WO2014208212A1 - Energy ray-curable resin composition and vibration damper sheet - Google Patents

Energy ray-curable resin composition and vibration damper sheet Download PDF

Info

Publication number
WO2014208212A1
WO2014208212A1 PCT/JP2014/062844 JP2014062844W WO2014208212A1 WO 2014208212 A1 WO2014208212 A1 WO 2014208212A1 JP 2014062844 W JP2014062844 W JP 2014062844W WO 2014208212 A1 WO2014208212 A1 WO 2014208212A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
acrylate
curable resin
meth
energy ray
Prior art date
Application number
PCT/JP2014/062844
Other languages
French (fr)
Japanese (ja)
Inventor
清水邦雄
藤原康次
Original Assignee
ダイセル・オルネクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル・オルネクス株式会社 filed Critical ダイセル・オルネクス株式会社
Priority to JP2015523915A priority Critical patent/JP6534928B2/en
Publication of WO2014208212A1 publication Critical patent/WO2014208212A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • C08F299/065Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes from polyurethanes with side or terminal unsaturations

Definitions

  • the present invention relates to an energy beam curable resin composition and a vibration damping sheet containing a cured product of the energy beam curable resin composition.
  • Patent Document 1 discloses a hydrogenated butadiene-based polymer having a plurality of photocurable functional groups, an oligomer having a single photocurable functional group, and light.
  • a photocurable resin composition containing a polymerization initiator and an adhesive sheet comprising the same are disclosed.
  • Patent Document 2 discloses a photocurable resin composition containing a hydrogenated butadiene-based polymer having a plurality of photocurable functional groups, a polythiol compound, and a photopolymerization initiator, and an adhesive sheet comprising the same. Has been.
  • Patent Document 3 a hydrogenated butadiene-based polymer having a plurality of photocurable functional groups, a monomer having a single photocurable functional group, and a photocurable resin containing a photopolymerization initiator.
  • An adhesive sheet comprising a cured product of the composition is disclosed. In the above document, it is described that any of these pressure-sensitive adhesive sheets can improve vibration damping characteristics (hysteresis loss).
  • the pressure-sensitive adhesive sheets disclosed in the above-mentioned Patent Documents 1 to 3 all have a Tan ⁇ value that is a vibration damping index of less than 1 and not sufficiently high, and are used in applications that require higher vibration damping properties.
  • the current situation is that it cannot be used.
  • an object of the present invention is to provide an energy ray curable resin composition that can be cured to form a cured product having very excellent vibration damping properties.
  • Another object of the present invention is to provide a vibration damping sheet having very excellent vibration damping properties.
  • an energy ray curable resin composition containing a specific urethane (meth) acrylate and a photoinitiator as essential components is very excellent when cured.
  • the present inventors have found that a cured product having excellent vibration damping properties can be formed.
  • the present invention includes a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton and a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton and a photoinitiator (B).
  • an energy ray-curable resin composition which is a urethane (meth) acrylate obtained by reacting a compound (L) having no group.
  • the energy ray-curable resin composition is provided wherein the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton has a weight average molecular weight of 10,000 or more. Moreover, it provides also about the energy-beam curable resin composition containing a monofunctional urethane (meth) acrylate (A), a photoinitiator (B), a reactive diluent, and / or a volatile organic solvent.
  • the present invention also provides a vibration damping sheet containing a cured product of the energy beam curable resin composition.
  • An energy ray-curable resin composition which is a urethane (meth) acrylate obtained by reacting with a compound (L) that does not.
  • the component (A) is a urethane (meth) acrylate obtained by reacting the component (X), the component (Y), the component (Z), and the compound (L), and the component (A) The energy ray-curable resin composition according to (1), wherein the structure of ZY- [XY] mL (where m represents an integer of 1 or more) (3)
  • the method of reacting the components (X) to (Z) and the compound (L) comprises reacting the component (X) and the component (Y) to form a urethane isocyanate prepolymer (urethane prepolymer) having isocyanate groups at both ends.
  • the component (Z) is reacted with an amount that reacts with one isocyanate group of the urethane isocyanate prepolymer, and then the compound (L) is reacted with an amount that reacts with the remaining isocyanate group.
  • the energy ray-curable resin composition according to (1) or (2). (4) The method for synthesizing the urethane isocyanate prepolymer is charged with a component (X), a component (Y), and, if necessary, a reactive diluent and / or a volatile organic solvent in a reactor.
  • the method for synthesizing the urethane isocyanate prepolymer is prepared by uniformly charging the reactor with the component (Y), the urethanization catalyst, and, if necessary, a reactive diluent and / or a volatile organic solvent.
  • the energy ray curable resin composition according to (3) which is stirred until the temperature reaches, then heated as necessary while stirring, and the component (X) is dropped and reacted.
  • the reactive diluent is at least one selected from the group consisting of 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, tricyclodecane dimethanol diacrylate, isobornyl acrylate, and normal octyl acrylate.
  • the volatile organic solvent is selected from the group consisting of ethyl acetate, butyl acetate, isobutyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl acetate, xylene, and toluene.
  • the energy ray-curable resin composition according to any one of (4) to (7), which is at least one kind.
  • the energy ray-curable resin composition according to any one of (3) to (10), which is a method of using 0 mol, more preferably 1.2 to 1.5 mol. (12)
  • the amount (number of moles) of the component (Z) to be used is 1.0 with respect to 1 mol of the urethane isocyanate prepolymer.
  • the catalyst in the reaction for producing the component (A) is a reaction using at least one selected from the group consisting of dibutyltin dilaurate, tin octylate, and tin chloride, and the added amount of catalyst (use)
  • the energy ray-curable resin composition according to any one of (4) to (12), wherein the amount is 1 to 3000 ppm (by weight), more preferably 50 to 1000 ppm.
  • the reaction of components (X) to (Z) and compound (L) is performed until the residual isocyanate group is 0.1% by weight or less.
  • Component (Y) is at least one selected from the group consisting of a diisocyanate compound obtained by hydrogenating an alicyclic diisocyanate, a branched aliphatic diisocyanate, and an aromatic isocyanate ( 1)
  • the energy ray curable resin composition according to any one of (18).
  • Component (Y) is selected from the group consisting of isophorone diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, hydrogenated xylylene diisocyanate, and hydrogenated diphenylmethane diisocyanate
  • the energy ray-curable resin composition according to any one of (1) to (19), which is at least one selected from the group consisting of: (21) Any one of (1) to (20), wherein component (Z) is a compound having one hydroxy group in the molecule and one (meth) acryloyl group in the molecule The energy ray-curable resin composition described in 1.
  • Component (Z) is 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexanedimethanol mono (meth) acrylate, bisphenol A diglycidyl mono
  • the compound (L) is a compound having at least one selected from the group consisting of a hydroxy group, an amino group containing active hydrogen, a functional group represented by> C ⁇ N—OH, and an amide group.
  • Compound (L) is an alcohol compound, a phenol compound, an active methylene compound, a mercaptan compound, an acid amide compound, an acid imide compound, an imidazole compound, a pyrazole compound, a urea compound, or an oxime compound.
  • the alcohol compound is an aliphatic monohydric alcohol having 1 or more carbon atoms and / or an alicyclic monohydric alcohol having 3 or more carbon atoms, and has a molecular weight of 70 to 400 (24 ) Or the energy ray-curable resin composition according to (25).
  • the alcohol compound is methanol, ethanol, isopropanol, normal propanol, 1-butanol, 1-heptanol, 1-hexanol, normal octyl alcohol, 2-ethylhexyl alcohol (2-ethylhexanol), cyclohexane methanol, capryl alcohol.
  • the weight average molecular weight (Mw) of the component (A) is 10,000 or more, more preferably 15,000 to 100,000, still more preferably 30,000 to 60,000.
  • the energy ray-curable resin composition according to any one of the above.
  • the content (blending amount) of the component (A) in the energy beam curable resin composition is 40 to 99.75 based on the total nonvolatile weight (100% by weight) of the energy beam curable resin composition.
  • the content (blending amount) of the photoinitiator (B) in the energy beam curable resin composition is 100 parts by weight based on the total amount of radical polymerizable compounds contained in the energy beam curable resin composition.
  • the energy ray curable resin composition according to any one of (1) to (30), which is 0.1 to 20 parts by weight, more preferably 1 to 5 parts by weight.
  • the energy ray curable resin composition comprises the component (A), the photoinitiator (B), and further a reactive diluent and / or a volatile organic solvent.
  • the energy ray-curable resin composition according to any one of the above.
  • the reactive diluent contained in the energy ray curable resin composition is 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, tricyclodecane dimethanol diacrylate, isobornyl acrylate, and normal octyl acrylate
  • the energy beam according to (32) or (33), wherein the reactive diluent contained in the energy beam curable resin composition is at least one selected from the group consisting of isobornyl acrylate and normal octyl acrylate. Curable resin composition.
  • the content (blending amount) of the reactive diluent in the energy beam curable resin composition is preferably 1 to 99 parts by weight, more preferably 100 parts by weight of the total amount of the energy beam curable resin composition.
  • the energy ray curable resin composition according to any one of (32) to (34), wherein 10 to 90 parts by weight, more preferably 15 to 80 parts by weight, and particularly preferably 20 to 60 parts by weight.
  • the volatile organic solvent contained in the energy ray curable resin composition is ethyl acetate, butyl acetate, isobutyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl acetate, xylene,
  • the energy ray-curable resin composition according to any one of (32) to (35), which is at least one selected from the group consisting of toluene and toluene.
  • any one of (32) to (36), wherein the volatile organic solvent contained in the energy ray curable resin composition is at least one selected from the group consisting of ethyl acetate, butyl acetate, and toluene.
  • the content (blending amount) of the volatile organic solvent in the energy ray curable resin composition is preferably 1 to 99 parts by weight, more preferably 100 parts by weight of the total amount of the energy ray curable resin composition.
  • the energy ray-curable resin composition according to any one of (32) to (37), wherein is 10 to 90 parts by weight, more preferably 15 to 80 parts by weight, and particularly preferably 20 to 60 parts by weight.
  • the content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton in the energy ray curable resin composition is 100% by weight based on the total amount of the energy ray curable resin composition. 1 to 99% by weight is preferable, more preferably 10 to 90% by weight, still more preferably 30 to 85% by weight, and most preferably 50 to 80% by weight, and any one of (32) to (38) The energy ray-curable resin composition described in 1. (40) A cured product of the energy ray-curable resin composition according to any one of (1) to (39), wherein Tan ⁇ at 23 ° C. is 0.6 or more, more preferably 0.8 or more.
  • the cured product is 1.0 or more.
  • a coating material comprising a cured product of the energy beam curable resin composition according to any one of (1) to (39).
  • a vibration damping sheet comprising a cured product of the energy beam curable resin composition according to any one of (1) to (39).
  • the energy ray curable resin composition of the present invention has the above-described configuration, a cured product having very excellent vibration damping properties can be formed by curing.
  • the energy ray curable resin composition of the present invention can be cured by irradiation with energy rays (particularly, ultraviolet rays), it is a coating material (cured product) having very high vibration damping properties with high productivity. Can be formed.
  • the energy beam curable resin composition of the present invention can be applied to, for example, not only a planar article but also an article having a complicated shape such as a three-dimensional shape, and can be cured to form a coating material. It is possible to impart excellent vibration damping properties to a wide variety of articles.
  • a vibration damping sheet having a very excellent vibration damping property including a cured product of the resin composition can be obtained.
  • the energy ray-curable resin composition of the present invention comprises a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton (sometimes referred to as “component (A)”), a photoinitiator (B), Is a curable resin composition containing as an essential component.
  • the energy beam curable resin composition of the present invention may contain a reactive diluent, a volatile organic solvent, and an additive described later in addition to the component (A) and the photoinitiator (B).
  • the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton in the energy ray curable resin composition of the present invention has a hydrogenated polyolefin skeleton in the molecule and one (meth) in the molecule.
  • a urethane (meth) acrylate having an acryloyl group that is, monofunctional.
  • “(meth) acrylate” means acrylate and / or methacrylate (any one or both of acrylate and methacrylate), and the same applies to “(meth) acryloyl” and the like.
  • the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is composed of a diol (X) having a hydrogenated polyolefin skeleton (sometimes referred to as “component (X)” or “X”) and a diisocyanate (Y ) (Sometimes referred to as “component (Y)” or “Y”), hydroxy group-containing (meth) acrylate (Z) (sometimes referred to as “component (Z)” or “Z”), and molecules Compound (L) having one isocyanate-reactive group and not having a photocurable functional group (“isocyanate-reactive compound”, “compound (L)”, “component (L)”, “L”) Is a urethane (meth) acrylate obtained by reacting.
  • the structure of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is schematically shown as follows.
  • ZY- [XY] m -L (where m represents an integer of 1 or more)
  • the method for reacting the above components (X) to (Z) and the component (L) is not particularly limited, and examples thereof include the following methods.
  • [Method 1] Method of mixing component (X), component (Y), component (Z), and component (L) and reacting them together
  • [Method 2] reacting component (X) and component (Y) After the formation of a urethane isocyanate prepolymer having both ends isocyanate groups (urethane prepolymer), the component (Z) is reacted in an amount such that one isocyanate group of the urethane isocyanate prepolymer reacts, and then the remaining isocyanate groups are reacted.
  • Method 3 After reacting component (X) and component (Y) to form a urethane isocyanate prepolymer (urethane prepolymer) having isocyanate groups at both ends. And reacting the component (L) in such an amount that one isocyanate group of the urethane isocyanate prepolymer reacts, and then the remaining isocyanate [Method 4]
  • a reaction of component (Y) with an amount of component (Z) with which one of the isocyanate groups of component (Y) reacts schematically represents Y A prepolymer represented by —Z (hereinafter referred to as “prepolymer (YZ)”) is synthesized.
  • the component (Y) is reacted with the component (L) in such an amount that one isocyanate group of the component (Y) reacts to give a prepolymer (hereinafter referred to as “prepolymer (Y -L) ").
  • prepolymer (Y -L) a prepolymer
  • component (X) and component (Y) are further reacted separately to synthesize a urethane prepolymer having hydroxyl groups at both ends.
  • the mixture of the prepolymer (YZ) and the prepolymer (YL) is reacted with the component (X) and / or the urethane prepolymer having hydroxyl groups at both ends.
  • [Method 2] is preferable among [Method 1] to [Method 4] described above. That is, the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton of the present invention reacts with one isocyanate group of a urethane isocyanate prepolymer (diisocyanate) with a hydroxy group-containing (meth) acrylate (Z), Then, it is preferable that it is urethane (meth) acrylate obtained by making a compound (L) react with the other isocyanate group.
  • the obtained urethane (meth) acrylate has a high viscosity, stirring becomes difficult, or the reaction proceeds non-uniformly, and the probability of partial gelation is increased.
  • the by-product amount of the urethane isocyanate prepolymer due to the repetition of the diol (X) having a hydrogenated polyolefin skeleton and the diisocyanate (Y) increases, and the vibration damping property of the cured product tends to decrease.
  • various complicated compounds are irregularly generated, quality control becomes difficult when the product is used as a component of the energy ray curable resin composition.
  • the method for synthesizing the urethane isocyanate prepolymer is not particularly limited, and examples thereof include the following methods.
  • Method in which component (Y) is dropped into component (X) and reacted [Method 2 -3] Method of dropping component (X) into component (Y) and reacting
  • [Method 2-1] and [Method 2-3] are preferably used in order to obtain the desired urethane isocyanate prepolymer in good yield.
  • the urethanization reaction proceeds in a state where the diol (X) having a hydrogenated polyolefin skeleton and the diisocyanate (Y) are in a non-uniform state at the charging stage of the diisocyanate (Y).
  • the molecular weight and viscosity of the resulting urethane isocyanate prepolymer change, and the reaction may be terminated in a state where unreacted diisocyanate (Y) remains in the system.
  • [Method 2-3] is preferable in that the supermacromolecule described in [Method 2-2] is not generated.
  • the diol (X) having a hydrogenated polyolefin skeleton and the diisocyanate (Y) is preferably reacted until the isocyanate group concentration in the reaction solution is equal to or lower than the end-point isocyanate group concentration.
  • End-point isocyanate group concentration is a theoretical isocyanate group concentration (hereinafter referred to as “theoretical end-point isocyanate group concentration”) assuming that all of the hydroxyl groups (hydroxyl groups) charged into the system are urethaned. And the isocyanate group concentration when the isocyanate group concentration in the reaction solution no longer changes, whichever is the higher isocyanate group concentration.
  • the molar ratio of the diol (X) having a hydrogenated polyolefin skeleton and the diisocyanate (Y) is not particularly limited, but the diisocyanate (Y) is used with respect to 1 mole of the diol (X) having a hydrogenated polyolefin skeleton. Is preferably used in an amount of 1.1 to 2.0 mol, more preferably 1.2 to 1.5 mol.
  • the monofunctional urethane (meth) acrylate (A) having a target hydrogenated polyolefin skeleton is prepared by reacting the urethane isocyanate prepolymer, the hydroxy group-containing (meth) acrylate (Z), and then the compound (L).
  • reaction between urethane isocyanate prepolymer, hydroxy group-containing (meth) acrylate (Z) and compound (L) hydroxy group-containing (meth) acrylate (Z) is added to urethane isocyanate prepolymer as a component.
  • the reaction is carried out in a stoichiometric relationship such that the number of (meth) acryloyl groups in the molecule of (A) is 1, and the residual isocyanate group in the reaction solution is 0.1% by weight or less.
  • the amount (number of moles) of the hydroxy group-containing (meth) acrylate (Z) to be used is preferably 1.0 to 1.1 mol, more preferably 1 mol with respect to 1 mol of urethane isocyanate prepolymer. 1.0 to 1.05 mol.
  • the number of moles (total amount) of the hydroxyl group of the hydroxy group-containing (meth) acrylate (Z) and the isocyanate reactive group of the compound (L) with respect to the number of moles of the isocyanate group of the urethane isocyanate prepolymer. ) Is not particularly limited, but is preferably 1.0 to 1.1 mol, more preferably 1.0 to 1.05 mol.
  • the reaction for producing the component (A) is a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, phenothiazine, dibutylhydroxytoluene and the like for the purpose of preventing polymerization. It is preferable to proceed in the presence of.
  • the addition amount (use amount) of these polymerization inhibitors is preferably 1 to 10,000 ppm (weight basis), more preferably 100 to 1000 ppm, and still more preferably 400 to 500 ppm, with respect to the component (A) to be produced.
  • this reaction is preferably performed in a gas atmosphere containing molecular oxygen.
  • the oxygen concentration is appropriately selected in consideration of safety.
  • This reaction may be carried out using a catalyst in order to obtain a sufficient reaction rate.
  • the catalyst include dibutyltin dilaurate, tin octylate, tin chloride and the like. Of these, dibutyltin dilaurate is preferable from the viewpoint of reaction rate.
  • the addition amount (use amount) of the catalyst is not particularly limited, but is usually preferably 1 to 3000 ppm (weight basis), more preferably 50 to 1000 ppm. When the amount of the catalyst added is 1 ppm or more, a sufficient reaction rate tends to be obtained. On the other hand, by setting it to 3000 ppm or less, there is a tendency that an adverse effect derived from the catalyst does not easily affect the physical properties of the product.
  • the reaction for producing component (A) can proceed in the presence of a known volatile organic solvent.
  • the volatile organic solvent is not particularly limited, and examples thereof include ethyl acetate, butyl acetate, isobutyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl acetate, xylene, toluene and the like. It is done. Of these, ethyl acetate, butyl acetate, toluene and the like are preferable from the viewpoints of boiling point and economy.
  • a volatile organic solvent can be distilled off by pressure reduction etc. after manufacture of a component (A). Further, the volatile organic solvent remaining in the energy ray curable resin composition can be removed by drying after applying the resin composition to an article, a part, or the like.
  • a volatile organic solvent means the organic solvent whose boiling point in a normal pressure does not exceed 200 degreeC.
  • a reactive diluent can be used in place of the volatile organic solvent or in a combined mode.
  • the reactive diluent is not particularly limited, and examples thereof include 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, tricyclodecane dimethanol diacrylate, isobornyl acrylate, normal octyl acrylate, and the like. From the viewpoint of adjusting the viscosity of the energy ray curable resin composition, isobornyl acrylate and normal octyl acrylate are preferable.
  • a composition containing a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton and a reactive diluent is obtained as a product.
  • the reactive diluent is a monofunctional urethane (metafunctional) having a hydrogenated polyolefin skeleton, if necessary, for the purpose of adjusting the viscosity of the energy ray-curable resin composition described later and adjusting the hardness of the cured product. ) It can also be blended after the acrylate (A) is produced.
  • 1,6-hexanediol diacrylate for example, product name “HDDA” manufactured by Daicel Cytec Co., Ltd.
  • trimethylolpropane triacrylate for example, the company
  • Product name “TMPTA” trimethylolpropane triacrylate
  • TMPTA tricyclodecane dimethanol diacrylate
  • IRR214-K isobornyl acrylate
  • IBOA-B isobornyl acrylate
  • Normal octyl acrylate for example, product name “NOAA” manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • reaction reaction of components (X) to (Z) and component (L)
  • reaction temperature reaction temperature
  • reaction rate reaction rate
  • reaction temperature 130 ° C. or lower
  • radical polymerization due to heat is suppressed, and the formation of gelled product tends to be more efficiently suppressed.
  • reactions of components (X) to (Z) and component (L) is usually performed until the residual isocyanate group is 0.1% by weight or less as described above.
  • the residual isocyanate group concentration can be analyzed by, for example, gas chromatography or titration.
  • the diol (X) having a hydrogenated polyolefin skeleton is a compound having a hydrogenated polyolefin skeleton in the molecule and two hydroxy groups in the molecule.
  • a compound obtained by hydrogenating a polyalkadiene (polybutadiene, polyisoprene, etc.) having hydroxy groups at both ends can be used.
  • the diol (X) having a hydrogenated polyolefin skeleton as a raw material for the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton can be used alone or in combination of two or more. Can also be used.
  • diol (X) having a hydrogenated polyolefin skeleton such as the product name “Epol” (manufactured by Idemitsu Kosan Co., Ltd.); the product names “NISSO-PB GI-1000”, “NISSO”. -PB GI-2000 “,” NISSO-PB GI-3000 “(manufactured by Nippon Soda Co., Ltd.), etc., but are not limited thereto.
  • Diisocyanate (Y) is a compound having two isocyanate groups in the molecule. Among them, those that do not exhibit crystallinity are preferable from the viewpoints of resin appearance, cured product transparency, and the like. Specifically, for example, alicyclic diisocyanates, branched chain aliphatic diisocyanates, and aromatic isocyanates. And at least one selected from the group consisting of diisocyanate compounds obtained by hydrogenation. Examples of the alicyclic diisocyanate include isophorone diisocyanate.
  • the aliphatic diisocyanate having a branched chain is not particularly limited, and examples thereof include 2,2,4-trimethylhexamethylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate.
  • Examples of the diisocyanate compound obtained by hydrogenating the aromatic isocyanate include hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate.
  • diisocyanate (Y) can also be used individually by 1 type as a raw material of the monofunctional urethane (meth) acrylate (A) which has hydrogenated polyolefin frame
  • diisocyanate Y
  • examples thereof include a product name “VESTANAT IPDI” (isophorone diisocyanate, manufactured by Evonik).
  • the hydroxy group-containing (meth) acrylate (Z) is a compound having one hydroxy group in the molecule and one (meth) acryloyl group in the molecule.
  • the hydroxy group-containing (meth) acrylate (Z) can be used alone or in combination of two or more. Can also be used.
  • the hydroxy group-containing (meth) acrylate (Z) is not particularly limited.
  • epoxy acrylates such as mono (meth) acrylate and bisphenol A diglycidyl mono (meth) acrylate, and hydrogenated products thereof.
  • hydroxy group-containing (meth) acrylate (Z) a commercially available product can be used.
  • the product name “BHEA” (2-hydroxyethyl acrylate, manufactured by Nippon Shokubai Co., Ltd.)
  • the product name “CHDMA” And cyclohexane dimethanol monoacrylate, manufactured by Nippon Kasei Kogyo Co., Ltd.).
  • the compound (L) is a compound having one isocyanate-reactive group in the molecule and not having a photocurable functional group (particularly, a (meth) acryloyl group).
  • the compound (L) is mainly used for the purpose of inactivating (sealing) excess isocyanate groups in the urethane isocyanate prepolymer.
  • the isocyanate-reactive group include known or commonly used functional groups having reactivity with an isocyanate group, and are not particularly limited. For example, a hydroxyl group, an amino group containing active hydrogen, and> C ⁇ N—OH. Functional groups, amide groups and the like.
  • examples of the compound (L) include alcohol compounds, phenol compounds, active methylene compounds, mercaptan compounds, acid amide compounds, acid imide compounds, imidazole compounds, pyrazole compounds, urea compounds, Examples include oxime compounds, amine compounds, imine compounds, and pyridine compounds. Among these, alcohol compounds are preferable because they are easy to handle and hardly cause side reactions.
  • a compound (L) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the alcohol compound examples include aliphatic monohydric alcohols having 1 or more (preferably 3 or more) carbon atoms, alicyclic monohydric alcohols having 3 or more carbon atoms, and the molecular weight thereof is 70.
  • the alcohol has 3 or more carbon atoms or has a molecular weight of 70 or more, volatilization during the synthesis of the component (A) tends to be efficiently prevented.
  • the molecular weight is 400 or less, good reactivity with an isocyanate group is ensured, and the productivity tends to be further improved.
  • the weather resistance of the resulting component (A) may be inferior, which may not be preferable.
  • examples of the alcohol compound include methanol, ethanol, isopropanol, normal propanol, 1-butanol, 1-heptanol, 1-hexanol, normal octyl alcohol, 2-ethylhexyl alcohol (2-ethylhexanol), Cyclohexane methanol, capryl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol (cetanol), stearyl alcohol, methyl cellosolve, butyl cellosolve, methyl carbitol, benzyl alcohol, cyclohexanol Other structural isomers are also included) and mixtures thereof. Of these, isopropanol and 2-ethylhexyl alcohol are preferable from the viewpoints of boiling point, price, and availability.
  • Examples of the phenolic compound include phenol, cresol, ethylphenol, butylphenol, nonylphenol, dinonylphenol, styrenated phenol, hydroxybenzoic acid ester, and the like.
  • Examples of the active methylene compound include dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, and acetylacetone.
  • the mercaptan compound include butyl mercaptan and dodecyl mercaptan.
  • Examples of the acid amide compound include acetanilide, acetic acid amide, ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, and the like.
  • Examples of the acid imide compound include succinimide and maleic imide.
  • Examples of the imidazole compound include imidazole and 2-methylimidazole.
  • Examples of the pyrazole compound include 3-methylpyrazole, 3,5-dimethylpyrazole, 3,5-diethylpyrazole, and the like.
  • Examples of the urea compound include urea, thiourea, and ethylene urea.
  • Examples of the oxime compounds include formaldehyde oxime, acetoald oxime, acetoxime, methyl ethyl ketoxime, cyclohexanone oxime, and the like.
  • Examples of the amine compound include diphenylamine, aniline, and carbazole.
  • Examples of the imine compound include ethyleneimine and polyethyleneimine.
  • Examples of the pyridine compound include 2-hydroxypyridine and 2-hydroxyquinoline.
  • the ratio of the component (X) to the total amount (100% by weight) of the polyol (including the component (X)) is preferably 90 to 100% by weight, more preferably 95 to It is 100% by weight, more preferably 98% by weight or more.
  • the ratio of the component (Y) to the total amount (100% by weight) of the polyisocyanate (including the component (Y)) is preferably 90 to 100% by weight, more preferably 95%. It is ⁇ 100% by weight, more preferably 98% by weight or more.
  • the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton a solution obtained by reacting the components (X) to (Z) and the component (L) can be used as it is. It can also be used after being purified by a conventional method.
  • the weight average molecular weight (Mw) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is not particularly limited, but is preferably 10,000 or more, more preferably 15,000 to 100,000, still more preferably Is 30,000 to 60,000.
  • Mw of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is 10,000 or more, the vibration damping property of the cured product tends to be further improved.
  • the Mw of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton can be adjusted in an appropriate range, and the curability is further improved. There exists a tendency for a shape change to be suppressed more under high temperature of hardened
  • skeleton can be measured on the conditions as described in an Example.
  • the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton can be used alone or in combination of two or more. You can also.
  • the content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton in the energy beam curable resin composition of the present invention is not particularly limited, but is non-volatile in the energy beam curable resin composition. It is preferably 40 to 99.9% by weight, more preferably 45 to 99% by weight, and still more preferably 50 to 98% by weight, based on the total weight (100% by weight) of the minute.
  • the content of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is 40% by weight or more, the vibration damping property of the cured product tends to be further improved.
  • the content of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton can be relatively increased.
  • the curability tends to be improved.
  • the “nonvolatile content” of the energy ray curable resin composition is a component other than the volatile content in the resin composition, and remains in the cured product as a component of the cured product (for example, the present invention). Ingredients obtained by removing the volatile organic solvent from the active energy curable resin composition.
  • the content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is not particularly limited, but is energy ray curable. It is preferably 40 to 99.9% by weight, more preferably 45 to 90% by weight, and still more preferably 50 to 80% by weight, based on the total weight (100% by weight) of the nonvolatile content of the resin composition.
  • the content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is not particularly limited, but is energy ray curable. 70 to 99.9% by weight is preferable, more preferably 80 to 99% by weight, still more preferably 85 to 98% by weight, and most preferably based on the total weight (100% by weight) of the nonvolatile content of the resin composition. Is 90 to 97% by weight.
  • the content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton in the energy beam curable resin composition of the present invention is not particularly limited, but is the total amount of the energy beam curable resin composition.
  • the total amount of component (A), photoinitiator (B), reactive diluent, volatile organic solvent, etc. is preferably 1 to 99% by weight, more preferably 10 to 90% by weight with respect to 100% by weight. %, More preferably 30 to 85% by weight, most preferably 50 to 80% by weight.
  • Photoinitiator (B) As the photoinitiator (B) (photopolymerization initiator) in the energy ray-curable resin composition of the present invention, a known or conventional photoradical polymerization initiator can be used, and is not particularly limited.
  • the content (blending amount) of the photoinitiator (B) in the energy beam curable resin composition of the present invention is not particularly limited, but is the total amount of radical polymerizable compounds contained in the energy beam curable resin composition ( (For example, monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton, reactive diluent, etc.) is preferably 0.1 to 20 parts by weight, more preferably 1 to 5 parts by weight. It is.
  • the content of the photoinitiator (B) is preferably 0.1 to 20 parts by weight, more preferably 1 to 5 parts by weight. It is.
  • the energy beam curable resin composition of the present invention may contain a reactive diluent as long as the effects of the present invention are not impaired.
  • the reactive diluent include those similar to those exemplified in the section “Monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton”.
  • one type of reactive diluent can be used alone, or two or more types can be used in combination.
  • the content (blending amount) of the reactive diluent is not particularly limited.
  • the total amount of the energy beam curable resin composition (for example, the component (A), the photoinitiator (B), the reactive diluent, etc.)
  • the total amount is preferably from 1 to 99 parts by weight, more preferably from 10 to 90 parts by weight, still more preferably from 15 to 80 parts by weight, and particularly preferably from 20 to 60 parts by weight.
  • the energy beam curable resin composition of the present invention may contain a volatile organic solvent.
  • the volatile organic solvent include those similar to the volatile organic solvent exemplified in the above-mentioned section of “Monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton”.
  • the volatile organic solvent can be used alone or in combination of two or more.
  • the content (blending amount) of the volatile organic solvent is not particularly limited.
  • the total amount of the energy ray curable resin composition (for example, component (A), photoinitiator (B), volatile organic solvent, etc.)
  • the total amount is preferably from 1 to 99 parts by weight, more preferably from 10 to 90 parts by weight, still more preferably from 15 to 80 parts by weight, particularly preferably from 20 to 60 parts by weight.
  • the energy beam curable resin composition of the present invention may contain various additives as required.
  • additives include fillers, dyes and pigments, leveling agents, ultraviolet absorbers, light stabilizers, antifoaming agents, dispersants, and thixotropic agents.
  • the content (blending amount) of these additives is not particularly limited, but is preferably 0 to 20% by weight, more preferably 0.05 to 10% with respect to the energy ray curable resin composition (100% by weight). % By weight.
  • the energy beam curable resin composition of the present invention includes a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton, a photoinitiator (B), and other reactive diluents as necessary.
  • A monofunctional urethane
  • B photoinitiator
  • other reactive diluents as necessary.
  • mixing means known or commonly used means can be used, and is not particularly limited.
  • means such as various mixers such as a dissolver and a homogenizer, kneaders, rolls, bead mills, self-revolving stirrers and the like can be used.
  • conditions, such as temperature and the rotation speed in the case of mixing are not specifically limited, It can set suitably.
  • a cured product (cured resin product; sometimes referred to as “cured product of the present invention”) is obtained by irradiating the energy beam curable resin composition of the present invention with an energy beam (active energy beam) and curing it.
  • the cured product of the present invention has very excellent vibration damping properties, for example, a cured product layer obtained by curing the energy ray curable resin composition of the present invention (a cured product layer formed by the cured product of the present invention).
  • Tan ⁇ at 23 ° C. of the cured product of the present invention is not particularly limited, but is preferably 0.6 or more (for example, 0.6 to 2.0), more preferably 0.8 or more, and further preferably 1.0 or more. It is. By setting Tan ⁇ to be 0.6 or more, vibration damping tends to be further improved. Tan ⁇ can be measured by the same method as described in the examples.
  • the energy beam curable resin composition of the present invention can be cured to form a cured product having extremely excellent vibration damping properties, for example, a coating capable of imparting vibration damping properties to various articles. It can be preferably used as a coating agent (damping imparting coating agent) for forming a material.
  • the energy ray curable resin composition (coating agent) of the present invention is applied (coated) to the surface of an article or a part, or the gap between the above parts of an article composed of two or more parts, and the energy ray. By irradiating and curing, it becomes possible to impart excellent vibration damping properties to articles and parts.
  • the energy ray curable resin composition of the present invention can be applied to not only a planar article but also an article having a complicated shape such as a three-dimensional shape to form a coating material. It is possible to impart excellent vibration damping properties to various articles.
  • the energy ray curable resin composition of the present invention can be cured by irradiation with energy rays (particularly, ultraviolet rays), it is a coating material (cured product) having a very excellent vibration damping property with high productivity. Can be formed.
  • the application is not particularly limited, and can be performed using known or conventional means such as airless spray, air spray, roll coat, bar coat, gravure coat, die coat and the like.
  • the application can be performed by a so-called in-line coating method that is performed during the manufacturing process of the article or component, or is applied to the already manufactured article or component (the manufacture of the article or component and the like). Can be applied by a so-called off-line coating method.
  • the film thickness (coating film thickness) when the energy beam curable resin composition of the present invention is applied to the surface of an article or a part is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m. It is. By setting the thickness to 100 ⁇ m or less, the amount of the resin composition to be applied can be kept small, and drying and curing times are shortened, which tends to be more advantageous in cost. On the other hand, by setting the thickness to 1 ⁇ m or more, the vibration damping property of the cured product tends to be more effectively exhibited.
  • the energy ray curable resin composition of the present invention contains a reactive diluent and / or a volatile organic solvent
  • the resin composition after applying the resin composition, Usually, heat drying with hot air or the like is performed. Thereafter, the applied energy ray-curable resin composition can be cured in an extremely short time by irradiating it with energy rays such as ultraviolet rays and electron beams.
  • energy rays such as ultraviolet rays and electron beams.
  • a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like can be used as a light source when performing ultraviolet irradiation.
  • the energy beam irradiation time varies depending on the type of the light source, the distance between the light source and the coating surface, and other conditions, but it is several tens of seconds at most, and usually several seconds.
  • an irradiation source with a lamp output of about 80 to 300 W / cm is used.
  • an electron beam irradiation it is preferable to use an electron beam having an energy in the range of 50 to 1000 KeV and to give an irradiation amount of 2 to 5 Mrad. After energy beam irradiation, heating may be performed as necessary to further promote curing.
  • a vibration damping sheet containing the cured product of the present invention (sometimes referred to as “the vibration damping sheet of the present invention”) is obtained by molding and processing a cured product of the resin composition into a sheet.
  • the “sheet” in the vibration damping sheet of the present invention includes various planar shapes such as “film” and “plate”. That is, the vibration damping sheet of the present invention includes articles having various planar shapes such as “damping film” and “damping plate”.
  • the vibration damping sheet of the present invention only needs to contain at least the cured product of the present invention, and may be formed only by the sheet-shaped cured product of the present invention, or the sheet-shaped cured product of the present invention. It may be a laminate of an object and another sheet. Further, the vibration damping sheet of the present invention may have a single-layer configuration or a multilayer configuration. In addition, the thickness (total thickness, thickness of the sheet-like cured product of the present invention) of the vibration damping sheet of the present invention is not particularly limited, and can be appropriately selected depending on the use and the like.
  • the isocyanate group concentration was measured as follows. In addition, the measurement was performed under stirring with a stirrer in a 100 mL glass flask. The blank value was measured as follows. First, 15 mL of a THF solution (0.1 N) of dibutylamine was added to 15 mL of THF. Further, after adding 3 drops of bromophenol blue (diluted in 1% by weight of methanol) to give a blue color, titration was performed with an aqueous HCl solution having a normality of 0.1N. The titration amount of the aqueous HCl solution when the color change was observed was defined as V b (mL).
  • the weight average molecular weight was determined by GPC (gel permeation chromatography) method based on standard polystyrene under the following measurement conditions.
  • Sample injection volume 10 ⁇ L Sample concentration: 0.2 mg / mL
  • NISSO PB GI-1000 product name “NISSO PB GI-1000” (manufactured by Nippon Soda Co., Ltd.), hydrogenated 1,2-polybutadiene glycol (hydroxyl value 66 mgKOH / g, estimated molecular weight 1,700)
  • NISSO PB GI-3000 product name “NISSO PB GI-3000” (manufactured by Nippon Soda Co., Ltd.), hydrogenated 1,2-polybutadiene glycol (hydroxyl value 29.7 mgKOH / g, estimated molecular weight 3, 778)
  • IPDI Product name “VESTANAT IPDI” (manufactured by Evonik), isophorone diisocyanate (molecular weight 222) (Hydroxy group-containing (meth)
  • the viscosity of the resulting monofunctional urethane acrylate solution (UA1) having a hydrogenated polybutadiene skeleton at 25 ° C. was 1,400 mPa ⁇ s.
  • the weight average molecular weight of the monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution was 37247.
  • the weight average molecular weight of the monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution was 38632.
  • the weight average molecular weight of the monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution was 50570.
  • the weight average molecular weight of the monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution was 46423.
  • the molar ratio of the raw material calculated from the charged weight and molecular weight is as follows.
  • GI-3000 / IPDI / HEA 4/5/2 Therefore, the repeating structure of each raw material in the obtained bifunctional urethane acrylate having a hydrogenated polybutadiene skeleton is as follows.
  • the molar ratio of the raw material calculated from the charged weight and molecular weight is as follows.
  • GI-1000 / IPDI / HEA 7/8/2 Therefore, the repeating structure of each raw material in the obtained bifunctional urethane acrylate having a hydrogenated polybutadiene skeleton is as follows.
  • Each energy ray-curable resin composition obtained above was poured into an aluminum disposable cup (manufactured by Anton Paar) so that the thickness after drying was 1 mm. Then, it is dried in an oven at 80 ° C. for 10 minutes, and subsequently, using a UV irradiator (product name “EYE INVERTOR GRANDAGE ECS-401GX” manufactured by Eye Graphics Co., Ltd.), a peak illuminance of 400 mW / cm 2 and an integrated light amount of 860 mJ A film (damping sheet) was produced by curing by irradiating with ultraviolet rays under the conditions of / cm 2 .
  • a UV irradiator product name “EYE INVERTOR GRANDAGE ECS-401GX” manufactured by Eye Graphics Co., Ltd.
  • the energy beam curable resin composition of the present invention can be cured to form a cured product having very excellent vibration damping properties. For this reason, the energy beam curable resin composition of the present invention can be particularly preferably used for applications such as a coating agent for imparting vibration damping properties and a raw material for vibration damping sheets.

Abstract

Provided is an energy ray-curable resin composition which is capable of providing a cured product having extremely excellent vibration damping properties when cured. An energy ray-curable resin composition which is characterized by containing a monofunctional urethane (meth)acrylate (A) having a hydrogenated polyolefin skeleton and a photoinitiator (B), and which is also characterized in that the monofunctional urethane (meth)acrylate (A) having a hydrogenated polyolefin skeleton is a urethane (meth)acrylate which is obtained by reacting a diol (X) having a hydrogenated polyolefin skeleton, a diisocyanate (Y), a hydroxy group-containing (meth)acrylate (Z) and a compound (L) that has one isocyanate reactive group in each molecule but does not have a photocurable functional group.

Description

エネルギー線硬化性樹脂組成物及び制振シートEnergy ray curable resin composition and vibration damping sheet
 本発明は、エネルギー線硬化性樹脂組成物、及び該エネルギー線硬化性樹脂組成物の硬化物を含む制振シートに関する。本願は、2013年6月27日に日本に出願した、特願2013-135570号の優先権を主張し、その内容をここに援用する。 The present invention relates to an energy beam curable resin composition and a vibration damping sheet containing a cured product of the energy beam curable resin composition. This application claims the priority of Japanese Patent Application No. 2013-135570 for which it applied to Japan on June 27, 2013, and uses the content here.
 従来、振動にさらされる物品や部品、振動に対して脆弱な物品や部品等に対して制振性を付与すること、家具等の倒壊を防ぐこと等を目的として、制振コーティング材や制振シート等の制振性を付与可能な材料が広く使用されている。 Conventionally, for the purpose of imparting vibration damping to articles and parts exposed to vibration, articles and parts vulnerable to vibration, and preventing collapse of furniture, etc. Materials that can impart vibration damping properties such as sheets are widely used.
 上述の制振性を付与可能な材料に関し、例えば、特許文献1には、複数の光硬化性官能基を有する水添ブタジエン系重合体、単一の光硬化性官能基を有するオリゴマー、及び光重合開始剤を含有する光硬化性樹脂組成物及びそれからなる粘着シートが開示されている。また、例えば、特許文献2には、複数の光硬化性官能基を有する水添ブタジエン系重合体、ポリチオール化合物、及び光重合開始剤を含有する光硬化性樹脂組成物及びそれからなる粘着シートが開示されている。さらに、例えば、特許文献3には、複数の光硬化性官能基を有する水添ブタジエン系重合体、単一の光硬化性官能基を有するモノマー、及び光重合開始剤を含有する光硬化性樹脂組成物の硬化物からなる粘着シートが開示されている。上記文献においてこれらの粘着シートは、いずれも制振特性(ヒステリシスロス)を向上し得ることが記載されている。 Regarding the above-described material capable of imparting vibration damping properties, for example, Patent Document 1 discloses a hydrogenated butadiene-based polymer having a plurality of photocurable functional groups, an oligomer having a single photocurable functional group, and light. A photocurable resin composition containing a polymerization initiator and an adhesive sheet comprising the same are disclosed. Further, for example, Patent Document 2 discloses a photocurable resin composition containing a hydrogenated butadiene-based polymer having a plurality of photocurable functional groups, a polythiol compound, and a photopolymerization initiator, and an adhesive sheet comprising the same. Has been. Furthermore, for example, in Patent Document 3, a hydrogenated butadiene-based polymer having a plurality of photocurable functional groups, a monomer having a single photocurable functional group, and a photocurable resin containing a photopolymerization initiator. An adhesive sheet comprising a cured product of the composition is disclosed. In the above document, it is described that any of these pressure-sensitive adhesive sheets can improve vibration damping characteristics (hysteresis loss).
特開2011-32409号公報JP 2011-32409 A 特開2011-32410号公報JP 2011-32410 A 特開2012-62447号公報JP 2012-62447 A
 しかしながら、上記特許文献1~3に開示された粘着シートは、いずれも制振性の指標となるTanδの値が1未満であって十分に高くなく、より高度な制振性が求められる用途における使用に耐え得るものではないのが現状であった。 However, the pressure-sensitive adhesive sheets disclosed in the above-mentioned Patent Documents 1 to 3 all have a Tanδ value that is a vibration damping index of less than 1 and not sufficiently high, and are used in applications that require higher vibration damping properties. The current situation is that it cannot be used.
 従って、本発明の目的は、硬化させることにより、非常に優れた制振性を有する硬化物を形成できるエネルギー線硬化性樹脂組成物を提供する。
 また、本発明の他の目的は、非常に優れた制振性を有する制振シートを提供することにある。
Accordingly, an object of the present invention is to provide an energy ray curable resin composition that can be cured to form a cured product having very excellent vibration damping properties.
Another object of the present invention is to provide a vibration damping sheet having very excellent vibration damping properties.
 本発明者らは上記課題を解決するため鋭意検討した結果、特定のウレタン(メタ)アクリレートと光開始剤とを必須成分として含むエネルギー線硬化性樹脂組成物が、硬化させることにより、非常に優れた制振性を有する硬化物を形成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that an energy ray curable resin composition containing a specific urethane (meth) acrylate and a photoinitiator as essential components is very excellent when cured. The present inventors have found that a cured product having excellent vibration damping properties can be formed.
 すなわち、本発明は、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)と、光開始剤(B)とを含み、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)が、水素化ポリオレフィン骨格を有するジオール(X)と、ジイソシアネート(Y)と、ヒドロキシ基含有(メタ)アクリレート(Z)と、分子内に1個のイソシアネート反応性基を有し、光硬化性官能基を有しない化合物(L)とを反応させて得られるウレタン(メタ)アクリレートであることを特徴とするエネルギー線硬化性樹脂組成物を提供する。 That is, the present invention includes a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton and a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton and a photoinitiator (B). Diol (X) having a hydrogenated polyolefin skeleton, diisocyanate (Y), hydroxy group-containing (meth) acrylate (Z), one isocyanate-reactive group in the molecule, and a photocurable functional group. Provided is an energy ray-curable resin composition, which is a urethane (meth) acrylate obtained by reacting a compound (L) having no group.
 さらに、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の重量平均分子量が10,000以上である前記のエネルギー線硬化性樹脂組成物を提供する。また、単官能ウレタン(メタ)アクリレート(A)と、光開始剤(B)と、さらに反応性希釈剤、及び/又は揮発性有機溶剤とを含むエネルギー線硬化性樹脂組成物についても提供する。 Furthermore, the energy ray-curable resin composition is provided wherein the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton has a weight average molecular weight of 10,000 or more. Moreover, it provides also about the energy-beam curable resin composition containing a monofunctional urethane (meth) acrylate (A), a photoinitiator (B), a reactive diluent, and / or a volatile organic solvent.
 また、本発明は、前記のエネルギー線硬化性樹脂組成物の硬化物を含む制振シートを提供する。 The present invention also provides a vibration damping sheet containing a cured product of the energy beam curable resin composition.
 すなわち、本発明は以下に関する。
 (1)水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)と、光開始剤(B)とを含み、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)が、水素化ポリオレフィン骨格を有するジオール(X)と、ジイソシアネート(Y)と、ヒドロキシ基含有(メタ)アクリレート(Z)と、分子内に1個のイソシアネート反応性基を有し、光硬化性官能基を有しない化合物(L)とを反応させて得られるウレタン(メタ)アクリレートであることを特徴とするエネルギー線硬化性樹脂組成物。
 (2)成分(A)が、成分(X)と、成分(Y)と、成分(Z)と、化合物(L)とを反応させて得られるウレタン(メタ)アクリレートであって、成分(A)の構造が以下で表される(1)に記載のエネルギー線硬化性樹脂組成物。
  Z-Y-[X-Y]m-L (但しmは1以上の整数を示す。)
 (3)前記成分(X)~(Z)及び化合物(L)を反応させる方法が、成分(X)及び成分(Y)を反応させて、両末端がイソシアネート基のウレタンイソシアネートプレポリマー(ウレタンプレポリマー)を形成した後、該ウレタンイソシアネートプレポリマーの片方のイソシアネート基が反応する量の成分(Z)を反応させ、次に、残りのイソシアネート基が反応する量の化合物(L)を反応させる方法である(1)又は(2)に記載のエネルギー線硬化性樹脂組成物。
 (4)前記ウレタンイソシアネートプレポリマーを合成する方法が、反応器に、成分(X)と、成分(Y)と、必要により、さらに反応性希釈剤、及び/又は揮発性有機溶剤とを仕込み、均一になるまで攪拌をしながら必要に応じて昇温後、ウレタン化触媒を投入して成分(X)と成分(Y)との反応(ウレタン化)を開始乃至進行させる方法である(3)に記載のエネルギー線硬化性樹脂組成物。
 (5)前記ウレタンイソシアネートプレポリマーを合成する方法が、反応器に、成分(Y)と、ウレタン化触媒と、必要により、さらに反応性希釈剤、及び/又は揮発性有機溶剤とを仕込み、均一になるまで攪拌し、次いで、攪拌をしながら、必要に応じて昇温し、成分(X)を滴下して反応させる方法である(3)に記載のエネルギー線硬化性樹脂組成物。
 (6)前記反応性希釈剤が1,6-ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、トリシクロデカンジメタノールジアクリレート、イソボルニルアクリレート、及びノルマルオクチルアクリレートからなる群より選択される少なくとも1種である(4)又は(5)に記載のエネルギー線硬化性樹脂組成物。
 (7)前記反応性希釈剤がイソボルニルアクリレート及びノルマルオクチルアクリレートからなる群より選択される少なくとも1種である(4)~(6)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (8)前記揮発性有機溶剤が酢酸エチル、酢酸ブチル、酢酸イソブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルアセテート、キシレン、及びトルエンからなる群より選択される少なくとも1種である(4)~(7)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (9)前記揮発性有機溶剤が酢酸エチル、酢酸ブチル、及びトルエンからなる群より選択される少なくとも1種である(4)~(8)に記載のエネルギー線硬化性樹脂組成物。
 (10)前記ウレタンイソシアネートプレポリマーを合成する際、成分(X)と成分(Y)とを、反応液中のイソシアネート基濃度が終点イソシアネート基濃度以下になるまで反応させる(3)~(9)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (11)前記ウレタンイソシアネートプレポリマーを合成する方法において、成分(X)と成分(Y)とのモル比が、成分(X)1モルに対して、成分(Y)を1.1~2.0モル、より好ましくは1.2~1.5モル使用する方法である(3)~(10)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (12)前記ウレタンイソシアネートプレポリマーと成分(Z)と化合物(L)との反応において、ウレタンイソシアネートプレポリマー1モルに対して、使用する成分(Z)の量(モル数)が、1.0~1.1モル、より好ましくは1.0~1.05モルであり、ウレタンイソシアネートプレポリマーのイソシアネート基のモル数1モルに対して、成分(Z)のヒドロキシ基及び化合物(L)のイソシアネート反応性基のモル数(総量)が、1.0~1.1モル、より好ましくは1.0~1.05モルである(3)~(11)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (13)成分(A)を製造するための反応における触媒が、ジブチルスズジラウレート、オクチル酸スズ、及び塩化スズからなる群より選択される少なくとも1種を用いる反応であり、前記触媒の添加量(使用量)が、1~3000ppm(重量基準)、より好ましくは50~1000ppmである(4)~(12)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (14)成分(X)~(Z)及び化合物(L)の反応が、残存イソシアネート基が0.1重量%以下になるまで行う反応である(3)~(13)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (15)成分(X)が、分子内に水素化ポリオレフィン骨格を有し、かつ分子内に2個のヒドロキシ基を有する化合物である(1)~(14)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (16)成分(X)が、両末端にヒドロキシ基を有するポリアルカジエンを水素化した化合物である(1)~(15)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (17)前記ポリアルカジエンが、ポリブタジエン及び/又はポリイソプレンである(16)に記載のエネルギー線硬化性樹脂組成物。
 (18)成分(Y)が、分子内に2個のイソシアネート基を有する化合物である(1)~(17)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (19)成分(Y)が、脂環式ジイソシアネート、分岐鎖を有する脂肪族ジイソシアネート、及び芳香族のイソシアネート類を水添して得られるジイソシアネート化合物からなる群より選択される少なくとも1種である(1)~(18)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (20)成分(Y)が、イソホロンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、及び水添ジフェニルメタンジイソシアネートからなる群より選択される少なくとも1種である(1)~(19)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (21)成分(Z)が、分子内に1個のヒドロキシ基を有し、かつ分子中に1個の(メタ)アクリロイル基を有する化合物である(1)~(20)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (22)成分(Z)が、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、ビスフェノールAジグリシジルモノ(メタ)アクリレート及びそれを水添したものからなる群より選択される少なくとも1種である(1)~(21)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (23)化合物(L)が、ヒドロキシ基、活性水素を含むアミノ基、>C=N-OHで表される官能基、及びアミド基からなる群より選択される少なくとも1種を有する化合物である(1)~(22)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (24)化合物(L)が、アルコール系化合物、フェノール系化合物、活性メチレン系化合物、メルカプタン系化合物、酸アミド系化合物、酸イミド系化合物、イミダゾール系化合物、ピラゾール系化合物、尿素系化合物、オキシム系化合物、アミン系化合物、イミン系化合物、及びピリジン系化合物からなる群より選択される少なくとも1種である(1)~(23)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (25)化合物(L)が、アルコール系化合物である(1)~(24)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (26)前記アルコール系化合物が、炭素数が1以上の脂肪族の1価アルコール、及び/又は炭素数が3以上の脂環式の1価アルコールであり、分子量が70から400である(24)又は(25)に記載のエネルギー線硬化性樹脂組成物。
 (27)前記アルコール系化合物が、メタノール、エタノール、イソプロパノール、ノルマルプロパノール、1-ブタノール、1-ヘプタノール、1-ヘキサノール、ノルマルオクチルアルコール、2-エチルヘキシルアルコール(2-エチルヘキサノール)、シクロヘキサンメタノール、カプリルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール(セタノール)、ステアリルアルコール、メチルセルソルブ、ブチルセルソルブ、メチルカルビトール、ベンジルアルコール、シクロヘキサノール(炭素数が3以上ではイソ体、ノルマル体他の構造異性体も含む)やこれらの混合物である(24)~(26)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (28)前記アルコール系化合物が、イソプロパノール、2-エチルヘキシルアルコールやこれらの混合物である(24)~(27)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (29)成分(A)の重量平均分子量(Mw)が、10,000以上、より好ましくは15,000~100,000、さらに好ましくは30,000~60,000である(1)~(28)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (30)エネルギー線硬化性樹脂組成物における成分(A)の含有量(配合量)が、エネルギー線硬化性樹脂組成物の不揮発分の総重量(100重量%)に対して、40~99.9重量%、より好ましくは45~99重量%、さらに好ましくは50~98重量%である(1)~(29)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (31)エネルギー線硬化性樹脂組成物における光開始剤(B)の含有量(配合量)が、エネルギー線硬化性樹脂組成物に含まれるラジカル重合性を有する化合物の全量100重量部に対して、0.1~20重量部、より好ましくは1~5重量部である(1)~(30)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (32)エネルギー線硬化性樹脂組成物が、成分(A)と、光開始剤(B)と、さらに反応性希釈剤、及び/又は揮発性有機溶剤とを含む(1)~(31)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (33)エネルギー線硬化性樹脂組成物に含まれる反応性希釈剤が1,6-ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、トリシクロデカンジメタノールジアクリレート、イソボルニルアクリレート、及びノルマルオクチルアクリレートからなる群より選択される少なくとも1種である(32)に記載のエネルギー線硬化性樹脂組成物。
 (34)エネルギー線硬化性樹脂組成物に含まれる反応性希釈剤がイソボルニルアクリレート及びノルマルオクチルアクリレートからなる群より選択される少なくとも1種である(32)又は(33)に記載のエネルギー線硬化性樹脂組成物。
 (35)エネルギー線硬化性樹脂組成物における反応性希釈剤の含有量(配合量)が、エネルギー線硬化性樹脂組成物の全量100重量部に対して、1~99重量部が好ましく、より好ましくは10~90重量部、さらに好ましくは15~80重量部、特に好ましくは20~60重量部である(32)~(34)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (36)エネルギー線硬化性樹脂組成物に含まれる揮発性有機溶剤が酢酸エチル、酢酸ブチル、酢酸イソブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルアセテート、キシレン、及びトルエンからなる群より選択される少なくとも1種である(32)~(35)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (37)エネルギー線硬化性樹脂組成物に含まれる揮発性有機溶剤が酢酸エチル、酢酸ブチル、及びトルエンからなる群より選択される少なくとも1種である(32)~(36)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (38)エネルギー線硬化性樹脂組成物における揮発性有機溶剤の含有量(配合量)が、エネルギー線硬化性樹脂組成物の全量100重量部に対して、1~99重量部が好ましく、より好ましくは10~90重量部、さらに好ましくは15~80重量部、特に好ましくは20~60重量部である(32)~(37)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (39)エネルギー線硬化性樹脂組成物における水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の含有量(配合量)が、エネルギー線硬化性樹脂組成物の全量100重量%に対して、1~99重量%が好ましく、より好ましくは10~90重量%、さらに好ましくは30~85重量%、最も好ましくは50~80重量%である(32)~(38)のいずれか1つに記載のエネルギー線硬化性樹脂組成物。
 (40)(1)~(39)のいずれか1つに記載のエネルギー線硬化性樹脂組成物の硬化物であって、23℃におけるTanδが、0.6以上、より好ましくは0.8以上、さらに好ましくは1.0以上である硬化物
 (41)(1)~(39)のいずれか1つに記載のエネルギー線硬化性樹脂組成物の硬化物を含むコーティング材。
 (42)(1)~(39)のいずれか1つに記載のエネルギー線硬化性樹脂組成物の硬化物を含む制振シート。
That is, the present invention relates to the following.
(1) A monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton and a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton and a photoinitiator (B) Diol (X) having a modified polyolefin skeleton, diisocyanate (Y), hydroxy group-containing (meth) acrylate (Z), one isocyanate-reactive group in the molecule, and a photocurable functional group An energy ray-curable resin composition, which is a urethane (meth) acrylate obtained by reacting with a compound (L) that does not.
(2) The component (A) is a urethane (meth) acrylate obtained by reacting the component (X), the component (Y), the component (Z), and the compound (L), and the component (A) The energy ray-curable resin composition according to (1), wherein the structure of
ZY- [XY] mL (where m represents an integer of 1 or more)
(3) The method of reacting the components (X) to (Z) and the compound (L) comprises reacting the component (X) and the component (Y) to form a urethane isocyanate prepolymer (urethane prepolymer) having isocyanate groups at both ends. After forming the polymer), the component (Z) is reacted with an amount that reacts with one isocyanate group of the urethane isocyanate prepolymer, and then the compound (L) is reacted with an amount that reacts with the remaining isocyanate group. The energy ray-curable resin composition according to (1) or (2).
(4) The method for synthesizing the urethane isocyanate prepolymer is charged with a component (X), a component (Y), and, if necessary, a reactive diluent and / or a volatile organic solvent in a reactor. This is a method of starting or advancing the reaction (urethanization) between the component (X) and the component (Y) by adding a urethanization catalyst after raising the temperature as necessary while stirring until uniform (3) The energy ray-curable resin composition described in 1.
(5) The method for synthesizing the urethane isocyanate prepolymer is prepared by uniformly charging the reactor with the component (Y), the urethanization catalyst, and, if necessary, a reactive diluent and / or a volatile organic solvent. The energy ray curable resin composition according to (3), which is stirred until the temperature reaches, then heated as necessary while stirring, and the component (X) is dropped and reacted.
(6) The reactive diluent is at least one selected from the group consisting of 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, tricyclodecane dimethanol diacrylate, isobornyl acrylate, and normal octyl acrylate. The energy ray-curable resin composition according to (4) or (5), which is a seed.
(7) The energy ray-curable resin composition according to any one of (4) to (6), wherein the reactive diluent is at least one selected from the group consisting of isobornyl acrylate and normal octyl acrylate. object.
(8) The volatile organic solvent is selected from the group consisting of ethyl acetate, butyl acetate, isobutyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl acetate, xylene, and toluene. The energy ray-curable resin composition according to any one of (4) to (7), which is at least one kind.
(9) The energy beam curable resin composition according to (4) to (8), wherein the volatile organic solvent is at least one selected from the group consisting of ethyl acetate, butyl acetate, and toluene.
(10) When synthesizing the urethane isocyanate prepolymer, the component (X) and the component (Y) are reacted until the isocyanate group concentration in the reaction solution is equal to or lower than the end-point isocyanate group concentration (3) to (9) The energy beam curable resin composition as described in any one of these.
(11) In the method for synthesizing the urethane isocyanate prepolymer, the molar ratio of the component (X) to the component (Y) is 1.1-2. The energy ray-curable resin composition according to any one of (3) to (10), which is a method of using 0 mol, more preferably 1.2 to 1.5 mol.
(12) In the reaction of the urethane isocyanate prepolymer, the component (Z) and the compound (L), the amount (number of moles) of the component (Z) to be used is 1.0 with respect to 1 mol of the urethane isocyanate prepolymer. 1.1 mol, more preferably 1.0 to 1.05 mol, and the hydroxyl group of component (Z) and the isocyanate of compound (L) with respect to 1 mol of isocyanate groups of the urethane isocyanate prepolymer The energy ray according to any one of (3) to (11), wherein the number of moles (total amount) of the reactive group is 1.0 to 1.1 mol, more preferably 1.0 to 1.05 mol. Curable resin composition.
(13) The catalyst in the reaction for producing the component (A) is a reaction using at least one selected from the group consisting of dibutyltin dilaurate, tin octylate, and tin chloride, and the added amount of catalyst (use) The energy ray-curable resin composition according to any one of (4) to (12), wherein the amount is 1 to 3000 ppm (by weight), more preferably 50 to 1000 ppm.
(14) In any one of (3) to (13), the reaction of components (X) to (Z) and compound (L) is performed until the residual isocyanate group is 0.1% by weight or less. The energy beam curable resin composition described.
(15) The energy according to any one of (1) to (14), wherein the component (X) is a compound having a hydrogenated polyolefin skeleton in the molecule and having two hydroxy groups in the molecule. A linear curable resin composition.
(16) The energy ray curable resin composition according to any one of (1) to (15), wherein the component (X) is a compound obtained by hydrogenating a polyalkadiene having hydroxy groups at both ends.
(17) The energy ray-curable resin composition according to (16), wherein the polyalkadiene is polybutadiene and / or polyisoprene.
(18) The energy ray curable resin composition according to any one of (1) to (17), wherein the component (Y) is a compound having two isocyanate groups in the molecule.
(19) Component (Y) is at least one selected from the group consisting of a diisocyanate compound obtained by hydrogenating an alicyclic diisocyanate, a branched aliphatic diisocyanate, and an aromatic isocyanate ( 1) The energy ray curable resin composition according to any one of (18).
(20) Component (Y) is selected from the group consisting of isophorone diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, hydrogenated xylylene diisocyanate, and hydrogenated diphenylmethane diisocyanate The energy ray-curable resin composition according to any one of (1) to (19), which is at least one selected from the group consisting of:
(21) Any one of (1) to (20), wherein component (Z) is a compound having one hydroxy group in the molecule and one (meth) acryloyl group in the molecule The energy ray-curable resin composition described in 1.
(22) Component (Z) is 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexanedimethanol mono (meth) acrylate, bisphenol A diglycidyl mono The energy beam curable resin composition according to any one of (1) to (21), which is at least one selected from the group consisting of (meth) acrylates and hydrogenated products thereof.
(23) The compound (L) is a compound having at least one selected from the group consisting of a hydroxy group, an amino group containing active hydrogen, a functional group represented by> C═N—OH, and an amide group. (1) The energy beam curable resin composition according to any one of (22).
(24) Compound (L) is an alcohol compound, a phenol compound, an active methylene compound, a mercaptan compound, an acid amide compound, an acid imide compound, an imidazole compound, a pyrazole compound, a urea compound, or an oxime compound. The energy ray-curable resin composition according to any one of (1) to (23), which is at least one selected from the group consisting of a compound, an amine compound, an imine compound, and a pyridine compound.
(25) The energy ray curable resin composition according to any one of (1) to (24), wherein the compound (L) is an alcohol compound.
(26) The alcohol compound is an aliphatic monohydric alcohol having 1 or more carbon atoms and / or an alicyclic monohydric alcohol having 3 or more carbon atoms, and has a molecular weight of 70 to 400 (24 ) Or the energy ray-curable resin composition according to (25).
(27) The alcohol compound is methanol, ethanol, isopropanol, normal propanol, 1-butanol, 1-heptanol, 1-hexanol, normal octyl alcohol, 2-ethylhexyl alcohol (2-ethylhexanol), cyclohexane methanol, capryl alcohol. , Lauryl alcohol, myristyl alcohol, cetyl alcohol (cetanol), stearyl alcohol, methyl cellosolve, butyl cellosolve, methyl carbitol, benzyl alcohol, cyclohexanol (with 3 or more carbon atoms, iso isomers, normal isomers and other structural isomers) And the energy ray-curable resin composition according to any one of (24) to (26).
(28) The energy ray curable resin composition according to any one of (24) to (27), wherein the alcohol compound is isopropanol, 2-ethylhexyl alcohol, or a mixture thereof.
(29) The weight average molecular weight (Mw) of the component (A) is 10,000 or more, more preferably 15,000 to 100,000, still more preferably 30,000 to 60,000. ) The energy ray-curable resin composition according to any one of the above.
(30) The content (blending amount) of the component (A) in the energy beam curable resin composition is 40 to 99.75 based on the total nonvolatile weight (100% by weight) of the energy beam curable resin composition. The energy ray-curable resin composition according to any one of (1) to (29), which is 9% by weight, more preferably 45 to 99% by weight, and still more preferably 50 to 98% by weight.
(31) The content (blending amount) of the photoinitiator (B) in the energy beam curable resin composition is 100 parts by weight based on the total amount of radical polymerizable compounds contained in the energy beam curable resin composition. The energy ray curable resin composition according to any one of (1) to (30), which is 0.1 to 20 parts by weight, more preferably 1 to 5 parts by weight.
(32) The energy ray curable resin composition comprises the component (A), the photoinitiator (B), and further a reactive diluent and / or a volatile organic solvent. The energy ray-curable resin composition according to any one of the above.
(33) The reactive diluent contained in the energy ray curable resin composition is 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, tricyclodecane dimethanol diacrylate, isobornyl acrylate, and normal octyl acrylate The energy ray-curable resin composition according to (32), which is at least one selected from the group consisting of:
(34) The energy beam according to (32) or (33), wherein the reactive diluent contained in the energy beam curable resin composition is at least one selected from the group consisting of isobornyl acrylate and normal octyl acrylate. Curable resin composition.
(35) The content (blending amount) of the reactive diluent in the energy beam curable resin composition is preferably 1 to 99 parts by weight, more preferably 100 parts by weight of the total amount of the energy beam curable resin composition. The energy ray curable resin composition according to any one of (32) to (34), wherein 10 to 90 parts by weight, more preferably 15 to 80 parts by weight, and particularly preferably 20 to 60 parts by weight.
(36) The volatile organic solvent contained in the energy ray curable resin composition is ethyl acetate, butyl acetate, isobutyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl acetate, xylene, And the energy ray-curable resin composition according to any one of (32) to (35), which is at least one selected from the group consisting of toluene and toluene.
(37) Any one of (32) to (36), wherein the volatile organic solvent contained in the energy ray curable resin composition is at least one selected from the group consisting of ethyl acetate, butyl acetate, and toluene. The energy ray-curable resin composition described in 1.
(38) The content (blending amount) of the volatile organic solvent in the energy ray curable resin composition is preferably 1 to 99 parts by weight, more preferably 100 parts by weight of the total amount of the energy ray curable resin composition. The energy ray-curable resin composition according to any one of (32) to (37), wherein is 10 to 90 parts by weight, more preferably 15 to 80 parts by weight, and particularly preferably 20 to 60 parts by weight.
(39) The content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton in the energy ray curable resin composition is 100% by weight based on the total amount of the energy ray curable resin composition. 1 to 99% by weight is preferable, more preferably 10 to 90% by weight, still more preferably 30 to 85% by weight, and most preferably 50 to 80% by weight, and any one of (32) to (38) The energy ray-curable resin composition described in 1.
(40) A cured product of the energy ray-curable resin composition according to any one of (1) to (39), wherein Tan δ at 23 ° C. is 0.6 or more, more preferably 0.8 or more. More preferably, the cured product is 1.0 or more. (41) A coating material comprising a cured product of the energy beam curable resin composition according to any one of (1) to (39).
(42) A vibration damping sheet comprising a cured product of the energy beam curable resin composition according to any one of (1) to (39).
 本発明のエネルギー線硬化性樹脂組成物は上記構成を有するため、硬化させることにより、非常に優れた制振性を有する硬化物を形成できる。また、本発明のエネルギー線硬化性樹脂組成物は、エネルギー線(特に、紫外線)の照射によって硬化させることができるため、高い生産性で非常に優れた制振性を有するコーティング材(硬化物)を形成できる。また、本発明のエネルギー線硬化性樹脂組成物は、例えば、平面状の物品だけでなく、3次元形状物等の複雑な形状を有する物品にも塗布でき、硬化させてコーティング材を形成できるため、多種多様な物品に対して優れた制振性を付与することが可能である。さらに、本発明のエネルギー線硬化性樹脂組成物を用いることにより、該樹脂組成物の硬化物を含む、非常に優れた制振性を有する制振シートが得られる。 Since the energy ray curable resin composition of the present invention has the above-described configuration, a cured product having very excellent vibration damping properties can be formed by curing. In addition, since the energy ray curable resin composition of the present invention can be cured by irradiation with energy rays (particularly, ultraviolet rays), it is a coating material (cured product) having very high vibration damping properties with high productivity. Can be formed. In addition, the energy beam curable resin composition of the present invention can be applied to, for example, not only a planar article but also an article having a complicated shape such as a three-dimensional shape, and can be cured to form a coating material. It is possible to impart excellent vibration damping properties to a wide variety of articles. Furthermore, by using the energy ray curable resin composition of the present invention, a vibration damping sheet having a very excellent vibration damping property including a cured product of the resin composition can be obtained.
≪エネルギー線硬化性樹脂組成物≫
 本発明のエネルギー線硬化性樹脂組成物は、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)(「成分(A)」と称する場合がある)と、光開始剤(B)とを必須成分として含む硬化性樹脂組成物である。本発明のエネルギー線硬化性樹脂組成物は、成分(A)及び光開始剤(B)以外にも、後述の反応性希釈剤、揮発性有機溶剤、及び添加剤を含んでいてもよい。
≪Energy ray curable resin composition≫
The energy ray-curable resin composition of the present invention comprises a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton (sometimes referred to as “component (A)”), a photoinitiator (B), Is a curable resin composition containing as an essential component. The energy beam curable resin composition of the present invention may contain a reactive diluent, a volatile organic solvent, and an additive described later in addition to the component (A) and the photoinitiator (B).
<水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)>
 本発明のエネルギー線硬化性樹脂組成物における水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)は、分子内に水素化ポリオレフィン骨格を有し、かつ分子内に1個の(メタ)アクリロイル基を有する(即ち、単官能である)、ウレタン(メタ)アクリレートである。なお、本明細書において「(メタ)アクリレート」は、アクリレート及び/又はメタクリレート(アクリレート及びメタクリレートのいずれか一方又は両方)を意味し、「(メタ)アクリロイル」等においても同様である。
<Monofunctional urethane (meth) acrylate (A) having hydrogenated polyolefin skeleton>
The monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton in the energy ray curable resin composition of the present invention has a hydrogenated polyolefin skeleton in the molecule and one (meth) in the molecule. A urethane (meth) acrylate having an acryloyl group (that is, monofunctional). In the present specification, “(meth) acrylate” means acrylate and / or methacrylate (any one or both of acrylate and methacrylate), and the same applies to “(meth) acryloyl” and the like.
 水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)は、水素化ポリオレフィン骨格を有するジオール(X)(「成分(X)」や「X」と称する場合がある)と、ジイソシアネート(Y)(「成分(Y)」や「Y」と称する場合がある)と、ヒドロキシ基含有(メタ)アクリレート(Z)(「成分(Z)」や「Z」と称する場合がある)と、分子内に1個のイソシアネート反応性基を有し、光硬化性官能基を有しない化合物(L)(「イソシアネート反応性化合物」、「化合物(L)」、「成分(L)」、「L」と称する場合がある)とを反応させて得られるウレタン(メタ)アクリレートである。水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の構造を模式的に示すと以下のようになる。
  Z-Y-[X-Y]m-L (但しmは1以上の整数を示す)
The monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is composed of a diol (X) having a hydrogenated polyolefin skeleton (sometimes referred to as “component (X)” or “X”) and a diisocyanate (Y ) (Sometimes referred to as “component (Y)” or “Y”), hydroxy group-containing (meth) acrylate (Z) (sometimes referred to as “component (Z)” or “Z”), and molecules Compound (L) having one isocyanate-reactive group and not having a photocurable functional group (“isocyanate-reactive compound”, “compound (L)”, “component (L)”, “L”) Is a urethane (meth) acrylate obtained by reacting. The structure of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is schematically shown as follows.
ZY- [XY] m -L (where m represents an integer of 1 or more)
 上述の成分(X)~(Z)及び成分(L)を反応させる方法は、特に限定されないが、例えば、次の方法が挙げられる。
[方法1]成分(X)、成分(Y)、成分(Z)、及び成分(L)を一括混合して反応させる方法
[方法2]成分(X)及び成分(Y)を反応させて、両末端がイソシアネート基のウレタンイソシアネートプレポリマー(ウレタンプレポリマー)を形成した後、該ウレタンイソシアネートプレポリマーの片方のイソシアネート基が反応する量の成分(Z)を反応させ、次に、残りのイソシアネート基が反応する量の成分(L)を反応させる方法
[方法3]成分(X)及び成分(Y)を反応させて、両末端がイソシアネート基のウレタンイソシアネートプレポリマー(ウレタンプレポリマー)を形成した後、該ウレタンイソシアネートプレポリマーの片方のイソシアネート基が反応する量の成分(L)を反応させ、次に、残りのイソシアネート基が反応する量の成分(Z)を反応させる方法
[方法4]成分(Y)と、成分(Y)の片方のイソシアネート基が反応する量の成分(Z)とを反応させ、模式的にY-Zで示されるプレポリマー(以下、「プレポリマー(Y-Z)」という)を合成する。一方、成分(Y)と、成分(Y)の片方のイソシアネート基が反応する量の成分(L)とを反応させ、模式的にY-Lで示されるプレポリマー(以下、「プレポリマー(Y-L)」という)を合成する。成分(X)と成分(Y)の繰り返し数を増やす場合は、さらに別途、成分(X)及び成分(Y)を反応させて、両末端が水酸基のウレタンプレポリマーを合成する。その後、プレポリマー(Y-Z)とプレポリマー(Y-L)の混合物に、成分(X)及び/又は上記両末端が水酸基のウレタンプレポリマーを反応させる。
The method for reacting the above components (X) to (Z) and the component (L) is not particularly limited, and examples thereof include the following methods.
[Method 1] Method of mixing component (X), component (Y), component (Z), and component (L) and reacting them together [Method 2] reacting component (X) and component (Y), After the formation of a urethane isocyanate prepolymer having both ends isocyanate groups (urethane prepolymer), the component (Z) is reacted in an amount such that one isocyanate group of the urethane isocyanate prepolymer reacts, and then the remaining isocyanate groups are reacted. [Method 3] After reacting component (X) and component (Y) to form a urethane isocyanate prepolymer (urethane prepolymer) having isocyanate groups at both ends. And reacting the component (L) in such an amount that one isocyanate group of the urethane isocyanate prepolymer reacts, and then the remaining isocyanate [Method 4] A reaction of component (Y) with an amount of component (Z) with which one of the isocyanate groups of component (Y) reacts, schematically represents Y A prepolymer represented by —Z (hereinafter referred to as “prepolymer (YZ)”) is synthesized. On the other hand, the component (Y) is reacted with the component (L) in such an amount that one isocyanate group of the component (Y) reacts to give a prepolymer (hereinafter referred to as “prepolymer (Y -L) "). When increasing the number of repetitions of component (X) and component (Y), component (X) and component (Y) are further reacted separately to synthesize a urethane prepolymer having hydroxyl groups at both ends. Thereafter, the mixture of the prepolymer (YZ) and the prepolymer (YL) is reacted with the component (X) and / or the urethane prepolymer having hydroxyl groups at both ends.
 上述の[方法1]~[方法4]の中では、[方法2]が好ましい。即ち、本発明の水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)は、ウレタンイソシアネートプレポリマー(ジイソシアネート)の一方のイソシアネート基にヒドロキシ基含有(メタ)アクリレート(Z)を反応させ、続いて、他方のイソシアネート基に化合物(L)を反応させて得られるウレタン(メタ)アクリレートであることが好ましい。[方法2]を採用することにより、[方法1]及び[方法3]等に比べて、例えば、粘度増加防止、樹脂外観、副生物抑制、硬化物の透明性、耐熱性等が顕著に向上するという効果が奏される。 [Method 2] is preferable among [Method 1] to [Method 4] described above. That is, the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton of the present invention reacts with one isocyanate group of a urethane isocyanate prepolymer (diisocyanate) with a hydroxy group-containing (meth) acrylate (Z), Then, it is preferable that it is urethane (meth) acrylate obtained by making a compound (L) react with the other isocyanate group. By adopting [Method 2], for example, viscosity increase prevention, resin appearance, suppression of by-products, transparency of cured products, heat resistance, etc. are significantly improved as compared with [Method 1] and [Method 3]. The effect of doing.
 一方、上記[方法1]で製造した場合、得られるウレタン(メタ)アクリレートは、高粘度となり、攪拌が困難となり、又は反応が不均一に進行し、部分的なゲル化の確率が高くなるだけでなく、水素化ポリオレフィン骨格を有するジオール(X)とジイソシアネート(Y)の繰り返しによるウレタンイソシアネートプレポリマーの副生量が多くなり、硬化物の制振性が低下する傾向がある。また、複雑な各種の化合物が不規則に生成するため、生成物をエネルギー線硬化性樹脂組成物の構成成分として使用する際、品質の管理が難しくなる。 On the other hand, when produced by the above [Method 1], the obtained urethane (meth) acrylate has a high viscosity, stirring becomes difficult, or the reaction proceeds non-uniformly, and the probability of partial gelation is increased. In addition, the by-product amount of the urethane isocyanate prepolymer due to the repetition of the diol (X) having a hydrogenated polyolefin skeleton and the diisocyanate (Y) increases, and the vibration damping property of the cured product tends to decrease. Moreover, since various complicated compounds are irregularly generated, quality control becomes difficult when the product is used as a component of the energy ray curable resin composition.
 また、上記[方法3]で反応させた場合、ヒドロキシ基含有(メタ)アクリレート(Z)が反応後期でイソシアネート基と反応せず残存する可能性があり、好ましくない。なお、ヒドロキシ基含有(メタ)アクリレート(Z)の骨格を含んでいない副生物(成分(X)と成分(Y)と成分(L)との反応生成物)が副生しやすくなる傾向があり、エネルギー線硬化性樹脂組成物の硬化性が低下する傾向がある。 Further, when the reaction is carried out by the above [Method 3], there is a possibility that the hydroxy group-containing (meth) acrylate (Z) may remain without reacting with the isocyanate group in the late stage of the reaction, which is not preferable. In addition, there is a tendency that a by-product (a reaction product of the component (X), the component (Y), and the component (L)) that does not contain the skeleton of the hydroxy group-containing (meth) acrylate (Z) tends to be by-produced. The curability of the energy ray curable resin composition tends to be lowered.
 さらに、上記[方法4]で反応させた場合、反応工程が長くなり、工業的に好ましくない。 Furthermore, when the reaction is carried out by the above [Method 4], the reaction process becomes long, which is not industrially preferable.
 上記[方法2]において、ウレタンイソシアネートプレポリマーを合成する方法としては、特に限定されないが、例えば、次の方法が挙げられる。
[方法2-1]成分(X)及び成分(Y)を一括混合して反応させる方法
[方法2-2]成分(X)の中に成分(Y)を滴下して反応させる方法
[方法2-3]成分(Y)の中に成分(X)を滴下して反応させる方法
In the above [Method 2], the method for synthesizing the urethane isocyanate prepolymer is not particularly limited, and examples thereof include the following methods.
[Method 2-1] Method in which component (X) and component (Y) are mixed and reacted at once [Method 2-2] Method in which component (Y) is dropped into component (X) and reacted [Method 2 -3] Method of dropping component (X) into component (Y) and reacting
 上記[方法2-2]の場合、大量の水素化ポリオレフィン骨格を有するジオール(X)の中にジイソシアネート(Y)を滴下するので、模式的に以下の式で示される分子のうち、mの値が大きな超巨大分子が生成するため、ゲル化し、製品化が困難になる傾向がある。
  [X-Y]m-X  (mは1以上の整数)
In the case of the above [Method 2-2], since the diisocyanate (Y) is dropped into a large amount of the diol (X) having a hydrogenated polyolefin skeleton, the value of m among the molecules represented by the following formulas However, since a very large molecule is generated, it tends to be gelled and difficult to produce.
[XY] m -X (m is an integer of 1 or more)
 従って、目的とするウレタンイソシアネートプレポリマーを収率良く得るためには、[方法2-1]、[方法2-3]が好ましく用いられる。 Therefore, [Method 2-1] and [Method 2-3] are preferably used in order to obtain the desired urethane isocyanate prepolymer in good yield.
[方法2-1]の場合:
 反応器に、水素化ポリオレフィン骨格を有するジオール(X)、ジイソシアネート(Y)、及び必要により反応性希釈剤(例えば、イソボルニルアクリレート、ノルマルオクチルアクリレート等)、及び/又は揮発性有機溶剤(例えば、トルエン、酢酸エチル、酢酸ブチル等)を仕込み、均一になるまで攪拌をしながら必要に応じて昇温後、ウレタン化触媒を投入して成分(X)と成分(Y)との反応(ウレタン化)を開始乃至進行させる方法が好ましい。ウレタン化触媒を投入後に必要に応じて昇温してもよい。
For [Method 2-1]:
In the reactor, a diol (X) having a hydrogenated polyolefin skeleton, a diisocyanate (Y), and optionally a reactive diluent (eg, isobornyl acrylate, normal octyl acrylate, etc.) and / or a volatile organic solvent (eg, , Toluene, ethyl acetate, butyl acetate, etc.), and after stirring until homogeneous, the temperature rises as necessary, and then the urethanization catalyst is added to react the component (X) with the component (Y) (urethane) The method of initiating or advancing the conversion is preferable. The temperature may be increased as necessary after the urethanization catalyst is added.
 ウレタン化触媒を初めから投入すると、ジイソシアネート(Y)の仕込み段階で、水素化ポリオレフィン骨格を有するジオール(X)とジイソシアネート(Y)とが不均一な状態でウレタン化反応が進行することになり、得られるウレタンイソシアネートプレポリマーの分子量や粘度が変化し、未反応のジイソシアネート(Y)が系中に残存した状態で反応が終結する場合がある。このような場合には、後で使用するヒドロキシ基含有(メタ)アクリレート(Z)や化合物(L)と残存したジイソシアネート(Y)だけの反応による副生物が生じるため、硬化物の制振性の低下を導くことがあり不都合である。上記[方法2-1]は、ワンポットで水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)を製造できる点で、工業的に優れている。 When the urethanization catalyst is introduced from the beginning, the urethanization reaction proceeds in a state where the diol (X) having a hydrogenated polyolefin skeleton and the diisocyanate (Y) are in a non-uniform state at the charging stage of the diisocyanate (Y). The molecular weight and viscosity of the resulting urethane isocyanate prepolymer change, and the reaction may be terminated in a state where unreacted diisocyanate (Y) remains in the system. In such a case, since a by-product is generated due to the reaction of only the remaining diisocyanate (Y) with the hydroxy group-containing (meth) acrylate (Z) or compound (L) to be used later, It may lead to a drop, which is inconvenient. [Method 2-1] is industrially superior in that it can produce a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton in one pot.
[方法2-3]の場合:
 反応器に、ジイソシアネート(Y)、ウレタン化触媒、及び必要により反応性希釈剤(例えば、イソボルニルアクリレート、ノルマルオクチルアクリレート等)、及び/又は揮発性有機溶剤(例えば、トルエン、酢酸エチル、酢酸ブチル等)を仕込み、均一になるまで攪拌する。次いで、攪拌をしながら、必要に応じて昇温し、水素化ポリオレフィン骨格を有するジオール(X)を滴下する。
For [Method 2-3]:
In the reactor, diisocyanate (Y), urethanization catalyst, and optionally a reactive diluent (eg, isobornyl acrylate, normal octyl acrylate, etc.) and / or a volatile organic solvent (eg, toluene, ethyl acetate, acetic acid) Butyl etc.) and stir until uniform. Next, while stirring, the temperature is raised as necessary, and the diol (X) having a hydrogenated polyolefin skeleton is added dropwise.
 上記[方法2-3]は、上記[方法2-2]で述べた超巨大分子が生成しない点で好ましい。 [Method 2-3] is preferable in that the supermacromolecule described in [Method 2-2] is not generated.
 なお、上記のいずれの方法でも、水素化ポリオレフィン骨格を有するジオール(X)とジイソシアネート(Y)との反応によりウレタンイソシアネートプレポリマーを合成する際、水素化ポリオレフィン骨格を有するジオール(X)とジイソシアネート(Y)とを、反応液中のイソシアネート基濃度が終点イソシアネート基濃度以下になるまで反応させることが好ましい。 In any of the above methods, when the urethane isocyanate prepolymer is synthesized by the reaction of the diol (X) having a hydrogenated polyolefin skeleton and the diisocyanate (Y), the diol (X) having a hydrogenated polyolefin skeleton and the diisocyanate ( Y) is preferably reacted until the isocyanate group concentration in the reaction solution is equal to or lower than the end-point isocyanate group concentration.
 「終点イソシアネート基濃度」とは、系内に仕込んだヒドロキシ基(水酸基)の全てがウレタン化したと仮定した場合の理論上のイソシアネート基濃度(以下、「理論終点イソシアネート基濃度」と称することがある。)と、反応液中のイソシアネート基濃度がもはや変化しなくなった時のイソシアネート基濃度の、いずれか高いほうのイソシアネート基濃度を意味する。 “End-point isocyanate group concentration” is a theoretical isocyanate group concentration (hereinafter referred to as “theoretical end-point isocyanate group concentration”) assuming that all of the hydroxyl groups (hydroxyl groups) charged into the system are urethaned. And the isocyanate group concentration when the isocyanate group concentration in the reaction solution no longer changes, whichever is the higher isocyanate group concentration.
 上記観点から、水素化ポリオレフィン骨格を有するジオール(X)とジイソシアネート(Y)とのモル比は、特に限定されないが、水素化ポリオレフィン骨格を有するジオール(X)1モルに対して、ジイソシアネート(Y)を1.1~2.0モル使用することが好ましく、より好ましくは1.2~1.5モルである。 From the above viewpoint, the molar ratio of the diol (X) having a hydrogenated polyolefin skeleton and the diisocyanate (Y) is not particularly limited, but the diisocyanate (Y) is used with respect to 1 mole of the diol (X) having a hydrogenated polyolefin skeleton. Is preferably used in an amount of 1.1 to 2.0 mol, more preferably 1.2 to 1.5 mol.
 また、ウレタンイソシアネートプレポリマーとヒドロキシ基含有(メタ)アクリレート(Z)と、続いて化合物(L)とを反応させて、目的とする水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)を合成する際、最終的に反応液中に未反応のイソシアネート基が多量に残存すると、ゲル化が起こったり、塗膜の硬化不良となったりするなどの不具合が生じる可能性がある。 Also, the monofunctional urethane (meth) acrylate (A) having a target hydrogenated polyolefin skeleton is prepared by reacting the urethane isocyanate prepolymer, the hydroxy group-containing (meth) acrylate (Z), and then the compound (L). When a large amount of unreacted isocyanate groups remain in the reaction solution in the end, there is a possibility that problems such as gelation or poor curing of the coating film may occur.
 上記反応(ウレタンイソシアネートプレポリマーとヒドロキシ基含有(メタ)アクリレート(Z)と化合物(L)との反応)においては、ウレタンイソシアネートプレポリマーに対してヒドロキシ基含有(メタ)アクリレート(Z)を、成分(A)が有する分子内の(メタ)アクリロイル基の数が1個となるような量論関係で反応させ、なおかつ、反応液中の残存イソシアネート基が0.1重量%以下となるようにする必要がある。例えば、前記[方法2]では、反応液中の残存イソシアネート濃度を監視しながら、最後に反応させる化合物(L)の量を調整する方法が挙げられる。なお、上記反応において、ウレタンイソシアネートプレポリマー1モルに対して、使用するヒドロキシ基含有(メタ)アクリレート(Z)の量(モル数)は、1.0~1.1モルが好ましく、より好ましくは1.0~1.05モルである。また、上記反応において、ウレタンイソシアネートプレポリマーのイソシアネート基のモル数1モルに対して、ヒドロキシ基含有(メタ)アクリレート(Z)のヒドロキシ基及び化合物(L)のイソシアネート反応性基のモル数(総量)は、特に限定されないが、1.0~1.1モルが好ましく、より好ましくは1.0~1.05モルである。 In the above reaction (reaction between urethane isocyanate prepolymer, hydroxy group-containing (meth) acrylate (Z) and compound (L)), hydroxy group-containing (meth) acrylate (Z) is added to urethane isocyanate prepolymer as a component. The reaction is carried out in a stoichiometric relationship such that the number of (meth) acryloyl groups in the molecule of (A) is 1, and the residual isocyanate group in the reaction solution is 0.1% by weight or less. There is a need. For example, in the above [Method 2], there is a method of adjusting the amount of the compound (L) to be finally reacted while monitoring the residual isocyanate concentration in the reaction solution. In the above reaction, the amount (number of moles) of the hydroxy group-containing (meth) acrylate (Z) to be used is preferably 1.0 to 1.1 mol, more preferably 1 mol with respect to 1 mol of urethane isocyanate prepolymer. 1.0 to 1.05 mol. In the above reaction, the number of moles (total amount) of the hydroxyl group of the hydroxy group-containing (meth) acrylate (Z) and the isocyanate reactive group of the compound (L) with respect to the number of moles of the isocyanate group of the urethane isocyanate prepolymer. ) Is not particularly limited, but is preferably 1.0 to 1.1 mol, more preferably 1.0 to 1.05 mol.
 成分(A)を製造するための反応(特に、ウレタンイソシアネートプレポリマーと成分(Z)の反応)は、重合を防止する目的で、ヒドロキノン、ヒドロキノンモノメチルエーテル、フェノチアジン、ジブチルヒドロキシトルエン等の重合禁止剤の存在下で進行させることが好ましい。これらの重合禁止剤の添加量(使用量)は、生成する成分(A)に対して、1~10000ppm(重量基準)が好ましく、より好ましくは100~1000ppm、さらに好ましくは400~500ppmである。重合禁止剤の添加量を1ppm以上とすることにより、十分な重合禁止効果が得られる傾向がある。一方、10000ppm以下とすることにより、生成物の諸物性に対して重合禁止剤由来の悪影響が及びにくい傾向がある。 The reaction for producing the component (A) (particularly the reaction between the urethane isocyanate prepolymer and the component (Z)) is a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, phenothiazine, dibutylhydroxytoluene and the like for the purpose of preventing polymerization. It is preferable to proceed in the presence of. The addition amount (use amount) of these polymerization inhibitors is preferably 1 to 10,000 ppm (weight basis), more preferably 100 to 1000 ppm, and still more preferably 400 to 500 ppm, with respect to the component (A) to be produced. By setting the addition amount of the polymerization inhibitor to 1 ppm or more, a sufficient polymerization inhibition effect tends to be obtained. On the other hand, by setting it to 10000 ppm or less, there is a tendency that an adverse effect derived from the polymerization inhibitor does not easily affect the physical properties of the product.
 同様の目的で、本反応は、分子状酸素を含有するガス雰囲気下で行うことが好ましい。なお、酸素濃度は、安全面を考慮して適宜選択される。 For the same purpose, this reaction is preferably performed in a gas atmosphere containing molecular oxygen. The oxygen concentration is appropriately selected in consideration of safety.
 本反応は、十分な反応速度を得るために、触媒を用いて進行させてもよい。触媒としては、例えば、ジブチルスズジラウレート、オクチル酸スズ、塩化スズ等が挙げられる。中でも、反応速度の点から、ジブチルスズジラウレートが好ましい。上記触媒の添加量(使用量)は、特に限定されないが、通常、1~3000ppm(重量基準)が好ましく、より好ましくは50~1000ppmである。触媒の添加量を1ppm以上とすることにより、十分な反応速度が得られる傾向がある。一方、3000ppm以下とすることにより、生成物の諸物性に対して触媒由来の悪影響が及びにくい傾向がある。 This reaction may be carried out using a catalyst in order to obtain a sufficient reaction rate. Examples of the catalyst include dibutyltin dilaurate, tin octylate, tin chloride and the like. Of these, dibutyltin dilaurate is preferable from the viewpoint of reaction rate. The addition amount (use amount) of the catalyst is not particularly limited, but is usually preferably 1 to 3000 ppm (weight basis), more preferably 50 to 1000 ppm. When the amount of the catalyst added is 1 ppm or more, a sufficient reaction rate tends to be obtained. On the other hand, by setting it to 3000 ppm or less, there is a tendency that an adverse effect derived from the catalyst does not easily affect the physical properties of the product.
 成分(A)を製造するための反応は、公知の揮発性有機溶剤の存在下で進行させることができる。揮発性有機溶剤としては、特に限定されないが、例えば、酢酸エチル、酢酸ブチル、酢酸イソブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルアセテート、キシレン、トルエン等が挙げられる。中でも、沸点と経済性の観点から、酢酸エチル、酢酸ブチル、トルエン等が好ましい。なお、揮発性有機溶剤は、成分(A)の製造後、減圧等により留去することができる。また、エネルギー線硬化性樹脂組成物中に残存する揮発性有機溶剤は、該樹脂組成物を物品や部品等に塗布した後、乾燥により除去することもできる。なお、揮発性有機溶剤とは、常圧における沸点が200℃を超えない有機溶剤を意味する。 The reaction for producing component (A) can proceed in the presence of a known volatile organic solvent. The volatile organic solvent is not particularly limited, and examples thereof include ethyl acetate, butyl acetate, isobutyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl acetate, xylene, toluene and the like. It is done. Of these, ethyl acetate, butyl acetate, toluene and the like are preferable from the viewpoints of boiling point and economy. In addition, a volatile organic solvent can be distilled off by pressure reduction etc. after manufacture of a component (A). Further, the volatile organic solvent remaining in the energy ray curable resin composition can be removed by drying after applying the resin composition to an article, a part, or the like. In addition, a volatile organic solvent means the organic solvent whose boiling point in a normal pressure does not exceed 200 degreeC.
 成分(A)を製造するための反応においては、揮発性有機溶剤の代わりに又は併用の態様で、反応性希釈剤を使用することもできる。上記反応性希釈剤としては、特に限定されないが、1,6-ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、トリシクロデカンジメタノールジアクリレート、イソボルニルアクリレート、ノルマルオクチルアクリレート等が挙げられ、後述のエネルギー線硬化性樹脂組成物の粘度の調整等の観点から、イソボルニルアクリレート、ノルマルオクチルアクリレートが好ましい。反応性希釈剤を使用した場合、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)と反応性希釈剤とを含む組成物が生成物として得られる。なお、上記反応性希釈剤は、後述のエネルギー線硬化性樹脂組成物の粘度の調整や硬化物の硬度の調整等を目的として、必要に応じて、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)を生成させた後に配合することもできる。 In the reaction for producing the component (A), a reactive diluent can be used in place of the volatile organic solvent or in a combined mode. The reactive diluent is not particularly limited, and examples thereof include 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, tricyclodecane dimethanol diacrylate, isobornyl acrylate, normal octyl acrylate, and the like. From the viewpoint of adjusting the viscosity of the energy ray curable resin composition, isobornyl acrylate and normal octyl acrylate are preferable. When a reactive diluent is used, a composition containing a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton and a reactive diluent is obtained as a product. The reactive diluent is a monofunctional urethane (metafunctional) having a hydrogenated polyolefin skeleton, if necessary, for the purpose of adjusting the viscosity of the energy ray-curable resin composition described later and adjusting the hardness of the cured product. ) It can also be blended after the acrylate (A) is produced.
 上記反応性希釈剤としては市販品を用いることもでき、例えば、1,6-ヘキサンジオールジアクリレート(例えば、ダイセル・サイテック社製、製品名「HDDA」)、トリメチロールプロパントリアクリレート(例えば、同社製、製品名「TMPTA」)、トリシクロデカンジメタノールジアクリレート(例えば、同社製、製品名「IRR214-K」)、イソボルニルアクリレート(例えば、同社製、製品名「IBOA-B」)、ノルマルオクチルアクリレート(例えば、大阪有機化学工業社製、製品名「NOAA」)等が市場から入手可能である。 Commercially available products may be used as the reactive diluent. For example, 1,6-hexanediol diacrylate (for example, product name “HDDA” manufactured by Daicel Cytec Co., Ltd.), trimethylolpropane triacrylate (for example, the company) Product name “TMPTA”), tricyclodecane dimethanol diacrylate (for example, product name “IRR214-K”), isobornyl acrylate (for example, product name “IBOA-B”), Normal octyl acrylate (for example, product name “NOAA” manufactured by Osaka Organic Chemical Industry Co., Ltd.) is available from the market.
 上記反応(成分(X)~(Z)及び成分(L)の反応)は、特に限定されないが、130℃以下の温度(反応温度)で進行させることが好ましく、より好ましくは40~130℃である。反応温度を40℃以上とすることにより、反応速度がより向上する傾向がある。一方、反応温度を130℃以下とすることにより、熱によるラジカル重合が抑制され、ゲル化物の生成をより効率的に抑制できる傾向がある。 The above reaction (reaction of components (X) to (Z) and component (L)) is not particularly limited, but is preferably allowed to proceed at a temperature (reaction temperature) of 130 ° C. or lower, more preferably from 40 to 130 ° C. is there. By setting the reaction temperature to 40 ° C. or higher, the reaction rate tends to be further improved. On the other hand, by setting the reaction temperature to 130 ° C. or lower, radical polymerization due to heat is suppressed, and the formation of gelled product tends to be more efficiently suppressed.
 上記反応(成分(X)~(Z)及び成分(L)の反応)は、上述のように、通常、残存イソシアネート基が0.1重量%以下になるまで行う。残存イソシアネート基濃度は、例えば、ガスクロマトグラフィー、滴定法等で分析できる。 The above reaction (reactions of components (X) to (Z) and component (L)) is usually performed until the residual isocyanate group is 0.1% by weight or less as described above. The residual isocyanate group concentration can be analyzed by, for example, gas chromatography or titration.
[水素化ポリオレフィン骨格を有するジオール(X)]
 水素化ポリオレフィン骨格を有するジオール(X)は、分子内に水素化ポリオレフィン骨格を有し、かつ分子内に2個のヒドロキシ基を有する化合物である。水素化ポリオレフィン骨格を有するジオール(X)としては、例えば、両末端にヒドロキシ基を有するポリアルカジエン(ポリブタジエン、ポリイソプレン等)を水素化した化合物を使用できる。なお、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の原料として水素化ポリオレフィン骨格を有するジオール(X)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
[Diol (X) having hydrogenated polyolefin skeleton]
The diol (X) having a hydrogenated polyolefin skeleton is a compound having a hydrogenated polyolefin skeleton in the molecule and two hydroxy groups in the molecule. As the diol (X) having a hydrogenated polyolefin skeleton, for example, a compound obtained by hydrogenating a polyalkadiene (polybutadiene, polyisoprene, etc.) having hydroxy groups at both ends can be used. The diol (X) having a hydrogenated polyolefin skeleton as a raw material for the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton can be used alone or in combination of two or more. Can also be used.
 水素化ポリオレフィン骨格を有するジオール(X)としては市販品を使用することもでき、例えば、製品名「エポール」(出光興産(株)製);製品名「NISSO-PB GI-1000」、「NISSO-PB GI-2000」、「NISSO-PB GI-3000」(以上、日本曹達(株)製)等が挙げられるが、この限りではない。 Commercially available products may be used as the diol (X) having a hydrogenated polyolefin skeleton, such as the product name “Epol” (manufactured by Idemitsu Kosan Co., Ltd.); the product names “NISSO-PB GI-1000”, “NISSO”. -PB GI-2000 "," NISSO-PB GI-3000 "(manufactured by Nippon Soda Co., Ltd.), etc., but are not limited thereto.
[ジイソシアネート(Y)]
 ジイソシアネート(Y)は、分子内に2個のイソシアネート基を有する化合物である。中でも、樹脂外観、硬化物の透明性等の観点から、結晶性を示さないものが好ましく、具体的には、例えば、脂環式ジイソシアネート、分岐鎖を有する脂肪族ジイソシアネート、及び芳香族のイソシアネート類を水添して得られるジイソシアネート化合物からなる群より選択される少なくとも1種が挙げられる。上記脂環式ジイソシアネートとしては、例えば、イソホロンジイソシアネート等が挙げられる。上記分岐鎖を有する脂肪族ジイソシアネートとしては、特に制限されないが、例えば、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等が挙げられる。上記芳香族のイソシアネート類を水添して得られるジイソシアネート化合物としては、例えば、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等が挙げられる。一方、上記以外のジイソシアネート、特に結晶性を示すものを多量に用いた場合、硬化物の外観、硬化物の透明性に問題が生じる場合がある。なお、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の原料としてジイソシアネート(Y)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
[Diisocyanate (Y)]
Diisocyanate (Y) is a compound having two isocyanate groups in the molecule. Among them, those that do not exhibit crystallinity are preferable from the viewpoints of resin appearance, cured product transparency, and the like. Specifically, for example, alicyclic diisocyanates, branched chain aliphatic diisocyanates, and aromatic isocyanates. And at least one selected from the group consisting of diisocyanate compounds obtained by hydrogenation. Examples of the alicyclic diisocyanate include isophorone diisocyanate. The aliphatic diisocyanate having a branched chain is not particularly limited, and examples thereof include 2,2,4-trimethylhexamethylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate. Examples of the diisocyanate compound obtained by hydrogenating the aromatic isocyanate include hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate. On the other hand, when a large amount of diisocyanates other than the above, particularly those showing crystallinity, are used, there may be a problem in the appearance of the cured product and the transparency of the cured product. In addition, diisocyanate (Y) can also be used individually by 1 type as a raw material of the monofunctional urethane (meth) acrylate (A) which has hydrogenated polyolefin frame | skeleton, and can also be used in combination of 2 or more type. .
 ジイソシアネート(Y)としては市販品を使用することができ、例えば、製品名「VESTANAT IPDI」(イソホロンジイソシアネート、エボニック社製)等が挙げられる。 Commercially available products can be used as the diisocyanate (Y), and examples thereof include a product name “VESTANAT IPDI” (isophorone diisocyanate, manufactured by Evonik).
[ヒドロキシ基含有(メタ)アクリレート(Z)]
 ヒドロキシ基含有(メタ)アクリレート(Z)は、分子内に1個のヒドロキシ基を有し、かつ分子中に1個の(メタ)アクリロイル基を有する化合物である。なお、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の原料としてヒドロキシ基含有(メタ)アクリレート(Z)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
[Hydroxy group-containing (meth) acrylate (Z)]
The hydroxy group-containing (meth) acrylate (Z) is a compound having one hydroxy group in the molecule and one (meth) acryloyl group in the molecule. In addition, as a raw material of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton, the hydroxy group-containing (meth) acrylate (Z) can be used alone or in combination of two or more. Can also be used.
 ヒドロキシ基含有(メタ)アクリレート(Z)としては、特に限定されないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、ビスフェノールAジグリシジルモノ(メタ)アクリレート等のエポキシアクリレート及びそれらを水添したもの等が挙げられる。 The hydroxy group-containing (meth) acrylate (Z) is not particularly limited. For example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, cyclohexanedimethanol Examples thereof include epoxy acrylates such as mono (meth) acrylate and bisphenol A diglycidyl mono (meth) acrylate, and hydrogenated products thereof.
 ヒドロキシ基含有(メタ)アクリレート(Z)としては市販品を使用することができ、例えば、製品名「BHEA」(アクリル酸2-ヒドロキシエチル、日本触媒(株)製)、製品名「CHDMA」(シクロヘキサンジメタノールモノアクリレート、日本化成工業(株)製)等が挙げられる。 As the hydroxy group-containing (meth) acrylate (Z), a commercially available product can be used. For example, the product name “BHEA” (2-hydroxyethyl acrylate, manufactured by Nippon Shokubai Co., Ltd.), the product name “CHDMA” ( And cyclohexane dimethanol monoacrylate, manufactured by Nippon Kasei Kogyo Co., Ltd.).
[化合物(L)(イソシアネート反応性化合物)]
 化合物(L)は、上述のように、分子内に1個のイソシアネート反応性基を有し、光硬化性官能基(特に、(メタ)アクリロイル基)を有しない化合物である。化合物(L)は、主に、ウレタンイソシアネートプレポリマーにおける余剰のイソシアネート基を不活性化(封止する)目的で使用される。上記イソシアネート反応性基としては、イソシアネート基と反応性を有する公知乃至慣用の官能基が挙げられ、特に限定されないが、例えば、ヒドロキシ基、活性水素を含むアミノ基、>C=N-OHで表される官能基、アミド基などが挙げられる。即ち、化合物(L)としては、例えば、アルコール系化合物、フェノール系化合物、活性メチレン系化合物、メルカプタン系化合物、酸アミド系化合物、酸イミド系化合物、イミダゾール系化合物、ピラゾール系化合物、尿素系化合物、オキシム系化合物、アミン系化合物、イミン系化合物、ピリジン系化合物等が挙げられる。中でも、取り扱い性が容易であり副反応を起こしにくい点で、アルコール系化合物が好ましい。なお、化合物(L)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
[Compound (L) (isocyanate-reactive compound)]
As described above, the compound (L) is a compound having one isocyanate-reactive group in the molecule and not having a photocurable functional group (particularly, a (meth) acryloyl group). The compound (L) is mainly used for the purpose of inactivating (sealing) excess isocyanate groups in the urethane isocyanate prepolymer. Examples of the isocyanate-reactive group include known or commonly used functional groups having reactivity with an isocyanate group, and are not particularly limited. For example, a hydroxyl group, an amino group containing active hydrogen, and> C═N—OH. Functional groups, amide groups and the like. That is, examples of the compound (L) include alcohol compounds, phenol compounds, active methylene compounds, mercaptan compounds, acid amide compounds, acid imide compounds, imidazole compounds, pyrazole compounds, urea compounds, Examples include oxime compounds, amine compounds, imine compounds, and pyridine compounds. Among these, alcohol compounds are preferable because they are easy to handle and hardly cause side reactions. In addition, a compound (L) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
 上記アルコール系化合物としては、例えば、炭素数が1以上(好ましくは3以上)の脂肪族の1価アルコール、炭素数が3以上の脂環式の1価アルコール等が挙げられ、その分子量は70から400の範囲にあることが好ましい。アルコールの炭素数を3以上又は分子量を70以上とすることにより、成分(A)の合成中に揮発することを効率的に防止できる傾向がある。一方、分子量を400以下とすることにより、イソシアネート基との良好な反応性が確保され、生産性がより向上する傾向がある。また、上記アルコール系化合物として芳香環を有するアルコールを多量に使用した場合には、例えば、得られる成分(A)の耐候性が劣る可能性があり、好ましくない場合がある。 Examples of the alcohol compound include aliphatic monohydric alcohols having 1 or more (preferably 3 or more) carbon atoms, alicyclic monohydric alcohols having 3 or more carbon atoms, and the molecular weight thereof is 70. To 400. When the alcohol has 3 or more carbon atoms or has a molecular weight of 70 or more, volatilization during the synthesis of the component (A) tends to be efficiently prevented. On the other hand, when the molecular weight is 400 or less, good reactivity with an isocyanate group is ensured, and the productivity tends to be further improved. In addition, when a large amount of an alcohol having an aromatic ring is used as the alcohol compound, for example, the weather resistance of the resulting component (A) may be inferior, which may not be preferable.
 具体的には、上記アルコール系化合物としては、例えば、メタノール、エタノール、イソプロパノール、ノルマルプロパノール、1-ブタノール、1-ヘプタノール、1-ヘキサノール、ノルマルオクチルアルコール、2-エチルヘキシルアルコール(2-エチルヘキサノール)、シクロヘキサンメタノール、カプリルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール(セタノール)、ステアリルアルコール、メチルセルソルブ、ブチルセルソルブ、メチルカルビトール、ベンジルアルコール、シクロヘキサノール(炭素数が3以上ではイソ体、ノルマル体他の構造異性体も含む)等やこれらの混合物が好ましい。中でも、イソプロパノール、2-エチルヘキシルアルコールが沸点、価格、入手容易性の観点から好ましい。 Specifically, examples of the alcohol compound include methanol, ethanol, isopropanol, normal propanol, 1-butanol, 1-heptanol, 1-hexanol, normal octyl alcohol, 2-ethylhexyl alcohol (2-ethylhexanol), Cyclohexane methanol, capryl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol (cetanol), stearyl alcohol, methyl cellosolve, butyl cellosolve, methyl carbitol, benzyl alcohol, cyclohexanol Other structural isomers are also included) and mixtures thereof. Of these, isopropanol and 2-ethylhexyl alcohol are preferable from the viewpoints of boiling point, price, and availability.
 上記フェノール系化合物としては、例えば、フェノール、クレゾール、エチルフェノール、ブチルフェノール、ノニルフェノール、ジノニルフェノール、スチレン化フェノール、ヒドロキシ安息香酸エステル等が挙げられる。上記活性メチレン系化合物としては、例えば、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等が挙げられる。上記メルカプタン系化合物としては、例えば、ブチルメルカプタン、ドデシルメルカプタン等が挙げられる。上記酸アミド系化合物としては、例えば、アセトアニリド、酢酸アミド、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等が挙げられる。上記酸イミド系化合物としては、例えば、コハク酸イミド、マレイン酸イミド等が挙げられる。上記イミダゾール系化合物としては、例えば、イミダゾール、2-メチルイミダゾール等が挙げられる。上記ピラゾール系化合物としては、例えば、3-メチルピラゾール、3,5-ジメチルピラゾール、3,5-ジエチルピラゾール等が挙げられる。上記尿素系化合物としては、例えば、尿素、チオ尿素、エチレン尿素等が挙げられる。上記オキシム系化合物としては、例えば、ホルムアルドオキシム、アセトアルドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等が挙げられる。上記アミン系化合物としては、例えば、ジフェニルアミン、アニリン、カルバゾール等が挙げられる。上記イミン系化合物としては、例えば、エチレンイミン、ポリエチレンイミン等が挙げられる。上記ピリジン系化合物としては、例えば、2-ヒドロキシピリジン、2-ヒドロキシキノリン等が挙げられる。 Examples of the phenolic compound include phenol, cresol, ethylphenol, butylphenol, nonylphenol, dinonylphenol, styrenated phenol, hydroxybenzoic acid ester, and the like. Examples of the active methylene compound include dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, and acetylacetone. Examples of the mercaptan compound include butyl mercaptan and dodecyl mercaptan. Examples of the acid amide compound include acetanilide, acetic acid amide, ε-caprolactam, δ-valerolactam, γ-butyrolactam, and the like. Examples of the acid imide compound include succinimide and maleic imide. Examples of the imidazole compound include imidazole and 2-methylimidazole. Examples of the pyrazole compound include 3-methylpyrazole, 3,5-dimethylpyrazole, 3,5-diethylpyrazole, and the like. Examples of the urea compound include urea, thiourea, and ethylene urea. Examples of the oxime compounds include formaldehyde oxime, acetoald oxime, acetoxime, methyl ethyl ketoxime, cyclohexanone oxime, and the like. Examples of the amine compound include diphenylamine, aniline, and carbazole. Examples of the imine compound include ethyleneimine and polyethyleneimine. Examples of the pyridine compound include 2-hydroxypyridine and 2-hydroxyquinoline.
 なお、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の原料として、水素化ポリオレフィン骨格を有するジオール(X)以外のポリオールを併用することも可能である。但し、硬化物の制振性の観点で、ポリオール(成分(X)を含む)の全量(100重量%)に対する成分(X)の割合は、90~100重量%が好ましく、より好ましくは95~100重量%、さらに好ましくは98重量%以上である。 In addition, it is also possible to use a polyol other than the diol (X) having a hydrogenated polyolefin skeleton as a raw material for the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton. However, from the viewpoint of vibration damping properties of the cured product, the ratio of the component (X) to the total amount (100% by weight) of the polyol (including the component (X)) is preferably 90 to 100% by weight, more preferably 95 to It is 100% by weight, more preferably 98% by weight or more.
 また、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の原料として、ジイソシアネート(Y)以外のポリイソシアネートを併用することも可能である。但し、硬化物の制振性の観点で、ポリイソシアネート(成分(Y)を含む)の全量(100重量%)に対する成分(Y)の割合は、90~100重量%が好ましく、より好ましくは95~100重量%、さらに好ましくは98重量%以上である。 Also, it is possible to use a polyisocyanate other than diisocyanate (Y) as a raw material for the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton. However, from the viewpoint of damping properties of the cured product, the ratio of the component (Y) to the total amount (100% by weight) of the polyisocyanate (including the component (Y)) is preferably 90 to 100% by weight, more preferably 95%. It is ˜100% by weight, more preferably 98% by weight or more.
 水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)としては、成分(X)~(Z)及び成分(L)を反応させた後の溶液をそのまま使用することもできるし、公知乃至慣用の方法により精製した上で使用することもできる。 As the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton, a solution obtained by reacting the components (X) to (Z) and the component (L) can be used as it is. It can also be used after being purified by a conventional method.
 水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の重量平均分子量(Mw)は、特に限定されないが、10,000以上が好ましく、より好ましくは15,000~100,000、さらに好ましくは30,000~60,000である。水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)のMwを10,000以上とすることにより、硬化物の制振性がより向上する傾向がある。一方、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)のMwを100,000以下とすることにより、架橋密度を適切な範囲で高くすることができ、硬化性がより向上し、硬化物の高温下で形状変化がより抑制される傾向がある。なお、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)のMwは、実施例に記載の条件で測定することができる。 The weight average molecular weight (Mw) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is not particularly limited, but is preferably 10,000 or more, more preferably 15,000 to 100,000, still more preferably Is 30,000 to 60,000. When the Mw of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is 10,000 or more, the vibration damping property of the cured product tends to be further improved. On the other hand, by setting the Mw of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton to 100,000 or less, the crosslinking density can be increased in an appropriate range, and the curability is further improved. There exists a tendency for a shape change to be suppressed more under high temperature of hardened | cured material. In addition, Mw of monofunctional urethane (meth) acrylate (A) which has hydrogenated polyolefin frame | skeleton can be measured on the conditions as described in an Example.
 本発明のエネルギー線硬化性樹脂組成物において水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 In the energy ray-curable resin composition of the present invention, the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton can be used alone or in combination of two or more. You can also.
 本発明のエネルギー線硬化性樹脂組成物における水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の含有量(配合量)は、特に限定されないが、エネルギー線硬化性樹脂組成物の不揮発分の総重量(100重量%)に対して、40~99.9重量%が好ましく、より好ましくは45~99重量%、さらに好ましくは50~98重量%である。水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の含有量を40重量%以上とすることにより、硬化物の制振性がより向上する傾向がある。一方、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の含有量を99.9重量%以下とすることにより、相対的に光開始剤(B)の含有量を多くすることができ、硬化性がより向上する傾向がある。なお、エネルギー線硬化性樹脂組成物の「不揮発分」とは、該樹脂組成物中の揮発分以外の成分であって、硬化物の構成成分として硬化物中に残存する成分(例えば、本発明の活性エネルギー硬化性樹脂組成物から揮発性有機溶剤を除いた成分)を指す。 The content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton in the energy beam curable resin composition of the present invention is not particularly limited, but is non-volatile in the energy beam curable resin composition. It is preferably 40 to 99.9% by weight, more preferably 45 to 99% by weight, and still more preferably 50 to 98% by weight, based on the total weight (100% by weight) of the minute. When the content of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is 40% by weight or more, the vibration damping property of the cured product tends to be further improved. On the other hand, by setting the content of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton to 99.9% by weight or less, the content of the photoinitiator (B) can be relatively increased. The curability tends to be improved. The “nonvolatile content” of the energy ray curable resin composition is a component other than the volatile content in the resin composition, and remains in the cured product as a component of the cured product (for example, the present invention). Ingredients obtained by removing the volatile organic solvent from the active energy curable resin composition.
 エネルギー線硬化性樹脂組成物が反応性希釈剤を含む場合、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の含有量(配合量)は、特に限定されないが、エネルギー線硬化性樹脂組成物の不揮発分の総重量(100重量%)に対して、40~99.9重量%が好ましく、より好ましくは45~90重量%、さらに好ましくは50~80重量%である。 When the energy ray curable resin composition contains a reactive diluent, the content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is not particularly limited, but is energy ray curable. It is preferably 40 to 99.9% by weight, more preferably 45 to 90% by weight, and still more preferably 50 to 80% by weight, based on the total weight (100% by weight) of the nonvolatile content of the resin composition.
 エネルギー線硬化性樹脂組成物が揮発性有機溶剤を含む場合、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の含有量(配合量)は、特に限定されないが、エネルギー線硬化性樹脂組成物の不揮発分の総重量(100重量%)に対して、70~99.9重量%が好ましく、より好ましくは、80~99重量%、さらに好ましくは、85~98重量%、最も好ましくは、90~97重量%である。 When the energy ray curable resin composition contains a volatile organic solvent, the content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton is not particularly limited, but is energy ray curable. 70 to 99.9% by weight is preferable, more preferably 80 to 99% by weight, still more preferably 85 to 98% by weight, and most preferably based on the total weight (100% by weight) of the nonvolatile content of the resin composition. Is 90 to 97% by weight.
 本発明のエネルギー線硬化性樹脂組成物における水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の含有量(配合量)は、特に限定されないが、エネルギー線硬化性樹脂組成物の全量(例えば、成分(A)、光開始剤(B)、反応性希釈剤、揮発性有機溶剤等の全量)100重量%に対して、1~99重量%が好ましく、より好ましくは10~90重量%、さらに好ましくは30~85重量%、最も好ましくは50~80重量%である。水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の含有量を上記範囲とすることにより、硬化物の制振性がより向上する傾向がある。 The content (blending amount) of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton in the energy beam curable resin composition of the present invention is not particularly limited, but is the total amount of the energy beam curable resin composition. (For example, the total amount of component (A), photoinitiator (B), reactive diluent, volatile organic solvent, etc.) is preferably 1 to 99% by weight, more preferably 10 to 90% by weight with respect to 100% by weight. %, More preferably 30 to 85% by weight, most preferably 50 to 80% by weight. By setting the content of the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton within the above range, the vibration damping property of the cured product tends to be further improved.
<光開始剤(B)>
 本発明のエネルギー線硬化性樹脂組成物における光開始剤(B)(光重合開始剤)としては、公知乃至慣用の光ラジカル重合開始剤を使用することができ、特に限定されないが、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン等が挙げられる。なお、本発明のエネルギー線硬化性樹脂組成物において光開始剤(B)は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
<Photoinitiator (B)>
As the photoinitiator (B) (photopolymerization initiator) in the energy ray-curable resin composition of the present invention, a known or conventional photoradical polymerization initiator can be used, and is not particularly limited. -Hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, -(4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 2-methyl-1- [4 -(Methylthio) phenyl] -2-morpholinopropane-1, benzoin, benzoin methyl ether, benzoin ethyl ether Ether, benzoin isopropyl ether, benzoin n- butyl ether, benzoin phenyl ether, benzyl dimethyl ketal, benzophenone, benzoyl benzoate, methyl benzoyl benzoate, 4-phenyl benzophenone, hydroxybenzophenone, and acrylated benzophenone. In the energy ray curable resin composition of the present invention, the photoinitiator (B) can be used alone or in combination of two or more.
 本発明のエネルギー線硬化性樹脂組成物における光開始剤(B)の含有量(配合量)は、特に限定されないが、エネルギー線硬化性樹脂組成物に含まれるラジカル重合性を有する化合物の全量(例えば、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)、反応性希釈剤等)100重量部に対して、0.1~20重量部が好ましく、より好ましくは1~5重量部である。光開始剤(B)の含有量を0.1重量部以上とすることにより、エネルギー線硬化性樹脂組成物の硬化性がより向上し、十分に硬化させることができる傾向がある。一方、光開始剤(B)の含有量を20重量部以下とすることにより、硬化物における光開始剤(B)由来の臭気の残存や着色等が抑制され、硬化物の諸物性に悪影響が及ぶことが抑制される傾向がある。 The content (blending amount) of the photoinitiator (B) in the energy beam curable resin composition of the present invention is not particularly limited, but is the total amount of radical polymerizable compounds contained in the energy beam curable resin composition ( (For example, monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton, reactive diluent, etc.) is preferably 0.1 to 20 parts by weight, more preferably 1 to 5 parts by weight. It is. By setting the content of the photoinitiator (B) to 0.1 parts by weight or more, the curability of the energy ray curable resin composition is further improved, and the photoinitiator (B) tends to be sufficiently cured. On the other hand, by setting the content of the photoinitiator (B) to 20 parts by weight or less, residual odor or coloring of the photoinitiator (B) in the cured product is suppressed, and various physical properties of the cured product are adversely affected. It tends to be suppressed.
<反応性希釈剤>
 本発明のエネルギー線硬化性樹脂組成物は、本発明の効果を損なわない範囲で、反応性希釈剤を含んでいてもよい。反応性希釈剤としては、例えば、「水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)」の項で例示したものと同様のものが挙げられる。なお、本発明のエネルギー線硬化性樹脂組成物において反応性希釈剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。反応性希釈剤の含有量(配合量)は、特に限定されないが、例えば、エネルギー線硬化性樹脂組成物の全量(例えば、成分(A)、光開始剤(B)、反応性希釈剤等の全量)100重量部に対して、1~99重量部が好ましく、より好ましくは10~90重量部、さらに好ましくは15~80重量部、特に好ましくは20~60重量部である。反応性希釈剤を上記範囲内とすることで、エネルギー線硬化性樹脂組成物の粘性が低下し、ハンドリングが良好となることに加えて、乾燥や硬化時間が短くなり、コストでより有利となる傾向がある。
<Reactive diluent>
The energy beam curable resin composition of the present invention may contain a reactive diluent as long as the effects of the present invention are not impaired. Examples of the reactive diluent include those similar to those exemplified in the section “Monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton”. In the energy beam curable resin composition of the present invention, one type of reactive diluent can be used alone, or two or more types can be used in combination. The content (blending amount) of the reactive diluent is not particularly limited. For example, the total amount of the energy beam curable resin composition (for example, the component (A), the photoinitiator (B), the reactive diluent, etc.) The total amount is preferably from 1 to 99 parts by weight, more preferably from 10 to 90 parts by weight, still more preferably from 15 to 80 parts by weight, and particularly preferably from 20 to 60 parts by weight. By setting the reactive diluent within the above range, the viscosity of the energy ray curable resin composition is lowered and handling becomes good, and in addition, drying and curing time are shortened, which is more advantageous in cost. Tend.
<揮発性有機溶剤>
 本発明のエネルギー線硬化性樹脂組成物は、揮発性有機溶剤を含んでいてもよい。揮発性有機溶剤としては、例えば、上記「水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)」の項で例示した揮発性有機溶剤と同様のものが挙げられる。なお、本発明のエネルギー線硬化性樹脂組成物において揮発性有機溶剤は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。揮発性有機溶剤の含有量(配合量)は、特に限定されないが、例えば、エネルギー線硬化性樹脂組成物の全量(例えば、成分(A)、光開始剤(B)、揮発性有機溶剤等の全量)100重量部に対して、1~99重量部が好ましく、より好ましくは10~90重量部、さらに好ましくは15~80重量部、特に好ましくは20~60重量部である。揮発性有機溶剤を上記範囲内とすることで、エネルギー線硬化性樹脂組成物の粘性が低下し、ハンドリングが良好となる。
<Volatile organic solvent>
The energy beam curable resin composition of the present invention may contain a volatile organic solvent. Examples of the volatile organic solvent include those similar to the volatile organic solvent exemplified in the above-mentioned section of “Monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton”. In the energy beam curable resin composition of the present invention, the volatile organic solvent can be used alone or in combination of two or more. The content (blending amount) of the volatile organic solvent is not particularly limited. For example, the total amount of the energy ray curable resin composition (for example, component (A), photoinitiator (B), volatile organic solvent, etc.) The total amount is preferably from 1 to 99 parts by weight, more preferably from 10 to 90 parts by weight, still more preferably from 15 to 80 parts by weight, particularly preferably from 20 to 60 parts by weight. By setting the volatile organic solvent within the above range, the viscosity of the energy ray curable resin composition is lowered, and the handling is improved.
<添加剤>
 本発明のエネルギー線硬化性樹脂組成物は、必要に応じて種々の添加剤を含んでいてもよい。このような添加剤としては、例えば、フィラー、染顔料、レベリング剤、紫外線吸収剤、光安定剤、消泡剤、分散剤、チクソトロピー性付与剤等が挙げられる。これらの添加物の含有量(配合量)は、特に限定されないが、エネルギー線硬化性樹脂組成物(100重量%)に対して、0~20重量%が好ましく、より好ましくは0.05~10重量%である。
<Additives>
The energy beam curable resin composition of the present invention may contain various additives as required. Examples of such additives include fillers, dyes and pigments, leveling agents, ultraviolet absorbers, light stabilizers, antifoaming agents, dispersants, and thixotropic agents. The content (blending amount) of these additives is not particularly limited, but is preferably 0 to 20% by weight, more preferably 0.05 to 10% with respect to the energy ray curable resin composition (100% by weight). % By weight.
 本発明のエネルギー線硬化性樹脂組成物は、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)と、光開始剤(B)と、さらに必要に応じて反応性希釈剤等のその他の成分を混合することによって得ることができる。混合の手段としては、公知乃至慣用の手段を利用でき、特に限定されないが、例えば、ディゾルバー、ホモジナイザー等の各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置等の手段を使用できる。また、混合の際の温度や回転数等の条件は、特に限定されず、適宜設定可能である。 The energy beam curable resin composition of the present invention includes a monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton, a photoinitiator (B), and other reactive diluents as necessary. Can be obtained by mixing the components. As mixing means, known or commonly used means can be used, and is not particularly limited. For example, means such as various mixers such as a dissolver and a homogenizer, kneaders, rolls, bead mills, self-revolving stirrers and the like can be used. Moreover, conditions, such as temperature and the rotation speed in the case of mixing, are not specifically limited, It can set suitably.
≪硬化物≫
 本発明のエネルギー線硬化性樹脂組成物にエネルギー線(活性エネルギー線)を照射し、硬化させることによって、硬化物(樹脂硬化物;「本発明の硬化物」と称する場合がある)を得ることができる。本発明の硬化物は、非常に優れた制振性を有するため、例えば、本発明のエネルギー線硬化性樹脂組成物を硬化させた硬化物層(本発明の硬化物により形成された硬化物層)を、物品や部品等に対する制振性の付与を目的としたコーティング層や、制振シート等として好ましく使用できる。
≪Hardened product≫
A cured product (cured resin product; sometimes referred to as “cured product of the present invention”) is obtained by irradiating the energy beam curable resin composition of the present invention with an energy beam (active energy beam) and curing it. Can do. Since the cured product of the present invention has very excellent vibration damping properties, for example, a cured product layer obtained by curing the energy ray curable resin composition of the present invention (a cured product layer formed by the cured product of the present invention). ) Can be preferably used as a coating layer for the purpose of imparting vibration damping properties to articles, parts, etc., vibration damping sheets, and the like.
 本発明の硬化物の23℃におけるTanδは、特に限定されないが、0.6以上(例えば、0.6~2.0)が好ましく、より好ましくは0.8以上、さらに好ましくは1.0以上である。Tanδを0.6以上とすることにより、制振性がより向上する傾向がある。なお、Tanδは、実施例に記載の方法と同様の方法により測定できる。 Tan δ at 23 ° C. of the cured product of the present invention is not particularly limited, but is preferably 0.6 or more (for example, 0.6 to 2.0), more preferably 0.8 or more, and further preferably 1.0 or more. It is. By setting Tan δ to be 0.6 or more, vibration damping tends to be further improved. Tan δ can be measured by the same method as described in the examples.
≪コーティング剤≫
 本発明のエネルギー線硬化性樹脂組成物は、硬化させることにより、非常に優れた制振性を有する硬化物を形成することができるため、例えば、各種物品に対する制振性の付与が可能なコーティング材を形成するためのコーティング剤(制振性付与コーティング剤)として好ましく使用することができる。例えば、本発明のエネルギー線硬化性樹脂組成物(コーティング剤)を、物品や部品の表面や、2以上の部品から構成される物品の上記部品の隙間等に塗布(塗工)し、エネルギー線を照射して硬化させることにより、物品や部品に対して優れた制振性を付与することが可能となる。特に、本発明のエネルギー線硬化性樹脂組成物は、平面状の物品だけでなく、3次元形状物等の複雑な形状を有する物品にも塗布し硬化させることでコーティング材を形成できるため、多種多様な物品に対して優れた制振性を付与することが可能である。また、本発明のエネルギー線硬化性樹脂組成物は、エネルギー線(特に、紫外線)の照射により硬化させることができるため、高い生産性で非常に優れた制振性を有するコーティング材(硬化物)を形成できる。
≪Coating agent≫
Since the energy beam curable resin composition of the present invention can be cured to form a cured product having extremely excellent vibration damping properties, for example, a coating capable of imparting vibration damping properties to various articles. It can be preferably used as a coating agent (damping imparting coating agent) for forming a material. For example, the energy ray curable resin composition (coating agent) of the present invention is applied (coated) to the surface of an article or a part, or the gap between the above parts of an article composed of two or more parts, and the energy ray. By irradiating and curing, it becomes possible to impart excellent vibration damping properties to articles and parts. In particular, the energy ray curable resin composition of the present invention can be applied to not only a planar article but also an article having a complicated shape such as a three-dimensional shape to form a coating material. It is possible to impart excellent vibration damping properties to various articles. In addition, since the energy ray curable resin composition of the present invention can be cured by irradiation with energy rays (particularly, ultraviolet rays), it is a coating material (cured product) having a very excellent vibration damping property with high productivity. Can be formed.
 上記塗布は、特に限定されず、エアレススプレー、エアスプレー、ロールコート、バーコート、グラビアコート、ダイコート等の公知乃至慣用の手段を利用して実施できる。なお、塗布は、物品や部品等の製造工程中で行う、いわゆるインラインコート法で実施することもできるし、既に製造された物品や部品等に対して塗布を行う(物品や部品等の製造とは別工程で塗布を行う)、いわゆるオフラインコート法で実施することもできる。 The application is not particularly limited, and can be performed using known or conventional means such as airless spray, air spray, roll coat, bar coat, gravure coat, die coat and the like. In addition, the application can be performed by a so-called in-line coating method that is performed during the manufacturing process of the article or component, or is applied to the already manufactured article or component (the manufacture of the article or component and the like). Can be applied by a so-called off-line coating method.
 本発明のエネルギー線硬化性樹脂組成物を物品や部品等の表面に塗布する際の膜厚(塗工膜の厚み)は、特に限定されないが、1~100μmが好ましく、より好ましくは5~50μmである。厚みを100μm以下とすることにより、塗布する樹脂組成物の量を少量に留めることができ、乾燥や硬化時間が短くなり、コストでより有利となる傾向がある。一方、厚みを1μm以上とすることにより、硬化物の制振性をより効果的に発揮させることができる傾向がある。 The film thickness (coating film thickness) when the energy beam curable resin composition of the present invention is applied to the surface of an article or a part is not particularly limited, but is preferably 1 to 100 μm, more preferably 5 to 50 μm. It is. By setting the thickness to 100 μm or less, the amount of the resin composition to be applied can be kept small, and drying and curing times are shortened, which tends to be more advantageous in cost. On the other hand, by setting the thickness to 1 μm or more, the vibration damping property of the cured product tends to be more effectively exhibited.
 上述のコーティング材(硬化物)の製造において、本発明のエネルギー線硬化性樹脂組成物が反応性希釈剤、及び/又は揮発性有機溶剤を含む場合には、上記樹脂組成物を塗布した後、通常、熱風等による加熱乾燥を実施する。この後、塗布したエネルギー線硬化性樹脂組成物に対して、紫外線や電子線等のエネルギー線を照射することにより、極めて短時間で硬化させることができる。例えば、紫外線照射を行う時の光源としては、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、キセノン灯、メタルハライド灯等を使用できる。エネルギー線の照射時間は、光源の種類、光源と塗布面との距離、その他の条件により異なるが、長くとも数十秒であり、通常は数秒である。通常、ランプ出力80~300W/cm程度の照射源が用いられる。例えば、電子線照射の場合は、50~1000KeVの範囲のエネルギーを持つ電子線を用い、2~5Mradの照射量とすることが好ましい。エネルギー線照射後は、必要に応じて加熱を行ってさらに硬化の促進を図ってもよい。 In the production of the coating material (cured product) described above, when the energy ray curable resin composition of the present invention contains a reactive diluent and / or a volatile organic solvent, after applying the resin composition, Usually, heat drying with hot air or the like is performed. Thereafter, the applied energy ray-curable resin composition can be cured in an extremely short time by irradiating it with energy rays such as ultraviolet rays and electron beams. For example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like can be used as a light source when performing ultraviolet irradiation. The energy beam irradiation time varies depending on the type of the light source, the distance between the light source and the coating surface, and other conditions, but it is several tens of seconds at most, and usually several seconds. Usually, an irradiation source with a lamp output of about 80 to 300 W / cm is used. For example, in the case of electron beam irradiation, it is preferable to use an electron beam having an energy in the range of 50 to 1000 KeV and to give an irradiation amount of 2 to 5 Mrad. After energy beam irradiation, heating may be performed as necessary to further promote curing.
≪制振シート≫
 例えば、本発明のエネルギー線硬化性樹脂組成物をシート状に硬化させることにより、又は、本発明のエネルギー線硬化性樹脂組成物を硬化させて得られた硬化物(本発明のエネルギー線硬化性樹脂組成物の硬化物)をシート状に成形・加工すること等により、本発明の硬化物を含む制振シート(「本発明の制振シート」と称する場合がある)が得られる。なお、本発明の制振シートにおける「シート」には、「フィルム」、「プレート」等の各種平面形状が包含されるものとする。即ち、本発明の制振シートには、「制振フィルム」や「制振プレート」等の各種平面形状の物品が含まれる。本発明の制振シートは、本発明の硬化物を少なくとも含むものであればよく、シート状の本発明の硬化物のみにより形成されたものであってもよいし、シート状の本発明の硬化物と、他のシートとの積層体等であってもよい。また、本発明の制振シートは、単層の構成を有するものであってもよいし、複層の構成を有するものであってもよい。なお、本発明の制振シートの厚み(総厚み、シート状の本発明の硬化物の厚み)は、特に限定されず、用途等に応じて適宜選択可能である。
≪Vibration control sheet≫
For example, a cured product obtained by curing the energy beam curable resin composition of the present invention into a sheet or by curing the energy beam curable resin composition of the present invention (the energy beam curable of the present invention). A vibration damping sheet containing the cured product of the present invention (sometimes referred to as “the vibration damping sheet of the present invention”) is obtained by molding and processing a cured product of the resin composition into a sheet. The “sheet” in the vibration damping sheet of the present invention includes various planar shapes such as “film” and “plate”. That is, the vibration damping sheet of the present invention includes articles having various planar shapes such as “damping film” and “damping plate”. The vibration damping sheet of the present invention only needs to contain at least the cured product of the present invention, and may be formed only by the sheet-shaped cured product of the present invention, or the sheet-shaped cured product of the present invention. It may be a laminate of an object and another sheet. Further, the vibration damping sheet of the present invention may have a single-layer configuration or a multilayer configuration. In addition, the thickness (total thickness, thickness of the sheet-like cured product of the present invention) of the vibration damping sheet of the present invention is not particularly limited, and can be appropriately selected depending on the use and the like.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレートの合成例]
 以下に、水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレートの合成例について説明する。
[Synthesis example of monofunctional urethane (meth) acrylate having hydrogenated polyolefin skeleton]
Below, the synthesis example of the monofunctional urethane (meth) acrylate which has hydrogenated polyolefin frame | skeleton is demonstrated.
(イソシアネート基濃度の測定)
 イソシアネート基濃度は以下のように測定した。なお、測定は100mLのガラスフラスコでスターラーによる攪拌の下で行った。
 ブランク値は、以下のように測定した。まず、15mLのTHFに、ジブチルアミンのTHF溶液(0.1N)15mLを加えた。さらにブロモフェノールブルー(1重量%メタノール希釈液)を3滴加えて青色に着色させた後、規定度が0.1NであるHCl水溶液で滴定した。変色がみられた時点のHCl水溶液の滴定量をVb(mL)とした。
 実測イソシアネート基濃度は、以下のように測定した。まず、サンプルをWs(g)秤量し、15mLのTHFに溶解させ、ジブチルアミンのTHF溶液(0.1N)を15mL加えた。溶液化したことを確認した後、ブロモフェノールブルー(1重量%メタノール希釈液)を3滴加えて青色に着色させた後、規定度が0.1NであるHCl水溶液で滴定した。変色がみられた時点のHCl水溶液の滴定量をVs(mL)とした。
 上記で得られた測定値を用い、以下の計算式により、サンプル中のイソシアネート基濃度を算出した。
 イソシアネート基濃度(重量%)=(Vb-Vs)×1.005×0.42÷Ws
(Measurement of isocyanate group concentration)
The isocyanate group concentration was measured as follows. In addition, the measurement was performed under stirring with a stirrer in a 100 mL glass flask.
The blank value was measured as follows. First, 15 mL of a THF solution (0.1 N) of dibutylamine was added to 15 mL of THF. Further, after adding 3 drops of bromophenol blue (diluted in 1% by weight of methanol) to give a blue color, titration was performed with an aqueous HCl solution having a normality of 0.1N. The titration amount of the aqueous HCl solution when the color change was observed was defined as V b (mL).
The measured isocyanate group concentration was measured as follows. First, a sample of W s (g) was weighed and dissolved in 15 mL of THF, and 15 mL of dibutylamine in THF (0.1 N) was added. After confirming that the solution was formed, 3 drops of bromophenol blue (diluted in 1% by weight of methanol) were added to give a blue color, followed by titration with an aqueous HCl solution having a normality of 0.1N. The titer of the aqueous HCl solution when the color change was observed was defined as V s (mL).
Using the measured value obtained above, the isocyanate group concentration in the sample was calculated by the following calculation formula.
Isocyanate group concentration (% by weight) = (V b −V s ) × 1.005 × 0.42 ÷ W s
(重量平均分子量の測定)
 重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)法により、下記の測定条件で、標準ポリスチレンを基準にして求めた。
 使用機器   : TOSO HLC-8220GPC
 ポンプ    : DP-8020
 検出器    : RI-8020
 カラムの種類 : Super HZM-M, Super HZ4000, Super HZ3000, Super HZ2000
 溶剤     : テトラヒドロフラン
 相流量    : 1mL/分
 カラム内圧力 : 5.0MPa
 カラム温度  : 40℃
 試料注入量  : 10μL
 試料濃度   : 0.2mg/mL
(Measurement of weight average molecular weight)
The weight average molecular weight was determined by GPC (gel permeation chromatography) method based on standard polystyrene under the following measurement conditions.
Equipment used: TOSO HLC-8220GPC
Pump: DP-8020
Detector: RI-8020
Column type: Super HZM-M, Super HZ4000, Super HZ3000, Super HZ2000
Solvent: Tetrahydrofuran Phase flow rate: 1 mL / min Column pressure: 5.0 MPa
Column temperature: 40 ° C
Sample injection volume: 10 μL
Sample concentration: 0.2 mg / mL
 実施例で用いた原料は以下の通りである。
(水素化ポリオレフィン骨格を有するジオール)
 NISSO PB GI-1000(GI-1000):製品名「NISSO PB GI-1000」(日本曹達(株)製)、水素化1,2-ポリブタジエングリコール(水酸基価66mgKOH/g、推定分子量1,700)
 NISSO PB GI-3000(GI-3000):製品名「NISSO PB GI-3000」(日本曹達(株)製)、水素化1,2-ポリブタジエングリコール(水酸基価29.7mgKOH/g、推定分子量3,778)
(ジイソシアネート)
 IPDI:製品名「VESTANAT IPDI」(エボニック社製)、イソホロンジイソシアネート(分子量222)
(ヒドロキシ基含有(メタ)アクリレート)
 HEA:製品名「BHEA」(日本触媒(株)製)、アクリル酸2-ヒドロキシエチル(分子量116)
(イソシアネート反応性化合物)
 IPA:イソプロピルアルコール(分子量60)
The raw materials used in the examples are as follows.
(Diol having hydrogenated polyolefin skeleton)
NISSO PB GI-1000 (GI-1000): product name “NISSO PB GI-1000” (manufactured by Nippon Soda Co., Ltd.), hydrogenated 1,2-polybutadiene glycol (hydroxyl value 66 mgKOH / g, estimated molecular weight 1,700)
NISSO PB GI-3000 (GI-3000): Product name “NISSO PB GI-3000” (manufactured by Nippon Soda Co., Ltd.), hydrogenated 1,2-polybutadiene glycol (hydroxyl value 29.7 mgKOH / g, estimated molecular weight 3, 778)
(Diisocyanate)
IPDI: Product name “VESTANAT IPDI” (manufactured by Evonik), isophorone diisocyanate (molecular weight 222)
(Hydroxy group-containing (meth) acrylate)
HEA: Product name “BHEA” (manufactured by Nippon Shokubai Co., Ltd.), 2-hydroxyethyl acrylate (molecular weight 116)
(Isocyanate-reactive compound)
IPA: isopropyl alcohol (molecular weight 60)
 なお、水素化ポリオレフィン骨格を有するジオールの分子量としては、水酸基価から各分子がそれぞれ分子中に2個のヒドロキシ基を有するものとして算出される推定分子量を用いた。推定分子量の計算式は以下の通りである。
 推定分子量=56.1(KOHの分子量)÷水酸基価(mgKOH/g)×1000×2
In addition, as the molecular weight of the diol having a hydrogenated polyolefin skeleton, an estimated molecular weight calculated from the hydroxyl value as each molecule having two hydroxy groups in the molecule was used. The calculation formula of the estimated molecular weight is as follows.
Estimated molecular weight = 56.1 (KOH molecular weight) ÷ hydroxyl value (mgKOH / g) × 1000 × 2
[合成例1:水素化ポリブタジエン骨格を有する単官能ウレタンアクリレート溶液(UA1)の調製]
 466.7gのトルエン、645.0gのNISSO-PB GI-3000、47.4gのIPDI、及び0.560gのBHT(ブチルヒドロキシトルエン)を、温度計及び攪拌装置を備えた2Lのセパラブルフラスコに仕込んだ。穏やかな攪拌下、上記原料が均一に混合された後、窒素と酸素の混合気体(酸素濃度2.5%)下で、0.210gのDBTDL(ジブチル錫ジラウレート)を添加し、50℃への加熱を開始した。温度が50℃に到達してから、この温度で1時間攪拌を保持した。
 次いで、同温度で穏やかに攪拌しながら、5.0gのHEAを添加した。その後、70℃に加熱し、穏やかな攪拌下、同温度で1時間攪拌を保持した。
 さらに、同温度で穏やかに攪拌しながら、2.7gのIPAを添加した。その後、イソシアネート基濃度(NCO%)が0.1%以下になるまで1時間以上70℃で保持し、反応を継続した。
 その後、加熱及び攪拌を止め、得られた生成物(溶液)を別の容器に注入して、反応を終了させた。得られた水素化ポリブタジエン骨格を有する単官能ウレタンアクリレート溶液(UA1)の25℃における粘度は、1,400mPa・sであった。また、上記溶液中の水素化ポリブタジエン骨格を有する単官能ウレタンアクリレートの重量平均分子量は37247であった。
 なお、上記仕込み重量と分子量から計算される原料のモル比率は、以下の通りである。
 GI-3000/IPDI/HEA/IPA=4/5/1/1
 よって、得られた水素化ポリブタジエン骨格を有する単官能ウレタンアクリレートにおける各原料の繰り返し構造は、以下の通りとなる。
 IPA/IPDI/GI-3000/IPDI/GI-3000/IPDI/GI-3000/IPDI/GI-3000/IPDI/HEA
[Synthesis Example 1: Preparation of monofunctional urethane acrylate solution (UA1) having hydrogenated polybutadiene skeleton]
466.7 g of toluene, 645.0 g of NISSO-PB GI-3000, 47.4 g of IPDI, and 0.560 g of BHT (butylhydroxytoluene) were placed in a 2 L separable flask equipped with a thermometer and a stirrer. Prepared. After the above raw materials were uniformly mixed under gentle stirring, 0.210 g of DBTDL (dibutyltin dilaurate) was added under a mixed gas of nitrogen and oxygen (oxygen concentration 2.5%), and the mixture was heated to 50 ° C. Heating was started. After the temperature reached 50 ° C., stirring was maintained at this temperature for 1 hour.
Then 5.0 g of HEA was added with gentle stirring at the same temperature. Thereafter, the mixture was heated to 70 ° C., and the stirring was maintained at the same temperature for 1 hour under gentle stirring.
Further, 2.7 g of IPA was added with gentle stirring at the same temperature. Thereafter, the reaction was continued at 70 ° C. for 1 hour or more until the isocyanate group concentration (NCO%) became 0.1% or less.
Then, heating and stirring were stopped, and the obtained product (solution) was poured into another container to complete the reaction. The viscosity of the resulting monofunctional urethane acrylate solution (UA1) having a hydrogenated polybutadiene skeleton at 25 ° C. was 1,400 mPa · s. Moreover, the weight average molecular weight of the monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution was 37247.
In addition, the molar ratio of the raw material calculated from the charged weight and molecular weight is as follows.
GI-3000 / IPDI / HEA / IPA = 4/5/1/1
Therefore, the repeating structure of each raw material in the obtained monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton is as follows.
IPA / IPDI / GI-3000 / IPDI / GI-3000 / IPDI / GI-3000 / IPDI / GI-3000 / IPDI / HEA
[合成例2:水素化ポリブタジエン骨格を有する単官能ウレタンアクリレート溶液(UA2)の調製]
 666.7gのトルエン、858.9gのNISSO-PB GI-1000、128.2gのIPDI、及び0.800gのBHTを、温度計及び攪拌装置を備えた2Lのセパラブルフラスコに仕込んだ。穏やかな攪拌下、上記原料が均一に混合された後、窒素と酸素の混合気体(酸素濃度2.5%)下で、0.300gのDBTDLを添加し、50℃への加熱を開始した。温度が50℃に到達してから、この温度で1時間攪拌を保持した。
 次いで、同温度で穏やかに攪拌しながら、8.4gのHEAを添加した。その後、70℃に加熱し、穏やかな攪拌下、同温度で1時間攪拌を保持した。
 さらに、同温度で穏やかに攪拌しながら、4.5gのIPAを添加した。その後、イソシアネート基濃度(NCO%)が0.1%以下になるまで1時間以上70℃で保持し、反応を継続した。
 その後、加熱及び攪拌を止め、得られた生成物(溶液)を別の容器に注入して、反応を終了させた。得られた水素化ポリブタジエン骨格を有する単官能ウレタンアクリレート溶液(UA2)の25℃における粘度は、1,700mPa・sであった。また、上記溶液中の水素化ポリブタジエン骨格を有する単官能ウレタンアクリレートの重量平均分子量は38632であった。
 なお、上記仕込み重量と分子量から計算される原料のモル比率は、以下の通りである。
 GI-1000/IPDI/HEA/IPA=7/8/1/1
 よって、得られた水素化ポリブタジエン骨格を有する単官能ウレタンアクリレートにおける各原料の繰り返し構造は、以下の通りとなる。
 IPA/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/HEA
[Synthesis Example 2: Preparation of monofunctional urethane acrylate solution having hydrogenated polybutadiene skeleton (UA2)]
666.7 g toluene, 858.9 g NISSO-PB GI-1000, 128.2 g IPDI, and 0.800 g BHT were charged to a 2 L separable flask equipped with a thermometer and stirrer. After the above raw materials were uniformly mixed under gentle stirring, 0.300 g of DBTDL was added under a mixed gas of nitrogen and oxygen (oxygen concentration 2.5%), and heating to 50 ° C. was started. After the temperature reached 50 ° C., stirring was maintained at this temperature for 1 hour.
Then 8.4 g of HEA was added with gentle stirring at the same temperature. Thereafter, the mixture was heated to 70 ° C., and the stirring was maintained at the same temperature for 1 hour under gentle stirring.
Further, 4.5 g of IPA was added with gentle stirring at the same temperature. Thereafter, the reaction was continued at 70 ° C. for 1 hour or more until the isocyanate group concentration (NCO%) became 0.1% or less.
Then, heating and stirring were stopped, and the obtained product (solution) was poured into another container to complete the reaction. The viscosity of the resulting monofunctional urethane acrylate solution (UA2) having a hydrogenated polybutadiene skeleton at 25 ° C. was 1,700 mPa · s. Moreover, the weight average molecular weight of the monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution was 38632.
In addition, the molar ratio of the raw material calculated from the charged weight and molecular weight is as follows.
GI-1000 / IPDI / HEA / IPA = 7/8/1/1
Therefore, the repeating structure of each raw material in the obtained monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton is as follows.
IPA / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / HEA
[合成例3:水素化ポリブタジエン骨格を有する単官能ウレタンアクリレート溶液(UA3)の調製]
 428.6gのイソボルニルアクリレート、858.9gのNISSO-PB GI-1000、128.2gのIPDI、及び0.800gのBHTを、温度計及び攪拌装置を備えた2Lのセパラブルフラスコに仕込んだ。穏やかな攪拌下、上記原料が均一に混合された後、窒素と酸素の混合気体(酸素濃度2.5%)下で、0.300gのDBTDLを添加し、50℃への加熱を開始した。温度が50℃に到達してから、この温度で1時間攪拌を保持した。
 次いで、同温度で穏やかに攪拌しながら、8.4gのHEAを添加した。その後、70℃に加熱し、穏やかな攪拌下、同温度で1時間攪拌を保持した。
 さらに、同温度で穏やかに攪拌しながら、4.5gのIPAを添加した。その後、イソシアネート基濃度(NCO%)が0.1%以下になるまで1時間以上70℃で保持し、反応を継続した。
 その後、加熱及び攪拌を止め、得られた生成物(溶液)を別の容器に注入して、反応を終了させた。得られた水素化ポリブタジエン骨格を有する単官能ウレタンアクリレート溶液(UA3)の60℃における粘度は、22.4Pa・sであった。また、上記溶液中の水素化ポリブタジエン骨格を有する単官能ウレタンアクリレートの重量平均分子量は50570であった。
 なお、上記仕込み重量と分子量から計算される原料のモル比率は、以下の通りである。
 GI-1000/IPDI/HEA/IPA=7/8/1/1
 よって、得られた水素化ポリブタジエン骨格を有する単官能ウレタンアクリレートにおける各原料の繰り返し構造は、以下の通りとなる。
 IPA/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/HEA
[Synthesis Example 3: Preparation of monofunctional urethane acrylate solution having hydrogenated polybutadiene skeleton (UA3)]
428.6 g isobornyl acrylate, 858.9 g NISSO-PB GI-1000, 128.2 g IPDI, and 0.800 g BHT were charged into a 2 L separable flask equipped with a thermometer and stirrer. . After the above raw materials were uniformly mixed under gentle stirring, 0.300 g of DBTDL was added under a mixed gas of nitrogen and oxygen (oxygen concentration 2.5%), and heating to 50 ° C. was started. After the temperature reached 50 ° C., stirring was maintained at this temperature for 1 hour.
Then 8.4 g of HEA was added with gentle stirring at the same temperature. Thereafter, the mixture was heated to 70 ° C., and the stirring was maintained at the same temperature for 1 hour under gentle stirring.
Further, 4.5 g of IPA was added with gentle stirring at the same temperature. Thereafter, the reaction was continued at 70 ° C. for 1 hour or more until the isocyanate group concentration (NCO%) became 0.1% or less.
Then, heating and stirring were stopped, and the obtained product (solution) was poured into another container to complete the reaction. The viscosity at 60 ° C. of the monofunctional urethane acrylate solution (UA3) having a hydrogenated polybutadiene skeleton was 22.4 Pa · s. Moreover, the weight average molecular weight of the monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution was 50570.
In addition, the molar ratio of the raw material calculated from the charged weight and molecular weight is as follows.
GI-1000 / IPDI / HEA / IPA = 7/8/1/1
Therefore, the repeating structure of each raw material in the obtained monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton is as follows.
IPA / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / HEA
[合成例4:水素化ポリブタジエン骨格を有する単官能ウレタンアクリレート溶液(UA4)の調製]
 428.6gのノルマルオクチルアクリレート、858.9gのNISSO-PB GI-1000、128.2gのIPDI、及び0.800gのBHTを、温度計及び攪拌装置を備えた2Lのセパラブルフラスコに仕込んだ。穏やかな攪拌下、上記原料が均一に混合された後、窒素と酸素の混合気体(酸素濃度2.5%)下で、0.300gのDBTDLを添加し、50℃への加熱を開始した。温度が50℃に到達してから、この温度で1時間攪拌を保持した。
 次いで、同温度で穏やかに攪拌しながら、8.4gのHEAを添加した。その後、70℃に加熱し、穏やかな攪拌下、同温度で1時間攪拌を保持した。
 さらに、同温度で穏やかに攪拌しながら、4.5gのIPAを添加した。その後、イソシアネート基濃度(NCO%)が0.1%以下になるまで1時間以上70℃で保持し、反応を継続した。
 その後、加熱及び攪拌を止め、得られた生成物(溶液)を別の容器に注入して、反応を終了させた。得られた水素化ポリブタジエン骨格を有する単官能ウレタンアクリレート溶液(UA4)の25℃における粘度は、39.7Pa・sであった。また、上記溶液中の水素化ポリブタジエン骨格を有する単官能ウレタンアクリレートの重量平均分子量は46423であった。
 なお、上記仕込み重量と分子量から計算される原料のモル比率は、以下の通りである。
 GI-1000/IPDI/HEA/IPA=7/8/1/1
 よって、得られた水素化ポリブタジエン骨格を有する単官能ウレタンアクリレートにおける各原料の繰り返し構造は、以下の通りとなる。
 IPA/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/HEA
[Synthesis Example 4: Preparation of monofunctional urethane acrylate solution having hydrogenated polybutadiene skeleton (UA4)]
428.6 g normal octyl acrylate, 858.9 g NISSO-PB GI-1000, 128.2 g IPDI, and 0.800 g BHT were charged into a 2 L separable flask equipped with a thermometer and stirrer. After the above raw materials were uniformly mixed under gentle stirring, 0.300 g of DBTDL was added under a mixed gas of nitrogen and oxygen (oxygen concentration 2.5%), and heating to 50 ° C. was started. After the temperature reached 50 ° C., stirring was maintained at this temperature for 1 hour.
Then 8.4 g of HEA was added with gentle stirring at the same temperature. Thereafter, the mixture was heated to 70 ° C., and the stirring was maintained at the same temperature for 1 hour under gentle stirring.
Further, 4.5 g of IPA was added with gentle stirring at the same temperature. Thereafter, the reaction was continued at 70 ° C. for 1 hour or more until the isocyanate group concentration (NCO%) became 0.1% or less.
Then, heating and stirring were stopped, and the obtained product (solution) was poured into another container to complete the reaction. The viscosity of the resulting monofunctional urethane acrylate solution (UA4) having a hydrogenated polybutadiene skeleton at 25 ° C. was 39.7 Pa · s. The weight average molecular weight of the monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution was 46423.
In addition, the molar ratio of the raw material calculated from the charged weight and molecular weight is as follows.
GI-1000 / IPDI / HEA / IPA = 7/8/1/1
Therefore, the repeating structure of each raw material in the obtained monofunctional urethane acrylate having a hydrogenated polybutadiene skeleton is as follows.
IPA / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / HEA
[比較合成例1:水素化ポリブタジエン骨格を有する2官能ウレタンアクリレート溶液(UA5)の調製]
 180.0gのトルエン、247.9gのNISSO-PB GI-3000、18.2gのIPDI、及び0.2160gのBHTを、温度計及び攪拌装置を備えた0.5Lのセパラブルフラスコに仕込んだ。穏やかな攪拌下、上記原料が均一に混合された後、窒素と酸素の混合気体(酸素濃度2.5%)下で、0.081gのDBTDLを添加し、50℃への加熱を開始した。温度が50℃に到達してから、この温度で1時間攪拌を保持した。
 次いで、同温度で穏やかに攪拌しながら、3.8gのHEAを添加した。その後、70℃に加熱し、この温度で穏やかな攪拌下、イソシアネート基濃度(NCO%)が0.1%以下になるまで1時間保持し、反応を継続した。
 その後、加熱及び攪拌を止め、得られた生成物(溶液)を別の容器に注入して、反応を終了させた。得られた水素化ポリブタジエン骨格を有する2官能ウレタンアクリレート溶液(UA5)の25℃における粘度は、1,400mPa・sであった。また、上記溶液中の水素化ポリブタジエン骨格を有する2官能ウレタンアクリレートの重量平均分子量は34922であった。
 なお、上記仕込み重量と分子量から計算される原料のモル比率は、以下の通りである。
 GI-3000/IPDI/HEA=4/5/2
 よって、得られた水素化ポリブタジエン骨格を有する2官能ウレタンアクリレートにおける各原料の繰り返し構造は、以下の通りとなる。
 HEA/IPDI/GI-3000/IPDI/GI-3000/IPDI/GI-3000/IPDI/GI-3000/IPDI/HEA
[Comparative Synthesis Example 1: Preparation of bifunctional urethane acrylate solution having hydrogenated polybutadiene skeleton (UA5)]
180.0 g toluene, 247.9 g NISSO-PB GI-3000, 18.2 g IPDI, and 0.2160 g BHT were charged into a 0.5 L separable flask equipped with a thermometer and stirrer. After the above raw materials were uniformly mixed under gentle stirring, 0.081 g of DBTDL was added under a mixed gas of nitrogen and oxygen (oxygen concentration 2.5%), and heating to 50 ° C. was started. After the temperature reached 50 ° C., stirring was maintained at this temperature for 1 hour.
Then 3.8 g of HEA was added with gentle stirring at the same temperature. Thereafter, the mixture was heated to 70 ° C. and kept at this temperature for 1 hour with gentle stirring until the isocyanate group concentration (NCO%) became 0.1% or less, and the reaction was continued.
Then, heating and stirring were stopped, and the obtained product (solution) was poured into another container to complete the reaction. The viscosity of the resulting bifunctional urethane acrylate solution (UA5) having a hydrogenated polybutadiene skeleton at 25 ° C. was 1,400 mPa · s. Moreover, the weight average molecular weight of the bifunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution was 34922.
In addition, the molar ratio of the raw material calculated from the charged weight and molecular weight is as follows.
GI-3000 / IPDI / HEA = 4/5/2
Therefore, the repeating structure of each raw material in the obtained bifunctional urethane acrylate having a hydrogenated polybutadiene skeleton is as follows.
HEA / IPDI / GI-3000 / IPDI / GI-3000 / IPDI / GI-3000 / IPDI / GI-3000 / IPDI / HEA
[比較合成例2:水素化ポリブタジエン骨格を有する2官能ウレタンアクリレート溶液(UA6)の調製]
 160.0gのトルエン、205.3gのNISSO-PB GI-1000、30.6gのIPDI、及び0.192gのBHTを、温度計及び攪拌装置を備えた0.5Lのセパラブルフラスコに仕込んだ。穏やかな攪拌下、上記原料が均一に混合された後、窒素と酸素の混合気体(酸素濃度2.5%)下で、0.072gのDBTDLを添加し、50℃への加熱を開始した。温度が50℃に到達してから、この温度で1時間攪拌を保持した。
 次いで、同温度で穏やかに攪拌しながら、4.0gのHEAを添加した。その後、70℃に加熱し、この温度で穏やかな攪拌下、イソシアネート基濃度(NCO%)が0.1%以下になるまで1時間保持し、反応を継続した。
 その後、加熱及び攪拌を止め、得られた生成物(溶液)を別の容器に注入して、反応を終了させた。得られた水素化ポリブタジエン骨格を有する2官能ウレタンアクリレート溶液(UA6)の25℃における粘度は、1,700mPa・sであった。また、上記溶液中の水素化ポリブタジエン骨格を有する2官能ウレタンアクリレートの重量平均分子量は38768であった。
 なお、上記仕込み重量と分子量から計算される原料のモル比率は、以下の通りである。
 GI-1000/IPDI/HEA=7/8/2
 よって、得られた水素化ポリブタジエン骨格を有する2官能ウレタンアクリレートにおける各原料の繰り返し構造は、以下の通りとなる。
 HEA/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/GI-1000/IPDI/HEA
[Comparative Synthesis Example 2: Preparation of bifunctional urethane acrylate solution (UA6) having hydrogenated polybutadiene skeleton]
160.0 g toluene, 205.3 g NISSO-PB GI-1000, 30.6 g IPDI, and 0.192 g BHT were charged into a 0.5 L separable flask equipped with a thermometer and stirrer. After the above raw materials were uniformly mixed under gentle stirring, 0.072 g of DBTDL was added under a mixed gas of nitrogen and oxygen (oxygen concentration 2.5%), and heating to 50 ° C. was started. After the temperature reached 50 ° C., stirring was maintained at this temperature for 1 hour.
Then 4.0 g of HEA was added with gentle stirring at the same temperature. Thereafter, the mixture was heated to 70 ° C. and kept at this temperature for 1 hour with gentle stirring until the isocyanate group concentration (NCO%) became 0.1% or less, and the reaction was continued.
Then, heating and stirring were stopped, and the obtained product (solution) was poured into another container to complete the reaction. The viscosity of the resulting bifunctional urethane acrylate solution (UA6) having a hydrogenated polybutadiene skeleton at 25 ° C. was 1,700 mPa · s. In addition, the bifunctional urethane acrylate having a hydrogenated polybutadiene skeleton in the solution had a weight average molecular weight of 38768.
In addition, the molar ratio of the raw material calculated from the charged weight and molecular weight is as follows.
GI-1000 / IPDI / HEA = 7/8/2
Therefore, the repeating structure of each raw material in the obtained bifunctional urethane acrylate having a hydrogenated polybutadiene skeleton is as follows.
HEA / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / GI-1000 / IPDI / HEA
[実施例、比較例:エネルギー線硬化性樹脂組成物の調製及びフィルムの作製]
<エネルギー線硬化性樹脂組成物の調製>
 適切なミキサーを使用して、合成例1~4、比較合成例1、2で得た溶液UA1~6と、光開始剤とを、表1に示す組成で混合して、配合物(エネルギー線硬化性樹脂組成物)を調製した。なお、光開始剤としては、表1に示すように、1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製、製品名「IRGACURE184」)を使用した。
[Examples and Comparative Examples: Preparation of energy beam curable resin composition and production of film]
<Preparation of energy ray curable resin composition>
Using a suitable mixer, the solutions UA1 to 6 obtained in Synthesis Examples 1 to 4 and Comparative Synthesis Examples 1 and 2 and the photoinitiator were mixed in the composition shown in Table 1 to obtain a compound (energy beam). A curable resin composition) was prepared. As the photoinitiator, as shown in Table 1, 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF, product name “IRGACURE184”) was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<フィルムの作製>
 アルミ製ディスポカップ(アントンパール社製)に、上記で得た各エネルギー線硬化性樹脂組成物を乾燥後の厚みが1mmとなるように流し込んだ。その後、80℃のオーブンで10分間乾燥させ、続いて、UV照射機(アイグラフィックス社製、製品名「EYE INVERTOR GRANDAGE ECS-401GX」)を用いて、ピーク照度400mW/cm2、積算光量860mJ/cm2の条件で紫外線を照射して硬化させることにより、フィルム(制振シート)を作製した。
<Production of film>
Each energy ray-curable resin composition obtained above was poured into an aluminum disposable cup (manufactured by Anton Paar) so that the thickness after drying was 1 mm. Then, it is dried in an oven at 80 ° C. for 10 minutes, and subsequently, using a UV irradiator (product name “EYE INVERTOR GRANDAGE ECS-401GX” manufactured by Eye Graphics Co., Ltd.), a peak illuminance of 400 mW / cm 2 and an integrated light amount of 860 mJ A film (damping sheet) was produced by curing by irradiating with ultraviolet rays under the conditions of / cm 2 .
[制振特性 Tanδ(23℃)の評価]
 上記で得たフィルムを、レオメータ(製品名「Physica MCR300」、アントンパール社製)にセットし、パラレルプレート(PP7)を使用して、ギャップ1mm、動歪1%、周波数1Hzの条件にて-30℃から80℃にて測定し、23℃におけるTanδの値を測定した。結果を表2に示す。なお、23℃におけるTanδの値が大きいほど、制振特性が良好である。
[Evaluation of damping characteristics Tanδ (23 ° C)]
The film obtained above is set in a rheometer (product name “Physica MCR300”, manufactured by Anton Paar), and using a parallel plate (PP7) under the conditions of gap 1 mm, dynamic strain 1%, frequency 1 Hz− Measurement was performed at 30 ° C. to 80 ° C., and the value of Tan δ at 23 ° C. was measured. The results are shown in Table 2. The greater the value of Tan δ at 23 ° C., the better the damping characteristics.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明のエネルギー線硬化性樹脂組成物は、硬化させることにより、非常に優れた制振性を有する硬化物を形成できる。このため、本発明のエネルギー線硬化性樹脂組成物は、制振性を付与するためのコーティング剤や、制振シートの原料等の用途に特に好ましく使用できる。 The energy beam curable resin composition of the present invention can be cured to form a cured product having very excellent vibration damping properties. For this reason, the energy beam curable resin composition of the present invention can be particularly preferably used for applications such as a coating agent for imparting vibration damping properties and a raw material for vibration damping sheets.

Claims (4)

  1.  水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)と、光開始剤(B)とを含み、
     水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)が、水素化ポリオレフィン骨格を有するジオール(X)と、ジイソシアネート(Y)と、ヒドロキシ基含有(メタ)アクリレート(Z)と、分子内に1個のイソシアネート反応性基を有し、光硬化性官能基を有しない化合物(L)とを反応させて得られるウレタン(メタ)アクリレートであることを特徴とするエネルギー線硬化性樹脂組成物。
    A monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton and a photoinitiator (B);
    A monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton, a diol (X) having a hydrogenated polyolefin skeleton, a diisocyanate (Y), a hydroxy group-containing (meth) acrylate (Z), and an intramolecular It is a urethane (meth) acrylate obtained by reacting with a compound (L) having one isocyanate-reactive group and not having a photocurable functional group. .
  2.  水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)の重量平均分子量が10,000以上である請求項1に記載のエネルギー線硬化性樹脂組成物。 The energy ray-curable resin composition according to claim 1, wherein the monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton has a weight average molecular weight of 10,000 or more.
  3.  水素化ポリオレフィン骨格を有する単官能ウレタン(メタ)アクリレート(A)と、光開始剤(B)と、さらに反応性希釈剤、及び/又は揮発性有機溶剤とを含む請求項1又は2に記載のエネルギー線硬化性樹脂組成物。 The monofunctional urethane (meth) acrylate (A) having a hydrogenated polyolefin skeleton, a photoinitiator (B), a reactive diluent, and / or a volatile organic solvent are further included. Energy ray curable resin composition.
  4.  請求項1~3のいずれか一項に記載のエネルギー線硬化性樹脂組成物の硬化物を含む制振シート。 A vibration damping sheet comprising a cured product of the energy beam curable resin composition according to any one of claims 1 to 3.
PCT/JP2014/062844 2013-06-27 2014-05-14 Energy ray-curable resin composition and vibration damper sheet WO2014208212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015523915A JP6534928B2 (en) 2013-06-27 2014-05-14 Energy beam curable resin composition and damping sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-135570 2013-06-27
JP2013135570 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208212A1 true WO2014208212A1 (en) 2014-12-31

Family

ID=52141564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062844 WO2014208212A1 (en) 2013-06-27 2014-05-14 Energy ray-curable resin composition and vibration damper sheet

Country Status (3)

Country Link
JP (2) JP6534928B2 (en)
TW (1) TW201510049A (en)
WO (1) WO2014208212A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779229A (en) * 2016-03-31 2018-11-09 横滨橡胶株式会社 Photo-curable resin, mixture and photocuring resin composition
JP2019044173A (en) * 2017-08-31 2019-03-22 北川工業株式会社 Damping material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155455A (en) * 2001-11-19 2003-05-30 Nippon Synthetic Chem Ind Co Ltd:The Active-energy-ray-curable pressure-sensitive adhesive composition
WO2007069600A1 (en) * 2005-12-13 2007-06-21 Kaneka Corporation Curable composition for damping material and damping material
JP2011032410A (en) * 2009-08-04 2011-02-17 Bridgestone Corp Photocurable resin composition and adhesive sheet obtained from the same
JP2012062447A (en) * 2010-09-17 2012-03-29 Bridgestone Corp Adhesive sheet
JP2013129812A (en) * 2011-11-25 2013-07-04 Daicel-Cytec Co Ltd Active energy ray-curable composition for interlayer filler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113008A (en) * 1988-10-21 1990-04-25 Kuraray Co Ltd Conjugated diene-based macromonomer having unsubstituted or substituted vinyl group at one terminal, production thereof and composition containing the same
JP2010134436A (en) * 2008-10-31 2010-06-17 Toray Advanced Film Co Ltd Filter for display
JP5451240B2 (en) * 2009-08-04 2014-03-26 株式会社ブリヂストン Photocurable resin composition and pressure-sensitive adhesive sheet comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155455A (en) * 2001-11-19 2003-05-30 Nippon Synthetic Chem Ind Co Ltd:The Active-energy-ray-curable pressure-sensitive adhesive composition
WO2007069600A1 (en) * 2005-12-13 2007-06-21 Kaneka Corporation Curable composition for damping material and damping material
JP2011032410A (en) * 2009-08-04 2011-02-17 Bridgestone Corp Photocurable resin composition and adhesive sheet obtained from the same
JP2012062447A (en) * 2010-09-17 2012-03-29 Bridgestone Corp Adhesive sheet
JP2013129812A (en) * 2011-11-25 2013-07-04 Daicel-Cytec Co Ltd Active energy ray-curable composition for interlayer filler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779229A (en) * 2016-03-31 2018-11-09 横滨橡胶株式会社 Photo-curable resin, mixture and photocuring resin composition
EP3438148A4 (en) * 2016-03-31 2020-05-06 The Yokohama Rubber Co., Ltd. Photocurable resin, mixture, and photocurable resin composition
CN108779229B (en) * 2016-03-31 2021-08-20 横滨橡胶株式会社 Photocurable resin, mixture, and photocurable resin composition
US11248079B2 (en) 2016-03-31 2022-02-15 Sika Hamatite Co., Ltd. Photocurable resin, mixture, and photocurable resin composition
JP2019044173A (en) * 2017-08-31 2019-03-22 北川工業株式会社 Damping material
JP7079490B2 (en) 2017-08-31 2022-06-02 北川工業株式会社 Vibration damping material

Also Published As

Publication number Publication date
TW201510049A (en) 2015-03-16
JP6755986B2 (en) 2020-09-16
JP2019070165A (en) 2019-05-09
JP6534928B2 (en) 2019-06-26
JPWO2014208212A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5859926B2 (en) Active energy ray curable composition for interlayer filling
JP5516829B2 (en) Method for producing cured coating film, optical film, and method for producing thin film molded body
TWI545138B (en) Activation-energy-ray-curable resin composition
EP2990428A1 (en) Urethane (meth)acrylate and active energy ray-curable resin composition
JP6755986B2 (en) Energy ray curable resin composition and vibration damping sheet
WO2020054582A1 (en) Urethane (meth)acrylate, active energy ray-curable composition containing same, and cured product of said composition
EP2065412A1 (en) Ethylenically unsaturated polyisocyanate addition compounds based on lysine triisocyanate, their use in coating compositions and processes for their preparation
JP2005255979A (en) Cured article of active energy ray-curable resin composition
JPH11279240A (en) Photo-curing resin composition and coating material
JP2020084093A (en) Highly safe urethane acrylate and method for producing the same
JP6899225B2 (en) Active energy ray-curable composition
JP6425986B2 (en) Urethane (meth) acrylate, active energy ray-curable urethane (meth) acrylate composition and cured product thereof
TW201446844A (en) Resin film and method for producing same
TW201841964A (en) Active energy ray-curable resin composition and coating agent
JP6564607B2 (en) Active energy ray-curable coating agent composition and cured product thereof
JP2018016782A (en) Urethane (meth) acrylate oligomer
WO2016163232A1 (en) Curable resin composition for interlayer filling
JP7461239B2 (en) Urethane (meth)acrylate composition, active energy ray-curable composition, and cured product thereof
WO2019182155A1 (en) Curable composition, cured product, method for producing cured product, and method for repairing damage of cured product
JP7257815B2 (en) Urethane (meth)acrylate, active energy ray-curable composition containing the same, and cured product thereof
JP2022100004A (en) Composition for forming film, and use of the same
JP2017066339A (en) Urethane (meth)acrylate oligomer, method for producing the same, and photocurable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817704

Country of ref document: EP

Kind code of ref document: A1