WO2018173882A1 - Cyclic azine compound, material for organic electroluminescent element, and electron transport material for organic electroluminescent element - Google Patents

Cyclic azine compound, material for organic electroluminescent element, and electron transport material for organic electroluminescent element Download PDF

Info

Publication number
WO2018173882A1
WO2018173882A1 PCT/JP2018/009952 JP2018009952W WO2018173882A1 WO 2018173882 A1 WO2018173882 A1 WO 2018173882A1 JP 2018009952 W JP2018009952 W JP 2018009952W WO 2018173882 A1 WO2018173882 A1 WO 2018173882A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pyridyl
phenyl
carbon atoms
unsubstituted
Prior art date
Application number
PCT/JP2018/009952
Other languages
French (fr)
Japanese (ja)
Inventor
服部一希
田中剛
野村桂甫
太田恵理子
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018037670A external-priority patent/JP7318178B2/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2018173882A1 publication Critical patent/WO2018173882A1/en

Links

Images

Definitions

  • the present disclosure relates to a cyclic azine compound, a material for an organic electroluminescent element, and an electron transport material for an organic electroluminescent element.
  • An organic electroluminescent element has a basic structure in which a light emitting layer containing a light emitting material is sandwiched between a hole transport layer and an electron transport layer, and an anode and a cathode are attached to the outside, and holes injected into the light emitting layer And a light-emitting element that utilizes light emission (fluorescence or phosphorescence) when excitons generated by electron recombination are deactivated, and are already used for applications such as large televisions and lighting as well as small displays.
  • the hole transport layer is a hole transport layer and a hole injection layer
  • the light emitting layer is an electron block layer
  • the electron transport layer is an electron transport layer and an electron injection layer.
  • a co-deposited film doped with a metal, an organometallic compound, or another organic compound may be used as the carrier transport layer (electron transport layer or hole transport layer) of the organic electroluminescence device.
  • organic electroluminescent element materials cyclic azine compounds disclosed in Patent Document 1 or 2 have been reported.
  • organic electroluminescent elements have a higher driving voltage than inorganic light emitting diodes, have low luminance and luminous efficiency, have extremely low element lifetime, and have not been put into practical use.
  • recent organic electroluminescence devices have been gradually improved, further excellent materials are demanded in terms of luminous efficiency characteristics, driving voltage characteristics, and long life characteristics.
  • extremely high heat resistance may be required, and the material is required to have a high glass transition temperature (Tg).
  • Tg glass transition temperature
  • active research has been conducted on organic electroluminescent devices using thermally activated delayed fluorescence (TADF) and blue electroluminescent devices using phosphorescence by Adachi et al. In these materials for organic electroluminescence devices, high triplet excitation levels are required for energy confinement.
  • TADF thermally activated delayed fluorescence
  • Adachi et al In these materials for organic electroluminescence devices, high triplet excitation levels are required for energy confinement.
  • the cyclic azine compound having a non-planar structure disclosed in Patent Document 2 is required to be further improved in terms of extending the lifetime of the device when used in an organic electroluminescence device and increasing the luminous efficiency.
  • compounds containing triptycene specific synthesis examples, characteristics as an electron transport material for organic electroluminescence devices, glass transition temperature, and triplet excitation levels are not described, and their physical properties are unknown. It is.
  • each aspect of the present invention is to provide a cyclic azine compound having a high glass transition temperature and a high triplet excitation level, a material for an organic electroluminescence device, and an electron transport material for an organic electroluminescence device, as compared with conventionally known compounds. Is to provide.
  • cyclic azine compound (1) the glass transition temperature of a cyclic azine compound to which a group having a triptycene structure is bonded.
  • An organic electroluminescence device that is extremely high and has a high triplet excitation level and uses the compound as an electron transport material has a lower driving voltage, higher luminous efficiency, and higher performance than those using a conventionally known material. It has been found that the heat resistance is increased or the life is extended, and each aspect of the present invention has been completed.
  • the cyclic azine compound according to the first aspect of the present invention is a cyclic azine compound represented by the formula (1):
  • Ar 1 each independently represents a substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group
  • Ar 2 is A substituted or unsubstituted monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms, A monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a substituted or unsubstituted 6-membered ring, Represents a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from the group consisting of substituted or unsubstituted H, C, O, and S, or a hydrogen atom;
  • Ar 3 and Ar 4 are each independently Substituted or unsubstituted phenyl, naphthyl, pyridyl, Hydrogen atom, An unsubstituted alkyl group having 1 to 4 carbon atoms, or Represents a single bond
  • the cyclic azine compound according to the second aspect of the present invention is: The cyclic azine compound according to the first aspect, wherein Z is a nitrogen atom.
  • the cyclic azine compound according to the third aspect of the present invention is:
  • Two Ar 1 represent the same group and are a substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group;
  • the substituent is the cyclic azine compound according to the first or second aspect, which is a fluorine atom, a methyl group, or a phenyl group.
  • the cyclic azine compound according to the fourth aspect of the present invention is: The cyclic azine compound according to any one of the first to third aspects, wherein two Ar 1 are both phenyl groups.
  • the cyclic azine compound according to the fifth aspect of the present invention is:
  • Ar 2 is A hydrogen atom, or Substituted or unsubstituted phenyl, naphthyl, fluorenyl, anthryl, phenanthryl, benzofluorenyl, pyrenyl, perylenyl, fluoranthenyl, triphenylenyl, pyrimidyl, pyridyl, pyridyl, Quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, dibenzothienyl group, When Ar 2 has a substituent, the substituent is a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or
  • the cyclic azine compound according to the sixth aspect of the present invention is: Ar 2 is a substituted or unsubstituted fluorenyl group, benzofluorenyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, or dibenzothienyl group, When Ar 2 has a substituent, the substituent is a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms.
  • the cyclic azine compound according to any one of the first to fifth aspects which is an alkoxy group.
  • the cyclic azine compound according to the seventh aspect of the present invention is: Ar 3 and Ar 4 are each independently Hydrogen atom; Unsubstituted phenyl group, naphthyl group, pyridyl group; or A cyclic azine compound according to any one of the first to sixth aspects, wherein the single bond is bonded to X 2 .
  • the cyclic azine compound according to the eighth aspect of the present invention is: X 1 and X 2 are each independently Single bond;
  • the cyclic azine compound according to the ninth aspect of the present invention is: Y 1 , Y 2 , Y 3 , and Y 4 are all groups represented by C—R; Each R is independently Hydrogen atom; The unsubstituted alkyl group having 1 to 4 carbon atoms, the alkenyl group having 1 to 4 carbon atoms, the phenyl group, the naphthyl group, or the pyridyl group according to any one of the first to eighth embodiments. It is a cyclic azine compound.
  • the cyclic azine compound according to the tenth aspect of the present invention is: The cyclic azine compound according to any one of the first to ninth aspects, wherein W 1 , W 2 , and W 3 are all C—H.
  • the cyclic azine compound according to the eleventh aspect of the present invention is: A material for an organic electroluminescent element comprising the cyclic azine compound represented by the formula (1) according to any one of the first to tenth aspects.
  • the cyclic azine compound according to the twelfth aspect of the present invention is: An electron transport material for an organic electroluminescence device comprising the cyclic azine compound represented by the formula (1) according to any one of the first to tenth aspects.
  • a cyclic azine compound having excellent heat resistance of film quality and a high triplet excitation level, an organic electroluminescent device material containing the same, and an electron transport material for an organic electroluminescent device Therefore, it contributes to the provision of an organic electroluminescent device that is excellent in low driving voltage, high luminous efficiency, high heat resistance, or long life.
  • Each aspect of the present invention relates to a cyclic azine compound represented by the formula (1) (cyclic azine compound (1)), a method for producing the same, and a material for an organic electroluminescent element including the material.
  • the cyclic azine compound according to one embodiment of the present invention is a cyclic azine compound represented by the formula (1):
  • Ar 1 each independently represents a substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group
  • Ar 2 is A substituted or unsubstituted monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms, A monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a substituted or unsubstituted 6-membered ring, Represents a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from the group consisting of substituted or unsubstituted H, C, O, and S, or a hydrogen atom;
  • Ar 3 and Ar 4 are each independently Substituted or unsubstituted phenyl, naphthyl, pyridyl, Hydrogen atom, An unsubstituted alkyl group having 1 to 4 carbon atoms, or Represents a single bond
  • Ar 1 each independently represents a phenyl group, a naphthyl group, or a pyridyl group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group).
  • the phenyl group, naphthyl group, or pyridyl group substituted with a fluorine atom in Ar 1 is not particularly limited, and examples thereof include a fluorophenyl group, a pentafluorophenyl group, a difluorophenyl group, a fluoronaphthyl group, and difluoro.
  • Preferred examples include a naphthyl group, a fluoropyridyl group, a difluoropyridyl group, and the like.
  • the phenyl group, naphthyl group, or pyridyl group substituted with a methyl group in Ar 1 is not particularly limited, and examples thereof include a tolyl group, a methylnaphthyl group, a dimethylphenyl group, a dimethylnaphthyl group, and a methylpyridyl group. Or a dimethylpyridyl group etc. are mentioned as a preferable example.
  • a phenyl group, a naphthyl group, or a pyridyl group substituted with a phenyl group in Ar 1 is not particularly limited. A group etc. are mentioned as a preferable example.
  • Ar 1 When two Ar 1 represent the same group and are substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group, and Ar 1 has a substituent, the substituent is a fluorine atom, a methyl group Or a phenyl group.
  • Ar 1 is more preferably independently a phenyl group, a tolyl group, a naphthyl group, or a biphenyl group in terms of excellent electron transport material properties, and two Ar 1 are the same, It is more preferable that they are a group, a tolyl group, a naphthyl group, or a biphenyl group, and it is further more preferable that both two Ar ⁇ 1 > is a phenyl group from the viewpoint of easy synthesis.
  • Ar 1 preferably represents the same group in terms of easy synthesis.
  • Ar 1 is not particularly limited.
  • each of them independently represents a phenyl group, a p-tolyl group, an m-tolyl group, an o-tolyl group, a 2,4-dimethylphenyl group, 3, 5-dimethylphenyl group, mesityl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 3,5-difluorophenyl group, biphenyl-2-yl group, Biphenyl-3-yl group, biphenyl-4-yl group, 1-naphthyl group, 2-naphthyl group, 1-phenylnaphthalen-2-yl group, 1-phenylnaphthalen-3-yl group, 1-phenylnaphthalene-4 -Yl group, 1-phenylnaphthalen-5-yl group, 1-phenylnaphthalen-6-yl
  • a naphthyl group is preferable, and each independently a phenyl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a 1-naphthyl group, or a 2-naphthyl group is more preferable;
  • the group is particularly preferred.
  • Ar 2 is a monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms, a monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a 6-membered ring, or H, C, A monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from an atomic group consisting of O and S (these groups include a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, A dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms), or a hydrogen atom.
  • the monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms in Ar 2 is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a pyrenyl group, and a triphenylenyl group.
  • Preferred examples include a chrysenyl group, a fluoranthenyl group, an acenaphthyl group, a fluorenyl group, or a benzofluorenyl group.
  • substituents are phenyl group, tolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, fluorine atom, alkyl group having 1 to 4 carbon atoms, or alkoxy group having 1 to 4 carbon atoms. May be substituted.
  • a monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a 6-membered ring in Ar 2 is not particularly limited, and examples thereof include a pyridyl group, a pyrazyl group, a pyrimidyl group, and pyridazyl.
  • Preferred examples include a group, a quinolyl group, an isoquinolyl group, a phenanthridyl group, a benzoquinolyl group, or an acridinyl group.
  • the carbazolyl group is a heteroaromatic group including a 5-membered ring
  • the monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms and including only the 6-membered ring includes Not included.
  • these substituents include a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. May be substituted.
  • a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from an atomic group consisting of H, C, O, and S in Ar 2 is not particularly limited.
  • a thienyl group, a furyl group, a bithienyl group, a bifuryl group, a benzothienyl group, a benzofuryl group, a dibenzothienyl group, a dibenzofuryl group, and the like are preferable examples.
  • substituents are phenyl group, tolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, fluorine atom, alkyl group having 1 to 4 carbon atoms, or alkoxy group having 1 to 4 carbon atoms. May be substituted.
  • the alkyl group having 1 to 4 carbon atoms in Ar 2 is not particularly limited.
  • a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or a t-butyl group is preferable. Take as an example.
  • the alkoxy group having 1 to 4 carbon atoms in Ar 2 is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. A preferred example is given.
  • Ar 2 represents a hydrogen atom, a monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms, a monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a 6-membered ring, or H 2 It is preferably a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from the group consisting of C, O, and S.
  • Ar 2 is a monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms, or a monocyclic or condensed ring containing nitrogen having 4 to 25 carbon atoms consisting of only a 6-membered ring because of its high glass transition temperature. It is preferably a heteroaromatic group or a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from the group consisting of H, C, O and S.
  • Ar 2 is a hydrogen atom; phenyl group, naphthyl group, biphenyl group, fluorenyl group, anthryl group, phenanthryl group, benzofluorenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, Pyrimidyl group, pyrazyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, or dibenzothienyl group (these groups are phenyl group, tolyl group, pyridyl group, methylpyridyl group, It may have a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms).
  • Ar 2 is phenyl group, naphthyl group, biphenyl group, fluorenyl group, anthryl group, phenanthryl group, benzofluorenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyrimidyl group, pyrazyl group, pyridyl group Quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, or dibenzothienyl group (these groups are phenyl group, tolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, fluorine atom, carbon More preferably an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms).
  • Ar 2 is a phenyl group, naphthyl group, fluorenyl group, anthryl group, phenanthryl group, benzofluorenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyrimidyl group, pyrazyl group, pyridyl group, quinolyl group And more preferably an isoquinolyl group, a benzofuranyl group, a benzothienyl group, a dibenzofuranyl group, a dibenzothienyl group, a biphenyl group, a pyridylphenyl group, or a terphenyl group.
  • Ar 2 is excellent in electron transporting material characteristics, and is a fluorenyl group, benzofluorenyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, or dibenzothienyl.
  • a group (these groups may have a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms).
  • Ar 2 is a pyridyl group.
  • Ar 2 Specific examples of these include, but are not limited to, hydrogen atom, phenyl group, p-tolyl group, m-tolyl group, o-tolyl group, 2,4-dimethylphenyl group, 3,5-dimethylphenyl group.
  • phenyl group p-tolyl group, biphenyl-2-yl group, biphenyl-3-yl group, biphenyl-4-yl group, 3- (2-pyridyl) phenyl group, 4- (2-pyridyl) phenyl group, 3- (3-pyridyl) phenyl group, 4- (3-pyridyl) phenyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-phenylpyridine-6- Yl group, 2-phenylpyridin-5-yl group, 2-phenylpyridin-4-yl group, 3-phenylpyridin-5-yl group, 3-phenylpyridin-6-yl group, 2,6-diphenylpyridine- 4-yl group, 4,6-diphenylpyridin-2-yl group, 2-pyrimidyl group, 2-pyrazyl group, 1-naphthyl
  • Ar 3 and Ar 4 each independently represent a phenyl group, a naphthyl group, or a pyridyl group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group), a hydrogen atom, or a carbon number.
  • the alkyl group having 1 to 4 carbon atoms in Ar 3 and Ar 4 is not particularly limited, but includes a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or a t-butyl group Is a preferred example.
  • the phenyl group, naphthyl group, and pyridyl group substituted with a fluorine atom in Ar 3 and Ar 4 are not particularly limited, and examples thereof include the same groups as Ar 1 .
  • the phenyl group, naphthyl group, and pyridyl group substituted with a methyl group in Ar 3 and Ar 4 are not particularly limited, and examples thereof include the same groups as Ar 1 .
  • the phenyl group, naphthyl group, and pyridyl group substituted with a phenyl group in Ar 3 and Ar 4 are not particularly limited, and examples thereof include the same groups as Ar 1 .
  • Ar 3 and Ar 4 are each preferably a single bond formed with a hydrogen atom, a phenyl group, a naphthyl group, a biphenyl group, a pyridyl group, or X 2 independently from the viewpoint of excellent electron transporting material properties. Yes. Ar 3 and Ar 4 are each more preferably a hydrogen atom or a single bond formed with X 2 independently from the viewpoint of easy synthesis.
  • phenyl group, naphthyl group, or pyridyl group in Ar 3 and Ar 4 are particularly limited. Although it is not, the same group as Ar 1 is mentioned.
  • substituents phenyl group, biphenyl-3-yl group, biphenyl-4-yl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 1 A -naphthyl group or a 2-naphthyl group is preferable, and a phenyl group is particularly preferable in terms of easy synthesis.
  • Ar 5 and Ar 6 are each independently a phenyl group, a naphthyl group, a pyridyl group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group), a hydrogen atom, or a carbon atom.
  • the alkyl group having 1 to 4 carbon atoms in Ar 5 and Ar 6 is not particularly limited, but a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, or the like Is a preferred example.
  • the phenyl group, naphthyl group, and pyridyl group substituted with a fluorine atom in Ar 5 and Ar 6 are not particularly limited, and examples thereof include the same groups as Ar 1 .
  • the phenyl group, naphthyl group, and pyridyl group substituted with a methyl group in Ar 5 and Ar 6 are not particularly limited, and examples thereof include the same groups as Ar 1 .
  • the phenyl group, naphthyl group, and pyridyl group substituted with a phenyl group in Ar 5 and Ar 6 are not particularly limited, and examples thereof include the same groups as Ar 1 .
  • Ar 5 and Ar 6 are each independently preferably a hydrogen atom, a phenyl group, a tolyl group, a naphthyl group, a biphenyl group, or a pyridyl group because they are excellent in electron transporting material properties, and are easily synthesized. It is more preferable that it is a hydrogen atom at a point.
  • W 1 , W 2 , and W 3 each independently represent C—H or a nitrogen atom, and W 1 , W 2 , and W 3 all represent C—H, or W 1 , W 2 , W 3 represents a nitrogen atom, and the remaining two represent C—H. That is, W 1 , W 2 , and W 3 each independently represent C—H or a nitrogen atom, and at least two represent C—H. W 1 , W 2 and W 3 are all preferably C—H from the viewpoint of easy synthesis.
  • X 1 and X 2 are each independently a phenylene group, a naphthylene group, a biphenylene group, a pyridylene group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group), or a single group. Represents a bond.
  • X 1 and X 2 are each independently Single bond; It is preferably an unsubstituted phenylene group, naphthylene group, biphenylene group, or pyridylene group. Of these groups, a single bond, a phenylene group, or a pyridylene group is more preferable independently from the viewpoint of easy availability of raw materials.
  • Z represents a nitrogen atom or C—H. Among these, it is preferable that Z is a nitrogen atom at the point which is excellent in an electron transport material characteristic.
  • Y 1 , Y 2 , Y 3 , and Y 4 each independently represent a group represented by C—R or a nitrogen atom.
  • R represents a phenyl group, a naphthyl group, or a pyridyl group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group), a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a carbon number of 1 Represents -4 alkenyl groups.
  • any of Y 1 , Y 2 , Y 3 , and Y 4 represents a nitrogen atom
  • only one of Y 1 , Y 2 , Y 3 , and Y 4 is a nitrogen atom, and the rest is C
  • a group represented by -R (where each R independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group, or a pyridyl group.
  • a naphthyl group, or a pyridyl group may be substituted with a fluorine atom, a methyl group, or a phenyl group), from the viewpoint of easy synthesis.
  • Y 1 , Y 2 , Y 3 , and Y 4 are all groups represented by C—R (where each R is independently a hydrogen atom or a group having 1 to 4 carbon atoms, for easy synthesis).
  • R may be bonded to each other to form an aromatic ring.
  • R couple bonded together and formed the aromatic ring.
  • Formula (1f) or (1g) etc. which are mentioned later are mentioned.
  • the compound represented by the formula (1) is not particularly limited.
  • the following formula (1a), (1b), (1c), (1d), (1e), (1f), or (1g) and the like can be embodied.
  • the cyclic azine compound (1) according to one embodiment of the present invention is used as a part of the constituent components of the organic electroluminescent device, effects such as high luminous efficiency, long life, and low voltage can be obtained. In particular, this effect is prominent when used as an electron transport layer or a hole blocking layer.
  • Particular preferable compounds among the compounds represented by the formula (1) include the following (A-1) to (A-1356), but the present disclosure is not limited thereto.
  • the organic electroluminescent element material includes the cyclic azine compound (1).
  • the light emitting layer in an organic electroluminescent element refers to a layer that emits light when a current is passed through an electrode composed of a cathode and an anode. Specifically, it refers to a layer containing a fluorescent compound that emits light when an electric current is passed through an electrode composed of a cathode and an anode.
  • an organic electroluminescent element has a structure in which a light emitting layer is sandwiched between a pair of electrodes.
  • the organic electroluminescent device includes a hole transport layer, an electron transport layer, an anode buffer layer, a cathode buffer layer, and the like in addition to the light emitting layer as necessary, and is sandwiched between the cathode and the anode. Take the structure. Specific examples include the structures shown below.
  • a conventionally known light emitting material can be used for the light emitting layer.
  • a method for forming the light emitting layer for example, there is a method of forming a thin film by a known method such as a vapor deposition method, a spin coating method, a casting method, or an LB method.
  • the light emitting layer can be obtained by dissolving a light emitting material in a solvent together with a binder such as a resin to form a solution and then applying the solution by a spin coating method to form a thin film.
  • the film thickness of the light emitting layer thus formed is not particularly limited and can be appropriately selected according to the situation, but is usually in the range of 5 nm to 5 ⁇ m.
  • the hole injection layer and the hole transport layer have a function of transmitting the holes injected from the anode to the light emitting layer, and the hole injection layer and the hole transport layer are interposed between the anode and the light emitting layer. Thus, many holes are injected into the light emitting layer with a lower electric field.
  • electrons injected from the cathode and transported from the electron injection layer and / or the electron transport layer to the light-emitting layer are generated by the electron barrier existing at the interface between the light-emitting layer and the hole injection layer or the hole transport layer. It accumulates at the interface in the light emitting layer without leaking into the injection layer or the hole transport layer, resulting in an element with excellent light emitting performance such as improved luminous efficiency.
  • the hole injecting material and the hole transporting material have either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • Examples of the hole injection material and hole transport material include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazoles.
  • Derivatives styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the hole injecting material and the hole transporting material those described above can be used, and porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds can be used. preferable.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N ′.
  • inorganic compounds such as p-type-Si and p-type-SiC can be used as the hole injection material and the hole transport material.
  • the hole injection layer and the hole transport layer are formed by thinning the hole injection material and the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Can be formed.
  • the film thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m.
  • the hole injection layer and hole transport layer may have a single layer structure composed of one or more of the above materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the electron transport layer preferably contains a cyclic azine compound represented by the above formula (1). Therefore, the electron transport material for organic electroluminescent elements according to one embodiment of the present invention includes the cyclic azine compound (1). In addition, about the cyclic azine compound (1) concerning 1 aspect of this invention, it can also be used other than the electron carrying layer of an organic electroluminescent element.
  • the electron transport layer may be formed by forming a cyclic azine compound represented by the above formula (1) by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. it can.
  • the thickness of the electron transport layer is not particularly limited, but is usually selected in the range of 5 nm to 5 ⁇ m.
  • the electron transport layer preferably includes a cyclic azine compound represented by the formula (1), may include a conventionally known electron transport material, and has a single-layer structure composed of one kind or two or more kinds. Alternatively, a laminated structure composed of a plurality of layers having the same composition or different compositions may be used.
  • the light emitting material is not limited to the light emitting layer, and one kind may be contained in the hole transport layer or the electron transport layer adjacent to the light emitting layer, thereby further increasing the light emission efficiency of the organic electroluminescent device. be able to.
  • the type of substrate such as glass or plastic, and there is no particular limitation as long as it is transparent.
  • the substrate preferably used in the organic electroluminescent device according to one embodiment of the present invention include glass, quartz, and a light-transmitting plastic film.
  • the light transmissive plastic film examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). And a film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP), or the like.
  • a suitable example for producing an organic electroluminescent element will be described.
  • a method for producing an organic electroluminescent element composed of the anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
  • a thin film made of a desired electrode material for example, an anode material
  • a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
  • An anode is produced.
  • a thin film comprising a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer, which is a device material, is formed thereon.
  • a buffer layer (electrode interface layer) may exist between the anode and the light emitting layer or the hole injection layer and between the cathode and the light emitting layer or the electron injection layer.
  • a layer having other functions may be laminated as necessary.
  • a functional layer such as a hole blocking layer or an electron blocking layer may be provided.
  • an electrode of the organic electroluminescent element As the anode in the organic electroluminescence device, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • the anode may be formed by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or the pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering. May be formed.
  • the cathode those using an electrode substance of a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof are preferably used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this from the viewpoint of durability against electron injecting and oxidation for example, a magnesium / silver mixture, magnesium
  • An aluminum / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, and the like are preferable.
  • the cathode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering.
  • a thin film made of a desired electrode material for example, an anode material
  • a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
  • a thin film made of a substance is formed by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a cathode is provided to obtain a desired organic electroluminescence device.
  • the organic electroluminescence device may be used as a kind of lamp for illumination or an exposure light source, or may be a projection device that projects an image, or directly recognizes a still image or a moving image. It may be used as a type of display device (display).
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic electroluminescent elements according to one embodiment of the present invention having different emission colors.
  • the cyclic azine compound (1) according to one embodiment of the present invention is not particularly limited.
  • the following reaction formulas (1) to (1) (4) It can manufacture by the method shown by either.
  • compound (2a) the compound represented by formula (2a).
  • compound (2a) the compound represented by formula (2a).
  • compound (3a) compound (4a), compound (5a), compound (3b), compound (4b), compound (5b), compound (4c), compound (1g) and the like.
  • a 1 , A 2 , A 3 , and A 4 each represent a leaving group and are not particularly limited, and examples thereof include a chlorine atom, a bromine atom, an iodine atom, or a triflate independently.
  • a bromine atom or a chlorine atom is preferable independently from the viewpoint of good reaction yield.
  • M 1 , M 2 , M 3 , and M 4 each represent a leaving group and are not particularly limited.
  • said R ⁇ 1 > and R ⁇ 2 > respectively independently represents a chlorine atom, a bromine atom, or an iodine atom
  • said R ⁇ 3 > represents a C1-C4 alkyl group or a phenyl group
  • said R ⁇ 4 > is hydrogen atom, an alkyl group or a phenyl group having a carbon number of 1 to 4
  • B (oR 4) 2 two R 4 2 may be the same or different.
  • two R 4 may form a ring containing an oxygen atom and a boron atom together.
  • the ZnR 1, MgR 2, is not particularly limited, for example, ZnCl, ZnBr, ZnI, MgCl , MgBr, MgI like.
  • the Sn (R 3) 3, is not particularly limited, for example, Sn (Me) 3, Sn (Bu) 3 and the like.
  • B (OR 4 ) 2 is not particularly limited, and examples thereof include B (OH) 2 , B (OMe) 2 , B (O i Pr) 2 , and B (OBu) 2 .
  • B (OR 4 ) 2 in the case where two R 4s are combined to form a ring containing an oxygen atom and a boron atom include the following (C-1) to (C-6): The group shown can be exemplified, and the group shown by (C-2) is desirable from the viewpoint of good yield.
  • the compound (5a) used in the reaction formula (1) is, for example, J. Am. Chem. Soc. , 1963, 85 (10), 1549, WO2010 / 082621 Paragraph Nos. [0091] to [0103], or Japanese Unexamined Patent Publication No. 2013-223458, Paragraph Nos. [0045] to [0067] Can be manufactured in combination.
  • Reaction formula (1) is a method for obtaining the cyclic azine compound (1) according to one embodiment of the present invention by performing “Step 2” after “Step 1”.
  • “Step 1” is a method in which compound (2a) is reacted with compound (3a) in the presence or absence of a base in the presence of a palladium catalyst to obtain compound (4a).
  • Suzuki-Miyaura reaction By applying reaction conditions for general coupling reactions such as Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the desired product can be obtained in good yield.
  • the palladium catalyst that can be used in “Step 1” is not particularly limited, and examples thereof include salts of palladium chloride, palladium acetate, palladium trifluoroacetate, palladium nitrate, and the like. Furthermore, ⁇ -allyl palladium chloride dimer, palladium acetylacetonate, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium and dichloro (1,1′-bis (diphenylphosphine). Examples include complex compounds such as fino) ferrocene) palladium.
  • a palladium complex having a tertiary phosphine as a ligand is more preferable in terms of a good reaction yield, is easily available, and a palladium complex having triphenylphosphine as a ligand is preferable in terms of a good reaction yield.
  • a palladium complex having a tertiary phosphine as a ligand can also be prepared in a reaction system by adding a tertiary phosphine to a palladium salt or a complex compound.
  • the tertiary phosphine that can be used in this case is not particularly limited.
  • triphenylphosphine trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine.
  • 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl or triphenylphosphine is preferable because it is easily available and the reaction yield is good.
  • the molar ratio of the tertiary phosphine to the palladium salt or complex compound is preferably 1:10 to 10: 1, and more preferably 1: 2 to 5: 1 from the viewpoint of good reaction yield.
  • the base that can be used in “Step 1” is not particularly limited.
  • potassium carbonate is preferable in terms of a good yield.
  • the molar ratio of base to compound (3a) is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of good yield.
  • the molar ratio of the compound (2a) to the compound (3a) used in “Step 1” is not particularly limited, but for example, 1: 2 to 5: 1 is desirable, and 1: 2 in terms of good yield. To 2: 1 is more desirable.
  • the solvent that can be used in “Step 1” is not particularly limited, and examples thereof include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, toluene, benzene, diethyl ether, ethanol, Examples thereof include methanol or xylene, and these may be used in appropriate combination. It is desirable to use a mixed solvent of dioxane or tetrahydrofuran and water in terms of a good yield.
  • Step 1 is not particularly limited, but can be performed at a temperature appropriately selected from 0 ° C. to 150 ° C., for example, and is preferably performed at 50 ° C. to 100 ° C. in terms of good yield. desirable.
  • Compound (4a) can be obtained by performing a normal treatment after completion of “Step 1”. If necessary, it may be purified by recrystallization, column chromatography or sublimation.
  • Step 2 is a reaction of compound (4a) obtained in “Step 1” with compound (5a) in the presence or absence of a base and in the presence of a palladium catalyst.
  • This is a method for obtaining such a cyclic azine compound (1), which can be obtained in a high yield by applying reaction conditions of general coupling reactions such as Suzuki-Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction and the like. The object can be obtained.
  • reaction conditions are not necessarily the same as those in “Step 1”.
  • reaction formula (2) After completion of “Step 2”, it may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
  • the reaction conditions in reaction formula (2) are the same as those in reaction formula (1). That is, “Step 3” in the reaction formula (2) is the same as the conditions listed in “Step 1” except that the compound (2a) is replaced with the compound (3b) and the compound (3a) is replaced with the compound (2b). Can be applied. The same reaction conditions as those mentioned in “Step 1” can be applied to “Step 4” in the reaction formula (2). After completion of “Step 4”, it may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
  • reaction conditions in Reaction Formula (3) are the same as those in Reaction Formula (1). That is, in “Step 5” in the reaction formula (3), compound (2a) was replaced with compound (5b) and compound (3a) was replaced with compound (4b) among the conditions listed in “Step 1”. Conditions can be applied. However, the reaction conditions are not necessarily the same as those in “Step 1”. After completion of “Step 5”, it may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
  • Reaction formula (4) is a method for obtaining the cyclic azine compound (1 g) according to one embodiment of the present invention by carrying out “Step 6”.
  • the reaction conditions in Reaction Formula (4) are the same as those in Reaction Formula (1). That is, in “Step 6” in the reaction formula (4), compound (2a) was replaced with compound (5a) and compound (3a) was replaced with compound (4c) among the conditions listed in “Step 1”. Conditions can be applied. However, the reaction conditions are not necessarily the same as those in “Step 1”. After completion of “Step 5”, it may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
  • Triplet excited level (eV) 1241.6 / ⁇ onset “ ⁇ onset” represents a wavelength value at the intersection of the tangent line and the horizontal axis by drawing a tangent line to the rising edge on the short wavelength side in the phosphorescence spectrum, where the vertical axis indicates the phosphorescence intensity and the horizontal axis indicates the wavelength.
  • the calculation of the triplet excited level by molecular orbital calculation was performed using Gaussian 09 (manufactured by Gaussian).
  • the light emission characteristics of the organic electroluminescence device were evaluated by applying a direct current to the fabricated device at room temperature and using a luminance meter of LUMINANCEMETER (BM-9) (manufactured by TOPCON).
  • Table 1 shows the glass transition temperatures of the compounds obtained in Synthesis Example-1 to Synthesis Example-8 and Reference Example-1.
  • the cyclic azine compound according to one embodiment of the present invention to which a group having a triptycene structure is bonded has a high triplet excitation level.
  • the triplet excitation level in Table 2 is an actual measurement value measured using the aforementioned FP-6500 (manufactured by JASCO Corporation).
  • the triplet excited level in Table 3 is a value obtained by DFT calculation (B3LYP / 6-31G (d)) performed using Gaussian 09 (manufactured by Gaussian).
  • Element Example-1 As the substrate, a glass substrate with an ITO transparent electrode on which a 2 mm wide indium-tin oxide (ITO) film (thickness 110 nm) was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface treated by ozone ultraviolet cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG. Each organic material was formed by a resistance heating method. First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa. Thereafter, as an organic compound layer on the glass substrate with an ITO transparent electrode shown by 1 in FIG. 6. The first electron transport layer 7, the second electron transport layer 8, and the cathode layer 9 were all formed by vacuum deposition while being laminated in this order.
  • ITO indium-tin oxide
  • a sublimated HIL film having a thickness of 55 nm was formed at a rate of 0.15 nm / second.
  • charge generation layer 3 sublimation-purified HAT was deposited to a thickness of 5 nm at a rate of 0.05 nm / second.
  • first hole transport layer 4 HTL-1 was deposited to a thickness of 10 nm at a rate of 0.15 nm / second.
  • second hole transport layer 5 HTL-2 was deposited to a thickness of 10 nm at a rate of 0.15 nm / second.
  • EML-1 and EML-2 were deposited to a thickness of 25 nm at a ratio of 95: 5 (deposition rate of 0.18 nm / second).
  • ETL-1 was deposited to a thickness of 5 nm at a rate of 0.15 nm / second.
  • the cathode layer 9 is formed of silver / magnesium (weight ratio 1/10) and silver in this order at 80 nm (film formation rate 0.5 nm / second) and 20 nm (film formation rate 0.2 nm / second), respectively. And it was set as the 2 layer structure. Each film thickness was measured with a stylus type film thickness meter (DEKTAK).
  • this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less.
  • a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin manufactured by Nagase ChemteX Corporation were used.
  • a direct current was applied to the organic electroluminescent device produced as described above, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • V voltage
  • cd / A current efficiency
  • element lifetime h
  • the element lifetime of Table 4 the luminance was measured decay time at the time of continuous lighting when driving was prepared device at an initial luminance 1000 cd / m 2, the luminance (cd / m 2) is required until reduced 10% Time was measured.
  • the voltage, current efficiency, and element lifetime were expressed as relative values based on the result in element reference example 1 described later as a reference value (100). The results are shown in Table 4.
  • Element Example-2 2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracen-2-yl) synthesized in Synthesis Example-2 in place of Compound A-257 in Device Example 1
  • An organic electroluminescent device was prepared in the same manner as in Device Example 1 except that ⁇ 5- (4-pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-337) was used. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
  • Element Example-3 2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracen-2-yl) synthesized in Synthesis Example 3 instead of Compound A-257 in Device Example 1
  • An organic electroluminescent device was prepared in the same manner as in Device Example 1 except that -5- (3-quinolyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-705) was used. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
  • Element Example 4 2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracen-2-yl) synthesized in Synthesis Example 4 instead of Compound A-257 in Device Example 1
  • An organic electroluminescent device was prepared in the same manner as in Device Example 1 except that ⁇ 5- (4-isoquinolyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-769) was used. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
  • Element Example-6 In Device Example 1, 2- ⁇ 3- [4- (9,10-dihydro-9,10- [1,2] benzenoanthracene-2 synthesized in Synthesis Example-7 instead of Compound A-257 -Yl) -3-pyridyl] phenyl ⁇ -4,6-diphenyl-1,3,5-triazine (Compound A-8) was used to prepare an organic electroluminescent device in the same manner as in Device Example-1. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
  • Element Example-7 2- ⁇ 3- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracene-2 synthesized in Synthesis Example-8 instead of Compound A-257 in Device Example 1 -Il) -4-pyridyl] phenyl ⁇ -4,6-diphenyl-1,3,5-triazine (Compound A-11) was used to produce an organic electroluminescent device in the same manner as in Device Example-1. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
  • Device reference example-1 In Device Example-1, instead of Compound A-257, 2- [5- (9-phenanthryl) -4 ′-(2-pyrimidyl) biphenyl-3-yl] described in JP2011-063584- An organic electroluminescent device was prepared and evaluated in the same manner as in Device Example 1 except that 4,6-diphenyl-1,3,5-triazine (ETL-2) was used. The results are shown in Table 4. For the voltage, current efficiency, and element lifetime, the result of this element reference example-1 was used as the reference value (100).
  • the cyclic azine compound (1) according to one embodiment of the present invention is extremely excellent in heat resistance of film quality, and by using the compound, an organic electroluminescent device excellent in long life and luminous efficiency can be provided. Moreover, the cyclic azine compound (1) concerning 1 aspect of this invention is utilized as an electron transport material for organic electroluminescent elements which is excellent in a low drive voltage. Furthermore, according to one embodiment of the present invention, an organic electroluminescent element having excellent power consumption can be provided. In addition, the cyclic azine compound according to one embodiment of the present invention is excellent in sublimation purification operability due to good thermal stability during sublimation purification, and provides a material with less impurities causing deterioration of the organic electroluminescence device. can do.
  • the cyclic azine compound according to one embodiment of the present invention is excellent in stability of a deposited film, an organic electroluminescent element having a long lifetime can be provided.
  • the thin film formed of the cyclic azine compound (1) according to one embodiment of the present invention is excellent in electron transport ability, hole blocking ability, redox resistance, water resistance, oxygen resistance, electron injection characteristics, etc. It is useful as an element material, and is useful as an electron transport material, a hole blocking material, a light emitting host material and the like. It is particularly useful when used as an electron transport material.
  • the cyclic azine compound (1) since the cyclic azine compound (1) according to one embodiment of the present invention has a wide band gap and a high triplet excitation level, it can be used not only for conventional fluorescent devices but also for phosphorescent devices and thermally activated delayed fluorescence ( It can be suitably used for an organic electroluminescent device using TADF).

Abstract

Provided is a cyclic azine compound having exceptional heat resistance, a long service life in an organic electroluminescent element, and exceptional low-voltage drive properties or luminous efficiency. A cyclic azine compound having a specific structure represented by formula (1).

Description

環状アジン化合物、有機電界発光素子用材料、有機電界発光素子用電子輸送材料Cyclic azine compound, material for organic electroluminescence device, electron transport material for organic electroluminescence device
 本開示は、環状アジン化合物、有機電界発光素子用材料、有機電界発光素子用電子輸送材料に関する。 The present disclosure relates to a cyclic azine compound, a material for an organic electroluminescent element, and an electron transport material for an organic electroluminescent element.
 有機電界発光素子は、発光材料を含有する発光層を、正孔輸送層と電子輸送層で挟み、さらにその外側に陽極と陰極を取付けたものを基本構成とし、発光層に注入された正孔及び電子の再結合により生ずる励起子が失活する際の光の放出(蛍光又は燐光)を利用する発光素子であり、既に小型のディスプレイだけでなく大型テレビや照明等の用途へ用いられている。なお、前記正孔輸送層は正孔輸送層と正孔注入層に、前記発光層は、電子ブロック層と発光層と正孔ブロック層に、前記電子輸送層は電子輸送層と電子注入層に分割して構成される場合もある。また、有機電界発光素子のキャリア輸送層(電子輸送層又は正孔輸送層)として、金属、有機金属化合物又はその他有機化合物をドープした共蒸着膜を用いる場合もある。
 有機電界発光素子用材料として、特許文献1又は2等で開示された環状アジン化合物が報告されている。
An organic electroluminescent element has a basic structure in which a light emitting layer containing a light emitting material is sandwiched between a hole transport layer and an electron transport layer, and an anode and a cathode are attached to the outside, and holes injected into the light emitting layer And a light-emitting element that utilizes light emission (fluorescence or phosphorescence) when excitons generated by electron recombination are deactivated, and are already used for applications such as large televisions and lighting as well as small displays. . The hole transport layer is a hole transport layer and a hole injection layer, the light emitting layer is an electron block layer, a light emitting layer and a hole block layer, and the electron transport layer is an electron transport layer and an electron injection layer. In some cases, it may be divided. In some cases, a co-deposited film doped with a metal, an organometallic compound, or another organic compound may be used as the carrier transport layer (electron transport layer or hole transport layer) of the organic electroluminescence device.
As organic electroluminescent element materials, cyclic azine compounds disclosed in Patent Document 1 or 2 have been reported.
日本国特開2011-063584号公報Japanese Unexamined Patent Publication No. 2011-063584 日本国特表2007-520875号公報Japanese National Table 2007-520875
 従来の有機電界発光素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低く、素子寿命も著しく低く、実用化には至っていなかった。最近の有機電界発光素子は徐々に改良されているものの、発光効率特性、駆動電圧特性、長寿命特性において、さらに優れた材料が求められている。また、車載用途等、用途によっては非常に高い耐熱性を要する場合もあり、材料は高いガラス転移温度(Tg)を求められている。さらには、安達らによる熱活性化遅延蛍光(TADF)を利用した有機電界発光素子、燐光を利用した青色電界発光素子に関して、近年盛んに研究が行われている。これら有機電界発光素子における材料では、エネルギーの閉じ込めのため、高い三重項励起準位を求められている。 Conventional organic electroluminescent elements have a higher driving voltage than inorganic light emitting diodes, have low luminance and luminous efficiency, have extremely low element lifetime, and have not been put into practical use. Although recent organic electroluminescence devices have been gradually improved, further excellent materials are demanded in terms of luminous efficiency characteristics, driving voltage characteristics, and long life characteristics. Further, depending on the use such as in-vehicle use, extremely high heat resistance may be required, and the material is required to have a high glass transition temperature (Tg). Furthermore, in recent years, active research has been conducted on organic electroluminescent devices using thermally activated delayed fluorescence (TADF) and blue electroluminescent devices using phosphorescence by Adachi et al. In these materials for organic electroluminescence devices, high triplet excitation levels are required for energy confinement.
 特許文献1で開示された環状アジン化合物については、ガラス転移温度、三重項励起準位の点で更なる改良が求められており、有機電界発光素子に用いた場合の素子の寿命、及び発光効率の改善が求められている。 Regarding the cyclic azine compound disclosed in Patent Document 1, further improvements are required in terms of the glass transition temperature and the triplet excitation level, and the lifetime of the device when used in an organic electroluminescent device, and the luminous efficiency. Improvement is demanded.
 特許文献2で開示された非平面構造を有する環状アジン化合物については、有機電界発光素子に用いた場合の素子の長寿命化、及び高発光効率化の点で更なる改良が求められている。また、トリプチセンを含有する化合物に関しては、具体的な合成例、有機電界発光素子用電子輸送材料としての特性、ガラス転移温度、及び三重項励起準位は記載されておらず、それら物性に関しては不明である。 The cyclic azine compound having a non-planar structure disclosed in Patent Document 2 is required to be further improved in terms of extending the lifetime of the device when used in an organic electroluminescence device and increasing the luminous efficiency. For compounds containing triptycene, specific synthesis examples, characteristics as an electron transport material for organic electroluminescence devices, glass transition temperature, and triplet excitation levels are not described, and their physical properties are unknown. It is.
 本発明の各態様における目的は、従来公知の化合物に比べて、高いガラス転移温度、及び高い三重項励起準位を有する環状アジン化合物、有機電界発光素子用材料、有機電界発光素子用電子輸送材料を提供することである。 The purpose of each aspect of the present invention is to provide a cyclic azine compound having a high glass transition temperature and a high triplet excitation level, a material for an organic electroluminescence device, and an electron transport material for an organic electroluminescence device, as compared with conventionally known compounds. Is to provide.
 本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、トリプチセン構造を有する基が結合した環状アジン化合物(以下、「環状アジン化合物(1)」ともいう)のガラス転移温度が極めて高く、高い三重項励起準位を有し、当該化合物を電子輸送材料として用いた有機電界発光素子が、従来公知の材料を用いた場合に比べて低駆動電圧化、高発光効率化、高耐熱性化、又は長寿命化することを見いだし、本発明の各態様を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the glass transition temperature of a cyclic azine compound to which a group having a triptycene structure is bonded (hereinafter also referred to as “cyclic azine compound (1)”). An organic electroluminescence device that is extremely high and has a high triplet excitation level and uses the compound as an electron transport material has a lower driving voltage, higher luminous efficiency, and higher performance than those using a conventionally known material. It has been found that the heat resistance is increased or the life is extended, and each aspect of the present invention has been completed.
 本発明の第1の態様にかかる環状アジン化合物は、式(1)で示される環状アジン化合物: The cyclic azine compound according to the first aspect of the present invention is a cyclic azine compound represented by the formula (1):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1)中、
 Arは、各々独立に、置換もしくは無置換の、フェニル基、ナフチル基、又はピリジル基を表す;
 Arは、
  置換もしくは無置換の炭素数6~24の単環若しくは縮環芳香族炭化水素基、
  置換もしくは無置換の6員環のみからなる炭素数4~25の単環若しくは縮環含窒素ヘテロ芳香族基、
  置換もしくは無置換のH、C、O、及びSからなる原子群から選ばれる原子で構成される炭素数3~25の単環若しくは縮環ヘテロ芳香族基、又は
  水素原子を表す;
 Ar、及びArは、各々独立に、
  置換もしくは無置換の、フェニル基、ナフチル基、ピリジル基、
  水素原子、
  無置換の炭素数1~4のアルキル基、又は、
  Xと結合する単結合を表す;
 Ar、及びArは、各々独立に、
  置換もしくは無置換の、フェニル基、ナフチル基、ピリジル基、
  水素原子、
  無置換の炭素数1~4のアルキル基、又は、
  Xと結合する単結合を表す;
 W、W、及びWは、
  各々独立に、C-H、又は窒素原子を表し、
  少なくとも2つはC-Hを表す;
 X、及びXは、各々独立に、
  置換もしくは無置換の、フェニレン基、ナフチレン基、ビフェニレン基、ピリジレン基、又は、
  単結合を表す;
 Y、Y、Y、及びYは、各々独立に、
  C-Rで表される基、又は、
  窒素原子を表す;
 Rは、各々独立に、
  置換もしくは無置換の、フェニル基、ナフチル基、ピリジル基、
  水素原子、
  無置換の炭素数1~4のアルキル基、又は、
  無置換の炭素数1~4のアルケニル基を表す;
 Rは、互いに結合し、芳香環を形成していてもよい;
 Zは、窒素原子又はC-Hを表す;
 Ar、Ar~Ar、X~X、Rが置換基を有する場合、該置換基は、フッ素原子、メチル基、又はフェニル基である;
 Arが置換基を有する場合、該置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基である。
In formula (1),
Ar 1 each independently represents a substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group;
Ar 2 is
A substituted or unsubstituted monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms,
A monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a substituted or unsubstituted 6-membered ring,
Represents a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from the group consisting of substituted or unsubstituted H, C, O, and S, or a hydrogen atom;
Ar 3 and Ar 4 are each independently
Substituted or unsubstituted phenyl, naphthyl, pyridyl,
Hydrogen atom,
An unsubstituted alkyl group having 1 to 4 carbon atoms, or
Represents a single bond bonded to X 2 ;
Ar 5 and Ar 6 are each independently
Substituted or unsubstituted phenyl, naphthyl, pyridyl,
Hydrogen atom,
An unsubstituted alkyl group having 1 to 4 carbon atoms, or
Represents a single bond bonded to X 2 ;
W 1 , W 2 , and W 3 are
Each independently represents C—H or a nitrogen atom;
At least two represent C—H;
X 1 and X 2 are each independently
Substituted or unsubstituted phenylene group, naphthylene group, biphenylene group, pyridylene group, or
Represents a single bond;
Y 1 , Y 2 , Y 3 , and Y 4 are each independently
A group represented by CR, or
Represents a nitrogen atom;
Each R is independently
Substituted or unsubstituted phenyl, naphthyl, pyridyl,
Hydrogen atom,
An unsubstituted alkyl group having 1 to 4 carbon atoms, or
Represents an unsubstituted alkenyl group having 1 to 4 carbon atoms;
R may be bonded to each other to form an aromatic ring;
Z represents a nitrogen atom or C—H;
When Ar 1 , Ar 3 to Ar 6 , X 1 to X 2 , or R has a substituent, the substituent is a fluorine atom, a methyl group, or a phenyl group;
When Ar 2 has a substituent, the substituent is a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. An alkoxy group;
 本発明の第2の態様にかかる環状アジン化合物は、
 Zが、窒素原子である、上記第1の態様に記載の環状アジン化合物である。
The cyclic azine compound according to the second aspect of the present invention is:
The cyclic azine compound according to the first aspect, wherein Z is a nitrogen atom.
 本発明の第3の態様にかかる環状アジン化合物は、
 2つのArが、同じ基を表し、かつ、置換もしくは無置換の、フェニル基、ナフチル基、又はピリジル基であり、
 Arが置換基を有する場合、該置換基は、フッ素原子、メチル基、又はフェニル基である、上記第1、又は第2の態様に記載の環状アジン化合物である。
The cyclic azine compound according to the third aspect of the present invention is:
Two Ar 1 represent the same group and are a substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group;
When Ar 1 has a substituent, the substituent is the cyclic azine compound according to the first or second aspect, which is a fluorine atom, a methyl group, or a phenyl group.
 本発明の第4の態様にかかる環状アジン化合物は、
 2つのArが、いずれもフェニル基である、上記第1~第3の態様のいずれか1つに記載の環状アジン化合物である。
The cyclic azine compound according to the fourth aspect of the present invention is:
The cyclic azine compound according to any one of the first to third aspects, wherein two Ar 1 are both phenyl groups.
 本発明の第5の態様にかかる環状アジン化合物は、
 Arが、
  水素原子、または、
  置換もしくは無置換の、フェニル基、ナフチル基、フルオレニル基、アントリル基、フェナントリル基、ベンゾフルオレニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリミジル基、ピリジル基、ピラジル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基であり、
 Arが置換基を有する場合、該置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基である、上記第1~第4の態様のいずれか1つに記載の環状アジン化合物である。
The cyclic azine compound according to the fifth aspect of the present invention is:
Ar 2 is
A hydrogen atom, or
Substituted or unsubstituted phenyl, naphthyl, fluorenyl, anthryl, phenanthryl, benzofluorenyl, pyrenyl, perylenyl, fluoranthenyl, triphenylenyl, pyrimidyl, pyridyl, pyridyl, Quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, dibenzothienyl group,
When Ar 2 has a substituent, the substituent is a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. The cyclic azine compound according to any one of the first to fourth aspects, which is an alkoxy group.
 本発明の第6の態様にかかる環状アジン化合物は、
 Arが、置換もしくは無置換の、フルオレニル基、ベンゾフルオレニル基、ピリジル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、又はジベンゾチエニル基であり、
 Arが置換基を有する場合、該置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基である、上記第1~第5の態様のいずれか1つに記載の環状アジン化合物である。
The cyclic azine compound according to the sixth aspect of the present invention is:
Ar 2 is a substituted or unsubstituted fluorenyl group, benzofluorenyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, or dibenzothienyl group,
When Ar 2 has a substituent, the substituent is a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. The cyclic azine compound according to any one of the first to fifth aspects, which is an alkoxy group.
 本発明の第7の態様にかかる環状アジン化合物は、
 Ar、及びArが、各々独立に、
  水素原子;
  無置換のフェニル基、ナフチル基、ピリジル基;又は、
  Xと結合する単結合;である、上記第1~第6の態様のいずれか1つに記載の環状アジン化合物である。
The cyclic azine compound according to the seventh aspect of the present invention is:
Ar 3 and Ar 4 are each independently
Hydrogen atom;
Unsubstituted phenyl group, naphthyl group, pyridyl group; or
A cyclic azine compound according to any one of the first to sixth aspects, wherein the single bond is bonded to X 2 .
 本発明の第8の態様にかかる環状アジン化合物は、
 X、及びXが、各々独立に、
  単結合;
  無置換の、フェニレン基、ナフチレン基、ビフェニレン基、又はピリジレン基;である、上記第1~第7の態様のいずれか1つに記載の環状アジン化合物である。
The cyclic azine compound according to the eighth aspect of the present invention is:
X 1 and X 2 are each independently
Single bond;
The cyclic azine compound according to any one of the first to seventh aspects, which is an unsubstituted phenylene group, naphthylene group, biphenylene group, or pyridylene group.
 本発明の第9の態様にかかる環状アジン化合物は、
 Y、Y、Y、及びYが、全てC-Rで表される基であり、
 該Rは、各々独立に、
  水素原子;
  無置換の、炭素数1~4のアルキル基、炭素数1~4のアルケニル基、フェニル基、ナフチル基、又はピリジル基;である上記第1~第8の態様のいずれか1つに記載の環状アジン化合物である。
The cyclic azine compound according to the ninth aspect of the present invention is:
Y 1 , Y 2 , Y 3 , and Y 4 are all groups represented by C—R;
Each R is independently
Hydrogen atom;
The unsubstituted alkyl group having 1 to 4 carbon atoms, the alkenyl group having 1 to 4 carbon atoms, the phenyl group, the naphthyl group, or the pyridyl group according to any one of the first to eighth embodiments. It is a cyclic azine compound.
 本発明の第10の態様にかかる環状アジン化合物は、
 W、W、及びWが、全てC-Hである、上記第1~第9の態様のいずれか1つに記載の環状アジン化合物である。
The cyclic azine compound according to the tenth aspect of the present invention is:
The cyclic azine compound according to any one of the first to ninth aspects, wherein W 1 , W 2 , and W 3 are all C—H.
 本発明の第11の態様にかかる環状アジン化合物は、
 上記第1~第10の態様のいずれか1つに記載の式(1)で示される環状アジン化合物を含む有機電界発光素子用材料。
The cyclic azine compound according to the eleventh aspect of the present invention is:
A material for an organic electroluminescent element comprising the cyclic azine compound represented by the formula (1) according to any one of the first to tenth aspects.
 本発明の第12の態様にかかる環状アジン化合物は、
 上記第1~第10の態様のいずれか1つに記載の式(1)で示される環状アジン化合物を含む有機電界発光素子用電子輸送材料。
The cyclic azine compound according to the twelfth aspect of the present invention is:
An electron transport material for an organic electroluminescence device comprising the cyclic azine compound represented by the formula (1) according to any one of the first to tenth aspects.
 本発明の各態様によれば、膜質の耐熱性に極めて優れ、高い三重項励起準位を有する環状アジン化合物、およびそれを含む有機電界発光素子用材料、有機電界発光素子用電子輸送材料を提供することができ、低駆動電圧、高発光効率、高耐熱性、又は長寿命に優れる有機電界発光素子を提供に資する。 According to each aspect of the present invention, there are provided a cyclic azine compound having excellent heat resistance of film quality and a high triplet excitation level, an organic electroluminescent device material containing the same, and an electron transport material for an organic electroluminescent device Therefore, it contributes to the provision of an organic electroluminescent device that is excellent in low driving voltage, high luminous efficiency, high heat resistance, or long life.
実施例で作製した単層素子の断面図である。It is sectional drawing of the single layer element produced in the Example.
 以下、本発明を実施するための例示的な各態様を詳細に説明する。 Hereinafter, exemplary embodiments for carrying out the present invention will be described in detail.
 本発明の各態様は、式(1)で示される環状アジン化合物(環状アジン化合物(1))、その製造方法、及び当該材料を含む有機電界発光素子用材料に関するものである。
 本発明の一態様にかかる環状アジン化合物は、式(1)で示される環状アジン化合物:
Each aspect of the present invention relates to a cyclic azine compound represented by the formula (1) (cyclic azine compound (1)), a method for producing the same, and a material for an organic electroluminescent element including the material.
The cyclic azine compound according to one embodiment of the present invention is a cyclic azine compound represented by the formula (1):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、
 Arは、各々独立に、置換もしくは無置換の、フェニル基、ナフチル基、又はピリジル基を表す;
 Arは、
  置換もしくは無置換の炭素数6~24の単環若しくは縮環芳香族炭化水素基、
  置換もしくは無置換の6員環のみからなる炭素数4~25の単環若しくは縮環含窒素ヘテロ芳香族基、
  置換もしくは無置換のH、C、O、及びSからなる原子群から選ばれる原子で構成される炭素数3~25の単環若しくは縮環ヘテロ芳香族基、又は
  水素原子を表す;
 Ar、及びArは、各々独立に、
  置換もしくは無置換の、フェニル基、ナフチル基、ピリジル基、
  水素原子、
  無置換の炭素数1~4のアルキル基、又は、
  Xと結合する単結合を表す;
 Ar、及びArは、各々独立に、
  置換もしくは無置換の、フェニル基、ナフチル基、ピリジル基、
  水素原子、
  無置換の炭素数1~4のアルキル基、又は、
  Xと結合する単結合を表す;
 W、W、及びWは、
  各々独立に、C-H、又は窒素原子を表し、
  少なくとも2つはC-Hを表す;
 X、及びXは、各々独立に、
  置換もしくは無置換の、フェニレン基、ナフチレン基、ビフェニレン基、ピリジレン基、又は、
  単結合を表す;
 Y、Y、Y、及びYは、各々独立に、
  C-Rで表される基、又は、
  窒素原子を表す;
 Rは、各々独立に、
  置換もしくは無置換の、フェニル基、ナフチル基、ピリジル基、
  水素原子、
  無置換の炭素数1~4のアルキル基、又は、
  無置換の炭素数1~4のアルケニル基を表す;
 Rは、互いに結合し、芳香環を形成していてもよい;
 Zは、窒素原子又はC-Hを表す;
 Ar、Ar~Ar、X~X、Rが置換基を有する場合、該置換基は、フッ素原子、メチル基、又はフェニル基である;
 Arが置換基を有する場合、該置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基である。
In formula (1),
Ar 1 each independently represents a substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group;
Ar 2 is
A substituted or unsubstituted monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms,
A monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a substituted or unsubstituted 6-membered ring,
Represents a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from the group consisting of substituted or unsubstituted H, C, O, and S, or a hydrogen atom;
Ar 3 and Ar 4 are each independently
Substituted or unsubstituted phenyl, naphthyl, pyridyl,
Hydrogen atom,
An unsubstituted alkyl group having 1 to 4 carbon atoms, or
Represents a single bond bonded to X 2 ;
Ar 5 and Ar 6 are each independently
Substituted or unsubstituted phenyl, naphthyl, pyridyl,
Hydrogen atom,
An unsubstituted alkyl group having 1 to 4 carbon atoms, or
Represents a single bond bonded to X 2 ;
W 1 , W 2 , and W 3 are
Each independently represents C—H or a nitrogen atom;
At least two represent C—H;
X 1 and X 2 are each independently
Substituted or unsubstituted phenylene group, naphthylene group, biphenylene group, pyridylene group, or
Represents a single bond;
Y 1 , Y 2 , Y 3 , and Y 4 are each independently
A group represented by CR, or
Represents a nitrogen atom;
Each R is independently
Substituted or unsubstituted phenyl, naphthyl, pyridyl,
Hydrogen atom,
An unsubstituted alkyl group having 1 to 4 carbon atoms, or
Represents an unsubstituted alkenyl group having 1 to 4 carbon atoms;
R may be bonded to each other to form an aromatic ring;
Z represents a nitrogen atom or C—H;
When Ar 1 , Ar 3 to Ar 6 , X 1 to X 2 , or R has a substituent, the substituent is a fluorine atom, a methyl group, or a phenyl group;
When Ar 2 has a substituent, the substituent is a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. An alkoxy group;
 本発明の一態様にかかる環状アジン化合物(1)における置換基はそれぞれ以下のように定義される。 The substituents in the cyclic azine compound (1) according to one embodiment of the present invention are defined as follows.
 式(1)中、Arは、各々独立に、フェニル基、ナフチル基、又はピリジル基(これらの基は、フッ素原子、メチル基、又はフェニル基で置換されていてもよい。)を表す。
 Arにおける、フッ素原子で置換されたフェニル基、ナフチル基、又はピリジル基としては、特に限定するものではないが、例えば、フルオロフェニル基、ペンタフルオロフェニル基、ジフルオロフェニル基、フルオロナフチル基、ジフルオロナフチル基、フルオロピリジル基、又はジフルオロピリジル基等が好ましい例として挙げられる。
 Arにおける、メチル基で置換されたフェニル基、ナフチル基、又はピリジル基としては、特に限定するものではないが、例えば、トリル基、メチルナフチル基、ジメチルフェニル基、ジメチルナフチル基、メチルピリジル基、又はジメチルピリジル基等が好ましい例として挙げられる。
 Arにおける、フェニル基で置換されたフェニル基、ナフチル基、又はピリジル基としては、特に限定するものではないが、例えば、ビフェニル基、フェニルナフチル基、ターフェニル基、ジフェニルナフチル基、又はフェニルピリジル基等が好ましい例として挙げられる。
In formula (1), Ar 1 each independently represents a phenyl group, a naphthyl group, or a pyridyl group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group).
The phenyl group, naphthyl group, or pyridyl group substituted with a fluorine atom in Ar 1 is not particularly limited, and examples thereof include a fluorophenyl group, a pentafluorophenyl group, a difluorophenyl group, a fluoronaphthyl group, and difluoro. Preferred examples include a naphthyl group, a fluoropyridyl group, a difluoropyridyl group, and the like.
The phenyl group, naphthyl group, or pyridyl group substituted with a methyl group in Ar 1 is not particularly limited, and examples thereof include a tolyl group, a methylnaphthyl group, a dimethylphenyl group, a dimethylnaphthyl group, and a methylpyridyl group. Or a dimethylpyridyl group etc. are mentioned as a preferable example.
A phenyl group, a naphthyl group, or a pyridyl group substituted with a phenyl group in Ar 1 is not particularly limited. A group etc. are mentioned as a preferable example.
 2つのArが、同じ基を表し、かつ、置換もしくは無置換の、フェニル基、ナフチル基、又はピリジル基であり、Arが置換基を有する場合、該置換基は、フッ素原子、メチル基、又はフェニル基であることが好ましい。 When two Ar 1 represent the same group and are substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group, and Ar 1 has a substituent, the substituent is a fluorine atom, a methyl group Or a phenyl group.
 Arについては、電子輸送性材料特性に優れる点で、各々独立に、フェニル基、トリル基、ナフチル基、又はビフェニル基であることがより好ましく、2つのArが、同一であって、フェニル基、トリル基、ナフチル基、又はビフェニル基であることがより好ましく、合成が容易な点で、2つのArの両方がフェニル基であることがさらに好ましい。 Ar 1 is more preferably independently a phenyl group, a tolyl group, a naphthyl group, or a biphenyl group in terms of excellent electron transport material properties, and two Ar 1 are the same, It is more preferable that they are a group, a tolyl group, a naphthyl group, or a biphenyl group, and it is further more preferable that both two Ar < 1 > is a phenyl group from the viewpoint of easy synthesis.
 Arは、合成が容易である点で、同じ基を表すことが好ましい。 Ar 1 preferably represents the same group in terms of easy synthesis.
 Arの具体例としては、特に限定するものではないが、例えば、各々独立に、フェニル基、p-トリル基、m-トリル基、o-トリル基、2,4-ジメチルフェニル基、3,5-ジメチルフェニル基、メシチル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、1-ナフチル基、2-ナフチル基、1-フェニルナフタレン-2-イル基、1-フェニルナフタレン-3-イル基、1-フェニルナフタレン-4-イル基、1-フェニルナフタレン-5-イル基、1-フェニルナフタレン-6-イル基、1-フェニルナフタレン-7-イル基、1-フェニルナフタレン-8-イル基、2-フェニルナフタレン-1-イル基、2-フェニルナフタレン-3-イル基、2-フェニルナフタレン-4-イル基、2-フェニルナフタレン-5-イル基、2-フェニルナフタレン-6-イル基、2-フェニルナフタレン-7-イル基、2-フェニルナフタレン-8-イル基、1-メチルナフタレン-4-イル基、1-メチルナフタレン-5-イル基、1-メチルナフタレン-6-イル基、1-メチルナフタレン-7-イル基、1-メチルナフタレン-8-イル基、2-メチルナフタレン-1-イル基、2-メチルナフタレン-3-イル基、2-メチルナフタレン-4-イル基、2-メチルナフタレン-5-イル基、2-メチルナフタレン-6-イル基、2-メチルナフタレン-7-イル基、2-メチルナフタレン-8-イル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-メチルピリジン-3-イル基、2-メチルピリジン-4-イル基、2-メチルピリジン-5-イル基、2-メチルピリジン-6-イル基、3-メチルピリジン-2-イル基、3-メチルピリジン-4-イル基、3-メチルピリジン-5-イル基、3-メチルピリジン-6-イル基、4-メチルピリジン-2-イル基、4-メチルピリジン-3-イル基、2,6-ジメチルピリジン-3-イル基、2,6-ジメチルピリジン-4-イル基、3,6-ジメチルピリジン-2-イル基、3,6-ジメチルピリジン-4-イル基、3,6-ジメチルピリジン-5-イル基、2-フェニルピリジン-6-イル基、3-フェニルピリジン-6-イル基、4-フェニルピリジン-6-イル基、5-フェニルピリジン-6-イル基、2-フェニルピリジン-3-イル基、2-フェニルピリジン-5-イル基、3-フェニルピリジン-5-イル基、4-フェニルピリジン-3-イル基、3-フェニルピリジン-4-イル基、又は2-フェニルピリジン-4-イル基等が好ましい例として挙げられる。これらの置換基のうち、電子輸送性材料特性に優れる点で、各々独立に、フェニル基、p-トリル基、ビフェニル-3-イル基、ビフェニル-4-イル基、1-ナフチル基、又は2-ナフチル基が好ましく、各々独立に、フェニル基、ビフェニル-3-イル基、ビフェニル-4-イル基、1-ナフチル基、又は2-ナフチル基がより好ましく、合成が容易である点で、フェニル基が特に好ましい。 Specific examples of Ar 1 are not particularly limited. For example, each of them independently represents a phenyl group, a p-tolyl group, an m-tolyl group, an o-tolyl group, a 2,4-dimethylphenyl group, 3, 5-dimethylphenyl group, mesityl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 3,5-difluorophenyl group, biphenyl-2-yl group, Biphenyl-3-yl group, biphenyl-4-yl group, 1-naphthyl group, 2-naphthyl group, 1-phenylnaphthalen-2-yl group, 1-phenylnaphthalen-3-yl group, 1-phenylnaphthalene-4 -Yl group, 1-phenylnaphthalen-5-yl group, 1-phenylnaphthalen-6-yl group, 1-phenylnaphthalen-7-yl group, 1-phenylnaphthalene -8-yl group, 2-phenylnaphthalen-1-yl group, 2-phenylnaphthalen-3-yl group, 2-phenylnaphthalen-4-yl group, 2-phenylnaphthalen-5-yl group, 2-phenyl Naphthalen-6-yl group, 2-phenylnaphthalen-7-yl group, 2-phenylnaphthalen-8-yl group, 1-methylnaphthalen-4-yl group, 1-methylnaphthalen-5-yl group, 1-methyl Naphthalen-6-yl group, 1-methylnaphthalen-7-yl group, 1-methylnaphthalen-8-yl group, 2-methylnaphthalen-1-yl group, 2-methylnaphthalen-3-yl group, 2-methyl Naphthalen-4-yl group, 2-methylnaphthalen-5-yl group, 2-methylnaphthalen-6-yl group, 2-methylnaphthalen-7-yl group, 2-methylnaphthalene-8 Yl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-3-yl group, 2-methylpyridin-4-yl group, 2-methylpyridin-5-yl group, 2- Methylpyridin-6-yl group, 3-methylpyridin-2-yl group, 3-methylpyridin-4-yl group, 3-methylpyridin-5-yl group, 3-methylpyridin-6-yl group, 4- Methylpyridin-2-yl group, 4-methylpyridin-3-yl group, 2,6-dimethylpyridin-3-yl group, 2,6-dimethylpyridin-4-yl group, 3,6-dimethylpyridin-2 -Yl group, 3,6-dimethylpyridin-4-yl group, 3,6-dimethylpyridin-5-yl group, 2-phenylpyridin-6-yl group, 3-phenylpyridin-6-yl group, 4- Phenylpyridin-6-yl 5-phenylpyridin-6-yl group, 2-phenylpyridin-3-yl group, 2-phenylpyridin-5-yl group, 3-phenylpyridin-5-yl group, 4-phenylpyridin-3-yl group Preferred examples include 3-phenylpyridin-4-yl group and 2-phenylpyridin-4-yl group. Of these substituents, a phenyl group, a p-tolyl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a 1-naphthyl group, or 2 A naphthyl group is preferable, and each independently a phenyl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a 1-naphthyl group, or a 2-naphthyl group is more preferable; The group is particularly preferred.
 Arは、炭素数6~24の単環若しくは縮環芳香族炭化水素基、6員環のみからなる炭素数4~25の単環若しくは縮環含窒素ヘテロ芳香族基、又はH、C、O、及びSからなる原子群から選ばれる原子で構成される炭素数3~25の単環若しくは縮環ヘテロ芳香族基(これらの基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基を有していてもよい。)、又は水素原子を表す。 Ar 2 is a monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms, a monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a 6-membered ring, or H, C, A monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from an atomic group consisting of O and S (these groups include a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, A dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms), or a hydrogen atom.
 Arにおける、炭素数6~24の単環若しくは縮環芳香族炭化水素基としては、特に限定するものではないが、例えば、フェニル基、ナフチル基、フェナントリル基、アントリル基、ピレニル基、トリフェニレニル基、クリセニル基、フルオランテニル基、アセナフチル基、フルオレニル基、又はベンゾフルオレニル基等が好ましい例として挙げられる。なお、上述の通り、これらの置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基で置換されていてもよい。 The monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms in Ar 2 is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, a phenanthryl group, an anthryl group, a pyrenyl group, and a triphenylenyl group. Preferred examples include a chrysenyl group, a fluoranthenyl group, an acenaphthyl group, a fluorenyl group, or a benzofluorenyl group. As described above, these substituents are phenyl group, tolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, fluorine atom, alkyl group having 1 to 4 carbon atoms, or alkoxy group having 1 to 4 carbon atoms. May be substituted.
 Arにおける、6員環のみからなる炭素数4~25の単環若しくは縮環含窒素ヘテロ芳香族基としては、特に限定するものではないが、例えば、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、キノリル基、イソキノリル基、フェナントリジル基、ベンゾキノリル基、又はアクリジニル基等が好ましい例として挙げられる。なお、カルバゾリル基は、5員環を含むヘテロ芳香族基であり、本発明の一態様にかかる6員環のみからなる炭素数4~25の単環若しくは縮環含窒素ヘテロ芳香族基には含まれない。また、上述の通り、これらの置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基で置換されていてもよい。 A monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a 6-membered ring in Ar 2 is not particularly limited, and examples thereof include a pyridyl group, a pyrazyl group, a pyrimidyl group, and pyridazyl. Preferred examples include a group, a quinolyl group, an isoquinolyl group, a phenanthridyl group, a benzoquinolyl group, or an acridinyl group. Note that the carbazolyl group is a heteroaromatic group including a 5-membered ring, and the monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms and including only the 6-membered ring according to one embodiment of the present invention includes Not included. Further, as described above, these substituents include a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. May be substituted.
 Arにおける、H、C、O、及びSからなる原子群から選ばれる原子で構成される炭素数3~25の単環若しくは縮環ヘテロ芳香族基としては、特に限定するものではないが、例えば、チエニル基、フリル基、ビチエニル基、ビフリル基、ベンゾチエニル基、ベンゾフリル基、ジベンゾチエニル基、又はジベンゾフリル基等が好ましい例として挙げられる。なお、上述の通り、これらの置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基で置換されていてもよい。 A monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from an atomic group consisting of H, C, O, and S in Ar 2 is not particularly limited. For example, a thienyl group, a furyl group, a bithienyl group, a bifuryl group, a benzothienyl group, a benzofuryl group, a dibenzothienyl group, a dibenzofuryl group, and the like are preferable examples. As described above, these substituents are phenyl group, tolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, fluorine atom, alkyl group having 1 to 4 carbon atoms, or alkoxy group having 1 to 4 carbon atoms. May be substituted.
 Arにおける、炭素数1~4のアルキル基としては、特に限定するものではないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、又はt-ブチル基等が好ましい例として挙げられる。 The alkyl group having 1 to 4 carbon atoms in Ar 2 is not particularly limited. For example, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or a t-butyl group is preferable. Take as an example.
 Arにおける、炭素数1~4のアルコキシ基としては、特に限定するものではないが、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、又はt-ブトキシ基等が好ましい例として挙げられる。 The alkoxy group having 1 to 4 carbon atoms in Ar 2 is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. A preferred example is given.
 Arは、水素原子、炭素数6~24の単環若しくは縮環芳香族炭化水素基、6員環のみからなる炭素数4~25の単環若しくは縮環含窒素ヘテロ芳香族基、又はH、C、O、及びSからなる原子群から選ばれる原子で構成される炭素数3~25の単環若しくは縮環ヘテロ芳香族基であることが好ましい。また、ガラス転移温度が高い点で、Arは、炭素数6~24の単環若しくは縮環芳香族炭化水素基、6員環のみからなる炭素数4~25の単環若しくは縮環含窒素ヘテロ芳香族基、又はH、C、O、及びSからなる原子群から選ばれる原子で構成される炭素数3~25の単環若しくは縮環ヘテロ芳香族基であることが好ましい。 Ar 2 represents a hydrogen atom, a monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms, a monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a 6-membered ring, or H 2 It is preferably a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from the group consisting of C, O, and S. In addition, Ar 2 is a monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms, or a monocyclic or condensed ring containing nitrogen having 4 to 25 carbon atoms consisting of only a 6-membered ring because of its high glass transition temperature. It is preferably a heteroaromatic group or a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from the group consisting of H, C, O and S.
 具体的には、Arが、水素原子;フェニル基、ナフチル基、ビフェニル基、フルオレニル基、アントリル基、フェナントリル基、ベンゾフルオレニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリミジル基、ピラジル基、ピリジル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、又はジベンゾチエニル基(これらの基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基を有していてもよい);であることが好ましい。Arが、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、アントリル基、フェナントリル基、ベンゾフルオレニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリミジル基、ピラジル基、ピリジル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、又はジベンゾチエニル基(これらの基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基を有していてもよい)であることがより好ましい。Arが、フェニル基、ナフチル基、フルオレニル基、アントリル基、フェナントリル基、ベンゾフルオレニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリミジル基、ピラジル基、ピリジル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基、ビフェニル基、ピリジルフェニル基、又はターフェニル基であることがさらに好ましい。 Specifically, Ar 2 is a hydrogen atom; phenyl group, naphthyl group, biphenyl group, fluorenyl group, anthryl group, phenanthryl group, benzofluorenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, Pyrimidyl group, pyrazyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, or dibenzothienyl group (these groups are phenyl group, tolyl group, pyridyl group, methylpyridyl group, It may have a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms). Ar 2 is phenyl group, naphthyl group, biphenyl group, fluorenyl group, anthryl group, phenanthryl group, benzofluorenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyrimidyl group, pyrazyl group, pyridyl group Quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, or dibenzothienyl group (these groups are phenyl group, tolyl group, pyridyl group, methylpyridyl group, dimethylpyridyl group, fluorine atom, carbon More preferably an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms). Ar 2 is a phenyl group, naphthyl group, fluorenyl group, anthryl group, phenanthryl group, benzofluorenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyrimidyl group, pyrazyl group, pyridyl group, quinolyl group And more preferably an isoquinolyl group, a benzofuranyl group, a benzothienyl group, a dibenzofuranyl group, a dibenzothienyl group, a biphenyl group, a pyridylphenyl group, or a terphenyl group.
 また、Arについては、電子輸送性材料特性に優れる点で、フルオレニル基、ベンゾフルオレニル基、ピリジル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、又はジベンゾチエニル基(これらの基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基を有していてもよい)であることが好ましい。Arが、ピリジル基であることがより好ましい。 In addition, Ar 2 is excellent in electron transporting material characteristics, and is a fluorenyl group, benzofluorenyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, or dibenzothienyl. A group (these groups may have a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms). Preferably there is. More preferably, Ar 2 is a pyridyl group.
 Arの具体例としては、特に限定するものではないが、水素原子、フェニル基、p-トリル基、m-トリル基、o-トリル基、2,4-ジメチルフェニル基、3,5-ジメチルフェニル基、メシチル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2,4-ジエチルフェニル基、3,5-ジエチルフェニル基、2-プロピルフェニル基、3-プロピルフェニル基、4-プロピルフェニル基、2,4-ジプロピルフェニル基、3,5-ジプロピルフェニル基、2-イソプロピルフェニル基、3-イソプロピルフェニル基、4-イソプロピルフェニル基、2,4-ジイソプロピルフェニル基、3,5-ジイソプロピルフェニル基、2-ブチルフェニル基、3-ブチルフェニル基、4-ブチルフェニル基、2,4-ジブチルフェニル基、3,5-ジブチルフェニル基、2-tert-ブチルフェニル基、3-tert-ブチルフェニル基、4-tert-ブチルフェニル基、2,4-ジ-tert-ブチルフェニル基、3,5-ジ-tert-ブチルフェニル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、3-メチルビフェニル-4-イル基、2’-メチルビフェニル-4-イル基、4’-メチルビフェニル-4-イル基、2,2’-ジメチルビフェニル-4-イル基、6-メチルビフェニル-3-イル基、5-メチルビフェニル-3-イル基、2’-メチルビフェニル-3-イル基、4’-メチルビフェニル-3-イル基、6,2’-ジメチルビフェニル-3-イル基、5-メチルビフェニル-2-イル基、6-メチルビフェニル-2-イル基、2’-メチルビフェニル-2-イル基、4’-メチルビフェニル-2-イル基、6,2’-ジメチルビフェニル-2-イル基、3-エチルビフェニル-4-イル基、6-エチルビフェニル-3-イル基、5-エチルビフェニル-2-イル基、3-プロピルビフェニル-4-イル基、6-プロピルビフェニル-3-イル基、5-プロピルビフェニル-2-イル基、3-イソプロピルビフェニル-4-イル基、6-イソプロピルビフェニル-3-イル基、5-イソプロピルビフェニル-2-イル基、3-ブチルビフェニル-4-イル基、6-ブチルビフェニル-3-イル基、5-ブチルビフェニル-2-イル基、3-tert-ブチルビフェニル-4-イル基、4’-tert-ブチルビフェニル-4-イル基、6-tert-ブチルビフェニル-3-イル基、5-tert-ブチルビフェニル-2-イル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-メチルピリジン-3-イル基、2-メチルピリジン-4-イル基、2-メチルピリジン-5-イル基、2-メチルピリジン-6-イル基、3-メチルピリジン-2-イル基、3-メチルピリジン-4-イル基、3-メチルピリジン-5-イル基、3-メチルピリジン-6-イル基、4-メチルピリジン-2-イル基、4-メチルピリジン-3-イル基、2,6-ジメチルピリジン-3-イル基、2,6-ジメチルピリジン-4-イル基、3,6-ジメチルピリジン-2-イル基、3,6-ジメチルピリジン-4-イル基、3,6-ジメチルピリジン-5-イル基、2-フェニルピリジン-6-イル基、3-フェニルピリジン-6-イル基、4-フェニルピリジン-6-イル基、5-フェニルピリジン-6-イル基、2-フェニルピリジン-3-イル基、2-フェニルピリジン-5-イル基、3-フェニルピリジン-5-イル基、4-フェニルピリジン-3-イル基、3-フェニルピリジン-4-イル基、2-フェニルピリジン-4-イル基、2-(2-ピリジル)フェニル基、3-(2-ピリジル)フェニル基、
4-(2-ピリジル)フェニル基、2-(3-ピリジル)フェニル基、3-(3-ピリジル)フェニル基、4-(3-ピリジル)フェニル基、2-(4-ピリジル)フェニル基、3-(4-ピリジル)フェニル基、4-(4-ピリジル)フェニル基、2-(3-メチル-2-ピリジル)フェニル基、3-(3-メチル-2-ピリジル)フェニル基、4-(3-メチル-2-ピリジル)フェニル基、2-(4-メチル-2-ピリジル)フェニル基、3-(4-メチル-2-ピリジル)フェニル基、4-(4-メチル-2-ピリジル)フェニル基、2-(5-メチル-2-ピリジル)フェニル基、3-(5-メチル-2-ピリジル)フェニル基、4-(5-メチル-2-ピリジル)フェニル基、2-(6-メチル-2-ピリジル)フェニル基、3-(6-メチル-2-ピリジル)フェニル基、4-(6-メチル-2-ピリジル)フェニル基、2-(2-メチル-3-ピリジル)フェニル基、3-(2-メチル-3-ピリジル)フェニル基、4-(2-メチル-3-ピリジル)フェニル基、2-(4-メチル-3-ピリジル)フェニル基、3-(4-メチル-3-ピリジル)フェニル基、4-(4-メチル-3-ピリジル)フェニル基、2-(5-メチル-3-ピリジル)フェニル基、3-(5-メチル-3-ピリジル)フェニル基、4-(5-メチル-3-ピリジル)フェニル基、2-(6-メチル-3-ピリジル)フェニル基、3-(6-メチル-3-ピリジル)フェニル基、4-(6-メチル-3-ピリジル)フェニル基、2-(2-メチル-4-ピリジル)フェニル基、3-(2-メチル-4-ピリジル)フェニル基、4-(2-メチル-4-ピリジル)フェニル基、2-(3-メチル-4-ピリジル)フェニル基、3-(3-メチル-4-ピリジル)フェニル基、4-(3-メチル-4-ピリジル)フェニル基、2,6-ジフェニルピリジン-3-イル基、2,6-ジフェニルピリジン-4-イル基、4,6-ジフェニルピリジン-2-イル基、3,6-ジフェニルピリジン-4-イル基、3,6-ジフェニルピリジン-5-イル基、1-ナフチル基、2-ナフチル基、1-フェニルナフタレン-2-イル基、1-フェニルナフタレン-3-イル基、1-フェニルナフタレン-4-イル基、1-フェニルナフタレン-5-イル基、1-フェニルナフタレン-6-イル基、1-フェニルナフタレン-7-イル基、1-フェニルナフタレン-8-イル基、2-フェニルナフタレン-1-イル基、2-フェニルナフタレン-3-イル基、2-フェニルナフタレン-4-イル基、2-フェニルナフタレン-5-イル基、2-フェニルナフタレン-6-イル基、2-フェニルナフタレン-7-イル基、2-フェニルナフタレン-8-イル基、1-メチルナフタレン-4-イル基、1-メチルナフタレン-5-イル基、1-メチルナフタレン-6-イル基、1-メチルナフタレン-7-イル基、1-メチルナフタレン-8-イル基、2-メチルナフタレン-1-イル基、2-メチルナフタレン-3-イル基、2-メチルナフタレン-4-イル基、2-メチルナフタレン-5-イル基、2-メチルナフタレン-6-イル基、2-メチルナフタレン-7-イル基、2-メチルナフタレン-8-イル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、
1-フェニルフェナントレン-2-イル基、1-フェニルフェナントレン-3-イル基、1-フェニルフェナントレン-4-イル基、1-フェニルフェナントレン-5-イル基、1-フェニルフェナントレン-6-イル基、1-フェニルフェナントレン-7-イル基、1-フェニルフェナントレン-8-イル基、1-フェニルフェナントレン-9-イル基、1-フェニルフェナントレン-10-イル基、2-フェニルフェナントレン-1-イル基、2-フェニルフェナントレン-3-イル基、2-フェニルフェナントレン-4-イル基、2-フェニルフェナントレン-5-イル基、2-フェニルフェナントレン-6-イル基、2-フェニルフェナントレン-7-イル基、2-フェニルフェナントレン-8-イル基、2-フェニルフェナントレン-9-イル基、2-フェニルフェナントレン-10-イル基、3-フェニルフェナントレン-1-イル基、3-フェニルフェナントレン-2-イル基、3-フェニルフェナントレン-4-イル基、3-フェニルフェナントレン-5-イル基、3-フェニルフェナントレン-6-イル基、3-フェニルフェナントレン-7-イル基、3-フェニルフェナントレン-8-イル基、3-フェニルフェナントレン-9-イル基、3-フェニルフェナントレン-10-イル基、4-フェニルフェナントレン-1-イル基、4-フェニルフェナントレン-2-イル基、4-フェニルフェナントレン-3-イル基、4-フェニルフェナントレン-5-イル基、4-フェニルフェナントレン-6-イル基、4-フェニルフェナントレン-7-イル基、4-フェニルフェナントレン-8-イル基、4-フェニルフェナントレン-9-イル基、4-フェニルフェナントレン-10-イル基、1-メチルフェナントレン-2-イル基、1-メチルフェナントレン-3-イル基、1-メチルフェナントレン-4-イル基、1-メチルフェナントレン-5-イル基、1-メチルフェナントレン-6-イル基、1-メチルフェナントレン-7-イル基、1-メチルフェナントレン-8-イル基、1-メチルフェナントレン-9-イル基、1-メチルフェナントレン-10-イル基、2-メチルフェナントレン-1-イル基、2-メチルフェナントレン-3-イル基、2-メチルフェナントレン-4-イル基、2-メチルフェナントレン-5-イル基、2-メチルフェナントレン-6-イル基、2-メチルフェナントレン-7-イル基、2-メチルフェナントレン-8-イル基、2-メチルフェナントレン-9-イル基、2-メチルフェナントレン-10-イル基、3-メチルフェナントレン-1-イル基、3-メチルフェナントレン-2-イル基、3-メチルフェナントレン-4-イル基、3-メチルフェナントレン-5-イル基、3-メチルフェナントレン-6-イル基、3-メチルフェナントレン-7-イル基、3-メチルフェナントレン-8-イル基、3-メチルフェナントレン-9-イル基、3-メチルフェナントレン-10-イル基、4-メチルフェナントレン-1-イル基、4-メチルフェナントレン-2-イル基、4-メチルフェナントレン-3-イル基、4-メチルフェナントレン-5-イル基、4-メチルフェナントレン-6-イル基、4-メチルフェナントレン-7-イル基、4-メチルフェナントレン-8-イル基、4-メチルフェナントレン-9-イル基、4-メチルフェナントレン-10-イル基、1-アントリル基、2-アントリル基、9-アントリル基、
1-フェニルアントラセン-2-イル基、1-フェニルアントラセン-3-イル基、1-フェニルアントラセン-4-イル基、1-フェニルアントラセン-5-イル基、1-フェニルアントラセン-6-イル基、1-フェニルアントラセン-7-イル基、1-フェニルアントラセン-8-イル基、1-フェニルアントラセン-9-イル基、1-フェニルアントラセン-10-イル基、2-フェニルアントラセン-1-イル基、2-フェニルアントラセン-3-イル基、2-フェニルアントラセン-4-イル基、2-フェニルアントラセン-5-イル基、2-フェニルアントラセン-6-イル基、2-フェニルアントラセン-7-イル基、2-フェニルアントラセン-8-イル基、2-フェニルアントラセン-9-イル基、2-フェニルアントラセン-10-イル基、9-フェニルアントラセン-1-イル基、9-フェニルアントラセン-2-イル基、9-フェニルアントラセン-3-イル基、9-フェニルアントラセン-4-イル基、9-フェニルアントラセン-5-イル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、1-フェニルピレン-2-イル基、1-フェニルピレン-3-イル基、1-フェニルピレン-4-イル基、1-フェニルピレン-5-イル基、1-フェニルピレン-6-イル基、1-フェニルピレン-7-イル基、1-フェニルピレン-8-イル基、1-フェニルピレン-9-イル基、1-フェニルピレン-10-イル基、2-フェニルピレン-1-イル基、2-フェニルピレン-3-イル基、2-フェニルピレン-4-イル基、2-フェニルピレン-5-イル基、2-フェニルピレン-6-イル基、2-フェニルピレン-7-イル基、2-フェニルピレン-8-イル基、2-フェニルピレン-9-イル基、2-フェニルピレン-10-イル基、9-フェニルピレン-1-イル基、9-フェニルピレン-2-イル基、9-フェニルピレン-3-イル基、9-フェニルピレン-4-イル基、9-フェニルピレン-5-イル基、9-フェニルピレン-6-イル基、9-フェニルピレン-7-イル基、9-フェニルピレン-8-イル基、9-フェニルピレン-10-イル基、1-メチルピレン-2-イル基、1-メチルピレン-3-イル基、1-メチルピレン-4-イル基、1-メチルピレン-5-イル基、1-メチルピレン-6-イル基、1-メチルピレン-7-イル基、1-メチルピレン-8-イル基、1-メチルピレン-9-イル基、1-メチルピレン-10-イル基、2-メチルピレン-1-イル基、2-メチルピレン-3-イル基、2-メチルピレン-4-イル基、2-メチルピレン-5-イル基、2-メチルピレン-6-イル基、2-メチルピレン-7-イル基、2-メチルピレン-8-イル基、2-メチルピレン-9-イル基、2-メチルピレン-10-イル基、9-メチルピレン-1-イル基、9-メチルピレン-2-イル基、9-メチルピレン-3-イル基、9-メチルピレン-4-イル基、9-メチルピレン-5-イル基、9-メチルピレン-6-イル基、9-メチルピレン-7-イル基、9-メチルピレン-8-イル基、9-メチルピレン-10-イル基、フルオランテン-1-イル基、フルオランテン-1-イル基、フルオランテン-2-イル基、フルオランテン-3-イル基、フルオランテン-4-イル基、フルオランテン-5-イル基、フルオランテン-6-イル基、フルオランテン-7-イル基、フルオランテン-8-イル基、フルオランテン-9-イル基、フルオランテン-10-イル基、トリフェニレン-1-イル基、トリフェニレン-2-イル基、アセナフチレン-1-イル基、アセナフチレン-3-イル基、アセナフチレン-4-イル基、アセナフチレン-5-イル基、クリセン-1-イル基、クリセン-2-イル基、クリセン-5-イル基、クリセン-6-イル基、
2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基、キノキサリン-2-イル基、キノキサリン-5-イル基、キノキサリン-6-イル基、キナゾリン-2-イル基、キナゾリン-4-イル基、キナゾリン-5-イル基、キナゾリン-6-イル基、キナゾリン-7-イル基、キナゾリン-8-イル基、ピラジン-2-イル基、5-メチルピラジン-2-イル基、5,6-ジフェニルピラジン-2-イル基、ピリミジン-2-イル基、ピリミジン-4-イル基、ピリミジン-5-イル基、2,4-ジフェニルピリミジン-6-イル基、4,6-ジフェニルピリミジン-2-イル基、アクリジン-1-イル基、アクリジン-1-イル基、アクリジン-2-イル基、アクリジン-3-イル基、アクリジン-4-イル基、アクリジン-9-イル基、フェナントリジン-1-イル基、フェナントリジン-1-イル基、フェナントリジン-2-イル基、フェナントリジン-3-イル基、フェナントリジン-4-イル基、フェナントリジン-6-イル基、フェナントリジン-7-イル基、フェナントリジン-8-イル基、フェナントリジン-9-イル基、フェナントリジン-10-イル基、フェナジン-1-イル基、フェナジン-2-イル基、ベンゾ[h]キノリン-2-イル基、ベンゾ[h]キノリン-3-イル基、ベンゾ[h]キノリン-4-イル基、ベンゾ[h]キノリン-5-イル基、ベンゾ[h]キノリン-6-イル基、ベンゾ[h]キノリン-7-イル基、ベンゾ[h]キノリン-8-イル基、ベンゾ[h]キノリン-9-イル基、ベンゾ[h]キノリン-10-イル基、2-チエニル基、3-チエニル基、2-フリル基、3-フリル基、ベンゾチオフェン-2-イル基、ベンゾチオフェン-3-イル基、ベンゾチオフェン-4-イル基、ベンゾチオフェン-5-イル基、ベンゾチオフェン-6-イル基、ベンゾチオフェン-7-イル基、ベンゾフラン-2-イル基、ベンゾフラン-3-イル基、ベンゾフラン-4-イル基、ベンゾフラン-5-イル基、ベンゾフラン-6-イル基、ベンゾフラン-7-イル基、ジベンゾチオフェン-1-イル基、ジベンゾチオフェン-2-イル基、ジベンゾチオフェン-3-イル基、ジベンゾフラン-1-イル基、ジベンゾフラン-2-イル基、ジベンゾフラン-3-イル基、3-メチルチオフェン-2-イル基、4-メチルチオフェン-2-イル基、5-メチルチオフェン-2-イル基、2-メチルチオフェン-3-イル基、4-メチルチオフェン-3-イル基、5-メチルチオフェン-3-イル基、3-メチルフラン-2-イル基、4-メチルフラン-2-イル基、5-メチルフラン-2-イル基、2-メチルフラン-3-イル基、4-メチルフラン-3-イル基、5-メチルフラン-3-イル基、
3-メチルベンゾチオフェン-2-イル基、4-メチルベンゾチオフェン-2-イル基、5-メチルベンゾチオフェン-2-イル基、6-メチルベンゾチオフェン-2-イル基、7-メチルベンゾチオフェン-2-イル基、2-メチルベンゾチオフェン-3-イル基、4-メチルベンゾチオフェン-3-イル基、5-メチルベンゾチオフェン-3-イル基、6-メチルベンゾチオフェン-3-イル基、7-メチルベンゾチオフェン-3-イル基、2-メチルベンゾチオフェン-4-イル基、3-メチルベンゾチオフェン-4-イル基、5-メチルベンゾチオフェン-4-イル基、6-メチルベンゾチオフェン-4-イル基、7-メチルベンゾチオフェン-4-イル基、2-メチルベンゾチオフェン-5-イル基、3-メチルベンゾチオフェン-5-イル基、4-メチルベンゾチオフェン-5-イル基、6-メチルベンゾチオフェン-5-イル基、7-メチルベンゾチオフェン-5-イル基、2-メチルベンゾチオフェン-6-イル基、3-メチルベンゾチオフェン-6-イル基、4-メチルベンゾチオフェン-6-イル基、5-メチルベンゾチオフェン-6-イル基、7-メチルベンゾチオフェン-6-イル基、2-メチルベンゾチオフェン-7-イル基、3-メチルベンゾチオフェン-7-イル基、4-メチルベンゾチオフェン-7-イル基、5-メチルベンゾチオフェン-7-イル基、6-メチルベンゾチオフェン-7-イル基、3-メチルベンゾフラン-2-イル基、4-メチルベンゾフラン-2-イル基、5-メチルベンゾフラン-2-イル基、6-メチルベンゾフラン-2-イル基、7-メチルベンゾフラン-2-イル基、2-メチルベンゾフラン-3-イル基、4-メチルベンゾフラン-3-イル基、5-メチルベンゾフラン-3-イル基、6-メチルベンゾフラン-3-イル基、7-メチルベンゾフラン-3-イル基、2-メチルベンゾフラン-4-イル基、3-メチルベンゾフラン-4-イル基、5-メチルベンゾフラン-4-イル基、6-メチルベンゾフラン-4-イル基、7-メチルベンゾフラン-4-イル基、2-メチルベンゾフラン-5-イル基、3-メチルベンゾフラン-5-イル基、4-メチルベンゾフラン-5-イル基、6-メチルベンゾフラン-5-イル基、7-メチルベンゾフラン-5-イル基、2-メチルベンゾフラン-6-イル基、3-メチルベンゾフラン-6-イル基、4-メチルベンゾフラン-6-イル基、5-メチルベンゾフラン-6-イル基、7-メチルベンゾフラン-6-イル基、2-メチルベンゾフラン-7-イル基、3-メチルベンゾフラン-7-イル基、4-メチルベンゾフラン-7-イル基、5-メチルベンゾフラン-7-イル基、6-メチルベンゾフラン-7-イル基、2-メチルジベンゾチオフェン-1-イル基、3-メチルジベンゾチオフェン-1-イル基、4-メチルジベンゾチオフェン-1-イル基、6-メチルジベンゾチオフェン-1-イル基、7-メチルジベンゾチオフェン-1-イル基、8-メチルジベンゾチオフェン-1-イル基、9-メチルジベンゾチオフェン-1-イル基、1-メチルジベンゾチオフェン-2-イル基、3-メチルジベンゾチオフェン-2-イル基、4-メチルジベンゾチオフェン-2-イル基、6-メチルジベンゾチオフェン-2-イル基、7-メチルジベンゾチオフェン-2-イル基、8-メチルジベンゾチオフェン-2-イル基、9-メチルジベンゾチオフェン-2-イル基、1-メチルジベンゾチオフェン-3-イル基、2-メチルジベンゾチオフェン-3-イル基、4-メチルジベンゾチオフェン-3-イル基、6-メチルジベンゾチオフェン-3-イル基、7-メチルジベンゾチオフェン-3-イル基、8-メチルジベンゾチオフェン-3-イル基、
9-メチルジベンゾチオフェン-3-イル基、2-メチルジベンゾフラン-1-イル基、3-メチルジベンゾフラン-1-イル基、4-メチルジベンゾフラン-1-イル基、6-メチルジベンゾフラン-1-イル基、7-メチルジベンゾフラン-1-イル基、8-メチルジベンゾフラン-1-イル基、9-メチルジベンゾフラン-1-イル基、1-メチルジベンゾフラン-2-イル基、3-メチルジベンゾフラン-2-イル基、4-メチルジベンゾフラン-2-イル基、6-メチルジベンゾフラン-2-イル基、7-メチルジベンゾフラン-2-イル基、8-メチルジベンゾフラン-2-イル基、9-メチルジベンゾフラン-2-イル基、1-メチルジベンゾフラン-3-イル基、2-メチルジベンゾフラン-3-イル基、4-メチルジベンゾフラン-3-イル基、6-メチルジベンゾフラン-3-イル基、7-メチルジベンゾフラン-3-イル基、8-メチルジベンゾフラン-3-イル基、9-メチルジベンゾフラン-3-イル基、3-フェニルチオフェン-2-イル基、4-フェニルチオフェン-2-イル基、5-フェニルチオフェン-2-イル基、2-フェニルチオフェン-3-イル基、4-フェニルチオフェン-3-イル基、5-フェニルチオフェン-3-イル基、3-フェニルフラン-2-イル基、4-フェニルフラン-2-イル基、5-フェニルフラン-2-イル基、2-フェニルフラン-3-イル基、4-フェニルフラン-3-イル基、5-フェニルフラン-3-イル基、3-フェニルベンゾチオフェン-2-イル基、4-フェニルベンゾチオフェン-2-イル基、5-フェニルベンゾチオフェン-2-イル基、6-フェニルベンゾチオフェン-2-イル基、7-フェニルベンゾチオフェン-2-イル基、2-フェニルベンゾチオフェン-3-イル基、4-フェニルベンゾチオフェン-3-イル基、5-フェニルベンゾチオフェン-3-イル基、6-フェニルベンゾチオフェン-3-イル基、7-フェニルベンゾチオフェン-3-イル基、2-フェニルベンゾチオフェン-4-イル基、3-フェニルベンゾチオフェン-4-イル基、5-フェニルベンゾチオフェン-4-イル基、6-フェニルベンゾチオフェン-4-イル基、7-フェニルベンゾチオフェン-4-イル基、2-フェニルベンゾチオフェン-5-イル基、3-フェニルベンゾチオフェン-5-イル基、4-フェニルベンゾチオフェン-5-イル基、6-フェニルベンゾチオフェン-5-イル基、7-フェニルベンゾチオフェン-5-イル基、2-フェニルベンゾチオフェン-6-イル基、3-フェニルベンゾチオフェン-6-イル基、4-フェニルベンゾチオフェン-6-イル基、5-フェニルベンゾチオフェン-6-イル基、7-フェニルベンゾチオフェン-6-イル基、2-フェニルベンゾチオフェン-7-イル基、3-フェニルベンゾチオフェン-7-イル基、4-フェニルベンゾチオフェン-7-イル基、5-フェニルベンゾチオフェン-7-イル基、6-フェニルベンゾチオフェン-7-イル基、3-フェニルベンゾフラン-2-イル基、4-フェニルベンゾフラン-2-イル基、5-フェニルベンゾフラン-2-イル基、6-フェニルベンゾフラン-2-イル基、7-フェニルベンゾフラン-2-イル基、2-フェニルベンゾフラン-3-イル基、4-フェニルベンゾフラン-3-イル基、5-フェニルベンゾフラン-3-イル基、6-フェニルベンゾフラン-3-イル基、7-フェニルベンゾフラン-3-イル基、2-フェニルベンゾフラン-4-イル基、3-フェニルベンゾフラン-4-イル基、
5-フェニルベンゾフラン-4-イル基、6-フェニルベンゾフラン-4-イル基、7-フェニルベンゾフラン-4-イル基、2-フェニルベンゾフラン-5-イル基、3-フェニルベンゾフラン-5-イル基、4-フェニルベンゾフラン-5-イル基、6-フェニルベンゾフラン-5-イル基、7-フェニルベンゾフラン-5-イル基、2-フェニルベンゾフラン-6-イル基、3-フェニルベンゾフラン-6-イル基、4-フェニルベンゾフラン-6-イル基、5-フェニルベンゾフラン-6-イル基、7-フェニルベンゾフラン-6-イル基、2-フェニルベンゾフラン-7-イル基、3-フェニルベンゾフラン-7-イル基、4-フェニルベンゾフラン-7-イル基、5-フェニルベンゾフラン-7-イル基、6-フェニルベンゾフラン-7-イル基、2-フェニルジベンゾチオフェン-1-イル基、3-フェニルジベンゾチオフェン-1-イル基、4-フェニルジベンゾチオフェン-1-イル基、6-フェニルジベンゾチオフェン-1-イル基、7-フェニルジベンゾチオフェン-1-イル基、8-フェニルジベンゾチオフェン-1-イル基、9-フェニルジベンゾチオフェン-1-イル基、1-フェニルジベンゾチオフェン-2-イル基、3-フェニルジベンゾチオフェン-2-イル基、4-フェニルジベンゾチオフェン-2-イル基、6-フェニルジベンゾチオフェン-2-イル基、7-フェニルジベンゾチオフェン-2-イル基、8-フェニルジベンゾチオフェン-2-イル基、9-フェニルジベンゾチオフェン-2-イル基、1-フェニルジベンゾチオフェン-3-イル基、2-フェニルジベンゾチオフェン-3-イル基、4-フェニルジベンゾチオフェン-3-イル基、6-フェニルジベンゾチオフェン-3-イル基、7-フェニルジベンゾチオフェン-3-イル基、8-フェニルジベンゾチオフェン-3-イル基、9-フェニルジベンゾチオフェン-3-イル基、2-フェニルジベンゾフラン-1-イル基、3-フェニルジベンゾフラン-1-イル基、4-フェニルジベンゾフラン-1-イル基、6-フェニルジベンゾフラン-1-イル基、7-フェニルジベンゾフラン-1-イル基、8-フェニルジベンゾフラン-1-イル基、9-フェニルジベンゾフラン-1-イル基、1-フェニルジベンゾフラン-2-イル基、3-フェニルジベンゾフラン-2-イル基、4-フェニルジベンゾフラン-2-イル基、6-フェニルジベンゾフラン-2-イル基、7-フェニルジベンゾフラン-2-イル基、8-フェニルジベンゾフラン-2-イル基、9-フェニルジベンゾフラン-2-イル基、1-フェニルジベンゾフラン-3-イル基、2-フェニルジベンゾフラン-3-イル基、4-フェニルジベンゾフラン-3-イル基、6-フェニルジベンゾフラン-3-イル基、7-フェニルジベンゾフラン-3-イル基、8-フェニルジベンゾフラン-3-イル基、9-フェニルジベンゾフラン-3-イル基、
3-(2-ピリジル)チオフェン-2-イル基、4-(2-ピリジル)チオフェン-2-イル基、5-(2-ピリジル)チオフェン-2-イル基、2-(2-ピリジル)チオフェン-3-イル基、4-(2-ピリジル)チオフェン-3-イル基、5-(2-ピリジル)チオフェン-3-イル基、3-(2-ピリジル)フラン-2-イル基、4-(2-ピリジル)フラン-2-イル基、5-(2-ピリジル)フラン-2-イル基、2-(2-ピリジル)フラン-3-イル基、4-(2-ピリジル)フラン-3-イル基、5-(2-ピリジル)フラン-3-イル基、3-(2-ピリジル)ベンゾチオフェン-2-イル基、4-(2-ピリジル)ベンゾチオフェン-2-イル基、5-(2-ピリジル)ベンゾチオフェン-2-イル基、6-(2-ピリジル)ベンゾチオフェン-2-イル基、7-(2-ピリジル)ベンゾチオフェン-2-イル基、2-(2-ピリジル)ベンゾチオフェン-3-イル基、4-(2-ピリジル)ベンゾチオフェン-3-イル基、5-(2-ピリジル)ベンゾチオフェン-3-イル基、6-(2-ピリジル)ベンゾチオフェン-3-イル基、7-(2-ピリジル)ベンゾチオフェン-3-イル基、2-(2-ピリジル)ベンゾチオフェン-4-イル基、3-(2-ピリジル)ベンゾチオフェン-4-イル基、5-(2-ピリジル)ベンゾチオフェン-4-イル基、6-(2-ピリジル)ベンゾチオフェン-4-イル基、7-(2-ピリジル)ベンゾチオフェン-4-イル基、2-(2-ピリジル)ベンゾチオフェン-5-イル基、3-(2-ピリジル)ベンゾチオフェン-5-イル基、4-(2-ピリジル)ベンゾチオフェン-5-イル基、6-(2-ピリジル)ベンゾチオフェン-5-イル基、7-(2-ピリジル)ベンゾチオフェン-5-イル基、2-(2-ピリジル)ベンゾチオフェン-6-イル基、3-(2-ピリジル)ベンゾチオフェン-6-イル基、4-(2-ピリジル)ベンゾチオフェン-6-イル基、5-(2-ピリジル)ベンゾチオフェン-6-イル基、7-(2-ピリジル)ベンゾチオフェン-6-イル基、2-(2-ピリジル)ベンゾチオフェン-7-イル基、3-(2-ピリジル)ベンゾチオフェン-7-イル基、4-(2-ピリジル)ベンゾチオフェン-7-イル基、5-(2-ピリジル)ベンゾチオフェン-7-イル基、6-(2-ピリジル)ベンゾチオフェン-7-イル基、3-(2-ピリジル)ベンゾフラン-2-イル基、4-(2-ピリジル)ベンゾフラン-2-イル基、5-(2-ピリジル)ベンゾフラン-2-イル基、6-(2-ピリジル)ベンゾフラン-2-イル基、7-(2-ピリジル)ベンゾフラン-2-イル基、2-(2-ピリジル)ベンゾフラン-3-イル基、4-(2-ピリジル)ベンゾフラン-3-イル基、5-(2-ピリジル)ベンゾフラン-3-イル基、6-(2-ピリジル)ベンゾフラン-3-イル基、7-(2-ピリジル)ベンゾフラン-3-イル基、2-(2-ピリジル)ベンゾフラン-4-イル基、3-(2-ピリジル)ベンゾフラン-4-イル基、5-(2-ピリジル)ベンゾフラン-4-イル基、6-(2-ピリジル)ベンゾフラン-4-イル基、7-(2-ピリジル)ベンゾフラン-4-イル基、2-(2-ピリジル)ベンゾフラン-5-イル基、3-(2-ピリジル)ベンゾフラン-5-イル基、4-(2-ピリジル)ベンゾフラン-5-イル基、6-(2-ピリジル)ベンゾフラン-5-イル基、7-(2-ピリジル)ベンゾフラン-5-イル基、2-(2-ピリジル)ベンゾフラン-6-イル基、3-(2-ピリジル)ベンゾフラン-6-イル基、4-(2-ピリジル)ベンゾフラン-6-イル基、5-(2-ピリジル)ベンゾフラン-6-イル基、7-(2-ピリジル)ベンゾフラン-6-イル基、2-(2-ピリジル)ベンゾフラン-7-イル基、
3-(2-ピリジル)ベンゾフラン-7-イル基、4-(2-ピリジル)ベンゾフラン-7-イル基、5-(2-ピリジル)ベンゾフラン-7-イル基、6-(2-ピリジル)ベンゾフラン-7-イル基、2-(2-ピリジル)ジベンゾチオフェン-1-イル基、3-(2-ピリジル)ジベンゾチオフェン-1-イル基、4-(2-ピリジル)ジベンゾチオフェン-1-イル基、6-(2-ピリジル)ジベンゾチオフェン-1-イル基、7-(2-ピリジル)ジベンゾチオフェン-1-イル基、8-(2-ピリジル)ジベンゾチオフェン-1-イル基、9-(2-ピリジル)ジベンゾチオフェン-1-イル基、1-(2-ピリジル)ジベンゾチオフェン-2-イル基、3-(2-ピリジル)ジベンゾチオフェン-2-イル基、4-(2-ピリジル)ジベンゾチオフェン-2-イル基、6-(2-ピリジル)ジベンゾチオフェン-2-イル基、7-(2-ピリジル)ジベンゾチオフェン-2-イル基、8-(2-ピリジル)ジベンゾチオフェン-2-イル基、9-(2-ピリジル)ジベンゾチオフェン-2-イル基、1-(2-ピリジル)ジベンゾチオフェン-3-イル基、2-(2-ピリジル)ジベンゾチオフェン-3-イル基、4-(2-ピリジル)ジベンゾチオフェン-3-イル基、6-(2-ピリジル)ジベンゾチオフェン-3-イル基、7-(2-ピリジル)ジベンゾチオフェン-3-イル基、8-(2-ピリジル)ジベンゾチオフェン-3-イル基、9-(2-ピリジル)ジベンゾチオフェン-3-イル基、2-(2-ピリジル)ジベンゾフラン-1-イル基、3-(2-ピリジル)ジベンゾフラン-1-イル基、4-(2-ピリジル)ジベンゾフラン-1-イル基、6-(2-ピリジル)ジベンゾフラン-1-イル基、7-(2-ピリジル)ジベンゾフラン-1-イル基、8-(2-ピリジル)ジベンゾフラン-1-イル基、9-(2-ピリジル)ジベンゾフラン-1-イル基、1-(2-ピリジル)ジベンゾフラン-2-イル基、3-(2-ピリジル)ジベンゾフラン-2-イル基、4-(2-ピリジル)ジベンゾフラン-2-イル基、6-(2-ピリジル)ジベンゾフラン-2-イル基、7-(2-ピリジル)ジベンゾフラン-2-イル基、8-(2-ピリジル)ジベンゾフラン-2-イル基、9-(2-ピリジル)ジベンゾフラン-2-イル基、1-(2-ピリジル)ジベンゾフラン-3-イル基、2-(2-ピリジル)ジベンゾフラン-3-イル基、4-(2-ピリジル)ジベンゾフラン-3-イル基、6-(2-ピリジル)ジベンゾフラン-3-イル基、7-(2-ピリジル)ジベンゾフラン-3-イル基、8-(2-ピリジル)ジベンゾフラン-3-イル基、9-(2-ピリジル)ジベンゾフラン-3-イル基、3-(3-ピリジル)チオフェン-2-イル基、4-(3-ピリジル)チオフェン-2-イル基、5-(3-ピリジル)チオフェン-2-イル基、2-(3-ピリジル)チオフェン-3-イル基、4-(3-ピリジル)チオフェン-3-イル基、5-(3-ピリジル)チオフェン-3-イル基、3-(3-ピリジル)フラン-2-イル基、4-(3-ピリジル)フラン-2-イル基、5-(3-ピリジル)フラン-2-イル基、2-(3-ピリジル)フラン-3-イル基、4-(3-ピリジル)フラン-3-イル基、5-(3-ピリジル)フラン-3-イル基、
3-(3-ピリジル)ベンゾチオフェン-2-イル基、4-(3-ピリジル)ベンゾチオフェン-2-イル基、5-(3-ピリジル)ベンゾチオフェン-2-イル基、6-(3-ピリジル)ベンゾチオフェン-2-イル基、7-(3-ピリジル)ベンゾチオフェン-2-イル基、2-(3-ピリジル)ベンゾチオフェン-3-イル基、4-(3-ピリジル)ベンゾチオフェン-3-イル基、5-(3-ピリジル)ベンゾチオフェン-3-イル基、6-(3-ピリジル)ベンゾチオフェン-3-イル基、7-(3-ピリジル)ベンゾチオフェン-3-イル基、2-(3-ピリジル)ベンゾチオフェン-4-イル基、3-(3-ピリジル)ベンゾチオフェン-4-イル基、5-(3-ピリジル)ベンゾチオフェン-4-イル基、6-(3-ピリジル)ベンゾチオフェン-4-イル基、7-(3-ピリジル)ベンゾチオフェン-4-イル基、2-(3-ピリジル)ベンゾチオフェン-5-イル基、3-(3-ピリジル)ベンゾチオフェン-5-イル基、4-(3-ピリジル)ベンゾチオフェン-5-イル基、6-(3-ピリジル)ベンゾチオフェン-5-イル基、7-(3-ピリジル)ベンゾチオフェン-5-イル基、2-(3-ピリジル)ベンゾチオフェン-6-イル基、3-(3-ピリジル)ベンゾチオフェン-6-イル基、4-(3-ピリジル)ベンゾチオフェン-6-イル基、5-(3-ピリジル)ベンゾチオフェン-6-イル基、7-(3-ピリジル)ベンゾチオフェン-6-イル基、2-(3-ピリジル)ベンゾチオフェン-7-イル基、3-(3-ピリジル)ベンゾチオフェン-7-イル基、4-(3-ピリジル)ベンゾチオフェン-7-イル基、5-(3-ピリジル)ベンゾチオフェン-7-イル基、6-(3-ピリジル)ベンゾチオフェン-7-イル基、3-(3-ピリジル)ベンゾフラン-2-イル基、4-(3-ピリジル)ベンゾフラン-2-イル基、5-(3-ピリジル)ベンゾフラン-2-イル基、6-(3-ピリジル)ベンゾフラン-2-イル基、7-(3-ピリジル)ベンゾフラン-2-イル基、2-(3-ピリジル)ベンゾフラン-3-イル基、4-(3-ピリジル)ベンゾフラン-3-イル基、5-(3-ピリジル)ベンゾフラン-3-イル基、6-(3-ピリジル)ベンゾフラン-3-イル基、7-(3-ピリジル)ベンゾフラン-3-イル基、2-(3-ピリジル)ベンゾフラン-4-イル基、3-(3-ピリジル)ベンゾフラン-4-イル基、5-(3-ピリジル)ベンゾフラン-4-イル基、6-(3-ピリジル)ベンゾフラン-4-イル基、7-(3-ピリジル)ベンゾフラン-4-イル基、2-(3-ピリジル)ベンゾフラン-5-イル基、3-(3-ピリジル)ベンゾフラン-5-イル基、4-(3-ピリジル)ベンゾフラン-5-イル基、6-(3-ピリジル)ベンゾフラン-5-イル基、7-(3-ピリジル)ベンゾフラン-5-イル基、2-(3-ピリジル)ベンゾフラン-6-イル基、3-(3-ピリジル)ベンゾフラン-6-イル基、4-(3-ピリジル)ベンゾフラン-6-イル基、5-(3-ピリジル)ベンゾフラン-6-イル基、7-(3-ピリジル)ベンゾフラン-6-イル基、2-(3-ピリジル)ベンゾフラン-7-イル基、3-(3-ピリジル)ベンゾフラン-7-イル基、4-(3-ピリジル)ベンゾフラン-7-イル基、5-(3-ピリジル)ベンゾフラン-7-イル基、6-(3-ピリジル)ベンゾフラン-7-イル基、
2-(3-ピリジル)ジベンゾチオフェン-1-イル基、3-(3-ピリジル)ジベンゾチオフェン-1-イル基、4-(3-ピリジル)ジベンゾチオフェン-1-イル基、6-(3-ピリジル)ジベンゾチオフェン-1-イル基、7-(3-ピリジル)ジベンゾチオフェン-1-イル基、8-(3-ピリジル)ジベンゾチオフェン-1-イル基、9-(3-ピリジル)ジベンゾチオフェン-1-イル基、1-(3-ピリジル)ジベンゾチオフェン-2-イル基、3-(3-ピリジル)ジベンゾチオフェン-2-イル基、4-(3-ピリジル)ジベンゾチオフェン-2-イル基、6-(3-ピリジル)ジベンゾチオフェン-2-イル基、7-(3-ピリジル)ジベンゾチオフェン-2-イル基、8-(3-ピリジル)ジベンゾチオフェン-2-イル基、9-(3-ピリジル)ジベンゾチオフェン-2-イル基、1-(3-ピリジル)ジベンゾチオフェン-3-イル基、2-(3-ピリジル)ジベンゾチオフェン-3-イル基、4-(3-ピリジル)ジベンゾチオフェン-3-イル基、6-(3-ピリジル)ジベンゾチオフェン-3-イル基、7-(3-ピリジル)ジベンゾチオフェン-3-イル基、8-(3-ピリジル)ジベンゾチオフェン-3-イル基、9-(3-ピリジル)ジベンゾチオフェン-3-イル基、2-(3-ピリジル)ジベンゾフラン-1-イル基、3-(3-ピリジル)ジベンゾフラン-1-イル基、4-(3-ピリジル)ジベンゾフラン-1-イル基、6-(3-ピリジル)ジベンゾフラン-1-イル基、7-(3-ピリジル)ジベンゾフラン-1-イル基、8-(3-ピリジル)ジベンゾフラン-1-イル基、9-(3-ピリジル)ジベンゾフラン-1-イル基、1-(3-ピリジル)ジベンゾフラン-2-イル基、3-(3-ピリジル)ジベンゾフラン-2-イル基、4-(3-ピリジル)ジベンゾフラン-2-イル基、6-(3-ピリジル)ジベンゾフラン-2-イル基、7-(3-ピリジル)ジベンゾフラン-2-イル基、8-(3-ピリジル)ジベンゾフラン-2-イル基、9-(3-ピリジル)ジベンゾフラン-2-イル基、1-(3-ピリジル)ジベンゾフラン-3-イル基、2-(3-ピリジル)ジベンゾフラン-3-イル基、4-(3-ピリジル)ジベンゾフラン-3-イル基、6-(3-ピリジル)ジベンゾフラン-3-イル基、7-(3-ピリジル)ジベンゾフラン-3-イル基、8-(3-ピリジル)ジベンゾフラン-3-イル基、9-(3-ピリジル)ジベンゾフラン-3-イル基、3-(4-ピリジル)チオフェン-2-イル基、4-(4-ピリジル)チオフェン-2-イル基、5-(4-ピリジル)チオフェン-2-イル基、2-(4-ピリジル)チオフェン-3-イル基、4-(4-ピリジル)チオフェン-3-イル基、5-(4-ピリジル)チオフェン-3-イル基、3-(4-ピリジル)フラン-2-イル基、4-(4-ピリジル)フラン-2-イル基、5-(4-ピリジル)フラン-2-イル基、2-(4-ピリジル)フラン-3-イル基、4-(4-ピリジル)フラン-3-イル基、5-(4-ピリジル)フラン-3-イル基、3-(4-ピリジル)ベンゾチオフェン-2-イル基、4-(4-ピリジル)ベンゾチオフェン-2-イル基、5-(4-ピリジル)ベンゾチオフェン-2-イル基、6-(4-ピリジル)ベンゾチオフェン-2-イル基、7-(4-ピリジル)ベンゾチオフェン-2-イル基、2-(4-ピリジル)ベンゾチオフェン-3-イル基、4-(4-ピリジル)ベンゾチオフェン-3-イル基、
5-(4-ピリジル)ベンゾチオフェン-3-イル基、6-(4-ピリジル)ベンゾチオフェン-3-イル基、7-(4-ピリジル)ベンゾチオフェン-3-イル基、2-(4-ピリジル)ベンゾチオフェン-4-イル基、3-(4-ピリジル)ベンゾチオフェン-4-イル基、5-(4-ピリジル)ベンゾチオフェン-4-イル基、6-(4-ピリジル)ベンゾチオフェン-4-イル基、7-(4-ピリジル)ベンゾチオフェン-4-イル基、2-(4-ピリジル)ベンゾチオフェン-5-イル基、3-(4-ピリジル)ベンゾチオフェン-5-イル基、4-(4-ピリジル)ベンゾチオフェン-5-イル基、6-(4-ピリジル)ベンゾチオフェン-5-イル基、7-(4-ピリジル)ベンゾチオフェン-5-イル基、2-(4-ピリジル)ベンゾチオフェン-6-イル基、3-(4-ピリジル)ベンゾチオフェン-6-イル基、4-(4-ピリジル)ベンゾチオフェン-6-イル基、5-(4-ピリジル)ベンゾチオフェン-6-イル基、7-(4-ピリジル)ベンゾチオフェン-6-イル基、2-(4-ピリジル)ベンゾチオフェン-7-イル基、3-(4-ピリジル)ベンゾチオフェン-7-イル基、4-(4-ピリジル)ベンゾチオフェン-7-イル基、5-(4-ピリジル)ベンゾチオフェン-7-イル基、6-(4-ピリジル)ベンゾチオフェン-7-イル基、3-(4-ピリジル)ベンゾフラン-2-イル基、4-(4-ピリジル)ベンゾフラン-2-イル基、5-(4-ピリジル)ベンゾフラン-2-イル基、6-(4-ピリジル)ベンゾフラン-2-イル基、7-(4-ピリジル)ベンゾフラン-2-イル基、2-(4-ピリジル)ベンゾフラン-3-イル基、4-(4-ピリジル)ベンゾフラン-3-イル基、5-(4-ピリジル)ベンゾフラン-3-イル基、6-(4-ピリジル)ベンゾフラン-3-イル基、7-(4-ピリジル)ベンゾフラン-3-イル基、2-(4-ピリジル)ベンゾフラン-4-イル基、3-(4-ピリジル)ベンゾフラン-4-イル基、5-(4-ピリジル)ベンゾフラン-4-イル基、6-(4-ピリジル)ベンゾフラン-4-イル基、7-(4-ピリジル)ベンゾフラン-4-イル基、2-(4-ピリジル)ベンゾフラン-5-イル基、3-(4-ピリジル)ベンゾフラン-5-イル基、4-(4-ピリジル)ベンゾフラン-5-イル基、6-(4-ピリジル)ベンゾフラン-5-イル基、7-(4-ピリジル)ベンゾフラン-5-イル基、2-(4-ピリジル)ベンゾフラン-6-イル基、3-(4-ピリジル)ベンゾフラン-6-イル基、4-(4-ピリジル)ベンゾフラン-6-イル基、5-(4-ピリジル)ベンゾフラン-6-イル基、7-(4-ピリジル)ベンゾフラン-6-イル基、2-(4-ピリジル)ベンゾフラン-7-イル基、3-(4-ピリジル)ベンゾフラン-7-イル基、4-(4-ピリジル)ベンゾフラン-7-イル基、5-(4-ピリジル)ベンゾフラン-7-イル基、6-(4-ピリジル)ベンゾフラン-7-イル基、2-(4-ピリジル)ジベンゾチオフェン-1-イル基、3-(4-ピリジル)ジベンゾチオフェン-1-イル基、4-(4-ピリジル)ジベンゾチオフェン-1-イル基、6-(4-ピリジル)ジベンゾチオフェン-1-イル基、7-(4-ピリジル)ジベンゾチオフェン-1-イル基、
8-(4-ピリジル)ジベンゾチオフェン-1-イル基、9-(4-ピリジル)ジベンゾチオフェン-1-イル基、1-(4-ピリジル)ジベンゾチオフェン-2-イル基、3-(4-ピリジル)ジベンゾチオフェン-2-イル基、4-(4-ピリジル)ジベンゾチオフェン-2-イル基、6-(4-ピリジル)ジベンゾチオフェン-2-イル基、7-(4-ピリジル)ジベンゾチオフェン-2-イル基、8-(4-ピリジル)ジベンゾチオフェン-2-イル基、9-(4-ピリジル)ジベンゾチオフェン-2-イル基、1-(4-ピリジル)ジベンゾチオフェン-3-イル基、2-(4-ピリジル)ジベンゾチオフェン-3-イル基、4-(4-ピリジル)ジベンゾチオフェン-3-イル基、6-(4-ピリジル)ジベンゾチオフェン-3-イル基、7-(4-ピリジル)ジベンゾチオフェン-3-イル基、8-(4-ピリジル)ジベンゾチオフェン-3-イル基、9-(4-ピリジル)ジベンゾチオフェン-3-イル基、2-(4-ピリジル)ジベンゾフラン-1-イル基、3-(4-ピリジル)ジベンゾフラン-1-イル基、4-(4-ピリジル)ジベンゾフラン-1-イル基、6-(4-ピリジル)ジベンゾフラン-1-イル基、7-(4-ピリジル)ジベンゾフラン-1-イル基、8-(4-ピリジル)ジベンゾフラン-1-イル基、9-(4-ピリジル)ジベンゾフラン-1-イル基、1-(4-ピリジル)ジベンゾフラン-2-イル基、3-(4-ピリジル)ジベンゾフラン-2-イル基、4-(4-ピリジル)ジベンゾフラン-2-イル基、6-(4-ピリジル)ジベンゾフラン-2-イル基、7-(4-ピリジル)ジベンゾフラン-2-イル基、8-(4-ピリジル)ジベンゾフラン-2-イル基、9-(4-ピリジル)ジベンゾフラン-2-イル基、1-(4-ピリジル)ジベンゾフラン-3-イル基、2-(4-ピリジル)ジベンゾフラン-3-イル基、4-(4-ピリジル)ジベンゾフラン-3-イル基、6-(4-ピリジル)ジベンゾフラン-3-イル基、7-(4-ピリジル)ジベンゾフラン-3-イル基、8-(4-ピリジル)ジベンゾフラン-3-イル基、又は9-(4-ピリジル)ジベンゾフラン-3-イル基等が好ましい例として挙げられる。これらの置換基のうち、電子輸送性材料特性に優れる点で、水素原子、フェニル基、p-トリル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、3-(2-ピリジル)フェニル基、4-(2-ピリジル)フェニル基、3-(3-ピリジル)フェニル基、4-(3-ピリジル)フェニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-フェニルピリジン-6-イル基、2-フェニルピリジン-5-イル基、2-フェニルピリジン-4-イル基、3-フェニルピリジン-5-イル基、3-フェニルピリジン-6-イル基、2,6-ジフェニルピリジン-4-イル基、4,6-ジフェニルピリジン-2-イル基、2-ピリミジル基、2-ピラジル基、1-ナフチル基、2-ナフチル基、3-キノリル基、4-キノリル基、3-イソキノリル基、2-ベンゾチエニル基、2-ベンゾフリル基、2-フルオレニル基、9,9-ジメチルフルオレンー2-イル基、9,9-ジフェニルフルオレンー2-イル基、9-アントラニル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、9-フェナントリル基、2-ジベンゾチエニル基、2-ジベンゾフリル基、4-ジベンゾチエニル基、4-ジベンゾフリル基、3-フルオランテニル基、1-ピレニル基、又は2-トリフェニレニル基等が好ましい。また、Arは、これらの置換基のうち、フェニル基、p-トリル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、3-(2-ピリジル)フェニル基、4-(2-ピリジル)フェニル基、3-(3-ピリジル)フェニル基、4-(3-ピリジル)フェニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-フェニルピリジン-6-イル基、2-フェニルピリジン-5-イル基、2-フェニルピリジン-4-イル基、3-フェニルピリジン-5-イル基、3-フェニルピリジン-6-イル基、2,6-ジフェニルピリジン-4-イル基、4,6-ジフェニルピリジン-2-イル基、2-ピリミジル基、2-ピラジル基、1-ナフチル基、2-ナフチル基、3-キノリル基、4-キノリル基、3-イソキノリル基、2-ベンゾチエニル基、2-ベンゾフリル基、2-フルオレニル基、9,9-ジメチルフルオレンー2-イル基、9,9-ジフェニルフルオレンー2-イル基、9-アントラニル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、9-フェナントリル基、2-ジベンゾチエニル基、2-ジベンゾフリル基、4-ジベンゾチエニル基、4-ジベンゾフリル基、3-フルオランテニル基、1-ピレニル基、又は2-トリフェニレニル基等が好ましい。さらに、3-(2-ピリジル)フェニル基、4-(2-ピリジル)フェニル基、3-(3-ピリジル)フェニル基、4-(3-ピリジル)フェニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-フェニルピリジン-6-イル基、2-フェニルピリジン-5-イル基、2-フェニルピリジン-4-イル基、3-フェニルピリジン-5-イル基、3-フェニルピリジン-6-イル基、3-キノリル基、4-キノリル基、3-イソキノリル基、2-ベンゾチエニル基、2-ベンゾフリル基、2-フルオレニル基、9,9-ジメチルフルオレンー2-イル基、9,9-ジフェニルフルオレンー2-イル基、2-ジベンゾチエニル基、2-ジベンゾフリル基、4-ジベンゾチエニル基、4-ジベンゾフリル基等が特に好ましい。
Ar 2 Specific examples of these include, but are not limited to, hydrogen atom, phenyl group, p-tolyl group, m-tolyl group, o-tolyl group, 2,4-dimethylphenyl group, 3,5-dimethylphenyl group. Mesityl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2,4-diethylphenyl group, 3,5-diethylphenyl group, 2-propylphenyl group, 3-propylphenyl group, 4-propylphenyl group, 2,4-dipropylphenyl group, 3,5-dipropylphenyl group, 2-isopropylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2,4-diisopropylphenyl group, 3,5-diisopropylphenyl group, 2-butylphenyl group, 3-butylphenyl group, 4-butylphenyl group, 2,4-dibutyl Phenyl group, 3,5-dibutylphenyl group, 2-tert-butylphenyl group, 3-tert-butylphenyl group, 4-tert-butylphenyl group, 2,4-di-tert-butylphenyl group, 3,5 -Di-tert-butylphenyl group, biphenyl-2-yl group, biphenyl-3-yl group, biphenyl-4-yl group, 3-methylbiphenyl-4-yl group, 2'-methylbiphenyl-4-yl group 4'-methylbiphenyl-4-yl group, 2,2'-dimethylbiphenyl-4-yl group, 6-methylbiphenyl-3-yl group, 5-methylbiphenyl-3-yl group, 2'-methylbiphenyl -3-yl group, 4'-methylbiphenyl-3-yl group, 6,2'-dimethylbiphenyl-3-yl group, 5-methylbiphenyl-2-yl group, 6-methylbiphenyl- -Yl group, 2'-methylbiphenyl-2-yl group, 4'-methylbiphenyl-2-yl group, 6,2'-dimethylbiphenyl-2-yl group, 3-ethylbiphenyl-4-yl group, 6 -Ethylbiphenyl-3-yl group, 5-ethylbiphenyl-2-yl group, 3-propylbiphenyl-4-yl group, 6-propylbiphenyl-3-yl group, 5-propylbiphenyl-2-yl group, 3 -Isopropylbiphenyl-4-yl group, 6-isopropylbiphenyl-3-yl group, 5-isopropylbiphenyl-2-yl group, 3-butylbiphenyl-4-yl group, 6-butylbiphenyl-3-yl group, 5 -Butylbiphenyl-2-yl group, 3-tert-butylbiphenyl-4-yl group, 4'-tert-butylbiphenyl-4-yl group, 6-tert-butylbiph Nyl-3-yl group, 5-tert-butylbiphenyl-2-yl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-methylpyridin-3-yl group, 2-methylpyridine-4 -Yl group, 2-methylpyridin-5-yl group, 2-methylpyridin-6-yl group, 3-methylpyridin-2-yl group, 3-methylpyridin-4-yl group, 3-methylpyridin-5 -Yl group, 3-methylpyridin-6-yl group, 4-methylpyridin-2-yl group, 4-methylpyridin-3-yl group, 2,6-dimethylpyridin-3-yl group, 2,6- Dimethylpyridin-4-yl group, 3,6-dimethylpyridin-2-yl group, 3,6-dimethylpyridin-4-yl group, 3,6-dimethylpyridin-5-yl group, 2-phenylpyridin-6 -Yl group, 3-phenyl Pyridin-6-yl group, 4-phenylpyridin-6-yl group, 5-phenylpyridin-6-yl group, 2-phenylpyridin-3-yl group, 2-phenylpyridin-5-yl group, 3-phenyl Pyridin-5-yl group, 4-phenylpyridin-3-yl group, 3-phenylpyridin-4-yl group, 2-phenylpyridin-4-yl group, 2- (2-pyridyl) phenyl group, 3- ( 2-pyridyl) phenyl group,
4- (2-pyridyl) phenyl group, 2- (3-pyridyl) phenyl group, 3- (3-pyridyl) phenyl group, 4- (3-pyridyl) phenyl group, 2- (4-pyridyl) phenyl group, 3- (4-pyridyl) phenyl group, 4- (4-pyridyl) phenyl group, 2- (3-methyl-2-pyridyl) phenyl group, 3- (3-methyl-2-pyridyl) phenyl group, 4- (3-methyl-2-pyridyl) phenyl group, 2- (4-methyl-2-pyridyl) phenyl group, 3- (4-methyl-2-pyridyl) phenyl group, 4- (4-methyl-2-pyridyl) ) Phenyl group, 2- (5-methyl-2-pyridyl) phenyl group, 3- (5-methyl-2-pyridyl) phenyl group, 4- (5-methyl-2-pyridyl) phenyl group, 2- (6 -Methyl-2-pyridyl) phenyl group, 3 (6-methyl-2-pyridyl) phenyl group, 4- (6-methyl-2-pyridyl) phenyl group, 2- (2-methyl-3-pyridyl) phenyl group, 3- (2-methyl-3-pyridyl) ) Phenyl group, 4- (2-methyl-3-pyridyl) phenyl group, 2- (4-methyl-3-pyridyl) phenyl group, 3- (4-methyl-3-pyridyl) phenyl group, 4- (4 -Methyl-3-pyridyl) phenyl group, 2- (5-methyl-3-pyridyl) phenyl group, 3- (5-methyl-3-pyridyl) phenyl group, 4- (5-methyl-3-pyridyl) phenyl 2- (6-methyl-3-pyridyl) phenyl group, 3- (6-methyl-3-pyridyl) phenyl group, 4- (6-methyl-3-pyridyl) phenyl group, 2- (2-methyl) -4-pyridyl) phenyl group, 3- (2 Methyl-4-pyridyl) phenyl group, 4- (2-methyl-4-pyridyl) phenyl group, 2- (3-methyl-4-pyridyl) phenyl group, 3- (3-methyl-4-pyridyl) phenyl group 4- (3-methyl-4-pyridyl) phenyl group, 2,6-diphenylpyridin-3-yl group, 2,6-diphenylpyridin-4-yl group, 4,6-diphenylpyridin-2-yl group 3,6-diphenylpyridin-4-yl group, 3,6-diphenylpyridin-5-yl group, 1-naphthyl group, 2-naphthyl group, 1-phenylnaphthalen-2-yl group, 1-phenylnaphthalene- 3-yl group, 1-phenylnaphthalen-4-yl group, 1-phenylnaphthalen-5-yl group, 1-phenylnaphthalen-6-yl group, 1-phenylnaphthalen-7-yl group, 1-phenyl group Nylnaphthalen-8-yl group, 2-phenylnaphthalen-1-yl group, 2-phenylnaphthalen-3-yl group, 2-phenylnaphthalen-4-yl group, 2-phenylnaphthalen-5-yl group, 2- Phenylnaphthalen-6-yl group, 2-phenylnaphthalen-7-yl group, 2-phenylnaphthalen-8-yl group, 1-methylnaphthalen-4-yl group, 1-methylnaphthalen-5-yl group, 1- Methylnaphthalen-6-yl group, 1-methylnaphthalen-7-yl group, 1-methylnaphthalen-8-yl group, 2-methylnaphthalen-1-yl group, 2-methylnaphthalen-3-yl group, 2- Methylnaphthalen-4-yl group, 2-methylnaphthalen-5-yl group, 2-methylnaphthalen-6-yl group, 2-methylnaphthalen-7-yl group, 2-methylnaphthalen The array type 8-yl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group,
1-phenylphenanthren-2-yl group, 1-phenylphenanthren-3-yl group, 1-phenylphenanthren-4-yl group, 1-phenylphenanthren-5-yl group, 1-phenylphenanthren-6-yl group, 1-phenylphenanthren-7-yl group, 1-phenylphenanthren-8-yl group, 1-phenylphenanthrene-9-yl group, 1-phenylphenanthren-10-yl group, 2-phenylphenanthren-1-yl group, 2-phenylphenanthren-3-yl group, 2-phenylphenanthren-4-yl group, 2-phenylphenanthren-5-yl group, 2-phenylphenanthren-6-yl group, 2-phenylphenanthren-7-yl group, 2-phenylphenanthren-8-yl group, 2-phenylphenanthre -9-yl group, 2-phenylphenanthren-10-yl group, 3-phenylphenanthren-1-yl group, 3-phenylphenanthren-2-yl group, 3-phenylphenanthren-4-yl group, 3-phenylphenanthrene -5-yl group, 3-phenylphenanthren-6-yl group, 3-phenylphenanthrene-7-yl group, 3-phenylphenanthren-8-yl group, 3-phenylphenanthren-9-yl group, 3-phenylphenanthrene -10-yl group, 4-phenylphenanthren-1-yl group, 4-phenylphenanthren-2-yl group, 4-phenylphenanthren-3-yl group, 4-phenylphenanthren-5-yl group, 4-phenylphenanthrene -6-yl group, 4-phenylphenanthrene-7-yl group, 4-phenyl group Nylphenanthren-8-yl group, 4-phenylphenanthren-9-yl group, 4-phenylphenanthren-10-yl group, 1-methylphenanthren-2-yl group, 1-methylphenanthren-3-yl group, 1- Methylphenanthren-4-yl group, 1-methylphenanthren-5-yl group, 1-methylphenanthrene-6-yl group, 1-methylphenanthren-7-yl group, 1-methylphenanthren-8-yl group, 1- Methylphenanthren-9-yl group, 1-methylphenanthren-10-yl group, 2-methylphenanthren-1-yl group, 2-methylphenanthren-3-yl group, 2-methylphenanthren-4-yl group, 2- Methylphenanthren-5-yl group, 2-methylphenanthren-6-yl group, 2-methylphenane Tren-7-yl group, 2-methylphenanthren-8-yl group, 2-methylphenanthren-9-yl group, 2-methylphenanthren-10-yl group, 3-methylphenanthren-1-yl group, 3-methyl Phenanthren-2-yl group, 3-methylphenanthren-4-yl group, 3-methylphenanthren-5-yl group, 3-methylphenanthren-6-yl group, 3-methylphenanthren-7-yl group, 3-methyl Phenanthren-8-yl group, 3-methylphenanthren-9-yl group, 3-methylphenanthren-10-yl group, 4-methylphenanthren-1-yl group, 4-methylphenanthren-2-yl group, 4-methyl Phenanthren-3-yl group, 4-methylphenanthren-5-yl group, 4-methylphenanthren-6-yl 4-methylphenanthren-7-yl group, 4-methylphenanthrene-8-yl group, 4-methylphenanthrene-9-yl group, 4-methylphenanthren-10-yl group, 1-anthryl group, 2-anthryl group 9-anthryl group,
1-phenylanthracen-2-yl group, 1-phenylanthracen-3-yl group, 1-phenylanthracen-4-yl group, 1-phenylanthracen-5-yl group, 1-phenylanthracen-6-yl group, 1-phenylanthracen-7-yl group, 1-phenylanthracen-8-yl group, 1-phenylanthracen-9-yl group, 1-phenylanthracen-10-yl group, 2-phenylanthracen-1-yl group, 2-phenylanthracen-3-yl group, 2-phenylanthracen-4-yl group, 2-phenylanthracen-5-yl group, 2-phenylanthracen-6-yl group, 2-phenylanthracen-7-yl group, 2-Phenylanthracen-8-yl group, 2-Phenylanthracen-9-yl group, 2-Phenylantho Sen-10-yl group, 9-phenylanthracen-1-yl group, 9-phenylanthracen-2-yl group, 9-phenylanthracen-3-yl group, 9-phenylanthracen-4-yl group, 9-phenyl Anthracen-5-yl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 1-phenylpyren-2-yl group, 1-phenylpyren-3-yl group, 1-phenylpyren-4-yl Group, 1-phenylpyren-5-yl group, 1-phenylpyren-6-yl group, 1-phenylpyrene-7-yl group, 1-phenylpyren-8-yl group, 1-phenylpyren-9-yl Groups, 1-phenylpyren-10-yl group, 2-phenylpyren-1-yl group, 2-phenylpyren-3-yl group, 2-phenylpyren-4-yl group, 2-phenylpyrene- -Yl group, 2-phenylpyren-6-yl group, 2-phenylpyren-7-yl group, 2-phenylpyren-8-yl group, 2-phenylpyren-9-yl group, 2-phenylpyrene-10 -Yl group, 9-phenylpyren-1-yl group, 9-phenylpyren-2-yl group, 9-phenylpyren-3-yl group, 9-phenylpyren-4-yl group, 9-phenylpyrene-5 -Yl group, 9-phenylpyren-6-yl group, 9-phenylpyren-7-yl group, 9-phenylpyren-8-yl group, 9-phenylpyren-10-yl group, 1-methylpyrene-2- Yl group, 1-methylpyren-3-yl group, 1-methylpyren-4-yl group, 1-methylpyren-5-yl group, 1-methylpyren-6-yl group, 1-methylpyren-7-yl group, Methylpyrene-8-a Group, 1-methylpyren-9-yl group, 1-methylpyren-10-yl group, 2-methylpyren-1-yl group, 2-methylpyren-3-yl group, 2-methylpyren-4-yl group, 2- Methylpyren-5-yl group, 2-methylpyrene-6-yl group, 2-methylpyren-7-yl group, 2-methylpyren-8-yl group, 2-methylpyren-9-yl group, 2-methylpyren-10-yl Group, 9-methylpyren-1-yl group, 9-methylpyren-2-yl group, 9-methylpyren-3-yl group, 9-methylpyren-4-yl group, 9-methylpyren-5-yl group, 9-methylpyrene -6-yl group, 9-methylpyren-7-yl group, 9-methylpyren-8-yl group, 9-methylpyren-10-yl group, fluoranthen-1-yl group, fluoranthen-1-yl group Fluoranthen-2-yl group, fluoranthen-3-yl group, fluoranthen-4-yl group, fluoranthen-5-yl group, fluoranthen-6-yl group, fluoranthen-7-yl group, fluoranthen-8-yl group, fluoranthene -9-yl group, fluoranthen-10-yl group, triphenylene-1-yl group, triphenylene-2-yl group, acenaphthylene-1-yl group, acenaphthylene-3-yl group, acenaphthylene-4-yl group, acenaphthylene- 5-yl group, chrysen-1-yl group, chrysen-2-yl group, chrysen-5-yl group, chrysen-6-yl group,
2-quinolyl group, 3-quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 5-isoquinolyl group, 6-isoquinolyl group, 7-isoquinolyl group, 8-isoquinolyl group, quinoxalin-2-yl group, quinoxalin-5-yl group, quinoxalin-6-yl group, quinazolin-2-yl group, quinazoline- 4-yl group, quinazolin-5-yl group, quinazolin-6-yl group, quinazolin-7-yl group, quinazolin-8-yl group, pyrazin-2-yl group, 5-methylpyrazin-2-yl group, 5,6-diphenylpyrazin-2-yl group, pyrimidin-2-yl group, pyrimidin-4-yl group, pyrimidin-5-yl group, 2,4-diphenylpyrimidi -6-yl group, 4,6-diphenylpyrimidin-2-yl group, acridine-1-yl group, acridine-1-yl group, acridine-2-yl group, acridine-3-yl group, acridine-4-yl Yl group, acridine-9-yl group, phenanthridin-1-yl group, phenanthridin-1-yl group, phenanthridin-2-yl group, phenanthridin-3-yl group, phenanthridine- 4-yl group, phenanthridin-6-yl group, phenanthridin-7-yl group, phenanthridin-8-yl group, phenanthridin-9-yl group, phenanthridin-10-yl group, Phenazin-1-yl group, phenazin-2-yl group, benzo [h] quinolin-2-yl group, benzo [h] quinolin-3-yl group, benzo [h] quinolin-4-yl group, benzo [h ] Norin-5-yl group, benzo [h] quinolin-6-yl group, benzo [h] quinolin-7-yl group, benzo [h] quinolin-8-yl group, benzo [h] quinolin-9-yl group Benzo [h] quinolin-10-yl group, 2-thienyl group, 3-thienyl group, 2-furyl group, 3-furyl group, benzothiophen-2-yl group, benzothiophen-3-yl group, benzothiophene -4-yl group, benzothiophen-5-yl group, benzothiophen-6-yl group, benzothiophen-7-yl group, benzofuran-2-yl group, benzofuran-3-yl group, benzofuran-4-yl group Benzofuran-5-yl group, benzofuran-6-yl group, benzofuran-7-yl group, dibenzothiophen-1-yl group, dibenzothiophen-2-yl group, dibenzothiol Nen-3-yl group, dibenzofuran-1-yl group, dibenzofuran-2-yl group, dibenzofuran-3-yl group, 3-methylthiophen-2-yl group, 4-methylthiophen-2-yl group, 5 -Methylthiophen-2-yl group, 2-methylthiophen-3-yl group, 4-methylthiophen-3-yl group, 5-methylthiophen-3-yl group, 3-methylfuran-2-yl group, 4 -Methylfuran-2-yl group, 5-methylfuran-2-yl group, 2-methylfuran-3-yl group, 4-methylfuran-3-yl group, 5-methylfuran-3-yl group,
3-methylbenzothiophen-2-yl group, 4-methylbenzothiophen-2-yl group, 5-methylbenzothiophen-2-yl group, 6-methylbenzothiophen-2-yl group, 7-methylbenzothiophene- 2-yl group, 2-methylbenzothiophen-3-yl group, 4-methylbenzothiophen-3-yl group, 5-methylbenzothiophen-3-yl group, 6-methylbenzothiophen-3-yl group, 7 -Methylbenzothiophen-3-yl group, 2-methylbenzothiophen-4-yl group, 3-methylbenzothiophen-4-yl group, 5-methylbenzothiophen-4-yl group, 6-methylbenzothiophene-4 -Yl group, 7-methylbenzothiophen-4-yl group, 2-methylbenzothiophen-5-yl group, 3-methylbenzothiophene 5-yl group, 4-methylbenzothiophen-5-yl group, 6-methylbenzothiophen-5-yl group, 7-methylbenzothiophen-5-yl group, 2-methylbenzothiophen-6-yl group, 3 -Methylbenzothiophen-6-yl group, 4-methylbenzothiophen-6-yl group, 5-methylbenzothiophen-6-yl group, 7-methylbenzothiophen-6-yl group, 2-methylbenzothiophene-7 -Yl group, 3-methylbenzothiophen-7-yl group, 4-methylbenzothiophen-7-yl group, 5-methylbenzothiophen-7-yl group, 6-methylbenzothiophen-7-yl group, 3- Methylbenzofuran-2-yl group, 4-methylbenzofuran-2-yl group, 5-methylbenzofuran-2-yl group, 6-methylbenzofuran- -Yl group, 7-methylbenzofuran-2-yl group, 2-methylbenzofuran-3-yl group, 4-methylbenzofuran-3-yl group, 5-methylbenzofuran-3-yl group, 6-methylbenzofuran-3 -Yl group, 7-methylbenzofuran-3-yl group, 2-methylbenzofuran-4-yl group, 3-methylbenzofuran-4-yl group, 5-methylbenzofuran-4-yl group, 6-methylbenzofuran-4 -Yl group, 7-methylbenzofuran-4-yl group, 2-methylbenzofuran-5-yl group, 3-methylbenzofuran-5-yl group, 4-methylbenzofuran-5-yl group, 6-methylbenzofuran-5 -Yl group, 7-methylbenzofuran-5-yl group, 2-methylbenzofuran-6-yl group, 3-methylbenzofuran-6-yl group, 4-methyl Rubenzofuran-6-yl group, 5-methylbenzofuran-6-yl group, 7-methylbenzofuran-6-yl group, 2-methylbenzofuran-7-yl group, 3-methylbenzofuran-7-yl group, 4- Methylbenzofuran-7-yl group, 5-methylbenzofuran-7-yl group, 6-methylbenzofuran-7-yl group, 2-methyldibenzothiophen-1-yl group, 3-methyldibenzothiophen-1-yl group, 4-methyldibenzothiophen-1-yl group, 6-methyldibenzothiophen-1-yl group, 7-methyldibenzothiophen-1-yl group, 8-methyldibenzothiophen-1-yl group, 9-methyldibenzothiophene- 1-yl group, 1-methyldibenzothiophen-2-yl group, 3-methyldibenzothiophen-2-yl group, 4-methyl Dibenzothiophen-2-yl group, 6-methyldibenzothiophen-2-yl group, 7-methyldibenzothiophen-2-yl group, 8-methyldibenzothiophen-2-yl group, 9-methyldibenzothiophen-2-yl group Groups, 1-methyldibenzothiophen-3-yl group, 2-methyldibenzothiophen-3-yl group, 4-methyldibenzothiophen-3-yl group, 6-methyldibenzothiophen-3-yl group, 7-methyldibenzo A thiophen-3-yl group, an 8-methyldibenzothiophen-3-yl group,
9-methyldibenzothiophen-3-yl group, 2-methyldibenzofuran-1-yl group, 3-methyldibenzofuran-1-yl group, 4-methyldibenzofuran-1-yl group, 6-methyldibenzofuran-1-yl group 7-methyldibenzofuran-1-yl group, 8-methyldibenzofuran-1-yl group, 9-methyldibenzofuran-1-yl group, 1-methyldibenzofuran-2-yl group, 3-methyldibenzofuran-2-yl group 4-methyldibenzofuran-2-yl group, 6-methyldibenzofuran-2-yl group, 7-methyldibenzofuran-2-yl group, 8-methyldibenzofuran-2-yl group, 9-methyldibenzofuran-2-yl group 1-methyldibenzofuran-3-yl group, 2-methyldibenzofuran-3-yl group, 4-methyldiben Furan-3-yl group, 6-methyldibenzofuran-3-yl group, 7-methyldibenzofuran-3-yl group, 8-methyldibenzofuran-3-yl group, 9-methyldibenzofuran-3-yl group, 3-phenyl Thiophen-2-yl group, 4-phenylthiophen-2-yl group, 5-phenylthiophen-2-yl group, 2-phenylthiophen-3-yl group, 4-phenylthiophen-3-yl group, 5-phenyl Thiophen-3-yl group, 3-phenylfuran-2-yl group, 4-phenylfuran-2-yl group, 5-phenylfuran-2-yl group, 2-phenylfuran-3-yl group, 4-phenyl Furan-3-yl group, 5-phenylfuran-3-yl group, 3-phenylbenzothiophen-2-yl group, 4-phenylbenzothiophen-2-yl group, -Phenylbenzothiophen-2-yl group, 6-phenylbenzothiophen-2-yl group, 7-phenylbenzothiophen-2-yl group, 2-phenylbenzothiophen-3-yl group, 4-phenylbenzothiophene-3 -Yl group, 5-phenylbenzothiophen-3-yl group, 6-phenylbenzothiophen-3-yl group, 7-phenylbenzothiophen-3-yl group, 2-phenylbenzothiophen-4-yl group, 3- Phenylbenzothiophen-4-yl group, 5-phenylbenzothiophen-4-yl group, 6-phenylbenzothiophen-4-yl group, 7-phenylbenzothiophen-4-yl group, 2-phenylbenzothiophen-5- Yl group, 3-phenylbenzothiophen-5-yl group, 4-phenylbenzothiophen-5-yl Group, 6-phenylbenzothiophen-5-yl group, 7-phenylbenzothiophen-5-yl group, 2-phenylbenzothiophen-6-yl group, 3-phenylbenzothiophen-6-yl group, 4-phenylbenzo Thiophen-6-yl group, 5-phenylbenzothiophen-6-yl group, 7-phenylbenzothiophen-6-yl group, 2-phenylbenzothiophen-7-yl group, 3-phenylbenzothiophen-7-yl group 4-phenylbenzothiophen-7-yl group, 5-phenylbenzothiophen-7-yl group, 6-phenylbenzothiophen-7-yl group, 3-phenylbenzofuran-2-yl group, 4-phenylbenzofuran-2 -Yl group, 5-phenylbenzofuran-2-yl group, 6-phenylbenzofuran-2-yl group, 7-fur Nylbenzofuran-2-yl group, 2-phenylbenzofuran-3-yl group, 4-phenylbenzofuran-3-yl group, 5-phenylbenzofuran-3-yl group, 6-phenylbenzofuran-3-yl group, 7- Phenylbenzofuran-3-yl group, 2-phenylbenzofuran-4-yl group, 3-phenylbenzofuran-4-yl group,
5-phenylbenzofuran-4-yl group, 6-phenylbenzofuran-4-yl group, 7-phenylbenzofuran-4-yl group, 2-phenylbenzofuran-5-yl group, 3-phenylbenzofuran-5-yl group, 4-phenylbenzofuran-5-yl group, 6-phenylbenzofuran-5-yl group, 7-phenylbenzofuran-5-yl group, 2-phenylbenzofuran-6-yl group, 3-phenylbenzofuran-6-yl group, 4-phenylbenzofuran-6-yl group, 5-phenylbenzofuran-6-yl group, 7-phenylbenzofuran-6-yl group, 2-phenylbenzofuran-7-yl group, 3-phenylbenzofuran-7-yl group, 4-phenylbenzofuran-7-yl group, 5-phenylbenzofuran-7-yl group, 6-phenylbenzoph -7-yl group, 2-phenyldibenzothiophen-1-yl group, 3-phenyldibenzothiophen-1-yl group, 4-phenyldibenzothiophen-1-yl group, 6-phenyldibenzothiophen-1-yl group 7-phenyldibenzothiophen-1-yl group, 8-phenyldibenzothiophen-1-yl group, 9-phenyldibenzothiophen-1-yl group, 1-phenyldibenzothiophen-2-yl group, 3-phenyldibenzothiophene -2-yl group, 4-phenyldibenzothiophen-2-yl group, 6-phenyldibenzothiophen-2-yl group, 7-phenyldibenzothiophen-2-yl group, 8-phenyldibenzothiophen-2-yl group, 9-phenyldibenzothiophen-2-yl group, 1-phenyldibenzothiophene- -Yl group, 2-phenyldibenzothiophen-3-yl group, 4-phenyldibenzothiophen-3-yl group, 6-phenyldibenzothiophen-3-yl group, 7-phenyldibenzothiophen-3-yl group, 8- Phenyldibenzothiophen-3-yl group, 9-phenyldibenzothiophen-3-yl group, 2-phenyldibenzofuran-1-yl group, 3-phenyldibenzofuran-1-yl group, 4-phenyldibenzofuran-1-yl group, 6-phenyldibenzofuran-1-yl group, 7-phenyldibenzofuran-1-yl group, 8-phenyldibenzofuran-1-yl group, 9-phenyldibenzofuran-1-yl group, 1-phenyldibenzofuran-2-yl group, 3-phenyldibenzofuran-2-yl group, 4-phenyldibenzofuran-2-yl group Yl group, 6-phenyldibenzofuran-2-yl group, 7-phenyldibenzofuran-2-yl group, 8-phenyldibenzofuran-2-yl group, 9-phenyldibenzofuran-2-yl group, 1-phenyldibenzofuran-3-yl Yl group, 2-phenyldibenzofuran-3-yl group, 4-phenyldibenzofuran-3-yl group, 6-phenyldibenzofuran-3-yl group, 7-phenyldibenzofuran-3-yl group, 8-phenyldibenzofuran-3-yl Yl group, 9-phenyldibenzofuran-3-yl group,
3- (2-pyridyl) thiophen-2-yl group, 4- (2-pyridyl) thiophen-2-yl group, 5- (2-pyridyl) thiophen-2-yl group, 2- (2-pyridyl) thiophene -3-yl group, 4- (2-pyridyl) thiophen-3-yl group, 5- (2-pyridyl) thiophen-3-yl group, 3- (2-pyridyl) furan-2-yl group, 4- (2-pyridyl) furan-2-yl group, 5- (2-pyridyl) furan-2-yl group, 2- (2-pyridyl) furan-3-yl group, 4- (2-pyridyl) furan-3 -Yl group, 5- (2-pyridyl) furan-3-yl group, 3- (2-pyridyl) benzothiophen-2-yl group, 4- (2-pyridyl) benzothiophen-2-yl group, 5- (2-pyridyl) benzothiophen-2-yl group, 6- (2-pi Yl) benzothiophen-2-yl group, 7- (2-pyridyl) benzothiophen-2-yl group, 2- (2-pyridyl) benzothiophen-3-yl group, 4- (2-pyridyl) benzothiophene- 3-yl group, 5- (2-pyridyl) benzothiophen-3-yl group, 6- (2-pyridyl) benzothiophen-3-yl group, 7- (2-pyridyl) benzothiophen-3-yl group, 2- (2-pyridyl) benzothiophen-4-yl group, 3- (2-pyridyl) benzothiophen-4-yl group, 5- (2-pyridyl) benzothiophen-4-yl group, 6- (2- Pyridyl) benzothiophen-4-yl group, 7- (2-pyridyl) benzothiophen-4-yl group, 2- (2-pyridyl) benzothiophen-5-yl group, 3- (2-pyridyl) benzothi Phen-5-yl group, 4- (2-pyridyl) benzothiophen-5-yl group, 6- (2-pyridyl) benzothiophen-5-yl group, 7- (2-pyridyl) benzothiophen-5-yl 2- (2-pyridyl) benzothiophen-6-yl group, 3- (2-pyridyl) benzothiophen-6-yl group, 4- (2-pyridyl) benzothiophen-6-yl group, 5- ( 2-pyridyl) benzothiophen-6-yl group, 7- (2-pyridyl) benzothiophen-6-yl group, 2- (2-pyridyl) benzothiophen-7-yl group, 3- (2-pyridyl) benzo Thiophen-7-yl group, 4- (2-pyridyl) benzothiophen-7-yl group, 5- (2-pyridyl) benzothiophen-7-yl group, 6- (2-pyridyl) benzothiophen-7-yl Group, 3- (2-pyridyl) benzofuran-2-yl group, 4- (2-pyridyl) benzofuran-2-yl group, 5- (2-pyridyl) benzofuran-2-yl group, 6- (2-pyridyl) ) Benzofuran-2-yl group, 7- (2-pyridyl) benzofuran-2-yl group, 2- (2-pyridyl) benzofuran-3-yl group, 4- (2-pyridyl) benzofuran-3-yl group, 5- (2-pyridyl) benzofuran-3-yl group, 6- (2-pyridyl) benzofuran-3-yl group, 7- (2-pyridyl) benzofuran-3-yl group, 2- (2-pyridyl) benzofuran -4-yl group, 3- (2-pyridyl) benzofuran-4-yl group, 5- (2-pyridyl) benzofuran-4-yl group, 6- (2-pyridyl) benzofuran-4-yl group, 7- (2-pyridyl Benzofuran-4-yl group, 2- (2-pyridyl) benzofuran-5-yl group, 3- (2-pyridyl) benzofuran-5-yl group, 4- (2-pyridyl) benzofuran-5-yl group, 6 -(2-pyridyl) benzofuran-5-yl group, 7- (2-pyridyl) benzofuran-5-yl group, 2- (2-pyridyl) benzofuran-6-yl group, 3- (2-pyridyl) benzofuran- 6-yl group, 4- (2-pyridyl) benzofuran-6-yl group, 5- (2-pyridyl) benzofuran-6-yl group, 7- (2-pyridyl) benzofuran-6-yl group, 2- ( 2-pyridyl) benzofuran-7-yl group,
3- (2-pyridyl) benzofuran-7-yl group, 4- (2-pyridyl) benzofuran-7-yl group, 5- (2-pyridyl) benzofuran-7-yl group, 6- (2-pyridyl) benzofuran -7-yl group, 2- (2-pyridyl) dibenzothiophen-1-yl group, 3- (2-pyridyl) dibenzothiophen-1-yl group, 4- (2-pyridyl) dibenzothiophen-1-yl group 6- (2-pyridyl) dibenzothiophen-1-yl group, 7- (2-pyridyl) dibenzothiophen-1-yl group, 8- (2-pyridyl) dibenzothiophen-1-yl group, 9- (2 -Pyridyl) dibenzothiophen-1-yl group, 1- (2-pyridyl) dibenzothiophen-2-yl group, 3- (2-pyridyl) dibenzothiophen-2-yl group, 4- (2-pyridyl) L) Dibenzothiophen-2-yl group, 6- (2-pyridyl) dibenzothiophen-2-yl group, 7- (2-pyridyl) dibenzothiophen-2-yl group, 8- (2-pyridyl) dibenzothiophene- 2-yl group, 9- (2-pyridyl) dibenzothiophen-2-yl group, 1- (2-pyridyl) dibenzothiophen-3-yl group, 2- (2-pyridyl) dibenzothiophen-3-yl group, 4- (2-pyridyl) dibenzothiophen-3-yl group, 6- (2-pyridyl) dibenzothiophen-3-yl group, 7- (2-pyridyl) dibenzothiophen-3-yl group, 8- (2- Pyridyl) dibenzothiophen-3-yl group, 9- (2-pyridyl) dibenzothiophen-3-yl group, 2- (2-pyridyl) dibenzofuran-1-yl group, 3- (2 Pyridyl) dibenzofuran-1-yl group, 4- (2-pyridyl) dibenzofuran-1-yl group, 6- (2-pyridyl) dibenzofuran-1-yl group, 7- (2-pyridyl) dibenzofuran-1-yl group 8- (2-pyridyl) dibenzofuran-1-yl group, 9- (2-pyridyl) dibenzofuran-1-yl group, 1- (2-pyridyl) dibenzofuran-2-yl group, 3- (2-pyridyl) Dibenzofuran-2-yl group, 4- (2-pyridyl) dibenzofuran-2-yl group, 6- (2-pyridyl) dibenzofuran-2-yl group, 7- (2-pyridyl) dibenzofuran-2-yl group, 8 -(2-pyridyl) dibenzofuran-2-yl group, 9- (2-pyridyl) dibenzofuran-2-yl group, 1- (2-pyridyl) dibenzofuran-3-yl group, 2- (2-pyridyl) dibenzofuran-3-yl group, 4- (2-pyridyl) dibenzofuran-3-yl group, 6- (2-pyridyl) dibenzofuran-3-yl group, 7- (2-pyridyl) dibenzofuran-3 -Yl group, 8- (2-pyridyl) dibenzofuran-3-yl group, 9- (2-pyridyl) dibenzofuran-3-yl group, 3- (3-pyridyl) thiophen-2-yl group, 4- (3 -Pyridyl) thiophen-2-yl group, 5- (3-pyridyl) thiophen-2-yl group, 2- (3-pyridyl) thiophen-3-yl group, 4- (3-pyridyl) thiophen-3-yl Group, 5- (3-pyridyl) thiophen-3-yl group, 3- (3-pyridyl) furan-2-yl group, 4- (3-pyridyl) furan-2-yl group, 5- (3-pyridyl) ) Furan-2-yl group 2- (3-pyridyl) furan-3-yl group, 4- (3-pyridyl) furan-3-yl group, 5- (3-pyridyl) furan-3-yl group,
3- (3-pyridyl) benzothiophen-2-yl group, 4- (3-pyridyl) benzothiophen-2-yl group, 5- (3-pyridyl) benzothiophen-2-yl group, 6- (3- Pyridyl) benzothiophen-2-yl group, 7- (3-pyridyl) benzothiophen-2-yl group, 2- (3-pyridyl) benzothiophen-3-yl group, 4- (3-pyridyl) benzothiophene- 3-yl group, 5- (3-pyridyl) benzothiophen-3-yl group, 6- (3-pyridyl) benzothiophen-3-yl group, 7- (3-pyridyl) benzothiophen-3-yl group, 2- (3-pyridyl) benzothiophen-4-yl group, 3- (3-pyridyl) benzothiophen-4-yl group, 5- (3-pyridyl) benzothiophen-4-yl group, 6- (3- Pilisi ) Benzothiophen-4-yl group, 7- (3-pyridyl) benzothiophen-4-yl group, 2- (3-pyridyl) benzothiophen-5-yl group, 3- (3-pyridyl) benzothiophene-5 -Yl group, 4- (3-pyridyl) benzothiophen-5-yl group, 6- (3-pyridyl) benzothiophen-5-yl group, 7- (3-pyridyl) benzothiophen-5-yl group, 2 -(3-pyridyl) benzothiophen-6-yl group, 3- (3-pyridyl) benzothiophen-6-yl group, 4- (3-pyridyl) benzothiophen-6-yl group, 5- (3-pyridyl) ) Benzothiophen-6-yl group, 7- (3-pyridyl) benzothiophen-6-yl group, 2- (3-pyridyl) benzothiophen-7-yl group, 3- (3-pyridyl) benzothiol N-7-yl group, 4- (3-pyridyl) benzothiophen-7-yl group, 5- (3-pyridyl) benzothiophen-7-yl group, 6- (3-pyridyl) benzothiophen-7-yl Group, 3- (3-pyridyl) benzofuran-2-yl group, 4- (3-pyridyl) benzofuran-2-yl group, 5- (3-pyridyl) benzofuran-2-yl group, 6- (3-pyridyl) ) Benzofuran-2-yl group, 7- (3-pyridyl) benzofuran-2-yl group, 2- (3-pyridyl) benzofuran-3-yl group, 4- (3-pyridyl) benzofuran-3-yl group, 5- (3-pyridyl) benzofuran-3-yl group, 6- (3-pyridyl) benzofuran-3-yl group, 7- (3-pyridyl) benzofuran-3-yl group, 2- (3-pyridyl) benzofuran -4-I Group, 3- (3-pyridyl) benzofuran-4-yl group, 5- (3-pyridyl) benzofuran-4-yl group, 6- (3-pyridyl) benzofuran-4-yl group, 7- (3- Pyridyl) benzofuran-4-yl group, 2- (3-pyridyl) benzofuran-5-yl group, 3- (3-pyridyl) benzofuran-5-yl group, 4- (3-pyridyl) benzofuran-5-yl group 6- (3-pyridyl) benzofuran-5-yl group, 7- (3-pyridyl) benzofuran-5-yl group, 2- (3-pyridyl) benzofuran-6-yl group, 3- (3-pyridyl) Benzofuran-6-yl group, 4- (3-pyridyl) benzofuran-6-yl group, 5- (3-pyridyl) benzofuran-6-yl group, 7- (3-pyridyl) benzofuran-6-yl group, 2 -(3-Pyridi ) Benzofuran-7-yl group, 3- (3-pyridyl) benzofuran-7-yl group, 4- (3-pyridyl) benzofuran-7-yl group, 5- (3-pyridyl) benzofuran-7-yl group, 6- (3-pyridyl) benzofuran-7-yl group,
2- (3-pyridyl) dibenzothiophen-1-yl group, 3- (3-pyridyl) dibenzothiophen-1-yl group, 4- (3-pyridyl) dibenzothiophen-1-yl group, 6- (3- Pyridyl) dibenzothiophen-1-yl group, 7- (3-pyridyl) dibenzothiophen-1-yl group, 8- (3-pyridyl) dibenzothiophen-1-yl group, 9- (3-pyridyl) dibenzothiophene- 1-yl group, 1- (3-pyridyl) dibenzothiophen-2-yl group, 3- (3-pyridyl) dibenzothiophen-2-yl group, 4- (3-pyridyl) dibenzothiophen-2-yl group, 6- (3-pyridyl) dibenzothiophen-2-yl group, 7- (3-pyridyl) dibenzothiophen-2-yl group, 8- (3-pyridyl) dibenzothiophene-2 Yl group, 9- (3-pyridyl) dibenzothiophen-2-yl group, 1- (3-pyridyl) dibenzothiophen-3-yl group, 2- (3-pyridyl) dibenzothiophen-3-yl group, 4- (3-pyridyl) dibenzothiophen-3-yl group, 6- (3-pyridyl) dibenzothiophen-3-yl group, 7- (3-pyridyl) dibenzothiophen-3-yl group, 8- (3-pyridyl) Dibenzothiophen-3-yl group, 9- (3-pyridyl) dibenzothiophen-3-yl group, 2- (3-pyridyl) dibenzofuran-1-yl group, 3- (3-pyridyl) dibenzofuran-1-yl group 4- (3-pyridyl) dibenzofuran-1-yl group, 6- (3-pyridyl) dibenzofuran-1-yl group, 7- (3-pyridyl) dibenzofuran-1-yl group, -(3-pyridyl) dibenzofuran-1-yl group, 9- (3-pyridyl) dibenzofuran-1-yl group, 1- (3-pyridyl) dibenzofuran-2-yl group, 3- (3-pyridyl) dibenzofuran- 2-yl group, 4- (3-pyridyl) dibenzofuran-2-yl group, 6- (3-pyridyl) dibenzofuran-2-yl group, 7- (3-pyridyl) dibenzofuran-2-yl group, 8- ( 3-pyridyl) dibenzofuran-2-yl group, 9- (3-pyridyl) dibenzofuran-2-yl group, 1- (3-pyridyl) dibenzofuran-3-yl group, 2- (3-pyridyl) dibenzofuran-3- Yl group, 4- (3-pyridyl) dibenzofuran-3-yl group, 6- (3-pyridyl) dibenzofuran-3-yl group, 7- (3-pyridyl) dibenzofuran-3-yl Group, 8- (3-pyridyl) dibenzofuran-3-yl group, 9- (3-pyridyl) dibenzofuran-3-yl group, 3- (4-pyridyl) thiophen-2-yl group, 4- (4-pyridyl) ) Thiophen-2-yl group, 5- (4-pyridyl) thiophen-2-yl group, 2- (4-pyridyl) thiophen-3-yl group, 4- (4-pyridyl) thiophen-3-yl group, 5- (4-pyridyl) thiophen-3-yl group, 3- (4-pyridyl) furan-2-yl group, 4- (4-pyridyl) furan-2-yl group, 5- (4-pyridyl) furan -2-yl group, 2- (4-pyridyl) furan-3-yl group, 4- (4-pyridyl) furan-3-yl group, 5- (4-pyridyl) furan-3-yl group, 3- (4-pyridyl) benzothiophen-2-yl group, 4- (4-pi Yl) benzothiophen-2-yl group, 5- (4-pyridyl) benzothiophen-2-yl group, 6- (4-pyridyl) benzothiophen-2-yl group, 7- (4-pyridyl) benzothiophene- 2-yl group, 2- (4-pyridyl) benzothiophen-3-yl group, 4- (4-pyridyl) benzothiophen-3-yl group,
5- (4-pyridyl) benzothiophen-3-yl group, 6- (4-pyridyl) benzothiophen-3-yl group, 7- (4-pyridyl) benzothiophen-3-yl group, 2- (4- Pyridyl) benzothiophen-4-yl group, 3- (4-pyridyl) benzothiophen-4-yl group, 5- (4-pyridyl) benzothiophen-4-yl group, 6- (4-pyridyl) benzothiophene- 4-yl group, 7- (4-pyridyl) benzothiophen-4-yl group, 2- (4-pyridyl) benzothiophen-5-yl group, 3- (4-pyridyl) benzothiophen-5-yl group, 4- (4-pyridyl) benzothiophen-5-yl group, 6- (4-pyridyl) benzothiophen-5-yl group, 7- (4-pyridyl) benzothiophen-5-yl group, 2- (4- Pilisi ) Benzothiophen-6-yl group, 3- (4-pyridyl) benzothiophen-6-yl group, 4- (4-pyridyl) benzothiophen-6-yl group, 5- (4-pyridyl) benzothiophene-6 -Yl group, 7- (4-pyridyl) benzothiophen-6-yl group, 2- (4-pyridyl) benzothiophen-7-yl group, 3- (4-pyridyl) benzothiophen-7-yl group, 4 -(4-pyridyl) benzothiophen-7-yl group, 5- (4-pyridyl) benzothiophen-7-yl group, 6- (4-pyridyl) benzothiophen-7-yl group, 3- (4-pyridyl) ) Benzofuran-2-yl group, 4- (4-pyridyl) benzofuran-2-yl group, 5- (4-pyridyl) benzofuran-2-yl group, 6- (4-pyridyl) benzofuran-2-yl group 7- (4-pyridyl) benzofuran-2-yl group, 2- (4-pyridyl) benzofuran-3-yl group, 4- (4-pyridyl) benzofuran-3-yl group, 5- (4-pyridyl) benzofuran -3-yl group, 6- (4-pyridyl) benzofuran-3-yl group, 7- (4-pyridyl) benzofuran-3-yl group, 2- (4-pyridyl) benzofuran-4-yl group, 3- (4-pyridyl) benzofuran-4-yl group, 5- (4-pyridyl) benzofuran-4-yl group, 6- (4-pyridyl) benzofuran-4-yl group, 7- (4-pyridyl) benzofuran-4 -Yl group, 2- (4-pyridyl) benzofuran-5-yl group, 3- (4-pyridyl) benzofuran-5-yl group, 4- (4-pyridyl) benzofuran-5-yl group, 6- (4 -Pyridyl) Nzofuran-5-yl group, 7- (4-pyridyl) benzofuran-5-yl group, 2- (4-pyridyl) benzofuran-6-yl group, 3- (4-pyridyl) benzofuran-6-yl group, 4 -(4-pyridyl) benzofuran-6-yl group, 5- (4-pyridyl) benzofuran-6-yl group, 7- (4-pyridyl) benzofuran-6-yl group, 2- (4-pyridyl) benzofuran- 7-yl group, 3- (4-pyridyl) benzofuran-7-yl group, 4- (4-pyridyl) benzofuran-7-yl group, 5- (4-pyridyl) benzofuran-7-yl group, 6- ( 4-pyridyl) benzofuran-7-yl group, 2- (4-pyridyl) dibenzothiophen-1-yl group, 3- (4-pyridyl) dibenzothiophen-1-yl group, 4- (4-pyridyl) dibenzothio E emission-1-yl group, 6- (4-pyridyl) dibenzothiophene-1-yl group, 7- (4-pyridyl) dibenzothiophene-1-yl group,
8- (4-pyridyl) dibenzothiophen-1-yl group, 9- (4-pyridyl) dibenzothiophen-1-yl group, 1- (4-pyridyl) dibenzothiophen-2-yl group, 3- (4- Pyridyl) dibenzothiophen-2-yl group, 4- (4-pyridyl) dibenzothiophen-2-yl group, 6- (4-pyridyl) dibenzothiophen-2-yl group, 7- (4-pyridyl) dibenzothiophene- 2-yl group, 8- (4-pyridyl) dibenzothiophen-2-yl group, 9- (4-pyridyl) dibenzothiophen-2-yl group, 1- (4-pyridyl) dibenzothiophen-3-yl group, 2- (4-pyridyl) dibenzothiophen-3-yl group, 4- (4-pyridyl) dibenzothiophen-3-yl group, 6- (4-pyridyl) dibenzothiophene-3 Yl group, 7- (4-pyridyl) dibenzothiophen-3-yl group, 8- (4-pyridyl) dibenzothiophen-3-yl group, 9- (4-pyridyl) dibenzothiophen-3-yl group, 2- (4-pyridyl) dibenzofuran-1-yl group, 3- (4-pyridyl) dibenzofuran-1-yl group, 4- (4-pyridyl) dibenzofuran-1-yl group, 6- (4-pyridyl) dibenzofuran-1 -Yl group, 7- (4-pyridyl) dibenzofuran-1-yl group, 8- (4-pyridyl) dibenzofuran-1-yl group, 9- (4-pyridyl) dibenzofuran-1-yl group, 1- (4 -Pyridyl) dibenzofuran-2-yl group, 3- (4-pyridyl) dibenzofuran-2-yl group, 4- (4-pyridyl) dibenzofuran-2-yl group, 6- (4-pyridyl) Benzofuran-2-yl group, 7- (4-pyridyl) dibenzofuran-2-yl group, 8- (4-pyridyl) dibenzofuran-2-yl group, 9- (4-pyridyl) dibenzofuran-2-yl group, 1 -(4-pyridyl) dibenzofuran-3-yl group, 2- (4-pyridyl) dibenzofuran-3-yl group, 4- (4-pyridyl) dibenzofuran-3-yl group, 6- (4-pyridyl) dibenzofuran- A 3-yl group, a 7- (4-pyridyl) dibenzofuran-3-yl group, an 8- (4-pyridyl) dibenzofuran-3-yl group, or a 9- (4-pyridyl) dibenzofuran-3-yl group is preferable. Take as an example. Of these substituents, a hydrogen atom, phenyl group, p-tolyl group, biphenyl-2-yl group, biphenyl-3-yl group, biphenyl-4-yl group, 3 -(2-pyridyl) phenyl group, 4- (2-pyridyl) phenyl group, 3- (3-pyridyl) phenyl group, 4- (3-pyridyl) phenyl group, 2-pyridyl group, 3-pyridyl group, 4 -Pyridyl group, 2-phenylpyridin-6-yl group, 2-phenylpyridin-5-yl group, 2-phenylpyridin-4-yl group, 3-phenylpyridin-5-yl group, 3-phenylpyridin-6 -Yl group, 2,6-diphenylpyridin-4-yl group, 4,6-diphenylpyridin-2-yl group, 2-pyrimidyl group, 2-pyrazyl group, 1-naphthyl group, 2-naphthyl group, 3- Quinolyl 4-quinolyl group, 3-isoquinolyl group, 2-benzothienyl group, 2-benzofuryl group, 2-fluorenyl group, 9,9-dimethylfluoren-2-yl group, 9,9-diphenylfluorene-2- Yl, 9-anthranyl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 9-phenanthryl, 2-dibenzothienyl, 2-dibenzofuryl, 4-dibenzothienyl, 4-dibenzofuryl Group, 3-fluoranthenyl group, 1-pyrenyl group, 2-triphenylenyl group and the like are preferable. Ar 2 Among these substituents, phenyl group, p-tolyl group, biphenyl-2-yl group, biphenyl-3-yl group, biphenyl-4-yl group, 3- (2-pyridyl) phenyl group, 4- (2-pyridyl) phenyl group, 3- (3-pyridyl) phenyl group, 4- (3-pyridyl) phenyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-phenylpyridine-6- Yl group, 2-phenylpyridin-5-yl group, 2-phenylpyridin-4-yl group, 3-phenylpyridin-5-yl group, 3-phenylpyridin-6-yl group, 2,6-diphenylpyridine- 4-yl group, 4,6-diphenylpyridin-2-yl group, 2-pyrimidyl group, 2-pyrazyl group, 1-naphthyl group, 2-naphthyl group, 3-quinolyl group, 4-quinolyl group, 3-isoquinolyl Base 2-benzothienyl group, 2-benzofuryl group, 2-fluorenyl group, 9,9-dimethylfluoren-2-yl group, 9,9-diphenylfluoren-2-yl group, 9-anthranyl group, 1-phenanthryl Group, 2-phenanthryl group, 3-phenanthryl group, 9-phenanthryl group, 2-dibenzothienyl group, 2-dibenzofuryl group, 4-dibenzothienyl group, 4-dibenzofuryl group, 3-fluoranthenyl group, 1- A pyrenyl group or a 2-triphenylenyl group is preferred. Furthermore, 3- (2-pyridyl) phenyl group, 4- (2-pyridyl) phenyl group, 3- (3-pyridyl) phenyl group, 4- (3-pyridyl) phenyl group, 2-pyridyl group, 3-pyridyl group Group, 4-pyridyl group, 2-phenylpyridin-6-yl group, 2-phenylpyridin-5-yl group, 2-phenylpyridin-4-yl group, 3-phenylpyridin-5-yl group, 3-phenyl Pyridin-6-yl group, 3-quinolyl group, 4-quinolyl group, 3-isoquinolyl group, 2-benzothienyl group, 2-benzofuryl group, 2-fluorenyl group, 9,9-dimethylfluoren-2-yl group 9,9-diphenylfluoren-2-yl group, 2-dibenzothienyl group, 2-dibenzofuryl group, 4-dibenzothienyl group, 4-dibenzofuryl group and the like are particularly preferable.
 Ar、及びArは、各々独立に、フェニル基、ナフチル基、ピリジル基(これらの基は、フッ素原子、メチル基、又はフェニル基で置換されていてもよい。)、水素原子、炭素数1~4のアルキル基、又はXと形成する単結合を表す。 Ar 3 and Ar 4 each independently represent a phenyl group, a naphthyl group, or a pyridyl group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group), a hydrogen atom, or a carbon number. alkyl group of 1 to 4, or represents a single bond to X 2 and formation.
 Ar、及びArにおける、炭素数1~4のアルキル基としては、特に限定するものではないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、又はt-ブチル基等が好ましい例として挙げられる。
 Ar、及びArにおける、フッ素原子で置換されたフェニル基、ナフチル基、及びピリジル基としては、特に限定するものではないが、Arと同様の基が挙げられる。
 Ar、及びArにおける、メチル基で置換されたフェニル基、ナフチル基、及びピリジル基としては、特に限定するものではないが、Arと同様の基が挙げられる。
 Ar、及びArにおける、フェニル基で置換されたフェニル基、ナフチル基、及びピリジル基としては、特に限定するものではないが、Arと同様の基が挙げられる。
The alkyl group having 1 to 4 carbon atoms in Ar 3 and Ar 4 is not particularly limited, but includes a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or a t-butyl group Is a preferred example.
The phenyl group, naphthyl group, and pyridyl group substituted with a fluorine atom in Ar 3 and Ar 4 are not particularly limited, and examples thereof include the same groups as Ar 1 .
The phenyl group, naphthyl group, and pyridyl group substituted with a methyl group in Ar 3 and Ar 4 are not particularly limited, and examples thereof include the same groups as Ar 1 .
The phenyl group, naphthyl group, and pyridyl group substituted with a phenyl group in Ar 3 and Ar 4 are not particularly limited, and examples thereof include the same groups as Ar 1 .
 Ar、及びArは、電子輸送性材料特性に優れる点で、各々独立に、水素原子、フェニル基、ナフチル基、ビフェニル基、ピリジル基、又はXと形成する単結合であることが好ましくい。Ar、及びArは、合成が容易な点で、各々独立に、水素原子、又はXと形成する単結合であることがさらに好ましい。 Ar 3 and Ar 4 are each preferably a single bond formed with a hydrogen atom, a phenyl group, a naphthyl group, a biphenyl group, a pyridyl group, or X 2 independently from the viewpoint of excellent electron transporting material properties. Yes. Ar 3 and Ar 4 are each more preferably a hydrogen atom or a single bond formed with X 2 independently from the viewpoint of easy synthesis.
 Ar、及びArにおけるフェニル基、ナフチル基、又はピリジル基(これらの基は、フッ素原子、メチル基、又はフェニル基で置換されていてもよい。)の具体例としては、特に限定するものではないが、Arと同様の基が挙げられる。これらの置換基のうち、電子輸送性材料特性に優れる点で、フェニル基、ビフェニル-3-イル基、ビフェニル-4-イル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、1-ナフチル基、又は2-ナフチル基が好ましく、合成が容易である点で、フェニル基が特に好ましい。 Specific examples of the phenyl group, naphthyl group, or pyridyl group in Ar 3 and Ar 4 (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group) are particularly limited. Although it is not, the same group as Ar 1 is mentioned. Of these substituents, phenyl group, biphenyl-3-yl group, biphenyl-4-yl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 1 A -naphthyl group or a 2-naphthyl group is preferable, and a phenyl group is particularly preferable in terms of easy synthesis.
 Ar、及びArは、各々独立に、フェニル基、ナフチル基、ピリジル基(これらの基は、フッ素原子、メチル基、又はフェニル基で置換されていてもよい。)、水素原子、又は炭素数1~4のアルキル基を表す。 Ar 5 and Ar 6 are each independently a phenyl group, a naphthyl group, a pyridyl group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group), a hydrogen atom, or a carbon atom. Represents an alkyl group of formulas 1 to 4;
 Ar、及びArにおける、炭素数1~4のアルキル基としては、特に限定するものではないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、又はt-ブチル基等が好ましい例として挙げられる。
 Ar、及びArにおける、フッ素原子で置換されたフェニル基、ナフチル基、及びピリジル基としては、特に限定するものではないが、Arと同様の基が挙げられる。
 Ar、及びArにおける、メチル基で置換されたフェニル基、ナフチル基、及びピリジル基としては、特に限定するものではないが、Arと同様の基が挙げられる。
 Ar、及びArにおける、フェニル基で置換されたフェニル基、ナフチル基、及びピリジル基としては、特に限定するものではないが、Arと同様の基が挙げられる。
The alkyl group having 1 to 4 carbon atoms in Ar 5 and Ar 6 is not particularly limited, but a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a t-butyl group, or the like Is a preferred example.
The phenyl group, naphthyl group, and pyridyl group substituted with a fluorine atom in Ar 5 and Ar 6 are not particularly limited, and examples thereof include the same groups as Ar 1 .
The phenyl group, naphthyl group, and pyridyl group substituted with a methyl group in Ar 5 and Ar 6 are not particularly limited, and examples thereof include the same groups as Ar 1 .
The phenyl group, naphthyl group, and pyridyl group substituted with a phenyl group in Ar 5 and Ar 6 are not particularly limited, and examples thereof include the same groups as Ar 1 .
 Ar、及びArは、電子輸送性材料特性に優れる点で、各々独立に、水素原子、フェニル基、トリル基、ナフチル基、ビフェニル基、又はピリジル基であることが好ましく、合成が容易な点で水素原子であることがさらに好ましい。 Ar 5 and Ar 6 are each independently preferably a hydrogen atom, a phenyl group, a tolyl group, a naphthyl group, a biphenyl group, or a pyridyl group because they are excellent in electron transporting material properties, and are easily synthesized. It is more preferable that it is a hydrogen atom at a point.
 W、W、及びWは、各々独立に、C-H、又は窒素原子を表し、W、W、及びWは、全てC-Hを表すか、又はW、W、Wのいずれか1つが窒素原子を表し、残り2つがC-Hを表す。すなわち、W、W、及びWは、各々独立に、C-H、又は窒素原子を表し、少なくとも2つはC-Hを表す。
 W、W、及びWは、合成が容易である点で、全てC-Hであることが好ましい。
W 1 , W 2 , and W 3 each independently represent C—H or a nitrogen atom, and W 1 , W 2 , and W 3 all represent C—H, or W 1 , W 2 , W 3 represents a nitrogen atom, and the remaining two represent C—H. That is, W 1 , W 2 , and W 3 each independently represent C—H or a nitrogen atom, and at least two represent C—H.
W 1 , W 2 and W 3 are all preferably C—H from the viewpoint of easy synthesis.
 X、及びXは、各々独立に、フェニレン基、ナフチレン基、ビフェニレン基、ピリジレン基(これらの基は、フッ素原子、メチル基、又はフェニル基で置換されていてもよい。)、又は単結合を表す。
 X、及びXが、各々独立に、
  単結合;
  無置換の、フェニレン基、ナフチレン基、ビフェニレン基、又はピリジレン基;であることが好ましい。
 これらの基のうち、原料の入手が容易な点で、各々独立に、単結合、フェニレン基、又はピリジレン基であることがより好ましい。
X 1 and X 2 are each independently a phenylene group, a naphthylene group, a biphenylene group, a pyridylene group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group), or a single group. Represents a bond.
X 1 and X 2 are each independently
Single bond;
It is preferably an unsubstituted phenylene group, naphthylene group, biphenylene group, or pyridylene group.
Of these groups, a single bond, a phenylene group, or a pyridylene group is more preferable independently from the viewpoint of easy availability of raw materials.
 Zは、窒素原子又はC-Hを表す。このうち、電子輸送材料特性に優れる点で、Zが窒素原子であることが好ましい。 Z represents a nitrogen atom or C—H. Among these, it is preferable that Z is a nitrogen atom at the point which is excellent in an electron transport material characteristic.
 Y、Y、Y、及びYは、各々独立に、C-Rで表される基、又は窒素原子を表す。Rは、フェニル基、ナフチル基、又はピリジル基(これらの基はフッ素原子、メチル基、又はフェニル基で置換されていてもよい)、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルケニル基を表す。 Y 1 , Y 2 , Y 3 , and Y 4 each independently represent a group represented by C—R or a nitrogen atom. R represents a phenyl group, a naphthyl group, or a pyridyl group (these groups may be substituted with a fluorine atom, a methyl group, or a phenyl group), a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a carbon number of 1 Represents -4 alkenyl groups.
 また、Y、Y、Y、及びYのいずれかが窒素原子を表すとき、Y、Y、Y、及びYのうち1つだけが窒素原子であり、残りはC-Rで表される基(Rは、各々独立に、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルケニル基、フェニル基、ナフチル基、又はピリジル基を表す。フェニル基、ナフチル基、又はピリジル基はフッ素原子、メチル基、又はフェニル基で置換されていてもよい)であることが、合成が容易である点で好ましい。 Further, when any of Y 1 , Y 2 , Y 3 , and Y 4 represents a nitrogen atom, only one of Y 1 , Y 2 , Y 3 , and Y 4 is a nitrogen atom, and the rest is C A group represented by -R (where each R independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group, or a pyridyl group. , A naphthyl group, or a pyridyl group may be substituted with a fluorine atom, a methyl group, or a phenyl group), from the viewpoint of easy synthesis.
 このうち、合成が容易な点で、Y、Y、Y、及びYが、全てC-Rで表される基(Rは、各々独立に、水素原子、炭素数1~4のアルキル基、炭素数1~4のアルケニル基、フェニル基、ナフチル基、又はピリジル基を表す。)であることが好ましい。Y、Y、Y、及びYが、全てC-Hで表される基であることがより好ましい。 Of these, Y 1 , Y 2 , Y 3 , and Y 4 are all groups represented by C—R (where each R is independently a hydrogen atom or a group having 1 to 4 carbon atoms, for easy synthesis). An alkyl group, an alkenyl group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group, or a pyridyl group). More preferably, Y 1 , Y 2 , Y 3 , and Y 4 are all groups represented by C—H.
 Rは、互いに結合し、芳香環を形成していてもよい。なお、Rが互いに結合して芳香環を形成した化合物として、特に限定するものではないが、例えば、後述する式(1f)、又は(1g)等が挙げられる。 R may be bonded to each other to form an aromatic ring. In addition, although it does not specifically limit as a compound which R couple | bonded together and formed the aromatic ring, For example, Formula (1f) or (1g) etc. which are mentioned later are mentioned.
 式(1)で表される化合物は、特に限定するものではないが、例えば、下記の通り式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、又は(1g)等で表される化合物に具体化することができる。 The compound represented by the formula (1) is not particularly limited. For example, the following formula (1a), (1b), (1c), (1d), (1e), (1f), or (1g) and the like can be embodied.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、及び(1g)中、Ar、Ar、Ar、Ar、Ar、Ar、X、X、Z、Y、Y、Y、Y、及びRは、前記式(1)と同義である。) (In the formulas (1a), (1b), (1c), (1d), (1e), (1f), and (1g), Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 , X 1 , X 2 , Z, Y 1 , Y 2 , Y 3 , Y 4 , and R are as defined in the above formula (1).)
 式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、又は(1g)において、各定義の好ましい範囲については、式(1)で示した好ましい範囲と同じである。 In formula (1a), (1b), (1c), (1d), (1e), (1f), or (1g), the preferred range of each definition is the same as the preferred range shown in formula (1) It is.
 本発明の一態様にかかる環状アジン化合物(1)は有機電界発光素子の構成成分の一部として用いると、高発光効率化、長寿命化、低電圧化等の効果が得られる。特に、電子輸送層、または正孔阻止層として用いた場合にこの効果が顕著に現れる。 When the cyclic azine compound (1) according to one embodiment of the present invention is used as a part of the constituent components of the organic electroluminescent device, effects such as high luminous efficiency, long life, and low voltage can be obtained. In particular, this effect is prominent when used as an electron transport layer or a hole blocking layer.
 式(1)で示される化合物のうち、特に好ましい化合物の具体例としては、次の(A-1)から(A-1356)を例示できるが、本開示これらに限定されるものではない。 Specific examples of particularly preferable compounds among the compounds represented by the formula (1) include the following (A-1) to (A-1356), but the present disclosure is not limited thereto.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 以下、環状アジン化合物(1)の用途について説明する。
 本発明の一態様にかかる環状アジン化合物(1)については、特に限定するものではないが、例えば、有機電界発光素子用の材料として用いることができる。
 したがって、本発明の一態様にかかる有機電界発光素子用材料は、環状アジン化合物(1)を含む。
Hereinafter, the use of the cyclic azine compound (1) will be described.
Although it does not specifically limit about the cyclic azine compound (1) concerning 1 aspect of this invention, For example, it can use as a material for organic electroluminescent elements.
Therefore, the organic electroluminescent element material according to one embodiment of the present invention includes the cyclic azine compound (1).
 有機電界発光素子における発光層は、広義の意味では、陰極と陽極からなる電極に電流を流した際に発光する層のことを指す。具体的には、陰極と陽極からなる電極に電流を流した際に発光する蛍光性化合物を含有する層のことを指す。通常、有機電界発光素子は一対の電極の間に発光層を挟持した構造をとる。 In the broad sense, the light emitting layer in an organic electroluminescent element refers to a layer that emits light when a current is passed through an electrode composed of a cathode and an anode. Specifically, it refers to a layer containing a fluorescent compound that emits light when an electric current is passed through an electrode composed of a cathode and an anode. Usually, an organic electroluminescent element has a structure in which a light emitting layer is sandwiched between a pair of electrodes.
 本発明の一態様にかかる有機電界発光素子は、必要に応じ発光層の他に、正孔輸送層、電子輸送層、陽極バッファー層及び陰極バッファー層等を有し、陰極と陽極で挟持された構造をとる。具体的には以下に示される構造が挙げられる。
(i)陽極/発光層/陰極
(ii)陽極/正孔輸送層/発光層/陰極
(iii)陽極/発光層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
The organic electroluminescent device according to one embodiment of the present invention includes a hole transport layer, an electron transport layer, an anode buffer layer, a cathode buffer layer, and the like in addition to the light emitting layer as necessary, and is sandwiched between the cathode and the anode. Take the structure. Specific examples include the structures shown below.
(I) Anode / light emitting layer / cathode (ii) Anode / hole transport layer / light emitting layer / cathode (iii) Anode / light emitting layer / electron transport layer / cathode (iv) anode / hole transport layer / light emitting layer / electron Transport layer / cathode (v) anode / anode buffer layer / hole transport layer / light emitting layer / electron transport layer / cathode buffer layer / cathode
 発光層には、従来公知の発光材料を用いることができる。発光層を形成する方法としては、例えば蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により薄膜を形成する方法がある。 A conventionally known light emitting material can be used for the light emitting layer. As a method for forming the light emitting layer, for example, there is a method of forming a thin film by a known method such as a vapor deposition method, a spin coating method, a casting method, or an LB method.
 又、この発光層は、樹脂などの結着材と共に発光材料を溶剤に溶かして溶液とした後、これをスピンコート法などにより塗布して薄膜形成することにより得ることができる。 Further, the light emitting layer can be obtained by dissolving a light emitting material in a solvent together with a binder such as a resin to form a solution and then applying the solution by a spin coating method to form a thin film.
 このようにして形成された発光層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm~5μmの範囲である。 The film thickness of the light emitting layer thus formed is not particularly limited and can be appropriately selected according to the situation, but is usually in the range of 5 nm to 5 μm.
 次に正孔注入層、正孔輸送層、電子注入層、電子輸送層等、発光層と組み合わせて有機電界発光素子を構成するその他の層について説明する。 Next, other layers constituting the organic electroluminescence device in combination with the light emitting layer, such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer, will be described.
 正孔注入層、正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層、正孔輸送層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入される。 The hole injection layer and the hole transport layer have a function of transmitting the holes injected from the anode to the light emitting layer, and the hole injection layer and the hole transport layer are interposed between the anode and the light emitting layer. Thus, many holes are injected into the light emitting layer with a lower electric field.
 また、陰極から注入され、電子注入層及び/又は電子輸送層より発光層に輸送された電子は、発光層と正孔注入層もしくは正孔輸送層の界面に存在する電子の障壁により、正孔注入層もしくは正孔輸送層に漏れることなく発光層内の界面に累積され、発光効率が向上するなど発光性能の優れた素子となる。 In addition, electrons injected from the cathode and transported from the electron injection layer and / or the electron transport layer to the light-emitting layer are generated by the electron barrier existing at the interface between the light-emitting layer and the hole injection layer or the hole transport layer. It accumulates at the interface in the light emitting layer without leaking into the injection layer or the hole transport layer, resulting in an element with excellent light emitting performance such as improved luminous efficiency.
 上記正孔注入材料、正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性の何れかを有するものであり、有機物、無機物の何れであってもよい。この正孔注入材料、正孔輸送材料としては、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、又、導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。正孔注入材料、正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。 The hole injecting material and the hole transporting material have either hole injection or transport or electron barrier properties, and may be either organic or inorganic. Examples of the hole injection material and hole transport material include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazoles. Derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. As the hole injecting material and the hole transporting material, those described above can be used, and porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds can be used. preferable.
 上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N’,N’-テトラフェニル-4,4’-ジアミノフェニル、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-〔1,1’-ビフェニル〕-4,4’-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N’,N’-テトラ-p-トリル-4,4’-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N’-ジフェニル-N,N’-ジ(4-メトキシフェニル)-4,4’-ジアミノビフェニル、N,N,N’,N’-テトラフェニル-4,4’-ジアミノジフェニルエーテル、4,4’-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4’-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4’-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、4,4’-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、4,4’,4’’-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)などがあげられる。 Representative examples of the aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N ′. -Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1- Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p- Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N′-diphenyl-N, '-Di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) c Audriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 ′-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N— Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenyl Amino] biphenyl (NPD), 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) It is.
 又、p型-Si、p型-SiCなどの無機化合物も正孔注入材料、正孔輸送材料として使用することができる。この正孔注入層、正孔輸送層は、上記正孔注入材料、正孔輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により、薄膜化することにより形成することができる。正孔注入層、正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度である。この正孔注入層、正孔輸送層は、上記材料の一種又は二種以上からなる一層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。 Also, inorganic compounds such as p-type-Si and p-type-SiC can be used as the hole injection material and the hole transport material. The hole injection layer and the hole transport layer are formed by thinning the hole injection material and the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. Can be formed. The film thickness of the hole injection layer and the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm. The hole injection layer and hole transport layer may have a single layer structure composed of one or more of the above materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
 本発明の一態様にかかる有機電界発光素子において、電子輸送層は、上記式(1)で表される環状アジン化合物を含むものであることが好ましい。したがって、本発明の一態様にかかる有機電界発光素子用電子輸送材料は、環状アジン化合物(1)を含む。なお、本発明の一態様にかかる環状アジン化合物(1)については、有機電界発光素子の電子輸送層以外に用いることもできる。 In the organic electroluminescence device according to one embodiment of the present invention, the electron transport layer preferably contains a cyclic azine compound represented by the above formula (1). Therefore, the electron transport material for organic electroluminescent elements according to one embodiment of the present invention includes the cyclic azine compound (1). In addition, about the cyclic azine compound (1) concerning 1 aspect of this invention, it can also be used other than the electron carrying layer of an organic electroluminescent element.
 当該電子輸送層は、上記式(1)で表される環状アジン化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法などの公知の薄膜形成法により成膜して形成することができる。電子輸送層の膜厚は特に制限はないが、通常は5nm~5μmの範囲で選ばれる。また、この電子輸送層は、式(1)で表される環状アジン化合物を含むものが好ましく、かつ従来公知の電子輸送材料を含んでいてもよく、一種又は二種以上からなる一層構造であってもよいし、或いは、同一組成又は異種組成の複数層からなる積層構造であってもよい。 The electron transport layer may be formed by forming a cyclic azine compound represented by the above formula (1) by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. it can. The thickness of the electron transport layer is not particularly limited, but is usually selected in the range of 5 nm to 5 μm. In addition, the electron transport layer preferably includes a cyclic azine compound represented by the formula (1), may include a conventionally known electron transport material, and has a single-layer structure composed of one kind or two or more kinds. Alternatively, a laminated structure composed of a plurality of layers having the same composition or different compositions may be used.
 又、発光材料は発光層のみに限定することはなく、発光層に隣接した正孔輸送層、又は電子輸送層に1種含有させてもよく、それにより更に有機電界発光素子の発光効率を高めることができる。 In addition, the light emitting material is not limited to the light emitting layer, and one kind may be contained in the hole transport layer or the electron transport layer adjacent to the light emitting layer, thereby further increasing the light emission efficiency of the organic electroluminescent device. be able to.
 基板は、ガラス、プラスチックなどの種類には特に限定はなく、又、透明のものであれば特に制限はない。本発明の一態様にかかる有機電界発光素子に好ましく用いられる基板としては例えばガラス、石英、光透過性プラスチックフィルムを挙げることができる。 There is no particular limitation on the type of substrate such as glass or plastic, and there is no particular limitation as long as it is transparent. Examples of the substrate preferably used in the organic electroluminescent device according to one embodiment of the present invention include glass, quartz, and a light-transmitting plastic film.
 光透過性プラスチックフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。 Examples of the light transmissive plastic film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, and polycarbonate (PC). And a film made of cellulose triacetate (TAC), cellulose acetate propionate (CAP), or the like.
 有機電界発光素子を作製する好適な例を説明する。例として、前記の陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。 A suitable example for producing an organic electroluminescent element will be described. As an example, a method for producing an organic electroluminescent element composed of the anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
 まず適当な基板上に、所望の電極用物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10~200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させて陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層/電子注入層からなる薄膜を形成させる。 First, a thin film made of a desired electrode material, for example, an anode material, is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm. An anode is produced. Next, a thin film comprising a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer, which is a device material, is formed thereon.
 なお、陽極と発光層又は正孔注入層の間、及び、陰極と発光層又は電子注入層との間にはバッファー層(電極界面層)を存在させてもよい。 A buffer layer (electrode interface layer) may exist between the anode and the light emitting layer or the hole injection layer and between the cathode and the light emitting layer or the electron injection layer.
 更に上記基本構成層の他に必要に応じてその他の機能を有する層を積層してもよく、例えば正孔ブロック層、電子ブロック層などのような機能層を有していてもよい。 Furthermore, in addition to the basic constituent layer, a layer having other functions may be laminated as necessary. For example, a functional layer such as a hole blocking layer or an electron blocking layer may be provided.
 次に、本発明の一態様にかかる有機電界発光素子の電極について説明する。有機電界発光素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAuなどの金属、CuI、酸化インジウム-スズ(ITO)、SnO、ZnOなどの導電性透明材料が挙げられる。 Next, an electrode of the organic electroluminescent element according to one embodiment of the present invention will be described. As the anode in the organic electroluminescence device, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such an electrode substance include a conductive transparent material such as a metal such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
 上記陽極は蒸着やスパッタリングなどの方法によりこれらの電極物質の薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、或いは蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 The anode may be formed by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by photolithography, or the pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering. May be formed.
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。これらの中で、電子注入性及び酸化などに対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが好適である。上記陰極は、これらの電極物質を蒸着やスパッタリングなどの方法で薄膜を形成させることにより作製することができる。 On the other hand, as the cathode, those using an electrode substance of a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof are preferably used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this from the viewpoint of durability against electron injecting and oxidation, for example, a magnesium / silver mixture, magnesium An aluminum / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, and the like are preferable. The cathode can be produced by forming a thin film from these electrode materials by a method such as vapor deposition or sputtering.
 前記の様に、適当な基板上に所望の電極用物質、例えば陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲の膜厚になるように、蒸着やスパッタリングなどの方法により形成させて陽極を作製した後、該陽極上に前記の通り正孔注入層、正孔輸送層、発光層、電子輸送層/電子注入層からなる各層薄膜を形成させた後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように、例えば蒸着やスパッタリングなどの方法により形成させて陰極を設け、所望の有機電界発光素子が得られる。 As described above, a thin film made of a desired electrode material, for example, an anode material, is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm. After preparing the anode, after forming each layer thin film consisting of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer / electron injection layer on the anode as described above, for the cathode A thin film made of a substance is formed by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a cathode is provided to obtain a desired organic electroluminescence device.
 本発明の一態様にかかる有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又、異なる発光色を有する本発明の一態様にかかる有機電界発光素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 The organic electroluminescence device according to one embodiment of the present invention may be used as a kind of lamp for illumination or an exposure light source, or may be a projection device that projects an image, or directly recognizes a still image or a moving image. It may be used as a type of display device (display). When used as a display device for reproducing moving images, the driving method may be either a simple matrix (passive matrix) method or an active matrix method. A full-color display device can be manufactured by using two or more organic electroluminescent elements according to one embodiment of the present invention having different emission colors.
 次に、本発明の一態様にかかる製造方法について説明する。
 本発明の一態様にかかる環状アジン化合物(1)は、特に限定するものではないが、例えば、塩基の存在下又は非存在下に、パラジウム触媒の存在下で、次の反応式(1)~(4)等のいずれかで示される方法により製造することができる。
Next, a manufacturing method according to one embodiment of the present invention will be described.
The cyclic azine compound (1) according to one embodiment of the present invention is not particularly limited. For example, in the presence or absence of a base and in the presence of a palladium catalyst, the following reaction formulas (1) to (1) (4) It can manufacture by the method shown by either.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
(反応式(1)中、Ar、Ar、Ar、Ar、Ar、Ar、X、X、Z、W、W、W、Y、Y、Y、及びYは、前記式(1)と同じ置換基を表す。A、及びAは、後述する脱離基を表す。M、及びMは、後述する置換基を表す。) (In the reaction formula (1), Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 , X 1 , X 2 , Z, W 1 , W 2 , W 3 , Y 1 , Y 2 , Y 3 and Y 4 represent the same substituent as in the formula (1), A 1 and A 2 represent a leaving group described later, and M 3 and M 4 represent a substituent described later. )
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
(反応式(2)中、Ar、Ar、Ar、Ar、Ar、Ar、X、X、Z、W、W、W、Y、Y、Y、及びYは、前記式(1)と同じ置換基を表す。A、及びAは、後述する脱離基を表す。M、及びMは、後述する置換基を表す。) (In the reaction formula (2), Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 , X 1 , X 2 , Z, W 1 , W 2 , W 3 , Y 1 , Y 2 , Y 3 and Y 4 represent the same substituent as in the formula (1), A 2 and A 3 represent a leaving group described later, and M 1 and M 4 represent a substituent described later. )
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
(反応式(3)中、Ar、Ar、Ar、Ar、Ar、Ar、X、X、Z、W、W、W、Y、Y、Y、及びYは、前記式(1)と同じ置換基を表す。Aは、後述する脱離基を表す。Mは、後述する置換基を表す。) (In Reaction Formula (3), Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 , X 1 , X 2 , Z, W 1 , W 2 , W 3 , Y 1 , Y 2 , Y 3 and Y 4 represent the same substituent as in formula (1), A 4 represents a leaving group described later, and M 2 represents a substituent described later.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
(反応式(4)中、Ar、Ar、Ar、Ar、Ar、Ar、X、X、Z、W、W、W、Y、Y、Y、及びYは、前記式(1)と同じ置換基を表す。Aは、後述する脱離基を表す。Mは、後述する置換基を表す。) (In the reaction formula (4), Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 , Ar 6 , X 1 , X 2 , Z, W 1 , W 2 , W 3 , Y 1 , Y 2 , Y 3 and Y 4 represent the same substituent as in the formula (1), A 2 represents a leaving group described later, and M 4 represents a substituent described later.
 また、以降、式(2a)で表される化合物については化合物(2a)と称する。化合物(3a)、化合物(4a)、化合物(5a)、化合物(3b)、化合物(4b)、化合物(5b)、化合物(4c)、及び化合物(1g)等についても同義とする。以下、これらの化合物の定義について説明する。 Hereinafter, the compound represented by formula (2a) is referred to as compound (2a). The same applies to compound (3a), compound (4a), compound (5a), compound (3b), compound (4b), compound (5b), compound (4c), compound (1g) and the like. Hereinafter, the definition of these compounds will be described.
 A、A、A、及びAは、脱離基を表し、特に限定するものではないが、例えば、各々独立に、塩素原子、臭素原子、ヨウ素原子、又はトリフラート等が挙げられる。このうち、反応収率がよい点で、各々独立に、臭素原子又は塩素原子が好ましい。但し、原料の入手性からトリフラートを用いた方が好ましい場合もある。 A 1 , A 2 , A 3 , and A 4 each represent a leaving group and are not particularly limited, and examples thereof include a chlorine atom, a bromine atom, an iodine atom, or a triflate independently. Of these, a bromine atom or a chlorine atom is preferable independently from the viewpoint of good reaction yield. However, it may be preferable to use triflate because of the availability of raw materials.
 M、M、M、及びMは、脱離基を表し、特に限定するものではないが、例えば、各々独立して、ZnR、MgR、Sn(R又はB(ORが挙げられる。但し、前記のR及びRは、各々独立に塩素原子、臭素原子又はヨウ素原子を表し、前記のRは、炭素数1から4のアルキル基又はフェニル基を表し、前記のRは水素原子、炭素数1から4のアルキル基又はフェニル基を表し、B(ORの2つのRは同一又は異なっていてもよい。また、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。 M 1 , M 2 , M 3 , and M 4 each represent a leaving group and are not particularly limited. For example, each independently, ZnR 1 , MgR 2 , Sn (R 3 ) 3 or B ( OR 4) 2 and the like. However, said R < 1 > and R < 2 > respectively independently represents a chlorine atom, a bromine atom, or an iodine atom, said R < 3 > represents a C1-C4 alkyl group or a phenyl group, and said R < 4 > is hydrogen atom, an alkyl group or a phenyl group having a carbon number of 1 to 4, B (oR 4) 2 two R 4 2 may be the same or different. Further, two R 4 may form a ring containing an oxygen atom and a boron atom together.
 ZnR、MgRとしては、特に限定するものではないが、例えば、ZnCl、ZnBr、ZnI、MgCl、MgBr、MgI等が例示できる。 The ZnR 1, MgR 2, is not particularly limited, for example, ZnCl, ZnBr, ZnI, MgCl , MgBr, MgI like.
 Sn(Rとしては、特に限定するものではないが、例えば、Sn(Me)、Sn(Bu)等が例示できる。 The Sn (R 3) 3, is not particularly limited, for example, Sn (Me) 3, Sn (Bu) 3 and the like.
 B(ORとしては、特に限定するものではないが、例えば、B(OH)、B(OMe)、B(OPr)、B(OBu)等が例示できる。また、2つのRが一体となって酸素原子及びホウ素原子を含んで環を形成した場合のB(ORの例としては、次の(C-1)から(C-6)で示される基が例示でき、収率がよい点で(C-2)で示される基が望ましい。 B (OR 4 ) 2 is not particularly limited, and examples thereof include B (OH) 2 , B (OMe) 2 , B (O i Pr) 2 , and B (OBu) 2 . Examples of B (OR 4 ) 2 in the case where two R 4s are combined to form a ring containing an oxygen atom and a boron atom include the following (C-1) to (C-6): The group shown can be exemplified, and the group shown by (C-2) is desirable from the viewpoint of good yield.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 反応式(1)で用いられる化合物(5a)は、例えば、J.Am.Chem.Soc., 1963,85(10),1549、WO2010/082621号報の段落番号[0091]~[0103]、又は特開2013-223458号公報の段落番号[0045]~[0067]に開示されている方法を組み合わせて製造することができる。 The compound (5a) used in the reaction formula (1) is, for example, J. Am. Chem. Soc. , 1963, 85 (10), 1549, WO2010 / 082621 Paragraph Nos. [0091] to [0103], or Japanese Unexamined Patent Publication No. 2013-223458, Paragraph Nos. [0045] to [0067] Can be manufactured in combination.
 続いて、反応式(1)について説明する。反応式(1)は「工程1」に続いて「工程2」を実施することで、本発明の一態様にかかる環状アジン化合物(1)を得る方法である。「工程1」は化合物(2a)を、塩基の存在下又は非存在下に、パラジウム触媒の存在下に、化合物(3a)と反応させ、化合物(4a)を得る方法であり、鈴木-宮浦反応、根岸反応、玉尾-熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。 Subsequently, the reaction formula (1) will be described. Reaction formula (1) is a method for obtaining the cyclic azine compound (1) according to one embodiment of the present invention by performing “Step 2” after “Step 1”. “Step 1” is a method in which compound (2a) is reacted with compound (3a) in the presence or absence of a base in the presence of a palladium catalyst to obtain compound (4a). Suzuki-Miyaura reaction By applying reaction conditions for general coupling reactions such as Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc., the desired product can be obtained in good yield.
 「工程1」で用いることのできるパラジウム触媒としては、特に限定するものではないが、例えば、塩化パラジウム、酢酸パラジウム、トリフルオロ酢酸パラジウム、硝酸パラジウム等の塩を例示することができる。さらに、π-アリルパラジウムクロリドダイマー、パラジウムアセチルアセトナト、トリス(ジベンジリデンアセトン)ジパラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム及びジクロロ(1,1’-ビス(ジフェニルホスフィノ)フェロセン)パラジウム等の錯化合物を例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は反応収率がよい点でさらに好ましく、入手容易であり、反応収率がよい点で、トリフェニルホスフィンを配位子として有するパラジウム錯体が特に好ましい。
 第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩又は錯化合物に第三級ホスフィンを添加し、反応系中で調製することもできる。この際用いることのできる第三級ホスフィンとしては、特に限定するものではないが、例えば、トリフェニルホスフィン、トリメチルホスフィン、トリブチルホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、tert-ブチルジフェニルホスフィン、9,9-ジメチル-4,5-ビス(ジフェニルホスフィノ)キサンテン、2-(ジフェニルホスフィノ)-2’-(N,N-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリ(2-フリル)ホスフィン、トリ(o-トリル)ホスフィン、トリス(2,5-キシリル)ホスフィン、(±)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル等が例示できる。入手容易であり、反応収率がよい点で、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル又はトリフェニルホスフィンが好ましい。第三級ホスフィンとパラジウム塩又は錯化合物とのモル比は、1:10~10:1が好ましく、反応収率がよい点で1:2~5:1がさらに好ましい。
The palladium catalyst that can be used in “Step 1” is not particularly limited, and examples thereof include salts of palladium chloride, palladium acetate, palladium trifluoroacetate, palladium nitrate, and the like. Furthermore, π-allyl palladium chloride dimer, palladium acetylacetonate, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium and dichloro (1,1′-bis (diphenylphosphine). Examples include complex compounds such as fino) ferrocene) palladium. Among these, a palladium complex having a tertiary phosphine as a ligand is more preferable in terms of a good reaction yield, is easily available, and a palladium complex having triphenylphosphine as a ligand is preferable in terms of a good reaction yield. Particularly preferred.
A palladium complex having a tertiary phosphine as a ligand can also be prepared in a reaction system by adding a tertiary phosphine to a palladium salt or a complex compound. The tertiary phosphine that can be used in this case is not particularly limited. For example, triphenylphosphine, trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine. 9,9-dimethyl-4,5-bis (diphenylphosphino) xanthene, 2- (diphenylphosphino) -2 '-(N, N-dimethylamino) biphenyl, 2- (di-tert-butylphosphino ) Biphenyl, 2- (dicyclohexylphosphino) biphenyl, bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis ( Diphenylphosphino) butane, 1, 1′-bis (diphenylphosphino) ferrocene, tri (2-furyl) phosphine, tri (o-tolyl) phosphine, tris (2,5-xylyl) phosphine, (±) -2,2′-bis (diphenylphosphine) Phino) -1,1′-binaphthyl, 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl and the like. 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl or triphenylphosphine is preferable because it is easily available and the reaction yield is good. The molar ratio of the tertiary phosphine to the palladium salt or complex compound is preferably 1:10 to 10: 1, and more preferably 1: 2 to 5: 1 from the viewpoint of good reaction yield.
 「工程1」で用いることのできる塩基としては、特に限定するものではないが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができ、収率がよい点で炭酸カリウムが望ましい。塩基と化合物(3a)とのモル比は、1:2から10:1が望ましく、収率がよい点で1:1から3:1がさらに望ましい。 The base that can be used in “Step 1” is not particularly limited. For example, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium phosphate, sodium phosphate Sodium fluoride, potassium fluoride, cesium fluoride, and the like can be exemplified, and potassium carbonate is preferable in terms of a good yield. The molar ratio of base to compound (3a) is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of good yield.
 「工程1」で用いる化合物(2a)と化合物(3a)とのモル比は、特に限定するものではないが、例えば、1:2から5:1が望ましく、収率がよい点で1:2から2:1がさらに望ましい。 The molar ratio of the compound (2a) to the compound (3a) used in “Step 1” is not particularly limited, but for example, 1: 2 to 5: 1 is desirable, and 1: 2 in terms of good yield. To 2: 1 is more desirable.
 「工程1」で用いることのできる溶媒として、特に限定するものではないが、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノール又はキシレン等が例示でき、これらを適宜組み合わせて用いてもよい。収率がよい点でジオキサン又はテトラヒドロフランと水の混合溶媒を用いることが望ましい。 The solvent that can be used in “Step 1” is not particularly limited, and examples thereof include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, toluene, benzene, diethyl ether, ethanol, Examples thereof include methanol or xylene, and these may be used in appropriate combination. It is desirable to use a mixed solvent of dioxane or tetrahydrofuran and water in terms of a good yield.
 「工程1」は、特に限定するものではないが、例えば、0℃から150℃から適宜選ばれた温度で実施することができ、収率がよい点で50℃から100℃で行うことがさらに望ましい。 Step 1” is not particularly limited, but can be performed at a temperature appropriately selected from 0 ° C. to 150 ° C., for example, and is preferably performed at 50 ° C. to 100 ° C. in terms of good yield. desirable.
 化合物(4a)は、「工程1」の終了後に通常の処理をすることで得られる。必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。 Compound (4a) can be obtained by performing a normal treatment after completion of “Step 1”. If necessary, it may be purified by recrystallization, column chromatography or sublimation.
 「工程2」は「工程1」で得られた化合物(4a)を、塩基の存在下又は非存在下に、パラジウム触媒の存在下に、化合物(5a)と反応させ、本発明の一態様にかかる環状アジン化合物(1)を得る方法であり、鈴木-宮浦反応、根岸反応、玉尾-熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。「工程2」は「工程1」で挙げた条件のうち、化合物(2a)を化合物(5a)及び化合物(3a)を化合物(4a)に置き換えた条件を適用することができる。但し、「工程1」と同じ反応条件である必要はない。「工程2」の終了後、必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。
 反応式(2)における反応条件などについては、それぞれ、反応式(1)のものと同様である。すなわち、反応式(2)における「工程3」は「工程1」で挙げた条件のうち、化合物(2a)を化合物(3b)に置き換え、化合物(3a)を化合物(2b)に置き換えた条件を適用することができる。反応式(2)における「工程4」は「工程1」で挙げた条件と同じ反応条件を適用することができる。「工程4」の終了後、必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。
 反応式(3)における反応条件などについては、それぞれ、反応式(1)のものと同様である。すなわち、反応式(3)における「工程5」は、「工程1」で挙げた条件のうち、それぞれ化合物(2a)を化合物(5b)に置き換え、化合物(3a)を化合物(4b)に置き換えた条件を適用することができる。但し、「工程1」と同じ反応条件である必要はない。「工程5」の終了後、必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。
"Step 2" is a reaction of compound (4a) obtained in "Step 1" with compound (5a) in the presence or absence of a base and in the presence of a palladium catalyst. This is a method for obtaining such a cyclic azine compound (1), which can be obtained in a high yield by applying reaction conditions of general coupling reactions such as Suzuki-Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction and the like. The object can be obtained. Of the conditions listed in “Step 1”, “Step 2” can be applied by replacing Compound (2a) with Compound (5a) and Compound (3a) with Compound (4a). However, the reaction conditions are not necessarily the same as those in “Step 1”. After completion of “Step 2”, it may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
The reaction conditions in reaction formula (2) are the same as those in reaction formula (1). That is, “Step 3” in the reaction formula (2) is the same as the conditions listed in “Step 1” except that the compound (2a) is replaced with the compound (3b) and the compound (3a) is replaced with the compound (2b). Can be applied. The same reaction conditions as those mentioned in “Step 1” can be applied to “Step 4” in the reaction formula (2). After completion of “Step 4”, it may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
The reaction conditions in Reaction Formula (3) are the same as those in Reaction Formula (1). That is, in “Step 5” in the reaction formula (3), compound (2a) was replaced with compound (5b) and compound (3a) was replaced with compound (4b) among the conditions listed in “Step 1”. Conditions can be applied. However, the reaction conditions are not necessarily the same as those in “Step 1”. After completion of “Step 5”, it may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
 反応式(4)は「工程6」を実施することで、本発明の一態様にかかる環状アジン化合物(1g)を得る方法である。反応式(4)における反応条件などについては、それぞれ、反応式(1)のものと同様である。すなわち、反応式(4)における「工程6」は、「工程1」で挙げた条件のうち、それぞれ化合物(2a)を化合物(5a)に置き換え、化合物(3a)を化合物(4c)に置き換えた条件を適用することができる。但し、「工程1」と同じ反応条件である必要はない。「工程5」の終了後、必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。 Reaction formula (4) is a method for obtaining the cyclic azine compound (1 g) according to one embodiment of the present invention by carrying out “Step 6”. The reaction conditions in Reaction Formula (4) are the same as those in Reaction Formula (1). That is, in “Step 6” in the reaction formula (4), compound (2a) was replaced with compound (5a) and compound (3a) was replaced with compound (4c) among the conditions listed in “Step 1”. Conditions can be applied. However, the reaction conditions are not necessarily the same as those in “Step 1”. After completion of “Step 5”, it may be purified by recrystallization, column chromatography, sublimation or the like, if necessary.
 以下、本発明の各態様を実施例に基づきさらに詳細に説明するが、本発明の各態様はこれら実施例により何ら限定して解釈されるものではない。 Hereinafter, each aspect of the present invention will be described in more detail based on examples, but each aspect of the present invention is not construed as being limited to these examples.
 H-NMR測定は、Gemini200(バリアン社製)を用いて行った。
 ガラス転移温度測定は、DSC7020(日立ハイテクサイエンス社製)を用いて行った。
 三重項励起準位測定は、FP-6500(日本分光社製)を用いて行った。三重項励起準位の換算式は以下の通りである。
 三重項励起準位(eV)=1241.6/λonset
 「λonset」は、縦軸にりん光強度、横軸に波長をとった、りん光スペクトルにおいて、短波長側の立ち上がりに対して接線を引き、その接線と横軸の交点の波長値を表す。
 三重項励起準位の分子軌道計算による算出は、Gaussian09(Gaussian社製)を用いて行った。
 有機電界発光素子の発光特性は、室温下、作製した素子に直流電流を印加し、LUMINANCEMETER(BM-9)(TOPCON社製)の輝度計を用いて評価した。
1 H-NMR measurement was performed using Gemini 200 (manufactured by Varian).
The glass transition temperature was measured using DSC7020 (manufactured by Hitachi High-Tech Science).
Triplet excited level measurement was performed using FP-6500 (manufactured by JASCO Corporation). The conversion formula of the triplet excited level is as follows.
Triplet excited level (eV) = 1241.6 / λonset
“Λonset” represents a wavelength value at the intersection of the tangent line and the horizontal axis by drawing a tangent line to the rising edge on the short wavelength side in the phosphorescence spectrum, where the vertical axis indicates the phosphorescence intensity and the horizontal axis indicates the wavelength.
The calculation of the triplet excited level by molecular orbital calculation was performed using Gaussian 09 (manufactured by Gaussian).
The light emission characteristics of the organic electroluminescence device were evaluated by applying a direct current to the fabricated device at room temperature and using a luminance meter of LUMINANCEMETER (BM-9) (manufactured by TOPCON).
 合成例-1 Synthesis example-1
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 アルゴン気流下、2-[3-クロロ-5-(3-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(5.01g,11.9mmol)、ビス(ピナコラト)ジボロン(3.32g,13.1mmol)、酢酸カリウム(3.50g,35.6mmol)、酢酸パラジウム(26.7mg,0.119mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(113.7mg,0.238mmol)をテトラヒドロフラン(70mL)に懸濁し、75℃で22時間撹拌した。室温まで放冷後、反応溶液を減圧濃縮した。得られたスラリーにトルエン(100mL)を加え、100℃で撹拌し、固体を濾別した。得られたろ液を減圧濃縮し、この濃縮液が乾固して得られた固体を再結晶(トルエン)で精製することで、目的の4,6-ジフェニル-2-[3-(3-ピリジル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンの白色固体(収量5.01g,収率82%)を得た。 Under an argon stream, 2- [3-chloro-5- (3-pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (5.01 g, 11.9 mmol), bis (pinacolato) diboron ( 3.32 g, 13.1 mmol), potassium acetate (3.50 g, 35.6 mmol), palladium acetate (26.7 mg, 0.119 mmol), and 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-tri Isopropyl biphenyl (113.7 mg, 0.238 mmol) was suspended in tetrahydrofuran (70 mL) and stirred at 75 ° C. for 22 hours. After cooling to room temperature, the reaction solution was concentrated under reduced pressure. Toluene (100 mL) was added to the resulting slurry, stirred at 100 ° C., and the solid was filtered off. The obtained filtrate was concentrated under reduced pressure, and the solid obtained by drying the concentrated solution was purified by recrystallization (toluene) to obtain the desired 4,6-diphenyl-2- [3- (3-pyridyl). ) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -1,3,5-triazine (yield 5.01 g, yield 82) %).
 合成実施例-1 Synthesis Example-1
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 アルゴン気流下、4,6-ジフェニル-2-[3-(3-ピリジル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(1.10g,2.15mmol)、2-ブロモ-9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン(0.84g,2.53mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(90.3mg,0.078mmol)をテトラヒドロフラン(60mL)に懸濁した。これに、2Mの炭酸カリウム水溶液(4.2mL,8.4mmol)を加え、75℃で72時間撹拌した。室温まで放冷後、反応溶液を減圧濃縮した。得られた濃縮液に水(100mL)を加え、78℃で撹拌し、析出した固体を濾別した。得られた固体を水(30mL)、メタノール(30mL)、ヘキサン(30mL)で洗浄した。この固体をクロロホルム(100mL)に溶解し、シリカゲルを加えたのち、セライトろ過し、ろ液を減圧濃縮した。この濃縮液が乾固して得られた固体を再結晶(トルエン)で2回精製することで、目的の2-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-5-(3-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-257)の白色固体(収量0.81g,収率59%)を得た。 4,6-Diphenyl-2- [3- (3-pyridyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl]-under an argon stream 1,3,5-triazine (1.10 g, 2.15 mmol), 2-bromo-9,10-dihydro-9,10- [1,2] benzenoanthracene (0.84 g, 2.53 mmol), and Tetrakis (triphenylphosphine) palladium (90.3 mg, 0.078 mmol) was suspended in tetrahydrofuran (60 mL). To this was added 2M aqueous potassium carbonate (4.2 mL, 8.4 mmol), and the mixture was stirred at 75 ° C. for 72 hours. After cooling to room temperature, the reaction solution was concentrated under reduced pressure. Water (100 mL) was added to the obtained concentrated liquid, the mixture was stirred at 78 ° C., and the precipitated solid was separated by filtration. The obtained solid was washed with water (30 mL), methanol (30 mL), and hexane (30 mL). This solid was dissolved in chloroform (100 mL), silica gel was added, and the mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure. The solid obtained by drying this concentrated solution was purified twice by recrystallization (toluene), so that the desired 2- [3- (9,10-dihydro-9,10- [1,2] benze was obtained. Noanthracen-2-yl) -5- (3-pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-257) (Yield 0.81 g, 59% yield) )
 H-NMR(CDCl)δ(ppm):5.50(d,J=19.8Hz,2H),6.95-7.00(m,4H),7.34(d,J=7.6Hz,1H),7.36-7.42(m,4H),7.49-7.59(m,8H),7.72(s,1H),7.85(s,1H),8.18(s,1H),8.63(d,J=5.1Hz,1H),8.71(d,J=5.1Hz,4H),8.85(s,1H),8.89(s,1H),9.00(s,1H).
 化合物A-257のガラス転移温度は158℃であった。
 化合物A-257の三重項励起準位は2.9eVであった。
1 H-NMR (CDCl 3 ) δ (ppm): 5.50 (d, J = 19.8 Hz, 2H), 6.95-7.00 (m, 4H), 7.34 (d, J = 7 .6 Hz, 1H), 7.36-7.42 (m, 4H), 7.49-7.59 (m, 8H), 7.72 (s, 1H), 7.85 (s, 1H), 8.18 (s, 1H), 8.63 (d, J = 5.1 Hz, 1H), 8.71 (d, J = 5.1 Hz, 4H), 8.85 (s, 1H), 8. 89 (s, 1H), 9.00 (s, 1H).
Compound A-257 had a glass transition temperature of 158 ° C.
The triplet excited level of Compound A-257 was 2.9 eV.
 合成実施例-2 Synthesis Example-2
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 4,6-ジフェニル-2-[3-(3-ピリジル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンを4,6-ジフェニル-2-[3-(4-ピリジル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンに変更した以外は合成実施例-1と同様の実験操作を行って、2-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-5-(4-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-337)の白色固体(収量0.83g,収率67%)を得た。 4,6-Diphenyl-2- [3- (3-pyridyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -1,3 5-Triazine as 4,6-diphenyl-2- [3- (4-pyridyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl]- 2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracene was prepared in the same manner as in Synthesis Example 1, except that 1,3,5-triazine was used. -2-yl) -5- (4-pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-337) as a white solid (Yield 0.83 g, Yield 67%) Obtained.
 H-NMR(CDCl)δ(ppm):5.50(d,J=19.8Hz,2H),6.96-7.00(m,4H),7.33(d,J=7.6Hz,1H),7.37-7.41(m,4H),7.51-7.61(m,7H),7.70(s,1H),7.93(s,1H),7.97(d,J=6.1Hz,2H),8.70(d,J=7.5Hz,4H),8.75(d,J=5.1Hz,2H),8.96(d,J=11.9Hz,2H).
 化合物A-337のガラス転移温度は167℃であった。
 化合物A-337の三重項励起準位は2.9eVであった。
1 H-NMR (CDCl 3 ) δ (ppm): 5.50 (d, J = 19.8 Hz, 2H), 6.96-7.00 (m, 4H), 7.33 (d, J = 7 .6 Hz, 1H), 7.37-7.41 (m, 4H), 7.51-7.61 (m, 7H), 7.70 (s, 1H), 7.93 (s, 1H), 7.97 (d, J = 6.1 Hz, 2H), 8.70 (d, J = 7.5 Hz, 4H), 8.75 (d, J = 5.1 Hz, 2H), 8.96 (d , J = 11.9 Hz, 2H).
Compound A-337 had a glass transition temperature of 167 ° C.
The triplet excitation level of Compound A-337 was 2.9 eV.
合成実施例-3 Synthesis Example-3
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 4,6-ジフェニル-2-[3-(3-ピリジル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンを4,6-ジフェニル-2-[3-(3-キノリル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンに変更した以外は合成実施例-1と同様の実験操作を行って、2-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-5-(3-キノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-705)の白色固体(収量4.44g,収率73%)を得た。 4,6-Diphenyl-2- [3- (3-pyridyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -1,3 5-Triazine as 4,6-diphenyl-2- [3- (3-quinolyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl]- 2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracene was prepared in the same manner as in Synthesis Example 1, except that 1,3,5-triazine was used. -2-yl) -5- (3-quinolyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-705) as a white solid (Yield 4.44 g, Yield 73%) Obtained.
 H-NMR(CDCl)δ(ppm):5.50(d,J=19.9Hz,2H),6.95-6.99(m,4H),7.36-7.41(m,5H),7.50-7.58(m,8H),7.71(t,J=7.6Hz,1H),7.76(s,1H),7.90(d,J=8.1Hz,1H),7.98(s,1H),8.12(d,J=8.0Hz,1H),8.41(s,1H),8.72(d,J=6.5Hz,4H),8.88(s,1H),8.98(s,1H),9.30(s,1H).
 化合物A-705のガラス転移温度は163℃であった。
1 H-NMR (CDCl 3 ) δ (ppm): 5.50 (d, J = 19.9 Hz, 2H), 6.95-6.99 (m, 4H), 7.36-7.41 (m , 5H), 7.50-7.58 (m, 8H), 7.71 (t, J = 7.6 Hz, 1H), 7.76 (s, 1H), 7.90 (d, J = 8 .1 Hz, 1 H), 7.98 (s, 1 H), 8.12 (d, J = 8.0 Hz, 1 H), 8.41 (s, 1 H), 8.72 (d, J = 6.5 Hz) , 4H), 8.88 (s, 1H), 8.98 (s, 1H), 9.30 (s, 1H).
Compound A-705 had a glass transition temperature of 163 ° C.
合成実施例-4 Synthesis Example 4
Figure JPOXMLDOC01-appb-C000064
 4,6-ジフェニル-2-[3-(3-ピリジル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンを4,6-ジフェニル-2-[3-(4-イソキノリル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンに変更した以外は合成実施例-1と同様の実験操作を行って、2-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-5-(4-イソキノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-769)の白色固体(収量4.11g,収率73%)を得た。
 H-NMR(CDCl)δ(ppm):5.46(d,J=15.3Hz,2H),6.93-6.98(m,4H),7.34-7.38(m,5H),7.48-7.56(m,7H),7.72-7.84(m,4H),8.03(d,J=8.2Hz,1H),8.17(d,J=7.9Hz,1H),8.59(s,1H),8.68(d,J=6.6Hz,4H),8.76(s,1H),8.99(s,1H),9.36(s,1H).
 化合物A-769のガラス転移温度は171℃であった。
Figure JPOXMLDOC01-appb-C000064
4,6-Diphenyl-2- [3- (3-pyridyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -1,3 5-Triazine as 4,6-diphenyl-2- [3- (4-isoquinolyl) -5- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl]- 2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracene was prepared in the same manner as in Synthesis Example 1, except that 1,3,5-triazine was used. -2-yl) -5- (4-isoquinolyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-769) as a white solid (Yield 4.11 g, 73%) Obtained.
1 H-NMR (CDCl 3 ) δ (ppm): 5.46 (d, J = 15.3 Hz, 2H), 6.93-6.98 (m, 4H), 7.34-7.38 (m , 5H), 7.48-7.56 (m, 7H), 7.72-7.84 (m, 4H), 8.03 (d, J = 8.2 Hz, 1H), 8.17 (d , J = 7.9 Hz, 1H), 8.59 (s, 1H), 8.68 (d, J = 6.6 Hz, 4H), 8.76 (s, 1H), 8.99 (s, 1H) ), 9.36 (s, 1H).
Compound A-769 had a glass transition temperature of 171 ° C.
合成実施例-5 Synthesis Example-5
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 アルゴン気流下、2-[3-クロロ-1,1’-ビフェニル-5-イル]-4,6-ジフェニル-1,3,5-トリアジン(4.00g,9.53mmol)、2-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン)ボロン酸(3.12g,10.48mmol)、酢酸パラジウム(22.2mg,0.099mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(92.8mg,0.195mmol)をテトラヒドロフラン(190mL)に懸濁し、75℃で6時間撹拌した。室温まで放冷後、反応溶液を減圧濃縮した。得られたスラリーに水(100mL)を加え、室温で撹拌し、固体を濾別した。得られた固体を水(50mL)、メタノール(50mL)、ヘキサン(50mL)で洗浄した。この固体をo-キシレン(200mL)に溶解し、シリカゲルを加えたのち、セライトろ過し、ろ液を減圧濃縮した。この濃縮液が乾固して得られた固体を再結晶(トルエン)で精製することで、2-[5-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-97)の白色固体(収量5.58g,収率92%)を得た。 Under an argon stream, 2- [3-chloro-1,1′-biphenyl-5-yl] -4,6-diphenyl-1,3,5-triazine (4.00 g, 9.53 mmol), 2- (9 , 10-dihydro-9,10- [1,2] benzenoanthracene) boronic acid (3.12 g, 10.48 mmol), palladium acetate (22.2 mg, 0.099 mmol), and 2-dicyclohexylphosphino-2 ', 4', 6'-Triisopropylbiphenyl (92.8 mg, 0.195 mmol) was suspended in tetrahydrofuran (190 mL) and stirred at 75 ° C. for 6 hours. After cooling to room temperature, the reaction solution was concentrated under reduced pressure. Water (100 mL) was added to the resulting slurry, stirred at room temperature, and the solid was filtered off. The obtained solid was washed with water (50 mL), methanol (50 mL), and hexane (50 mL). This solid was dissolved in o-xylene (200 mL), silica gel was added, and the mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure. The solid obtained by drying this concentrated solution was purified by recrystallization (toluene) to give 2- [5- (9,10-dihydro-9,10- [1,2] benzenoanthracene-2 -Il) -1,1′-biphenyl-3-yl] -4,6-diphenyl-1,3,5-triazine (Compound A-97) as a white solid (5.58 g, 92% yield) Obtained.
 H-NMR(CDCl)δ(ppm):5.46(d,J=15.7Hz,2H),6.92-6.97(m,4H),7.31-7.38(m,6H),7.43-7.56(m,9H),7.66-7.71(m,3H),7.85(s,1H),8.70(d,J=6.7Hz,4H),8.77(s,1H),8.83(s,1H).
 化合物A-97のガラス転移温度は155℃であった。
 化合物A-97の三重項励起準位は2.9eVであった。
1 H-NMR (CDCl 3 ) δ (ppm): 5.46 (d, J = 15.7 Hz, 2H), 6.92-6.97 (m, 4H), 7.31-7.38 (m 6H), 7.43-7.56 (m, 9H), 7.66-7.71 (m, 3H), 7.85 (s, 1H), 8.70 (d, J = 6.7 Hz). , 4H), 8.77 (s, 1H), 8.83 (s, 1H).
Compound A-97 had a glass transition temperature of 155 ° C.
The triplet excited level of Compound A-97 was 2.9 eV.
合成実施例-6 Synthesis Example-6
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 2-[3-クロロ-1,1’-ビフェニル-5-イル]-4,6-ジフェニル-1,3,5-トリアジンを2-(2-ビフェニル)-4-(4-ビフェニル)-6-[3-クロロ-1,1’-ビフェニル-5-イル]-1,3,5-トリアジン、2-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン)ボロン酸を2-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセンに変更した以外は合成実施例-5と同様の実験操作を行って、2-(2-ビフェニル)-4-(4-ビフェニル)-6-[5-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-1,1’-ビフェニル-3-イル]-1,3,5-トリアジン(化合物A-1354)の白色固体(収量0.55g,収率79%)を得た。 2- [3-Chloro-1,1′-biphenyl-5-yl] -4,6-diphenyl-1,3,5-triazine as 2- (2-biphenyl) -4- (4-biphenyl) -6 -[3-Chloro-1,1'-biphenyl-5-yl] -1,3,5-triazine, 2- (9,10-dihydro-9,10- [1,2] benzenoanthracene) boronic acid Except that is changed to 2- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,10-dihydro-9,10- [1,2] benzenoanthracene Was subjected to the same experimental procedure as in Synthesis Example-5 to give 2- (2-biphenyl) -4- (4-biphenyl) -6- [5- (9,10-dihydro-9,10- [1, 2] Benzenoanthracen-2-yl) -1,1'-biphenyl-3-yl] -1,3,5 A white solid (yield 0.55 g, yield 79%) of triazine (compound A-1354) was obtained.
 H-NMR(CDCl)δ(ppm):5.55(d,J=14.9Hz,2H),7.01-7.06(m,4H),7.11(t,J=7.3Hz,1H),7.24(t,J=7.9Hz,2H),7.32-7.36(m,3H),7.39-7.70(m,20H),7.73(s,1H),7.86(s,1H),8.33(d,J=7.6Hz,1H),8.42(d,J=8.4Hz,2H),8.49(s,2H).
 化合物A-1354のガラス転移温度は159℃であった。
1 H-NMR (CDCl 3 ) δ (ppm): 5.55 (d, J = 14.9 Hz, 2H), 7.01-7.06 (m, 4H), 7.11 (t, J = 7 .3 Hz, 1H), 7.24 (t, J = 7.9 Hz, 2H), 7.32-7.36 (m, 3H), 7.39-7.70 (m, 20H), 7.73 (S, 1H), 7.86 (s, 1H), 8.33 (d, J = 7.6 Hz, 1H), 8.42 (d, J = 8.4 Hz, 2H), 8.49 (s , 2H).
Compound A-1354 had a glass transition temperature of 159 ° C.
合成実施例-7 Synthesis Example-7
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 2-(2-ビフェニル)-4-(4-ビフェニル)-6-[3-クロロ-1,1’-ビフェニル-5-イル]-1,3,5-トリアジンを4,6-ジフェニル-2-[3-(4-クロロ-3-ピリジル)]フェニル-1,3,5-トリアジン、2-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン)ボロン酸を2-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセンに変更した以外は合成実施例-5と同様の実験操作を行って、2-{3-[4-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-3-ピリジル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(化合物A-8)の白色固体(収量3.28g,収率62%)を得た。 2- (2-biphenyl) -4- (4-biphenyl) -6- [3-chloro-1,1′-biphenyl-5-yl] -1,3,5-triazine is converted to 4,6-diphenyl-2 -[3- (4-Chloro-3-pyridyl)] phenyl-1,3,5-triazine, 2- (9,10-dihydro-9,10- [1,2] benzenoanthracene) boronic acid -(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,10-dihydro-9,10- [1,2] benzenoanthracene The same experimental procedure as in Example 5 was performed, and 2- {3- [4- (9,10-dihydro-9,10- [1,2] benzenoanthracen-2-yl) -3-pyridyl] Phenyl} -4,6-diphenyl-1,3,5-triazine (Compound A-8) White solid (Yield 3.28 g, 62% yield).
 H-NMR(CDCl)δ(ppm):5.47(d,J=24.1Hz,2H),6.93-6.97(m,4H),7.34-7.38(m,4H),7.45(d,J=7.9Hz,1H),7.50-7.65(m,8H),7.75(d,J=8.3Hz,1H),7.80(d,J=8.1Hz,1H),8.00(d,J=8.1Hz,1H),8.13(s,1H),8.72-8.76(m,5H),8.98(s,1H),9.00(s,1H).
 化合物A-8のガラス転移温度は148℃であった。
1 H-NMR (CDCl 3 ) δ (ppm): 5.47 (d, J = 24.1 Hz, 2H), 6.93-6.97 (m, 4H), 7.34-7.38 (m 4H), 7.45 (d, J = 7.9 Hz, 1H), 7.50-7.65 (m, 8H), 7.75 (d, J = 8.3 Hz, 1H), 7.80. (D, J = 8.1 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 8.13 (s, 1H), 8.72-8.76 (m, 5H), 8 .98 (s, 1H), 9.00 (s, 1H).
Compound A-8 had a glass transition temperature of 148 ° C.
合成実施例-8 Synthesis Example-8
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 2-(2-ビフェニル)-4-(4-ビフェニル)-6-[3-クロロ-1,1’-ビフェニル-5-イル]-1,3,5-トリアジンを4,6-ジフェニル-2-[3-(3-クロロ-4-ピリジル)]フェニル-1,3,5-トリアジン、2-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン)ボロン酸を2-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセンに変更した以外は合成実施例-5と同様の実験操作を行って、2-{3-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-4-ピリジル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(化合物A-11)の白色固体(収量3.28g,収率62%)を得た。 2- (2-biphenyl) -4- (4-biphenyl) -6- [3-chloro-1,1′-biphenyl-5-yl] -1,3,5-triazine is converted to 4,6-diphenyl-2 -[3- (3-chloro-4-pyridyl)] phenyl-1,3,5-triazine, 2- (9,10-dihydro-9,10- [1,2] benzenoanthracene) boronic acid -(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -9,10-dihydro-9,10- [1,2] benzenoanthracene The same experimental procedure as in Example 5 was performed, and 2- {3- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracen-2-yl) -4-pyridyl] Phenyl} -4,6-diphenyl-1,3,5-triazine (Compound A-11) To give a white solid (Yield 3.28 g, 62% yield).
 H-NMR(CDCl)δ(ppm):5.47(d,J=22.9Hz,2H),6.92-6.97(m,4H),7.32-7.37(m,4H),7.46(d,J=7.3Hz,1H),7.50-7.59(m,7H),7.64-7.67(m,2H),7.82(d,J=8.0Hz,1H),7.92(s,1H),8.12(s,1H),8.71-8.74(m,5H),8.81(d,J=8.0Hz,1H),8.96(s,1H).
 化合物A-11のガラス転移温度は148℃であった。
1 H-NMR (CDCl 3 ) δ (ppm): 5.47 (d, J = 22.9 Hz, 2H), 6.92-6.97 (m, 4H), 7.32-7.37 (m , 4H), 7.46 (d, J = 7.3 Hz, 1H), 7.50-7.59 (m, 7H), 7.64-7.67 (m, 2H), 7.82 (d , J = 8.0 Hz, 1H), 7.92 (s, 1H), 8.12 (s, 1H), 8.71-8.74 (m, 5H), 8.81 (d, J = 8 .0Hz, 1H), 8.96 (s, 1H).
The glass transition temperature of Compound A-11 was 148 ° C.
 合成実施例-1~合成実施例-8および参考例-1で得られた化合物のガラス転移温度を表1に示す。 Table 1 shows the glass transition temperatures of the compounds obtained in Synthesis Example-1 to Synthesis Example-8 and Reference Example-1.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
 特開2011-063584に記載されている2-[5-(9-フェナントリル)-3-(4-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(ETL-3)と比較すると、本発明の一態様にかかるトリプチセン構造を有する基が結合した環状アジン化合物は、極めて高いガラス転移温度を有していることがわかる。 2- [5- (9-phenanthryl) -3- (4-pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (ETL-3) described in JP-A-2011-063584 Comparison shows that the cyclic azine compound to which a group having a triptycene structure according to one embodiment of the present invention is bonded has a very high glass transition temperature.
 合成実施例-1,2,5,8および参考例-1、並びに、実施例9~14(化合物A-1、化合物A-21、化合物A-33、化合物A-1185、化合物A-1305、化合物A-1333)で得られた化合物の三重項励起準位を表2、表3に示す。 Synthesis Examples-1, 2, 5, 8 and Reference Example-1, and Examples 9 to 14 (Compound A-1, Compound A-21, Compound A-33, Compound A-1185, Compound A-1305, Tables 2 and 3 show triplet excited levels of the compound obtained as Compound A-1333).
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
 特開2011-063584に記載されている2-[5-(9-フェナントリル)-3-(4-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(ETL-3)と比較すると、トリプチセン構造を有する基が結合した本発明の一態様にかかる環状アジン化合物は、高い三重項励起準位を有していることが分かる。
 ただし、表2における三重項励起準位は、前述のFP-6500(日本分光社製)を用いて測定した実測値である。
 表3における三重項励起準位は、Gaussian09(Gaussian社製)を用いて行ったDFT計算(B3LYP/6-31G(d))による値である。
2- [5- (9-phenanthryl) -3- (4-pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (ETL-3) described in JP-A-2011-063584 Comparison shows that the cyclic azine compound according to one embodiment of the present invention to which a group having a triptycene structure is bonded has a high triplet excitation level.
However, the triplet excitation level in Table 2 is an actual measurement value measured using the aforementioned FP-6500 (manufactured by JASCO Corporation).
The triplet excited level in Table 3 is a value obtained by DFT calculation (B3LYP / 6-31G (d)) performed using Gaussian 09 (manufactured by Gaussian).
 次に素子評価について記載する。
 素子評価に用いた化合物の構造式及びその略称を以下に示す。
Next, element evaluation will be described.
The structural formulas and abbreviations of the compounds used for device evaluation are shown below.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 素子実施例-1
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜(膜厚110nm)がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図を図1に示すような発光面積4mm有機電界発光素子を作製した。なお、各有機材料は抵抗加熱方式により成膜した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。
 その後、図1の1で示すITO透明電極付きガラス基板上に有機化合物層として、正孔注入層2、電荷発生層3、第一正孔輸送層4、第二正孔輸送層5、発光層6、第一電子輸送層7、第二電子輸送層8、及び陰極層9を、この順番に積層させながら、いずれも真空蒸着で成膜した。
Element Example-1
As the substrate, a glass substrate with an ITO transparent electrode on which a 2 mm wide indium-tin oxide (ITO) film (thickness 110 nm) was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface treated by ozone ultraviolet cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG. Each organic material was formed by a resistance heating method.
First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 × 10 −4 Pa.
Thereafter, as an organic compound layer on the glass substrate with an ITO transparent electrode shown by 1 in FIG. 6. The first electron transport layer 7, the second electron transport layer 8, and the cathode layer 9 were all formed by vacuum deposition while being laminated in this order.
 正孔注入層2としては、昇華精製したHILを0.15nm/秒の速度で55nm成膜
した。
 電荷発生層3としては、昇華精製したHATを0.05nm/秒の速度で5nm成膜した。
 第一正孔輸送層4としては、HTL-1を0.15nm/秒の速度で10nm成膜した。
 第二正孔輸送層5としては、HTL-2を0.15nm/秒の速度で10nm成膜した。
 発光層6としては、EML-1とEML-2を95:5の割合で25nm成膜した(成膜速度0.18nm/秒)。
 第一電子輸送層7としては、ETL-1を0.15nm/秒の速度で5nm成膜した。
 第二電子輸送層8としては、合成実施例-1で合成した2-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-5-(3-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-257)及びLiqを50:50(重量比)の割合で25nm成膜した(成膜速度0.15nm/秒)。
As the hole injection layer 2, a sublimated HIL film having a thickness of 55 nm was formed at a rate of 0.15 nm / second.
As the charge generation layer 3, sublimation-purified HAT was deposited to a thickness of 5 nm at a rate of 0.05 nm / second.
As the first hole transport layer 4, HTL-1 was deposited to a thickness of 10 nm at a rate of 0.15 nm / second.
As the second hole transport layer 5, HTL-2 was deposited to a thickness of 10 nm at a rate of 0.15 nm / second.
As the light emitting layer 6, EML-1 and EML-2 were deposited to a thickness of 25 nm at a ratio of 95: 5 (deposition rate of 0.18 nm / second).
As the first electron transport layer 7, ETL-1 was deposited to a thickness of 5 nm at a rate of 0.15 nm / second.
As the second electron transport layer 8, 2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracen-2-yl) -5- (synthesized in Synthesis Example-1 was used. 3-Pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-257) and Liq were deposited at a ratio of 50:50 (weight ratio) to a thickness of 25 nm (deposition rate of 0.15 nm). / Sec).
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層9を成膜した。
 陰極層9は、銀/マグネシウム(重量比1/10)と銀を、この順番に、それぞれ80nm(成膜速度0.5nm/秒)と20nm(成膜速度0.2nm/秒)で成膜し、2層構造とした。
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK)で測定した。
Finally, a metal mask was disposed so as to be orthogonal to the ITO stripe, and the cathode layer 9 was formed.
The cathode layer 9 is formed of silver / magnesium (weight ratio 1/10) and silver in this order at 80 nm (film formation rate 0.5 nm / second) and 20 nm (film formation rate 0.2 nm / second), respectively. And it was set as the 2 layer structure.
Each film thickness was measured with a stylus type film thickness meter (DEKTAK).
 さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。 Furthermore, this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. For the sealing, a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation) were used.
 上記のようにして作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、電流効率(cd/A)を測定し、連続点灯時の素子寿命(h)を測定した。なお、表4の素子寿命は、作製した素子を初期輝度1000cd/mで駆動したときの連続点灯時の輝度減衰時間を測定し、輝度(cd/m)が10%減じるまでに要した時間を測定した。電圧、電流効率、及び素子寿命は、後述の素子参考例1における結果を基準値(100)とした相対値で示した。結果を表4に示す。 A direct current was applied to the organic electroluminescent device produced as described above, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON. As light emission characteristics, voltage (V) and current efficiency (cd / A) when a current density of 10 mA / cm 2 was passed were measured, and element lifetime (h) during continuous lighting was measured. Incidentally, the element lifetime of Table 4, the luminance was measured decay time at the time of continuous lighting when driving was prepared device at an initial luminance 1000 cd / m 2, the luminance (cd / m 2) is required until reduced 10% Time was measured. The voltage, current efficiency, and element lifetime were expressed as relative values based on the result in element reference example 1 described later as a reference value (100). The results are shown in Table 4.
素子実施例-2
 素子実施例1において、化合物A-257の代わりに合成実施例-2で合成した2-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-5-(4-ピリジル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-337)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。結果を表4に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子参考例-1における結果を基準値(100)とした相対値で示した。
Element Example-2
2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracen-2-yl) synthesized in Synthesis Example-2 in place of Compound A-257 in Device Example 1 An organic electroluminescent device was prepared in the same manner as in Device Example 1 except that −5- (4-pyridyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-337) was used. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
素子実施例-3
 素子実施例1において、化合物A-257の代わりに合成実施例-3で合成した2-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-5-(3-キノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-705)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。結果を表4に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子参考例-1における結果を基準値(100)とした相対値で示した。
Element Example-3
2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracen-2-yl) synthesized in Synthesis Example 3 instead of Compound A-257 in Device Example 1 An organic electroluminescent device was prepared in the same manner as in Device Example 1 except that -5- (3-quinolyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-705) was used. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
素子実施例-4
 素子実施例1において、化合物A-257の代わりに合成実施例-4で合成した2-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-5-(4-イソキノリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物A-769)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。結果を表4に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子参考例-1における結果を基準値(100)とした相対値で示した。
Element Example 4
2- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracen-2-yl) synthesized in Synthesis Example 4 instead of Compound A-257 in Device Example 1 An organic electroluminescent device was prepared in the same manner as in Device Example 1 except that −5- (4-isoquinolyl) phenyl] -4,6-diphenyl-1,3,5-triazine (Compound A-769) was used. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
素子実施例-5
 素子実施例1において、化合物A-257の代わりに合成実施例-6で合成した2-(2-ビフェニル)-4-(4-ビフェニル)-6-[5-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-1,1’-ビフェニル-3-イル]-1,3,5-トリアジン(化合物A-1354)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。結果を表4に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子参考例-1における結果を基準値(100)とした相対値で示した。
Element Example-5
In Device Example 1, instead of Compound A-257, 2- (2-biphenyl) -4- (4-biphenyl) -6- [5- (9,10-dihydro-9) synthesized in Synthesis Example-6 was used. , 10- [1,2] Benzenoanthracen-2-yl) -1,1′-biphenyl-3-yl] -1,3,5-triazine (Compound A-1354) An organic electroluminescent device was prepared and evaluated in the same manner as in Example-1. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
素子実施例-6
 素子実施例1において、化合物A-257の代わりに合成実施例-7で合成した2-{3-[4-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-3-ピリジル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(化合物A-8)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。結果を表4に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子参考例-1における結果を基準値(100)とした相対値で示した。
Element Example-6
In Device Example 1, 2- {3- [4- (9,10-dihydro-9,10- [1,2] benzenoanthracene-2 synthesized in Synthesis Example-7 instead of Compound A-257 -Yl) -3-pyridyl] phenyl} -4,6-diphenyl-1,3,5-triazine (Compound A-8) was used to prepare an organic electroluminescent device in the same manner as in Device Example-1. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
素子実施例-7
 素子実施例1において、化合物A-257の代わりに合成実施例-8で合成した2-{3-[3-(9,10-ジヒドロ-9,10-[1,2]ベンゼノアントラセン-2-イル)-4-ピリジル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(化合物A-11)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。結果を表4に示す。なお、電圧、電流効率、及び素子寿命は、後述の素子参考例-1における結果を基準値(100)とした相対値で示した。
Element Example-7
2- {3- [3- (9,10-dihydro-9,10- [1,2] benzenoanthracene-2 synthesized in Synthesis Example-8 instead of Compound A-257 in Device Example 1 -Il) -4-pyridyl] phenyl} -4,6-diphenyl-1,3,5-triazine (Compound A-11) was used to produce an organic electroluminescent device in the same manner as in Device Example-1. Prepared and evaluated. The results are shown in Table 4. Note that the voltage, current efficiency, and element lifetime were expressed as relative values with the result in element reference example-1 described later as the reference value (100).
素子参考例-1
 素子実施例-1において、化合物A-257の代わりに特開2011-063584に記載されている2-[5-(9-フェナントリル)-4’-(2-ピリミジル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(ETL-2)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。結果を表4に示した。なお、電圧、電流効率、及び素子寿命については、本素子参考例-1の結果を基準値(100)とした。
Device reference example-1
In Device Example-1, instead of Compound A-257, 2- [5- (9-phenanthryl) -4 ′-(2-pyrimidyl) biphenyl-3-yl] described in JP2011-063584- An organic electroluminescent device was prepared and evaluated in the same manner as in Device Example 1 except that 4,6-diphenyl-1,3,5-triazine (ETL-2) was used. The results are shown in Table 4. For the voltage, current efficiency, and element lifetime, the result of this element reference example-1 was used as the reference value (100).
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 本発明の一態様にかかる環状アジン化合物(1)は膜質の耐熱性に極めて優れ、当該化合物を用いることによって長寿命性及び発光効率に優れる有機電界発光素子を提供することができる。
 また、本発明の一態様にかかる環状アジン化合物(1)は、低駆動電圧に優れる有機電界発光素子用電子輸送材料として利用される。さらに、本発明の一態様によれば、消費電力に優れる有機電界発光素子を提供することができる。
 また、本発明の一態様にかかる環状アジン化合物は、昇華精製時の熱安定性が良いために昇華精製の操作性に優れ、有機電界発光素子の素子劣化の原因となる不純物の少ない材料を提供することができる。また、本発明の一態様にかかる環状アジン化合物は蒸着膜の安定性に優れるために長寿命な有機電界発光素子を提供することができる。
 また、本発明の一態様にかかる環状アジン化合物(1)から成る薄膜は、電子輸送能、正孔ブロック能、酸化還元耐性、耐水性、耐酸素性、電子注入特性等に優れるため、有機電界発光素子の材料として有用であり、電子輸送材、正孔ブロック材、発光ホスト材等として有用である。とりわけ電子輸送材と用いた際に有用である。
 また本発明の一態様にかかる環状アジン化合物(1)はワイドバンドギャップであり、かつ高い三重項励起準位を有するため、従来の蛍光素子用途のみならず、燐光素子や熱活性化遅延蛍光(TADF)を利用した有機電界発光素子へ好適に用いることができる。
The cyclic azine compound (1) according to one embodiment of the present invention is extremely excellent in heat resistance of film quality, and by using the compound, an organic electroluminescent device excellent in long life and luminous efficiency can be provided.
Moreover, the cyclic azine compound (1) concerning 1 aspect of this invention is utilized as an electron transport material for organic electroluminescent elements which is excellent in a low drive voltage. Furthermore, according to one embodiment of the present invention, an organic electroluminescent element having excellent power consumption can be provided.
In addition, the cyclic azine compound according to one embodiment of the present invention is excellent in sublimation purification operability due to good thermal stability during sublimation purification, and provides a material with less impurities causing deterioration of the organic electroluminescence device. can do. In addition, since the cyclic azine compound according to one embodiment of the present invention is excellent in stability of a deposited film, an organic electroluminescent element having a long lifetime can be provided.
In addition, the thin film formed of the cyclic azine compound (1) according to one embodiment of the present invention is excellent in electron transport ability, hole blocking ability, redox resistance, water resistance, oxygen resistance, electron injection characteristics, etc. It is useful as an element material, and is useful as an electron transport material, a hole blocking material, a light emitting host material and the like. It is particularly useful when used as an electron transport material.
In addition, since the cyclic azine compound (1) according to one embodiment of the present invention has a wide band gap and a high triplet excitation level, it can be used not only for conventional fluorescent devices but also for phosphorescent devices and thermally activated delayed fluorescence ( It can be suitably used for an organic electroluminescent device using TADF).
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2017年3月21日に出願された日本国特許出願2017-054059号の明細書、特許請求の範囲、図面及び要約書、ならびに、2018年3月2日に出願された日本国特許出願2018-037670号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The specification, claims, drawings and abstract of Japanese Patent Application No. 2017-054059 filed on March 21, 2017, and the Japanese Patent Application filed on March 2, 2018. The entire contents of the specification, claims, drawings and abstract of 2018-037670 are hereby incorporated herein by reference as the disclosure of the specification of the present invention.
 1.ITO透明電極付きガラス基板
 2.正孔注入層
 3.電荷発生層
 4.第一正孔輸送層
 5.第二正孔輸送層
 6.発光層
 7.第一電子輸送層
 8.第二電子輸送層
 9.陰極層
1. 1. Glass substrate with ITO transparent electrode 2. hole injection layer Charge generation layer 4. First hole transport layer 5. Second hole transport layer 6. Light emitting layer 7. First electron transport layer 8. Second electron transport layer 9. Cathode layer

Claims (12)

  1.  式(1)で示される環状アジン化合物:
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、
     Arは、各々独立に、置換もしくは無置換の、フェニル基、ナフチル基、又はピリジル基を表す;
     Arは、
      置換もしくは無置換の炭素数6~24の単環若しくは縮環芳香族炭化水素基、
      置換もしくは無置換の6員環のみからなる炭素数4~25の単環若しくは縮環含窒素ヘテロ芳香族基、
      置換もしくは無置換のH、C、O、及びSからなる原子群から選ばれる原子で構成される炭素数3~25の単環若しくは縮環ヘテロ芳香族基、又は
      水素原子を表す;
     Ar、及びArは、各々独立に、
      置換もしくは無置換の、フェニル基、ナフチル基、ピリジル基、
      水素原子、
      無置換の炭素数1~4のアルキル基、又は、
      Xと結合する単結合を表す;
     Ar、及びArは、各々独立に、
      置換もしくは無置換の、フェニル基、ナフチル基、ピリジル基、
      水素原子、
      無置換の炭素数1~4のアルキル基、又は、
      Xと結合する単結合を表す;
     W、W、及びWは、
      各々独立に、C-H、又は窒素原子を表し、
      少なくとも2つはC-Hを表す;
     X、及びXは、各々独立に、
      置換もしくは無置換の、フェニレン基、ナフチレン基、ビフェニレン基、ピリジレン基、又は、
      単結合を表す;
     Y、Y、Y、及びYは、各々独立に、
      C-Rで表される基、又は、
      窒素原子を表す;
     Rは、各々独立に、
      置換もしくは無置換の、フェニル基、ナフチル基、ピリジル基、
      水素原子、
      無置換の炭素数1~4のアルキル基、又は、
      無置換の炭素数1~4のアルケニル基を表す;
     Rは、互いに結合し、芳香環を形成していてもよい;
     Zは、窒素原子又はC-Hを表す;
     Ar、Ar~Ar、X~X、Rが置換基を有する場合、該置換基は、フッ素原子、メチル基、又はフェニル基である;
     Arが置換基を有する場合、該置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基である。
    Cyclic azine compound represented by the formula (1):
    Figure JPOXMLDOC01-appb-C000001
    In formula (1),
    Ar 1 each independently represents a substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group;
    Ar 2 is
    A substituted or unsubstituted monocyclic or condensed aromatic hydrocarbon group having 6 to 24 carbon atoms,
    A monocyclic or condensed nitrogen-containing heteroaromatic group having 4 to 25 carbon atoms consisting of only a substituted or unsubstituted 6-membered ring,
    Represents a monocyclic or condensed heteroaromatic group having 3 to 25 carbon atoms composed of an atom selected from the group consisting of substituted or unsubstituted H, C, O, and S, or a hydrogen atom;
    Ar 3 and Ar 4 are each independently
    Substituted or unsubstituted phenyl, naphthyl, pyridyl,
    Hydrogen atom,
    An unsubstituted alkyl group having 1 to 4 carbon atoms, or
    Represents a single bond bonded to X 2 ;
    Ar 5 and Ar 6 are each independently
    Substituted or unsubstituted phenyl, naphthyl, pyridyl,
    Hydrogen atom,
    An unsubstituted alkyl group having 1 to 4 carbon atoms, or
    Represents a single bond bonded to X 2 ;
    W 1 , W 2 , and W 3 are
    Each independently represents C—H or a nitrogen atom;
    At least two represent C—H;
    X 1 and X 2 are each independently
    Substituted or unsubstituted phenylene group, naphthylene group, biphenylene group, pyridylene group, or
    Represents a single bond;
    Y 1 , Y 2 , Y 3 , and Y 4 are each independently
    A group represented by CR, or
    Represents a nitrogen atom;
    Each R is independently
    Substituted or unsubstituted phenyl, naphthyl, pyridyl,
    Hydrogen atom,
    An unsubstituted alkyl group having 1 to 4 carbon atoms, or
    Represents an unsubstituted alkenyl group having 1 to 4 carbon atoms;
    R may be bonded to each other to form an aromatic ring;
    Z represents a nitrogen atom or C—H;
    When Ar 1 , Ar 3 to Ar 6 , X 1 to X 2 , or R has a substituent, the substituent is a fluorine atom, a methyl group, or a phenyl group;
    When Ar 2 has a substituent, the substituent is a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. An alkoxy group;
  2.  Zが、窒素原子である、請求項1に記載の環状アジン化合物。 The cyclic azine compound according to claim 1, wherein Z is a nitrogen atom.
  3.  2つのArが、同じ基を表し、かつ、置換もしくは無置換の、フェニル基、ナフチル基、又はピリジル基であり、
     Arが置換基を有する場合、該置換基は、フッ素原子、メチル基、又はフェニル基である、請求項1、又は2に記載の環状アジン化合物。
    Two Ar 1 represent the same group and are a substituted or unsubstituted phenyl group, naphthyl group, or pyridyl group;
    The cyclic azine compound according to claim 1 or 2, wherein when Ar 1 has a substituent, the substituent is a fluorine atom, a methyl group, or a phenyl group.
  4.  2つのArが、いずれもフェニル基である、請求項1~3のいずれか1項に記載の環状アジン化合物。 The cyclic azine compound according to any one of claims 1 to 3, wherein each of the two Ar 1 is a phenyl group.
  5.  Arが、
      水素原子、または、
      置換もしくは無置換の、フェニル基、ナフチル基、フルオレニル基、アントリル基、フェナントリル基、ベンゾフルオレニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリミジル基、ピリジル基、ピラジル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基であり、
     Arが置換基を有する場合、該置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基である、請求項1~4のいずれか1項に記載の環状アジン化合物。
    Ar 2 is
    A hydrogen atom, or
    Substituted or unsubstituted phenyl, naphthyl, fluorenyl, anthryl, phenanthryl, benzofluorenyl, pyrenyl, perylenyl, fluoranthenyl, triphenylenyl, pyrimidyl, pyridyl, pyridyl, Quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, dibenzothienyl group,
    When Ar 2 has a substituent, the substituent is a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. The cyclic azine compound according to any one of claims 1 to 4, which is an alkoxy group.
  6.  Arが、置換もしくは無置換の、フルオレニル基、ベンゾフルオレニル基、ピリジル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、又はジベンゾチエニル基であり、
     Arが置換基を有する場合、該置換基は、フェニル基、トリル基、ピリジル基、メチルピリジル基、ジメチルピリジル基、フッ素原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基である、請求項1~5のいずれか1項に記載の環状アジン化合物。
    Ar 2 is a substituted or unsubstituted fluorenyl group, benzofluorenyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, dibenzofuranyl group, or dibenzothienyl group,
    When Ar 2 has a substituent, the substituent is a phenyl group, a tolyl group, a pyridyl group, a methylpyridyl group, a dimethylpyridyl group, a fluorine atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. The cyclic azine compound according to any one of claims 1 to 5, which is an alkoxy group.
  7.  Ar、及びArが、各々独立に、
      水素原子;
      無置換の、フェニル基、ナフチル基、ピリジル基;、又は、
      Xと結合する単結合;である、請求項1~6のいずれか1項に記載の環状アジン化合物。
    Ar 3 and Ar 4 are each independently
    Hydrogen atom;
    Unsubstituted phenyl group, naphthyl group, pyridyl group; or
    Single bond to bond to X 2; a, cyclic azine compound according to any one of claims 1 to 6.
  8.  X、及びXが、各々独立に、
      単結合;
      無置換の、フェニレン基、ナフチレン基、ビフェニレン基、又はピリジレン基;である、請求項1~7のいずれか1項に記載の環状アジン化合物。
    X 1 and X 2 are each independently
    Single bond;
    The cyclic azine compound according to any one of claims 1 to 7, which is an unsubstituted phenylene group, naphthylene group, biphenylene group, or pyridylene group.
  9.  Y、Y、Y、及びYが、全てC-Rで表される基であり、
     該Rは、各々独立に、
      水素原子;
      無置換の、炭素数1~4のアルキル基、炭素数1~4のアルケニル基、フェニル基、ナフチル基、又はピリジル基;である請求項1~8のいずれか1項に記載の環状アジン化合物。
    Y 1 , Y 2 , Y 3 , and Y 4 are all groups represented by C—R;
    Each R is independently
    Hydrogen atom;
    The cyclic azine compound according to any one of claims 1 to 8, which is an unsubstituted alkyl group having 1 to 4 carbon atoms, an alkenyl group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group, or a pyridyl group. .
  10.  W、W、及びWが、全てC-Hである、請求項1~9のいずれか1項に記載の環状アジン化合物。 The cyclic azine compound according to any one of claims 1 to 9, wherein W 1 , W 2 , and W 3 are all C—H.
  11.  請求項1~10のいずれか1項に記載の式(1)で示される環状アジン化合物を含む有機電界発光素子用材料。 A material for an organic electroluminescence device comprising the cyclic azine compound represented by the formula (1) according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか1項に記載の式(1)で示される環状アジン化合物を含む有機電界発光素子用電子輸送材料。 An electron transport material for an organic electroluminescence device comprising the cyclic azine compound represented by the formula (1) according to any one of claims 1 to 10.
PCT/JP2018/009952 2017-03-21 2018-03-14 Cyclic azine compound, material for organic electroluminescent element, and electron transport material for organic electroluminescent element WO2018173882A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-054059 2017-03-21
JP2017054059 2017-03-21
JP2018037670A JP7318178B2 (en) 2017-03-21 2018-03-02 Cyclic azine compounds, materials for organic electroluminescence devices, electron transport materials for organic electroluminescence devices
JP2018-037670 2018-03-02

Publications (1)

Publication Number Publication Date
WO2018173882A1 true WO2018173882A1 (en) 2018-09-27

Family

ID=63586012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009952 WO2018173882A1 (en) 2017-03-21 2018-03-14 Cyclic azine compound, material for organic electroluminescent element, and electron transport material for organic electroluminescent element

Country Status (1)

Country Link
WO (1) WO2018173882A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163959A1 (en) * 2018-02-26 2019-08-29 東ソー株式会社 Cyclic azine compound, material for organic electroluminescnet element, and electron-transporting material for organic electroluminescent element
JP2019147791A (en) * 2018-02-26 2019-09-05 東ソー株式会社 Cyclic azine compound, material for organic electroluminescent element, and electron transportation material for organic electroluminescent element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520255A (en) * 1997-10-10 2001-10-30 アクシーバ・ゲーエムベーハー Triptycene derivatives and their use especially for opto-electronic applications as electroluminescent materials
JP2004095554A (en) * 2002-08-29 2004-03-25 Canon Inc Organic light emitting device using iptycene derivative
JP2007520875A (en) * 2003-11-27 2007-07-26 メルク パテント ゲーエムベーハー Organic electroluminescence device
US20090105488A1 (en) * 2007-10-22 2009-04-23 Chien-Hong Cheng Triptycene derivatives and their application
JP2010074111A (en) * 2008-09-22 2010-04-02 Fujifilm Corp Organic electroluminescent element
WO2010082621A1 (en) * 2009-01-19 2010-07-22 新日鐵化学株式会社 Organic electroluminescent element
JP2011063584A (en) * 2009-08-21 2011-03-31 Tosoh Corp Triazine derivative, method for producing the same and organic electroluminescent element comprising the same as constituent component
WO2015182547A1 (en) * 2014-05-28 2015-12-03 東レ株式会社 Fluoranthene derivative, electronic device containing same, light-emitting element, and photoelectric conversion element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520255A (en) * 1997-10-10 2001-10-30 アクシーバ・ゲーエムベーハー Triptycene derivatives and their use especially for opto-electronic applications as electroluminescent materials
JP2004095554A (en) * 2002-08-29 2004-03-25 Canon Inc Organic light emitting device using iptycene derivative
JP2007520875A (en) * 2003-11-27 2007-07-26 メルク パテント ゲーエムベーハー Organic electroluminescence device
US20090105488A1 (en) * 2007-10-22 2009-04-23 Chien-Hong Cheng Triptycene derivatives and their application
JP2010074111A (en) * 2008-09-22 2010-04-02 Fujifilm Corp Organic electroluminescent element
WO2010082621A1 (en) * 2009-01-19 2010-07-22 新日鐵化学株式会社 Organic electroluminescent element
JP2011063584A (en) * 2009-08-21 2011-03-31 Tosoh Corp Triazine derivative, method for producing the same and organic electroluminescent element comprising the same as constituent component
WO2015182547A1 (en) * 2014-05-28 2015-12-03 東レ株式会社 Fluoranthene derivative, electronic device containing same, light-emitting element, and photoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163959A1 (en) * 2018-02-26 2019-08-29 東ソー株式会社 Cyclic azine compound, material for organic electroluminescnet element, and electron-transporting material for organic electroluminescent element
JP2019147791A (en) * 2018-02-26 2019-09-05 東ソー株式会社 Cyclic azine compound, material for organic electroluminescent element, and electron transportation material for organic electroluminescent element
JP7379830B2 (en) 2018-02-26 2023-11-15 東ソー株式会社 Cyclic azine compounds, materials for organic electroluminescent devices, and electron transport materials for organic electroluminescent devices

Similar Documents

Publication Publication Date Title
JP6421474B2 (en) Cyclic azine compound, method for producing the same, and organic electroluminescent device using the same
JP6977325B2 (en) Triazine compounds, their manufacturing methods, and organic electroluminescent devices containing them as constituents.
JP6270735B2 (en) Aromatic amine derivative and organic electroluminescence device
WO2016002864A1 (en) Triazine compound, method for producing same, and application for same
JP2021031463A (en) Bisazine compound
JP6464944B2 (en) Cyclic azine compound, method for producing the same, and use thereof
JP2021070682A (en) Triazine compound having pyridyl group
JP2020164503A (en) Triazine compound having ortho structure
WO2018173882A1 (en) Cyclic azine compound, material for organic electroluminescent element, and electron transport material for organic electroluminescent element
JP6500644B2 (en) Triazine compound, method for producing the same, and use thereof
WO2019163959A1 (en) Cyclic azine compound, material for organic electroluminescnet element, and electron-transporting material for organic electroluminescent element
JP7159550B2 (en) Cyclic azine compound, material for organic electroluminescence device and electron transport material for organic electroluminescence device
JP7318178B2 (en) Cyclic azine compounds, materials for organic electroluminescence devices, electron transport materials for organic electroluminescence devices
JP7318302B2 (en) Triazine compound characterized by having a para-substituted pyridyl group, use thereof, and precursor thereof
WO2020085319A1 (en) Cyclic azine compound, material for organic electroluminescent elements, electron transport material for organic electroluminescent elements, and organic electroluminescent element
WO2020111225A1 (en) Triazine compound, material for organic electroluminescent element, and organic electroluminescent element
JP6421502B2 (en) Triazine compound, process for producing the same, and organic electroluminescent device comprising the same
JP2020147543A (en) Triazine compound having 2&#39;-aryl biphenylyl group
JP7379830B2 (en) Cyclic azine compounds, materials for organic electroluminescent devices, and electron transport materials for organic electroluminescent devices
JP7215192B2 (en) Cyclic azine compound, material for organic electroluminescence device, electron transport material for organic electroluminescence device, and organic electroluminescence device
JP7206816B2 (en) Cyclic azine compound, material for organic electroluminescence device, electron transport material for organic electroluminescence device, and organic electroluminescence device
JP2018115151A (en) Triazine compound having benzimidazole group
WO2022211123A1 (en) Transverse current suppressing material, carbazole compound, hole injection layer, and organic electroluminescent element
JP2021161116A (en) Cyclic azine compound, method for production thereof and applications thereof
JP2021109853A (en) Triazine compound, and material for organic electroluminescent elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770692

Country of ref document: EP

Kind code of ref document: A1