基、クリセニル基、フルオランテニル基、アセナフチレニル基、フルオレニル基、又はベンゾフルオレニル基等が好ましい。 The aromatic hydrocarbon group having 6 to 30 carbon atoms in Ar 1 is not particularly limited, but phenyl group, biphenyl group, naphthyl group, phenanthryl group, anthryl group, pyrenyl group, triphenylenyl group, chrysenyl group, fullyl group, An oranthenyl group, an acenaphthylenyl group, a fluorenyl group, a benzofluorenyl group, or the like is preferable.
 Arにおける炭素数1~4のアルキル基としては、特に限定するものではないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、又はt-ブチル基等が好ましい。 The alkyl group having 1 to 4 carbon atoms in Ar 1 is not particularly limited, but a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, or the like is preferable.
 Arにおける炭素数6~18の芳香族炭化水素基としては、特に限定するものではないが、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、アントリル基、ピレニル基、トリフェニレニル基、クリセニル基、フルオランテニル基、アセナフチレニル基、フルオレニル基、又はベンゾフルオレニル基等が好ましい。 The aromatic hydrocarbon group having 6 to 18 carbon atoms in Ar 1 is not particularly limited, but includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a pyrenyl group, a triphenylenyl group, a chrysenyl group, a fullyl group. An oranthenyl group, an acenaphthylenyl group, a fluorenyl group, a benzofluorenyl group, or the like is preferable.
 Arにおけるフッ素原子で置換された炭素数6~18の芳香族炭化水素基としては、特に限定するものではないが、フルオロフェニル基、ジフルオロビフェニル基、フルオロナフチル、ジフルオロナフチル基、フルオロフェナントリル基、ジフルオロフェナントリル基、フルオロアントリル基、ジフルオロアントリル基、フルオロピレニル基、ジフルオロピレニル基、フルオロトリフェニレニル基、ジフルオロトリフェニレニル基、フルオロクリセニル基、ジフルオロクリセニル基、フルオロフルオランテニル基、ジフルオロフルオランテニル基、フルオロアセナフチレニル基、又はジフルオロアセナフチル基等が好ましい。 The aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom in Ar 1 is not particularly limited, but includes fluorophenyl group, difluorobiphenyl group, fluoronaphthyl, difluoronaphthyl group, fluorophenanthryl. Group, difluorophenanthryl group, fluoroanthryl group, difluoroanthryl group, fluoropyrenyl group, difluoropyrenyl group, fluorotriphenylenyl group, difluorotriphenylenyl group, fluorochrenyl group, difluorochrenyl group, A fluorofluoranthenyl group, a difluorofluoranthenyl group, a fluoroacenaphthylenyl group, a difluoroacenaphthyl group, or the like is preferable.
 Arにおける炭素数3~13の複素芳香族基としては、特に限定するものではないが、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、トリアジル基、キノリル基、イソキノリル基、フェナントリジル基、ベンゾキノリル基、又はアクリジル基等が好ましい。 The heteroaromatic group having 3 to 13 carbon atoms in Ar 1 is not particularly limited. A benzoquinolyl group or an acridyl group is preferred.
 Arにおける炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基としては、特に限定するものではないが、ピリジルフェニル基、ピリジルビフェニル基、ピリジルナフチル基、ピリジルフェナントリル基、ピリジルアントリル基、ピリジルピレニル基、ピリジルトリフェニレニル基、ピリジルクリセニル基、ピリジルフルオランテニル基、ピリジルアセナフチレニル基、ピリミジルフェニル基、ピリミジルビフェニル基、ピリミジルナフチル基、ピリミジルフェナントリル基、ピリミジルアントリル基、ピリミジルピレニル基、ピリミジルトリフェニレニル基、ピリミジルクリセニル基、ピリミジルフルオランテニル基、ピリミジルアセナフチレニル基、ピラジルフェニル基、ピラジルビフェニル基、ピラジルナフチル基、ピラジルフェナントリル基、ピラジルアントリル基、ピラジルピレニル基、ピラジルトリフェニレニル基、ピラジルクリセニル基、ピラジルフルオランテニル基、ピラジルアセナフチレニル基、キノリルフェニル基、キノリルビフェニル基、キノリルナフチル基、キノリルフェナントリル基、キノリルアントリル基、キノリルピレニル基、キノリルトリフェニレニル基、キノリルクリセニル基、キノリルフルオランテニル基、キノリルアセナフチレニル基、イソキノリルフェニル基、イソキノリルビフェニル基、イソキノリルナフチル基、イソキノリルフェナントリル基、イソキノリルアントリル基、イソキノリルピレニル基、イソキノリルトリフェニレニル基、イソキノリルクリセニル基、イソキノリルフルオランテニル基、又はイソキノリルアセナフチレニル基等が好ましい。 The aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a heteroaromatic group having 3 to 13 carbon atoms in Ar 1 is not particularly limited, but includes a pyridylphenyl group, a pyridylbiphenyl group, and a pyridylnaphthyl group. , Pyridylphenanthryl group, pyridylanthryl group, pyridylpyrenyl group, pyridyltriphenylenyl group, pyridylchlycenyl group, pyridylfluoranthenyl group, pyridylacenaphthylenyl group, pyrimidylphenyl group, pyrimidylbiphenyl Group, pyrimidyl naphthyl group, pyrimidyl phenanthryl group, pyrimidyl anthryl group, pyrimidyl pyrenyl group, pyrimidyl triphenylenyl group, pyrimidyl chrysenyl group, pyrimidyl fluoranthenyl group , Pyrimidyl acenaphthylenyl group, pyrazylphenyl group, pyrazylbiphenyl group, pyrazyl Naphtyl group, pyrazylphenanthryl group, pyrazylanthryl group, pyrazylpyrenyl group, pyrazyltriphenylenyl group, pyrazylcrisenyl group, pyrazylfluoranthenyl group, pyrazylacenaphthylenyl group, quinolylphenyl Group, quinolylbiphenyl group, quinolylnaphthyl group, quinolylphenanthryl group, quinolylanthryl group, quinolylpyrenyl group, quinolyltriphenylenyl group, quinolylchrycenyl group, quinolylfluoranthenyl group, quinolylacena group Futylenyl group, isoquinolylphenyl group, isoquinolylbiphenyl group, isoquinolylnaphthyl group, isoquinolylphenanthryl group, isoquinolylanthryl group, isoquinolylpyrenyl group, isoquinolyltriphenylenyl group Group, isoquinolyl chrysenyl group, isoquinolyl fluoranthenyl group, Etc. isoquinolylmethyl Asena borderless les sulfonyl group is preferred.
 Arにおける炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基としては、特に限定するものではないが、メチルピリジル基、メチルピラジル基、メチルピリミジル基、メチルピリダジル基、メチルトリアジル基、メチルキノリル基、メチルイソキノリル基、メチルフェナントリジル基、メチルベンゾキノリル基、メチルアクリジル基、ジメチルピリジル基、ジメチルピラジル基、ジメチルピリミジル基、ジメチルピリダジル基、ジメチルトリアジル基、ジメチルキノリル基、ジメチルイソキノリル基、ジメチルフェナントリジル基、ジメチルベンゾキノリル基、又はジメチルアクリジル基等が好ましい。 The heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms in Ar 1 is not particularly limited, but is a methylpyridyl group, a methylpyrazyl group, a methylpyrimidyl group, a methylpyridyl group, a methyl group. Triazyl group, methylquinolyl group, methylisoquinolyl group, methylphenanthridyl group, methylbenzoquinolyl group, methylacridyl group, dimethylpyridyl group, dimethylpyrazyl group, dimethylpyrimidyl group, dimethylpyridazyl group A dimethyltriazyl group, a dimethylquinolyl group, a dimethylisoquinolyl group, a dimethylphenanthridyl group, a dimethylbenzoquinolyl group, a dimethylacridyl group, or the like is preferable.
 Arにおける炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基としては、特に限定するものではないが、メチルフェニル基、メチルビフェニル基、メチルナフチル基、メチルフェナントリル基、アントリル基、メチルピレニル基、メチルトリフェニレニル基、メチルクリセニル基、メチルフルオランテニル基、メチルアセナフチレニル基、ジメチルフェニル基、ジメチルビフェニル基、ジメチルナフチル基、ジメチルフェナントリル基、アントリル基、ジメチルピレニル基、ジメチルトリフェニレニル基、ジメチルクリセニル基、ジメチルフルオランテニル基、ジメチルアセナフチレニル基、ジジメチルフルオレニル基、又はジメチルベンゾフルオレニル基等が好ましい。 The aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms in Ar 1 is not particularly limited, but is a methylphenyl group, a methylbiphenyl group, a methylnaphthyl group, a methyl group Phenanthryl group, anthryl group, methylpyrenyl group, methyltriphenylenyl group, methylchrycenyl group, methylfluoranthenyl group, methylacenaphthylenyl group, dimethylphenyl group, dimethylbiphenyl group, dimethylnaphthyl group, dimethylphenanthryl group Anthryl group, dimethylpyrenyl group, dimethyltriphenylenyl group, dimethylchrysenyl group, dimethylfluoranthenyl group, dimethylacenaphthylenyl group, didimethylfluorenyl group, dimethylbenzofluorenyl group, etc. preferable.
 Arにおけるフェニル基若しくはメチル基で置換されていてもよいピリジル基としては、特に限定するものではないが、ピリジル基、3-フェニルピリジン-2-イル基、4-フェニルピリジン-2-イル基、5-フェニルピリジン-2-イル基、3-メチルピリジン-2-イル基、4-メチルピリジン-2-イル基、又は5-メチルピリジン-2-イル基等が好ましい。 The pyridyl group optionally substituted with a phenyl group or a methyl group in Ar 1 is not particularly limited, but includes a pyridyl group, a 3-phenylpyridin-2-yl group, and a 4-phenylpyridin-2-yl group. 5-phenylpyridin-2-yl group, 3-methylpyridin-2-yl group, 4-methylpyridin-2-yl group, 5-methylpyridin-2-yl group and the like are preferable.
 Arは、電子輸送性材料特性に優れる点で、フェニル基、ビフェニル基又はナフチル基(これらの基は、炭素数1~4のアルキル基、フェニル基又は炭素数1~13の含窒素複素芳香族基を置換基として有していてもよい)が好ましく、フェニル基(フェニル基、メチル基又はピリジル基を置換基として有してもよい)がより好ましい。 Ar 1 is a phenyl group, a biphenyl group, or a naphthyl group (these groups are an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a nitrogen-containing heteroaromatic group having 1 to 13 carbon atoms) in terms of excellent electron transporting material characteristics. Group (which may have a group as a substituent) is preferable, and a phenyl group (which may have a phenyl group, a methyl group or a pyridyl group as a substituent) is more preferable.
 また、Arは、炭素数6~10の芳香族炭化水素基(フッ素原子、メチル基、フェニル基又はピリジル基を置換基として有してもよい)、又はフェニル基若しくはメチル基で置換されていてもよいピリジル基であることが好ましく、フェニル基、ビフェニル基又はナフチル基(これらの基は、フッ素原子、メチル基、フェニル基又はピリジル基を置換基として有してもよい)であることがより好ましい。
 Arにおける炭素数6~10の芳香族炭化水素基としては、特に限定するものではないが、フェニル基、ビフェニル基、又はナフチル基等が好ましい。
Ar 1 is substituted with an aromatic hydrocarbon group having 6 to 10 carbon atoms (which may have a fluorine atom, a methyl group, a phenyl group or a pyridyl group as a substituent), or a phenyl group or a methyl group. It may preferably be a pyridyl group which may be a phenyl group, a biphenyl group or a naphthyl group (these groups may have a fluorine atom, a methyl group, a phenyl group or a pyridyl group as a substituent). More preferred.
The aromatic hydrocarbon group having 6 to 10 carbon atoms in Ar 1 is not particularly limited, but a phenyl group, a biphenyl group, a naphthyl group, or the like is preferable.
 Arの具体例としては、フェニル基、p-トリル基、m-トリル基、o-トリル基、2,4-ジメチルフェニル基、3,5-ジメチルフェニル基、メシチル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2,4-ジエチルフェニル基、3,5-ジエチルフェニル基、2-プロピルフェニル基、3-プロピルフェニル基、4-プロピルフェニル基、2,4-ジプロピルフェニル基、3,5-ジプロピルフェニル基、2-イソプロピルフェニル基、3-イソプロピルフェニル基、4-イソプロピルフェニル基、2,4-ジイソプロピルフェニル基、3,5-ジイソプロピルフェニル基、2-ブチルフェニル基、3-ブチルフェニル基、4-ブチルフェニル基、2,4-ジブチルフェニル基、3,5-ジブチルフェニル基、2-tert-ブチルフェニル基、3-tert-ブチルフェニル基、4-tert-ブチルフェニル基、2,4-ジ-tert-ブチルフェニル基、3,5-ジ-tert-ブチルフェニル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、3-メチルビフェニル-4-イル基、2’-メチルビフェニル-4-イル基、4’-メチルビフェニル-4-イル基、2,2’-ジメチルビフェニル-4-イル基、2’,4’,6’-トリメチルビフェニル-4-イル基、6-メチルビフェニル-3-イル基、5-メチルビフェニル-3-イル基、2’-メチルビフェニル-3-イル基、4’-メチルビフェニル-3-イル基、6,2’-ジメチルビフェニル-3-イル基、2’,4’,6’-トリメチルビフェニル-3-イル基、5-メチルビフェニル-2-イル基、6-メチルビフェニル-2-イル基、2’-メチルビフェニル-2-イル基、4’-メチルビフェニル-2-イル基、6,2’-ジメチルビフェニル-2-イル基、2’,4’,6’-トリメチルビフェニル-2-イル基、3-エチルビフェニル-4-イル基、4’-エチルビフェニル-4-イル基、2’,4’,6’-トリエチルビフェニル-4-イル基、6-エチルビフェニル-3-イル基、4’-エチルビフェニル-3-イル基、5-エチルビフェニル-2-イル基、4’-エチルビフェニル-2-イル基、2’,4’,6’-トリエチルビフェニル-2-イル基、3-プロピルビフェニル-4-イル基、4’-プロピルビフェニル-4-イル基、2’,4’,6’-トリプロピルビフェニル-4-イル基、6-プロピルビフェニル-3-イル基、4’-プロピルビフェニル-3-イル基、5-プロピルビフェニル-2-イル基、4’-プロピルビフェニル-2-イル基、2’,4’,6’-トリプロピルビフェニル-2-イル基、3-イソプロピルビフェニル-4-イル基、4’-イソプロピルビフェニル-4-イル基、2’,4’,6’-トリイソプロピルビフェニル-4-イル基、6-イソプロピルビフェニル-3-イル基、4’-イソプロピルビフェニル-3-イル基、5-イソプロピルビフェニル-2-イル基、4’-イソプロピルビフェニル-2-イル基、2’,4’,6’-トリイソプロピルビフェニル-2-イル基、3-ブチルビフェニル-4-イル基、4’-ブチルビフェニル-4-イル基、2’,4’,6’-トリブチルビフェニル-4-イル基、6-ブチルビフェニル-3-イル基、4’-ブチルビフェニル-3-イル基、5-ブチルビフェニル-2-イル基、4’-ブチルビフェニル-2-イル基、2’,4’,6’-トリブチルビフェニル-2-イル基、3-tert-ブチルビフェニル-4-イル基、4’-tert-ブチルビフェニル-4-イル基、2’,4’,6’-トリtert-ブチルビフェニル-4-イル基、6-tert-ブチルビフェニル-3-イル基、4’-tert-ブチルビフェニル-3-イル基、5-tert-ブチルビフェニル-2-イル基、4’-tert-ブチルビフェニル-2-イル基、2’,4’,6’-トリtert-ブチルビフェニル-2-イル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-メチルピリジン-3-イル基、2-メチルピリジン-4-イル基、2-メチルピリジン-5-イル基、2-メチルピリジン-6-イル基、3-メチルピリジン-2-イル基、3-メチルピリジン-4-イル基、3-メチルピリジン-5-イル基、3-メチルピリジン-6-イル基、4-メチルピリジン-2-イル基、4-メチルピリジン-3-イル基、2,6-ジメチルピリジン-3-イル基、2,6-ジメチルピリジン-4-イル基、3,6-ジメチルピリジン-2-イル基、3,6-ジメチルピリジン-4-イル基、3,6-ジメチルピリジン-5-イル基、2-フェニルピリジン-6-イル基、3-フェニルピリジン-6-イル基、4-フェニルピリジン-6-イル基、5-フェニルピリジン-6-イル基、2-フェニルピリジン-3-イル基、2-フェニルピリジン-5-イル基、3-フェニルピリジン-5-イル基、4-フェニルピリジン-3-イル基、3-フェニルピリジン-4-イル基、2-フェニルピリジン-4-イル基、2-(2-ピリジル)フェニル基、3-(2-ピリジル)フェニル基、4-(2-ピリジル)フェニル基、2-(3-ピリジル)フェニル基、3-(3-ピリジル)フェニル基、4-(3-ピリジル)フェニル基、2-(4-ピリジル)フェニル基、3-(4-ピリジル)フェニル基、4-(4-ピリジル)フェニル基、1-ナフチル基、2-ナフチル基、1-フェニルナフタレン-2-イル基、1-フェニルナフタレン-3-イル基、1-フェニルナフタレン-4-イル基、1-フェニルナフタレン-5-イル基、1-フェニルナフタレン-6-イル基、1-フェニルナフタレン-7-イル基、1-フェニルナフタレン-8-イル基、2-フェニルナフタレン-1-イル基、2-フェニルナフタレン-3-イル基、2-フェニルナフタレン-4-イル基、2-フェニルナフタレン-5-イル基、2-フェニルナフタレン-6-イル基、2-フェニルナフタレン-7-イル基、2-フェニルナフタレン-8-イル基、1-メチルナフタレン-4-イル基、1-メチルナフタレン-5-イル基、1-メチルナフタレン-6-イル基、1-メチルナフタレン-7-イル基、1-メチルナフタレン-8-イル基、2-メチルナフタレン-1-イル基、2-メチルナフタレン-3-イル基、2-メチルナフタレン-4-イル基、2-メチルナフタレン-5-イル基、2-メチルナフタレン-6-イル基、2-メチルナフタレン-7-イル基、2-メチルナフタレン-8-イル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-フェニルフェナントレン-2-イル基、1-フェニルフェナントレン-3-イル基、1-フェニルフェナントレン-4-イル基、1-フェニルフェナントレン-5-イル基、1-フェニルフェナントレン-6-イル基、1-フェニルフェナントレン-7-イル基、1-フェニルフェナントレン-8-イル基、1-フェニルフェナントレン-9-イル基、1-フェニルフェナントレン-10-イル基、2-フェニルフェナントレン-1-イル基、2-フェニルフェナントレン-3-イル基、2-フェニルフェナントレン-4-イル基、2-フェニルフェナントレン-5-イル基、2-フェニルフェナントレン-6-イル基、2-フェニルフェナントレン-7-イル基、2-フェニルフェナントレン-8-イル基、2-フェニルフェナントレン-9-イル基、2-フェニルフェナントレン-10-イル基、3-フェニルフェナントレン-1-イル基、3-フェニルフェナントレン-2-イル基、3-フェニルフェナントレン-4-イル基、3-フェニルフェナントレン-5-イル基、3-フェニルフェナントレン-6-イル基、3-フェニルフェナントレン-7-イル基、3-フェニルフェナントレン-8-イル基、3-フェニルフェナントレン-9-イル基、3-フェニルフェナントレン-10-イル基、4-フェニルフェナントレン-1-イル基、4-フェニルフェナントレン-2-イル基、4-フェニルフェナントレン-3-イル基、4-フェニルフェナントレン-5-イル基、4-フェニルフェナントレン-6-イル基、4-フェニルフェナントレン-7-イル基、4-フェニルフェナントレン-8-イル基、4-フェニルフェナントレン-9-イル基、4-フェニルフェナントレン-10-イル基、1-メチルフェナントレン-2-イル基、1-メチルフェナントレン-3-イル基、1-メチルフェナントレン-4-イル基、1-メチルフェナントレン-5-イル基、1-メチルフェナントレン-6-イル基、1-メチルフェナントレン-7-イル基、1-メチルフェナントレン-8-イル基、1-メチルフェナントレン-9-イル基、1-メチルフェナントレン-10-イル基、2-メチルフェナントレン-1-イル基、2-メチルフェナントレン-3-イル基、2-メチルフェナントレン-4-イル基、2-メチルフェナントレン-5-イル基、2-メチルフェナントレン-6-イル基、2-メチルフェナントレン-7-イル基、2-メチルフェナントレン-8-イル基、2-メチルフェナントレン-9-イル基、2-メチルフェナントレン-10-イル基、3-メチルフェナントレン-1-イル基、3-メチルフェナントレン-2-イル基、3-メチルフェナントレン-4-イル基、3-メチルフェナントレン-5-イル基、3-メチルフェナントレン-6-イル基、3-メチルフェナントレン-7-イル基、3-メチルフェナントレン-8-イル基、3-メチルフェナントレン-9-イル基、3-メチルフェナントレン-10-イル基、4-メチルフェナントレン-1-イル基、4-メチルフェナントレン-2-イル基、4-メチルフェナントレン-3-イル基、4-メチルフェナントレン-5-イル基、4-メチルフェナントレン-6-イル基、4-メチルフェナントレン-7-イル基、4-メチルフェナントレン-8-イル基、4-メチルフェナントレン-9-イル基、4-メチルフェナントレン-10-イル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェニルアントラセン-2-イル基、1-フェニルアントラセン-3-イル基、1-フェニルアントラセン-4-イル基、1-フェニルアントラセン-5-イル基、1-フェニルアントラセン-6-イル基、1-フェニルアントラセン-7-イル基、1-フェニルアントラセン-8-イル基、1-フェニルアントラセン-9-イル基、1-フェニルアントラセン-10-イル基、2-フェニルアントラセン-1-イル基、2-フェニルアントラセン-3-イル基、2-フェニルアントラセン-4-イル基、2-フェニルアントラセン-5-イル基、2-フェニルアントラセン-6-イル基、2-フェニルアントラセン-7-イル基、2-フェニルアントラセン-8-イル基、2-フェニルアントラセン-9-イル基、2-フェニルアントラセン-10-イル基、9-フェニルアントラセン-1-イル基、9-フェニルアントラセン-2-イル基、9-フェニルアントラセン-3-イル基、9-フェニルアントラセン-4-イル基、9-フェニルアントラセン-5-イル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、1-フェニルピレン-2-イル基、1-フェニルピレン-3-イル基、1-フェニルピレン-4-イル基、1-フェニルピレン-5-イル基、1-フェニルピレン-6-イル基、1-フェニルピレン-7-イル基、1-フェニルピレン-8-イル基、1-フェニルピレン-9-イル基、1-フェニルピレン-10-イル基、2-フェニルピレン-1-イル基、2-フェニルピレン-3-イル基、2-フェニルピレン-4-イル基、2-フェニルピレン-5-イル基、2-フェニルピレン-6-イル基、2-フェニルピレン-7-イル基、2-フェニルピレン-8-イル基、2-フェニルピレン-9-イル基、2-フェニルピレン-10-イル基、9-フェニルピレン-1-イル基、9-フェニルピレン-2-イル基、9-フェニルピレン-3-イル基、9-フェニルピレン-4-イル基、9-フェニルピレン-5-イル基、9-フェニルピレン-6-イル基、9-フェニルピレン-7-イル基、9-フェニルピレン-8-イル基、9-フェニルピレ
ン-10-イル基、1-メチルピレン-2-イル基、1-メチルピレン-3-イル基、1-メチルピレン-4-イル基、1-メチルピレン-5-イル基、1-メチルピレン-6-イル基、1-メチルピレン-7-イル基、1-メチルピレン-8-イル基、1-メチルピレン-9-イル基、1-メチルピレン-10-イル基、2-メチルピレン-1-イル基、2-メチルピレン-3-イル基、2-メチルピレン-4-イル基、2-メチルピレン-5-イル基、2-メチルピレン-6-イル基、2-メチルピレン-7-イル基、2-メチルピレン-8-イル基、2-メチルピレン-9-イル基、2-メチルピレン-10-イル基、9-メチルピレン-1-イル基、9-メチルピレン-2-イル基、9-メチルピレン-3-イル基、9-メチルピレン-4-イル基、9-メチルピレン-5-イル基、9-メチルピレン-6-イル基、9-メチルピレン-7-イル基、9-メチルピレン-8-イル基、9-メチルピレン-10-イル基、フルオランテン-1-イル基、フルオランテン-1-イル基、フルオランテン-2-イル基、フルオランテン-3-イル基、フルオランテン-4-イル基、フルオランテン-5-イル基、フルオランテン-6-イル基、フルオランテン-7-イル基、フルオランテン-8-イル基、フルオランテン-9-イル基、フルオランテン-10-イル基、トリフェニレン-1-イル基、トリフェニレン-2-イル基、アセナフチレン-1-イル基、アセナフチレン-3-イル基、アセナフチレン-4-イル基、アセナフチレン-5-イル基、クリセン-1-イル基、クリセン-2-イル基、クリセン-5-イル基、又はクリセン-6-イル基等が好ましい。
Specific examples of Ar 1 include a phenyl group, a p-tolyl group, an m-tolyl group, an o-tolyl group, a 2,4-dimethylphenyl group, a 3,5-dimethylphenyl group, a mesityl group, and a 2-ethylphenyl group. 3-ethylphenyl group, 4-ethylphenyl group, 2,4-diethylphenyl group, 3,5-diethylphenyl group, 2-propylphenyl group, 3-propylphenyl group, 4-propylphenyl group, 2,4 -Dipropylphenyl group, 3,5-dipropylphenyl group, 2-isopropylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2,4-diisopropylphenyl group, 3,5-diisopropylphenyl group, 2 -Butylphenyl group, 3-butylphenyl group, 4-butylphenyl group, 2,4-dibutylphenyl group, 3,5-dibutylphenyl Nyl group, 2-tert-butylphenyl group, 3-tert-butylphenyl group, 4-tert-butylphenyl group, 2,4-di-tert-butylphenyl group, 3,5-di-tert-butylphenyl group Biphenyl-2-yl group, biphenyl-3-yl group, biphenyl-4-yl group, 3-methylbiphenyl-4-yl group, 2'-methylbiphenyl-4-yl group, 4'-methylbiphenyl-4 -Yl group, 2,2'-dimethylbiphenyl-4-yl group, 2 ', 4', 6'-trimethylbiphenyl-4-yl group, 6-methylbiphenyl-3-yl group, 5-methylbiphenyl-3 -Yl group, 2'-methylbiphenyl-3-yl group, 4'-methylbiphenyl-3-yl group, 6,2'-dimethylbiphenyl-3-yl group, 2 ', 4', 6'-trimethylbiphenyl -3- Group, 5-methylbiphenyl-2-yl group, 6-methylbiphenyl-2-yl group, 2'-methylbiphenyl-2-yl group, 4'-methylbiphenyl-2-yl group, 6,2'- Dimethylbiphenyl-2-yl group, 2 ′, 4 ′, 6′-trimethylbiphenyl-2-yl group, 3-ethylbiphenyl-4-yl group, 4′-ethylbiphenyl-4-yl group, 2 ′, 4 ', 6'-triethylbiphenyl-4-yl group, 6-ethylbiphenyl-3-yl group, 4'-ethylbiphenyl-3-yl group, 5-ethylbiphenyl-2-yl group, 4'-ethylbiphenyl- 2-yl group, 2 ′, 4 ′, 6′-triethylbiphenyl-2-yl group, 3-propylbiphenyl-4-yl group, 4′-propylbiphenyl-4-yl group, 2 ′, 4 ′, 6 '-Tripropylbiphenyl-4-yl group, 6-pro Rubiphenyl-3-yl group, 4'-propylbiphenyl-3-yl group, 5-propylbiphenyl-2-yl group, 4'-propylbiphenyl-2-yl group, 2 ', 4', 6'-tri Propylbiphenyl-2-yl group, 3-isopropylbiphenyl-4-yl group, 4'-isopropylbiphenyl-4-yl group, 2 ', 4', 6'-triisopropylbiphenyl-4-yl group, 6-isopropyl Biphenyl-3-yl group, 4'-isopropylbiphenyl-3-yl group, 5-isopropylbiphenyl-2-yl group, 4'-isopropylbiphenyl-2-yl group, 2 ', 4', 6'-triisopropyl Biphenyl-2-yl group, 3-butylbiphenyl-4-yl group, 4′-butylbiphenyl-4-yl group, 2 ′, 4 ′, 6′-tributylbiphenyl-4-yl group, 6-butylbiphenyl Enyl-3-yl group, 4′-butylbiphenyl-3-yl group, 5-butylbiphenyl-2-yl group, 4′-butylbiphenyl-2-yl group, 2 ′, 4 ′, 6′-tributylbiphenyl -2-yl group, 3-tert-butylbiphenyl-4-yl group, 4′-tert-butylbiphenyl-4-yl group, 2 ′, 4 ′, 6′-tritert-butylbiphenyl-4-yl group 6-tert-butylbiphenyl-3-yl group, 4′-tert-butylbiphenyl-3-yl group, 5-tert-butylbiphenyl-2-yl group, 4′-tert-butylbiphenyl-2-yl group 2 ′, 4 ′, 6′-tritert-butylbiphenyl-2-yl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-3-yl group, 2-methylpyridine -4-yl group, -Methylpyridin-5-yl group, 2-methylpyridin-6-yl group, 3-methylpyridin-2-yl group, 3-methylpyridin-4-yl group, 3-methylpyridin-5-yl group, 3 -Methylpyridin-6-yl group, 4-methylpyridin-2-yl group, 4-methylpyridin-3-yl group, 2,6-dimethylpyridin-3-yl group, 2,6-dimethylpyridin-4- Yl group, 3,6-dimethylpyridin-2-yl group, 3,6-dimethylpyridin-4-yl group, 3,6-dimethylpyridin-5-yl group, 2-phenylpyridin-6-yl group, 3 -Phenylpyridin-6-yl group, 4-phenylpyridin-6-yl group, 5-phenylpyridin-6-yl group, 2-phenylpyridin-3-yl group, 2-phenylpyridin-5-yl group, 3 -Phenylpyri N-5-yl group, 4-phenylpyridin-3-yl group, 3-phenylpyridin-4-yl group, 2-phenylpyridin-4-yl group, 2- (2-pyridyl) phenyl group, 3- ( 2-pyridyl) phenyl group, 4- (2-pyridyl) phenyl group, 2- (3-pyridyl) phenyl group, 3- (3-pyridyl) phenyl group, 4- (3-pyridyl) phenyl group, 2- ( 4-pyridyl) phenyl group, 3- (4-pyridyl) phenyl group, 4- (4-pyridyl) phenyl group, 1-naphthyl group, 2-naphthyl group, 1-phenylnaphthalen-2-yl group, 1-phenyl Naphthalen-3-yl group, 1-phenylnaphthalen-4-yl group, 1-phenylnaphthalen-5-yl group, 1-phenylnaphthalen-6-yl group, 1-phenylnaphthalen-7-yl group, 1-phenyl Naphthalen-8-yl group, 2-phenylnaphthalen-1-yl group, 2-phenylnaphthalen-3-yl group, 2-phenylnaphthalen-4-yl group, 2-phenylnaphthalen-5-yl group, 2-phenyl Naphthalen-6-yl group, 2-phenylnaphthalen-7-yl group, 2-phenylnaphthalen-8-yl group, 1-methylnaphthalen-4-yl group, 1-methylnaphthalen-5-yl group, 1-methyl Naphthalen-6-yl group, 1-methylnaphthalen-7-yl group, 1-methylnaphthalen-8-yl group, 2-methylnaphthalen-1-yl group, 2-methylnaphthalen-3-yl group, 2-methyl Naphthalen-4-yl group, 2-methylnaphthalen-5-yl group, 2-methylnaphthalen-6-yl group, 2-methylnaphthalen-7-yl group, 2-methylnaphtha N-8-yl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-phenylphenanthren-2-yl group, 1-phenylphenanthren-3-yl Group, 1-phenylphenanthren-4-yl group, 1-phenylphenanthren-5-yl group, 1-phenylphenanthrene-6-yl group, 1-phenylphenanthren-7-yl group, 1-phenylphenanthren-8-yl group Group, 1-phenylphenanthren-9-yl group, 1-phenylphenanthren-10-yl group, 2-phenylphenanthren-1-yl group, 2-phenylphenanthren-3-yl group, 2-phenylphenanthren-4-yl group Group, 2-phenylphenanthren-5-yl group, 2-phenylphen Ntolen-6-yl group, 2-phenylphenanthren-7-yl group, 2-phenylphenanthren-8-yl group, 2-phenylphenanthren-9-yl group, 2-phenylphenanthren-10-yl group, 3-phenyl Phenanthren-1-yl group, 3-phenylphenanthren-2-yl group, 3-phenylphenanthren-4-yl group, 3-phenylphenanthren-5-yl group, 3-phenylphenanthren-6-yl group, 3-phenyl Phenanthren-7-yl group, 3-phenylphenanthren-8-yl group, 3-phenylphenanthren-9-yl group, 3-phenylphenanthren-10-yl group, 4-phenylphenanthren-1-yl group, 4-phenyl Phenanthren-2-yl group, 4-phenylphenanthren-3-yl group, 4-phenylphenanthren-5-yl group, 4-phenylphenanthren-6-yl group, 4-phenylphenanthrene-7-yl group, 4-phenylphenanthren-8-yl group, 4-phenylphenanthren-9-yl group, 4-phenylphenanthren-10-yl group, 1-methylphenanthren-2-yl group, 1-methylphenanthren-3-yl group, 1-methylphenanthren-4-yl group, 1-methylphenanthren-5-yl group, 1-methylphenanthren-6-yl group, 1-methylphenanthren-7-yl group, 1-methylphenanthrene-8-yl group, 1-methylphenanthren-9-yl group, 1-methylphenanthren-10-yl group, 2-methylphenanthren-1-yl group, 2-methylphenanthren-3-yl group, 2- Tylphenanthren-4-yl group, 2-methylphenanthren-5-yl group, 2-methylphenanthren-6-yl group, 2-methylphenanthren-7-yl group, 2-methylphenanthren-8-yl group, 2- Methylphenanthren-9-yl group, 2-methylphenanthren-10-yl group, 3-methylphenanthren-1-yl group, 3-methylphenanthren-2-yl group, 3-methylphenanthren-4-yl group, 3- Methylphenanthren-5-yl group, 3-methylphenanthren-6-yl group, 3-methylphenanthrene-7-yl group, 3-methylphenanthren-8-yl group, 3-methylphenanthren-9-yl group, 3- Methylphenanthren-10-yl group, 4-methylphenanthren-1-yl group, 4-methylphenanthate N-2-yl group, 4-methylphenanthren-3-yl group, 4-methylphenanthren-5-yl group, 4-methylphenanthren-6-yl group, 4-methylphenanthren-7-yl group, 4-methyl Phenanthren-8-yl group, 4-methylphenanthren-9-yl group, 4-methylphenanthren-10-yl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenylanthracen-2-yl Group, 1-phenylanthracen-3-yl group, 1-phenylanthracen-4-yl group, 1-phenylanthracen-5-yl group, 1-phenylanthracen-6-yl group, 1-phenylanthracen-7-yl Group, 1-phenylanthracen-8-yl group, 1-phenylanthracen-9-yl group, 1-phenylanthracene -10-yl group, 2-phenylanthracen-1-yl group, 2-phenylanthracen-3-yl group, 2-phenylanthracen-4-yl group, 2-phenylanthracen-5-yl group, 2-phenylanthracene -6-yl, 2-phenylanthracen-7-yl, 2-phenylanthracen-8-yl, 2-phenylanthracen-9-yl, 2-phenylanthracen-10-yl, 9-phenylanthracene -1-yl group, 9-phenylanthracen-2-yl group, 9-phenylanthracen-3-yl group, 9-phenylanthracen-4-yl group, 9-phenylanthracen-5-yl group, 1-pyrenyl group 2-pyrenyl group, 4-pyrenyl group, 1-phenylpyren-2-yl group, 1-phenylpyren-3-yl group, 1- Enylpyren-4-yl group, 1-phenylpyren-5-yl group, 1-phenylpyren-6-yl group, 1-phenylpyren-7-yl group, 1-phenylpyren-8-yl group, 1-phenyl Pyren-9-yl group, 1-phenylpyrene-10-yl group, 2-phenylpyren-1-yl group, 2-phenylpyren-3-yl group, 2-phenylpyren-4-yl group, 2-phenyl Pyren-5-yl group, 2-phenylpyren-6-yl group, 2-phenylpyren-7-yl group, 2-phenylpyren-8-yl group, 2-phenylpyren-9-yl group, 2-phenyl Pyrene-10-yl group, 9-phenylpyren-1-yl group, 9-phenylpyren-2-yl group, 9-phenylpyren-3-yl group, 9-phenylpyren-4-yl group, 9-phenyl Pyrene-5-i Group, 9-phenylpyren-6-yl group, 9-phenylpyren-7-yl group, 9-phenylpyren-8-yl group, 9-phenylpyren-10-yl group, 1-methylpyren-2-yl group 1-methylpyren-3-yl group, 1-methylpyren-4-yl group, 1-methylpyren-5-yl group, 1-methylpyren-6-yl group, 1-methylpyren-7-yl group, 1-methylpyrene- 8-yl group, 1-methylpyren-9-yl group, 1-methylpyren-10-yl group, 2-methylpyren-1-yl group, 2-methylpyren-3-yl group, 2-methylpyren-4-yl group, 2-methylpyren-5-yl group, 2-methylpyren-6-yl group, 2-methylpyren-7-yl group, 2-methylpyren-8-yl group, 2-methylpyren-9-yl group, 2-methylpyrene-1 0-yl group, 9-methylpyren-1-yl group, 9-methylpyren-2-yl group, 9-methylpyren-3-yl group, 9-methylpyren-4-yl group, 9-methylpyren-5-yl group, 9-methylpyren-6-yl group, 9-methylpyren-7-yl group, 9-methylpyren-8-yl group, 9-methylpyren-10-yl group, fluoranthen-1-yl group, fluoranthen-1-yl group, Fluoranthen-2-yl group, fluoranthen-3-yl group, fluoranthen-4-yl group, fluoranthen-5-yl group, fluoranthen-6-yl group, fluoranthen-7-yl group, fluoranthen-8-yl group, fluoranthene -9-yl group, fluoranthen-10-yl group, triphenylene-1-yl group, triphenylene-2-yl group, acenaphthylene- -Yl, acenaphthylene-3-yl, acenaphthylene-4-yl, acenaphthylene-5-yl, chrysen-1-yl, chrysen-2-yl, chrysen-5-yl, or chrysene-6 -An yl group and the like are preferable.
 これらの基のうち、電子輸送性材料特性に優れる点で、フェニル基、p-トリル基、ビフェニル-3-イル基、ビフェニル-4-イル基、3-(2-ピリジル)フェニル基、4-(2-ピリジル)フェニル基、3-(3-ピリジル)フェニル基、4-(3-ピリジル)フェニル基、2-ピリジル基、3-ピリジル基、2-フェニルピリジン-6-イル基、2-フェニルピリジン-5-イル基、2-フェニルピリジン-4-イル基、3-フェニルピリジン-5-イル基、3-フェニルピリジン-6-イル基、1-ナフチル基、又は2-ナフチル基がより好まく、フェニル基、p-トリル基、ビフェニル-3-イル基、又はビフェニル-4-イル基が更に好ましい。 Of these groups, a phenyl group, a p-tolyl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a 3- (2-pyridyl) phenyl group, 4- (2-pyridyl) phenyl group, 3- (3-pyridyl) phenyl group, 4- (3-pyridyl) phenyl group, 2-pyridyl group, 3-pyridyl group, 2-phenylpyridin-6-yl group, 2- Phenylpyridin-5-yl group, 2-phenylpyridin-4-yl group, 3-phenylpyridin-5-yl group, 3-phenylpyridin-6-yl group, 1-naphthyl group, or 2-naphthyl group Preferably, a phenyl group, a p-tolyl group, a biphenyl-3-yl group, or a biphenyl-4-yl group is more preferable.
 Arは、水素原子又は炭素数3~13の含窒素複素芳香族基(フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。 Ar 2 is substituted with a hydrogen atom or a nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or a fluorine atom). An aromatic hydrocarbon group having 6 to 18 carbon atoms, a heteroaromatic group having 3 to 13 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a heteroaromatic group having 3 to 13 carbon atoms, carbon A heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, or an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms as a substituent. May be included).
 なかでも、Arは、6員環のみで形成されるC、H、及びNのみからなる炭素数3~13の複素芳香族基(これらの基は、フッ素原子、メチル基又はフェニル基で置換されていてもよい)であることが好ましい。
 Arにおける下記の置換基は、Arで例示した置換基と同様である。
(1)炭素数1~4のアルキル基、
(2)炭素数6~18の芳香族炭化水素基、
(3)フッ素原子で置換された炭素数6~18の芳香族炭化水素基、
(4)炭素数3~13の複素芳香族基、
(5)炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、
(6)炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、
(7)炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基。
Among them, Ar 2 is a heteroaromatic group having 3 to 13 carbon atoms consisting of C, H, and N formed only by a 6-membered ring (these groups are substituted with a fluorine atom, a methyl group or a phenyl group) It may preferably be).
The following substituents for Ar 2 are the same as the substituents exemplified for Ar 1 .
(1) an alkyl group having 1 to 4 carbon atoms,
(2) an aromatic hydrocarbon group having 6 to 18 carbon atoms,
(3) an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom,
(4) a heteroaromatic group having 3 to 13 carbon atoms,
(5) an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a heteroaromatic group having 3 to 13 carbon atoms,
(6) a heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms,
(7) An aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms.
 Arにおける炭素数3~13の含窒素複素芳香族基としては、特に限定するものではないが、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、トリアジル基、キノリル基、イソキノリル基、ナフチリジル基、キナゾリル基、キノキサリル基、ベンゾキノリル基、アクリジル基、フェナントリジル基、又はフェナントロリル基等が好ましい。 The nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms in Ar 2 is not particularly limited. A quinazolyl group, a quinoxalyl group, a benzoquinolyl group, an acridyl group, a phenanthridyl group, or a phenanthroyl group is preferable.
 Arにおける6員環のみで形成されるC、H、及びNのみからなる炭素数3~13の複素芳香族基としては、特に限定するものではないが、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、トリアジル基、キノリル基、イソキノリル基、ナフチリジル基、キナゾリル基、キノキサリル基、ベンゾキノリル基、アクリジル基、フェナントリジル基、又はフェナントロリル基等が好ましい。 The heteroaromatic group having 3 to 13 carbon atoms composed of only C, H, and N formed only by a 6-membered ring in Ar 2 is not particularly limited, but includes a pyridyl group, a pyrazyl group, a pyrimidyl group, A pyridazyl group, a triazyl group, a quinolyl group, an isoquinolyl group, a naphthyridyl group, a quinazolyl group, a quinoxalyl group, a benzoquinolyl group, an acridyl group, a phenanthridyl group, a phenanthroyl group, and the like are preferable.
 Arは、電子輸送性材料特性に優れる点で、水素原子、又はフェニル基若しくはメチル基で置換されていてもよい炭素数3~13の含窒素複素芳香族基であることが好ましく、水素原子、又は無置換の炭素数3~13の含窒素複素芳香族基であることがより好ましい。 Ar 2 is preferably a hydrogen atom or a nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms which may be substituted with a phenyl group or a methyl group in terms of excellent electron transporting material properties. Or an unsubstituted nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms.
 Arの具体例としては、特に限定するものではないが、水素原子、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-メチルピリジン-3-イル基、2-メチルピリジン-4-イル基、2-メチルピリジン-5-イル基、2-メチルピリジン-6-イル基、3-メチルピリジン-2-イル基、3-メチルピリジン-4-イル基、3-メチルピリジン-5-イル基、3-メチルピリジン-6-イル基、4-メチルピリジン-2-イル基、4-メチルピリジン-3-イル基、2,6-ジメチルピリジン-3-イル基、2,6-ジメチルピリジン-4-イル基、3,6-ジメチルピリジン-2-イル基、3,6-ジメチルピリジン-4-イル基、3,6-ジメチルピリジン-5-イル基、ピリジン-6-イル基、5-フェニルピリジン-6-イル基、2-フェニルピリジン-3-イル基、2-フェニルピリジン-5-イル基、3-フェニルピリジン-5-イル基、4-フェニルピリジン-3-イル基、3-フェニルピリジン-4-イル基、2-フェニルピリジン-4-イル基、2,4-ジフェニルピリジン-2-イル基、2,6-ジフェニルピリジン-4-イル基、4-(1-ナフチル)-2-フェニルピリジン-6-イル基、4-(2-ナフチル)2-フェニルピリジン-6-イル基、2-(1-ナフチル)-4-フェニルピリジン-6-イル基、2-(2-ナフチル)-4-フェニルピリジン-6-イル基、2,4-ジ(1-ナフチル)ピリジン-2-イル基、2,4-ジ(2-ナフチル)ピリジン-2-イル基、2,6-ジ(1-ナフチル)ピリジン-4-イル基、2,6-ジ(2-ナフチル)ピリジン-4-イル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、4,6-ジメチルピリミジン-2-イル基、4,6-ジフェニルピリミジン-2-イル基、5-フェニルピリミジン-2-イル基、キノリン-2-イル基、キノリン-3-イル基、キノリン-4-イル基、キノリン-5-イル基、キノリン-6-イル基、キノリン-7-イル基、キノリン-8-イル基、キノリン-9-イル基、2-メチルキノリン-3-イル基、2-メチルキノリン-4-イル基、2-メチルキノリン-5-イル基、2-メチルキノリン-6-イル基、2-メチルキノリン-7-イル基、2-メチルキノリン-8-イル基、イソキノリン-1-イル基、イソキノリン-3-イル基、イソキノリン-4-イル基、イソキノリン-5-イル基、イソキノリン-6-イル基、イソキノリン-7-イル基、イソキノリン-8-イル基、ピラジル基、2-フェニルピラジン-5-イル基、2-フェニルピラジン-6-イル基、2-メチルピラジン-5-イル基、2-メチルピラジン-6-イル基、ピリダジン-3-イル基、ピリダジン-4-イル基、3-フェニルピリダジン-4-イル基、3-フェニルピリダジン-5-イル基、3-フェニルピリダジン-6-イル基、4-フェニルピリダジン-3-イル基、4-フェニルピリダジン-5-イル基、4-フェニルピリダジン-6-イル基、5-フェニルピリダジン-3-イル基、5-フェニルピリダジン-3-イル基、5-フェニルピリダジン-4-イル基、5-フェニルピリダジン-6-イル基、6-フェニルピリダジン-3-イル基、6-フェニルピリダジン-4-イル基、6-フェニルピリダジン-5-イル基、3-メチルピリダジン-5-イル基、3-メチルピリダジン-6-イル基、4-メチルピリダジン-3-イル基、4-メチルピリダジン-5-イル基、4-メチルピリダジン-6-イル基、5-メチルピリダジン-3-イル基、5-メチルピリダジン-3-イル基、5-メチルピリダジン-4-イル基、5-メチルピリダジン-6-イル基、6-メチルピリダジン-3-イル基、6-メチルピリダジン-4-イル基、6-メチルピリダジン-5-イル基、トリアジル基、2,4-ジフェニルトリアジン-6-イル基、2,4-ジメチルトリアジン-6-イル基、ナフチリジン-2-イル基、ナフチリジン-3-イル基、ナフチリジン-4-イル基、キノキサリン-2-イル基、キノキサリン-5-イル基、キノキサリン-6-イル基、2,3-ジメチルキノキサリン-5-イル基、2,3-ジメチルキノキサリン-6-イル基、キナゾリン-2-イル基、キナゾリン-4-イル基、キナゾリン-5-イル基、キナゾリン-6-イル基、キナゾリン-7-イル基、キナゾリン-8-イル基、フェナントリジン-1-イル基、フェナントリジン-2-イル基、フェナントリジン-3-イル基、フェナントリジン-4-イル基、フェナントリジン-6-イル基、フェナントリジン-7-イル基、フェナントリジン-8-イル基、フェナントリジン-9-イル基、フェナントリジン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、アクリジン-1-イル基、アクリジン-2-イル基、アクリジン-3-イル基、アクリジン-4-イル基、アクリジン-9-イル基、フェナジン-1-イル基、フェナジン-2-イル基、ベンゾ[h]キノリル基、又はベンゾ[f]キノリル基等が挙げられる。 Specific examples of Ar 2 include, but are not limited to, hydrogen atom, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-3-yl group, 2-methylpyridine-4 -Yl group, 2-methylpyridin-5-yl group, 2-methylpyridin-6-yl group, 3-methylpyridin-2-yl group, 3-methylpyridin-4-yl group, 3-methylpyridin-5 -Yl group, 3-methylpyridin-6-yl group, 4-methylpyridin-2-yl group, 4-methylpyridin-3-yl group, 2,6-dimethylpyridin-3-yl group, 2,6- Dimethylpyridin-4-yl group, 3,6-dimethylpyridin-2-yl group, 3,6-dimethylpyridin-4-yl group, 3,6-dimethylpyridin-5-yl group, pyridin-6-yl group 5-phenylpyridine-6 -Yl group, 2-phenylpyridin-3-yl group, 2-phenylpyridin-5-yl group, 3-phenylpyridin-5-yl group, 4-phenylpyridin-3-yl group, 3-phenylpyridin-4 -Yl group, 2-phenylpyridin-4-yl group, 2,4-diphenylpyridin-2-yl group, 2,6-diphenylpyridin-4-yl group, 4- (1-naphthyl) -2-phenylpyridine -6-yl group, 4- (2-naphthyl) 2-phenylpyridin-6-yl group, 2- (1-naphthyl) -4-phenylpyridin-6-yl group, 2- (2-naphthyl) -4 -Phenylpyridin-6-yl group, 2,4-di (1-naphthyl) pyridin-2-yl group, 2,4-di (2-naphthyl) pyridin-2-yl group, 2,6-di (1 -Naphthyl) pyridin-4-yl group, 2,6 Di (2-naphthyl) pyridin-4-yl group, 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group, 4,6-dimethylpyrimidin-2-yl group, 4,6-diphenylpyrimidin-2-yl Group, 5-phenylpyrimidin-2-yl group, quinolin-2-yl group, quinolin-3-yl group, quinolin-4-yl group, quinolin-5-yl group, quinolin-6-yl group, quinolin-7 -Yl group, quinolin-8-yl group, quinolin-9-yl group, 2-methylquinolin-3-yl group, 2-methylquinolin-4-yl group, 2-methylquinolin-5-yl group, 2- Methylquinolin-6-yl group, 2-methylquinolin-7-yl group, 2-methylquinolin-8-yl group, isoquinolin-1-yl group, isoquinolin-3-yl group, isoquinolin-4-yl group, Rin-5-yl group, isoquinolin-6-yl group, isoquinolin-7-yl group, isoquinolin-8-yl group, pyrazyl group, 2-phenylpyrazin-5-yl group, 2-phenylpyrazin-6-yl group 2-methylpyrazin-5-yl group, 2-methylpyrazin-6-yl group, pyridazin-3-yl group, pyridazin-4-yl group, 3-phenylpyridazin-4-yl group, 3-phenylpyridazine- 5-yl group, 3-phenylpyridazin-6-yl group, 4-phenylpyridazin-3-yl group, 4-phenylpyridazin-5-yl group, 4-phenylpyridazin-6-yl group, 5-phenylpyridazine- 3-yl group, 5-phenylpyridazin-3-yl group, 5-phenylpyridazin-4-yl group, 5-phenylpyridazin-6-yl group, 6-phenylpyrida Gin-3-yl group, 6-phenylpyridazin-4-yl group, 6-phenylpyridazin-5-yl group, 3-methylpyridazin-5-yl group, 3-methylpyridazin-6-yl group, 4-methyl Pyridazin-3-yl group, 4-methylpyridazin-5-yl group, 4-methylpyridazin-6-yl group, 5-methylpyridazin-3-yl group, 5-methylpyridazin-3-yl group, 5-methyl Pyridazin-4-yl group, 5-methylpyridazin-6-yl group, 6-methylpyridazin-3-yl group, 6-methylpyridazin-4-yl group, 6-methylpyridazin-5-yl group, triazyl group, 2,4-diphenyltriazin-6-yl group, 2,4-dimethyltriazin-6-yl group, naphthyridin-2-yl group, naphthyridin-3-yl group, naphthyridin-4-y Group, quinoxalin-2-yl group, quinoxalin-5-yl group, quinoxalin-6-yl group, 2,3-dimethylquinoxalin-5-yl group, 2,3-dimethylquinoxalin-6-yl group, quinazoline-2 -Yl, quinazolin-4-yl, quinazolin-5-yl, quinazolin-6-yl, quinazolin-7-yl, quinazolin-8-yl, phenanthridin-1-yl, phenanth Lysine-2-yl group, phenanthridin-3-yl group, phenanthridin-4-yl group, phenanthridin-6-yl group, phenanthridin-7-yl group, phenanthridin-8-yl Group, phenanthridin-9-yl group, phenanthridin-10-yl group, 1,10-phenanthroline-2-yl group, 1,10-phenanthroline-3-yl group, 10-phenanthroline-4-yl group, 1,10-phenanthroline-5-yl group, acridine-1-yl group, acridine-2-yl group, acridine-3-yl group, acridine-4-yl group, acridine- Examples thereof include a 9-yl group, a phenazin-1-yl group, a phenazin-2-yl group, a benzo [h] quinolyl group, and a benzo [f] quinolyl group.
 これらのうち、電子輸送性材料特性に優れる点で、Arは、水素原子、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-メチルピリジン-6-イル基、3-メチルピリジン-6-イル基、4-メチルピリジン-6-イル基、2-メチルピリジン-5-イル基2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基。4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-ピリミジル基、4,6-ジメチルピリミジル基、又はピラジル基が好ましく、2-ピリジル基、3-ピリジル基、2-キノリル基、3-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、又は4-イソキノリル基がより好ましく、水素原子、3-ピリジル基、2-ピリジル基、3-キノリル基、又は4-イソキノリル基がさらに好ましい。 Among these, Ar 2 is a hydrogen atom, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-6-yl group, 3-methylpyridine in terms of excellent electron transporting material characteristics. -6-yl group, 4-methylpyridin-6-yl group, 2-methylpyridin-5-yl group, 2-quinolyl group, 3-quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group. 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, 2-pyrimidyl group, 4,6-dimethylpyrimidyl group, or pyrazyl group are preferable, and 2-pyridyl group , 3-pyridyl group, 2-quinolyl group, 3-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, or 4-isoquinolyl group are more preferable, a hydrogen atom, 3-pyridyl group, 2- A pyridyl group, a 3-quinolyl group, or a 4-isoquinolyl group is more preferable.
 Arは、電子輸送性材料特性に優れる点で、さらに、炭素数6~18の芳香族炭化水素基(フッ素原子、メチル基又はフェニル基で置換されていてもよい)であることが好ましく、上記の例示と合わせて、以下に示す基が挙げられる。
 具体的にはフェニル基、ビフェニル基、ナフチル基、フェナントリル基、アントリル基、フルオランテニル基、クリセニル基若しくはトリフェニレニル基(これらの基は、メチル基又はフェニル基で置換されていてもよい)、又はピリジル基、ピリミジル基、ピラジル基、トリアジル基、キノリル基、イソキノリル基、若しくはフェナントリジル基(これらの置換基はメチル基又はフェニル基で置換されていてもよい)であることが好ましい。
 これらのうち、フェニル基、ビフェニル基、ナフチル基、フェニル-ナフチル基、フェナントリル基、アントリル基、フルオランテニル基、クリセニル基、トリフェニレニル基、ピリジル基、フェニル-ピリジル基、ジフェニル-ピリジル基(例えば、4,6-ジフェニルピリジン-2-イル基、2,6-ジフェニルピリジン-4-イル基等)、ピリミジル基、フェニル-ピリミジル基、ジフェニル-ピリミジル基(例えば、4,6-ジフェニルピリミジン-2-イル基等)、ピラジル基、フェニル-ピラジル基(例えば、5-フェニルピラジル-2-イル基、6-フェニルピラジル-2-イル基等)、トリアジル基、ジフェニル-トリアジル基(例えば、3,5-ジフェニルトリアジル基等)、キノリル基、フェニル-キノリル基、イソキノリル基、フェニル-イソキノリル基、又はフェナントリジル基であることがより好ましい。
Ar 2 is preferably an aromatic hydrocarbon group having 6 to 18 carbon atoms (which may be substituted with a fluorine atom, a methyl group or a phenyl group) from the viewpoint of excellent electron transporting material properties, In combination with the above examples, the following groups can be mentioned.
Specifically, a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a fluoranthenyl group, a chrycenyl group or a triphenylenyl group (these groups may be substituted with a methyl group or a phenyl group), or It is preferably a pyridyl group, a pyrimidyl group, a pyrazyl group, a triazyl group, a quinolyl group, an isoquinolyl group, or a phenanthridyl group (these substituents may be substituted with a methyl group or a phenyl group).
Of these, phenyl, biphenyl, naphthyl, phenyl-naphthyl, phenanthryl, anthryl, fluoranthenyl, chrysenyl, triphenylenyl, pyridyl, phenyl-pyridyl, diphenyl-pyridyl (for example, 4,6-diphenylpyridin-2-yl group, 2,6-diphenylpyridin-4-yl group, etc.), pyrimidyl group, phenyl-pyrimidyl group, diphenyl-pyrimidyl group (for example, 4,6-diphenylpyrimidin-2- Yl group, etc.), pyrazyl group, phenyl-pyrazyl group (eg 5-phenylpyrazyl-2-yl group, 6-phenylpyrazyl-2-yl group etc.), triazyl group, diphenyl-triazyl group (eg 3 , 5-diphenyltriazyl group, etc.), quinolyl group, phenyl-quinolyl group, isoquinol group Lil group, phenyl - more preferably isoquinolyl group, or a phenanthridyl group.
 さらに、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、アントリル基、フルオランテニル基、クリセニル基、トリフェニレニル基、ピリジル基、フェニル-ピリジル基、ジフェニル-ピリジル基、ピリミジル基、フェニル-ピリミジル基(例えば、4,6-ジフェニルピリジン-2-イル基、2,6-ジフェニルピリジン-4-イル基等)、ジフェニル-ピリミジル基(例えば、4,6-ジフェニルピリミジン-2-イル基等)、ピラジル基、トリアジル基、ジフェニル-トリアジル基(例えば、3,5-ジフェニルトリアジル基等)、キノリル基、イソキノリル基、又はフェナントリジル基であることがより好ましい。 Further, phenyl group, biphenyl group, naphthyl group, phenanthryl group, anthryl group, fluoranthenyl group, chrysenyl group, triphenylenyl group, pyridyl group, phenyl-pyridyl group, diphenyl-pyridyl group, pyrimidyl group, phenyl-pyrimidyl group (for example, 4,6-diphenylpyridin-2-yl group, 2,6-diphenylpyridin-4-yl group, etc.), diphenyl-pyrimidyl group (for example, 4,6-diphenylpyrimidin-2-yl group, etc.), pyrazyl group More preferably a triazyl group, a diphenyl-triazyl group (for example, 3,5-diphenyltriazyl group, etc.), a quinolyl group, an isoquinolyl group, or a phenanthridyl group.
 Arの具体例としては、特に限定するものではないが、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-メチルピリジン-3-イル基、2-メチルピリジン-4-イル基、2-メチルピリジン-5-イル基、2-メチルピリジン-6-イル基、3-メチルピリジン-2-イル基、3-メチルピリジン-4-イル基、3-メチルピリジン-5-イル基、3-メチルピリジン-6-イル基、4-メチルピリジン-2-イル基、4-メチルピリジン-3-イル基、2,6-ジメチルピリジン-4-イル基、4,6-ジメチルピリジン-2-イル基、ピリジン-6-イル基、5-フェニルピリジン-6-イル基、2-フェニルピリジン-3-イル基、2-フェニルピリジン-5-イル基、3-フェニルピリジン-5-イル基、4-フェニルピリジン-3-イル基、3-フェニルピリジン-4-イル基、2-フェニルピリジン-4-イル基、2,6-ジフェニルピリジン-4-イル基、4,6-ジフェニルピリジン-2-イル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、4,6-ジメチルピリミジン-2-イル基、4,6-ジフェニルピリミジン-2-イル基、5-フェニルピリミジン-2-イル基、キノリン-2-イル基、キノリン-3-イル基、キノリン-4-イル基、キノリン-5-イル基、キノリン-6-イル基、キノリン-7-イル基、キノリン-8-イル基、キノリン-9-イル基、2-メチルキノリン-3-イル基、2-メチルキノリン-4-イル基、2-メチルキノリン-5-イル基、2-メチルキノリン-6-イル基、2-メチルキノリン-7-イル基、2-メチルキノリン-8-イル基、イソキノリン-1-イル基、イソキノリン-3-イル基、イソキノリン-4-イル基、イソキノリン-5-イル基、イソキノリン-6-イル基、イソキノリン-7-イル基、イソキノリン-8-イル基、ピラジル基、2-フェニルピラジン-5-イル基、2-フェニルピラジン-6-イル基、2-メチルピラジン-5-イル基、2-メチルピラジン-6-イル基、ピリダジン-3-イル基、ピリダジン-4-イル基、3-フェニルピリダジン-4-イル基、3-フェニルピリダジン-5-イル基、3-フェニルピリダジン-6-イル基、4-フェニルピリダジン-3-イル基、4-フェニルピリダジン-5-イル基、4-フェニルピリダジン-6-イル基、5-フェニルピリダジン-3-イル基、5-フェニルピリダジン-3-イル基、5-フェニルピリダジン-4-イル基、5-フェニルピリダジン-6-イル基、6-フェニルピリダジン-3-イル基、6-フェニルピリダジン-4-イル基、6-フェニルピリダジン-5-イル基、3-メチルピリダジン-5-イル基、3-メチルピリダジン-6-イル基、4-メチルピリダジン-3-イル基、4-メチルピリダジン-5-イル基、4-メチルピリダジン-6-イル基、5-メチルピリダジン-3-イル基、5-メチルピリダジン-3-イル基、5-メチルピリダジン-4-イル基、5-メチルピリダジン-6-イル基、6-メチルピリダジン-3-イル基、6-メチルピリダジン-4-イル基、6-メチルピリダジン-5-イル基、トリアジル基、2,4-ジフェニルトリアジン-6-イル基、2,4-ジメチルトリアジン-6-イル基、ナフチリジン-2-イル基、ナフチリジン-3-イル基、ナフチリジン-4-イル基、キノキサリン-2-イル基、キノキサリン-5-イル基、キノキサリン-6-イル基、2,3-ジメチルキノキサリン-5-イル基、2,3-ジメチルキノキサリン-6-イル基、キナゾリン-2-イル基、キナゾリン-4-イル基、キナゾリン-5-イル基、キナゾリン-6-イル基、キナゾリン-7-イル基、キナゾリン-8-イル基、フェナントリジン-1-イル基、フェナントリジン-2-イル基、フェナントリジン-3-イル基、フェナントリジン-4-イル基、フェナントリジン-6-イル基、フェナントリジン-7-イル基、フェナントリジン-8-イル基、フェナントリジン-9-イル基、フェナントリジン-10-イル基、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、アクリジン-1-イル基、アクリジン-2-イル基、アクリジン-3-イル基、アクリジン-4-イル基、アクリジン-9-イル基、フェナジン-1-イル基、フェナジン-2-イル基、ベンゾ[h]キノリル基、ベンゾ[f]キノリル基、1-ナフチル基、2-ナフチル基、1-フェニルナフタレン-2-イル基、1-フェニルナフタレン-3-イル基、1-フェニルナフタレン-4-イル基、1-フェニルナフタレン-5-イル基、1-フェニルナフタレン-6-イル基、1-フェニルナフタレン-7-イル基、1-フェニルナフタレン-8-イル基、2-フェニルナフタレン-1-イル基、2-フェニルナフタレン-3-イル基、2-フェニルナフタレン-4-イル基、2-フェニルナフタレン-5-イル基、2-フェニルナフタレン-6-イル基、2-フェニルナフタレン-7-イル基、2-フェニルナフタレン-8-イル基、1-メチルナフタレン-4-イル基、1-メチルナフタレン-5-イル基、1-メチルナフタレン-6-イル基、1-メチルナフタレン-7-イル基、1-メチルナフタレン-8-イル基、2-メチルナフタレン-1-イル基、2-メチルナフタレン-3-イル基、2-メチルナフタレン-4-イル基、2-メチルナフタレン-5-イル基、2-メチルナフタレン-6-イル基、2-メチルナフタレン-7-イル基、2-メチルナフタレン-8-イル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-フェニルフェナントレン-2-イル基、1-フェニルフェナントレン-3-イル基、1-フェニルフェナントレン-4-イル基、1-フェニルフェナントレン-5-イル基、1-フェニルフェナントレン-6-イル基、1-フェニルフェナントレン-7-イル基、1-フェニルフェナントレン-8-イル基、1-フェニルフェナントレン-9-イル基、1-フェニルフェナントレン-10-イル基、2-フェニルフェナントレン-1-イル基、2-フェニルフェナントレン-3-イル基、2-フェニルフェナントレン-4-イル基、2-フェニルフェナントレン-5-イル基、2-フェニルフェナントレン-6-イル基、2-フェニルフェナントレン-7-イル基、2-フェニルフェナントレン-8-イル基、2-フェニルフェナントレン-9-イル基、2-フェニルフェナントレン-10-イル基、3-フェニルフェナントレン-1-イル基、3-フェニルフェナントレン-2-イル基、3-フェニルフェナントレン-4-イル基、3-フェニルフェナントレン-5-イル基、3-フェニルフェナントレン-6-イル基、3-フェニルフェナントレン-7-イル基、3-フェニルフェナントレン-8-イル基、3-フェニルフェナントレン-9-イル基、3-フェニルフェナントレン-10-イル基、4-フェニルフェナントレン-1-イル基、4-フェニルフェナントレン-2-イル基、4-フェニルフェナントレン-3-イル基、4-フェニルフェナントレン-5-イル基、4-フェニルフェナントレン-6-イル基、4-フェニルフェナントレン-7-イル基、4-フェニルフェナントレン-8-イル基、4-フェニルフェナントレン-9-イル基、4-フェニルフェナントレン-10-イル基、1-メチルフェナントレン-2-イル基、1-メチルフェナントレン-3-イル基、1-メチルフェナントレン-4-イル基、1-メチルフェナントレン-5-イル基、1-メチルフェナントレン-6-イル基、1-メチルフェナントレン-7-イル基、1-メチルフェナントレン-8-イル基、1-メチルフェナントレン-9-イル基、1-メチルフェナントレン-10-イル基、2-メチルフェナントレン-1-イル基、2-メチルフェナントレン-3-イル基、2-メチルフェナントレン-4-イル基、2-メチルフェナントレン-5-イル基、2-メチルフェナントレン-6-イル基、2-メチルフェナントレン-7-イル基、2-メチルフェナントレン-8-イル基、2-メチルフェナントレン-9-イル基、2-メチルフェナントレン-10-イル基、3-メチルフェナントレン-1-イル基、3-メチルフェナントレン-2-イル基、3-メチルフェナントレン-4-イル基、3-メチルフェナントレン-5-イル基、3-メチルフェナントレン-6-イル基、3-メチルフェナントレン-7-イル基、3-メチルフェナントレン-8-イル基、3-メチルフェナントレン-9-イル基、3-メチルフェナントレン-10-イル基、4-メチルフェナントレン-1-イル基、4-メチルフェナントレン-2-イル基、4-メチルフェナントレン-3-イル基、4-メチルフェナントレン-5-イル基、4-メチルフェナントレン-6-イル基、4-メチルフェナントレン-7-イル基、4-メチルフェナントレン-8-イル基、4-メチルフェナントレン-9-イル基、4-メチルフェナントレン-10-イル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェニルアントラセン-2-イル基、1-フェニルアントラセン-3-イル基、1-フェニルアントラセン-4-イル基、1-フェニルアントラセン-5-イル基、1-フェニルアントラセン-6-イル基、1-フェニルアントラセン-7-イル基、1-フェニルアントラセン-8-イル基、1-フェニルアントラセン-9-イル基、1-フェニルアントラセン-10-イル基、2-フェニルアントラセン-1-イル基、2-フェニルアントラセン-3-イル基、2-フェニルアントラセン-4-イル基、2-フェニルアントラセン-5-イル基、2-フェニルアントラセン-6-イル基、2-フェニルアントラセン-7-イル基、2-フェニルアントラセン-8-イル基、2-フェニルアントラセン-9-イル基、2-フェニルアントラセン-10-イル基、9-フェニルアントラセン-1-イル基、9-フェニルアントラセン-2-イル基、9-フェニルアントラセン-3-イル基、9-フェニルアントラセン-4-イル基、9-フェニルアントラセン-5-イル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、1-フェニルピレン-2-イル基、1-フェニルピレン-3-イル基、1-フェニルピレン-4-イル基、1-フェニルピレン-5-イル基、1-フェニルピレン-6-イル基、1-フェニルピレン-7-イル基、1-フェニルピレン-8-イル基、1-フェニルピレン-9-イル基、1-フェニルピレン-10-イル基、2-フェニルピレン-1-イル基、2-フェニルピレン-3-イル基、2-フェニルピレン-4-イル基、2-フェニルピレン-5-イル基、2-フェニルピレン-6-イル基、2-フェニルピレン-7-イル基、2-フェニルピレン-8-イル基、2-フェニルピレン-9-イル基、2-フェニルピレン-10-イル基、9-フェニルピレン-1-イル基、9-フェニルピレン-2-イル基、9-フェニルピレン-3-イル基、9-フェニルピレン-4-イル基、9-フェニルピレン-5-イル基、9-フェニルピレン-6-イル基、9-フェニルピレン-7-イル基、9-フェニルピレン-8-イル基、9-フェニルピレン-10-イル基、1-メチルピレン-2-イル基、1-メチルピレン-3-イル基、1-メチルピレン-4-イル基、1-メチルピレン-5-イル基、1-メチルピレン-6-イル基、1-メチルピレン-7-イル基、1-メチルピレン-8-イル基、1-メチルピレン-9-イル基、1-メチルピレン-10-イル基、2-メチルピレン-1-イル基、2-メチルピレン-3-イル基、2-メチルピレン-4-イル基、2-メチルピレン-5-イル基、2-メチルピレン-6-イル基、2-メチルピレン-7-イル基、2-メチルピレン-8-イル基、2-メチルピレン-9-イル基、2-メチルピレン-10-イル基、9-メチルピレン-1-イル基、9-メチルピレン-2-イル基、9-メチルピレン-3-イル基、9-メチルピレン-4-イル基、9-メチルピレン-5-イル基、9-メチルピレン-6-イ
ル基、9-メチルピレン-7-イル基、9-メチルピレン-8-イル基、9-メチルピレン-10-イル基、フルオランテン-1-イル基、フルオランテン-1-イル基、フルオランテン-2-イル基、フルオランテン-3-イル基、フルオランテン-4-イル基、フルオランテン-5-イル基、フルオランテン-6-イル基、フルオランテン-7-イル基、フルオランテン-8-イル基、フルオランテン-9-イル基、フルオランテン-10-イル基、トリフェニレン-1-イル基、トリフェニレン-2-イル基、アセナフチレン-1-イル基、アセナフチレン-3-イル基、アセナフチレン-4-イル基、アセナフチレン-5-イル基、クリセン-1-イル基、クリセン-2-イル基、クリセン-5-イル基、又はクリセン-6-イル基等が挙げられる。
Specific examples of Ar 2 include, but are not limited to, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-3-yl group, 2-methylpyridin-4-yl group 2-methylpyridin-5-yl group, 2-methylpyridin-6-yl group, 3-methylpyridin-2-yl group, 3-methylpyridin-4-yl group, 3-methylpyridin-5-yl group 3-methylpyridin-6-yl group, 4-methylpyridin-2-yl group, 4-methylpyridin-3-yl group, 2,6-dimethylpyridin-4-yl group, 4,6-dimethylpyridine- 2-yl group, pyridin-6-yl group, 5-phenylpyridin-6-yl group, 2-phenylpyridin-3-yl group, 2-phenylpyridin-5-yl group, 3-phenylpyridin-5-yl Group, 4-phenyl Pyridin-3-yl group, 3-phenylpyridin-4-yl group, 2-phenylpyridin-4-yl group, 2,6-diphenylpyridin-4-yl group, 4,6-diphenylpyridin-2-yl group 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group, 4,6-dimethylpyrimidin-2-yl group, 4,6-diphenylpyrimidin-2-yl group, 5-phenylpyrimidin-2-yl group, Quinolin-2-yl group, quinolin-3-yl group, quinolin-4-yl group, quinolin-5-yl group, quinolin-6-yl group, quinolin-7-yl group, quinolin-8-yl group, quinoline -9-yl group, 2-methylquinolin-3-yl group, 2-methylquinolin-4-yl group, 2-methylquinolin-5-yl group, 2-methylquinolin-6-yl group, 2-methylquinoline - -Yl group, 2-methylquinolin-8-yl group, isoquinolin-1-yl group, isoquinolin-3-yl group, isoquinolin-4-yl group, isoquinolin-5-yl group, isoquinolin-6-yl group, isoquinoline -7-yl group, isoquinolin-8-yl group, pyrazyl group, 2-phenylpyrazin-5-yl group, 2-phenylpyrazin-6-yl group, 2-methylpyrazin-5-yl group, 2-methylpyrazine -6-yl group, pyridazin-3-yl group, pyridazin-4-yl group, 3-phenylpyridazin-4-yl group, 3-phenylpyridazin-5-yl group, 3-phenylpyridazin-6-yl group, 4-phenylpyridazin-3-yl group, 4-phenylpyridazin-5-yl group, 4-phenylpyridazin-6-yl group, 5-phenylpyridazin-3-yl 5-phenylpyridazin-3-yl group, 5-phenylpyridazin-4-yl group, 5-phenylpyridazin-6-yl group, 6-phenylpyridazin-3-yl group, 6-phenylpyridazin-4-yl group 6-phenylpyridazin-5-yl group, 3-methylpyridazin-5-yl group, 3-methylpyridazin-6-yl group, 4-methylpyridazin-3-yl group, 4-methylpyridazin-5-yl group 4-methylpyridazin-6-yl group, 5-methylpyridazin-3-yl group, 5-methylpyridazin-3-yl group, 5-methylpyridazin-4-yl group, 5-methylpyridazin-6-yl group 6-methylpyridazin-3-yl group, 6-methylpyridazin-4-yl group, 6-methylpyridazin-5-yl group, triazyl group, 2,4-diphenyltriazi N-6-yl group, 2,4-dimethyltriazin-6-yl group, naphthyridin-2-yl group, naphthyridin-3-yl group, naphthyridin-4-yl group, quinoxalin-2-yl group, quinoxaline-5 -Yl group, quinoxalin-6-yl group, 2,3-dimethylquinoxalin-5-yl group, 2,3-dimethylquinoxalin-6-yl group, quinazolin-2-yl group, quinazolin-4-yl group, quinazoline -5-yl group, quinazolin-6-yl group, quinazolin-7-yl group, quinazolin-8-yl group, phenanthridin-1-yl group, phenanthridin-2-yl group, phenanthridine-3 -Yl group, phenanthridin-4-yl group, phenanthridin-6-yl group, phenanthridin-7-yl group, phenanthridin-8-yl group, phenanthridine 9-yl group, phenanthridin-10-yl group, 1,10-phenanthroline-2-yl group, 1,10-phenanthroline-3-yl group, 1,10-phenanthrolin-4-yl group, 1,10 -Phenanthroline-5-yl group, acridine-1-yl group, acridine-2-yl group, acridine-3-yl group, acridine-4-yl group, acridine-9-yl group, phenazin-1-yl group, Phenazin-2-yl group, benzo [h] quinolyl group, benzo [f] quinolyl group, 1-naphthyl group, 2-naphthyl group, 1-phenylnaphthalen-2-yl group, 1-phenylnaphthalen-3-yl group 1-phenylnaphthalen-4-yl group, 1-phenylnaphthalen-5-yl group, 1-phenylnaphthalen-6-yl group, 1-phenylnaphthalen-7-yl group 1-phenylnaphthalen-8-yl group, 2-phenylnaphthalen-1-yl group, 2-phenylnaphthalen-3-yl group, 2-phenylnaphthalen-4-yl group, 2-phenylnaphthalen-5-yl group 2-phenylnaphthalen-6-yl group, 2-phenylnaphthalen-7-yl group, 2-phenylnaphthalen-8-yl group, 1-methylnaphthalen-4-yl group, 1-methylnaphthalen-5-yl group 1-methylnaphthalen-6-yl group, 1-methylnaphthalen-7-yl group, 1-methylnaphthalen-8-yl group, 2-methylnaphthalen-1-yl group, 2-methylnaphthalen-3-yl group 2-methylnaphthalen-4-yl group, 2-methylnaphthalen-5-yl group, 2-methylnaphthalen-6-yl group, 2-methylnaphthalen-7-yl group, 2 -Methylnaphthalen-8-yl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 1-phenylphenanthren-2-yl group, 1-phenylphenanthrene-3 -Yl group, 1-phenylphenanthren-4-yl group, 1-phenylphenanthrene-5-yl group, 1-phenylphenanthrene-6-yl group, 1-phenylphenanthren-7-yl group, 1-phenylphenanthrene-8 -Yl group, 1-phenylphenanthren-9-yl group, 1-phenylphenanthrene-10-yl group, 2-phenylphenanthren-1-yl group, 2-phenylphenanthren-3-yl group, 2-phenylphenanthrene-4 -Yl group, 2-phenylphenanthren-5-yl group, 2 Phenylphenanthren-6-yl group, 2-phenylphenanthren-7-yl group, 2-phenylphenanthren-8-yl group, 2-phenylphenanthren-9-yl group, 2-phenylphenanthren-10-yl group, 3- Phenylphenanthren-1-yl group, 3-phenylphenanthren-2-yl group, 3-phenylphenanthren-4-yl group, 3-phenylphenanthren-5-yl group, 3-phenylphenanthren-6-yl group, 3- Phenylphenanthren-7-yl group, 3-phenylphenanthren-8-yl group, 3-phenylphenanthren-9-yl group, 3-phenylphenanthren-10-yl group, 4-phenylphenanthren-1-yl group, 4- Phenylphenanthren-2-yl group, 4-phenylphenanthre -3-yl group, 4-phenylphenanthrene-5-yl group, 4-phenylphenanthrene-6-yl group, 4-phenylphenanthren-7-yl group, 4-phenylphenanthren-8-yl group, 4-phenylphenanthrene -9-yl group, 4-phenylphenanthren-10-yl group, 1-methylphenanthren-2-yl group, 1-methylphenanthren-3-yl group, 1-methylphenanthren-4-yl group, 1-methylphenanthrene -5-yl group, 1-methylphenanthrene-6-yl group, 1-methylphenanthrene-7-yl group, 1-methylphenanthren-8-yl group, 1-methylphenanthren-9-yl group, 1-methylphenanthrene -10-yl group, 2-methylphenanthren-1-yl group, 2-methylphenanthrene-3 -Yl group, 2-methylphenanthren-4-yl group, 2-methylphenanthren-5-yl group, 2-methylphenanthren-6-yl group, 2-methylphenanthren-7-yl group, 2-methylphenanthrene-8 -Yl group, 2-methylphenanthren-9-yl group, 2-methylphenanthren-10-yl group, 3-methylphenanthren-1-yl group, 3-methylphenanthren-2-yl group, 3-methylphenanthrene-4 -Yl group, 3-methylphenanthren-5-yl group, 3-methylphenanthrene-6-yl group, 3-methylphenanthren-7-yl group, 3-methylphenanthren-8-yl group, 3-methylphenanthrene-9 -Yl group, 3-methylphenanthren-10-yl group, 4-methylphenanthren-1-yl group, 4-methyl group Ruphenanthren-2-yl group, 4-methylphenanthren-3-yl group, 4-methylphenanthren-5-yl group, 4-methylphenanthren-6-yl group, 4-methylphenanthren-7-yl group, 4- Methylphenanthren-8-yl group, 4-methylphenanthren-9-yl group, 4-methylphenanthrene-10-yl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenylanthracene-2- Yl group, 1-phenylanthracen-3-yl group, 1-phenylanthracen-4-yl group, 1-phenylanthracen-5-yl group, 1-phenylanthracen-6-yl group, 1-phenylanthracene-7- Yl, 1-phenylanthracen-8-yl, 1-phenylanthracen-9-yl, 1-phenyl Luanthracen-10-yl group, 2-phenylanthracen-1-yl group, 2-phenylanthracen-3-yl group, 2-phenylanthracen-4-yl group, 2-phenylanthracen-5-yl group, 2- Phenylanthracen-6-yl group, 2-phenylanthracen-7-yl group, 2-phenylanthracen-8-yl group, 2-phenylanthracen-9-yl group, 2-phenylanthracen-10-yl group, 9- Phenylanthracen-1-yl group, 9-phenylanthracen-2-yl group, 9-phenylanthracen-3-yl group, 9-phenylanthracen-4-yl group, 9-phenylanthracen-5-yl group, 1- Pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 1-phenylpyren-2-yl group, 1-phenylpyrene-3 -Yl group, 1-phenylpyren-4-yl group, 1-phenylpyren-5-yl group, 1-phenylpyren-6-yl group, 1-phenylpyren-7-yl group, 1-phenylpyrene-8 -Yl group, 1-phenylpyren-9-yl group, 1-phenylpyren-10-yl group, 2-phenylpyren-1-yl group, 2-phenylpyren-3-yl group, 2-phenylpyrene-4 -Yl group, 2-phenylpyren-5-yl group, 2-phenylpyren-6-yl group, 2-phenylpyren-7-yl group, 2-phenylpyren-8-yl group, 2-phenylpyrene-9 -Yl group, 2-phenylpyren-10-yl group, 9-phenylpyren-1-yl group, 9-phenylpyren-2-yl group, 9-phenylpyren-3-yl group, 9-phenylpyrene-4 -Yl group, 9-phenyl Len-5-yl group, 9-phenylpyren-6-yl group, 9-phenylpyren-7-yl group, 9-phenylpyren-8-yl group, 9-phenylpyren-10-yl group, 1-methylpyrene -2-yl group, 1-methylpyren-3-yl group, 1-methylpyren-4-yl group, 1-methylpyren-5-yl group, 1-methylpyren-6-yl group, 1-methylpyren-7-yl group 1-methylpyren-8-yl group, 1-methylpyren-9-yl group, 1-methylpyren-10-yl group, 2-methylpyren-1-yl group, 2-methylpyren-3-yl group, 2-methylpyrene- 4-yl group, 2-methylpyren-5-yl group, 2-methylpyren-6-yl group, 2-methylpyren-7-yl group, 2-methylpyren-8-yl group, 2-methylpyren-9-yl group, 2- Tilpyren-10-yl group, 9-methylpyren-1-yl group, 9-methylpyren-2-yl group, 9-methylpyren-3-yl group, 9-methylpyren-4-yl group, 9-methylpyren-5-yl Group, 9-methylpyren-6-yl group, 9-methylpyren-7-yl group, 9-methylpyren-8-yl group, 9-methylpyren-10-yl group, fluoranthen-1-yl group, fluoranthen-1-yl Group, fluoranthen-2-yl group, fluoranthen-3-yl group, fluoranthen-4-yl group, fluoranthen-5-yl group, fluoranthen-6-yl group, fluoranthen-7-yl group, fluoranthen-8-yl group Fluoranthen-9-yl group, fluoranthen-10-yl group, triphenylene-1-yl group, triphenylene-2-yl group, Cenaphthylene-1-yl group, acenaphthylene-3-yl group, acenaphthylene-4-yl group, acenaphthylene-5-yl group, chrysen-1-yl group, chrysen-2-yl group, chrysen-5-yl group, or Examples include chrysene-6-yl group.
 これらのうち、電子輸送性材料特性に優れる点で、フェニル基、1-ナフチル基、2-ナフチル基、2-フェナントリル基、9-フェナントリル基、9-アントリル基、1-ピレニル基、フルオランテン-3-イル基、トリフェニレン-1-イル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-メチルピリジン-6-イル基、3-メチルピリジン-6-イル基、2-メチルピリジン-5-イル基、2,6-ジメチルピリジン-4-イル基、4,6-ジメチルピリジン-2-イル基、2,6-ジフェニルピリジン-4-イル基、4,6-ジフェニルピリジン-2-イル基、4,6-ジメチルピリミジン-2-イル基、4,6-ジフェニルピリミジン-2-イル基、2,4-ジフェニルトリアジン-6-イル基、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基。4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、2-ピリミジル基、4,6-ジメチルピリミジル基又はピラジル基が好ましい。 Of these, phenyl group, 1-naphthyl group, 2-naphthyl group, 2-phenanthryl group, 9-phenanthryl group, 9-anthryl group, 1-pyrenyl group, fluoranthene-3 are excellent in electron transporting material characteristics. -Yl group, triphenylene-1-yl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-6-yl group, 3-methylpyridin-6-yl group, 2-methylpyridine -5-yl group, 2,6-dimethylpyridin-4-yl group, 4,6-dimethylpyridin-2-yl group, 2,6-diphenylpyridin-4-yl group, 4,6-diphenylpyridin-2 -Yl group, 4,6-dimethylpyrimidin-2-yl group, 4,6-diphenylpyrimidin-2-yl group, 2,4-diphenyltriazin-6-yl group, 2-quinolyl group, - quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group. 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, 2-pyrimidyl group, 4,6-dimethylpyrimidyl group or pyrazyl group are preferred.
 さらに、フェニル基、1-ナフチル基、2-ナフチル基、2-フェナントリル基、9-フェナントリル基、9-アントリル基、1-ピレニル基、2-ピリジル基、3-ピリジル基、2,6-ジフェニルピリジン-4-イル基、4,6-ジフェニルピリジン-2-イル基、4,6-ジメチルピリミジン-2-イル基、2-キノリル基、3-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、又は4-イソキノリル基がより好ましい。
 特には、フェニル基、9-フェナントリル基、1-ナフチル基、2-ナフチル基、3-ピリジル基、2-ピリジル基、2,6-ジフェニルピリジン-4-イル基、4,6-ジフェニルピリジン-2-イル基、4,6-ジメチルピリミジン-2-イル基、1-ピレニル基、2-キノリル基、又は3-キノリル基がより好ましい。
Further, phenyl group, 1-naphthyl group, 2-naphthyl group, 2-phenanthryl group, 9-phenanthryl group, 9-anthryl group, 1-pyrenyl group, 2-pyridyl group, 3-pyridyl group, 2,6-diphenyl Pyridin-4-yl group, 4,6-diphenylpyridin-2-yl group, 4,6-dimethylpyrimidin-2-yl group, 2-quinolyl group, 3-quinolyl group, 8-quinolyl group, 1-isoquinolyl group , 3-isoquinolyl group or 4-isoquinolyl group is more preferable.
Particularly, phenyl group, 9-phenanthryl group, 1-naphthyl group, 2-naphthyl group, 3-pyridyl group, 2-pyridyl group, 2,6-diphenylpyridin-4-yl group, 4,6-diphenylpyridine- 2-yl group, 4,6-dimethylpyrimidin-2-yl group, 1-pyrenyl group, 2-quinolyl group, or 3-quinolyl group are more preferable.
 Xは、各々独立して、メチル基で置換されていてもよい炭素数6~18の二価の芳香族炭化水素基又はメチル基若しくはフェニル基で置換されていてもよい炭素数3~13の二価の含窒素複素芳香族基を表す。
 これらのうち、Xとしては、電子輸送性材料特性に優れる点で、メチル基で置換されていてもよい炭素数6~10の二価の芳香族炭化水素基又はメチル基で置換されていてもよい炭素数5~9の二価の含窒素複素芳香族基であることが好ましい。
Each X independently represents a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a methyl group, or a carbon group having 3 to 13 carbon atoms which may be substituted with a methyl group or a phenyl group. Represents a divalent nitrogen-containing heteroaromatic group.
Among these, X may be substituted with a methyl group or a divalent aromatic hydrocarbon group having 6 to 10 carbon atoms which may be substituted with a methyl group in terms of excellent electron transporting material characteristics. A good divalent nitrogen-containing heteroaromatic group having 5 to 9 carbon atoms is preferable.
 Xにおけるメチル基で置換されていてもよい炭素数6~18の二価の芳香族炭化水素基としては、特に限定するものではないが、例えば、フェニレン基、ビフェニレン基、ナフチレン基、フェナントリレン基、アントリレン基、ピレニレン基、トリフェニレニレン基、クリセニレン基、フルオランテニレン基、アセナフチレニレン基、フルオレニレン基、ベンゾフルオレニレン基、ジメチルフルオレニレン基、又はジメチルベンゾフルオレニレン基等が好ましい。 The divalent aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a methyl group in X is not particularly limited, and examples thereof include a phenylene group, a biphenylene group, a naphthylene group, a phenanthrylene group, Anthrylene group, pyrenylene group, triphenylenylene group, chrysenylene group, fluoranthenylene group, acenaphthyleneylene group, fluorenylene group, benzofluorenylene group, dimethylfluorenylene group, or dimethylbenzofluorenylene group are preferable. .
 Xにおけるメチル基若しくはフェニル基で置換されていてもよい炭素数3~13の二価の含窒素複素芳香族基としては、特に限定するものではないが、例えば、ピリジレン基、メチルピリジレン基、ジメチルピリジレン基、フェニルピリジレン基、ピラジレン基、メチルピラジレン基、ジメチルピラジレン基、フェニルピラジレン基、ピリミジレン基、ジピリミジレン基、メチルピリミジレン基、フェニルピリミジレン基、ピリダジレン基、メチルピリダジレン基、フェニルピリダジレン基、トリアジレン基、メチルトリアジレン基、フェニルトリアジレン基、キノリレン基、メチルキノリレン基、フェニルキノリレン基、イソキノリレン基、メチルイソキノリレン基、フェニルイソキノリレン基、ナフチリジレン基、メチルナフチリジレン基、フェニルナフチリジレン基、キナゾリレン基、メチルキナゾリレン基、フェニルキナゾリレン基、キノキサリレン基、メチルキノキサリレン基、フェニルキノキサリレン基、ベンゾキノリレン基、メチルベンゾキノリレン基、フェニルベンゾキノリレン基、アクリジレン基、メチルアクリジレン基、フェニルアクリジレン基、フェナントリジレン基、メチルフェナントリジレン基、フェニルフェナントリジレン基、フェナントロリレン基、メチルフェナントロリレン基、又はフェニルフェナントロリレン基等が好ましい例として挙げられる。 The divalent nitrogen-containing heteroaromatic group having 3 to 13 carbon atoms which may be substituted with a methyl group or a phenyl group in X is not particularly limited, and examples thereof include a pyridylene group, a methylpyridylene group, a dimethylpyridene group, and the like. Diylene group, phenylpyridylene group, pyrazylene group, methylpyrazylene group, dimethylpyrazylene group, phenylpyrazylene group, pyrimidylene group, dipyrimidylene group, methylpyrimidylene group, phenylpyrimidylene group, pyridazylene group, methylpyridazilene group , Phenyl pyridazylene group, triadylene group, methyl triadylene group, phenyl triadylene group, quinolylene group, methyl quinolylene group, phenyl quinolylene group, isoquinolylene group, methyl isoquinolylene group, phenyl isoquinolylene group, naphthyridylene group, methyl Naphthyri Group, phenylnaphthyridylene group, quinazolylene group, methylquinazolylene group, phenylquinazolylene group, quinoxarylene group, methylquinoxarylene group, phenylquinoxarylene group, benzoquinolylene group, methylbenzoquinolylene group, phenylbenzoquinoline group A rylene group, an acridylene group, a methylacridylene group, a phenylacridylene group, a phenanthridylene group, a methylphenanthridylene group, a phenylphenanthridylene group, a phenanthrolylene group, a methylphenanthroylene group, or A preferred example is a phenylphenanthrolylene group.
 Xにおけるメチル基で置換されていてもよい炭素数6~10の二価の芳香族炭化水素基としては、特に限定するものではないが、例えば、フェニレン基、トリレン基、又はナフチレン基等が好ましい。 The divalent aromatic hydrocarbon group having 6 to 10 carbon atoms which may be substituted with a methyl group in X is not particularly limited, but for example, a phenylene group, a tolylene group or a naphthylene group is preferable. .
 Xにおけるメチル基若しくはフェニル基で置換されていてもよい炭素数5~9の二価の含窒素複素芳香族基としては、特に限定するものではないが、例えば、ピリジレン基、メチルピリジレン基、ジメチルピリジレン基、ピラジレン基、メチルピラジレン基、ジメチルピラジレン基、ピリミジレン基、ジピリミジレン基、メチルピリミジレン基、フェニルピリミジレン基、ピリダジレン基、メチルピリダジレン基、トリアジレン基、メチルトリアジレン基、フェニルトリアジレン基、キノリレン基、メチルキノリレン基、イソキノリレン基、メチルイソキノリレン基、ナフチリジレン基、メチルナフチリジレン基、キナゾリレン基、メチルキナゾリレン基、キノキサリレン基、又はメチルキノキサリレン基等が好ましい例として挙げられる。 The divalent nitrogen-containing heteroaromatic group having 5 to 9 carbon atoms which may be substituted with a methyl group or a phenyl group in X is not particularly limited, and examples thereof include a pyridylene group, a methylpyridylene group, a dimethylpyrylene group, and the like. Dilene group, pyrazylene group, methylpyrazylene group, dimethylpyrazylene group, pyrimidylene group, dipyrimidylene group, methylpyrimidylene group, phenylpyrimidylene group, pyridazylene group, methylpyridazilene group, triadylene group, methyltriazilene group, phenyl Preferred examples include triadylene group, quinolylene group, methylquinolylene group, isoquinolylene group, methylisoquinolylene group, naphthyridylene group, methylnaphthylidylene group, quinazolylene group, methylquinazolylene group, quinoxalylene group, or methylquinoxalylene group. Cited as
 電子輸送性材料特性に優れる点で、Xは、各々独立して、フェニレン基、ビフェニレン基(例えば、4,4’-ビフェニレン基、4,3’-ビフェニレン基、3,3’-ビフェニレン基等)、ナフチレン基、フェナントリレン基、アントリレン基、ピレニレン基、ピリジレン基(例えば、2,5-ピリジレン基、3,6-ピリジレン基等)、メチルピリジレン基(例えば、6-メチル-2,5-ピリジレン基、2-メチル-3,6-ピリジレン基等)、ジメチルピリジレン基、ピラジレン基、メチルピラジレン基、ジメチルピラジレン基、ピリミジレン基、メチルピリミジレン基、又はジメチルピリミジレン基(例えば、4,6-ジメチル-2,4-ピリミジレン基等)であることが好ましい。
 これらの置換基のうち、Xは、各々独立して、フェニレン基(1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基等)又はピリジレン基(例えば、2,5-ピリジレン基、3,6-ピリジレン基等)であることがより好ましい。
In terms of excellent electron transporting material properties, each X is independently a phenylene group or a biphenylene group (eg, 4,4′-biphenylene group, 4,3′-biphenylene group, 3,3′-biphenylene group, etc.) ), Naphthylene group, phenanthrylene group, anthrylene group, pyrenylene group, pyridylene group (for example, 2,5-pyridylene group, 3,6-pyridylene group, etc.), methylpyridylene group (for example, 6-methyl-2,5-pyridylene group) 2-methyl-3,6-pyridylene group, etc.), dimethylpyridylene group, pyrazylene group, methylpyrazylene group, dimethylpyrazylene group, pyrimidylene group, methylpyrimidylene group, or dimethylpyrimidylene group (for example, 4,4 6-dimethyl-2,4-pyrimidylene group and the like.
Among these substituents, each X is independently a phenylene group (1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, etc.) or pyridylene group (for example, 2,5-phenylene group). More preferred are a pyridylene group and a 3,6-pyridylene group).
 pは、0、1又は2を表す。昇華精製の操作性に優れる点で、pは、0又は1が好ましい。
 なお、-X-は、-X-で表される基がp個連結していることを表わす。すなわち、p=2の場合、-X-は-X-X-を意味する。この場合、二つのXは同一であっても異なっていてもよい。
p represents 0, 1 or 2. P is preferably 0 or 1 in terms of excellent sublimation purification operability.
In addition, —X p — represents that p groups represented by —X— are linked. That is, when p = 2, -X p -means -XX-. In this case, the two Xs may be the same or different.
 qは、0、1又は2を表す。昇華精製の操作性に優れる点で、qは、0又は1が好ましい。
 なお、-X-は、-X-で表される基がq個連結していることを表わす。すなわち、q=2の場合、-X-は-X-X-を意味する。この場合、二つのXは同一であっても相異なっていてもよい。
q represents 0, 1 or 2. Q is preferably 0 or 1 in terms of excellent sublimation purification operability.
In addition, —X q — represents that q groups represented by —X— are linked. That is, when q = 2, -X q -means -XX-. In this case, two Xs may be the same or different.
 Zは、窒素原子又は炭素原子を表す。Zは、電子輸送性材料の特性に優れる点で窒素原子であることが好ましい。 Z represents a nitrogen atom or a carbon atom. Z is preferably a nitrogen atom from the viewpoint of excellent characteristics of the electron transporting material.
 Tは、炭素原子、水素原子及び16族元素のみからなる炭素数4~30の複素芳香族基(フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を表す。 T represents a heteroaromatic group having 4 to 30 carbon atoms (a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, and consisting of only a carbon atom, a hydrogen atom, and a group 16 element; Aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with fluorine atom, heteroaromatic group having 3 to 13 carbon atoms, aromatic having 6 to 18 carbon atoms substituted with heteroaromatic group having 3 to 13 carbon atoms Aromatic hydrocarbon group substituted with an aromatic hydrocarbon group, a C3-C13 heteroaromatic group substituted with a C1-C4 alkyl group, or a C1-C4 alkyl group Which may have a hydrogen group as a substituent.
 Tは、電子輸送性材料の特性に優れる点で、炭素原子、水素原子及び16族元素のみからなる炭素数4~20の複素芳香族基(メチル基、フェニル基、又はメチル基を有してもよい炭素数3~9の含窒素複素芳香族基を置換基として有してもよい)であることが好ましい。
 Tにおける下記の置換基は、Arで例示した置換基と同様である。
(1)炭素数1~4のアルキル基、
(2)炭素数6~18の芳香族炭化水素基、
(3)フッ素原子で置換された炭素数6~18の芳香族炭化水素基、
(4)炭素数3~13の複素芳香族基、
(5)炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、
(6)炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、
(7)炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基。
T is a heteroaromatic group having 4 to 20 carbon atoms (having a methyl group, a phenyl group, or a methyl group consisting of only a carbon atom, a hydrogen atom, and a group 16 element because it has excellent characteristics of an electron transporting material. It may preferably have a nitrogen-containing heteroaromatic group having 3 to 9 carbon atoms as a substituent.
The following substituents for T are the same as the substituents exemplified for Ar 1 .
(1) an alkyl group having 1 to 4 carbon atoms,
(2) an aromatic hydrocarbon group having 6 to 18 carbon atoms,
(3) an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom,
(4) a heteroaromatic group having 3 to 13 carbon atoms,
(5) an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a heteroaromatic group having 3 to 13 carbon atoms,
(6) a heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms,
(7) An aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms.
 Tにおける炭素原子、水素原子及び16族元素のみからなる炭素数4~30の複素芳香族基(フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)としては、特に限定するものではないが、炭素原子、水素原子及び酸素原子のみからなる、炭素原子、水素原子及び硫黄原子のみからなる、又は炭素原子、水素原子、酸素原子及び硫黄原子のみからなる炭素数4~30の複素芳香族基(これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)を好ましい例として挙げることができる。 Heteroaromatic group having 4 to 30 carbon atoms consisting of only carbon atom, hydrogen atom and group 16 element in T (fluorine atom, alkyl group having 1 to 4 carbon atoms, aromatic hydrocarbon group having 6 to 18 carbon atoms, fluorine Aromatic hydrocarbon group having 6 to 18 carbon atoms substituted by atom, heteroaromatic group having 3 to 13 carbon atoms, aromatic having 6 to 18 carbon atoms substituted by heteroaromatic group having 3 to 13 carbon atoms A hydrocarbon group, a heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, or an aromatic hydrocarbon having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms Group (which may have a group as a substituent) is not particularly limited, but consists of only carbon atoms, hydrogen atoms and oxygen atoms, only carbon atoms, hydrogen atoms and sulfur atoms, or carbon atoms, Consists only of hydrogen, oxygen and sulfur atoms A heteroaromatic group having 4 to 30 prime atoms (these groups are a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, or a 6 to 18 carbon atom substituted with a fluorine atom) An aromatic hydrocarbon group having 3 to 13 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a heteroaromatic group having 3 to 13 carbon atoms, and an aromatic hydrocarbon group having 1 to 4 carbon atoms A heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group or an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms may be used as a substituent. ) Can be mentioned as a preferred example.
 より具体的な例としては、ジベンゾチオフェニル基、ジベンゾフラニル基、ベンゾチオフェニル基、ベンゾフラニル基、チオフェニル基、又はフラニル基(これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)等が挙げられる。 More specific examples include a dibenzothiophenyl group, a dibenzofuranyl group, a benzothiophenyl group, a benzofuranyl group, a thiophenyl group, or a furanyl group (these groups are a fluorine atom, an alkyl group having 1 to 4 carbon atoms, C6-C18 aromatic hydrocarbon group, C6-C18 aromatic hydrocarbon group substituted with a fluorine atom, C3-C13 heteroaromatic group, C3-C13 heteroaromatic group An aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a group, a heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms And a substituted aromatic hydrocarbon group having 6 to 18 carbon atoms may be used as a substituent.
 これらのうち、電子輸送性材料特性に優れる点で、炭素原子、水素原子及び酸素原子のみからなる、又は炭素原子、水素原子及び硫黄原子のみからなる炭素数4~30の複素芳香族(これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)が好ましい。 Among these, in terms of excellent electron transporting material properties, it is composed of only carbon atoms, hydrogen atoms and oxygen atoms, or heteroaromatics having 4 to 30 carbon atoms consisting of only carbon atoms, hydrogen atoms and sulfur atoms (these The group includes a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms, an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom, and 3 to 13 carbon atoms. A heteroaromatic group of the above, a C6-C18 aromatic hydrocarbon group substituted with a C3-C13 heteroaromatic group, a C3-C13 substituted with a C1-C4 alkyl group A heteroaromatic group or an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms may be used as a substituent.
 合成が容易な点から、ジベンゾチオフェニル基、ジベンゾフラニル基、ベンゾチオフェニル基又はベンゾフラニル基(これらの基は、フッ素原子、炭素数1~4のアルキル基、炭素数6~18の芳香族炭化水素基、フッ素原子で置換された炭素数6~18の芳香族炭化水素基、炭素数3~13の複素芳香族基、炭素数3~13の複素芳香族基で置換された炭素数6~18の芳香族炭化水素基、炭素数1~4のアルキル基で置換された炭素数3~13の複素芳香族基、又は炭素数1~4のアルキル基で置換された炭素数6~18の芳香族炭化水素基を置換基として有してもよい)がより好ましく、ジベンゾチオフェニル基、ジベンゾフラニル基、ベンゾチオフェニル基又はベンゾフラニル基(これらの基は、メチル基、ピリジル基又はフェニル基で置換されていてもよい)が更に好ましい。 From the viewpoint of easy synthesis, dibenzothiophenyl group, dibenzofuranyl group, benzothiophenyl group or benzofuranyl group (these groups are a fluorine atom, an alkyl group having 1 to 4 carbon atoms, an aromatic group having 6 to 18 carbon atoms). A hydrocarbon group, an aromatic hydrocarbon group having 6 to 18 carbon atoms substituted with a fluorine atom, a heteroaromatic group having 3 to 13 carbon atoms, and a carbon number 6 substituted with a heteroaromatic group having 3 to 13 carbon atoms An aromatic hydrocarbon group having 18 to 18 carbon atoms, a heteroaromatic group having 3 to 13 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 6 to 18 carbon atoms substituted with an alkyl group having 1 to 4 carbon atoms The aromatic hydrocarbon group may be substituted as a substituent, and a dibenzothiophenyl group, a dibenzofuranyl group, a benzothiophenyl group or a benzofuranyl group (these groups are a methyl group, a pyridyl group or a phenyl group). May be substituted with a group) is more preferred.
 Tとして、メチル基を有してもよい炭素数3~9の含窒素複素芳香族基としては、特に限定するものではないが、例えば、イミダゾリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、ピラジル基、ピリミジル基、ジメチルピリミジル基、ピリダジル基、トリアジル基、キノリル基、メチルキノリル基、イソキノリル基、メチルイソキノリル基、ナフチリジル基、キナゾリル基、又はキノキサリル基等が好ましい例として挙げられる。これらのうち、化合物(1)の電子輸送性に優れる点で、イミダゾリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、ピリミジル基、ジメチルピリミジル基、キノリル基、メチルキノリル基、イソキノリル基、メチルイソキノリル基、キナゾリル基、又はキノキサリル基がより好ましい。 As T, the nitrogen-containing heteroaromatic group having 3 to 9 carbon atoms which may have a methyl group is not particularly limited, and examples thereof include imidazolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, Preferred examples include pyrazyl group, pyrimidyl group, dimethylpyrimidyl group, pyridazyl group, triazyl group, quinolyl group, methylquinolyl group, isoquinolyl group, methylisoquinolyl group, naphthyridyl group, quinazolyl group, or quinoxalyl group. Of these, imidazolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, pyrimidyl group, dimethylpyrimidyl group, quinolyl group, methylquinolyl group, isoquinolyl group, methyl group are preferred because of their excellent electron transport properties. An isoquinolyl group, a quinazolyl group, or a quinoxalyl group is more preferable.
 Tとして、炭素原子、水素原子及び16族元素のみからなる炭素数4~20の複素芳香族基(メチル基、フェニル基、又はメチル基を有してもよい炭素数3~9の含窒素複素芳香族基を置換基として有してもよい)としては、特に限定するものではないが、炭素原子、水素原子及び酸素原子のみからなる、炭素原子、水素原子及び硫黄原子のみからなる、又は炭素原子、水素原子、酸素原子及び硫黄原子のみからなる炭素数4~20の複素芳香族基(メチル基、フェニル基、又はメチル基を有してもよい炭素数3~9の含窒素複素芳香族基を置換基として有してもよい)を好ましい例として挙げることができ、具体的には、ジベンゾチオフェニル基、ジベンゾフラニル基、ベンゾチオフェニル基、ベンゾフラニル基、チオフェニル基、又はフラニル基(メチル基、フェニル基、又はメチル基を有してもよい炭素数3~9の含窒素複素芳香族基を置換基として有してもよい)等が挙げられる。 T is a heteroaromatic group having 4 to 20 carbon atoms consisting of only a carbon atom, a hydrogen atom and a group 16 element (a nitrogen-containing complex having 3 to 9 carbon atoms which may have a methyl group, a phenyl group or a methyl group). (It may have an aromatic group as a substituent), but is not particularly limited, consisting of only carbon, hydrogen and oxygen atoms, consisting of only carbon, hydrogen and sulfur atoms, or carbon Heteroaromatic group having 4 to 20 carbon atoms consisting of only atoms, hydrogen atoms, oxygen atoms and sulfur atoms (nitrogen-containing heteroaromatic group having 3 to 9 carbon atoms which may have a methyl group, a phenyl group or a methyl group) Group, which may have a group as a substituent), can be mentioned as specific examples, specifically, a dibenzothiophenyl group, a dibenzofuranyl group, a benzothiophenyl group, a benzofuranyl group, a thiophenyl group, or Ranil group (methyl group, a phenyl group, or a nitrogen-containing heteroaromatic group of 3-9 carbon atoms which may have a methyl group which may have a substituent group).
 これらのうち、電子輸送性材料特性に優れる点で、炭素原子、水素原子及び酸素原子のみからなる、又は炭素原子、水素原子及び硫黄原子のみからなる炭素数4~20の複素芳香族(メチル基、フェニル基、又はメチル基を有してもよい炭素数3~9の含窒素複素芳香族基を置換基として有してもよい)が好ましい。
 また、合成が容易な点で、ジベンゾチオフェニル基、ジベンゾフラニル基、ベンゾチオフェニル基又はベンゾフラニル基(これらの基は、メチル基、フェニル基、又はメチル基を有してもよい炭素数3~9の含窒素複素芳香族基を置換基として有してもよい)がより好ましく、ジベンゾチオフェニル基、ジベンゾフラニル基、ベンゾチオフェニル基又はベンゾフラニル基(これらの基は、メチル基、ピリジル基、キノリル基、メチルピリジル基、ジメチルピリジル基、又はフェニル基で置換されていてもよい)が更に好ましい。
Among these, in terms of excellent electron transporting material characteristics, it is composed of only a carbon atom, a hydrogen atom and an oxygen atom, or a heteroaromatic group having 4 to 20 carbon atoms (methyl group) consisting of only a carbon atom, a hydrogen atom and a sulfur atom. And a nitrogen-containing heteroaromatic group having 3 to 9 carbon atoms which may have a phenyl group or a methyl group may be preferable as a substituent.
Further, in terms of easy synthesis, a dibenzothiophenyl group, a dibenzofuranyl group, a benzothiophenyl group, or a benzofuranyl group (these groups may have a methyl group, a phenyl group, or a methyl group having 3 carbon atoms. And a dibenzothiophenyl group, a dibenzofuranyl group, a benzothiophenyl group or a benzofuranyl group (these groups are a methyl group, a pyridyl group). More preferably a group, optionally substituted with a quinolyl group, a methylpyridyl group, a dimethylpyridyl group, or a phenyl group.
 具体例としては、特に限定するものではないが、チオフェン-2-イル基、チオフェン-3-イル基、フラン-2-イル基、フラン-3-イル基、ベンゾチオフェン-2-イル基、ベンゾチオフェン-3-イル基、ベンゾチオフェン-4-イル基、ベンゾチオフェン-5-イル基、ベンゾチオフェン-6-イル基、ベンゾチオフェン-7-イル基、ベンゾフラン-2-イル基、ベンゾフラン-3-イル基、ベンゾフラン-4-イル基、ベンゾフラン-5-イル基、ベンゾフラン-6-イル基、ベンゾフラン-7-イル基、ジベンゾチオフェン-1-イル基、ジベンゾチオフェン-2-イル基、ジベンゾチオフェン-3-イル基、ジベンゾチオフェン-4-イル基、ジベンゾフラン-1-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-3-イル基、ジベンゾフラン-4-イル基、2-フェニルチオフェン-3-イル基、2-フェニルチオフェン-4-イル基、2-フェニルチオフェン-5-イル基、3-フェニルチオフェン-2-イル基、3-フェニルチオフェン-4-イル基、3-フェニルチオフェン-5-イル基、2-フェニルフラン-3-イル基、2-フェニルフラン-4-イル基、2-フェニルフラン-5-イル基、3-フェニルフラン-2-イル基、3-フェニルフラン-4-イル基、3-フェニルフラン-5-イル基、2-(2-ピリジル)チオフェン-3-イル基、2-(2-ピリジル)チオフェン-4-イル基、2-(2-ピリジル)チオフェン-5-イル基、3-(2-ピリジル)チオフェン-2-イル基、3-(2-ピリジル)チオフェン-4-イル基、3-(2-ピリジル)チオフェン-5-イル基、2-(2-ピリジル)フラン-3-イル基、2-(2-ピリジル)フラン-4-イル基、2-(2-ピリジル)フラン-5-イル基、3-(2-ピリジル)フラン-2-イル基、3-(2-ピリジル)フラン-4-イル基、3-(2-ピリジル)フラン-5-イル基、2-(3-ピリジル)チオフェン-3-イル基、2-(3-ピリジル)チオフェン-4-イル基、2-(3-ピリジル)チオフェン-5-イル基、3-(3-ピリジル)チオフェン-2-イル基、3-(3-ピリジル)チオフェン-4-イル基、3-(3-ピリジル)チオフェン-5-イル基、2-(3-ピリジル)フラン-3-イル基、2-(3-ピリジル)フラン-4-イル基、2-(3-ピリジル)フラン-5-イル基、3-(3-ピリジル)フラン-2-イル基、3-(3-ピリジル)フラン-4-イル基、3-(3-ピリジル)フラン-5-イル基2-(4-ピリジル)チオフェン-3-イル基、2-(4-ピリジル)チオフェン-4-イル基、2-(4-ピリジル)チオフェン-5-イル基、3-(4-ピリジル)チオフェン-2-イル基、3-(4-ピリジル)チオフェン-4-イル基、3-(4-ピリジル)チオフェン-5-イル基、2-(4-ピリジル)フラン-3-イル基、2-(4-ピリジル)フラン-4-イル基、2-(4-ピリジル)フラン-5-イル基、3-(4-ピリジル)フラン-2-イル基、3-(4-ピリジル)フラン-4-イル基、3-(4-ピリジル)フラン-5-イル基、1-フェニルジベンゾフラン-2-イル基、1-フェニルジベンゾフラン-3-イル基、1-フェニルジベンゾフラン-4-イル基、1-フェニルジベンゾフラン-5-イル基、1-フェニルジベンゾフラン-6-イル基、1-フェニルジベンゾフラン-7-イル基、1-フェニルジベンゾフラン-8-イル基、1-フェニルジベンゾフラン-9-イル基、2-フェニルジベンゾフラン-1-イル基、2-フェニルジベンゾフラン-3-イル基、2-フェニルジベンゾフラン-4-イル基、2-フェニルジベンゾフラン-5-イル基、2-フェニルジベンゾフラン-7-イル基、2-フェニルジベンゾフラン-8-イル基、2-フェニルジベンゾフラン-9-イル基、3-フェニルジベンゾフラン-1-イル基、3-フェニルジベンゾフラン-2-イル基、3-フェニルジベンゾフラン-4-イル基、3-フェニルジベンゾフラン-6-イル基、3-フェニルジベンゾフラン-7-イル基、3-フェニルジベンゾフラン-8-イル基、3-フェニルジベンゾフラン-9-イル基、4-フェニルジベンゾフラン-1-イル基、4-フェニルジベンゾフラン-2-イル基、4-フェニルジベンゾフラン-3-イル基、4-フェニルジベンゾフラン-6-イル基、4-フェニルジベンゾフラン-7-イル基、4-フェニルジベンゾフラン-8-イル基、4-フェニルジベンゾフラン-9-イル基、1-(2-ピリジル)ジベンゾフラン-2-イル基、1-(2-ピリジル)ジベンゾフラン-3-イル基、1-(2-ピリジル)ジベンゾフラン-4-イル基、1-(2-ピリジル)ジベンゾフラン-5-イル基、1-(2-ピリジル)ジベンゾフラン-6-イル基、1-(2-ピリジル)ジベンゾフラン-7-イル基、1-(2-ピリジル)ジベンゾフラン-8-イル基、1-(2-ピリジル)ジベンゾフラン-9-イル基、2-(2-ピリジル)ジベンゾフラン-1-イル基、2-(2-ピリジル)ジベンゾフラン-3-イル基、2-(2-ピリジル)ジベンゾフラン-4-イル基、2-(2-ピリジル)ジベンゾフラン-5-イル基、2-(2-ピリジル)ジベンゾフラン-7-イル基、2-(2-ピリジル)ジベンゾフラン-8-イル基、2-(2-ピリジル)ジベンゾフラン-9-イル基、3-(2-ピリジル)ジベンゾフラン-1-イル基、3-(2-ピリジル)ジベンゾフラン-2-イル基、3-(2-ピリジル)ジベンゾフラン-4-イル基、3-(2-ピリジル)ジベンゾフラン-6-イル基、3-(2-ピリジル)ジベンゾフラン-7-イル基、3-(2-ピリジル)ジベンゾフラン-8-イル基、3-(2-ピリジル)ジベンゾフラン-9-イル基、4-(2-ピリジル)ジベンゾフラン-1-イル基、4-(2-ピリジル)ジベンゾフラン-2-イル基、4-(2-ピリジル)ジベンゾフラン-3-イル基、4-(2-ピリジル)ジベンゾフラン-6-イル基、4-(2-ピリジル)ジベンゾフラン-7-イル基、4-(2-ピリジル)ジベンゾフラン-8-イル基、4-(2-ピリジル)ジベンゾフラン-9-イル基、1-(3-ピリジル)ジベンゾフラン-2-イル基、1-(3-ピリジル)ジベンゾフラン-3-イル基、1-(3-ピリジル)ジベンゾフラン-4-イル基、1-(3-ピリジル)ジベンゾフラン-5-イル基、1-(3-ピリジル)ジベンゾフラン-6-イル基、1-(3-ピリジル)ジベンゾフラン-7-イル基、1-(3-ピリジル)ジベンゾフラン-8-イル基、1-(3-ピリジル)ジベンゾフラン-9-イル基、2-(3-ピリジル)ジベンゾフラン-1-イル基、2-(3-ピリジル)ジベンゾフラン-3-イル基、2-(3-ピリジル)ジベンゾフラン-4-イル基、2-(3-ピリジル)ジベンゾフラン-5-イル基、2-(3-ピリジル)ジベンゾフラン-7-イル基、2-(3-ピリジル)ジベンゾフラン-8-イル基、2-(3-ピリジル)ジベンゾフラン-9-イル基、3-(3-ピリジル)ジベンゾフラン-1-イル基、3-(3-ピリジル)ジベンゾフラン-2-イル基、3-(3-ピリジル)ジベンゾフラン-4-イル基、3-(3-ピリジル)ジベンゾフラン-6-イル基、3-(3-ピリジル)ジベンゾフラン-7-イル基、3-(3-ピリジル)ジベンゾフラン-8-イル基、3-(3-ピリジル)ジベンゾフラン-9-イル基、4-(3-ピリジル)ジベンゾフラン-1-イル基、4-(3-ピリジル)ジベンゾフラン-2-イル基、4-(3-ピリジル)ジベンゾフラン-3-イル基、4-(3-ピリジル)ジベンゾフラン-6-イル基、4-(3-ピリジル)ジベンゾフラン-7-イル基、4-(3-ピリジル)ジベンゾフラン-8-イル基、4-(3-ピリジル)ジベンゾフラン-9-イル基、1-(4-ピリジル)ジベンゾフラン-2-イル基、1-(4-ピリジル)ジベンゾフラン-3-イル基、1-(4-ピリジル)ジベンゾフラン-4-イル基、1-(4-ピリジル)ジベンゾフラン-5-イル基、1-(4-ピリジル)ジベンゾフラン-6-イル基、1-(4-ピリジル)ジベンゾフラン-7-イル基、1-(4-ピリジル)ジベンゾフラン-8-イル基、1-(4-ピリジル)ジベンゾフラン-9-イル基、2-(4-ピリジル)ジベンゾフラン-1-イル基、2-(4-ピリジル)ジベンゾフラン-3-イル基、2-(4-ピリジル)ジベンゾフラン-4-イル基、2-(4-ピリジル)ジベンゾフラン-5-イル基、2-(4-ピリジル)ジベンゾフラン-7-イル基、2-(4-ピリジル)ジベンゾフラン-8-イル基、2-(4-ピリジル)ジベンゾフラン-9-イル基、3-(4-ピリジル)ジベンゾフラン-1-イル基、3-(4-ピリジル)ジベンゾフラン-2-イル基、3-(4-ピリジル)ジベンゾフラン-4-イル基、3-(4-ピリジル)ジベンゾフラン-6-イル基、3-(4-ピリジル)ジベンゾフラン-7-イル基、3-(4-ピリジル)ジベンゾフラン-8-イル基、3-(4-ピリジル)ジベンゾフラン-9-イル基、4-(4-ピリジル)ジベンゾフラン-1-イル基、4-(4-ピリジル)ジベンゾフラン-2-イル基、4-(4-ピリジル)ジベンゾフラン-3-イル基、4-(4-ピリジル)ジベンゾフラン-6-イル基、4-(4-ピリジル)ジベンゾフラン-7-イル基、4-(4-ピリジル)ジベンゾフラン-8-イル基、又は4-(4-ピリジル)ジベンゾフラン-9-イル基等が好ましい。 Specific examples include, but are not limited to, thiophen-2-yl, thiophen-3-yl, furan-2-yl, furan-3-yl, benzothiophen-2-yl, benzo Thiophen-3-yl group, benzothiophen-4-yl group, benzothiophen-5-yl group, benzothiophen-6-yl group, benzothiophen-7-yl group, benzofuran-2-yl group, benzofuran-3- Yl group, benzofuran-4-yl group, benzofuran-5-yl group, benzofuran-6-yl group, benzofuran-7-yl group, dibenzothiophen-1-yl group, dibenzothiophen-2-yl group, dibenzothiophene- 3-yl group, dibenzothiophen-4-yl group, dibenzofuran-1-yl group, dibenzofuran-2-yl group, dibenzofura -3-yl group, dibenzofuran-4-yl group, 2-phenylthiophen-3-yl group, 2-phenylthiophen-4-yl group, 2-phenylthiophen-5-yl group, 3-phenylthiophen-2- Yl group, 3-phenylthiophen-4-yl group, 3-phenylthiophen-5-yl group, 2-phenylfuran-3-yl group, 2-phenylfuran-4-yl group, 2-phenylfuran-5 Yl group, 3-phenylfuran-2-yl group, 3-phenylfuran-4-yl group, 3-phenylfuran-5-yl group, 2- (2-pyridyl) thiophen-3-yl group, 2- ( 2-pyridyl) thiophen-4-yl group, 2- (2-pyridyl) thiophen-5-yl group, 3- (2-pyridyl) thiophen-2-yl group, 3- (2-pyridyl) thiophene-4- I Group, 3- (2-pyridyl) thiophen-5-yl group, 2- (2-pyridyl) furan-3-yl group, 2- (2-pyridyl) furan-4-yl group, 2- (2-pyridyl) ) Furan-5-yl group, 3- (2-pyridyl) furan-2-yl group, 3- (2-pyridyl) furan-4-yl group, 3- (2-pyridyl) furan-5-yl group, 2- (3-pyridyl) thiophen-3-yl group, 2- (3-pyridyl) thiophen-4-yl group, 2- (3-pyridyl) thiophen-5-yl group, 3- (3-pyridyl) thiophene -2-yl group, 3- (3-pyridyl) thiophen-4-yl group, 3- (3-pyridyl) thiophen-5-yl group, 2- (3-pyridyl) furan-3-yl group, 2- (3-pyridyl) furan-4-yl group, 2- (3-pyridyl) furan-5-i Group, 3- (3-pyridyl) furan-2-yl group, 3- (3-pyridyl) furan-4-yl group, 3- (3-pyridyl) furan-5-yl group 2- (4-pyridyl) ) Thiophen-3-yl group, 2- (4-pyridyl) thiophen-4-yl group, 2- (4-pyridyl) thiophen-5-yl group, 3- (4-pyridyl) thiophen-2-yl group, 3- (4-pyridyl) thiophen-4-yl group, 3- (4-pyridyl) thiophen-5-yl group, 2- (4-pyridyl) furan-3-yl group, 2- (4-pyridyl) furan -4-yl group, 2- (4-pyridyl) furan-5-yl group, 3- (4-pyridyl) furan-2-yl group, 3- (4-pyridyl) furan-4-yl group, 3- (4-pyridyl) furan-5-yl group, 1-phenyldibenzofuran-2-yl group 1-phenyldibenzofuran-3-yl group, 1-phenyldibenzofuran-4-yl group, 1-phenyldibenzofuran-5-yl group, 1-phenyldibenzofuran-6-yl group, 1-phenyldibenzofuran-7-yl group, 1-phenyldibenzofuran-8-yl group, 1-phenyldibenzofuran-9-yl group, 2-phenyldibenzofuran-1-yl group, 2-phenyldibenzofuran-3-yl group, 2-phenyldibenzofuran-4-yl group, 2-phenyldibenzofuran-5-yl group, 2-phenyldibenzofuran-7-yl group, 2-phenyldibenzofuran-8-yl group, 2-phenyldibenzofuran-9-yl group, 3-phenyldibenzofuran-1-yl group, 3-phenyldibenzofuran-2-yl group, 3-phenyldibenzofura -4-yl group, 3-phenyldibenzofuran-6-yl group, 3-phenyldibenzofuran-7-yl group, 3-phenyldibenzofuran-8-yl group, 3-phenyldibenzofuran-9-yl group, 4-phenyldibenzofuran -1-yl group, 4-phenyldibenzofuran-2-yl group, 4-phenyldibenzofuran-3-yl group, 4-phenyldibenzofuran-6-yl group, 4-phenyldibenzofuran-7-yl group, 4-phenyldibenzofuran -8-yl group, 4-phenyldibenzofuran-9-yl group, 1- (2-pyridyl) dibenzofuran-2-yl group, 1- (2-pyridyl) dibenzofuran-3-yl group, 1- (2-pyridyl) ) Dibenzofuran-4-yl group, 1- (2-pyridyl) dibenzofuran-5-yl group, 1- (2-pyridyl) Dibenzofuran-6-yl group, 1- (2-pyridyl) dibenzofuran-7-yl group, 1- (2-pyridyl) dibenzofuran-8-yl group, 1- (2-pyridyl) dibenzofuran-9-yl group, 2 -(2-pyridyl) dibenzofuran-1-yl group, 2- (2-pyridyl) dibenzofuran-3-yl group, 2- (2-pyridyl) dibenzofuran-4-yl group, 2- (2-pyridyl) dibenzofuran- 5-yl group, 2- (2-pyridyl) dibenzofuran-7-yl group, 2- (2-pyridyl) dibenzofuran-8-yl group, 2- (2-pyridyl) dibenzofuran-9-yl group, 3- ( 2-pyridyl) dibenzofuran-1-yl group, 3- (2-pyridyl) dibenzofuran-2-yl group, 3- (2-pyridyl) dibenzofuran-4-yl group, 3- (2-pyridyl) L) Dibenzofuran-6-yl group, 3- (2-pyridyl) dibenzofuran-7-yl group, 3- (2-pyridyl) dibenzofuran-8-yl group, 3- (2-pyridyl) dibenzofuran-9-yl group 4- (2-pyridyl) dibenzofuran-1-yl group, 4- (2-pyridyl) dibenzofuran-2-yl group, 4- (2-pyridyl) dibenzofuran-3-yl group, 4- (2-pyridyl) Dibenzofuran-6-yl group, 4- (2-pyridyl) dibenzofuran-7-yl group, 4- (2-pyridyl) dibenzofuran-8-yl group, 4- (2-pyridyl) dibenzofuran-9-yl group, 1 -(3-pyridyl) dibenzofuran-2-yl group, 1- (3-pyridyl) dibenzofuran-3-yl group, 1- (3-pyridyl) dibenzofuran-4-yl group, 1- (3 Pyridyl) dibenzofuran-5-yl group, 1- (3-pyridyl) dibenzofuran-6-yl group, 1- (3-pyridyl) dibenzofuran-7-yl group, 1- (3-pyridyl) dibenzofuran-8-yl group 1- (3-pyridyl) dibenzofuran-9-yl group, 2- (3-pyridyl) dibenzofuran-1-yl group, 2- (3-pyridyl) dibenzofuran-3-yl group, 2- (3-pyridyl) Dibenzofuran-4-yl group, 2- (3-pyridyl) dibenzofuran-5-yl group, 2- (3-pyridyl) dibenzofuran-7-yl group, 2- (3-pyridyl) dibenzofuran-8-yl group, 2 -(3-pyridyl) dibenzofuran-9-yl group, 3- (3-pyridyl) dibenzofuran-1-yl group, 3- (3-pyridyl) dibenzofuran-2-yl group, 3- (3-pyridyl) dibenzofuran-4-yl group, 3- (3-pyridyl) dibenzofuran-6-yl group, 3- (3-pyridyl) dibenzofuran-7-yl group, 3- (3-pyridyl) dibenzofuran-8 -Yl group, 3- (3-pyridyl) dibenzofuran-9-yl group, 4- (3-pyridyl) dibenzofuran-1-yl group, 4- (3-pyridyl) dibenzofuran-2-yl group, 4- (3 -Pyridyl) dibenzofuran-3-yl group, 4- (3-pyridyl) dibenzofuran-6-yl group, 4- (3-pyridyl) dibenzofuran-7-yl group, 4- (3-pyridyl) dibenzofuran-8-yl group Group, 4- (3-pyridyl) dibenzofuran-9-yl group, 1- (4-pyridyl) dibenzofuran-2-yl group, 1- (4-pyridyl) dibenzofuran-3-yl group 1- (4-pyridyl) dibenzofuran-4-yl group, 1- (4-pyridyl) dibenzofuran-5-yl group, 1- (4-pyridyl) dibenzofuran-6-yl group, 1- (4-pyridyl) dibenzofuran -7-yl group, 1- (4-pyridyl) dibenzofuran-8-yl group, 1- (4-pyridyl) dibenzofuran-9-yl group, 2- (4-pyridyl) dibenzofuran-1-yl group, 2- (4-pyridyl) dibenzofuran-3-yl group, 2- (4-pyridyl) dibenzofuran-4-yl group, 2- (4-pyridyl) dibenzofuran-5-yl group, 2- (4-pyridyl) dibenzofuran-7 -Yl group, 2- (4-pyridyl) dibenzofuran-8-yl group, 2- (4-pyridyl) dibenzofuran-9-yl group, 3- (4-pyridyl) dibenzofuran-1- Group, 3- (4-pyridyl) dibenzofuran-2-yl group, 3- (4-pyridyl) dibenzofuran-4-yl group, 3- (4-pyridyl) dibenzofuran-6-yl group, 3- (4- Pyridyl) dibenzofuran-7-yl group, 3- (4-pyridyl) dibenzofuran-8-yl group, 3- (4-pyridyl) dibenzofuran-9-yl group, 4- (4-pyridyl) dibenzofuran-1-yl group 4- (4-pyridyl) dibenzofuran-2-yl group, 4- (4-pyridyl) dibenzofuran-3-yl group, 4- (4-pyridyl) dibenzofuran-6-yl group, 4- (4-pyridyl) A dibenzofuran-7-yl group, a 4- (4-pyridyl) dibenzofuran-8-yl group, a 4- (4-pyridyl) dibenzofuran-9-yl group, or the like is preferable.
 これらのうち、電子輸送性材料特性に優れる点で、ベンゾチオフェン-2-イル基、ベンゾチオフェン-3-イル基、ベンゾチオフェン-4-イル基、ベンゾチオフェン-5-イル基、ベンゾチオフェン-6-イル基、ベンゾチオフェン-7-イル基、ベンゾフラン-2-イル基、ベンゾフラン-3-イル基、ベンゾフラン-4-イル基、ベンゾフラン-5-イル基、ベンゾフラン-6-イル基、ベンゾフラン-7-イル基、ジベンゾチオフェン-1-イル基、ジベンゾチオフェン-2-イル基、ジベンゾチオフェン-3-イル基、ジベンゾチオフェン-4-イル基、ジベンゾフラン-1-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-3-イル基、ジベンゾフラン-4-イル基、2-フェニルジベンゾチオフェン-8-イル基、2-フェニルジベンゾフラン-8-イル基、2-(3-ピリジル)ジベンゾチオフェン-8-イル基又は2-(3-ピリジル)ジベンゾフラン-8-イル基が好ましく、合成する際の反応収率が良い点で、ベンゾチオフェン-2-イル基、ベンゾフラン-2-イル基、ジベンゾチオフェン-2-イル基、ジベンゾチオフェン-4-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-4-イル基、2-フェニルジベンゾチオフェン-8-イル基、2-フェニルジベンゾフラン-8-イル基、2-(3-ピリジル)ジベンゾチオフェン-8-イル基、又は2-(3-ピリジル)ジベンゾフラン-8-イル基がより好ましい。
 すなわち、Tは、下記一般式(T-1)又は(T-2)で表される置換基であることが好ましい。
Of these, benzothiophen-2-yl group, benzothiophen-3-yl group, benzothiophen-4-yl group, benzothiophen-5-yl group, and benzothiophene-6 are excellent in electron transport material characteristics. -Yl group, benzothiophen-7-yl group, benzofuran-2-yl group, benzofuran-3-yl group, benzofuran-4-yl group, benzofuran-5-yl group, benzofuran-6-yl group, benzofuran-7 -Yl group, dibenzothiophen-1-yl group, dibenzothiophen-2-yl group, dibenzothiophen-3-yl group, dibenzothiophen-4-yl group, dibenzofuran-1-yl group, dibenzofuran-2-yl group, Dibenzofuran-3-yl group, dibenzofuran-4-yl group, 2-phenyldibenzothiophen-8-yl group, -Phenyldibenzofuran-8-yl group, 2- (3-pyridyl) dibenzothiophen-8-yl group or 2- (3-pyridyl) dibenzofuran-8-yl group is preferable, and the reaction yield during synthesis is good Benzothiophen-2-yl group, benzofuran-2-yl group, dibenzothiophen-2-yl group, dibenzothiophen-4-yl group, dibenzofuran-2-yl group, dibenzofuran-4-yl group, 2-phenyl More preferred is a dibenzothiophen-8-yl group, a 2-phenyldibenzofuran-8-yl group, a 2- (3-pyridyl) dibenzothiophen-8-yl group, or a 2- (3-pyridyl) dibenzofuran-8-yl group. .
That is, T is preferably a substituent represented by the following general formula (T-1) or (T-2).
Figure JPOXMLDOC01-appb-C000011
(W及びWは、各々独立して、酸素原子又は硫黄原子を表す。Arは水素原子、メチル基、ピリジル基、メチルピリジル基、ジメチルピリジル基又はフェニル基を表す。)
 また、Tとしては、下記一般式(T-3)又は(T-4)で表される置換基((T-1)及び(T-2)における結合位置を限定した)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000011
(W 1 and W 2 each independently represents an oxygen atom or a sulfur atom. Ar 3 represents a hydrogen atom, a methyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, or a phenyl group.)
In addition, T is more preferably a substituent represented by the following general formula (T-3) or (T-4) (the bonding position in (T-1) and (T-2) is limited). preferable.
Figure JPOXMLDOC01-appb-C000012
(W及びWは、各々独立して、酸素原子又は硫黄原子を表す。Arは水素原子、メチル基、ピリジル基、キノリル基、メチルピリジル基、ジメチルピリジル基又はフェニル基を表す。*は結合位置を表す。)
Figure JPOXMLDOC01-appb-C000012
(W 1 and W 2 each independently represents an oxygen atom or a sulfur atom. Ar 3 represents a hydrogen atom, a methyl group, a pyridyl group, a quinolyl group, a methylpyridyl group, a dimethylpyridyl group, or a phenyl group. * Represents the bonding position.)
 一般式(1)で示される化合物の特に好ましい例として、次の(A-1)から(A-561)を例示できるが、本発明はこれらに限定されるものではない。 The following (A-1) to (A-561) can be exemplified as particularly preferred examples of the compound represented by the general formula (1), but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 次に、本発明の環状アジン化合物(1)の製造方法について説明する。
 本発明の環状アジン化合物(1)は、場合によっては塩基の存在下に、パラジウム触媒の存在下で、次の反応式(1)~(4)のいずれかの方法により製造することができる。
Next, the manufacturing method of the cyclic azine compound (1) of this invention is demonstrated.
The cyclic azine compound (1) of the present invention can be produced by any one of the following reaction formulas (1) to (4), optionally in the presence of a base and in the presence of a palladium catalyst.
反応式(1);
Figure JPOXMLDOC01-appb-C000060
(Ar、Ar、T、Z、X、p、及びqは、前記と同じ置換基を表す。Y、及びYは、各々独立して、後述する脱離基を表す。M及びMは、各々独立して、後述する置換基を表す。)
Reaction formula (1);
Figure JPOXMLDOC01-appb-C000060
(Ar 1 , Ar 2 , T, Z, X, p, and q represent the same substituents as described above. Y 1 and Y 2 each independently represent a leaving group to be described later. M 1 And M 2 each independently represents a substituent described later.)
反応式(2);
Figure JPOXMLDOC01-appb-C000061
(Ar、Ar、T、Z、X、p、及びqは前記と同じ置換基を表す。Y、及びYは、各々独立して、後述する脱離基を表す。M及びMは、各々独立して、後述する置換基を表す。)
Reaction formula (2);
Figure JPOXMLDOC01-appb-C000061
(Ar 1 , Ar 2 , T, Z, X, p, and q represent the same substituents as described above. Y 1 and Y 2 each independently represent a leaving group described later. M 1 and M 2 represents each independently a substituent described later.)
反応式(3);
Figure JPOXMLDOC01-appb-C000062
(Ar、Ar、T、Z、X、p、及びqは前記と同じ置換基を示す。Yは後述する脱離基を表す。Mは後述する置換基を表す。)
Reaction formula (3);
Figure JPOXMLDOC01-appb-C000062
(Ar 1 , Ar 2 , T, Z, X, p, and q represent the same substituents as described above. Y 3 represents a leaving group to be described later. M 3 represents a substituent to be described later.)
反応式(4);
Figure JPOXMLDOC01-appb-C000063
(Ar、Ar、T、Z、X、p、及びqは前記と同じ置換基を示す。Yは後述する脱離基を表す。Mは後述する置換基を表す。)
Reaction formula (4);
Figure JPOXMLDOC01-appb-C000063
(Ar 1 , Ar 2 , T, Z, X, p, and q represent the same substituents as described above. Y 4 represents a leaving group described later. M 4 represents a substituent described later.)
 なお、一般式(2)で表される化合物については化合物(2)と称する。化合物(3)~化合物(10)についても同義とする。 In addition, the compound represented by the general formula (2) is referred to as a compound (2). The same applies to compound (3) to compound (10).
 反応式(1)又は反応式(2)で用いられる、化合物(3)は、例えば、日本特開2008-280330号公報、又は日本特開2001-335516号公報に開示されている方法を用いて製造することができる。化合物(3)としては、次の(B-1)~(B-26)が例示できるが、これらに限定されるものではない。 The compound (3) used in the reaction formula (1) or the reaction formula (2) is obtained by using, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2008-280330 or Japanese Patent Application Laid-Open No. 2001-335516. Can be manufactured. Examples of compound (3) include (B-1) to (B-26) below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 Mで表されるZnR、及びMgRとしては、ZnCl、ZnBr、ZnI、MgCl、MgBr、MgI等が例示できる。
 Mで表されるSn(Rとしては、Sn(Me)、Sn(Bu)等が例示できる。
 Mで表されるB(ORとしては、B(OH)、B(OMe)、B(OPr)、B(OBu)等が例示できる。また、2つのRが一体となって酸素原子及びホウ素原子を含んで環を形成した場合のB(ORの例としては、次の(C-1)~(C-6)で示される基が例示でき、収率がよい点で(C-2)で示される基が望ましい。
Examples of ZnR 1 and MgR 2 represented by M 1 include ZnCl, ZnBr, ZnI, MgCl, MgBr, and MgI.
Examples of Sn (R 3 ) 3 represented by M 1 include Sn (Me) 3 and Sn (Bu) 3 .
Examples of B (OR 4 ) 2 represented by M 1 include B (OH) 2 , B (OMe) 2 , B (O i Pr) 2 , and B (OBu) 2 . Examples of B (OR 4 ) 2 in the case where two R 4 are combined to form a ring containing an oxygen atom and a boron atom include the following (C-1) to (C-6): The group shown can be exemplified, and the group shown by (C-2) is desirable from the viewpoint of good yield.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 反応式(1)又は反応式(2)で用いられる、化合物(4)は、例えば、日本特開2008-280330号公報に開示されている方法、又は日本特開2001-335516号公報に開示されている方法を用いて製造することができる。化合物(4)の具体例としては、次の(D-1)~(D-30)を例示できるが、これらに限定されるものではない。
 化合物(4)のMは、前記Mと同様の置換基を例示する事ができる。
The compound (4) used in the reaction formula (1) or the reaction formula (2) is disclosed in, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2008-280330 or Japanese Patent Application Laid-Open No. 2001-335516. It can be manufactured using the method. Specific examples of the compound (4) include the following (D-1) to (D-30), but are not limited thereto.
M 2 of the compound (4) can exemplify the same substituent as M 1 described above.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 反応式(3)で用いられる、化合物(6)は、前記化合物(4)のMをYに置き換えた化合物を例示することができる。 The compound (6) used in the reaction formula (3) can be exemplified by a compound in which M 2 in the compound (4) is replaced with Y 3 .
 反応式(4)で用いられる、化合物(8)は、前記化合物(3)のMをYに置き換えた化合物を例示することができる。 The compound (8) used in the reaction formula (4) can be exemplified by a compound in which M 1 of the compound (3) is replaced with Y 4 .
 化合物(6)のY及び化合物(8)のYとしては、各々独立に脱離基を表し、特に限定するものではないが、例えば塩素原子、臭素原子、ヨウ素原子又はトリフラート等が挙げられる。これららのうち、反応収率がよい点で臭素原子又は塩素原子が好ましい。但し、原料の入手性からは、トリフラートを用いた方が好ましい場合もある。 The Y 4 of Y 3 and compounds of the compound (6) (8), a leaving group independently is not particularly limited, and for example, a chlorine atom, a bromine atom, an iodine atom or a triflate and the like . Among these, a bromine atom or a chlorine atom is preferable in that the reaction yield is good. However, it may be preferable to use triflate from the availability of raw materials.
 化合物(2)のY及びYとしては、各々独立に脱離基を表し、特に限定するものではないが、例えば塩素原子、臭素原子、ヨウ素原子又はトリフラート等が挙げられる。これらのうち、反応収率がよい点で臭素原子又は塩素原子が好ましい。また、反応の選択性を向上させる為には、Y及びYは異なる脱離基であることが更に好ましい。 Y 1 and Y 2 of the compound (2) each independently represent a leaving group and are not particularly limited, and examples thereof include a chlorine atom, a bromine atom, an iodine atom, and a triflate. Among these, a bromine atom or a chlorine atom is preferable in that the reaction yield is good. In order to improve the selectivity of the reaction, Y 1 and Y 2 are more preferably different leaving groups.
 反応式(1)の「工程1」は、化合物(2)を、場合によっては塩基の存在下、パラジウム触媒の存在下に化合物(3)と反応させ、合成中間体である化合物(9)を得る方法であり、鈴木-宮浦反応、根岸反応、玉尾-熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。 In “Step 1” of the reaction formula (1), the compound (2) is reacted with the compound (3) in the presence of a palladium catalyst in the presence of a base in some cases, and the compound (9) as a synthetic intermediate is reacted. By applying reaction conditions of general coupling reactions such as Suzuki-Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the desired product can be obtained with good yield.
 「工程1」で用いることのできるパラジウム触媒としては、塩化パラジウム、酢酸パラジウム、トリフルオロ酢酸パラジウム、硝酸パラジウム等の塩を例示することができる。さらに、π-アリルパラジウムクロリドダイマー、パラジウムアセチルアセトナト、トリス(ジベンジリデンアセトン)ジパラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム及びジクロロ(1,1’-ビス(ジフェニルホスフィノ)フェロセン)パラジウム等の錯化合物を例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は、反応収率がよい点でさらに好ましく、入手容易であり、反応収率がよい点では、トリフェニルホスフィンを配位子として有するパラジウム錯体が特に好ましい。 Examples of the palladium catalyst that can be used in “Step 1” include salts of palladium chloride, palladium acetate, palladium trifluoroacetate, palladium nitrate, and the like. Furthermore, π-allyl palladium chloride dimer, palladium acetylacetonate, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium and dichloro (1,1′-bis (diphenylphosphine). Examples include complex compounds such as fino) ferrocene) palladium. Among these, a palladium complex having a tertiary phosphine as a ligand is more preferable in terms of a good reaction yield, is easily available, and in terms of a good reaction yield, a palladium complex having triphenylphosphine as a ligand. Is particularly preferred.
 第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩又は錯化合物に第三級ホスフィンを添加し、反応系中で調製することもできる。この際用いることのできる第三級ホスフィンとしては、トリフェニルホスフィン、トリメチルホスフィン、トリブチルホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、tert-ブチルジフェニルホスフィン、9,9-ジメチル-4,5-ビス(ジフェニルホスフィノ)キサンテン、2-(ジフェニルホスフィノ)-2’-(N,N-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリ(2-フリル)ホスフィン、トリ(o-トリル)ホスフィン、トリス(2,5-キシリル)ホスフィン、(±)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル等が例示できる。入手が容易であり、反応収率がよい点で、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル又はトリフェニルホスフィンが好ましい。第三級ホスフィンとパラジウム塩又は錯化合物とのモル比は、1:10~10:1が好ましく、反応収率がよい点で1:2~5:1がさらに好ましい。 The palladium complex having tertiary phosphine as a ligand can also be prepared in a reaction system by adding tertiary phosphine to a palladium salt or complex compound. The tertiary phosphine that can be used at this time is triphenylphosphine, trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine, 9,9-dimethyl-4,5. -Bis (diphenylphosphino) xanthene, 2- (diphenylphosphino) -2 '-(N, N-dimethylamino) biphenyl, 2- (di-tert-butylphosphino) biphenyl, 2- (dicyclohexylphosphino) Biphenyl, bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,1 ′ -Bis (diphenylphosphino) Erocene, tri (2-furyl) phosphine, tri (o-tolyl) phosphine, tris (2,5-xylyl) phosphine, (±) -2,2′-bis (diphenylphosphino) -1,1′-binaphthyl And 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl. 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl or triphenylphosphine is preferred because it is easily available and the reaction yield is good. The molar ratio of the tertiary phosphine to the palladium salt or complex compound is preferably 1:10 to 10: 1, and more preferably 1: 2 to 5: 1 from the viewpoint of good reaction yield.
 「工程1」で用いることのできる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができる。収率がよい点で、炭酸カリウムが望ましい。塩基と化合物(3)とのモル比は、1:2~10:1が望ましく、収率がよい点で1:1~3:1がさらに望ましい。 Bases that can be used in “Step 1” include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, fluorine. Examples thereof include cesium chloride. Potassium carbonate is desirable in terms of good yield. The molar ratio of the base and the compound (3) is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
 「工程1」で用いる化合物(2)と化合物(3)とのモル比は、1:2~5:1が望ましく、収率がよい点で1:2~2:1がさらに望ましい。 The molar ratio of the compound (2) and the compound (3) used in “Step 1” is preferably 1: 2 to 5: 1, and more preferably 1: 2 to 2: 1 in terms of a good yield.
 「工程1」で用いることのできる溶媒として、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノール又はキシレン等が例示でき、これらを適宜組み合わせて用いてもよい。収率がよい点で、ジオキサン又はTHF(テトラヒドロフラン)と水の混合溶媒を用いることが望ましい。 Examples of the solvent that can be used in “Step 1” include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, toluene, benzene, diethyl ether, ethanol, methanol, and xylene. You may use it combining suitably. From the viewpoint of good yield, it is desirable to use a mixed solvent of dioxane or THF (tetrahydrofuran) and water.
 「工程1」は、0~150℃から適宜選ばれた温度で実施することができ、収率がよい点で、50~100℃で行うことがさらに望ましい。
 化合物(9)は、「工程1」の終了後に通常の処理をすることで得られる。必要に応じて、再結晶、カラムクロマトグラフィー、昇華等で精製してもよい。
“Step 1” can be carried out at a temperature appropriately selected from 0 to 150 ° C., and is more preferably carried out at 50 to 100 ° C. in terms of a good yield.
Compound (9) can be obtained by carrying out a usual treatment after completion of “Step 1”. You may refine | purify by recrystallization, column chromatography, sublimation, etc. as needed.
 「工程2」は化合物(9)を、場合によっては塩基の存在下、パラジウム触媒の存在下に、化合物(4)と反応させ、本発明の環状アジン化合物(1)を得る方法であり、鈴木-宮浦反応、根岸反応、玉尾-熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。
 「工程2」においては、「工程1」で挙げた条件と同様な反応条件を選択する事ができる。但し、「工程1」と同じ反応条件である必要はない。また、合成中間体である化合物(9)を単離せずに「工程1」の反応系中に化合物(4)を添加し、反応させて、環状アジン化合物(1)を合成することもできる。「工程2」の終了後、得られた環状アジン化合物(1)は、必要に応じて、再結晶、カラムクロマトグラフィー、昇華等で精製してもよい。
“Step 2” is a method in which the compound (9) is reacted with the compound (4) in the presence of a base and in the presence of a palladium catalyst to obtain the cyclic azine compound (1) of the present invention. -By applying reaction conditions of general coupling reactions such as Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the target product can be obtained in high yield.
In “Step 2”, the same reaction conditions as those mentioned in “Step 1” can be selected. However, the reaction conditions are not necessarily the same as those in “Step 1”. Alternatively, compound (4) can be added and reacted in the reaction system of “Step 1” without isolating compound (9), which is a synthetic intermediate, to synthesize cyclic azine compound (1). After completion of “Step 2”, the obtained cyclic azine compound (1) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
 なお、化合物(9)は、化合物(1)のような、有機電界発光素子の低駆動電圧性、高発光効率性、及び長寿命性を顕著に向上させる化合物を工業的に供給するための優れた製造中間材料であり、工業的に非常に有用である。 In addition, the compound (9) is excellent for industrially supplying a compound such as the compound (1) that remarkably improves the low driving voltage property, the high light emission efficiency, and the long life property of the organic electroluminescence device. It is an intermediate material for manufacturing and is very useful industrially.
 反応式(2)の「工程3」は、化合物(2)を、場合によっては塩基の存在下、パラジウム触媒の存在下に化合物(4)と反応させ、合成中間体である化合物(10)を得る方法であり、鈴木-宮浦反応、根岸反応、玉尾-熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。
 「工程3」においては、「工程1」で挙げた条件と同様な反応条件を選択することができる。但し、「工程1」と同じ反応条件である必要はない。「工程3」の終了後、得られた化合物(10)は、必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。
In “Step 3” of the reaction formula (2), the compound (2) is reacted with the compound (4) in the presence of a palladium catalyst, optionally in the presence of a base, to give a compound (10) as a synthetic intermediate. By applying reaction conditions of general coupling reactions such as Suzuki-Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the desired product can be obtained with good yield.
In “Step 3”, the same reaction conditions as those mentioned in “Step 1” can be selected. However, the reaction conditions are not necessarily the same as those in “Step 1”. After completion of “Step 3”, the obtained compound (10) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
 「工程4」は、化合物(10)を、場合によっては塩基の存在下、パラジウム触媒の存在下に化合物(3)と反応させ、本発明の環状アジン化合物(1)を得る方法であり、鈴木-宮浦反応、根岸反応、玉尾-熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。
 「工程4」においては、「工程1」で挙げた条件と同様な反応条件を選択する事ができる。但し、「工程1」と同じ反応条件である必要はない。また、合成中間体である化合物(10)を単離せずに、「工程3」の反応系中に化合物(3)を添加し、反応させて、環状アジン化合物(1)を合成することもできる。「工程4」の終了後、得られた環状アジン化合物(1)は、必要に応じて、再結晶、カラムクロマトグラフィー、昇華等で精製してもよい。
“Step 4” is a method in which the compound (10) is reacted with the compound (3) in the presence of a palladium catalyst in the presence of a base in some cases to obtain the cyclic azine compound (1) of the present invention. -By applying reaction conditions of general coupling reactions such as Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the target product can be obtained in high yield.
In “Step 4”, the same reaction conditions as those mentioned in “Step 1” can be selected. However, the reaction conditions are not necessarily the same as those in “Step 1”. Further, the compound (3) can be added to the reaction system of “Step 3” and reacted to synthesize the cyclic azine compound (1) without isolating the compound (10) which is a synthetic intermediate. . After completion of “Step 4”, the obtained cyclic azine compound (1) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
 反応式(3)の「工程5」で用いられる化合物(5)は、化合物(9)から、一般的な有機金属化合物を合成する反応(例えば、Angew.Chem.Int.Ed.2007,46,5359-5363)を用いて合成することができる。
 「工程5」は、化合物(5)を、場合によっては塩基の存在下、パラジウム触媒の存在下に化合物(6)と反応させ、本発明の環状アジン化合物(1)を得る方法であり、鈴木-宮浦反応、根岸反応、玉尾-熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。
Compound (5) used in “Step 5” of Reaction Formula (3) is a reaction for synthesizing a general organometallic compound from Compound (9) (for example, Angew. Chem. Int. Ed. 2007, 46, 5359-5363).
“Step 5” is a method in which the compound (5) is reacted with the compound (6) in the presence of a palladium catalyst, optionally in the presence of a base, to obtain the cyclic azine compound (1) of the present invention. -By applying reaction conditions of general coupling reactions such as Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the target product can be obtained in high yield.
 「工程5」で用いることのできるパラジウム触媒としては、「工程1」で挙げたものと同様のパラジウム触媒が挙げられる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は、反応収率がよい点でさらに好ましく、入手が容易であり、反応収率がよい点からは、トリフェニルホスフィンを配位子として有するパラジウム錯体が特に好ましい。 Examples of the palladium catalyst that can be used in “Step 5” include the same palladium catalysts as those mentioned in “Step 1”. Among them, a palladium complex having a tertiary phosphine as a ligand is more preferable in terms of a good reaction yield, is easily available, and has a triphenylphosphine as a ligand in terms of a good reaction yield. Palladium complexes are particularly preferred.
 第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩又は錯化合物に第三級ホスフィンを添加し、反応系中で調製することもできる。この際用いることのできる第三級ホスフィンとしては、「工程1」で挙げたものと同様の第三級ホスフィンが挙げられる。入手が容易であり、反応収率がよい点で、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル又はトリフェニルホスフィンが好ましい。第三級ホスフィンとパラジウム塩又は錯化合物とのモル比は、1:10~10:1が好ましく、反応収率がよい点で、1:2~5:1がさらに好ましい。 The palladium complex having tertiary phosphine as a ligand can also be prepared in a reaction system by adding tertiary phosphine to a palladium salt or complex compound. Examples of the tertiary phosphine that can be used in this case include the same tertiary phosphine as that described in “Step 1”. 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl or triphenylphosphine is preferred because it is easily available and the reaction yield is good. The molar ratio of the tertiary phosphine to the palladium salt or complex compound is preferably 1:10 to 10: 1, and more preferably 1: 2 to 5: 1 from the viewpoint of good reaction yield.
 「工程5」で用いることのできる塩基としては、「工程1」で挙げたものと同様の塩基が挙げられる。塩基と化合物(5)とのモル比は、1:2~10:1が望ましく、収率がよい点で、1:1~3:1がさらに望ましい。
 「工程5」で用いる化合物(5)と化合物(6)とのモル比は、1:5~2:1が望ましく、収率がよい点で、1:1~1:3がさらに望ましい。
Examples of the base that can be used in “Step 5” include the same bases as those mentioned in “Step 1”. The molar ratio of base to compound (5) is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of good yield.
The molar ratio of the compound (5) and the compound (6) used in “Step 5” is preferably 1: 5 to 2: 1, and more preferably 1: 1 to 1: 3 in terms of a good yield.
 「工程5」で用いることのできる溶媒として、「工程1」で挙げたものと同様の溶媒が挙げられる。収率がよい点で、ジオキサン又はTHFと水の混合溶媒を用いることが望ましい。「工程5」は、0~150℃から適宜選ばれた温度で実施することができ、収率がよい点で、50~100℃で行うことがさらに望ましい。「工程5」の終了後、得られた環状アジン化合物(1)は、必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。 Examples of the solvent that can be used in “Step 5” include the same solvents as those mentioned in “Step 1”. From the viewpoint of good yield, it is desirable to use dioxane or a mixed solvent of THF and water. “Step 5” can be performed at a temperature appropriately selected from 0 to 150 ° C., and is more preferably performed at 50 to 100 ° C. in terms of a good yield. After completion of “Step 5”, the obtained cyclic azine compound (1) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
 反応式(4)の「工程6」で用いられる化合物(7)は、化合物(10)から、一般的な有機金属化合物を合成する反応(例えばAngew.Chem.Int.Ed.2007,46,5359-5363)を用いて合成することができる。
 「工程6」は、化合物(7)を、場合によっては塩基の存在下、パラジウム触媒の存在下に化合物(8)と反応させ、本発明の環状アジン化合物(1)を得る方法であり、鈴木-宮浦反応、根岸反応、玉尾-熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。
 「工程6」は、「工程5」で挙げた条件と同様な反応条件を選択する事ができる。但し、「工程5」と同じ反応条件である必要はない。「工程6」の終了後、得られた環状アジン化合物(1)は、必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。
Compound (7) used in “Step 6” of Reaction Formula (4) is a reaction for synthesizing a general organometallic compound from Compound (10) (for example, Angew. Chem. Int. Ed. 2007, 46, 5359). -5363).
“Step 6” is a method in which the compound (7) is reacted with the compound (8) in the presence of a base, optionally in the presence of a palladium catalyst, to obtain the cyclic azine compound (1) of the present invention. -By applying reaction conditions of general coupling reactions such as Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the target product can be obtained in high yield.
In “Step 6”, the same reaction conditions as those described in “Step 5” can be selected. However, the reaction conditions are not necessarily the same as those in “Step 5”. After completion of “Step 6”, the obtained cyclic azine compound (1) may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
 なお、化合物(7)は、化合物(1)のような、有機電界発光素子の低駆動電圧性、高発光効率性、長寿命性を顕著に向上させる化合物を工業的に供給するための優れた製造中間材料であり、工業的に非常に有用である。 In addition, the compound (7) is excellent for industrially supplying a compound such as the compound (1) that significantly improves the low driving voltage property, the high light emission efficiency, and the long life property of the organic electroluminescence device. It is a production intermediate material and is very useful industrially.
 本発明の環状アジン化合物(1)は、有機電界発光素子の構成成分の一部として、好ましく用いられる。特に、電子輸送層として用いた時に、従来の素子よりも長寿命化、高効率化、低電圧化等の効果が得られる。
 また、有機電界発光素子用材料として用いる際には、任意の有機金属種、有機化合物又は無機化合物との共蒸着膜として用いることも可能である。
 本発明の環状アジン化合物(1)は、良好な電子輸送特性を示すため、有機電界発光素子における、発光層、電子輸送層、電子注入層等の電子輸送性を有する有機薄膜層の材料として好ましく用いることができる。
The cyclic azine compound (1) of the present invention is preferably used as a part of the components of the organic electroluminescence device. In particular, when used as an electron transport layer, effects such as longer life, higher efficiency, and lower voltage can be obtained than conventional devices.
Moreover, when using as a material for organic electroluminescent elements, it can also be used as a co-deposited film with any organic metal species, organic compound or inorganic compound.
The cyclic azine compound (1) of the present invention is preferable as a material for an organic thin film layer having electron transport properties such as a light-emitting layer, an electron transport layer, and an electron injection layer in an organic electroluminescence device because it exhibits good electron transport properties. Can be used.
 本発明の環状アジン化合物(1)を含んでなる有機電界発光素子用の薄膜の製造方法は、特に制限はないが、真空蒸着法による成膜が可能である。真空蒸着法による成膜は、汎用の真空蒸着装置を用いることにより行うことができる。真空蒸着法で膜を形成する際の真空槽の真空度は、有機電界発光素子作製の製造タクトタイムや製造コストを考慮すると、一般的に用いられる拡散ポンプ、タ-ボ分子ポンプ、クライオポンプ等により到達し得る、1×10-2~1×10-6Pa程度が望ましく、1×10-4~1×10-6Paがより望ましい。
 蒸着速度は、形成する膜の厚さによるが、0.005~1.0nm/秒が望ましく、0.01~0.3nm/秒がより望ましい。
 また、本発明の環状アジン化合物(1)は、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、トルエン、酢酸エチル又は、テトラヒドロフラン等に対する溶解度が高いため、汎用の装置を用いたスピンコ-ト法、インクジェット法、キャスト法、ディップ法等による成膜も可能である。
Although there is no restriction | limiting in particular in the manufacturing method of the thin film for organic electroluminescent elements containing the cyclic azine compound (1) of this invention, The film-forming by a vacuum evaporation method is possible. Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus. The vacuum degree of the vacuum chamber when forming a film by the vacuum deposition method is determined by taking into account the manufacturing tact time and manufacturing cost of manufacturing the organic electroluminescence device, and commonly used diffusion pumps, turbo molecular pumps, cryopumps, etc. Is preferably about 1 × 10 −2 to 1 × 10 −6 Pa, more preferably 1 × 10 −4 to 1 × 10 −6 Pa.
The deposition rate is preferably 0.005 to 1.0 nm / second, and more preferably 0.01 to 0.3 nm / second, depending on the thickness of the film to be formed.
In addition, since the cyclic azine compound (1) of the present invention has high solubility in chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, ethyl acetate, tetrahydrofuran, or the like, a spin coating method using a general-purpose apparatus, Film formation by an inkjet method, a cast method, a dip method, or the like is also possible.
 本発明の効果が得られる有機電界発光素子の典型的な構造としては、基板、陽極、正孔注入層、正孔輸送層発光層、電子輸送層、及び陰極を含む。
 有機電界発光素子の陽極及び陰極は、電気的な導体を介して電源に接続されている。陽極と陰極との間に電位を加えることにより、有機電界発光素子は作動する。正孔は陽極から有機電界発光素子内に注入され、電子は陰極で有機電界発光素子内に注入される。
 有機電界発光素子は典型的には基板に被せられ、陽極又は陰極は基板と接触することができる。基板と接触する電極は便宜上、下側電極と呼ばれる。一般的には、下側電極は陽極であるが、本発明の有機電界発光素子においては、そのような形態に限定されるものではない。
A typical structure of the organic electroluminescent device capable of obtaining the effects of the present invention includes a substrate, an anode, a hole injection layer, a hole transport layer light emitting layer, an electron transport layer, and a cathode.
The anode and cathode of the organic electroluminescent element are connected to a power source through an electrical conductor. The organic electroluminescent device operates by applying a potential between the anode and the cathode. Holes are injected into the organic electroluminescent device from the anode, and electrons are injected into the organic electroluminescent device at the cathode.
The organic electroluminescent device is typically placed on a substrate, and the anode or cathode can be in contact with the substrate. The electrode in contact with the substrate is called the lower electrode for convenience. In general, the lower electrode is an anode, but the organic electroluminescent element of the present invention is not limited to such a form.
 基板は、意図される発光方向に応じて、光透過性又は不透明であってもよい。光透過特性は、基板を通してエレクトロルミネッセンス発光により確認できる。一般的には、透明ガラス又はプラスチックがこのような基板として採用される。基板は、多重の材料層を含む複合構造であってもよい。
 エレクトロルミネッセンス発光を、陽極を通して確認する場合、陽極は当該発光を通すか又は実質的に通すもので形成される。
The substrate may be light transmissive or opaque depending on the intended emission direction. The light transmission property can be confirmed by electroluminescence emission through the substrate. In general, transparent glass or plastic is employed as such a substrate. The substrate may be a composite structure including multiple material layers.
When the electroluminescent emission is confirmed through the anode, the anode is formed by passing or substantially passing through the emission.
 本発明において使用される一般的な透明アノード(陽極)材料は、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、又は酸化錫が挙げられる。さらに、その他の金属酸化物、例えばアルミニウム又はインジウム・ドープ型酸化錫、マグネシウム-インジウム酸化物、又はニッケル-タングステン酸化物も好ましく用いられる。これらの酸化物に加えて、金属窒化物、例えば窒化ガリウム、金属セレン化物、例えばセレン化亜鉛、又は金属硫化物である、例えば硫化亜鉛も陽極として使用することができる。陽極は、プラズマ蒸着されたフルオロカーボンで改質することができる。
 陰極を通してだけエレクトロルミネッセンス発光が確認される場合、陽極の透過特性は重要ではなく、透明、不透明又は反射性の任意の導電性材料を使用することができる。この用途のための導体の一例としては、金、イリジウム、モリブデン、パラジウム、白金等が挙げられる。
Common transparent anode (anode) materials used in the present invention include indium-tin oxide (ITO), indium-zinc oxide (IZO), or tin oxide. Further, other metal oxides such as aluminum or indium-doped tin oxide, magnesium-indium oxide, or nickel-tungsten oxide are also preferably used. In addition to these oxides, metal nitrides such as gallium nitride, metal selenides such as zinc selenide, or metal sulfides such as zinc sulfide can also be used as the anode. The anode can be modified with plasma deposited fluorocarbon.
If electroluminescence emission is confirmed only through the cathode, the transmission properties of the anode are not critical and any conductive material that is transparent, opaque or reflective can be used. Examples of conductors for this application include gold, iridium, molybdenum, palladium, platinum, and the like.
 正孔注入層は、陽極と正孔輸送層との間に設けることができる。正孔注入層の材料は、正孔輸送層や正孔注入層等の有機材料層の膜形成特性を改善し、正孔輸送層内に正孔を注入するのを容易にするのに役立つ。正孔注入層内で使用するのに適した材料の一例としては、ポルフィリン化合物、プラズマ蒸着型フルオロカーボン・ポリマー、及びビフェニル基、カルバゾール基等芳香環を有するアミン、例えばm-MTDATA(4,4’,4’’-トリス[(3-メチルフェニル)フェニルアミノ]トリフェニルアミン)、2T-NATA(4,4’,4’’-トリス[(N-ナフタレン-2-イル)-N-フェニルアミノ]トリフェニルアミン)、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N,N’N’-テトラキス(4-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、MeO-TPD(N,N,N’N’-テトラキス(4-メトキシフェニル)-1,1’-ビフェニル-4,4’-ジアミン)、N,N’-ジフェニル-N,N’-ジナフチル-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ビス(メチルフェニル)-N,N’-ビス(4-ノルマルブチルフェニル)フェナントレン-9,10-ジアミン、又はN,N’-ジフェニル-N,N’-ビス(9-フェニルカルバゾール-3-イル)-1,1’-ビフェニル-4,4’-ジアミン等が挙げられる。 The hole injection layer can be provided between the anode and the hole transport layer. The material of the hole injection layer is useful for improving the film formation characteristics of an organic material layer such as a hole transport layer and a hole injection layer, and facilitating injection of holes into the hole transport layer. Examples of materials suitable for use in the hole injection layer include porphyrin compounds, plasma deposited fluorocarbon polymers, and amines having aromatic rings such as biphenyl groups and carbazole groups, such as m-MTDATA (4,4 ′ , 4 ″ -tris [(3-methylphenyl) phenylamino] triphenylamine), 2T-NATA (4,4 ′, 4 ″ -tris [(N-naphthalen-2-yl) -N-phenylamino ] Triphenylamine), triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N, N′N′-tetrakis (4-methylphenyl) -1,1′-biphenyl-4,4′-diamine, MeO-TPD N, N, N′N′-tetrakis (4-methoxyphenyl) -1,1′-biphenyl-4,4′-diamine), N, N′-diphenyl-N, N′-dinaphthyl-1,1 ′ -Biphenyl-4,4'-diamine, N, N'-bis (methylphenyl) -N, N'-bis (4-normalbutylphenyl) phenanthrene-9,10-diamine, or N, N'-diphenyl- N, N′-bis (9-phenylcarbazol-3-yl) -1,1′-biphenyl-4,4′-diamine and the like can be mentioned.
 有機電界発光素子の正孔輸送層は、1種以上の正孔輸送化合物(正孔輸送材料)、例えば芳香族第三アミンを含有することが好ましい。芳香族第三アミンは、1つ以上の三価窒素原子を含有する化合物であり、この三価窒素原子は炭素原子だけに結合しており、これらの炭素原子の1つ以上が芳香族環を形成している。具体的には、芳香族第三アミンは、アリールアミン、例えばモノアリールアミン、ジアリールアミン、トリアリールアミン、又は高分子アリールアミンである。 The hole transport layer of the organic electroluminescence device preferably contains one or more hole transport compounds (hole transport materials) such as aromatic tertiary amines. An aromatic tertiary amine is a compound containing one or more trivalent nitrogen atoms, which are bonded only to carbon atoms, and one or more of these carbon atoms have an aromatic ring. Forming. Specifically, the aromatic tertiary amine is an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine.
 正孔輸送材料としては、1つ以上のアミン基を有する芳香族第三アミンを使用することができる。さらに、高分子の正孔輸送材料を使用することができる。例えばポリ(N-ビニルカルバゾール)(PVK)、ポリチオフェン、ポリピロール、又はポリアニリン等を使用することができる。具体的には、NPD(N,N’-ビス(ナフタレン-1-イル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン)、α-NPD(N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’ -ジアミン)、TPBi(1,3,5-トリス(1-フェニル-1H-ベンズイミダゾール-2-イル)ベンゼン)、又はTPD(N,N’-ビス(3-メチルフェニル) -N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン)等が挙げられる。
 正孔注入層と正孔輸送層の間に、電荷発生層としてジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)を含む層を設けてもよい。
An aromatic tertiary amine having one or more amine groups can be used as the hole transport material. Furthermore, a polymeric hole transport material can be used. For example, poly (N-vinylcarbazole) (PVK), polythiophene, polypyrrole, or polyaniline can be used. Specifically, NPD (N, N′-bis (naphthalen-1-yl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine), α-NPD (N, N '-Di (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine), TPBi (1,3,5-tris (1-phenyl-1H-benzimidazole) 2-yl) benzene) or TPD (N, N′-bis (3-methylphenyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine).
Dipyrazino [2,3-f: 2 ′, 3′-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile as a charge generation layer between the hole injection layer and the hole transport layer A layer containing (HAT-CN) may be provided.
 有機電界発光素子の発光層は、燐光材料又は蛍光材料を含み、この領域で電子・正孔対が再結合された結果として発光を生じる。発光層は、低分子及びポリマー双方を含む単一材料から形成されていてもよいが、より一般的には、ゲスト化合物でドーピングされたホスト材料から形成されており、発光は主としてドーパントから生じ、任意の色を発することができる。 The light emitting layer of the organic electroluminescent element contains a phosphorescent material or a fluorescent material, and emits light as a result of recombination of electron / hole pairs in this region. The light-emitting layer may be formed from a single material that includes both small molecules and polymers, but more commonly is formed from a host material doped with a guest compound, where light emission is primarily from a dopant, Any color can be emitted.
 発光層のホスト材料としては、例えば、ビフェニル基、フルオレニル基、トリフェニルシリル基、カルバゾール基、ピレニル基、又はアントラニル基を有する化合物が挙げられる。具体的には、DPVBi(4,4’-ビス(2,2-ジフェニルビニル)-1,1’-ビフェニル)、BCzVBi(4,4’-ビス(9-エチル-3-カルバゾビニレン)1,1’-ビフェニル)、TBADN(2-ターシャルブチル-9,10-ジ(2-ナフチル)アントラセン)、ADN(9,10-ジ(2-ナフチル)アントラセン)、CBP(4,4’-ビス(カルバゾール-9-イル)ビフェニル)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、又は9,10-ビス(ビフェニル)アントラセン等が挙げられる。
 発光層内のホスト材料としては、下記に定義する電子輸送材料、上記に定義する正孔輸送材料、正孔・電子再結合を助ける(サポート)別の材料、又はこれら材料の組み合わせであってもよい。
Examples of the host material for the light emitting layer include compounds having a biphenyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, a pyrenyl group, or an anthranyl group. Specifically, DPVBi (4,4′-bis (2,2-diphenylvinyl) -1,1′-biphenyl), BCzVBi (4,4′-bis (9-ethyl-3-carbazovinylene) 1,1 '-Biphenyl), TBADN (2-tert-butyl-9,10-di (2-naphthyl) anthracene), ADN (9,10-di (2-naphthyl) anthracene), CBP (4,4'-bis ( Carbazol-9-yl) biphenyl), CDBP (4,4′-bis (carbazol-9-yl) -2,2′-dimethylbiphenyl), 9,10-bis (biphenyl) anthracene, and the like.
The host material in the light emitting layer may be an electron transport material as defined below, a hole transport material as defined above, another material that supports hole / electron recombination (support), or a combination of these materials. Good.
 蛍光ドーパントの一例としては、アントラセン、テトラセン、キサンテン、ペリレン、ルブレン、クマリン、ローダミン、キナクリドン、ジシアノメチレンピラン化合物、チオピラン化合物、ポリメチン化合物、ピリリウム又はチアピリリウム化合物、フルオレン誘導体、ペリフランテン誘導体、インデノペリレン誘導体、ビス(アジニル)アミンホウ素化合物、ビス(アジニル)メタン化合物、カルボスチリル化合物等が挙げられる。
 燐光ドーパントの一例としては、イリジウム、白金、パラジウム、オスミウム等の遷移金属の有機金属錯体が挙げられる。
 ドーパントの一例としては、Alq(トリス(8-ヒドロキシキノリン)アルミニウム))、DPAVBi(4,4’-ビス[4-(ジ-パラ-トリルアミノ)スチリル] ビフェニル)、ペリレン、Ir(PPy)(トリス(2-フェニルピリジン)イリジウム(III)、又はFlrPic(ビス(3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)イリジウム(III)等が挙げられる。
Examples of fluorescent dopants include anthracene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylenepyran compound, thiopyran compound, polymethine compound, pyrylium or thiapyrylium compound, fluorene derivative, perifuranthene derivative, indenoperylene derivative, Examples thereof include bis (azinyl) amine boron compounds, bis (azinyl) methane compounds, and carbostyryl compounds.
As an example of the phosphorescent dopant, an organometallic complex of a transition metal such as iridium, platinum, palladium, or osmium can be given.
Examples of dopants include Alq 3 (tris (8-hydroxyquinoline) aluminum)), DPAVBi (4,4′-bis [4- (di-para-tolylamino) styryl] biphenyl), perylene, Ir (PPy) 3 (Tris (2-phenylpyridine) iridium (III), FlrPic (bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)) and the like.
 本発明の有機電界発光素子の電子輸送層を形成するのに使用する薄膜形成材料は、本発明の環状アジン化合物(1)である。なお、当該電子輸送層には、他の電子輸送性材料を含んでいてもよい。他の電子輸送性材料としては、アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体等が挙げられる。
 望ましいアルカリ金属錯体、アルカリ土類金属錯体、又は土類金属錯体としては、例えば、8-ヒドロキシキノリナートリチウム(Liq)、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)クロロガリウム、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)-1-ナフトラートアルミニウム、又はビス(2-メチル-8-キノリナート)-2-ナフトラートガリウム等が挙げられる。
The thin film forming material used for forming the electron transport layer of the organic electroluminescence device of the present invention is the cyclic azine compound (1) of the present invention. Note that the electron transporting layer may contain other electron transporting materials. Examples of other electron transporting materials include alkali metal complexes, alkaline earth metal complexes, and earth metal complexes.
Desirable alkali metal complexes, alkaline earth metal complexes, or earth metal complexes include, for example, 8-hydroxyquinolinate lithium (Liq), bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinate). ) Copper, bis (8-hydroxyquinolinato) manganese, tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium Bis (10-hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (O-cresolate) gallium, bis (2-methyl-8-quino) Inert) -1-naphthoquinone Trad aluminum or bis (2-methyl-8-quinolinato) -2-naphthoquinone Trad gallium, and the like.
 発光層と電子輸送層との間に、キャリアバランスを改善させる目的で、正孔阻止層を設けてもよい。正孔阻止層の材料として望ましい化合物は、BCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)、Bphen(4,7-ジフェニル-1,10-フェナントロリン)、BAlq(ビス(2-メチル-8-キノリノラート)-4-(フェニルフェノラート)アルミニウム)、又はビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム)等が挙げられる。 A hole blocking layer may be provided between the light emitting layer and the electron transport layer for the purpose of improving carrier balance. Desirable compounds as a material for the hole blocking layer include BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), BAlq (bis (2-methyl-8-quinolinolato) -4- (phenylphenolate) aluminum) or bis (10-hydroxybenzo [h] quinolinato) beryllium).
 本発明の有機電界発光素子においては、電子注入性を向上させ、素子特性(例えば、発光効率、低電圧駆動、又は高耐久性)を向上させる目的で、電子注入層を設けてもよい。
 電子注入層の材料として望ましい化合物は、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、又はアントロン等が挙げられる。また、上記した金属錯体やアルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ハロゲン化物、希土類ハロゲン化物、SiOX 、AlOX 、SiNX 、SiON、AlON、GeOX 、LiOX 、LiON、TiOX 、TiON、TaOX 、TaON、TaNX 、C等の各種酸化物、窒化物、及び酸化窒化物のような無機化合物も使用できる。
In the organic electroluminescent device of the present invention, an electron injection layer may be provided for the purpose of improving electron injection properties and improving device characteristics (for example, light emission efficiency, low voltage driving, or high durability).
Desirable compounds as the material for the electron injection layer are fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, or And anthrone. In addition, the above metal complexes, alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, SiO x , AlO x , SiN x , SiON, AlON, inorganic compounds such as GeO X, LiO X, LiON, TiO X, TiON, TaO X, TaON, TaN X, various oxides such as C, nitrides, and oxynitrides may be used.
 発光が陽極を通してのみ確認される場合、本発明の有機電界発光素子において使用される陰極は、任意の導電性材料から形成することができる。望ましい陰極材料としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。 When light emission is confirmed only through the anode, the cathode used in the organic electroluminescent device of the present invention can be formed from any conductive material. Desirable cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium , Lithium / aluminum mixtures, rare earth metals and the like.
 以下、合成例、合成実施例、素子実施例及び参考例等を挙げて、本発明をさらに詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail with reference to synthesis examples, synthesis examples, device examples and reference examples, but the present invention should not be construed as being limited thereto.
合成例-1
Figure JPOXMLDOC01-appb-C000070
Synthesis example-1
Figure JPOXMLDOC01-appb-C000070
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(1.00g,2.37mmol)、1-ジベンゾチオフェンボロン酸(0.593g,2.60mmol)及びテトラキストリフェニルホスフィンパラジウム(82.0mg,0.0710mmol)をトルエン(30mL)及びエタノール(3mL)の混合溶媒に懸濁し、60℃に加熱した。これに3M-KCO水溶液(2.37mL,7.10mmol)をゆっくりと滴下した後、19時間撹拌した。室温まで放冷後、反応混合物に水(30mL)及びメタノール(30mL)を加え、析出物をろ取した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[5-クロロ-3-(ジベンゾチオフェン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量0.911g,収率73.2%)を得た。
H-NMR(CDCl)δ(ppm):7.47-7.50(m,2H),7.54-7.65(m,8H),7.84-7.88(m,1H),7.94(t,d=1.9Hz,1H),8.21-8.25(m,2H),8.77(dd,J=8.3Hz,1.7Hz,4H),8.80(dd,J=2.0Hz,1.5Hz,1H),9.06(t,J=1.6Hz,1H).
Under an argon stream, 2- (3-bromo-5-chlorophenyl) -4,6-diphenyl-1,3,5-triazine (1.00 g, 2.37 mmol), 1-dibenzothiopheneboronic acid (0.593 g, 2.60 mmol) and tetrakistriphenylphosphine palladium (82.0 mg, 0.0710 mmol) were suspended in a mixed solvent of toluene (30 mL) and ethanol (3 mL), and heated to 60 ° C. To this was slowly added dropwise 3M-K 2 CO 3 aqueous solution (2.37 mL, 7.10 mmol), followed by stirring for 19 hours. After cooling to room temperature, water (30 mL) and methanol (30 mL) were added to the reaction mixture, and the precipitate was collected by filtration. The resulting precipitate was purified by recrystallization from toluene, and the target product 2- [5-chloro-3- (dibenzothiophen-4-yl) phenyl] -4,6-diphenyl-1,3,5- A white solid of triazine (yield 0.911 g, yield 73.2%) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.47-7.50 (m, 2H), 7.54-7.65 (m, 8H), 7.84-7.88 (m, 1H) ), 7.94 (t, d = 1.9 Hz, 1H), 8.21-8.25 (m, 2H), 8.77 (dd, J = 8.3 Hz, 1.7 Hz, 4H), 8 .80 (dd, J = 2.0 Hz, 1.5 Hz, 1H), 9.06 (t, J = 1.6 Hz, 1H).
合成例―2
Figure JPOXMLDOC01-appb-C000071
Synthesis example-2
Figure JPOXMLDOC01-appb-C000071
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(2.16g,5.10mmol)、2-ジベンゾチオフェンボロン酸(1.28g,5.61mmol)及びテトラキストリフェニルホスフィンパラジウム(176mg,0.153mmol)をテトラヒドロフラン(150mL)に懸濁し、これに1M-KCO水溶液(15.3mL,15.3mmol)をゆっくりと滴下した。懸濁液を60℃まで加熱し、18時間撹拌させて反応させた。反応混合物を室温まで冷却させた後、水を200mL加え、得られた析出物をろ取した。得られた析出物をo-キシレンによる再結晶によって精製し、目的物である2-[5-クロロ-3-(ジベンゾチオフェン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの灰白色固体(収量1.79g,収率66.7%)を得た。
H-NMR(CDCl)δ(ppm):7.49-7.51(m,2H),7.56-7.64(m,6H),7.80(dd,J=8.5Hz,1.8Hz,1H),7.88-7.91(m,2H),7.99(d,J=8.2Hz,1H),8.27-8.29(m,1H)8.43(d,J=1.3Hz,1H),8.74(dd,J=2.1Hz,1.4Hz,1H)8.78(dd,J=8.3Hz,1.8Hz,4H).8.94(t,J=1.6Hz,1H).
Under an argon stream, 2- (3-bromo-5-chlorophenyl) -4,6-diphenyl-1,3,5-triazine (2.16 g, 5.10 mmol), 2-dibenzothiopheneboronic acid (1.28 g, (5.61 mmol) and tetrakistriphenylphosphine palladium (176 mg, 0.153 mmol) were suspended in tetrahydrofuran (150 mL), and 1M-K 2 CO 3 aqueous solution (15.3 mL, 15.3 mmol) was slowly added dropwise thereto. The suspension was heated to 60 ° C. and allowed to react with stirring for 18 hours. After the reaction mixture was cooled to room temperature, 200 mL of water was added, and the resulting precipitate was collected by filtration. The obtained precipitate was purified by recrystallization with o-xylene, and the target product 2- [5-chloro-3- (dibenzothiophen-2-yl) phenyl] -4,6-diphenyl-1,3, An off-white solid of 5-triazine (yield 1.79 g, 66.7% yield) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.49-7.51 (m, 2H), 7.56-7.64 (m, 6H), 7.80 (dd, J = 8.5 Hz) 1.8 Hz, 1H), 7.88-7.91 (m, 2H), 7.99 (d, J = 8.2 Hz, 1H), 8.27-8.29 (m, 1H). 43 (d, J = 1.3 Hz, 1H), 8.74 (dd, J = 2.1 Hz, 1.4 Hz, 1H) 8.78 (dd, J = 8.3 Hz, 1.8 Hz, 4H). 8.94 (t, J = 1.6 Hz, 1H).
合成例-3
Figure JPOXMLDOC01-appb-C000072
Synthesis example-3
Figure JPOXMLDOC01-appb-C000072
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(14.8g,34.9mmol)、4-(2-ピリジル)フェニルボロン酸(9.04g,45.4mmol)及びテトラキストリフェニルホスフィンパラジウム(808mg,0.699mmol)をテトラヒドロフラン(250mL)に懸濁し、60℃に加熱した。これに10質量%NaOH水溶液(40mL,105mmol)をゆっくりと滴下した後、3時間撹拌した。室温まで放冷後、反応混合物に水(90mL)を加え、析出物をろ取した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[5-クロロ-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量15.4g,収率88.5%)を得た。
H-NMR(CDCl)δ(ppm):7.27(ddd,J=5.7Hz,4.6Hz,2.3Hz,1H),7.56-7.65(m,6H),7.77-7.85(m,5H),8.16(d,J=8.6Hz,2H),8.72-8.74(m,2H),8.77(dd,J=8.2Hz,1.4Hz,4H),8.92(t,J=1.6Hz,1H).
Under an argon stream, 2- (3-bromo-5-chlorophenyl) -4,6-diphenyl-1,3,5-triazine (14.8 g, 34.9 mmol), 4- (2-pyridyl) phenylboronic acid ( 9.04 g, 45.4 mmol) and tetrakistriphenylphosphine palladium (808 mg, 0.699 mmol) were suspended in tetrahydrofuran (250 mL) and heated to 60 ° C. A 10% by mass aqueous NaOH solution (40 mL, 105 mmol) was slowly added dropwise thereto, followed by stirring for 3 hours. After cooling to room temperature, water (90 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The resulting precipitate was purified by recrystallization from toluene, and the target product, 2- [5-chloro-4 ′-(2-pyridyl) biphenyl-3-yl] -4,6-diphenyl-1,3, A white solid of 5-triazine (yield 15.4 g, yield 88.5%) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.27 (ddd, J = 5.7 Hz, 4.6 Hz, 2.3 Hz, 1H), 7.56-7.65 (m, 6H), 7 .77-7.85 (m, 5H), 8.16 (d, J = 8.6 Hz, 2H), 8.72-8.74 (m, 2H), 8.77 (dd, J = 8. 2 Hz, 1.4 Hz, 4H), 8.92 (t, J = 1.6 Hz, 1H).
合成実施例-1
Figure JPOXMLDOC01-appb-C000073
Synthesis Example-1
Figure JPOXMLDOC01-appb-C000073
 アルゴン気流下、合成例-1で得られた2-[5-クロロ-3-(ジベンゾチオフェン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(0.50g,0.951mmol)、4-(2-ピリジル)フェニルボロン酸(0.246g,1.24mmol)、酢酸パラジウム(6.40mg,0.0285mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(27.2mg,0.0570mmol)及びリン酸カリウム(0.524g,2.47mmol)をジオキサン(15mL)及び水(2mL)の混合溶媒に懸濁し、70℃に加熱して18時間加熱した。室温まで放冷後、反応混合物に水(20mL)及びメタノール(20mL)を加え、析出物をろ取した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[5-(ジベンゾチオフェン-4-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-157)の白色固体(収量0.600g,収率97.9%)を得た。
H-NMR(CDCl)δ(ppm):7.24-7.29(m,1H),7.47-7.51(m,2H),7.54-7.72(m,8H),7.77-7.88(m,3H),7.96(d,J=8.5Hz,2H),8.19(d,J=8.5Hz,2H),8.23-8.26(m,2H),8.28(t,J=1.6Hz,1H),8.73(d,J=4.8Hz,1H),8.80(dd,J=8.3Hz,1.8Hz,4H),9.12(t,J=1.7Hz,1H),9.15(t,J=1.7Hz,1H). 
Under an argon stream, 2- [5-chloro-3- (dibenzothiophen-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (0.50 g, obtained in Synthesis Example-1) 0.951 mmol), 4- (2-pyridyl) phenylboronic acid (0.246 g, 1.24 mmol), palladium acetate (6.40 mg, 0.0285 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (27.2 mg, 0.0570 mmol) and potassium phosphate (0.524 g, 2.47 mmol) were suspended in a mixed solvent of dioxane (15 mL) and water (2 mL) and heated to 70 ° C. Heated for 18 hours. After allowing to cool to room temperature, water (20 mL) and methanol (20 mL) were added to the reaction mixture, and the precipitate was collected by filtration. The resulting precipitate was purified by recrystallization from toluene, and the target product 2- [5- (dibenzothiophen-4-yl) -4 ′-(2-pyridyl) biphenyl-3-yl] -4,6 -A white solid (yield 0.600 g, yield 97.9%) of diphenyl-1,3,5-triazine (compound A-157) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.24-7.29 (m, 1H), 7.47-7.51 (m, 2H), 7.54-7.72 (m, 8H) ), 7.77-7.88 (m, 3H), 7.96 (d, J = 8.5 Hz, 2H), 8.19 (d, J = 8.5 Hz, 2H), 8.23-8 .26 (m, 2H), 8.28 (t, J = 1.6 Hz, 1H), 8.73 (d, J = 4.8 Hz, 1H), 8.80 (dd, J = 8.3 Hz, 1.8 Hz, 4H), 9.12 (t, J = 1.7 Hz, 1H), 9.15 (t, J = 1.7 Hz, 1H).
合成実施例-2
Figure JPOXMLDOC01-appb-C000074
Synthesis Example-2
Figure JPOXMLDOC01-appb-C000074
 アルゴン気流下、合成例-2で得られた2-[5-クロロ-3-(ジベンゾチオフェン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(0.50g,0.951mmol)、4-(2-ピリジル)フェニルボロン酸(0.246g,1.24mmol)、酢酸パラジウム(6.40mg,0.0285mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(27.2mg,0.0570mmol)及び炭酸カリウム(0.341g,2.47mmol)をジオキサン(15mL)及び水(1.3mL)の混合溶媒に懸濁し、100℃に加熱して18時間加熱した。室温まで放冷後、反応混合物に水(20mL)及びメタノール(20mL)を加え、析出物をろ取した。得られた析出物をシリカゲルクロマトグラフィー(溶離液:クロロホルム及びヘキサンの混合溶媒(クロロホルム:ヘキサン(体積比)=50:50~1:0のグラジエント))により精製し、目的物である2-[5-(ジベンゾチオフェン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-158)の白色固体(収量0.470g,収率76.6%)を得た。
H-NMR(CDCl)δ(ppm):7.24-7.29(m,1H),7.49-7.51(m,2H),7.56-7.64(m,6H),7.79(td,J=7.7Hz,1.9Hz,1H),7.84(d,J=8.1Hz,1H),7.88-7.91(m,2H),7.95(d,J=8.7Hz,2H),8.02(d,J=8.2Hz,1H),8.18-8.20(m,1H),8.20(d,J=8.4Hz,2H),8.29-8.32(m,1H),8.53(d,J=1.6Hz,1H),8.74(d,J=4.8Hz,1H),8.81(dd,J=8.0Hz,1.9Hz,4H).9.06-9.07(m,2H).
Under an argon stream, 2- [5-chloro-3- (dibenzothiophen-2-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (0.50 g, obtained in Synthesis Example-2) was obtained. 0.951 mmol), 4- (2-pyridyl) phenylboronic acid (0.246 g, 1.24 mmol), palladium acetate (6.40 mg, 0.0285 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (27.2 mg, 0.0570 mmol) and potassium carbonate (0.341 g, 2.47 mmol) were suspended in a mixed solvent of dioxane (15 mL) and water (1.3 mL), and heated to 100 ° C. And heated for 18 hours. After allowing to cool to room temperature, water (20 mL) and methanol (20 mL) were added to the reaction mixture, and the precipitate was collected by filtration. The obtained precipitate was purified by silica gel chromatography (eluent: mixed solvent of chloroform and hexane (gradient of chloroform: hexane (volume ratio) = 50: 50 to 1: 0)), and the target 2- [ White solid (yield) of 5- (dibenzothiophen-2-yl) -4 ′-(2-pyridyl) biphenyl-3-yl] -4,6-diphenyl-1,3,5-triazine (Compound A-158) 0.470 g, yield 76.6%) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.24-7.29 (m, 1H), 7.49-7.51 (m, 2H), 7.56-7.64 (m, 6H) ), 7.79 (td, J = 7.7 Hz, 1.9 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.88-7.91 (m, 2H), 7 .95 (d, J = 8.7 Hz, 2H), 8.02 (d, J = 8.2 Hz, 1H), 8.18-8.20 (m, 1H), 8.20 (d, J = 8.4 Hz, 2H), 8.29-8.32 (m, 1H), 8.53 (d, J = 1.6 Hz, 1H), 8.74 (d, J = 4.8 Hz, 1H), 8.81 (dd, J = 8.0 Hz, 1.9 Hz, 4H). 9.06-9.07 (m, 2H).
合成実施例-3
Figure JPOXMLDOC01-appb-C000075
Synthesis Example-3
Figure JPOXMLDOC01-appb-C000075
 アルゴン気流下、合成例-3で得られた2-[5-クロロ-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(1.49g,3.00mmol)、2-ベンゾチオフェンボロン酸(0.694g,3.90mmol)、酢酸パラジウム(13.5mg,0.0600mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(57.2mg、0.120mmol)及び炭酸カリウム(1.08g,7.80mmol)をテトラヒドロフラン(20mL)及びに水(6.5mL)の混合溶媒に懸濁し、70℃で4時間撹拌した。室温まで放冷後、反応混合物に水(20mL)及びメタノール(20mL)を加え、析出物をろ取した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[5-(ベンゾチオフェン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-159)の白色固体(収量1.71g,収率95.8%)を得た。
H-NMR(CDCl)δ(ppm):7.25-7.29(m,1H),7.34-7.42(m,2H),7.58-7.66(m,6H),7.77-7.91(m,5H),7.92(d,J=8.5Hz,2H),8.18-8.20(m,1H),8.20(d,J=8.5Hz,2H),8.74(d,J=4.8Hz,1H),8.81(dd,J=8.0Hz,1.6Hz,4H),9.01(t,J=1.6Hz,1H),9.10(t,J=1.7Hz,1H).
Under an argon stream, 2- [5-chloro-4 ′-(2-pyridyl) biphenyl-3-yl] -4,6-diphenyl-1,3,5-triazine (1. 49 g, 3.00 mmol), 2-benzothiopheneboronic acid (0.694 g, 3.90 mmol), palladium acetate (13.5 mg, 0.0600 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′- Triisopropylbiphenyl (57.2 mg, 0.120 mmol) and potassium carbonate (1.08 g, 7.80 mmol) were suspended in a mixed solvent of tetrahydrofuran (20 mL) and water (6.5 mL), and the mixture was stirred at 70 ° C. for 4 hours. did. After allowing to cool to room temperature, water (20 mL) and methanol (20 mL) were added to the reaction mixture, and the precipitate was collected by filtration. The obtained precipitate was purified by recrystallization from toluene, and the target product 2- [5- (benzothiophen-2-yl) -4 ′-(2-pyridyl) biphenyl-3-yl] -4,6 -A white solid (yield 1.71 g, yield 95.8%) of diphenyl-1,3,5-triazine (compound A-159) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.25-7.29 (m, 1H), 7.34-7.42 (m, 2H), 7.58-7.66 (m, 6H) ), 7.77-7.91 (m, 5H), 7.92 (d, J = 8.5 Hz, 2H), 8.18-8.20 (m, 1H), 8.20 (d, J = 8.5 Hz, 2H), 8.74 (d, J = 4.8 Hz, 1H), 8.81 (dd, J = 8.0 Hz, 1.6 Hz, 4H), 9.01 (t, J = 1.6 Hz, 1 H), 9.10 (t, J = 1.7 Hz, 1 H).
合成実施例-4
Figure JPOXMLDOC01-appb-C000076
Synthesis Example 4
Figure JPOXMLDOC01-appb-C000076
 アルゴン気流下、合成例-3で得られた2-[5-クロロ-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(1.49g,3.00mmol)、2-ベンゾフランボロン酸(0.632g,3.90mmol)、酢酸パラジウム(13.5mg,0.0600mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(57.2mg、0.120mmol)及び炭酸カリウム(1.08g,7.80mmol)をテトラヒドロフラン(20mL)及びに水(6.5mL)の混合溶媒に懸濁し、70℃で4時間撹拌した。室温まで放冷後、反応混合物に水(20mL)及びメタノール(20mL)を加え、析出物をろ取した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[5-(ベンゾフラン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-363)の白色固体(収量1.56g,収率89.9%)を得た。
H-NMR(CDCl)δ(ppm):7.24-7.31(m,3H),7.34(t,J=7.3Hz,1H),7.59-7.68(m,8H),7.80(t,J=7.8Hz,1H),7.84(d,J=7.8Hz,1H),7.94(d,J=8.5Hz,2H),8.20(d,J=8.6Hz,2H),8.38(t,J=1.8Hz,1H),8.75(d,J=4.8Hz,1H),8.82(dd,J=8.0Hz,1.5Hz,4H),9.02(t,d=1.7Hz,1H),9.20(t,d=1.6Hz,1H).
Under an argon stream, 2- [5-chloro-4 ′-(2-pyridyl) biphenyl-3-yl] -4,6-diphenyl-1,3,5-triazine (1. 49 g, 3.00 mmol), 2-benzofuranboronic acid (0.632 g, 3.90 mmol), palladium acetate (13.5 mg, 0.0600 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropyl biphenyl (57.2 mg, 0.120 mmol) and potassium carbonate (1.08 g, 7.80 mmol) were suspended in a mixed solvent of tetrahydrofuran (20 mL) and water (6.5 mL), and the mixture was stirred at 70 ° C. for 4 hours. . After allowing to cool to room temperature, water (20 mL) and methanol (20 mL) were added to the reaction mixture, and the precipitate was collected by filtration. The obtained precipitate was purified by recrystallization from toluene, and the target product 2- [5- (benzofuran-2-yl) -4 ′-(2-pyridyl) biphenyl-3-yl] -4,6- A white solid (yield 1.56 g, yield 89.9%) of diphenyl-1,3,5-triazine (Compound A-363) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.24-7.31 (m, 3H), 7.34 (t, J = 7.3 Hz, 1H), 7.59-7.68 (m 8H), 7.80 (t, J = 7.8 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 8.5 Hz, 2H), 8 .20 (d, J = 8.6 Hz, 2H), 8.38 (t, J = 1.8 Hz, 1H), 8.75 (d, J = 4.8 Hz, 1H), 8.82 (dd, J = 8.0 Hz, 1.5 Hz, 4H), 9.02 (t, d = 1.7 Hz, 1H), 9.20 (t, d = 1.6 Hz, 1H).
合成実施例-5
Figure JPOXMLDOC01-appb-C000077
Synthesis Example-5
Figure JPOXMLDOC01-appb-C000077
 アルゴン気流下、合成例-3で得られた2-[5-クロロ-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(2.00g,4.02mmol)、4-ジベンゾフランボロン酸(1.11g,5.23mmol)、酢酸パラジウム(27.1mg,0.121mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(115mg、0.241mmol)をテトラヒドロフラン(27.6g)に懸濁し、60℃に加熱した。これに20質量%KCO水溶液(5.8mL,10.5mmol)をゆっくりと滴下した後、1時間撹拌した。室温まで放冷後、反応混合物に水(20mL)を加え、析出物をろ取した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[5-(ジベンゾフラン-4-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-361)の白色固体(収量1.75g,収率69.2%)を得た。
H-NMR(CDCl)δ(ppm):7.24-7.27(m,1H),7.39(t,J=7.5Hz,1H),7.49(td、J=8.5Hz,1.4Hz,1H),7.52(t,J=7.7Hz,1H),7.55-7.63(m,6H),7.65(d,J=8.0Hz,1H), 7.78(td,J=7.8Hz,1.8Hz,1H),7.81-7.84(m,2H),7.95(d,J=8.5Hz,2H),8.01(dd,J=7.7Hz,1.2Hz,1H),8.03(d,J=7.5Hz,1H),8.18(d,J=8.5Hz,2H),8.42(t,J=1.8Hz,1H),8.74(d,J=4.8Hz,1H),8.81(dd,J=8.0Hz,1.8Hz,4H),9.08(t,J=1.7Hz,1H),9.33(t,J=1.7Hz,1H).
Under an argon stream, 2- [5-chloro-4 ′-(2-pyridyl) biphenyl-3-yl] -4,6-diphenyl-1,3,5-triazine (2. 00 g, 4.02 mmol), 4-dibenzofuranboronic acid (1.11 g, 5.23 mmol), palladium acetate (27.1 mg, 0.121 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropyl biphenyl (115 mg, 0.241 mmol) was suspended in tetrahydrofuran (27.6 g) and heated to 60 ° C. This 20 wt% K 2 CO 3 aqueous solution (5.8 mL, 10.5 mmol) was added dropwise slowly and stirred for 1 hour. After allowing to cool to room temperature, water (20 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The obtained precipitate was purified by recrystallization from toluene, and the target product 2- [5- (dibenzofuran-4-yl) -4 ′-(2-pyridyl) biphenyl-3-yl] -4,6- A white solid (yield 1.75 g, yield 69.2%) of diphenyl-1,3,5-triazine (compound A-361) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.24-7.27 (m, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.49 (td, J = 8 .5 Hz, 1.4 Hz, 1 H), 7.52 (t, J = 7.7 Hz, 1 H), 7.55-7.63 (m, 6 H), 7.65 (d, J = 8.0 Hz, 1H), 7.78 (td, J = 7.8 Hz, 1.8 Hz, 1H), 7.81-7.84 (m, 2H), 7.95 (d, J = 8.5 Hz, 2H), 8.01 (dd, J = 7.7 Hz, 1.2 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 8.18 (d, J = 8.5 Hz, 2H), 8 .42 (t, J = 1.8 Hz, 1H), 8.74 (d, J = 4.8 Hz, 1H), 8.81 (dd, J = 8.0 Hz, 1.8 Hz, 4H), 9. 08 (t, J 1.7Hz, 1H), 9.33 (t, J = 1.7Hz, 1H).
合成実施例-6
Figure JPOXMLDOC01-appb-C000078
Synthesis Example-6
Figure JPOXMLDOC01-appb-C000078
 アルゴン気流下、合成例-2で得られた2-[5-クロロ-3-(ジベンゾチオフェン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(3.00g,5.70mmol)、6-(2-ナフチル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピリジン(2.64g,7.98mmol)、酢酸パラジウム(25.6mg,0.114mmol)及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(109mg、0.228mmol)をテトラヒドロフラン(100mL)及び20質量%炭酸カリウム水溶液(10.2g,14.8mmol)の混合溶媒に懸濁し、70℃で4時間撹拌した。室温まで放冷後、反応混合物に水(100mL)を加え、析出物をろ取した。ろ取した析出物を、メタノール(40m)及びヘキサン(50mL)にて洗浄した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-{3-(ジベンゾチオフェン-2-イル)-5-[6-(2-ナフチル)ピリジン-3-イル)]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(化合物A-482)の白色固体(収量2.55g,収率64.4%)を得た。
H-NMR(CDCl)δ(ppm):7.49-7.54(m,4H),7.57-7.66(m,6H),7.88-7.91(m,3H),8.00(d,J=8.9Hz,2H),8.03(d,J=8.3Hz,1H),8.08(d,J=8.4Hz,1H),8.19(t,J=1.7Hz,1H),8.23-8.26(m,2H),8.29-8.31(m,1H),8.53(d,J=1.3Hz,1H),8.60(d,J=1.1Hz,1H),8.81(dd,J=8.0Hz,1.8Hz,4H),9.10(dt,J=5.7Hz,1.4Hz,2H),9.25(dd,J=2.5Hz,0.8Hz,1H).
Under an argon stream, 2- [5-chloro-3- (dibenzothiophen-2-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (3.00 g, obtained in Synthesis Example-2) 5.70 mmol), 6- (2-naphthyl) -3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridine (2.64 g, 7.98 mmol), Palladium acetate (25.6 mg, 0.114 mmol) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (109 mg, 0.228 mmol) were added to tetrahydrofuran (100 mL) and a 20% by mass aqueous potassium carbonate solution ( (10.2 g, 14.8 mmol), and the mixture was stirred at 70 ° C. for 4 hours. After allowing to cool to room temperature, water (100 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with methanol (40 m) and hexane (50 mL). The resulting precipitate was purified by recrystallization from toluene, and the target product, 2- {3- (dibenzothiophen-2-yl) -5- [6- (2-naphthyl) pyridin-3-yl)] phenyl } -4,6-diphenyl-1,3,5-triazine (Compound A-482) was obtained as a white solid (yield 2.55 g, yield 64.4%).
1 H-NMR (CDCl 3 ) δ (ppm): 7.49-7.54 (m, 4H), 7.57-7.66 (m, 6H), 7.88-7.91 (m, 3H) ), 8.00 (d, J = 8.9 Hz, 2H), 8.03 (d, J = 8.3 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 8.19. (T, J = 1.7 Hz, 1H), 8.23-8.26 (m, 2H), 8.29-8.31 (m, 1H), 8.53 (d, J = 1.3 Hz, 1H), 8.60 (d, J = 1.1 Hz, 1H), 8.81 (dd, J = 8.0 Hz, 1.8 Hz, 4H), 9.10 (dt, J = 5.7 Hz, 1 .4 Hz, 2H), 9.25 (dd, J = 2.5 Hz, 0.8 Hz, 1H).
合成例-4
Figure JPOXMLDOC01-appb-C000079
Synthesis example 4
Figure JPOXMLDOC01-appb-C000079
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(5.00g,11.8mmol)、4-ジベンゾフランボロン酸(3.01g,14.2mmol)、炭酸カリウム(4.90g,35.5mmol)及びテトラキストリフェニルホスフィンパラジウム(410mg,0.354mmol)をテトラヒドロフラン(150mL)及び水(35mL)の混合溶液に懸濁し、70℃で19時間撹拌させて反応させた。反応混合物を室温まで冷却させた後、水を200mL加え、得られた析出物をろ取した。得られた析出物をトルエンによる再結晶によって精製し、目的物である2-[5-クロロ-3-(ジベンゾフラン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの灰白色固体(収量5.33g,収率88.0%)を得た。
H-NMR(CDCl)δ(ppm):7.40(dt,J=7.5Hz,0.9Hz,1H),7.49-7.53(m,2H),7.55-7.64(m,6H),7.67(brd,J=8.3Hz,1H),7.75(dd,J=7.6Hz,1.3Hz,1H),8.02(d,J=7.8Hz,2H),8.16(t,J=1.8Hz,1H),8.77-8.81(m,5H),9.25(t,J=1.51,1H).
Under an argon stream, 2- (3-bromo-5-chlorophenyl) -4,6-diphenyl-1,3,5-triazine (5.00 g, 11.8 mmol), 4-dibenzofuranboronic acid (3.01 g, 14 .2 mmol), potassium carbonate (4.90 g, 35.5 mmol) and tetrakistriphenylphosphine palladium (410 mg, 0.354 mmol) are suspended in a mixed solution of tetrahydrofuran (150 mL) and water (35 mL), and the mixture is maintained at 70 ° C. for 19 hours. The reaction was allowed to stir. After the reaction mixture was cooled to room temperature, 200 mL of water was added, and the resulting precipitate was collected by filtration. The obtained precipitate was purified by recrystallization from toluene, and the target 2- [5-chloro-3- (dibenzofuran-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine Of an off-white solid (yield 5.33 g, yield 88.0%).
1 H-NMR (CDCl 3 ) δ (ppm): 7.40 (dt, J = 7.5 Hz, 0.9 Hz, 1 H), 7.49-7.53 (m, 2H), 7.55-7 .64 (m, 6H), 7.67 (brd, J = 8.3 Hz, 1H), 7.75 (dd, J = 7.6 Hz, 1.3 Hz, 1H), 8.02 (d, J = 7.8 Hz, 2H), 8.16 (t, J = 1.8 Hz, 1H), 8.77-8.81 (m, 5H), 9.25 (t, J = 1.51, 1H).
合成例-5
Figure JPOXMLDOC01-appb-C000080
Synthesis example-5
Figure JPOXMLDOC01-appb-C000080
 窒素気流下、フェナシルピリジニウムブロミド(3.00g,8.40mmol)、(E)-カルコン(1.75g,8.40mmol)、酢酸アンモニウム(32.3g,420mmol)、酢酸(120mL)及びジメチルホルムアミド(95mL)を500mL4つ口フラスコに加え、160℃で3時間撹拌した。室温まで放冷後、反応混合物に水(300mL)を加え、析出物をろ取した。ろ取した析出物を純水で洗浄し、白色粉末を得た。得られた灰白色粉末をトルエン(30mL)とメタノール(25mL)の混合溶媒で再結晶することにより精製し、2-(4-ブロモフェニル)-4,6-ジフェニルピリジンの灰白色粉末(収量1.14g,収率35.2%)を得た。
H-NMR(CDCl);8.17(d,2H),8.07(d,2H),7.88(s,1H),7.82(s,1H),7.71(d,2H),7.62(d,2H),7.52-7.44(m,6H).
Under a nitrogen stream, phenacylpyridinium bromide (3.00 g, 8.40 mmol), (E) -chalcone (1.75 g, 8.40 mmol), ammonium acetate (32.3 g, 420 mmol), acetic acid (120 mL) and dimethylformamide (95 mL) was added to a 500 mL four-necked flask and stirred at 160 ° C. for 3 hours. After allowing to cool to room temperature, water (300 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with pure water to obtain a white powder. The resulting off-white powder was purified by recrystallization from a mixed solvent of toluene (30 mL) and methanol (25 mL) to give an off-white powder of 2- (4-bromophenyl) -4,6-diphenylpyridine (yield 1.14 g). Yield 35.2%).
1 H-NMR (CDCl 3 ); 8.17 (d, 2H), 8.07 (d, 2H), 7.88 (s, 1H), 7.82 (s, 1H), 7.71 (d , 2H), 7.62 (d, 2H), 7.52-7.44 (m, 6H).
合成例-6
Figure JPOXMLDOC01-appb-C000081
Synthesis example-6
Figure JPOXMLDOC01-appb-C000081
 アルゴン気流下、合成例-5で得られた2-(4-ブロモフェニル)-4,6-ジフェニルピリジン(1g,2.59mmol)をテトラヒドロフラン(13mL)に溶解させ、-78℃に冷却した。ここに、2.85mmolのn-ブチルリチウムを含むヘキサン溶液1.72mLをゆっくり加え、この温度で30分撹拌した。この混合物にホウ酸トリイソプロピル(0.77mL,3.37mmol)をゆっくり加え、1時間撹拌した。得られた混合物を室温まで昇温後、19時間撹拌した。ここに1.5NのNaOH水溶液を4.5mL滴下し、晶析してきた析出物を濾取した。得られた析出物を水(15mL)で洗浄し、白色粉末を得た。得られた白色粉末を真空乾燥させ、4-(4,6-ジフェニルピリジン-2-イル)フェニルボロン酸の白色粉末(収量489mg,収率53.8%)を得た。 Under an argon stream, 2- (4-bromophenyl) -4,6-diphenylpyridine (1 g, 2.59 mmol) obtained in Synthesis Example-5 was dissolved in tetrahydrofuran (13 mL) and cooled to -78 ° C. To this, 1.72 mL of a hexane solution containing 2.85 mmol of n-butyllithium was slowly added and stirred at this temperature for 30 minutes. To this mixture, triisopropyl borate (0.77 mL, 3.37 mmol) was slowly added and stirred for 1 hour. The resulting mixture was warmed to room temperature and stirred for 19 hours. 4.5 mL of 1.5N NaOH aqueous solution was dripped here, and the deposit which crystallized was filtered. The obtained precipitate was washed with water (15 mL) to obtain a white powder. The obtained white powder was vacuum-dried to obtain 4- (4,6-diphenylpyridin-2-yl) phenylboronic acid white powder (yield 489 mg, yield 53.8%).
合成実施例-7
Figure JPOXMLDOC01-appb-C000082
Synthesis Example-7
Figure JPOXMLDOC01-appb-C000082
 アルゴン気流下、合成例-4で得られた2-[5-クロロ-3-(ジベンゾフラン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(2.00g,3.92mmol)、合成例-6で得られた4-(4,6-ジフェニルピリジン-2-イル)フェニルボロン酸(1.98g,5.65mmol)、酢酸パラジウム(8.80mg,0.039mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(37.3mg、0.078mmol)及び炭酸カリウム(1.63g,11.8mmol)をテトラヒドロフラン(50mL)及び水(11mL)の混合溶媒に懸濁し、70℃で17時間撹拌した。室温まで放冷後、反応混合物に水(100mL)を加え、析出物をろ取した。ろ取した析出物を、水(30mL)、メタノール(30m)及びヘキサン(30mL)にて洗浄した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[5-(ジベンゾフラン-4-イル)-4’-(4,6-ジフェニルピリジン-2-イル)-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-471)の白色固体(収量2.55g,収率64.4%)を得た。
H-NMR(CDCl)δ(ppm):7.40(ddd,J=7.4Hz,7.4Hz,0.9Hz,1H),7.44-7.64(m,14H),7.67(d,J=8.2Hz,1H),7.78(dd,J=8.3Hz,1.2Hz,2H),7.85(dd,J=7.6Hz,1.2Hz,1H),7.92(d,J=1.4Hz,1H),7.99-8.05(m,5H),8.25(dd,J=8.3Hz,1.4Hz,2H),8.41(d,J=8.5Hz,2H),8.46(t,J=1.7Hz,1H),8.83(dd,J=8.1Hz,1.9Hz,4H),9.12(t,J=1.6Hz,1H),9.35(t,J=1.7Hz,1H).
2- [5-Chloro-3- (dibenzofuran-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (2.00 g, 3) obtained in Synthesis Example-4 under an argon stream .92 mmol), 4- (4,6-diphenylpyridin-2-yl) phenylboronic acid obtained in Synthesis Example-6 (1.98 g, 5.65 mmol), palladium acetate (8.80 mg, 0.039 mmol) 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (37.3 mg, 0.078 mmol) and potassium carbonate (1.63 g, 11.8 mmol) in tetrahydrofuran (50 mL) and water (11 mL) And the mixture was stirred at 70 ° C. for 17 hours. After allowing to cool to room temperature, water (100 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with water (30 mL), methanol (30 m) and hexane (30 mL). The obtained precipitate was purified by recrystallization from toluene, and the target product 2- [5- (dibenzofuran-4-yl) -4 ′-(4,6-diphenylpyridin-2-yl) -biphenyl-3 was obtained. A white solid (yield 2.55 g, yield 64.4%) of -yl] -4,6-diphenyl-1,3,5-triazine (Compound A-471) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.40 (ddd, J = 7.4 Hz, 7.4 Hz, 0.9 Hz, 1 H), 7.44-7.64 (m, 14 H), 7 .67 (d, J = 8.2 Hz, 1H), 7.78 (dd, J = 8.3 Hz, 1.2 Hz, 2H), 7.85 (dd, J = 7.6 Hz, 1.2 Hz, 1H) ), 7.92 (d, J = 1.4 Hz, 1H), 7.99-8.05 (m, 5H), 8.25 (dd, J = 8.3 Hz, 1.4 Hz, 2H), 8 .41 (d, J = 8.5 Hz, 2H), 8.46 (t, J = 1.7 Hz, 1H), 8.83 (dd, J = 8.1 Hz, 1.9 Hz, 4H), 9. 12 (t, J = 1.6 Hz, 1H), 9.35 (t, J = 1.7 Hz, 1H).
合成例7
Synthesis example 7
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(25.0g,59.1mmol)、3-ピリジンボロン酸(12.0g,97.6mmol)、テトラキストリフェニルホスフィンパラジウム(2.05g,1.77mmol)及び炭酸カリウム(24.5g,177mmol)を、テトラヒドロフラン(500mL)及び水(177mL)の混合溶媒に懸濁し、70℃に加熱して18時間撹拌した。撹拌した後、反応溶媒を留去し、クロロホルム及び水を加えて再度溶解させた。有機層のみを取り出し、硫酸マグネシウムを加えて脱水した後、ろ過した。得られた有機層の低沸点成分を留去して得られた灰白色固体を、トルエンによる再結晶により精製し、目的物である2-[5-クロロ-3-(3-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの灰白色固体(収量22.6g,収率90.9%)を得た。
H-NMR(CDCl):7.45(dd,J=7.6Hz,4.8Hz,1H),7.56-7.65(m,6H),7.78(t,J=1.9Hz,1H),7.99(d,J=7.9Hz,1H),8.68(dd,J=4.8Hz,1.6Hz,1H),8.74-8.76(m,1H),8.76(d,J=6.5Hz,4H),8.86(brs,1H),8.99(d,J=2.2Hz,1H).
Under an argon stream, 2- (3-bromo-5-chlorophenyl) -4,6-diphenyl-1,3,5-triazine (25.0 g, 59.1 mmol), 3-pyridineboronic acid (12.0 g, 97 .6 mmol), tetrakistriphenylphosphine palladium (2.05 g, 1.77 mmol) and potassium carbonate (24.5 g, 177 mmol) are suspended in a mixed solvent of tetrahydrofuran (500 mL) and water (177 mL) and heated to 70 ° C. And stirred for 18 hours. After stirring, the reaction solvent was distilled off, and chloroform and water were added and dissolved again. Only the organic layer was taken out, dehydrated by adding magnesium sulfate, and then filtered. The off-white solid obtained by distilling off the low-boiling components of the obtained organic layer was purified by recrystallization from toluene, and the target product 2- [5-chloro-3- (3-pyridyl) phenyl]- An off-white solid of 4,6-diphenyl-1,3,5-triazine (yield 22.6 g, yield 90.9%) was obtained.
1 H-NMR (CDCl 3 ): 7.45 (dd, J = 7.6 Hz, 4.8 Hz, 1H), 7.56-7.65 (m, 6H), 7.78 (t, J = 1) .9 Hz, 1H), 7.99 (d, J = 7.9 Hz, 1H), 8.68 (dd, J = 4.8 Hz, 1.6 Hz, 1H), 8.74-8.76 (m, 1H), 8.76 (d, J = 6.5 Hz, 4H), 8.86 (brs, 1H), 8.99 (d, J = 2.2 Hz, 1H).
合成例-8
Figure JPOXMLDOC01-appb-C000084
Synthesis example-8
Figure JPOXMLDOC01-appb-C000084
 アルゴン気流下、2-ジベンゾチオフェンボロン酸(3.00g,13.2mmol)、p-ブロモクロロベンゼン(2.51g,13.2mmol)、テトラキストリフェニルホスフィンパラジウム(456mg,0.394mmol)及び炭酸カリウム(5.45g,39.5mmol)をテトラヒドロフラン(79mL)及び水(39mL)の混合溶媒に懸濁し、70℃で17時間撹拌した。室温まで放冷後、反応混合物に水(100mL)及びクロロホルム(200mL)を加えた。得られた混合物を振り混ぜた後、有機層のみを取り出した。得られた有機層を硫酸マグネシウムで脱水した後、低沸点成分を留去した。得られた生成物を、シリカゲルクロマトグラフィー(溶離液=ヘキサン)により精製し、目的物である2-(4-クロロフェニル)ジベンゾチオフェンの白色固体(収量3.29g,収率84.9%)を得た。
H-NMR(CDCl):7.44(d,J=8.7Hz,2H),7.45-7.48(m,2H),7.62(d,J=8.7Hz,2H),7.62-7.65(m,1H),7.86(ddd,J=5.9Hz,3.3Hz,0.7Hz,1H),7.90(dd,J=8.3Hz,0.5Hz,1H),8.20(ddd,J=5.8Hz,3.3Hz,0.5Hz,1H),8.29(dd,J=2.0Hz,0.5Hz,1H).
Under an argon stream, 2-dibenzothiopheneboronic acid (3.00 g, 13.2 mmol), p-bromochlorobenzene (2.51 g, 13.2 mmol), tetrakistriphenylphosphine palladium (456 mg, 0.394 mmol) and potassium carbonate ( 5.45 g, 39.5 mmol) was suspended in a mixed solvent of tetrahydrofuran (79 mL) and water (39 mL), and the mixture was stirred at 70 ° C. for 17 hours. After cooling to room temperature, water (100 mL) and chloroform (200 mL) were added to the reaction mixture. After the obtained mixture was shaken and mixed, only the organic layer was taken out. The obtained organic layer was dehydrated with magnesium sulfate, and then the low boiling point component was distilled off. The obtained product was purified by silica gel chromatography (eluent = hexane), and the target 2- (4-chlorophenyl) dibenzothiophene white solid (yield 3.29 g, yield 84.9%) was obtained. Obtained.
1 H-NMR (CDCl 3 ): 7.44 (d, J = 8.7 Hz, 2H), 7.45-7.48 (m, 2H), 7.62 (d, J = 8.7 Hz, 2H) ), 7.62-7.65 (m, 1H), 7.86 (ddd, J = 5.9 Hz, 3.3 Hz, 0.7 Hz, 1H), 7.90 (dd, J = 8.3 Hz, 0.5Hz, 1H), 8.20 (ddd, J = 5.8Hz, 3.3Hz, 0.5Hz, 1H), 8.29 (dd, J = 2.0Hz, 0.5Hz, 1H).
合成例-9
Figure JPOXMLDOC01-appb-C000085
Synthesis example-9
Figure JPOXMLDOC01-appb-C000085
 アルゴン気流下、合成例-8で得られた2-(4-クロロフェニル)ジベンゾチオフェン(1.00g,3.39mmol)、ビス(ピナコラート)ジボロン(1.03g,4.07mmol)、酢酸パラジウム(15.2mg,0.067mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(64.7mg、0.0135mmol)及び酢酸カリウム(0.998g,10.2mmol)を1,4-ジオキサン(10mL)に懸濁し、100℃で24時間撹拌した。室温まで放冷後、反応混合物に水(20mL)及びクロロホルム(50mL)を加えた。得られた混合物を振り混ぜた後、有機層のみを取り出した。得られた有機層を硫酸マグネシウムで脱水した後、低沸点成分を留去した。得られた生成物を、シリカゲルクロマトグラフィー(溶離液=クロロホルム/ヘキサンの混合溶液)により精製し、目的物である2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ジベンゾチオフェンの白色固体(収量1.23g,収率93.9%)を得た。
H-NMR(CDCl):1.36(s,12H),7.45-7.47(m,2H),7.69-7.73(m,3H),7.83-7.87(m,1H),7.90(d,J=8.1Hz,1H),7.92(d,J=8.3Hz,2H),8.20-8.24(m,1H),8.36(brd,J=1.4Hz,1H).
Under an argon stream, 2- (4-chlorophenyl) dibenzothiophene (1.00 g, 3.39 mmol), bis (pinacolato) diboron (1.03 g, 4.07 mmol) obtained in Synthesis Example-8, palladium acetate (15 .2 mg, 0.067 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (64.7 mg, 0.0135 mmol) and potassium acetate (0.998 g, 10.2 mmol) Suspended in 4-dioxane (10 mL) and stirred at 100 ° C. for 24 hours. After cooling to room temperature, water (20 mL) and chloroform (50 mL) were added to the reaction mixture. After the obtained mixture was shaken and mixed, only the organic layer was taken out. The obtained organic layer was dehydrated with magnesium sulfate, and then the low boiling point component was distilled off. The obtained product was purified by silica gel chromatography (eluent = chloroform / hexane mixed solution), and the desired product 2- [4- (4,4,5,5-tetramethyl-1,3, was obtained. A white solid (yield 1.23 g, yield 93.9%) of 2-dioxaborolan-2-yl) phenyl] dibenzothiophene was obtained.
1 H-NMR (CDCl 3 ): 1.36 (s, 12H), 7.45-7.47 (m, 2H), 7.69-7.73 (m, 3H), 7.83-7. 87 (m, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 8.3 Hz, 2H), 8.20-8.24 (m, 1H), 8.36 (brd, J = 1.4 Hz, 1H).
合成実施例-8
Figure JPOXMLDOC01-appb-C000086
Synthesis Example-8
Figure JPOXMLDOC01-appb-C000086
 アルゴン気流下、合成例-7で得られた2-[5-クロロ-3-(3-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(300mg,0.71mmol)、合成例-9で得られた2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ジベンゾチオフェン(330mg,0.86mmol)、酢酸パラジウム(1.60mg,0.0071mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(6.8mg、0.014mmol)及び炭酸カリウム(295mg,2.14mmol)をテトラヒドロフラン(5mL)及び水(2mL)の混合溶媒に懸濁し、70℃で18時間撹拌した。室温まで放冷後、反応混合物に水(10mL)を加え、析出物をろ取した。ろ取した析出物を、水(10mL)、メタノール(10m)及びヘキサン(10mL)にて洗浄した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[4’-(2-ジベンゾチオフェン)-5-(3-ピリジル)-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-545)の白色固体(収量414mg,収率90.2%)を得た。
H-NMR(CDCl)δ(ppm):7.46-7.52(m,3H),7.57-7.66(m,6H),7.79(dd,J=8.3Hz,1.9Hz,1H),7.87-7.96(m,6H),8.08(t,J=1.8Hz,1H),8.11(ddd,J=7.8Hz,2.3Hz,1.6Hz,1H),8.25-8.27(m,1H),8.44(d,J=1.6Hz,1H),8.70(dd,J=4.8Hz,1.6Hz,1H),8.80(dd,J=8.3Hz,1.8Hz,4H),8.99(t,J=1.6Hz,1H),9.10(t,J=1.7Hz,2H).
Under an argon stream, 2- [5-chloro-3- (3-pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (300 mg, 0.71 mmol) obtained in Synthesis Example-7, 2- [4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] dibenzothiophene (330 mg, 0.86 mmol) obtained in Synthesis Example-9, acetic acid Palladium (1.60 mg, 0.0071 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (6.8 mg, 0.014 mmol) and potassium carbonate (295 mg, 2.14 mmol) were added to tetrahydrofuran. (5 mL) and water (2 mL) were suspended in a mixed solvent, and the mixture was stirred at 70 ° C. for 18 hours. After allowing to cool to room temperature, water (10 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with water (10 mL), methanol (10 m) and hexane (10 mL). The resulting precipitate was purified by recrystallization from toluene, and the target product 2- [4 ′-(2-dibenzothiophene) -5- (3-pyridyl) -biphenyl-3-yl] -4,6- A white solid (yield 414 mg, yield 90.2%) of diphenyl-1,3,5-triazine (compound A-545) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.46-7.52 (m, 3H), 7.57-7.66 (m, 6H), 7.79 (dd, J = 8.3 Hz) , 1.9 Hz, 1 H), 7.87-7.96 (m, 6 H), 8.08 (t, J = 1.8 Hz, 1 H), 8.11 (ddd, J = 7.8 Hz, 2. 3 Hz, 1.6 Hz, 1 H), 8.25-8.27 (m, 1 H), 8.44 (d, J = 1.6 Hz, 1 H), 8.70 (dd, J = 4.8 Hz, 1 .6 Hz, 1H), 8.80 (dd, J = 8.3 Hz, 1.8 Hz, 4H), 8.99 (t, J = 1.6 Hz, 1H), 9.10 (t, J = 1. 7Hz, 2H).
合成例-10
Figure JPOXMLDOC01-appb-C000087
 合成例-8と同様な反応条件及び方法で、目的物である5-クロロ-2-(2-ナフチル)ピリジンを合成した。
Synthesis Example-10
Figure JPOXMLDOC01-appb-C000087
The target product, 5-chloro-2- (2-naphthyl) pyridine, was synthesized under the same reaction conditions and method as in Synthesis Example-8.
合成例-11
Figure JPOXMLDOC01-appb-C000088
Synthesis Example-11
Figure JPOXMLDOC01-appb-C000088
 アルゴン気流下、5-クロロ-2-(2-ナフチル)ピリジン(2.55g,10.6mmol)、ビス(ピナコラート)ジボロン(2.97g,11.7mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(291mg,0.381mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(455mg、0.954mmol)及び酢酸カリウム(3.12g,31.8mmol)を1,4-ジオキサン(40mL)に懸濁し、80℃で17時間撹拌した。室温まで放冷後、反応混合物に水(50mL)を加え、晶析してきた析出物を濾過した。得られた濾過物を、水(50mL)によって洗浄し、目的の6-(2-ナフチル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピリジンの白色固体(収量3.35g,収率95.4%)を得た。 Under a stream of argon, 5-chloro-2- (2-naphthyl) pyridine (2.55 g, 10.6 mmol), bis (pinacolato) diboron (2.97 g, 11.7 mmol), tris (dibenzylideneacetone) dipalladium ( 291 mg, 0.381 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (455 mg, 0.954 mmol) and potassium acetate (3.12 g, 31.8 mmol) in 1,4-dioxane (40 mL) and stirred at 80 ° C. for 17 hours. After allowing to cool to room temperature, water (50 mL) was added to the reaction mixture, and the crystallized precipitate was filtered. The obtained filtrate was washed with water (50 mL) to give the desired 6- (2-naphthyl) -3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl ) A white solid of pyridine (yield 3.35 g, yield 95.4%) was obtained.
合成実施例-9
Figure JPOXMLDOC01-appb-C000089
Synthesis Example-9
Figure JPOXMLDOC01-appb-C000089
 アルゴン気流下、合成例-4で得られた2-[5-クロロ-3-(ジベンゾフラン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(3.00g,5.88mmol)、合成例-11で得られた6-(2-ナフチル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピリジン(2.53g,7.65mmol)、酢酸パラジウム(39.6mg,0.176mmol)及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(168mg、0.353mmol)をテトラヒドロフラン(60mL)及び20質量%炭酸カリウム水溶液(10.6g,15.3mmol)の混合溶媒に懸濁し、75℃で2時間撹拌した。室温まで放冷後、反応混合物に水(100mL)を加え、析出物をろ取した。ろ取した析出物を、メタノール(30m)及びヘキサン(50mL)にて洗浄した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-{3-(ジベンゾフラン-4-イル)-5-[6-(2-ナフチル)ピリジン-3-イル)]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(化合物A-493)の白色固体(収量3.65,収率91.5%)を得た。
H-NMR(CDCl)δ(ppm):7.48-7.54(m,4H),7.57-7.65(m,6H),7.88-7.91(m,3H),7.98-8.00(m,2H),8.03(d,J=8.3Hz,1H),8.08(dd,J=8.3Hz,0.8Hz,1H),8.19(t,J=1.8Hz,1H),8.23-8.26(m,2H),8.29-8.33(m,1H),8.53(brd,J=1.6Hz,1H),8.60(brs,1H),8.81(dd,J=8.1Hz,1.8Hz,4H),9.09-9.11(m,2H),9.25(dd,J=2.4Hz,0.8Hz,1H).
Under an argon stream, 2- [5-chloro-3- (dibenzofuran-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (3.00 g, 5) obtained in Synthesis Example-4 .88 mmol), 6- (2-naphthyl) -3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridine obtained in Synthesis Example-11 (2. 53 g, 7.65 mmol), palladium acetate (39.6 mg, 0.176 mmol) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (168 mg, 0.353 mmol) in tetrahydrofuran (60 mL) and The mixture was suspended in a mixed solvent of 20% by mass aqueous potassium carbonate solution (10.6 g, 15.3 mmol) and stirred at 75 ° C. for 2 hours. After allowing to cool to room temperature, water (100 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with methanol (30 m) and hexane (50 mL). The obtained precipitate was purified by recrystallization from toluene, and the target product, 2- {3- (dibenzofuran-4-yl) -5- [6- (2-naphthyl) pyridin-3-yl)] phenyl} A white solid (yield 3.65, yield 91.5%) of -4,6-diphenyl-1,3,5-triazine (Compound A-493) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.48-7.54 (m, 4H), 7.57-7.65 (m, 6H), 7.88-7.91 (m, 3H) ), 7.98-8.00 (m, 2H), 8.03 (d, J = 8.3 Hz, 1H), 8.08 (dd, J = 8.3 Hz, 0.8 Hz, 1H), 8 .19 (t, J = 1.8 Hz, 1H), 8.23-8.26 (m, 2H), 8.29-8.33 (m, 1H), 8.53 (brd, J = 1. 6 Hz, 1H), 8.60 (brs, 1H), 8.81 (dd, J = 8.1 Hz, 1.8 Hz, 4H), 9.09-9.11 (m, 2H), 9.25 ( dd, J = 2.4 Hz, 0.8 Hz, 1H).
合成実施例-10
Figure JPOXMLDOC01-appb-C000090
Synthesis Example-10
Figure JPOXMLDOC01-appb-C000090
 アルゴン気流下、合成例-4で得られた2-[5-クロロ-3-(ジベンゾフラン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(2.00g,3.92mmol)、1-ピレンボロン酸(1.16g,4.71mmol)、酢酸パラジウム(8.81mg,0.039mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(37.4mg、0.078mmol)及び炭酸カリウム(1.63g,11.8mmol)をテトラヒドロフラン(67mL)及び水(11mL)の混合溶媒に懸濁し、70℃で19時間撹拌した。室温まで放冷後、反応混合物に水(100mL)を加え、析出物をろ取した。ろ取した析出物を、水(40mL)、メタノール(40m)及びヘキサン(40mL)にて洗浄した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[3-(ジベンゾフラン-4-イル)-5-(1-ピレニル)-フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-337)の白色固体(収量2.18g,収率82.2%)を得た。
H-NMR(CDCl)δ(ppm):7.38(ddd,J=7.5Hz,7.5Hz,0.9Hz,1H),7.46-7.61(m,8H),7.65(d,J=8.3Hz,1H),7.88(dd,J=7.8Hz,1.2Hz,1H),8.03(d,J=7.4Hz,2H),8.03-8.05(m,1H),8.12(d,J=9.4Hz,1H),8.15(d,J=3.3Hz,2H),8.20-8.24(m,3H),8.34(d,J=7.8Hz,1H),8.43(d,J=9.0Hz,1H),8.46(t,J=1.8Hz,1H),7.80(dd,J=8.5Hz,1.6Hz,4H),9.07(t,J=1.7Hz,1H).9.49(t,J=1.7Hz,1H).
2- [5-Chloro-3- (dibenzofuran-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (2.00 g, 3) obtained in Synthesis Example-4 under an argon stream .92 mmol), 1-pyreneboronic acid (1.16 g, 4.71 mmol), palladium acetate (8.81 mg, 0.039 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (37 .4 mg, 0.078 mmol) and potassium carbonate (1.63 g, 11.8 mmol) were suspended in a mixed solvent of tetrahydrofuran (67 mL) and water (11 mL), and the mixture was stirred at 70 ° C. for 19 hours. After allowing to cool to room temperature, water (100 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with water (40 mL), methanol (40 m) and hexane (40 mL). The resulting precipitate was purified by recrystallization from toluene, and the target product 2- [3- (dibenzofuran-4-yl) -5- (1-pyrenyl) -phenyl] -4,6-diphenyl-1, A white solid (yield 2.18 g, yield 82.2%) of 3,5-triazine (compound A-337) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.38 (ddd, J = 7.5 Hz, 7.5 Hz, 0.9 Hz, 1H), 7.46-7.61 (m, 8H), 7 .65 (d, J = 8.3 Hz, 1H), 7.88 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 8.03 (d, J = 7.4 Hz, 2H), 8. 03-8.05 (m, 1H), 8.12 (d, J = 9.4 Hz, 1H), 8.15 (d, J = 3.3 Hz, 2H), 8.20-8.24 (m 3H), 8.34 (d, J = 7.8 Hz, 1H), 8.43 (d, J = 9.0 Hz, 1H), 8.46 (t, J = 1.8 Hz, 1H), 7 .80 (dd, J = 8.5 Hz, 1.6 Hz, 4H), 9.07 (t, J = 1.7 Hz, 1H). 9.49 (t, J = 1.7 Hz, 1H).
合成実施例-11
Figure JPOXMLDOC01-appb-C000091
Synthesis Example-11
Figure JPOXMLDOC01-appb-C000091
 アルゴン気流下、合成例-2で得られた2-[5-クロロ-3-(ジベンゾチオフェン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(300mg,0.57mmol)、9-フェナントレンボロン酸(158mg,0.69mmol)、酢酸パラジウム(2.59mg,0.011mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(11.0mg、0.023mmol)及び炭酸カリウム(239mg,1.73mmol)をテトラヒドロフラン(5mL)及び水(1.7mL)の混合溶媒に懸濁し、70℃で4時間撹拌した。室温まで放冷後、反応混合物に水(15mL)を加え、析出物をろ取した。ろ取した析出物を、水(10mL)、メタノール(20m)及びヘキサン(20mL)にて洗浄した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[3-(ジベンゾチオフェン-2-イル)-5-(9-フェナントリル)-フェニル]3,5-ジフェニル-1,3,5-トリアジン(化合物A-110)の白色固体(収量377mg,収率97.9%)を得た。
H-NMR(CDCl)δ(ppm):7.46-7.50(m,2H),7.52-7.62(m,7H),7.66(t,J=7.7Hz,1H),7.72(t,J=7.8Hz,2H),7.87-7.89(m,1H),7.91(s,1H),7.93(dd,J=8.3Hz,1.7Hz,1H),7.98(btd,7.8Hz,1H),8.01(d,J=8.2Hz,1H),8.05(d,J=8.2Hz,1H),8.12(t,J=1.8Hz,1H),8.25-8.27(m,1H),8.54(brd,J=1.4Hz,1H),8.76-8.79(m,5H),8.84(d,J=8.3Hz,1H),8.95(t,J=1.6Hz,1H),9.19(t,J=1.7Hz,1H).
Under an argon stream, 2- [5-chloro-3- (dibenzothiophen-2-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (300 mg, 0.3 mg) obtained in Synthesis Example-2. 57 mmol), 9-phenanthreneboronic acid (158 mg, 0.69 mmol), palladium acetate (2.59 mg, 0.011 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (11.0 mg) , 0.023 mmol) and potassium carbonate (239 mg, 1.73 mmol) were suspended in a mixed solvent of tetrahydrofuran (5 mL) and water (1.7 mL), and the mixture was stirred at 70 ° C. for 4 hours. After allowing to cool to room temperature, water (15 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with water (10 mL), methanol (20 m) and hexane (20 mL). The obtained precipitate was purified by recrystallization from toluene, and the target product 2- [3- (dibenzothiophen-2-yl) -5- (9-phenanthryl) -phenyl] 3,5-diphenyl-1, A white solid (yield 377 mg, yield 97.9%) of 3,5-triazine (Compound A-110) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.46-7.50 (m, 2H), 7.52-7.62 (m, 7H), 7.66 (t, J = 7.7 Hz) , 1H), 7.72 (t, J = 7.8 Hz, 2H), 7.87-7.89 (m, 1H), 7.91 (s, 1H), 7.93 (dd, J = 8 .3 Hz, 1.7 Hz, 1 H), 7.98 (btd, 7.8 Hz, 1 H), 8.01 (d, J = 8.2 Hz, 1 H), 8.05 (d, J = 8.2 Hz, 1H), 8.12 (t, J = 1.8 Hz, 1H), 8.25-8.27 (m, 1H), 8.54 (brd, J = 1.4 Hz, 1H), 8.76- 8.79 (m, 5H), 8.84 (d, J = 8.3 Hz, 1H), 8.95 (t, J = 1.6 Hz, 1H), 9.19 (t, J = 1.7 Hz) , 1H).
合成例-12
Figure JPOXMLDOC01-appb-C000092
Synthesis example-12
Figure JPOXMLDOC01-appb-C000092
 アルゴン気流下、4-ジベンゾフランボロン酸(1.62g,7.65mmol)、p-ブロモクロロベンゼン(1.46g,7.65mmol)、テトラキストリフェニルホスフィンパラジウム(265mg,0.229mmol)及び炭酸カリウム(3.17g,23.0mmol)をテトラヒドロフラン(44mL)及び水(22mL)の混合溶媒に懸濁し、70℃で18時間撹拌した。室温まで放冷後、反応混合物に水(100mL)及びクロロホルム(200mL)を加えた。得られた混合物を振り混ぜた後、有機層のみを取り出した。得られた有機層を硫酸マグネシウムで脱水した後、低沸点成分を留去した。得られた生成物を、シリカゲルクロマトグラフィー(溶離液=ヘキサン)により精製し、目的物である4-(4-クロロフェニル)ジベンゾフランの白色固体(収量2.06g,収率96.6%)を得た。
H-NMR(CDCl):7.35(dt,J=7.3Hz,1.0Hz,1H),7.41(t,J=7.7Hz,1H),7.45(dd,J=8.3Hz,1.4Hz,1H),7.49(d,J=8.8Hz,2H),7.55(dd,J=7.7Hz,1.3Hz,1H),7.58(brd,J=8.2Hz,1H),7.84(d,J=8.8Hz,2H),7.94(dd,J=7.7Hz,1.3Hz,1H),7.98(ddd,J=7.7Hz,1.4Hz,0.7Hz,1H).
Under a stream of argon, 4-dibenzofuranboronic acid (1.62 g, 7.65 mmol), p-bromochlorobenzene (1.46 g, 7.65 mmol), tetrakistriphenylphosphine palladium (265 mg, 0.229 mmol) and potassium carbonate (3 .17 g, 23.0 mmol) was suspended in a mixed solvent of tetrahydrofuran (44 mL) and water (22 mL), and stirred at 70 ° C. for 18 hours. After cooling to room temperature, water (100 mL) and chloroform (200 mL) were added to the reaction mixture. After the obtained mixture was shaken and mixed, only the organic layer was taken out. The obtained organic layer was dehydrated with magnesium sulfate, and then the low boiling point component was distilled off. The obtained product was purified by silica gel chromatography (eluent = hexane) to obtain the desired 4- (4-chlorophenyl) dibenzofuran white solid (yield 2.06 g, yield 96.6%). It was.
1 H-NMR (CDCl 3 ): 7.35 (dt, J = 7.3 Hz, 1.0 Hz, 1H), 7.41 (t, J = 7.7 Hz, 1H), 7.45 (dd, J = 8.3 Hz, 1.4 Hz, 1 H), 7.49 (d, J = 8.8 Hz, 2 H), 7.55 (dd, J = 7.7 Hz, 1.3 Hz, 1 H), 7.58 ( brd, J = 8.2 Hz, 1H), 7.84 (d, J = 8.8 Hz, 2H), 7.94 (dd, J = 7.7 Hz, 1.3 Hz, 1H), 7.98 (ddd , J = 7.7 Hz, 1.4 Hz, 0.7 Hz, 1 H).
合成例-13
Figure JPOXMLDOC01-appb-C000093
Synthesis Example-13
Figure JPOXMLDOC01-appb-C000093
 アルゴン気流下、2-[5-クロロ-3-(3-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(10.0g,23.8mmol)、ビス(ピナコラト)ジボロン(9.07g,35.7mmol),酢酸カリウム(7.01g,71.4mmol)、酢酸パラジウム(53.4mg,0.238mmol)及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(227mg,0.476mmol)を1,4-ジオキサン(400mL)に懸濁し、100℃に加熱して18時間撹拌した。次いで、反応溶液にクロロホルム500mL及び水100mL加えて振り混ぜ、有機層のみを取り出した。有機層に硫酸マグネシウムを加えて脱水し、ろ過した。得られた有機層の低沸点成分を留去した後、150mLのクロロホルムに溶解させた。これに1000mLのヘキサンを加えて1時間撹拌し、生成した析出物をろ取することにより、目的の4,6-ジフェニル-2-[3-(3-ピリジル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンの白色固体(9.58g,収率78.6%)を得た。
H-NMR(CDCl):1.42(s,12H),7.43(ddd,J=7.8Hz,4.8Hz,0.7Hz,1H),7.56-7.64(m,6H),8.06(ddd,J=7.8Hz,2.3Hz,1.6Hz,1H),8.23(dd,J=2.1Hz,1.0Hz,1H),8.65(dd,J=4.9Hz,1.6Hz,1H),8.79(dd,J=8.0Hz,1.4Hz,4H),9.04(dd,J=2.5Hz,0.8Hz,1H),9.08(t,J=1.9Hz,1H),9.16(dd,J=1.7Hz,1.1Hz,1H).
Under an argon stream, 2- [5-chloro-3- (3-pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (10.0 g, 23.8 mmol), bis (pinacolato) diboron ( 9.07 g, 35.7 mmol), potassium acetate (7.01 g, 71.4 mmol), palladium acetate (53.4 mg, 0.238 mmol) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropyl Biphenyl (227 mg, 0.476 mmol) was suspended in 1,4-dioxane (400 mL), heated to 100 ° C. and stirred for 18 hours. Next, 500 mL of chloroform and 100 mL of water were added to the reaction solution and shaken to remove only the organic layer. Magnesium sulfate was added to the organic layer for dehydration and filtered. After distilling off low-boiling components of the obtained organic layer, it was dissolved in 150 mL of chloroform. To this was added 1000 mL of hexane, and the mixture was stirred for 1 hour, and the resulting precipitate was collected by filtration to obtain the desired 4,6-diphenyl-2- [3- (3-pyridyl) -5- (4,4,4). A white solid (9.58 g, yield 78.6%) of 5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -1,3,5-triazine was obtained.
1 H-NMR (CDCl 3 ): 1.42 (s, 12H), 7.43 (ddd, J = 7.8 Hz, 4.8 Hz, 0.7 Hz, 1H), 7.56-7.64 (m , 6H), 8.06 (ddd, J = 7.8 Hz, 2.3 Hz, 1.6 Hz, 1H), 8.23 (dd, J = 2.1 Hz, 1.0 Hz, 1H), 8.65 ( dd, J = 4.9 Hz, 1.6 Hz, 1H), 8.79 (dd, J = 8.0 Hz, 1.4 Hz, 4H), 9.04 (dd, J = 2.5 Hz, 0.8 Hz, 1H), 9.08 (t, J = 1.9 Hz, 1H), 9.16 (dd, J = 1.7 Hz, 1.1 Hz, 1H).
合成実施例-12
Figure JPOXMLDOC01-appb-C000094
Synthesis Example-12
Figure JPOXMLDOC01-appb-C000094
 アルゴン気流下、合成例-13で得られた4,6-ジフェニル-2-[3-(3-ピリジル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(3.00g,5.85mmol)、合成例-12で得られた4-(4-クロロフェニル)ジベンゾフラン(1.96g,7.03mmol)、酢酸パラジウム(13.1mg,0.058mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(55.8mg、0.117mmol)及び炭酸カリウム(2.43g,17.6mmol)をテトラヒドロフラン(45mL)及び水(17mL)の混合溶媒に懸濁し、70℃で19時間撹拌した。室温まで放冷後、反応混合物に水(100mL)を加え、析出物をろ取した。ろ取した析出物を、水(30mL)、メタノール(30m)及びヘキサン(30mL)にて洗浄した。得られた析出物をシリカゲルクロマトグラフィー(溶離液=クロロホルム/ヘキサン)により精製し、目的物である2-[4’-(4-ジベンゾフラン)-5-(3-ピリジル)-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-556)の白色固体(収量2.38g,収率58.8%)を得た。
H-NMR(CDCl)δ(ppm):7.38(dt,J=7.3Hz,0.9Hz,1H),7.45-7.51(m,3H),7.58-7.66(m,7H),7.70(dd,J=7.7Hz,1.2Hz,1H),7.96-7.99(m,3H),8.01(ddd,J=7.8Hz,1.4Hz,0.6Hz,1H),8.09-8.13(m,4H),8.70(dd,J=4.8Hz,1.7Hz,1H),8.81(dd,J=8.1Hz,1.9Hz,4H),9.00(t,J=1.6Hz,1H),9.10(dd,J=2.5Hz,0.8Hz,1H),9.12(t,J=1.6Hz,1H).
4,6-Diphenyl-2- [3- (3-pyridyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane) obtained in Synthesis Example-13 under an argon stream -2-yl) phenyl] -1,3,5-triazine (3.00 g, 5.85 mmol), 4- (4-chlorophenyl) dibenzofuran obtained in Synthesis Example-12 (1.96 g, 7.03 mmol) , Palladium acetate (13.1 mg, 0.058 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (55.8 mg, 0.117 mmol) and potassium carbonate (2.43 g, 17. 6 mmol) was suspended in a mixed solvent of tetrahydrofuran (45 mL) and water (17 mL), and the mixture was stirred at 70 ° C. for 19 hours. After allowing to cool to room temperature, water (100 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with water (30 mL), methanol (30 m) and hexane (30 mL). The resulting precipitate was purified by silica gel chromatography (eluent = chloroform / hexane), and the desired product 2- [4 ′-(4-dibenzofuran) -5- (3-pyridyl) -biphenyl-3-yl ] -4,6-diphenyl-1,3,5-triazine (Compound A-556) was obtained as a white solid (yield 2.38 g, yield 58.8%).
1 H-NMR (CDCl 3 ) δ (ppm): 7.38 (dt, J = 7.3 Hz, 0.9 Hz, 1H), 7.45-7.51 (m, 3H), 7.58-7 .66 (m, 7H), 7.70 (dd, J = 7.7 Hz, 1.2 Hz, 1H), 7.96-7.99 (m, 3H), 8.01 (ddd, J = 7. 8 Hz, 1.4 Hz, 0.6 Hz, 1 H), 8.09-8.13 (m, 4 H), 8.70 (dd, J = 4.8 Hz, 1.7 Hz, 1 H), 8.81 (dd , J = 8.1 Hz, 1.9 Hz, 4H), 9.00 (t, J = 1.6 Hz, 1H), 9.10 (dd, J = 2.5 Hz, 0.8 Hz, 1H), 9. 12 (t, J = 1.6 Hz, 1H).
合成例-14
Figure JPOXMLDOC01-appb-C000095
Synthesis Example-14
Figure JPOXMLDOC01-appb-C000095
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(8.46g,20.0mmol)、4-ビフェニルボロン酸(4.36g,22.0mmol)及びテトラキストリフェニルホスフィンパラジウム(462mg,0.40mmol)をテトラヒドロフラン(100mL)に懸濁させ、これに4NのNaOH水溶液(15.0mL,60mmol)を3分間かけて滴下した。得られた混合物を75℃で16時間撹拌した。室温まで放冷後、反応混合物に水(150mL)を加え、析出物をろ取した。得られた固体を水、メタノール、及びヘキサンで順次洗浄した後、再結晶(トルエン)することにより、目的物である2-(5-クロロ-1,1’:4’,1’’-テルフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量9.48g,収率95.6%)を得た。 Under an argon stream, 2- (3-bromo-5-chlorophenyl) -4,6-diphenyl-1,3,5-triazine (8.46 g, 20.0 mmol), 4-biphenylboronic acid (4.36 g, 22) 0.0 mmol) and tetrakistriphenylphosphine palladium (462 mg, 0.40 mmol) were suspended in tetrahydrofuran (100 mL), and 4N NaOH aqueous solution (15.0 mL, 60 mmol) was added dropwise thereto over 3 minutes. The resulting mixture was stirred at 75 ° C. for 16 hours. After allowing to cool to room temperature, water (150 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The obtained solid was washed successively with water, methanol and hexane, and then recrystallized (toluene) to give the desired product 2- (5-chloro-1,1 ′: 4 ′, 1 ″ -telluene. A white solid (phenyl 9.yl, yield 95.6%) of phenyl-3-yl) -4,6-diphenyl-1,3,5-triazine was obtained.
合成実施例-13
Figure JPOXMLDOC01-appb-C000096
Synthesis Example-13
Figure JPOXMLDOC01-appb-C000096
 アルゴン気流下、合成例14で得られた2-(5-クロロ-1,1’:4’,1’’-テルフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジン(1.27g、2.56mmol)、2-ジベンゾチオフェンボロン酸(700mg、3.07mmol)、酢酸パラジウム(11.5mg、0.0511mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(48.7mg、0.102mmol)及び炭酸カリウム(1.06g、7.67mmol)をテトラヒドロフラン(35mL)及び水(7mL)の混合溶媒に懸濁し、70℃で19時間撹拌した。室温まで放冷後、反応混合物に水(30mL)を加え、析出物をろ取した。ろ取した析出物を、水(30mL)、メタノール(30mL)及びヘキサン(30mL)にて洗浄した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[5-(ジベンゾチオフェン-2-イル)-[1,1’:4’,1’’]-テルフェニル-3-イル]-4,6-ジフェル-1,3,5-トリアジン(A-98)の白色固体(収量1.19g、収率72.2%)を得た。
H-NMR(CDCl)δ(ppm):7.38(t,J=7.5Hz,1H),7.47-7.52(m,4H),7.57-7.64(m,6H),7.70(dd,J=8.5Hz,1.4Hz,2H),7.79(d,J=8.3Hz,2H),7.89-7.93(m,4H),8.02(dd,J=8.3Hz,0.4Hz,1H),8.12(t,J=1.8Hz,1H),8.29-8.31(m,1H),8.52(d,J=1.4Hz,1H),8.81(dd,J=8.0Hz,1.9Hz,4H),9.06(d,J=1.8Hz,2H).
2- (5-Chloro-1,1 ′: 4 ′, 1 ″ -terphenyl-3-yl) -4,6-diphenyl-1,3,5-obtained in Synthesis Example 14 under an argon stream Triazine (1.27 g, 2.56 mmol), 2-dibenzothiopheneboronic acid (700 mg, 3.07 mmol), palladium acetate (11.5 mg, 0.0511 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6 '-Triisopropylbiphenyl (48.7 mg, 0.102 mmol) and potassium carbonate (1.06 g, 7.67 mmol) were suspended in a mixed solvent of tetrahydrofuran (35 mL) and water (7 mL), and the mixture was stirred at 70 ° C. for 19 hours. . After allowing to cool to room temperature, water (30 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with water (30 mL), methanol (30 mL) and hexane (30 mL). The obtained precipitate was purified by recrystallization from toluene, and the target product 2- [5- (dibenzothiophen-2-yl)-[1,1 ′: 4 ′, 1 ″]-terphenyl-3 A white solid (yield 1.19 g, yield 72.2%) of -yl] -4,6-difel-1,3,5-triazine (A-98) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.38 (t, J = 7.5 Hz, 1H), 7.47-7.52 (m, 4H), 7.57-7.64 (m 6H), 7.70 (dd, J = 8.5 Hz, 1.4 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H), 7.89-7.93 (m, 4H) 8.02 (dd, J = 8.3 Hz, 0.4 Hz, 1H), 8.12 (t, J = 1.8 Hz, 1H), 8.29-8.31 (m, 1H), 8. 52 (d, J = 1.4 Hz, 1H), 8.81 (dd, J = 8.0 Hz, 1.9 Hz, 4H), 9.06 (d, J = 1.8 Hz, 2H).
合成実施例-14
Synthesis Example-14
 アルゴン気流下、合成例1で得られた2-[5-クロロ-3-(ジベンゾチオフェン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(1.50g、2.85mmol)、6-フェニル-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ピリジン(962mg、3.42mmol)、酢酸パラジウム(12.8mg、0.0570mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(54.3mg、0.114mmol)及び炭酸カリウム(1.18g、8.55mmol)をテトラヒドロフラン(THF)(350mL)及び水(9mL)の混合溶媒に懸濁し、70℃で2時間撹拌した。続いて、酢酸パラジウム(12.8mg、0.0570mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(54.3mg、0.114mmol)をTHF(5mL)に溶解させた溶液を反応溶液に加え、70℃で19時間撹拌した。室温まで放冷後、反応混合物に水(150mL)を加え、析出物をろ取した。ろ取した析出物を、水(100mL)、メタノール(100m)及びヘキサン(100mL)にて洗浄した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[3-(ジベンゾチオフェン-2-イル)-5-(6-フェニルピリジン-3-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(A-426)の白色固体(収量1.96g、収率89.0%)を得た。
H-NMR(CDCl)δ(ppm):7.45-7.63(m,11H),7.89-7.92(m,2H),7.93(dd,J=8.3Hz,0.9Hz,1H),8.03(d,J=8.1Hz,1H),8.11(dd,J=8.5Hz,1.4Hz,2H),8.17(t,J=1.6Hz,1H),8.21(dd,J=8.4Hz,2.4Hz,1H),8.29-8.32(m,1H),8.53(dd,J=1.8Hz,0.4Hz,1H),8.81(dd,J=8.2Hz,1.8Hz,4H),9.08(t,J=1.6Hz,1H),9.11(t,J=1.7Hz,1H),9.20(dd,J=2.5Hz,0.8Hz,1H).
Under an argon stream, 2- [5-chloro-3- (dibenzothiophen-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (1.50 g, 2) obtained in Synthesis Example 1 was obtained. .85 mmol), 6-phenyl-3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pyridine (962 mg, 3.42 mmol), palladium acetate (12.8 mg, 0.0570 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (54.3 mg, 0.114 mmol) and potassium carbonate (1.18 g, 8.55 mmol) in tetrahydrofuran (THF) ( 350 mL) and water (9 mL), and the mixture was stirred at 70 ° C. for 2 hours. Subsequently, palladium acetate (12.8 mg, 0.0570 mmol) and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (54.3 mg, 0.114 mmol) are dissolved in THF (5 mL). The solution was added to the reaction solution and stirred at 70 ° C. for 19 hours. After allowing to cool to room temperature, water (150 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with water (100 mL), methanol (100 m) and hexane (100 mL). The obtained precipitate was purified by recrystallization from toluene, and the target product 2- [3- (dibenzothiophen-2-yl) -5- (6-phenylpyridin-3-yl) phenyl] -4,6 A white solid (yield 1.96 g, yield 89.0%) of diphenyl-1,3,5-triazine (A-426) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.45-7.63 (m, 11H), 7.89-7.92 (m, 2H), 7.93 (dd, J = 8.3 Hz) , 0.9 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 8.11 (dd, J = 8.5 Hz, 1.4 Hz, 2H), 8.17 (t, J = 1.6 Hz, 1 H), 8.21 (dd, J = 8.4 Hz, 2.4 Hz, 1 H), 8.29-8.32 (m, 1 H), 8.53 (dd, J = 1.8 Hz) , 0.4 Hz, 1H), 8.81 (dd, J = 8.2 Hz, 1.8 Hz, 4H), 9.08 (t, J = 1.6 Hz, 1H), 9.11 (t, J = 1.7 Hz, 1H), 9.20 (dd, J = 2.5 Hz, 0.8 Hz, 1H).
合成例-15
Figure JPOXMLDOC01-appb-C000098
Synthesis Example-15
Figure JPOXMLDOC01-appb-C000098
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(10.0g,23.73mmol)、合成例-6で得られた4-(4,6-ジフェニルピリジン-2-イル)フェニルボロン酸(10.0g,28.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム(823mg,0.711mmol)及び炭酸カリウム(9.84g,71.2mmol)を、テトラヒドロフラン(261mL)及び水(71mL)の混合溶媒に懸濁した。得られた混合物を70℃で23時間撹拌した。放冷後、水(500mL)を加え、析出した固体を濾別し、水、メタノール、及びヘキサンで固体を洗浄した後、再結晶(トルエン)することで、目的中間体である2-[5-クロロ-4’-(4,6-ジフェニルピリジン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジンの灰白色固体(収量13.7g、収率89.1%)を得た。
H-NMR(CDCl)δ(ppm):7,44-7.65(m,12H),7.77(dd,J=8.4Hz,1.4Hz,2H),7.85-7.88(m,3H),7.92(d,J=1.4Hz,1H),7.97(d,J=1.4Hz,1H),8.23(brd,J=7.2Hz,2H),8.38(d,J=8.4Hz,2H),8.74(dd,J=2.0Hz,1.5Hz,1H),8.79(dd,J=8.0Hz,1.8Hz,4H),8.95(t,J=1.6Hz,1H).
Under an argon stream, 2- (3-bromo-5-chlorophenyl) -4,6-diphenyl-1,3,5-triazine (10.0 g, 23.73 mmol), 4- (obtained in Synthesis Example-6) 4,6-Diphenylpyridin-2-yl) phenylboronic acid (10.0 g, 28.5 mmol), tetrakis (triphenylphosphine) palladium (823 mg, 0.711 mmol) and potassium carbonate (9.84 g, 71.2 mmol) Was suspended in a mixed solvent of tetrahydrofuran (261 mL) and water (71 mL). The resulting mixture was stirred at 70 ° C. for 23 hours. After allowing to cool, water (500 mL) was added, the precipitated solid was filtered off, washed with water, methanol and hexane, and then recrystallized (toluene) to give the target intermediate 2- [5 -Chloro-4 '-(4,6-diphenylpyridin-2-yl) biphenyl-3-yl] -4,6-diphenyl-1,3,5-triazine (yield 13.7 g, yield 89) 0.1%).
1 H-NMR (CDCl 3 ) δ (ppm): 7, 44-7.65 (m, 12H), 7.77 (dd, J = 8.4 Hz, 1.4 Hz, 2H), 7.85-7 .88 (m, 3H), 7.92 (d, J = 1.4 Hz, 1H), 7.97 (d, J = 1.4 Hz, 1H), 8.23 (brd, J = 7.2 Hz, 2H), 8.38 (d, J = 8.4 Hz, 2H), 8.74 (dd, J = 2.0 Hz, 1.5 Hz, 1H), 8.79 (dd, J = 8.0 Hz, 1 .8 Hz, 4H), 8.95 (t, J = 1.6 Hz, 1H).
合成実施例-15
Figure JPOXMLDOC01-appb-C000099
Synthesis Example-15
Figure JPOXMLDOC01-appb-C000099
 アルゴン気流下、合成例15で得られた2-[5-クロロ-4’-(4,6-ジフェニルピリジン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(1.50g、2.31mmol)、2-ジベンゾチオフェンボロン酸(632mg、2.77mmol)、酢酸パラジウム(10.4mg、0.0462mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(44.0mg、0.0924mmol)及び炭酸カリウム(958mg、6.93mmol)をテトラヒドロフラン(70mL)及び水(7mL)の混合溶媒に懸濁し、70℃で20時間撹拌した。室温まで放冷後、反応混合物に水(50mL)を加え、析出物をろ取した。ろ取した析出物を、水(50mL)、メタノール(50mL)及びヘキサン(50mL)にて洗浄した。得られた析出物をトルエンによる再結晶により精製し、目的物である2-[5-(ジベンゾチオフェン-2-イル)-4’-(4,6-ジフェニルピリジン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-423)の白色固体(収量1.33g、収率72.1%)を得た。
H-NMR(CDCl)δ(ppm):7.49-7.51(m,2H),7.57-7.63(m,13H),7.83-7.93(m,4H),8.01-8.18(m,6H),8.24(brs,1H),8.33-8.36(m,3H),8.55(brs,1H),8.82(dd,J=7.9Hz,1.8Hz,4H),9.08(brs,1H),9.10(brs,1H).
2- [5-Chloro-4 ′-(4,6-diphenylpyridin-2-yl) biphenyl-3-yl] -4,6-diphenyl-1,3 obtained in Synthesis Example 15 under an argon stream 5-triazine (1.50 g, 2.31 mmol), 2-dibenzothiopheneboronic acid (632 mg, 2.77 mmol), palladium acetate (10.4 mg, 0.0462 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′ , 6′-triisopropylbiphenyl (44.0 mg, 0.0924 mmol) and potassium carbonate (958 mg, 6.93 mmol) were suspended in a mixed solvent of tetrahydrofuran (70 mL) and water (7 mL) and stirred at 70 ° C. for 20 hours. . After allowing to cool to room temperature, water (50 mL) was added to the reaction mixture, and the precipitate was collected by filtration. The precipitate collected by filtration was washed with water (50 mL), methanol (50 mL) and hexane (50 mL). The obtained precipitate was purified by recrystallization from toluene, and the target product 2- [5- (dibenzothiophen-2-yl) -4 ′-(4,6-diphenylpyridin-2-yl) biphenyl-3 was obtained. A white solid (yield 1.33 g, yield 72.1%) of -yl] -4,6-diphenyl-1,3,5-triazine (A-423) was obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 7.49-7.51 (m, 2H), 7.57-7.63 (m, 13H), 7.83-7.93 (m, 4H) ), 8.01-8.18 (m, 6H), 8.24 (brs, 1H), 8.33-8.36 (m, 3H), 8.55 (brs, 1H), 8.82 ( dd, J = 7.9 Hz, 1.8 Hz, 4H), 9.08 (brs, 1H), 9.10 (brs, 1H).
 素子評価に用いた化合物の構造式及びその略称を以下に示す。 The structural formulas and abbreviations of the compounds used for device evaluation are shown below.
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
素子実施例-1
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、図1に示すような断面図の、発光面積が4mmの有機電界発光素子を作製した。なお、各有機材料は抵抗加熱方式により成膜した。
Element Example-1
As the substrate, a glass substrate with an ITO transparent electrode in which a 2 mm-wide indium-tin oxide (ITO) film was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface treated by ozone ultraviolet cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in the sectional view of FIG. Each organic material was formed by a resistance heating method.
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。
 その後、図1の1で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層2、電荷発生層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、及び陰極層8を、いずれも真空蒸着で、この順番に積層させながら成膜した。
 正孔注入層2としては、昇華精製したHILを0.15nm/秒の速度で65nm成膜した。
 電荷発生層3としては、昇華精製したHATを0.05nm/秒の速度で5nm成膜した。
 正孔輸送層4としては、HTLを0.15nm/秒の速度で10nm成膜した。
 発光層5としては、EML-1とEML-2を95:5(重量比)の割合で25nm成膜した(成膜速度0.18nm/秒)。
First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 × 10 −4 Pa.
Then, as an organic compound layer on the glass substrate with an ITO transparent electrode shown by 1 in FIG. 1, a hole injection layer 2, a charge generation layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and an electron injection layer 7 and the cathode layer 8 were both formed by vacuum vapor deposition while being laminated in this order.
As the hole injection layer 2, a sublimated HIL film having a thickness of 65 nm was formed at a rate of 0.15 nm / second.
As the charge generation layer 3, sublimation-purified HAT was deposited to a thickness of 5 nm at a rate of 0.05 nm / second.
As the hole transport layer 4, HTL was formed to a thickness of 10 nm at a rate of 0.15 nm / second.
As the light-emitting layer 5, EML-1 and EML-2 were deposited at a ratio of 95: 5 (weight ratio) to 25 nm (deposition rate of 0.18 nm / second).
 電子輸送層6としては、合成実施例-1で得られた2-[5-(ジベンゾチオフェン-4-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-157)及びLiqを50:50(重量比)の割合で30nm成膜した(共蒸着、成膜速度0.15nm/秒)。
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層7を成膜した。陰極層7は、銀/マグネシウム(重量比1/10)と銀を、この順番に、それぞれ80nm(成膜速度0.5nm/秒)と20nm(成膜速度0.2nm/秒)で製膜し、2層構造とした。
As the electron transport layer 6, 2- [5- (dibenzothiophen-4-yl) -4 ′-(2-pyridyl) biphenyl-3-yl] -4,6-diphenyl obtained in Synthesis Example-1 was used. -1,3,5-triazine (Compound A-157) and Liq were deposited at a ratio of 50:50 (weight ratio) to a thickness of 30 nm (co-evaporation, deposition rate of 0.15 nm / second).
Finally, a metal mask was arranged so as to be orthogonal to the ITO stripe, and the cathode layer 7 was formed. The cathode layer 7 is formed of silver / magnesium (weight ratio 1/10) and silver in this order at 80 nm (film formation rate 0.5 nm / second) and 20 nm (film formation rate 0.2 nm / second), respectively. And a two-layer structure.
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK)で測定した。
 さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
Each film thickness was measured with a stylus type film thickness meter (DEKTAK).
Furthermore, this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. For the sealing, a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation) were used.
素子実施例-2
 素子実施例-1において、電子輸送層6に合成実施例-2で得られた2-[5-(ジベンゾチオフェン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-158)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-2
In Device Example-1, 2- [5- (dibenzothiophen-2-yl) -4 ′-(2-pyridyl) biphenyl-3-yl]-obtained in Synthesis Example-2 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that 4,6-diphenyl-1,3,5-triazine (Compound A-158) was used.
素子実施例-3
 素子実施例-1において、電子輸送層6に合成実施例-5で得られた2-[5-(ジベンゾフラン-4-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-361)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-3
In Device Example-1, 2- [5- (dibenzofuran-4-yl) -4 ′-(2-pyridyl) biphenyl-3-yl] -4 obtained in Synthesis Example-5 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that, 6-diphenyl-1,3,5-triazine (Compound A-361) was used.
素子実施例-4
 素子実施例-1において、電子輸送層6に合成実施例-6で得られた2-{3-(ジベンゾチオフェン-2-イル)-5-[6-(2-ナフチル)ピリジン-3-イル)]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(化合物A-482)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example 4
In Device Example-1, 2- {3- (dibenzothiophen-2-yl) -5- [6- (2-naphthyl) pyridin-3-yl] obtained in Synthesis Example-6 was formed on the electron transport layer 6. )] Phenyl} -4,6-diphenyl-1,3,5-triazine (Compound A-482) was used to fabricate an organic electroluminescent device by the same method as Device Example-1.
素子実施例-5
 素子実施例-1において、電子輸送層6に合成実施例-7で得られた2-[5-(ジベンゾフラン-4-イル)-4’-(4,6-ジフェニルピリジン-2-イル)-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-471)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-5
In Device Example-1, 2- [5- (dibenzofuran-4-yl) -4 ′-(4,6-diphenylpyridin-2-yl)-obtained in Synthesis Example-7 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that biphenyl-3-yl] -4,6-diphenyl-1,3,5-triazine (Compound A-471) was used.
素子実施例-6
 素子実施例-1において、電子輸送層6に合成実施例-8で得られた2-[4’-(2-ジベンゾチオフェン)-5-(3-ピリジル)-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-545)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-6
In Device Example-1, 2- [4 ′-(2-dibenzothiophene) -5- (3-pyridyl) -biphenyl-3-yl] -4 obtained in Synthesis Example-8 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that, 6-diphenyl-1,3,5-triazine (Compound A-545) was used.
素子実施例-7
 素子実施例-1において、電子輸送層6に合成実施例-9で得られた2-{3-(ジベンゾフラン-4-イル)-5-[6-(2-ナフチル)ピリジン-3-イル)]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(化合物A-493)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-7
In device example-1, 2- {3- (dibenzofuran-4-yl) -5- [6- (2-naphthyl) pyridin-3-yl] obtained in synthesis example-9 was formed on the electron transport layer 6. ] An organic electroluminescent device was produced in the same manner as in Device Example 1 except that phenyl} -4,6-diphenyl-1,3,5-triazine (Compound A-493) was used.
素子実施例-8
 素子実施例-1において、電子輸送層6に合成実施例-12で得られた2-[4’-(4-ジベンゾフラン)-5-(3-ピリジル)-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-556)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-8
In device example-1, 2- [4 ′-(4-dibenzofuran) -5- (3-pyridyl) -biphenyl-3-yl] -4, obtained in synthesis example-12 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that 6-diphenyl-1,3,5-triazine (Compound A-556) was used.
素子実施例-9
 素子実施例-1において、電子輸送層6に合成実施例-3で得られた2-[5-(ベンゾチオフェン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-159)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-9
In Device Example-1, 2- [5- (benzothiophen-2-yl) -4 ′-(2-pyridyl) biphenyl-3-yl]-obtained in Synthesis Example-3 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that 4,6-diphenyl-1,3,5-triazine (Compound A-159) was used.
素子実施例-10
 素子実施例-1において、電子輸送層6に合成実施例-4で得られた2-[5-(ベンゾフラン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-363)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-10
In Device Example-1, 2- [5- (benzofuran-2-yl) -4 ′-(2-pyridyl) biphenyl-3-yl] -4 obtained in Synthesis Example-4 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1, except that, 6-diphenyl-1,3,5-triazine (Compound A-363) was used.
素子実施例-11
 素子実施例-1において、電子輸送層6に合成実施例-11で得られた2-[3-(ジベンゾチオフェン-2-イル)-5-(9-フェナントリル)-フェニル]3,5-ジフェニル-1,3,5-トリアジン(化合物A-110)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-11
In Device Example-1, 2- [3- (dibenzothiophen-2-yl) -5- (9-phenanthryl) -phenyl] 3,5-diphenyl obtained in Synthesis Example-11 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that -1,3,5-triazine (Compound A-110) was used.
素子実施例-12
 素子実施例-1において、電子輸送層6に合成実施例-15で得られた2-[5-(ジベンゾチオフェン-2-イル)-4’-(4,6-ジフェニルピリジン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-423)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-12
In Device Example-1, 2- [5- (dibenzothiophen-2-yl) -4 ′-(4,6-diphenylpyridin-2-yl) obtained in Synthesis Example-15 was formed on the electron transport layer 6. An organic electroluminescence device was produced in the same manner as in Device Example 1 except that biphenyl-3-yl] -4,6-diphenyl-1,3,5-triazine (Compound A-423) was used.
素子実施例-13
 素子実施例-1において、電子輸送層6に合成実施例-14で得られた2-[3-(ジベンゾチオフェン-2-イル)-5-(6-フェニルピリジン-3-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-426)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-13
In device example-1, 2- [3- (dibenzothiophen-2-yl) -5- (6-phenylpyridin-3-yl) phenyl]-obtained in Synthesis Example-14 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that 4,6-diphenyl-1,3,5-triazine (Compound A-426) was used.
素子実施例-14
 素子実施例-1において、電子輸送層6に合成実施例-13で得られた2-[5-(ジベンゾチオフェン-2-イル)-[1,1’:4’,1’’]-テルフェニル-3-イル]-4,6-ジフェル-1,3,5-トリアジン(化合物A-98)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Element Example-14
In device example-1, 2- [5- (dibenzothiophen-2-yl)-[1,1 ′: 4 ′, 1 ″]-telomer obtained in synthesis example-13 was formed on the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in Device Example 1 except that phenyl-3-yl] -4,6-difer-1,3,5-triazine (Compound A-98) was used.
素子参考例-1
 素子実施例-1において、電子輸送層6に日本特開2010-183145に記載されている2-[5-(9-フェナントリル)-4’-(2-ピリミジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(上記式、ETL-1で表される)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
Device reference example-1
In device example-1, 2- [5- (9-phenanthryl) -4 ′-(2-pyrimidyl) biphenyl-3-yl] -4 described in Japanese Patent Application Laid-Open No. 2010-183145 is used for the electron transport layer 6. An organic electroluminescence device was produced in the same manner as in Device Example 1 except that, 6-diphenyl-1,3,5-triazine (the above formula, represented by ETL-1) was used.
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、及び流効率(cd/A)を測定し、連続点灯時の輝度半減時間を測定した。また、初期輝度を800cd/mで駆動したときの連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が30%減じた時の時間を素子寿命(h)として、以下に示す。 A direct current was applied to the produced organic electroluminescence device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON. As light emission characteristics, voltage (V) and current efficiency (cd / A) when a current density of 10 mA / cm 2 was passed were measured, and a luminance half-time during continuous lighting was measured. In addition, the luminance decay time during continuous lighting when the initial luminance was driven at 800 cd / m 2 was measured. The time when the luminance (cd / m 2 ) is reduced by 30% is shown as the element lifetime (h) below.
Figure JPOXMLDOC01-appb-T000101
Figure JPOXMLDOC01-appb-T000101
素子比較例-1
 素子実施例-1において、電子輸送層6に日本特願2007-550166に開示の2-[3,5-ビス(ジベンゾチオフェンー2-イル)]-3,5-ジフェニル-ピリミジン(上記式、ETL-2で表される)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。初期輝度を800cd/mで駆動したときの、連続点灯時の輝度減衰時間を測定したところ、輝度(cd/m)が30%減じた時の時間は192時間だった。この結果は、本発明の化合物と比較して、素子寿命に大きな差があると言える。
Device comparison example-1
In Device Example-1, 2- [3,5-bis (dibenzothiophen-2-yl)]-3,5-diphenyl-pyrimidine (in the above formula, disclosed in Japanese Patent Application No. 2007-550166) was used for the electron transport layer 6. An organic electroluminescent device was produced in the same manner as in the device example-1 except that ETL-2) was used. When the initial luminance was driven at 800 cd / m 2 and the luminance decay time during continuous lighting was measured, the time when the luminance (cd / m 2 ) was reduced by 30% was 192 hours. This result can be said that there is a large difference in device lifetime as compared with the compound of the present invention.
 表1より、素子参考例に比べて、本発明のアジン化合物を用いた有機電界発光素子は、電圧、電流効率及び素子寿命において、これらの特性が向上していることがわかる。 From Table 1, it can be seen that the organic electroluminescent device using the azine compound of the present invention has improved characteristics in voltage, current efficiency and device lifetime as compared with the device reference example.
 本発明の環状アジン化合物は、Tgが高く、昇華精製時の熱安定性が良好であり、その製造においては、昇華精製の操作性に優れ、不純物の少ない材料として提供が可能であり、有機電界発光素子の材料として用いた場合、素子劣化の少ない、蒸着膜の安定性が良好で、耐熱性に優れ、特に、耐久性、駆動電圧、電力効率に優れる電子輸送材料として利用される。 The cyclic azine compound of the present invention has a high Tg and good thermal stability during sublimation purification, and can be provided as a material with excellent impurities in sublimation purification and less impurities. When used as a material for a light-emitting element, it is used as an electron transport material having little element deterioration, good stability of a deposited film, excellent heat resistance, and particularly excellent durability, driving voltage, and power efficiency.
 また、本発明の環状アジン化合物(1)からなる薄膜は、高い表面平滑性、アモルファス性、耐熱性、電子輸送能、正孔ブロック能、酸化還元耐性、耐水性、耐酸素性、電子注入特性等を持つため、有機電界発光素子の材料として有用である。とりわけ、電子輸送剤、正孔ブロック材、発光ホスト材等として用いることが可能で、環状アジン化合物(1)がワイドバンドギャップ材であることから、従来の蛍光素子用途のみならず、燐光素子への応用の可能性も有する。
 なお、2013年6月28日に出願された日本特許出願2013-136249号、及び2013年12月17日に出願された日本特許出願2013-259774号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Further, the thin film comprising the cyclic azine compound (1) of the present invention has high surface smoothness, amorphousness, heat resistance, electron transport ability, hole blocking ability, redox resistance, water resistance, oxygen resistance, electron injection characteristics, etc. Therefore, it is useful as a material for organic electroluminescent elements. In particular, it can be used as an electron transport agent, a hole blocking material, a light emitting host material, and the like, and since the cyclic azine compound (1) is a wide band gap material, it can be used not only for conventional fluorescent device applications but also to phosphorescent devices. There is also the possibility of application.
The specification, claims, drawings and abstract of Japanese Patent Application No. 2013-136249 filed on June 28, 2013 and Japanese Patent Application No. 2013-259774 filed on December 17, 2013. The entire contents of this document are hereby incorporated by reference as the disclosure of the specification of the present invention.
1.ITO透明電極付きガラス基板  2.正孔注入層  3.電荷発生層
4.正孔輸送層           5.発光層    6.電子輸送層
7.陰極層
1. 1. Glass substrate with ITO transparent electrode 2. hole injection layer 3. charge generation layer 4. Hole transport layer Light emitting layer 6. 6. electron transport layer Cathode layer

Claims (17)

  1.  一般式(1)で示されることを特徴とする環状アジン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (2つのArは同一の置換基を表す。Arは、炭素数6~10の芳香族炭化水素基(フッ素原子、メチル基、フェニル基又はピリジル基を置換基として有してもよい)、又はフェニル基若しくはメチル基で置換されていてもよいピリジル基を表す。Arは、炭素数6~18の芳香族炭化水素基又は6員環のみで形成されるC、H、Nのみからなる炭素数3~13の複素芳香族基(これらの置換基はフッ素原子、メチル基、フェニル基で置換されていてもよい)を表す。Xは、各々独立して、メチル基で置換されていてもよい炭素数6~10の二価の芳香族炭化水素基又はメチル基で置換されていてもよい炭素数5~9の二価の含窒素複素芳香族基を表す。p及びqは、各々独立して、0、1又2を表す。Zは、窒素原子を表す。Tは、炭素原子、水素原子及び16族元素のみからなる炭素数4~20の複素芳香族基(メチル基、フェニル基、又はメチル基を有してもよい炭素数3~9の含窒素複素芳香族基を置換基として有してもよい)を表す。)
    A cyclic azine compound represented by the general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Two Ar 1 is .Ar 1 represent the same substituent, an aromatic hydrocarbon group having 6 to 10 carbon atoms (fluorine atom, may have a methyl group, a phenyl group or pyridyl group as a substituent) Or a pyridyl group which may be substituted with a phenyl group or a methyl group, Ar 2 is composed of an aromatic hydrocarbon group having 6 to 18 carbon atoms or C, H, or N formed only by a 6-membered ring. And a heteroaromatic group having 3 to 13 carbon atoms (these substituents may be substituted with a fluorine atom, a methyl group or a phenyl group), and each X is independently substituted with a methyl group. Represents a divalent aromatic hydrocarbon group having 6 to 10 carbon atoms or a divalent nitrogen-containing heteroaromatic group having 5 to 9 carbon atoms which may be substituted with a methyl group, p and q are Each independently represents 0, 1, or 2. Z represents a nitrogen atom, T represents A heteroaromatic group having 4 to 20 carbon atoms consisting of only a carbon atom, a hydrogen atom and a group 16 element (a nitrogen-containing heteroaromatic group having 3 to 9 carbon atoms which may have a methyl group, a phenyl group or a methyl group) As a substituent.
  2.  Tが下記一般式(T-3)又は(T-4)で表される置換基である、請求項1に記載の環状アジン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (W、Wは、各々独立して、酸素原子又は硫黄原子を表す。Arは、各々独立して、水素原子、メチル基、ピリジル基、キノリル基、メチルピリジル基、ジメチルピリジル基又はフェニル基を表す。*は結合位置を表す。)
    The cyclic azine compound according to claim 1, wherein T is a substituent represented by the following general formula (T-3) or (T-4).
    Figure JPOXMLDOC01-appb-C000002
    (W 1 and W 2 each independently represent an oxygen atom or a sulfur atom. Ar 3 each independently represents a hydrogen atom, a methyl group, a pyridyl group, a quinolyl group, a methylpyridyl group, a dimethylpyridyl group, or Represents a phenyl group, * represents a bonding position.)
  3.  Arが、フェニル基、ビフェニル基又はナフチル基(これらの置換基は、フッ素原子、メチル基、フェニル基又はピリジル基を置換基として有してもよい)である請求項1又は2に記載の環状アジン化合物。 The Ar 1 is a phenyl group, a biphenyl group, or a naphthyl group (these substituents may have a fluorine atom, a methyl group, a phenyl group, or a pyridyl group as a substituent). Cyclic azine compound.
  4.  Arが、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、アントリル基、フルオランテニル基、クリセニル基、トリフェニレニル基、ピリジル基、ピリミジル基、ピラジル基、トリアジル基、キノリル基、イソキノリル基、又はフェナントリジル基(これらの置換基はメチル基又はフェニル基で置換されていてもよい)である請求項1~3のいずれかに記載の環状アジン化合物。 Ar 2 is phenyl, biphenyl, naphthyl, phenanthryl, anthryl, fluoranthenyl, chrycenyl, triphenylenyl, pyridyl, pyrimidyl, pyrazyl, triazyl, quinolyl, isoquinolyl, or phenolyl The cyclic azine compound according to any one of claims 1 to 3, which is a nantridyl group (these substituents may be substituted with a methyl group or a phenyl group).
  5.  Arが、ピリジル基、ピリミジル基、ピラジル基、トリアジル基、キノリル基、イソキノリル基、又はフェナントリジル基(これらの置換基はメチル基又はフェニル基で置換されていてもよい)である、請求項1~4のいずれかに記載の環状アジン化合物。 Ar 2 is a pyridyl group, a pyrimidyl group, a pyrazyl group, a triazyl group, a quinolyl group, an isoquinolyl group, or a phenanthridyl group (these substituents may be substituted with a methyl group or a phenyl group), Item 5. The cyclic azine compound according to any one of Items 1 to 4.
  6.  Arが、フェニル基、ビフェニル基、ナフチル基、フェナントリル基、アントリル基、フルオランテニル基、クリセニル基又はトリフェニレニル基(これらの置換基はメチル基又はフェニル基で置換されていてもよい)である、請求項1~4のいずれかに記載の環状アジン化合物。 Ar 2 is a phenyl group, a biphenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a fluoranthenyl group, a chrycenyl group, or a triphenylenyl group (these substituents may be substituted with a methyl group or a phenyl group). The cyclic azine compound according to any one of claims 1 to 4.
  7.  Xが、各々独立して、フェニレン基、ビフェニレン基、ナフチレン基、フェナントリレン基、アントリレン基、ピレニレン基、ピリジレン基、メチルピリジレン基、ジメチルピリジレン基、ピラジレン基、メチルピラジレン基、ジメチルピラジレン基、ピリミジレン基、メチルピリミジレン基、又はジメチルピリミジレン基である、請求項1~6のいずれかに記載の環状アジン化合物。 X is independently phenylene group, biphenylene group, naphthylene group, phenanthrylene group, anthrylene group, pyrenylene group, pyridylene group, methylpyridylene group, dimethylpyridylene group, pyrazylene group, methylpyrazylene group, dimethylpyrazylene group, pyrimidylene group. The cyclic azine compound according to any one of claims 1 to 6, which is a methylpyrimidylene group or a dimethylpyrimidylene group.
  8.  Xが、各々独立して、フェニレン基又はピリジレン基である、請求項1~7のいずれかに記載の環状アジン化合物。 The cyclic azine compound according to any one of claims 1 to 7, wherein each X is independently a phenylene group or a pyridylene group.
  9.  一般式(2)で示される化合物と、一般式(3)又は一般式(4)で示される化合物とを、塩基の存在下又は非存在下に、パラジウム触媒の存在下で、順次又は同時にカップリング反応させることを特徴とする請求項1~8のいずれかに記載の一般式(1)で示される環状アジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (但し、Ar、Ar、X、p、q、Z、及びTは、請求項1に記載のとおりである。
    及びYは、各々独立に脱離基を表す。Mは、ZnR、MgR、Sn(R又はB(ORを表す。但し、R及びRは、各々独立に塩素原子、臭素原子又はヨウ素原子を表し、Rは、炭素数1~4のアルキル基又はフェニル基を表し、Rは水素原子、炭素数1から4のアルキル基又はフェニル基を表し、B(ORの2つのRは同一又は異なっていてもよい。また、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。Mは、ZnR、MgR、Sn(R又はB(ORを表す。但し、R及びRは、各々独立に塩素原子、臭素原子又はヨウ素原子を表し、Rは、炭素数1~4のアルキル基又はフェニル基を表し、Rは水素原子、炭素数1から4のアルキル基又はフェニル基を表し、B(ORの2つのRは同一又は異なっていてもよい。また、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。)
    A compound represented by the general formula (2) and a compound represented by the general formula (3) or the general formula (4) are sequentially or simultaneously coupled in the presence or absence of a base in the presence of a palladium catalyst. 9. A process for producing a cyclic azine compound represented by the general formula (1) according to any one of claims 1 to 8, wherein a ring reaction is carried out.
    Figure JPOXMLDOC01-appb-C000003
    (However, Ar 1 , Ar 2 , X, p, q, Z, and T are as defined in claim 1.
    Y 1 and Y 2 each independently represent a leaving group. M 1 represents ZnR 1 , MgR 2 , Sn (R 3 ) 3 or B (OR 4 ) 2 . However, R 1 and R 2 each independently represent a chlorine atom, a bromine atom or an iodine atom, R 3 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, R 4 represents a hydrogen atom, 1 carbon atom It represents an alkyl group or a phenyl group 4, B (oR 4) 2 two R 4 2 may be the same or different. Further, two R 4 may form a ring containing an oxygen atom and a boron atom together. M 2 represents ZnR 1 , MgR 2 , Sn (R 3 ) 3 or B (OR 4 ) 2 . However, R 1 and R 2 each independently represent a chlorine atom, a bromine atom or an iodine atom, R 3 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, R 4 represents a hydrogen atom, 1 carbon atom It represents an alkyl group or a phenyl group 4, B (oR 4) 2 two R 4 2 may be the same or different. Further, two R 4 may form a ring containing an oxygen atom and a boron atom together. )
  10.  一般式(5)で示される化合物と、一般式(6)で示される化合物とを、塩基の存在下又は非存在下に、パラジウム触媒の存在下で、カップリング反応させることを特徴とする請求項1~8のいずれかに記載の一般式(1)で示される環状アジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (但し、Ar、Ar、X、p、q、Z、及びTは、請求項1に記載のとおりである。
    は、各々独立に脱離基を表す。Mは、ZnR、MgR、Sn(R又はB(ORを表す。但し、R及びRは、各々独立に塩素原子、臭素原子又はヨウ素原子を表し、Rは、炭素数1~4のアルキル基又はフェニル基を表し、Rは水素原子、炭素数1~4のアルキル基又はフェニル基を表し、B(ORの2つのRは同一又は異なっていてもよい。また、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。)
    A compound represented by the general formula (5) and a compound represented by the general formula (6) are subjected to a coupling reaction in the presence or absence of a base in the presence of a palladium catalyst. Item 9. A method for producing a cyclic azine compound represented by the general formula (1) according to any one of Items 1 to 8.
    Figure JPOXMLDOC01-appb-C000004
    (However, Ar 1 , Ar 2 , X, p, q, Z, and T are as defined in claim 1.
    Y 3 each independently represents a leaving group. M 3 represents ZnR 1 , MgR 2 , Sn (R 3 ) 3 or B (OR 4 ) 2 . However, R 1 and R 2 each independently represent a chlorine atom, a bromine atom or an iodine atom, R 3 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, R 4 represents a hydrogen atom, 1 carbon atom ~ represents an alkyl group or a phenyl group 4, B (oR 4) 2 two R 4 2 may be the same or different. Further, two R 4 may form a ring containing an oxygen atom and a boron atom together. )
  11.  一般式(7)で示される化合物と、一般式(8)で示される化合物とを、塩基の存在下又は非存在下に、パラジウム触媒の存在下で、カップリング反応させることを特徴とする請求項1~8のいずれかに記載の一般式(1)で示される環状アジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (但し、Ar、Ar、X、p、q、Z、及びTは、請求項1に記載のとおりである。
    は、ZnR、MgR、Sn(R又はB(ORを表す。但し、R及びRは、各々独立に塩素原子、臭素原子又はヨウ素原子を表し、Rは、炭素数1~4のアルキル基又はフェニル基を表し、Rは水素原子、炭素数1~4のアルキル基又はフェニル基を表し、B(ORの2つのRは同一又は異なっていてもよい。また、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。)
    A compound represented by the general formula (7) and a compound represented by the general formula (8) are subjected to a coupling reaction in the presence or absence of a base in the presence of a palladium catalyst. Item 9. A method for producing a cyclic azine compound represented by the general formula (1) according to any one of Items 1 to 8.
    Figure JPOXMLDOC01-appb-C000005
    (However, Ar 1 , Ar 2 , X, p, q, Z, and T are as defined in claim 1.
    M 4 represents ZnR 1 , MgR 2 , Sn (R 3 ) 3 or B (OR 4 ) 2 . However, R 1 and R 2 each independently represent a chlorine atom, a bromine atom or an iodine atom, R 3 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, R 4 represents a hydrogen atom, 1 carbon atom ~ represents an alkyl group or a phenyl group 4, B (oR 4) 2 two R 4 2 may be the same or different. Further, two R 4 may form a ring containing an oxygen atom and a boron atom together. )
  12.  パラジウム触媒が、第三級ホスフィンを配位子として有するパラジウム触媒である、請求項9~11のいずれかに記載の製造方法。 The production method according to any one of claims 9 to 11, wherein the palladium catalyst is a palladium catalyst having a tertiary phosphine as a ligand.
  13.  パラジウム触媒が、トリフェニルホスフィン又は2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニルを配位子として有するパラジウム触媒である、請求項9~12のいずれかに記載の製造方法。 The production method according to any one of claims 9 to 12, wherein the palladium catalyst is a palladium catalyst having triphenylphosphine or 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl as a ligand. .
  14.  一般式(7)で表されるトリアジン化合物。
    Figure JPOXMLDOC01-appb-C000006
    (但し、Ar、X、p、q、Z、及びTは、請求項1に記載のとおりであり、Mは、請求項11に記載のとおりである。)
    A triazine compound represented by the general formula (7).
    Figure JPOXMLDOC01-appb-C000006
    (Wherein, Ar 1, X, p, q, Z, and T are as defined in claim 1, M 4 is as defined in claim 11.)
  15.  一般式(10)で表されるトリアジン化合物。
    Figure JPOXMLDOC01-appb-C000007
    (但し、Ar、X、p、q、Z、及びTは、請求項1に記載のとおりである。Yは、脱離基を表す。)
    A triazine compound represented by the general formula (10).
    Figure JPOXMLDOC01-appb-C000007
    (However, Ar 1 , X, p, q, Z, and T are as described in claim 1. Y 1 represents a leaving group.)
  16.  請求項1~8のいずれかに記載の一般式(1)で示される環状アジン化合物を含有することを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000008
    (但し、Ar、Ar、X、p、q、Z、及びTは、請求項1に記載のとおりである。)
    An organic electroluminescent device comprising the cyclic azine compound represented by the general formula (1) according to any one of claims 1 to 8.
    Figure JPOXMLDOC01-appb-C000008
    (However, Ar 1 , Ar 2 , X, p, q, Z, and T are as described in claim 1.)
  17.  前記一般式(1)で示される環状アジン化合物を電子輸送層に含有する、請求項16に記載の有機電界発光素子。 The organic electroluminescence device according to claim 16, wherein the electron transport layer contains the cyclic azine compound represented by the general formula (1).
PCT/JP2014/067277 2013-06-28 2014-06-27 Cyclic azine compound, method for producing same, and organic electroluminescent element using same WO2014208755A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-136249 2013-06-28
JP2013136249 2013-06-28
JP2013259774 2013-12-17
JP2013-259774 2013-12-17

Publications (1)

Publication Number Publication Date
WO2014208755A1 true WO2014208755A1 (en) 2014-12-31

Family

ID=52142077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067277 WO2014208755A1 (en) 2013-06-28 2014-06-27 Cyclic azine compound, method for producing same, and organic electroluminescent element using same

Country Status (3)

Country Link
JP (1) JP6421474B2 (en)
TW (1) TW201516037A (en)
WO (1) WO2014208755A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125814A1 (en) * 2014-02-21 2015-08-27 東ソー株式会社 Triazine compound and method for producing same
WO2016084962A1 (en) * 2014-11-28 2016-06-02 出光興産株式会社 Compound, organic electroluminescence element material, organic electroluminescence element and electronic device
KR20160090262A (en) * 2015-01-21 2016-07-29 주식회사 엘지화학 Hetero-cyclic compound and organic light emitting device comprising the same
KR20160107975A (en) * 2015-03-06 2016-09-19 삼성에스디아이 주식회사 Organic compound and composition and organic optoelectric device and display device
WO2018043761A1 (en) 2016-09-05 2018-03-08 Idemitsu Kosan Co.,Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
CN109312230A (en) * 2016-07-12 2019-02-05 三星Sdi株式会社 Compound for organic photoelectric device, the constituent for organic photoelectric device and organic photoelectric device and display device
CN109575001A (en) * 2017-09-29 2019-04-05 Cmdl有限公司 3- dibenzofurans based triazine derivative organic compound and the organic electroluminescence device comprising it
WO2019076844A1 (en) * 2017-10-18 2019-04-25 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
EP3527557A1 (en) * 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
WO2019174945A1 (en) * 2018-03-16 2019-09-19 Cynora Gmbh Organic molecules for optoelectronic devices
USRE47654E1 (en) 2010-01-15 2019-10-22 Idemitsu Koasn Co., Ltd. Organic electroluminescence device
EP3567039A1 (en) * 2018-05-08 2019-11-13 Novaled GmbH N-heteroarylene compounds with low lumo energies
US10593890B2 (en) 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
CN112300140A (en) * 2014-07-09 2021-02-02 环球展览公司 Organic electroluminescent material and device
CN113024526A (en) * 2021-03-26 2021-06-25 宁波卢米蓝新材料有限公司 Organic electroluminescent material and application thereof
US11158817B2 (en) 2017-01-05 2021-10-26 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
US11189800B2 (en) 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
US11264574B2 (en) 2016-07-29 2022-03-01 Samsung Sdi Co., Ltd. Composition for organic optoelectronic element, organic optoelectronic element, and display device
CN114702508A (en) * 2022-02-23 2022-07-05 京东方科技集团股份有限公司 Triazine derivative, light-emitting device and display device
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11678572B2 (en) 2016-06-29 2023-06-13 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display apparatus
US11691983B2 (en) 2016-06-22 2023-07-04 Idemitsu Kosan Co., Ltd. Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes
US11706975B2 (en) 2016-06-29 2023-07-18 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display apparatus
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
JP6638428B2 (en) * 2016-01-29 2020-01-29 東ソー株式会社 Triazine compound having phenanthridinyl group and use thereof
JP6969118B2 (en) * 2016-03-29 2021-11-24 東ソー株式会社 Triazine compound and organic electroluminescent device containing it
JP6902859B2 (en) * 2016-12-08 2021-07-14 東ソー株式会社 Soluble azine compound and its manufacturing method, and organic electroluminescent device using it
WO2018154408A1 (en) * 2017-02-21 2018-08-30 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic device, and illumination device
KR102577731B1 (en) * 2017-06-30 2023-09-14 솔루스첨단소재 주식회사 Organic compounds and organic electro luminescence device comprising the same
CN108003143A (en) * 2017-12-04 2018-05-08 吉林奥来德光电材料股份有限公司 A kind of organic luminescent compounds and preparation method thereof and organic electroluminescence device
JP7159550B2 (en) * 2017-12-05 2022-10-25 東ソー株式会社 Cyclic azine compound, material for organic electroluminescence device and electron transport material for organic electroluminescence device
JP7192211B2 (en) * 2018-01-22 2022-12-20 東ソー株式会社 Triazine compounds with conjugated pyridyl groups
JP7285663B2 (en) * 2019-03-15 2023-06-02 東ソー株式会社 Triazine compound having a 2'-arylbiphenylyl group

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069569A1 (en) * 2005-12-15 2007-06-21 Idemitsu Kosan Co., Ltd. Organic electroluminescence element material and organic electroluminescence element using same
WO2011021689A1 (en) * 2009-08-21 2011-02-24 東ソー株式会社 Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
WO2013191177A1 (en) * 2012-06-18 2013-12-27 東ソー株式会社 Cyclic azine compound, method for producing same, and organic electroluminescent element containing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102261235B1 (en) * 2011-11-22 2021-06-04 이데미쓰 고산 가부시키가이샤 Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069569A1 (en) * 2005-12-15 2007-06-21 Idemitsu Kosan Co., Ltd. Organic electroluminescence element material and organic electroluminescence element using same
WO2011021689A1 (en) * 2009-08-21 2011-02-24 東ソー株式会社 Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
WO2013191177A1 (en) * 2012-06-18 2013-12-27 東ソー株式会社 Cyclic azine compound, method for producing same, and organic electroluminescent element containing same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47654E1 (en) 2010-01-15 2019-10-22 Idemitsu Koasn Co., Ltd. Organic electroluminescence device
WO2015125814A1 (en) * 2014-02-21 2015-08-27 東ソー株式会社 Triazine compound and method for producing same
CN112300140A (en) * 2014-07-09 2021-02-02 环球展览公司 Organic electroluminescent material and device
JP2022091758A (en) * 2014-07-09 2022-06-21 ユニバーサル ディスプレイ コーポレイション Organic electroluminescence material and device
JP7313500B2 (en) 2014-07-09 2023-07-24 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
US11024811B2 (en) * 2014-07-09 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US11957047B2 (en) 2014-07-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US11456423B2 (en) 2014-07-09 2022-09-27 Universal Display Corporation Organic electroluminescent materials and devices
US10784446B2 (en) 2014-11-28 2020-09-22 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, organic electroluminescence element and electronic device
WO2016084962A1 (en) * 2014-11-28 2016-06-02 出光興産株式会社 Compound, organic electroluminescence element material, organic electroluminescence element and electronic device
KR101867661B1 (en) * 2015-01-21 2018-06-15 주식회사 엘지화학 Hetero-cyclic compound and organic light emitting device comprising the same
KR20160090262A (en) * 2015-01-21 2016-07-29 주식회사 엘지화학 Hetero-cyclic compound and organic light emitting device comprising the same
KR101912107B1 (en) 2015-03-06 2018-10-26 삼성에스디아이 주식회사 Organic compound and composition and organic optoelectric device and display device
KR20160107975A (en) * 2015-03-06 2016-09-19 삼성에스디아이 주식회사 Organic compound and composition and organic optoelectric device and display device
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11245080B2 (en) 2015-04-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US11672175B2 (en) 2015-04-06 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US10693082B2 (en) 2015-04-06 2020-06-23 Universal Display Corporation Organic electroluminescent materials and devices
US10593890B2 (en) 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11691983B2 (en) 2016-06-22 2023-07-04 Idemitsu Kosan Co., Ltd. Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes
US11706975B2 (en) 2016-06-29 2023-07-18 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display apparatus
US11678572B2 (en) 2016-06-29 2023-06-13 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device and display apparatus
US11084806B2 (en) 2016-07-12 2021-08-10 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device, organic optoelectronic device, and display device
CN109312230B (en) * 2016-07-12 2021-12-14 三星Sdi株式会社 Compound for organic photoelectric device, composition for organic photoelectric device, and display device
CN109312230A (en) * 2016-07-12 2019-02-05 三星Sdi株式会社 Compound for organic photoelectric device, the constituent for organic photoelectric device and organic photoelectric device and display device
US11264574B2 (en) 2016-07-29 2022-03-01 Samsung Sdi Co., Ltd. Composition for organic optoelectronic element, organic optoelectronic element, and display device
US11279709B2 (en) 2016-09-05 2022-03-22 Idemitsu Kosan Co., Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
WO2018043761A1 (en) 2016-09-05 2018-03-08 Idemitsu Kosan Co.,Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
US11158817B2 (en) 2017-01-05 2021-10-26 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
US11189800B2 (en) 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
CN109575001A (en) * 2017-09-29 2019-04-05 Cmdl有限公司 3- dibenzofurans based triazine derivative organic compound and the organic electroluminescence device comprising it
WO2019076844A1 (en) * 2017-10-18 2019-04-25 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
EP3527557A1 (en) * 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
US11882765B2 (en) 2018-03-16 2024-01-23 Samsung Display Co., Ltd. Organic molecules for optoelectronic devices
WO2019174945A1 (en) * 2018-03-16 2019-09-19 Cynora Gmbh Organic molecules for optoelectronic devices
CN112135822A (en) * 2018-05-08 2020-12-25 诺瓦尔德股份有限公司 N-heteroarylidenes with low LUMO energy
WO2019215179A1 (en) * 2018-05-08 2019-11-14 Novaled Gmbh N-heteroarylene compounds with low lumo energies
EP3567039A1 (en) * 2018-05-08 2019-11-13 Novaled GmbH N-heteroarylene compounds with low lumo energies
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
CN113024526A (en) * 2021-03-26 2021-06-25 宁波卢米蓝新材料有限公司 Organic electroluminescent material and application thereof
CN114702508A (en) * 2022-02-23 2022-07-05 京东方科技集团股份有限公司 Triazine derivative, light-emitting device and display device

Also Published As

Publication number Publication date
JP6421474B2 (en) 2018-11-14
JP2015134743A (en) 2015-07-27
TW201516037A (en) 2015-05-01

Similar Documents

Publication Publication Date Title
JP6421474B2 (en) Cyclic azine compound, method for producing the same, and organic electroluminescent device using the same
JP6492432B2 (en) Cyclic azine compound having adamantyl group, method for producing the same, and organic electroluminescence device comprising the same
JP6326930B2 (en) Heterocyclic compounds for organic electroluminescent devices and uses thereof
JP6507534B2 (en) Benzothienopyrimidine compound, method for producing the same, and organic electroluminescent device containing the same
JP6977325B2 (en) Triazine compounds, their manufacturing methods, and organic electroluminescent devices containing them as constituents.
WO2016002864A1 (en) Triazine compound, method for producing same, and application for same
JP6731355B2 (en) Pyrimidine derivative and organic electroluminescence device
JP2017141216A (en) Cyclic azine compound, and use therefor
JP6862767B2 (en) Triazine compounds, their production methods, production intermediates, and applications
WO2018173882A1 (en) Cyclic azine compound, material for organic electroluminescent element, and electron transport material for organic electroluminescent element
TWI546295B (en) Compound having substituted orthoterphenyl structure, and organic electroluminescent device
JP6500644B2 (en) Triazine compound, method for producing the same, and use thereof
WO2020111225A1 (en) Triazine compound, material for organic electroluminescent element, and organic electroluminescent element
WO2019163959A1 (en) Cyclic azine compound, material for organic electroluminescnet element, and electron-transporting material for organic electroluminescent element
JP2020094034A (en) Triazine compound, material for organic electroluminescent element, and organic electroluminescent element
JP6421502B2 (en) Triazine compound, process for producing the same, and organic electroluminescent device comprising the same
CN112204030A (en) Compound and organic light emitting device including the same
JP7318178B2 (en) Cyclic azine compounds, materials for organic electroluminescence devices, electron transport materials for organic electroluminescence devices
JP7379830B2 (en) Cyclic azine compounds, materials for organic electroluminescent devices, and electron transport materials for organic electroluminescent devices
WO2022211123A1 (en) Transverse current suppressing material, carbazole compound, hole injection layer, and organic electroluminescent element
JP6451140B2 (en) Triazine compound, production method thereof, and use thereof
JP2023057461A (en) Triazine compound having dipyridyl phenyl group
JP2019069932A (en) Oxygen-crosslinked triarylamine compound and precursor thereof and light emitting material
JP2016020333A (en) Benzoquinazoline compounds, production method thereof and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818421

Country of ref document: EP

Kind code of ref document: A1