WO2014207808A1 - Feeder control device - Google Patents

Feeder control device Download PDF

Info

Publication number
WO2014207808A1
WO2014207808A1 PCT/JP2013/067257 JP2013067257W WO2014207808A1 WO 2014207808 A1 WO2014207808 A1 WO 2014207808A1 JP 2013067257 W JP2013067257 W JP 2013067257W WO 2014207808 A1 WO2014207808 A1 WO 2014207808A1
Authority
WO
WIPO (PCT)
Prior art keywords
sprocket
tape
feeder
component
component supply
Prior art date
Application number
PCT/JP2013/067257
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 野田
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2013/067257 priority Critical patent/WO2014207808A1/en
Priority to CN201380077697.6A priority patent/CN105325069B/en
Priority to JP2015523686A priority patent/JP6143865B2/en
Publication of WO2014207808A1 publication Critical patent/WO2014207808A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0417Feeding with belts or tapes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0417Feeding with belts or tapes
    • H05K13/0419Feeding with belts or tapes tape feeders

Definitions

  • the present invention relates to a feeder control device that sends a component housed in a component supply tape to a component suction position by rotation of a sprocket.
  • Parts supply tape is used as a tape feeder that engages sprocket teeth with sprocket holes formed in a part supply tape that contains a large number of parts at a specified pitch, and sends the parts stored in the part supply tape to the parts suction position by rotating the sprocket.
  • Japanese Patent Application Laid-Open No. H10-228667 describes a sprocket that automatically meshes with the sprocket teeth.
  • the tape supplier can be attached to and detached from the feeder main body. After the tape supplier is mounted on the feeder main body, the sprocket is raised and the sprocket teeth are moved. It is engaged with the sprocket hole of the component supply tape. Therefore, when the tape supplier is installed in the feeder body, the component supply tape and sprocket are not meshed, so if the origin of the sprocket is not detected before the component supply tape and sprocket are meshed, Therefore, the rotation of the sprocket cannot be controlled. For this reason, particularly in the case of extremely small parts, the sprocket cannot be accurately supplied to a position where it can be sucked by the suction nozzle.
  • the present invention has been made to solve the above-described problems, and provides a feeder control device in which only a component that requires feeding accuracy is indexed with the sprocket at the origin and the sprocket and the component supply tape are meshed with each other. It is intended to do.
  • the invention according to claim 1 is characterized in that the sprocket teeth are meshed with sprocket holes formed in a component supply tape in which a large number of components are stored at a predetermined pitch, and the sprocket rotates to rotate the components.
  • a tape feeder for sending a component housed in a supply tape to a component suction position, the sprocket being engaged with a sprocket hole of the component supply tape, and the tooth being inserted from a sprocket hole of the component supply tape;
  • An operating mechanism that operates between a retraction position positioned below, a pitch error storage means that stores a pitch error of the teeth from the origin position of the sprocket, and rotation control of the sprocket according to the pitch error Rotation control means, origin detection means for detecting the origin position of the sprocket, and tape feeder
  • the invention according to claim 2 is characterized in that an identification ID is provided on the tape feeder, and based on the identification ID, whether or not the component supply tape containing a component smaller than a predetermined size is set in the tape feeder.
  • the invention according to claim 3 is characterized in that a tape supplier provided with the sprocket and the operating mechanism is detachably attached to the feeder body, the identification ID is provided to the tape supplier, and the identification ID is assigned to the feeder body.
  • a feature of the invention according to claim 4 is that, when the component supply tape storing a component larger than a predetermined size is set in the tape feeder, the sprocket causes the pitch error until the origin of the sprocket is detected. Regardless of rotation, a rotation control means is provided for rotating the sprocket according to the pitch error after the component is rotated by a predetermined angle to send the component to the component suction position and the origin is detected. 4.
  • the feeder control device according to claim 1.
  • a fifth aspect of the present invention when the sprocket is operated to the meshing position by the operating mechanism, teeth of the sprocket are engaged with the sprocket holes of the component supply tape, and the sprocket is meshed.
  • the feeder control device according to any one of claims 1 to 3, further comprising a meshing detection unit that detects that the actuator has been operated to a position.
  • the origin is detected by the origin detection means before the sprocket is operated to the meshing position.
  • a control unit that rotates the sprocket by a predetermined angle regardless of the pitch error and sends the component to the component pick-up position.
  • the sprocket when a component supply tape containing a component larger than a predetermined size that does not require much feed accuracy is set, the sprocket is operated from the retracted position to the meshing position without indexing the sprocket to the origin, The sprocket can be rotated by a predetermined angle regardless of the pitch error to send the component to the component pick-up position, so the time to send the first component stored in the component supply tape to the component pick-up position can be shortened And component mounting work can be performed efficiently.
  • the tape feeder is provided with an identification ID, and based on the identification ID, a component supply tape containing a component smaller than the predetermined size is set in the tape feeder or is smaller than the predetermined size. Since it was possible to determine whether a component supply tape containing a large component was set, the type (size) of the component stored in the component supply tape can be identified based on the identification ID provided in the tape feeder, Based on this, the control means can be accurately controlled.
  • the identification ID is provided to the tape supplier, and the identification ID is read by the reader provided on the feeder body. Even when a plurality of tape suppliers are mounted on the feeder main body, the type (size) of the component stored in the component supply tape of each tape supplier can be identified by reading the identification ID provided on each tape supplier.
  • the sprocket when a component supply tape containing a component larger than a predetermined size is set in the tape feeder, the sprocket is set at a predetermined angle regardless of the pitch error until the origin of the sprocket is detected. After rotating and sending the component to the component pick-up position and detecting the origin, it has rotation control means to control the rotation of the sprocket according to the pitch error, so that the sprocket is engaged with the sprocket hole of the component supply tape After the sprocket origin is detected, the rotation of the sprocket can be controlled according to the pitch error.
  • the sprocket when the sprocket is operated to the meshing position by the operating mechanism, it is detected that the sprocket teeth are engaged with the sprocket holes of the component supply tape and the sprocket is operated to the meshing position. Since the mesh detection means is provided, if the sprocket teeth do not mesh well with the sprocket holes in the component supply tape and no detection signal is obtained from the mesh detection means, the sprocket is rotated forward and backward, etc. Can be reliably meshed with the sprocket holes of the component supply tape.
  • the tape feeder 11 shown in FIG. 1 supplies components to a component suction position where components are sucked by a suction nozzle (not shown), and the feeder main body is arranged so that a plurality of component supply tapes 12 can be set in the horizontal width direction.
  • the width 13 is configured to be larger than the width of a conventional general tape feeder (tape feeder capable of setting only one component supply tape).
  • the component supply tape 12 is not shown in detail, but the components are stored in the component storage recesses formed in a line at a predetermined pitch on the carrier tape, and the top tape (cover tape) is adhered to the upper surface of the carrier tape. It is.
  • sprocket holes are formed at a constant pitch along the longitudinal direction of the component supply tape 12, and by rotation of a sprocket described later that meshes with the sprocket holes. The component supply tape 12 is sent.
  • a handle 14 and an operation panel 15 are provided at the upper part of the rear side (removal direction side) of the feeder main body 13, and a reel holder for storing a tape reel 16 around which the component supply tape 12 is wound. 17 is provided.
  • the reel holder 17 is formed so as to store a plurality of tape reels 16 arranged in two rows in the front and rear, and is stored so that each tape reel 16 can be rotated in the reel holder 17 as the component supply tape 12 is pulled out.
  • the operation panel 15 is provided with operation keys and the like for inputting various operation signals such as a tape supplier mounting work start signal for each tape supplier 21 described later.
  • the component supply tape 12 drawn from each tape reel 16 is supplied to a component suction position by each tape supplier 21 described later.
  • Each tape supplier 21 is detachably attached to the feeder body 13, and the width of each tape supplier 21 is larger than the width of the component supply tape 12 so that only one component supply tape 12 is set in each tape supplier 21. Slightly larger dimensions are formed.
  • a reel hooking portion 22 for holding the tape reel 16 on the tape supplier 21 removed from the feeder body 13 is provided at the rear end portion of each tape supplier 21.
  • the tape reel 16 can be hooked and held.
  • the tape supplier 21 is provided with a cover tape peeling device 23 that peels off the cover tape that covers the upper surface of the component supply tape 12, and a cover tape collection case 24 that collects the cover tape peeled off from the component supply tape 12.
  • the cover tape peeling device 23 includes a peeling roller 25, a tension roller 26, and a pair of cover tape feed gears 28, 29. The cover tape peeled off by the peeling roller 25 is passed over the tension roller 26 and covered with the cover tape. It is sandwiched between the feed gears 28 and 29 and fed into the cover tape collecting case 24.
  • a cover tape feed motor 33 as a drive source for the cover tape feed gears 28 and 29 is provided on the feeder main body 13 side, and the motor 33 is mounted when the tape supplier 21 is mounted on the feeder main body 13.
  • the one cover tape feed gear 28 meshes with the drive gear 34 that is driven by the two, so that both cover tape feed gears 28 and 29 are rotationally driven.
  • the tape supplier 21 has a plurality of horizontal U-shaped tape holding portions 37 and 38 that hold only one side in the width direction of the component supply tape 12 on one side in the width direction of the component supply tape 12.
  • the tape holding portions 37 and 38 are arranged inward in the width direction of the component supply tape 12 so as to hold the component supply tape 12 while meandering the component supply tape 12 slightly in the width direction.
  • the component supply tape 12 can be held with a smaller width by being arranged little by little.
  • each sprocket drive unit 41 includes a rotating member 30 that can rotate about a support shaft 51, a sprocket 42 that is rotatably supported by the rotating member 30,
  • the sprocket 42 is installed on the member 30 and is configured by a sprocket rotating motor 44 or the like that drives the sprocket 42 via a spur gear train 43.
  • the sprocket 42 is operated in the vertical direction by the rotation of the rotating member 30. .
  • Each sprocket 42 is disposed at a position corresponding to each component supply tape 12 set in the feeder main body 13, and the teeth of the sprocket 42 are meshed with the sprocket holes of each component supply tape 12, and the component supply tape is rotated by the rotation of the sprocket 42. 12 is pitch-fed toward the component suction position.
  • Each sprocket 42 has a plurality of sprocket teeth formed at equal angular intervals on the circumference, but a pitch error is generated between each sprocket tooth due to a processing error or the like. Due to the pitch error, when supplying a component smaller than a predetermined size, particularly a very small component, it is difficult to accurately position the component at the component suction position, which causes a suction error.
  • the pitch error from the original position of the sprocket 42 is measured in advance and stored in a memory to be described later, and the sprocket 42 is controlled to rotate according to the pitch error.
  • an origin detection mark 87a is provided on the side surface of the sprocket 42 so that the rotation of the sprocket 42 can be controlled according to the pitch error, and this origin detection mark 87a is used as the origin detection sensor 87 (see FIG. 7). ),
  • the sprocket 42 is positioned at the original position, and the sprocket 42 is rotated from the original position according to the pitch error stored in the memory.
  • the origin detection sensor 87 and origin detection mark 87a constitute origin detection means for detecting the origin position of the sprocket 42.
  • the upper cover plate 39 covering the upper part of the sprocket drive unit 41 in the feeder main body 13 has component suction positions for sucking the components of the component supply tape 12 by the suction nozzle of the component mounting machine. Opening parts 40a and 40b for part suction are formed in a staggered pattern. In the present embodiment, since a total of six component supply tapes 12 can be mounted on the feeder main body 13, a total of six component suction openings 40a and 40b are formed.
  • each rotating member 30 is assembled to the feeder main body 13 so that the sprocket 42 can move up and down with the support shaft 51 as a fulcrum, and the teeth of the sprocket 42 mesh with the sprocket holes of the component supply tape 12.
  • the sprocket 42 is configured to move up and down between the meshing position to be in a state and the retracted position where the teeth of the sprocket 42 are located below the sprocket hole.
  • Each sprocket drive unit 41 is provided with a spring 55 as a biasing means for biasing the sprocket 42 supported by the rotating member 30 upward with the support shaft 51 as a fulcrum. Thus, the sprocket 42 can be held at the meshing position which is the upper limit position.
  • Each sprocket drive unit 41 is provided with a sprocket operating motor 56 that lowers the sprocket 42 against the spring 55.
  • Cams 57 are respectively fixed to the rotation shafts of the motors 56.
  • each rotary member 30 is provided with a cam contact member 58 such as an L-shape that contacts the cam 57 from below.
  • the cam contact member 58 is pulled down against the spring 55 integrally with the rotating member 30, and the sprocket 42 is at the lower limit position. Hold in the retracted position.
  • the rotating member 30 is pushed up by the urging force of the spring 55 following the movement of the cam 57, and the meshing position which is the upper limit position. Retained.
  • Position detection dogs 61 that detect the positions of the cams 57 are provided on the rotation shafts of the motors 56, and correspondingly, the feeder body 13 has cam position sensors 62 that detect the position detection dogs 61. Each cam position sensor 62 can detect whether the sprocket 42 is in the meshing position or the retracted position.
  • the feeder main body 13 is provided with a meshing detection sensor 63 that detects that each sprocket 42 has moved up to the meshing position.
  • Each rotation member 30 is provided with a position detection dog 64 for detecting the meshing position, and the teeth of the sprocket 42 supported by any of the rotation members 30 mesh with the sprocket holes of the component supply tape 12.
  • the position detection dog 64 is detected by the meshing detection sensor 63 and a detection signal is output.
  • the mesh detection sensor 63 and the position detection dog 64 constitute mesh detection means for detecting that the sprocket 42 has been operated to the mesh position.
  • a connector 67 for connecting a signal line and a power line of the feeder body 13 to a connector 68 (see FIG. 6) of the feeder mounting table 66 of the component mounting machine is provided on the front end surface of the feeder body 13.
  • Two positioning pins 69, 70 are provided, and the two positioning pins 69, 70 are inserted into the positioning holes 71, 72 (see FIG. 6) of the feeder mounting table 66 of the component mounting machine, so that the feeder mounting table 66 is provided.
  • the attachment position of the feeder body 13 is positioned above, and the connector 67 of the feeder body 13 is inserted and connected to the connector 68 of the feeder mounting table 66.
  • a guide groove 74 having an inverted T-shaped cross section for supporting the tape feeder 11 in a vertical position is provided on the upper surface of the feeder mounting table 66, and a guide rail having an inverted T-shaped cross section provided on the lower surface side of the feeder body 13. (Not shown) is inserted into the guide groove 74 from the front side, so that the tape feeder 11 is supported in a vertically placed state on the feeder mounting table 66 and a clamp member (not shown) provided on the feeder main body 13. ) Fits into the clamp groove 79 of the feeder mounting table 66 and presses the feeder main body 13 forward (to the connector 68 side of the feeder mounting table 66) to clamp the feeder main body 13 on the feeder mounting table 66. Positioned in the front-rear direction and detachably attached.
  • a handle portion 76 is provided at the upper rear portion of the cover tape collecting case 24 of each tape supplier 21, and an unillustrated shape formed on the feeder main body 13 at the front end portion of each handle portion 76.
  • Positioning pins 77 that engage with the positioning holes are provided.
  • An identification ID 81 (see FIG. 7) is stored on the upper surface of the handle portion 76.
  • the identification ID 81 stores the identification information of the components stored in the component supply tape 12 supported by the tape supplier 21.
  • the identification ID 81 is read by a reader 82 (see FIG. 7) provided on the lower surface of the operation panel 15 of the feeder main body 13 to acquire component identification information and the like.
  • the signal of the identification ID 81 output from the reader 82 is also used as a set confirmation signal of the tape supplier 21 to the feeder main body 13.
  • the tape supplier 21 is set to the feeder main body 13. It comes to confirm.
  • the tape feeder 11 is provided with a control unit 84 for controlling the operation of the motors 44, 56, etc., and the identification ID 81 read by the reader 82 is transmitted to the control unit 84, and the control unit 84 84 to the control unit 85 of the component mounting machine via connectors 67 and 68.
  • the memory 86 of the control unit 84 of the tape feeder 11 stores an error table in which pitch errors from the original positions of the respective sprockets 42 are registered, and various pieces of information stored on the component supply tape 12. As to whether the component size stored in the component supply tape 12 is smaller or larger than a predetermined size.
  • the component size is identified based on the component information stored in the memory 86, and the sprocket 42 is rotated accordingly. To be controlled.
  • the control unit 84 of the tape feeder 11 executes a feeder control program (sprocket rotation control program) shown in FIG. 8 when setting the tape supplier 21 to the feeder body 13.
  • a feeder control program sprocket rotation control program
  • FIG. 8 a feeder control program shown in FIG. 8 when setting the tape supplier 21 to the feeder body 13.
  • the sprocket rotation motor 44 the sprocket 42 is rotated forward and backward, and the sprocket 42 is rotated until the teeth of the sprocket 42 are engaged with the sprocket holes of the component supply tape 12 and a detection signal is output from the engagement detection sensor 63.
  • the feeder control program shown in FIG. 8 is repeatedly executed for each sprocket drive unit 41 (each tape supplier 21) during the power-on period of the control unit 84 of the feeder body 13.
  • step 100 it is first determined in step 100 whether or not a tape supplier mounting work start signal has been input (whether the operator has operated the mounting work start key on the operation panel 15). If the tape supplier mounting work start signal is not input, the process waits until the tape supplier mounting work start signal is input.
  • step 100 the determination result in step 100 is YES, and the process proceeds to step 102.
  • step 102 the sprocket operating motor 56 of the sprocket drive unit 41 is operated, the rotating member 30 is rotated against the spring 55, and the sprocket 42 is lowered to the retracted position.
  • step 104 the reader 82 of the feeder main body 13 reads the identification ID of the tape supplier 21, and then, in step 106, the component supply tape 12 mounted on the tape supplier 21 is transferred to the predetermined ID based on the read identification ID. It is determined whether the component supply tape 12 stores components smaller than the size or the component supply tape 12 stores components larger than a predetermined size.
  • Step 108 If it is determined that the component supply tape 12 contains a component smaller than the predetermined size, the process proceeds to step 108, where it is determined that the component supply tape 12 stores a component larger than the predetermined size. If yes, go to Step 110.
  • step 108 the sprocket rotating motor 44 is driven to position the sprocket 42 at the origin position, and the sprocket 42 is rotated until the origin detection sensor 87 detects the origin detection mark 87a.
  • the sprocket 42 is positioned at the origin position where the specific teeth of the sprocket 42 are located at the upper end position.
  • the rotation of the sprocket 42 is controlled according to the pitch error of the teeth of the sprocket 42 in order to accurately position the component at the component suction position. Is required. For this reason, before the sprocket 42 is engaged with the sprocket hole of the component supply tape 12, the sprocket 42 is indexed to the origin position, so that the rotation of the sprocket 42 is controlled according to the pitch error. It becomes possible to position accurately.
  • step 112 the sprocket operating motor 56 is operated to rotate the rotating member 30 counterclockwise in FIG. 3 by the urging force of the spring 55, and the sprocket 42 has sprocket teeth of the component supply tape 12. Raise to the meshing position to mesh with the sprocket hole.
  • a detection signal is output from the engagement detection sensor 63, it is determined that the teeth of the sprocket 42 are engaged with the sprocket holes of the component supply tape 12.
  • the sprocket 42 rises and the teeth of the sprocket 42 do not mesh well with the sprocket holes of the component supply tape 12 and come into contact with the component supply tape 12, the sprocket 42 cannot rise to the meshing position.
  • the detection sensor 63 is also not operated. In such a case, for example, by rotating the sprocket 42 forward and backward by the sprocket rotating motor 44, the teeth of the sprocket 42 can be engaged with the sprocket holes of the component supply tape 12, and the sprocket 42 is raised to the engagement position. Is done.
  • step 114 the sprocket 42 is rotationally controlled by the motor 44 in accordance with the pitch error stored in the memory 86, and the components stored in the component supply tape 12 are sequentially supplied to the component suction position. Thereby, even a very small component can be accurately supplied to the component suction position.
  • step 110 the sprocket operating motor 56 is operated, and the rotating member 30 is rotated counterclockwise in FIG. 42 is moved up to a meshing position where the sprocket teeth mesh with the sprocket holes of the component supply tape 12.
  • the meshing detection sensor 63 detects whether the sprocket 42 is raised to the meshing position.
  • step 116 the sprocket 42 is controlled to rotate at a pitch angle (constant angle) of the sprocket teeth, and a component (a component larger than a predetermined size) stored in the component supply tape 12 is supplied to the component suction position.
  • step 118 whether or not the sprocket 42 has been indexed to the origin is determined based on the signal from the origin detection sensor 87. If the determination result is NO, the process returns to step 116 described above, and the sprocket 42 Continue constant angle rotation control. In step 118, when the origin of the sprocket 42 is detected, the process proceeds to step 114, and thereafter, the rotation of the sprocket 42 is controlled according to the pitch error.
  • the parts supply tape 12 can be immediately used without indexing the sprocket 42 to the origin position.
  • the sprocket 42 is engaged with the sprocket hole.
  • the rotation of the sprocket 42 cannot be controlled according to the pitch error of the sprocket teeth, the rotation of the sprocket 42 is inevitably controlled by a certain angle, and after the origin of the sprocket 42 is detected, the memory 86 The sprocket 42 is controlled to rotate according to the stored pitch error.
  • the sprocket 42 is engaged with the sprocket hole of the part supply tape 12 without indexing the sprocket 42 to the origin position. be able to.
  • step 106 to step 114 constitute the control unit in the claims.
  • the size of the component stored in the component supply tape 12 supported by the tape supplier 21 is larger than the predetermined size.
  • the sprocket 42 is positioned at the origin and then the sprocket 42 is operated to the meshing position, or the sprocket 42 is first operated to the meshing position, or the tape feeder is selectively controlled. 11
  • the sprocket 42 can be rotationally controlled in accordance with the pitch error of the sprocket teeth, so the components smaller than the predetermined size Can be accurately supplied to the component suction position. Accordingly, it is possible to reliably suppress occurrence of a component suction error when a small-sized component is sucked by the suction nozzle due to the positioning error due to the pitch error of the sprocket teeth.
  • the sprocket 42 is controlled to rotate by a certain angle without performing the origin detection operation of the sprocket 42.
  • the time can be shortened by the operation time for detecting the origin of the sprocket 42.
  • the rotation control of the sprocket 42 by a fixed angle is a temporary measure until the origin of the sprocket 42 is detected, and since it is a large part, positioning due to the pitch error of the sprocket teeth.
  • the effect on the error is negligible, and a component suction error hardly occurs when the component is sucked by the suction nozzle.
  • the plurality of tape suppliers 21 provided with the sprocket 42 and the operation mechanism are detachably attached to the feeder main body 13, the identification ID 81 is provided for each tape supplier 21, and the identification ID 81 is assigned to the feeder. Since the reader 82 provided on the main body 13 is configured to read, even when a plurality of tape suppliers 21 are mounted on the feeder main body 13, the identification ID 81 provided on each tape supplier 21 is read, so that the components of each tape supplier 21 are The type (size) of the parts stored in the supply tape 12 can be identified, and the control unit (steps 106 to 114) can be accurately controlled based on this.
  • the sprocket 42 when the sprocket 42 is moved to the meshing position by the operating mechanism, the teeth of the sprocket 42 are engaged with the sprocket holes of the component supply tape 12, and the sprocket 42 is operated to the meshing position. Since there is a mesh detection means comprising a mesh detection sensor 63 and a position detection dog 64 for detecting that the sprocket 42 is not meshed well with the sprocket hole of the component supply tape 12, a detection signal is received from the mesh detection means. If it cannot be obtained, the sprocket 42 and the sprocket hole of the component supply tape 12 can be reliably engaged with each other by rotating the sprocket 42 forward and backward.
  • the operating mechanism rotates the rotatable rotating member 30 so that the sprocket 42 meshes with the sprocket hole of the component supply tape 12 and the component supply.
  • the operation mechanism described in the embodiment is merely an exemplary configuration, and the configuration It is not limited to.
  • the present invention is not limited to the configurations described in the above-described embodiments, and can take various forms without departing from the gist of the present invention described in the claims. .
  • the feeder control device is suitable for use in controlling the rotation of the sprocket that meshes with the sprocket hole of the component supply tape according to the pitch error and sending the component stored in the component supply tape to the component suction position. ing.

Abstract

The purpose of the present invention is to provide a feeder control device configured such that only in cases involving components requiring supply precision are sprockets made to engage with a component supply tape after deriving starting positions of the sprockets. Accordingly, the present invention is provided with a controller which (steps (106-114)) supplies components to component suction positions. In cases when a component supply tape (12) accommodating components smaller than a prescribed size is set in a tape feeder (11), the controller supplies the components to the component suction positions by rotationally driving sprockets (42) until starting points thereof are detected by starting-point detection means (87, 87a), and subsequently maneuvering the sprockets into engagement positions. In cases when a component supply tape accommodating components larger than the prescribed size is set in the tape feeder, the controller supplies the components to the component suction positions by maneuvering the sprockets from retracted positions into the engagement positions, and subsequently rotationally driving each of the sprockets by a prescribed angle, regardless of pitch error, until the starting points of the sprockets are detected.

Description

フィーダ制御装置Feeder control device
 本発明は、スプロケットの回転によって部品供給テープに収納された部品を部品吸着位置に送るフィーダ制御装置に関するものである。 The present invention relates to a feeder control device that sends a component housed in a component supply tape to a component suction position by rotation of a sprocket.
 多数の部品を所定ピッチで収納した部品供給テープに形成したスプロケット穴にスプロケットの歯を噛合わせ、スプロケットの回転により部品供給テープに収納された部品を部品吸着位置へ送るテープフィーダとして、部品供給テープのスプロケット穴にスプロケットの歯を自動的に噛合わせるようにしたものが、例えば、特許文献1に記載されている。 Parts supply tape is used as a tape feeder that engages sprocket teeth with sprocket holes formed in a part supply tape that contains a large number of parts at a specified pitch, and sends the parts stored in the part supply tape to the parts suction position by rotating the sprocket. For example, Japanese Patent Application Laid-Open No. H10-228667 describes a sprocket that automatically meshes with the sprocket teeth.
 この種のテープフィーダにおいては、スプロケット歯にピッチ誤差が存在するため、特に、極小の部品を部品吸着位置に正確に位置決めするためには、スプロケット歯のピッチ誤差に応じてスプロケットを回転制御する必要がある。この場合、フィーダが挿入された直後は、スプロケット歯の原点が検出されていないため、スプロケット歯を原点が検出されるまで回転させ、原点位置より、スプロケット歯のピッチ誤差に応じてスプロケットを回転制御するようになっている。 In this type of tape feeder, since there is a pitch error in the sprocket teeth, it is necessary to control the rotation of the sprocket according to the pitch error of the sprocket teeth, in particular, in order to accurately position extremely small parts at the component suction position. There is. In this case, since the origin of the sprocket teeth is not detected immediately after the feeder is inserted, the sprocket teeth are rotated until the origin is detected, and the sprocket is rotated from the origin position according to the pitch error of the sprocket teeth. It is supposed to be.
特開2013-98382号公報JP 2013-98382 A
 ところで、特許文献1に記載のテープフィーダにおいては、フィーダ本体に対してテープサプライヤが着脱可能されるようになっており、テープサプライヤがフィーダ本体に装着された後、スプロケットが上昇されてスプロケット歯が部品供給テープのスプロケット穴に係合されるようになる。従って、テープサプライヤがフィーダ本体に装着された時点では、部品供給テープとスプロケットが噛合っていないので、部品供給テープとスプロケットを噛合わせる前にスプロケットの原点を検出しないと、スプロケットのピッチ誤差に応じてスプロケットを回転制御することができず、このために、特に極小の部品においては、吸着ノズルによって吸着できる位置に正確に供給することができなくなる。 By the way, in the tape feeder described in Patent Document 1, the tape supplier can be attached to and detached from the feeder main body. After the tape supplier is mounted on the feeder main body, the sprocket is raised and the sprocket teeth are moved. It is engaged with the sprocket hole of the component supply tape. Therefore, when the tape supplier is installed in the feeder body, the component supply tape and sprocket are not meshed, so if the origin of the sprocket is not detected before the component supply tape and sprocket are meshed, Therefore, the rotation of the sprocket cannot be controlled. For this reason, particularly in the case of extremely small parts, the sprocket cannot be accurately supplied to a position where it can be sucked by the suction nozzle.
 しかしながら、部品供給テープとスプロケットを噛合わせるに際し、その度に、スプロケットを原点に割出すようにしていたのでは、部品供給テープに収納された最初の部品を部品吸着位置に送るまでに時間がかかってしまい、効率的な部品実装を行えなくなる問題がある。 However, if the sprocket is indexed to the origin each time the component supply tape and the sprocket are engaged, it takes time to send the first component stored in the component supply tape to the component suction position. As a result, there is a problem that efficient component mounting cannot be performed.
 本発明は、上記した課題を解決するためになされたもので、送り精度が必要な部品のみ、スプロケットを原点に割出した後スプロケットと部品供給テープとを噛合わせるようにしたフィーダ制御装置を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and provides a feeder control device in which only a component that requires feeding accuracy is indexed with the sprocket at the origin and the sprocket and the component supply tape are meshed with each other. It is intended to do.
 上記の課題を解決するため、請求項1に係る発明の特徴は、多数の部品を所定ピッチで収納した部品供給テープに形成したスプロケット穴にスプロケットの歯を噛合わせ、該スプロケットの回転により前記部品供給テープに収納された部品を部品吸着位置へ送るテープフィーダを備え、前記スプロケットを、前記歯が前記部品供給テープのスプロケット穴に噛合う噛合位置と、前記歯が前記部品供給テープのスプロケット穴よりも下方に位置する退避位置との間で作動させる作動機構と、前記スプロケットの原点位置からの前記歯のピッチ誤差を記憶するピッチ誤差記憶手段と、前記スプロケットを前記ピッチ誤差に応じて回転制御する回転制御手段と、前記スプロケットの前記原点位置を検出する原点検出手段と、前記テープフィーダに所定のサイズよりも小さな部品を収納した前記部品供給テープがセットされた場合には、前記スプロケットを前記噛合位置に作動させる前に前記原点検出手段によって原点が検出されるまで前記スプロケットを回転し、前記テープフィーダに所定のサイズよりも大きな部品を収納した前記部品供給テープがセットされた場合には、前記スプロケットを前記退避位置から前記噛合位置に作動させ、その後、前記スプロケットの原点が検出されるまで前記スプロケットを前記ピッチ誤差に拘らず所定角度ずつ回転して前記部品を前記部品吸着位置へ送る制御部とを備えたフィーダ制御装置である。 In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that the sprocket teeth are meshed with sprocket holes formed in a component supply tape in which a large number of components are stored at a predetermined pitch, and the sprocket rotates to rotate the components. A tape feeder for sending a component housed in a supply tape to a component suction position, the sprocket being engaged with a sprocket hole of the component supply tape, and the tooth being inserted from a sprocket hole of the component supply tape; An operating mechanism that operates between a retraction position positioned below, a pitch error storage means that stores a pitch error of the teeth from the origin position of the sprocket, and rotation control of the sprocket according to the pitch error Rotation control means, origin detection means for detecting the origin position of the sprocket, and tape feeder When the component supply tape containing components smaller than a predetermined size is set, the sprocket is rotated until the origin is detected by the origin detection means before operating the sprocket to the meshing position, When the component supply tape storing a component larger than a predetermined size is set in the tape feeder, the sprocket is operated from the retracted position to the meshing position, and then the origin of the sprocket is detected. And a control unit that rotates the sprocket by a predetermined angle regardless of the pitch error and sends the component to the component suction position.
 請求項2に係る発明の特徴は、前記テープフィーダに識別IDを設け、該識別IDに基づいて、前記テープフィーダに所定のサイズよりも小さな部品を収納した前記部品供給テープがセットされたか、所定のサイズよりも大きな部品を収納した前記部品供給テープがセットされたかを判別できるようにした請求項1に記載のフィーダ制御装置である。 The invention according to claim 2 is characterized in that an identification ID is provided on the tape feeder, and based on the identification ID, whether or not the component supply tape containing a component smaller than a predetermined size is set in the tape feeder The feeder control device according to claim 1, wherein it is possible to determine whether or not the component supply tape storing a component larger than the size of is set.
 請求項3に係る発明の特徴は、前記スプロケットおよび前記作動機構を設けたテープサプライヤを前記フィーダ本体に着脱可能に装着し、前記テープサプライヤに前記識別IDを設け、該識別IDを、前記フィーダ本体に設けたリーダによって読み取る請求項2に記載のフィーダ制御装置である。 The invention according to claim 3 is characterized in that a tape supplier provided with the sprocket and the operating mechanism is detachably attached to the feeder body, the identification ID is provided to the tape supplier, and the identification ID is assigned to the feeder body. The feeder control device according to claim 2, which is read by a reader provided on the feeder.
 請求項4に係る発明の特徴は、前記テープフィーダに所定のサイズよりも大きな部品を収納した前記部品供給テープがセットされた場合、前記スプロケットの原点が検出されるまで前記スプロケットが前記ピッチ誤差に拘らず所定角度ずつ回転されて前記部品を前記部品吸着位置へ送り、原点が検出された後は、前記スプロケットを前記ピッチ誤差に応じて回転制御する回転制御手段を備えた請求項1ないし請求項3のいずれか1項に記載のフィーダ制御装置である。 A feature of the invention according to claim 4 is that, when the component supply tape storing a component larger than a predetermined size is set in the tape feeder, the sprocket causes the pitch error until the origin of the sprocket is detected. Regardless of rotation, a rotation control means is provided for rotating the sprocket according to the pitch error after the component is rotated by a predetermined angle to send the component to the component suction position and the origin is detected. 4. The feeder control device according to claim 1.
 請求項5に係る発明の特徴は、前記作動機構によって前記スプロケットを前記噛合位置へ作動させる際に、前記スプロケットの歯が前記部品供給テープの前記スプロケット穴に係合して、前記スプロケットが前記噛合位置まで作動したことを検出する噛合検出手段を備えている請求項1ないし請求項3のいずれか1項に記載のフィーダ制御装置である。 According to a fifth aspect of the present invention, when the sprocket is operated to the meshing position by the operating mechanism, teeth of the sprocket are engaged with the sprocket holes of the component supply tape, and the sprocket is meshed. The feeder control device according to any one of claims 1 to 3, further comprising a meshing detection unit that detects that the actuator has been operated to a position.
 請求項1に係る発明によれば、テープフィーダに所定のサイズよりも小さな部品を収納した部品供給テープがセットされた場合には、スプロケットを噛合位置に作動させる前に原点検出手段によって原点が検出されるまでスプロケットを回転し、テープフィーダに所定のサイズよりも大きな部品を収納した部品供給テープがセットされた場合には、スプロケットを退避位置から噛合位置に作動させ、その後、スプロケットの原点が検出されるまでスプロケットをピッチ誤差に拘らず所定角度ずつ回転して部品を部品吸着位置へ送る制御部を備える。 According to the first aspect of the present invention, when a component supply tape containing components smaller than a predetermined size is set in the tape feeder, the origin is detected by the origin detection means before the sprocket is operated to the meshing position. Rotate the sprocket until it is in place, and when a parts supply tape that contains parts larger than the specified size is set in the tape feeder, move the sprocket from the retracted position to the meshing position, and then detect the sprocket origin A control unit that rotates the sprocket by a predetermined angle regardless of the pitch error and sends the component to the component pick-up position.
 これにより、送り精度がそれほど要求されない所定のサイズよりも大きな部品を収納した部品供給テープがセットされた場合には、スプロケットを原点に割出すことなく、スプロケットを退避位置から噛合位置に作動させ、スプロケットをピッチ誤差に拘らず所定角度ずつ回転駆動して部品を部品吸着位置へ送ることができるので、部品供給テープに収納された最初の部品を部品吸着位置に送るまでの時間を短縮することができ、部品実装作業を効率的に行うことができる。 Thus, when a component supply tape containing a component larger than a predetermined size that does not require much feed accuracy is set, the sprocket is operated from the retracted position to the meshing position without indexing the sprocket to the origin, The sprocket can be rotated by a predetermined angle regardless of the pitch error to send the component to the component pick-up position, so the time to send the first component stored in the component supply tape to the component pick-up position can be shortened And component mounting work can be performed efficiently.
 請求項2に係る発明によれば、テープフィーダに識別IDを設け、識別IDに基づいて、テープフィーダに所定のサイズよりも小さな部品を収納した部品供給テープがセットされたか、所定のサイズよりも大きな部品を収納した部品供給テープがセットされたかを判別できるようにしたので、テープフィーダに設けた識別IDに基づいて、部品供給テープに収納した部品の種類(サイズ)を識別することができ、これに基づいて制御手段を的確に制御することができる。 According to the invention of claim 2, the tape feeder is provided with an identification ID, and based on the identification ID, a component supply tape containing a component smaller than the predetermined size is set in the tape feeder or is smaller than the predetermined size. Since it was possible to determine whether a component supply tape containing a large component was set, the type (size) of the component stored in the component supply tape can be identified based on the identification ID provided in the tape feeder, Based on this, the control means can be accurately controlled.
 請求項3に係る発明によれば、スプロケットおよび作動機構を設けたテープサプライヤをフィーダ本体に着脱可能に装着し、テープサプライヤに識別IDを設け、識別IDを、フィーダ本体に設けたリーダによって読み取るので、複数のテープサプライヤをフィーダ本体に装着した場合でも、各テープサプライヤに設けた識別IDを読み取ることにより、各テープサプライヤの部品供給テープに収納した部品の種類(サイズ)を識別することができる。 According to the invention of claim 3, since the tape supplier provided with the sprocket and the operating mechanism is detachably attached to the feeder body, the identification ID is provided to the tape supplier, and the identification ID is read by the reader provided on the feeder body. Even when a plurality of tape suppliers are mounted on the feeder main body, the type (size) of the component stored in the component supply tape of each tape supplier can be identified by reading the identification ID provided on each tape supplier.
 請求項4に係る発明によれば、テープフィーダに所定のサイズよりも大きな部品を収納した部品供給テープがセットされた場合、スプロケットの原点が検出されるまでスプロケットがピッチ誤差に拘らず所定角度ずつ回転されて部品を部品吸着位置へ送り、原点が検出された後は、スプロケットをピッチ誤差に応じて回転制御する回転制御手段を備えたので、部品供給テープのスプロケット穴にスプロケットを噛合させた後、スプロケットの原点が検出された後は、スプロケットをピッチ誤差に応じて回転制御することができる。 According to the fourth aspect of the present invention, when a component supply tape containing a component larger than a predetermined size is set in the tape feeder, the sprocket is set at a predetermined angle regardless of the pitch error until the origin of the sprocket is detected. After rotating and sending the component to the component pick-up position and detecting the origin, it has rotation control means to control the rotation of the sprocket according to the pitch error, so that the sprocket is engaged with the sprocket hole of the component supply tape After the sprocket origin is detected, the rotation of the sprocket can be controlled according to the pitch error.
 請求項5に係る発明によれば、作動機構によってスプロケットを噛合位置へ作動させる際に、スプロケットの歯が部品供給テープのスプロケット穴に係合して、スプロケットが噛合位置まで作動したことを検出する噛合検出手段を備えているので、スプロケットの歯が部品供給テープのスプロケット穴にうまく噛合せず、噛合検出手段より検出信号が得られない場合には、スプロケットを正逆回転させるなどして、スプロケットの歯と部品供給テープのスプロケット穴とを確実に噛合させることができる。 According to the fifth aspect of the invention, when the sprocket is operated to the meshing position by the operating mechanism, it is detected that the sprocket teeth are engaged with the sprocket holes of the component supply tape and the sprocket is operated to the meshing position. Since the mesh detection means is provided, if the sprocket teeth do not mesh well with the sprocket holes in the component supply tape and no detection signal is obtained from the mesh detection means, the sprocket is rotated forward and backward, etc. Can be reliably meshed with the sprocket holes of the component supply tape.
本発明の実施の形態を示すテープフィーダの全体斜視図である。It is the whole tape feeder perspective view showing an embodiment of the invention. テープフィーダに装着されるテープサプライヤの斜視図である。It is a perspective view of the tape supplier with which a tape feeder is mounted | worn. スプロケット駆動ユニットの取付構造を示す斜視図である。It is a perspective view which shows the attachment structure of a sprocket drive unit. スプロケットを回転する駆動装置の構成を示す右側面図である。It is a right view which shows the structure of the drive device which rotates a sprocket. スプロケットを回転する駆動装置の構成を示す左側面図である。It is a left view which shows the structure of the drive device which rotates a sprocket. 部品実装機のフィーダ載置台の斜視図である。It is a perspective view of the feeder mounting base of a component mounting machine. テープフィーダを制御する制御装置のブロック図である。It is a block diagram of the control apparatus which controls a tape feeder. テープフィーダの制御動作を示すフローチャートである。It is a flowchart which shows the control operation of a tape feeder.
 以下本発明の実施の形態を図面に基づいて説明する。図1に示すテープフィーダ11は、図略の吸着ノズルによって部品を吸着する部品吸着位置に部品を供給するもので、複数本の部品供給テープ12をその横幅方向に並べてセットできるように、フィーダ本体13の横幅が従来の一般的なテープフィーダ(部品供給テープを1本のみセット可能なテープフィーダ)の横幅より大きく構成されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The tape feeder 11 shown in FIG. 1 supplies components to a component suction position where components are sucked by a suction nozzle (not shown), and the feeder main body is arranged so that a plurality of component supply tapes 12 can be set in the horizontal width direction. The width 13 is configured to be larger than the width of a conventional general tape feeder (tape feeder capable of setting only one component supply tape).
 部品供給テープ12は、詳細には図示しないが、キャリアテープに所定ピッチで一列に形成された部品収納凹部に部品を収納して、キャリアテープの上面にトップテープ(カバーテープ)を貼着したものである。部品供給テープ12の幅方向の一端には、部品供給テープ12の長手方向に沿ってスプロケット穴(図示せず)が一定のピッチで形成されており、スプロケット穴に噛合する後述するスプロケットの回転により、部品供給テープ12が送られるようになっている。  The component supply tape 12 is not shown in detail, but the components are stored in the component storage recesses formed in a line at a predetermined pitch on the carrier tape, and the top tape (cover tape) is adhered to the upper surface of the carrier tape. It is. At one end in the width direction of the component supply tape 12, sprocket holes (not shown) are formed at a constant pitch along the longitudinal direction of the component supply tape 12, and by rotation of a sprocket described later that meshes with the sprocket holes. The component supply tape 12 is sent.
 フィーダ本体13の後部側(取り外し方向側)の上部には、取手部14と操作パネル15とが設けられ、その下側には、部品供給テープ12を巻回したテープリール16を収納するリールホルダ17が設けられている。リールホルダ17は、複数のテープリール16を前後2列に並べて収納するように形成され、各テープリール16が部品供給テープ12の引き出しに伴ってリールホルダ17内で回転できるように収納されている。操作パネル15には、後述する各テープサプライヤ21毎に、テープサプライヤ装着作業開始信号等の各種操作信号を入力する操作キー等が設けられている。 A handle 14 and an operation panel 15 are provided at the upper part of the rear side (removal direction side) of the feeder main body 13, and a reel holder for storing a tape reel 16 around which the component supply tape 12 is wound. 17 is provided. The reel holder 17 is formed so as to store a plurality of tape reels 16 arranged in two rows in the front and rear, and is stored so that each tape reel 16 can be rotated in the reel holder 17 as the component supply tape 12 is pulled out. . The operation panel 15 is provided with operation keys and the like for inputting various operation signals such as a tape supplier mounting work start signal for each tape supplier 21 described later.
 各テープリール16から引き出された部品供給テープ12は、後述する各テープサプライヤ21によって部品吸着位置へ供給される。各テープサプライヤ21は、フィーダ本体13に着脱可能に装着され、各テープサプライヤ21にそれぞれ部品供給テープ12を1本のみセットするように、各テープサプライヤ21の横幅が部品供給テープ12の横幅よりも僅かに大きい寸法に形成されている。 The component supply tape 12 drawn from each tape reel 16 is supplied to a component suction position by each tape supplier 21 described later. Each tape supplier 21 is detachably attached to the feeder body 13, and the width of each tape supplier 21 is larger than the width of the component supply tape 12 so that only one component supply tape 12 is set in each tape supplier 21. Slightly larger dimensions are formed.
 図2に示すように、各テープサプライヤ21の後端部には、フィーダ本体13から取り外したテープサプライヤ21にテープリール16を保持させるためのリール引掛部22が設けられ、このリール引掛部22にテープリール16を引っ掛けて保持できるようになっている。 As shown in FIG. 2, a reel hooking portion 22 for holding the tape reel 16 on the tape supplier 21 removed from the feeder body 13 is provided at the rear end portion of each tape supplier 21. The tape reel 16 can be hooked and held.
 テープサプライヤ21には、部品供給テープ12の上面を覆うカバーテープを引き剥がすカバーテープ剥離装置23と、部品供給テープ12から引き剥がしたカバーテープを回収するカバーテープ回収ケース24とが設けられている。カバーテープ剥離装置23は、剥離ローラ25と、テンションローラ26と、一対のカバーテープ送りギヤ28,29とを備え、剥離ローラ25で剥離されたカバーテープがテンションローラ26に掛け渡されてカバーテープ送りギヤ28,29間に挟み込まれてカバーテープ回収ケース24内に送り込まれるようになっている。 The tape supplier 21 is provided with a cover tape peeling device 23 that peels off the cover tape that covers the upper surface of the component supply tape 12, and a cover tape collection case 24 that collects the cover tape peeled off from the component supply tape 12. . The cover tape peeling device 23 includes a peeling roller 25, a tension roller 26, and a pair of cover tape feed gears 28, 29. The cover tape peeled off by the peeling roller 25 is passed over the tension roller 26 and covered with the cover tape. It is sandwiched between the feed gears 28 and 29 and fed into the cover tape collecting case 24.
 図1に示すように、カバーテープ送りギヤ28,29の駆動源としてのカバーテープ送り用モータ33が、フィーダ本体13側に設けられ、テープサプライヤ21をフィーダ本体13に装着したときに、モータ33によって駆動される駆動ギヤ34に一方のカバーテープ送りギヤ28が噛み合うことで、両カバーテープ送りギヤ28,29が回転駆動されるようになっている。 As shown in FIG. 1, a cover tape feed motor 33 as a drive source for the cover tape feed gears 28 and 29 is provided on the feeder main body 13 side, and the motor 33 is mounted when the tape supplier 21 is mounted on the feeder main body 13. The one cover tape feed gear 28 meshes with the drive gear 34 that is driven by the two, so that both cover tape feed gears 28 and 29 are rotationally driven.
 テープサプライヤ21には、図2に示すように、部品供給テープ12の幅方向の片側のみを保持する複数の横コ字型のテープ保持部37,38が部品供給テープ12の幅方向の一方側と他方側に交互に千鳥状に配置され、部品供給テープ12を僅かに幅方向に蛇行させながら部品供給テープ12を保持するように各テープ保持部37,38を部品供給テープ12の幅方向内側に少しずつ寄せて配置することで、より少ない幅で部品供給テープ12を保持できるようになっている。 As shown in FIG. 2, the tape supplier 21 has a plurality of horizontal U-shaped tape holding portions 37 and 38 that hold only one side in the width direction of the component supply tape 12 on one side in the width direction of the component supply tape 12. Are alternately arranged in a staggered manner on the other side, and the tape holding portions 37 and 38 are arranged inward in the width direction of the component supply tape 12 so as to hold the component supply tape 12 while meandering the component supply tape 12 slightly in the width direction. The component supply tape 12 can be held with a smaller width by being arranged little by little.
 フィーダ本体13の先端部側には、フィーダ本体13にセット可能な部品供給テープ12の本数と同数のスプロケット駆動ユニット41が幅方向に並べて組み付けられている。各スプロケット駆動ユニット41は、図3および図4に示すように、支持軸51を中心して回動可能な回動部材30と、回動部材30に回転可能に支持されたスプロケット42と、回動部材30に設置され、スプロケット42を平歯車列43を介して駆動するスプロケット回転用モータ44等によって構成され、回動部材30の回動によりスプロケット42が上下方向に作動されるようになっている。 The same number of sprocket drive units 41 as the number of component supply tapes 12 that can be set on the feeder main body 13 are arranged side by side in the width direction on the distal end side of the feeder main body 13. As shown in FIGS. 3 and 4, each sprocket drive unit 41 includes a rotating member 30 that can rotate about a support shaft 51, a sprocket 42 that is rotatably supported by the rotating member 30, The sprocket 42 is installed on the member 30 and is configured by a sprocket rotating motor 44 or the like that drives the sprocket 42 via a spur gear train 43. The sprocket 42 is operated in the vertical direction by the rotation of the rotating member 30. .
 各スプロケット42は、フィーダ本体13にセットされた各部品供給テープ12に対応する位置に配置され、各部品供給テープ12のスプロケット穴にスプロケット42の歯を噛合わせ、スプロケット42の回転により部品供給テープ12を部品吸着位置へ向かってピッチ送りするようになっている。 Each sprocket 42 is disposed at a position corresponding to each component supply tape 12 set in the feeder main body 13, and the teeth of the sprocket 42 are meshed with the sprocket holes of each component supply tape 12, and the component supply tape is rotated by the rotation of the sprocket 42. 12 is pitch-fed toward the component suction position.
 各スプロケット42には、円周上に複数のスプロケット歯が等角度間隔に形成されているが、各スプロケット歯の間には加工誤差等によりピッチ誤差が発生している。かかるピッチ誤差により、所定のサイズよりも小さな部品、特に、極小の部品を供給する場合には、部品を部品吸着位置に精度よく位置決めすることが難しくなり、吸着ミスを発生する要因となる。 Each sprocket 42 has a plurality of sprocket teeth formed at equal angular intervals on the circumference, but a pitch error is generated between each sprocket tooth due to a processing error or the like. Due to the pitch error, when supplying a component smaller than a predetermined size, particularly a very small component, it is difficult to accurately position the component at the component suction position, which causes a suction error.
 このために、スプロケット42の原位置からのピッチ誤差を予め測定して後述するメモリに記憶し、スプロケット42をピッチ誤差に応じて回転制御するようになっている。そして、ピッチ誤差に応じてスプロケット42を回転制御できるように、図4に示すように、スプロケット42の側面に原点検出マーク87aを付与し、この原点検出マーク87aを原点検出センサ87(図7参照)によって検出することにより、スプロケット42を原位置に位置決めし、その原位置から、メモリに記憶されたピッチ誤差に応じてスプロケット42を回転するように構成されている。かかる原点検出センサ87および原点検出マーク87aにより、スプロケット42の原点位置を検出する原点検出手段を構成している。 For this purpose, the pitch error from the original position of the sprocket 42 is measured in advance and stored in a memory to be described later, and the sprocket 42 is controlled to rotate according to the pitch error. As shown in FIG. 4, an origin detection mark 87a is provided on the side surface of the sprocket 42 so that the rotation of the sprocket 42 can be controlled according to the pitch error, and this origin detection mark 87a is used as the origin detection sensor 87 (see FIG. 7). ), The sprocket 42 is positioned at the original position, and the sprocket 42 is rotated from the original position according to the pitch error stored in the memory. The origin detection sensor 87 and origin detection mark 87a constitute origin detection means for detecting the origin position of the sprocket 42.
 図1に示すように、フィーダ本体13のうちのスプロケット駆動ユニット41の上方を覆う上部カバープレート39には、部品実装機の吸着ノズルで部品供給テープ12の部品を吸着するための部品吸着位置を開口する部品吸着用開口部40a,40bが千鳥状に形成されている。本実施例では、フィーダ本体13に合計6本の部品供給テープ12を装着可能であるため、部品吸着用開口部40a,40bは、合計6個形成されている。 As shown in FIG. 1, the upper cover plate 39 covering the upper part of the sprocket drive unit 41 in the feeder main body 13 has component suction positions for sucking the components of the component supply tape 12 by the suction nozzle of the component mounting machine. Opening parts 40a and 40b for part suction are formed in a staggered pattern. In the present embodiment, since a total of six component supply tapes 12 can be mounted on the feeder main body 13, a total of six component suction openings 40a and 40b are formed.
 次に、各スプロケット駆動ユニット41の回動部材30をそれぞれ独立して作動させる作動機構の構成について説明する。 Next, a description will be given of the configuration of an operating mechanism that operates each rotating member 30 of each sprocket drive unit 41 independently.
 図3に示すように、各回動部材30が、フィーダ本体13に支持軸51を支点にしてスプロケット42が上下動できるように組み付けられ、スプロケット42の歯が部品供給テープ12のスプロケット穴に噛み合った状態となる噛合位置と、スプロケット42の歯がスプロケット穴よりも下方に位置する退避位置との間を上下動するように構成されている。 As shown in FIG. 3, each rotating member 30 is assembled to the feeder main body 13 so that the sprocket 42 can move up and down with the support shaft 51 as a fulcrum, and the teeth of the sprocket 42 mesh with the sprocket holes of the component supply tape 12. The sprocket 42 is configured to move up and down between the meshing position to be in a state and the retracted position where the teeth of the sprocket 42 are located below the sprocket hole.
 各スプロケット駆動ユニット41には、それぞれ、支持軸51を支点にして回動部材30に支持されたスプロケット42を上方へ付勢する付勢手段としてのスプリング55が設けられ、このスプリング55の付勢力によりスプロケット42を上限位置である噛合位置に保持できるようになっている。各スプロケット駆動ユニット41には、それぞれ、スプロケット42をスプリング55に抗して下降させるスプロケット作動用モータ56が設けられている。 Each sprocket drive unit 41 is provided with a spring 55 as a biasing means for biasing the sprocket 42 supported by the rotating member 30 upward with the support shaft 51 as a fulcrum. Thus, the sprocket 42 can be held at the meshing position which is the upper limit position. Each sprocket drive unit 41 is provided with a sprocket operating motor 56 that lowers the sprocket 42 against the spring 55.
 各モータ56の回転軸には、それぞれカム57が固定され、これに対応して、各回動部材30には、それぞれカム57にその下側から当接するL字形等のカム当接部材58が設けられ、モータ56を回転させてカム57を最下位置まで回転させると、カム当接部材58が回動部材30と一体的にスプリング55に抗して引き下げられて、スプロケット42が下限位置である退避位置に保持される。その後、モータ56を元の位置まで回転させてカム57を最上位置まで戻すと、そのカム57の動きに追従してスプリング55の付勢力により回動部材30が押し上げられて上限位置である噛合位置に保持される。 Cams 57 are respectively fixed to the rotation shafts of the motors 56. Correspondingly, each rotary member 30 is provided with a cam contact member 58 such as an L-shape that contacts the cam 57 from below. When the motor 56 is rotated to rotate the cam 57 to the lowest position, the cam contact member 58 is pulled down against the spring 55 integrally with the rotating member 30, and the sprocket 42 is at the lower limit position. Hold in the retracted position. Thereafter, when the motor 56 is rotated to the original position and the cam 57 is returned to the uppermost position, the rotating member 30 is pushed up by the urging force of the spring 55 following the movement of the cam 57, and the meshing position which is the upper limit position. Retained.
 各モータ56の回転軸には、それぞれカム57の位置を検出する位置検出ドッグ61が設けられ、これに対応して、フィーダ本体13には、各位置検出ドッグ61を検出するカム位置センサ62が設けられ、各カム位置センサ62によって、スプロケット42が噛合位置にあるか、退避位置にあるかを検出できるようになっている。 Position detection dogs 61 that detect the positions of the cams 57 are provided on the rotation shafts of the motors 56, and correspondingly, the feeder body 13 has cam position sensors 62 that detect the position detection dogs 61. Each cam position sensor 62 can detect whether the sprocket 42 is in the meshing position or the retracted position.
 フィーダ本体13には、図5に示すように、各スプロケット42が噛合位置まで上昇したことを検出する噛合検出センサ63が設けられている。各回動部材30には、それぞれ噛合位置を検出するための位置検出ドッグ64が設けられ、いずれかの回動部材30に支持されたスプロケット42の歯が部品供給テープ12のスプロケット穴に噛み合ってスプロケット42が噛合位置まで上昇した状態となると、位置検出ドッグ64が噛合検出センサ63で検出されて検出信号が出力されるようになっている。かかる噛合検出センサ63と位置検出ドッグ64により、スプロケット42が噛合位置まで作動したことを検出する噛合検出手段を構成している。 As shown in FIG. 5, the feeder main body 13 is provided with a meshing detection sensor 63 that detects that each sprocket 42 has moved up to the meshing position. Each rotation member 30 is provided with a position detection dog 64 for detecting the meshing position, and the teeth of the sprocket 42 supported by any of the rotation members 30 mesh with the sprocket holes of the component supply tape 12. When 42 is raised to the meshing position, the position detection dog 64 is detected by the meshing detection sensor 63 and a detection signal is output. The mesh detection sensor 63 and the position detection dog 64 constitute mesh detection means for detecting that the sprocket 42 has been operated to the mesh position.
 フィーダ本体13の先端面には、図3に示すように、フィーダ本体13の信号線や電源線を部品実装機のフィーダ載置台66のコネクタ68(図6参照)に接続するためのコネクタ67と、2本の位置決めピン69,70が設けられ、2本の位置決めピン69,70を部品実装機のフィーダ載置台66の位置決め穴71,72(図6参照)に差し込むことで、フィーダ載置台66上でフィーダ本体13の取付位置が位置決めされるとともに、フィーダ本体13のコネクタ67がフィーダ載置台66のコネクタ68に差し込み接続される。 As shown in FIG. 3, a connector 67 for connecting a signal line and a power line of the feeder body 13 to a connector 68 (see FIG. 6) of the feeder mounting table 66 of the component mounting machine is provided on the front end surface of the feeder body 13. Two positioning pins 69, 70 are provided, and the two positioning pins 69, 70 are inserted into the positioning holes 71, 72 (see FIG. 6) of the feeder mounting table 66 of the component mounting machine, so that the feeder mounting table 66 is provided. The attachment position of the feeder body 13 is positioned above, and the connector 67 of the feeder body 13 is inserted and connected to the connector 68 of the feeder mounting table 66.
 フィーダ載置台66の上面には、テープフィーダ11を縦置き支持するための断面逆T字溝形のガイド溝74が設けられ、フィーダ本体13の下面側に設けられた断面逆T字形のガイドレール(図示せず)を手前側からガイド溝74に差し込むことで、フィーダ載置台66上にテープフィーダ11が縦置き状態に支持されると共に、該フィーダ本体13に設けられたクランプ部材(図示せず)がフィーダ載置台66のクランプ溝79に嵌まり込んで該フィーダ本体13を前方(フィーダ載置台66のコネクタ68側)へ押し付けてクランプすることで、該フィーダ本体13をフィーダ載置台66上に前後方向に位置決めして着脱可能に取り付けるようになっている。 A guide groove 74 having an inverted T-shaped cross section for supporting the tape feeder 11 in a vertical position is provided on the upper surface of the feeder mounting table 66, and a guide rail having an inverted T-shaped cross section provided on the lower surface side of the feeder body 13. (Not shown) is inserted into the guide groove 74 from the front side, so that the tape feeder 11 is supported in a vertically placed state on the feeder mounting table 66 and a clamp member (not shown) provided on the feeder main body 13. ) Fits into the clamp groove 79 of the feeder mounting table 66 and presses the feeder main body 13 forward (to the connector 68 side of the feeder mounting table 66) to clamp the feeder main body 13 on the feeder mounting table 66. Positioned in the front-rear direction and detachably attached.
 各テープサプライヤ21のカバーテープ回収ケース24の上端後部には、図2に示すように、それぞれ取手部76が設けられ、各取手部76の前端部に、フィーダ本体13に形成された図略の位置決め穴に係合する位置決めピン77が設けられている。テープサプライヤ21をフィーダ本体13にセットする際に、取手部76の位置決めピン77を図略の位置決め穴に差し込むことで、フィーダ本体13に対してテープサプライヤ21が位置決めされるようになっている。 As shown in FIG. 2, a handle portion 76 is provided at the upper rear portion of the cover tape collecting case 24 of each tape supplier 21, and an unillustrated shape formed on the feeder main body 13 at the front end portion of each handle portion 76. Positioning pins 77 that engage with the positioning holes are provided. When the tape supplier 21 is set in the feeder main body 13, the tape supplier 21 is positioned with respect to the feeder main body 13 by inserting the positioning pin 77 of the handle portion 76 into a positioning hole (not shown).
 取手部76の上面には、テープサプライヤ21に支持された部品供給テープ12に収納された部品の識別情報等を記憶した識別ID81(図7参照)が取り付けられている。この識別ID81は、フィーダ本体13の操作パネル15の下面に設けられたリーダ82(図7参照)によって読み取られ、部品の識別情報等を取得するようになっている。 An identification ID 81 (see FIG. 7) is stored on the upper surface of the handle portion 76. The identification ID 81 stores the identification information of the components stored in the component supply tape 12 supported by the tape supplier 21. The identification ID 81 is read by a reader 82 (see FIG. 7) provided on the lower surface of the operation panel 15 of the feeder main body 13 to acquire component identification information and the like.
 リーダ82から出力される識別ID81の信号は、フィーダ本体13へのテープサプライヤ21のセット確認信号としても兼用され、リーダ82で識別ID81を読み取ることで、フィーダ本体13へのテープサプライヤ21のセットを確認するようになっている。 The signal of the identification ID 81 output from the reader 82 is also used as a set confirmation signal of the tape supplier 21 to the feeder main body 13. By reading the identification ID 81 by the reader 82, the tape supplier 21 is set to the feeder main body 13. It comes to confirm.
 また、図7に示すように、テープフィーダ11には、各モータ44,56等の動作を制御する制御ユニット84が設けられ、リーダ82で読み取った識別ID81が制御ユニット84に送信され、制御ユニット84からコネクタ67,68を経由して部品実装機の制御ユニット85に送信される。テープフィーダ11の制御ユニット84のメモリ86には、上記した各スプロケット42の原位置からのピッチ誤差を登録した誤差テーブルや、部品供給テープ12に収納された部品の各種情報が記憶され、部品情報として、部品供給テープ12に収納された部品サイズが、所定のサイズよりも小さいか大きいかが併せて記憶されている。 Further, as shown in FIG. 7, the tape feeder 11 is provided with a control unit 84 for controlling the operation of the motors 44, 56, etc., and the identification ID 81 read by the reader 82 is transmitted to the control unit 84, and the control unit 84 84 to the control unit 85 of the component mounting machine via connectors 67 and 68. The memory 86 of the control unit 84 of the tape feeder 11 stores an error table in which pitch errors from the original positions of the respective sprockets 42 are registered, and various pieces of information stored on the component supply tape 12. As to whether the component size stored in the component supply tape 12 is smaller or larger than a predetermined size.
 そして、部品供給テープ12を支持したテープサプライヤ21がフィーダ本体13にセットされた際に、メモリ86に記憶された部品情報に基づいて、部品サイズが識別され、それに応じて、スプロケット42の回転が制御されるようになっている。 When the tape supplier 21 supporting the component supply tape 12 is set in the feeder body 13, the component size is identified based on the component information stored in the memory 86, and the sprocket 42 is rotated accordingly. To be controlled.
 テープフィーダ11の制御ユニット84は、フィーダ本体13にテープサプライヤ21をセットする際に、図8に示すフィーダ制御プログラム(スプロケット回転制御プログラム)を実行するようになっている。これによって、スプロケット42を自動的に退避位置へ下降させて部品供給テープ12をスプロケット42の上方にセットし、しかる後、スプロケット42を噛合位置へ上昇させるようにスプロケット作動用モータ56を制御する。 The control unit 84 of the tape feeder 11 executes a feeder control program (sprocket rotation control program) shown in FIG. 8 when setting the tape supplier 21 to the feeder body 13. As a result, the sprocket 42 is automatically lowered to the retracted position, the component supply tape 12 is set above the sprocket 42, and then the sprocket operating motor 56 is controlled to raise the sprocket 42 to the meshing position.
 この場合、スプロケット42を噛合位置へ上昇させる制御を行っても、スプロケット42の歯が部品供給テープ12のスプロケット穴に噛み合わず、噛合検出センサ63から検出信号が出力されないときは、スプロケット回転用モータ44によりスプロケット42を正逆回動させ、スプロケット42の歯が部品供給テープ12のスプロケット穴に噛合って噛合検出センサ63から検出信号が出力されるまでスプロケット42を回転させる。 In this case, if the sprocket 42 teeth do not mesh with the sprocket holes of the component supply tape 12 even if the control for raising the sprocket 42 to the meshing position is performed and the detection signal is not output from the meshing detection sensor 63, the sprocket rotation motor 44, the sprocket 42 is rotated forward and backward, and the sprocket 42 is rotated until the teeth of the sprocket 42 are engaged with the sprocket holes of the component supply tape 12 and a detection signal is output from the engagement detection sensor 63.
 以下、フィーダ本体13の制御ユニット84によって実行するフィーダ制御プログラムの処理内容を図8に基づいて説明する。図8に示すフィーダ制御プログラムは、フィーダ本体13の制御ユニット84の電源オン期間中に、各スプロケット駆動ユニット41毎(各テープサプライヤ21毎)に繰り返し実行される。 Hereinafter, the processing content of the feeder control program executed by the control unit 84 of the feeder body 13 will be described with reference to FIG. The feeder control program shown in FIG. 8 is repeatedly executed for each sprocket drive unit 41 (each tape supplier 21) during the power-on period of the control unit 84 of the feeder body 13.
 本プログラムが起動されると、まず、ステップ100で、テープサプライヤ装着作業開始信号が入力されたか否か(作業者が操作パネル15の装着作業開始キーを操作したか否か)を判定し、まだテープサプライヤ装着作業開始信号が入力されていなければ、テープサプライヤ装着作業開始信号が入力されるまで待機する。 When this program is started, it is first determined in step 100 whether or not a tape supplier mounting work start signal has been input (whether the operator has operated the mounting work start key on the operation panel 15). If the tape supplier mounting work start signal is not input, the process waits until the tape supplier mounting work start signal is input.
 テープサプライヤ装着作業開始信号が入力されると、ステップ100の判定結果がYESとなり、ステップ102に進む。ステップ102では、スプロケット駆動ユニット41のスプロケット作動用モータ56を作動させて、回動部材30をスプリング55に抗して回動させ、スプロケット42を退避位置まで下降させる。 When the tape supplier mounting work start signal is input, the determination result in step 100 is YES, and the process proceeds to step 102. In step 102, the sprocket operating motor 56 of the sprocket drive unit 41 is operated, the rotating member 30 is rotated against the spring 55, and the sprocket 42 is lowered to the retracted position.
 ステップ104においては、フィーダ本体13のリーダ82がテープサプライヤ21の識別IDを読み取り、次いで、読み取った識別IDに基づいて、ステップ106において、テープサプライヤ21に装着された部品供給テープ12が、所定のサイズよりも小さな部品を収納した部品供給テープ12であるか、所定のサイズよりも大きな部品を収納した部品供給テープ12であるかを判別する。 In step 104, the reader 82 of the feeder main body 13 reads the identification ID of the tape supplier 21, and then, in step 106, the component supply tape 12 mounted on the tape supplier 21 is transferred to the predetermined ID based on the read identification ID. It is determined whether the component supply tape 12 stores components smaller than the size or the component supply tape 12 stores components larger than a predetermined size.
 そして、所定のサイズよりも小さな部品を収納した部品供給テープ12であると判別された場合には、ステップ108に進み、所定のサイズよりも大きな部品を収納した部品供給テープ12であると判別された場合には、ステップ110に進む。 If it is determined that the component supply tape 12 contains a component smaller than the predetermined size, the process proceeds to step 108, where it is determined that the component supply tape 12 stores a component larger than the predetermined size. If yes, go to Step 110.
 ステップ108においては、スプロケット42を原点位置に位置決めすべく、スプロケット回転用モータ44が駆動され、原点検出センサ87によって原点検出マーク87aが検出されるまで、スプロケット42を回転駆動する。これによって、スプロケット42の特定の歯が上端位置に位置する原点位置にスプロケット42が位置決めされる。 In step 108, the sprocket rotating motor 44 is driven to position the sprocket 42 at the origin position, and the sprocket 42 is rotated until the origin detection sensor 87 detects the origin detection mark 87a. As a result, the sprocket 42 is positioned at the origin position where the specific teeth of the sprocket 42 are located at the upper end position.
 すなわち、所定のサイズよりも小さな部品、例えば、極小の部品の場合には、部品を部品吸着位置に正確に位置決めするために、スプロケット42の歯のピッチ誤差に応じてスプロケット42を回転制御することが必要となる。このため、部品供給テープ12のスプロケット穴にスプロケット42を係合する前に、スプロケット42を原点位置に割出すことにより、ピッチ誤差に応じてスプロケット42を回転制御し、最初の部品から部品吸着位置に正確に位置決めすることが可能となる。 That is, in the case of a component smaller than a predetermined size, for example, a very small component, the rotation of the sprocket 42 is controlled according to the pitch error of the teeth of the sprocket 42 in order to accurately position the component at the component suction position. Is required. For this reason, before the sprocket 42 is engaged with the sprocket hole of the component supply tape 12, the sprocket 42 is indexed to the origin position, so that the rotation of the sprocket 42 is controlled according to the pitch error. It becomes possible to position accurately.
 次いで、ステップ112において、スプロケット作動用モータ56を作動させて、回動部材30をスプリング55の付勢力によって図3の反時計回りに回動させ、スプロケット42を、スプロケット歯が部品供給テープ12のスプロケット穴に噛合う噛合位置まで上昇作動させる。そして、噛合検出センサ63から検出信号が出力されると、スプロケット42の歯が部品供給テープ12のスプロケット穴に噛み合ったものと判断する。 Next, in step 112, the sprocket operating motor 56 is operated to rotate the rotating member 30 counterclockwise in FIG. 3 by the urging force of the spring 55, and the sprocket 42 has sprocket teeth of the component supply tape 12. Raise to the meshing position to mesh with the sprocket hole. When a detection signal is output from the engagement detection sensor 63, it is determined that the teeth of the sprocket 42 are engaged with the sprocket holes of the component supply tape 12.
 この場合、スプロケット42の上昇により、スプロケット42の歯が部品供給テープ12のスプロケット穴にうまく噛合わず、部品供給テープ12に当接した場合には、スプロケット42が噛合位置まで上昇できず、噛合検出センサ63も動作されない。このような場合には、例えば、スプロケット回転用モータ44によってスプロケット42を正逆転させることにより、部品供給テープ12のスプロケット穴にスプロケット42の歯を噛合させることができ、スプロケット42が噛合位置まで上昇される。 In this case, if the sprocket 42 rises and the teeth of the sprocket 42 do not mesh well with the sprocket holes of the component supply tape 12 and come into contact with the component supply tape 12, the sprocket 42 cannot rise to the meshing position. The detection sensor 63 is also not operated. In such a case, for example, by rotating the sprocket 42 forward and backward by the sprocket rotating motor 44, the teeth of the sprocket 42 can be engaged with the sprocket holes of the component supply tape 12, and the sprocket 42 is raised to the engagement position. Is done.
 次いで、ステップ114において、メモリ86に記憶されたピッチ誤差に応じて、スプロケット42をモータ44によって回転制御し、部品供給テープ12に収納された部品を部品吸着位置へ順次供給する。これにより、極小の部品であっても、部品吸着位置へ正確に供給できるようになる。 Next, in step 114, the sprocket 42 is rotationally controlled by the motor 44 in accordance with the pitch error stored in the memory 86, and the components stored in the component supply tape 12 are sequentially supplied to the component suction position. Thereby, even a very small component can be accurately supplied to the component suction position.
 一方、上記したステップ110に進んだ場合には、ステップ110において、スプロケット作動用モータ56を作動させて、回動部材30をスプリング55の付勢力によって図3の反時計回りに回動させ、スプロケット42を、スプロケット歯が部品供給テープ12のスプロケット穴に噛合う噛合位置まで上昇作動させる。スプロケット42が噛合位置まで上昇されると、これが噛合検出センサ63によって検出される。 On the other hand, when the process proceeds to step 110 described above, in step 110, the sprocket operating motor 56 is operated, and the rotating member 30 is rotated counterclockwise in FIG. 42 is moved up to a meshing position where the sprocket teeth mesh with the sprocket holes of the component supply tape 12. When the sprocket 42 is raised to the meshing position, this is detected by the meshing detection sensor 63.
 次いで、ステップ116において、スプロケット42をスプロケット歯のピッチ角度(一定角度)回転制御し、部品供給テープ12に収納された部品(所定のサイズよりも大きな部品)を部品吸着位置へ供給する。 Next, in step 116, the sprocket 42 is controlled to rotate at a pitch angle (constant angle) of the sprocket teeth, and a component (a component larger than a predetermined size) stored in the component supply tape 12 is supplied to the component suction position.
 次いで、ステップ118において、スプロケット42が原点に割出されたか否かが、原点検出センサ87の信号に基づいて判断され、判別結果がNOの場合には、上記したステップ116に戻り、スプロケット42の一定角度回転制御を継続する。そして、ステップ118において、スプロケット42の原点が検出されると、ステップ114に移行し、以後、スプロケット42をピッチ誤差に応じて回転制御する。 Next, at step 118, whether or not the sprocket 42 has been indexed to the origin is determined based on the signal from the origin detection sensor 87. If the determination result is NO, the process returns to step 116 described above, and the sprocket 42 Continue constant angle rotation control. In step 118, when the origin of the sprocket 42 is detected, the process proceeds to step 114, and thereafter, the rotation of the sprocket 42 is controlled according to the pitch error.
 すなわち、所定のサイズよりも大きな部品については、極小部品のように部品を部品吸着位置に正確に位置決めする必要がないため、スプロケット42を原点位置に割出すことなく、直ちに、部品供給テープ12のスプロケット穴にスプロケット42を噛合させる。この場合には、スプロケット歯のピッチ誤差に応じてスプロケット42を回転制御することができないため、やむを得ず、スプロケット42を一定角度ずつ回転制御し、スプロケット42の原点が検出された後は、メモリ86に記憶されたピッチ誤差に応じて、スプロケット42を回転制御する。 That is, for a part larger than a predetermined size, it is not necessary to accurately position the part at the part suction position as in the case of a very small part, so that the parts supply tape 12 can be immediately used without indexing the sprocket 42 to the origin position. The sprocket 42 is engaged with the sprocket hole. In this case, since the rotation of the sprocket 42 cannot be controlled according to the pitch error of the sprocket teeth, the rotation of the sprocket 42 is inevitably controlled by a certain angle, and after the origin of the sprocket 42 is detected, the memory 86 The sprocket 42 is controlled to rotate according to the stored pitch error.
 これにより、部品を部品吸着位置に正確に位置決めする必要がない所定のサイズよりも大きな部品については、スプロケット42を原点位置に割出すことなく、部品供給テープ12のスプロケット穴にスプロケット42を噛合させることができる。 As a result, for parts larger than a predetermined size that do not need to be accurately positioned at the part suction position, the sprocket 42 is engaged with the sprocket hole of the part supply tape 12 without indexing the sprocket 42 to the origin position. be able to.
 上記したステップ106からステップ114により、請求項における制御部を構成している。 The above-mentioned step 106 to step 114 constitute the control unit in the claims.
 このように、上記した実施の形態によれば、フィーダ本体13にテープサプライヤ21がセットされる際に、テープサプライヤ21に支持された部品供給テープ12に収納された部品のサイズが所定サイズよりも小さいか大きいかに応じて、スプロケット42を原点に位置決めしてからスプロケット42を噛合位置に作動させるか、スプロケット42をまず噛合位置に作動させるか、選択的に制御するようにしたので、テープフィーダ11に所定のサイズよりも小さな部品を収納した部品供給テープ12がセットされた場合には、スプロケット42をスプロケット歯のピッチ誤差に応じて回転制御することができるので、所定のサイズよりも小さな部品を部品吸着位置に精度よく供給することができる。これにより、スプロケット歯のピッチ誤差による位置決め誤差によって、サイズの小さな部品を吸着ノズルによって吸着する際に、部品吸着ミスを発生する事態を確実に抑制することができる。 Thus, according to the above-described embodiment, when the tape supplier 21 is set in the feeder main body 13, the size of the component stored in the component supply tape 12 supported by the tape supplier 21 is larger than the predetermined size. Depending on whether it is small or large, the sprocket 42 is positioned at the origin and then the sprocket 42 is operated to the meshing position, or the sprocket 42 is first operated to the meshing position, or the tape feeder is selectively controlled. 11, when the component supply tape 12 containing components smaller than a predetermined size is set, the sprocket 42 can be rotationally controlled in accordance with the pitch error of the sprocket teeth, so the components smaller than the predetermined size Can be accurately supplied to the component suction position. Accordingly, it is possible to reliably suppress occurrence of a component suction error when a small-sized component is sucked by the suction nozzle due to the positioning error due to the pitch error of the sprocket teeth.
 一方、テープフィーダ11に所定のサイズよりも大きな部品を収納した部品供給テープ12がセットされた場合には、スプロケット42の原点検出動作を行うことなく、スプロケット42を一定角度ずつ回転制御させるので、スプロケット42の原点を検出する動作時間だけ時間を短縮することができる。この場合、スプロケット42を一定角度ずつ回転制御させるのは、スプロケット42の原点が検出されるまでの一時的な処置であり、しかも、サイズの大きな部品であることから、スプロケット歯のピッチ誤差による位置決め誤差への影響は僅少であり、部品を吸着ノズルによって吸着する際に、部品吸着ミスを発生することはほとんど生じない。 On the other hand, when the component supply tape 12 containing a component larger than a predetermined size is set in the tape feeder 11, the sprocket 42 is controlled to rotate by a certain angle without performing the origin detection operation of the sprocket 42. The time can be shortened by the operation time for detecting the origin of the sprocket 42. In this case, the rotation control of the sprocket 42 by a fixed angle is a temporary measure until the origin of the sprocket 42 is detected, and since it is a large part, positioning due to the pitch error of the sprocket teeth. The effect on the error is negligible, and a component suction error hardly occurs when the component is sucked by the suction nozzle.
 また、上記した実施の形態によれば、スプロケット42および作動機構を設けた複数のテープサプライヤ21をフィーダ本体13に着脱可能に装着し、各テープサプライヤ21に識別ID81を設け、識別ID81を、フィーダ本体13に設けたリーダ82によって読み取るように構成したので、複数のテープサプライヤ21をフィーダ本体13に装着した場合でも、各テープサプライヤ21に設けた識別ID81を読み取ることにより、各テープサプライヤ21の部品供給テープ12に収納した部品の種類(サイズ)を識別することができ、これに基づいて制御部(ステップ106~114)を的確に制御することができる。 Further, according to the above-described embodiment, the plurality of tape suppliers 21 provided with the sprocket 42 and the operation mechanism are detachably attached to the feeder main body 13, the identification ID 81 is provided for each tape supplier 21, and the identification ID 81 is assigned to the feeder. Since the reader 82 provided on the main body 13 is configured to read, even when a plurality of tape suppliers 21 are mounted on the feeder main body 13, the identification ID 81 provided on each tape supplier 21 is read, so that the components of each tape supplier 21 are The type (size) of the parts stored in the supply tape 12 can be identified, and the control unit (steps 106 to 114) can be accurately controlled based on this.
 さらに、上記した実施の形態によれば、作動機構によってスプロケット42を噛合位置へ作動させる際に、スプロケット42の歯が部品供給テープ12のスプロケット穴に係合して、スプロケット42が噛合位置まで作動したことを検出する噛合検出センサ63と位置検出ドッグ64からなる噛合検出手段を備えているので、スプロケット42の歯が部品供給テープ12のスプロケット穴にうまく噛合せず、噛合検出手段より検出信号が得られない場合には、スプロケット42を正逆回転させるなどして、スプロケット42の歯と部品供給テープ12のスプロケット穴とを確実に噛合させることができる。 Furthermore, according to the above-described embodiment, when the sprocket 42 is moved to the meshing position by the operating mechanism, the teeth of the sprocket 42 are engaged with the sprocket holes of the component supply tape 12, and the sprocket 42 is operated to the meshing position. Since there is a mesh detection means comprising a mesh detection sensor 63 and a position detection dog 64 for detecting that the sprocket 42 is not meshed well with the sprocket hole of the component supply tape 12, a detection signal is received from the mesh detection means. If it cannot be obtained, the sprocket 42 and the sprocket hole of the component supply tape 12 can be reliably engaged with each other by rotating the sprocket 42 forward and backward.
 上記した実施の形態においては、フィーダ本体13に、複数のテープサプライヤ21をテープフィーダ11に着脱可能に装着できるようにした例について述べたが、本発明は、テープサプライヤ21を装着した後に、部品供給テープ12とスプロケット42の歯とを噛合わせる構成のものであれば、フィーダ本体13に、1つのテープサプライヤ21を着脱可能に装着できるテープフィーダ11にも適用可能であり、複数のテープサプライヤ21に限定するものではない。 In the above-described embodiment, an example in which a plurality of tape suppliers 21 can be detachably attached to the feeder main body 13 has been described. As long as the supply tape 12 and the teeth of the sprocket 42 are meshed with each other, the present invention can also be applied to the tape feeder 11 in which one tape supplier 21 can be detachably attached to the feeder main body 13. It is not limited to.
 また、上記した実施の形態によれば、作動機構を、回動可能な回動部材30を回動させることにより、スプロケット42を、部品供給テープ12のスプロケット穴に噛合う噛合位置と、部品供給テープ12のスプロケット穴よりも下方に位置する退避位置との間で回動させるように構成したが、実施の形態で述べた作動機構は、例示的な構成を示したものにすぎず、その構成に限定されるものではない。 In addition, according to the above-described embodiment, the operating mechanism rotates the rotatable rotating member 30 so that the sprocket 42 meshes with the sprocket hole of the component supply tape 12 and the component supply. Although it is configured to rotate between the retracted position located below the sprocket hole of the tape 12, the operation mechanism described in the embodiment is merely an exemplary configuration, and the configuration It is not limited to.
 斯様に、本発明は上記した実施の形態で述べた構成に限定されるものではなく、特許請求の範囲に記載した本発明の主旨を逸脱しない範囲内で種々の形態を採り得るものである。 Thus, the present invention is not limited to the configurations described in the above-described embodiments, and can take various forms without departing from the gist of the present invention described in the claims. .
 本発明に係るフィーダ制御装置は、部品供給テープのスプロケット穴に噛合するスプロケットをピッチ誤差に応じて回転制御して、部品供給テープに収納された部品を部品吸着位置に送るものに用いるのに適している。 The feeder control device according to the present invention is suitable for use in controlling the rotation of the sprocket that meshes with the sprocket hole of the component supply tape according to the pitch error and sending the component stored in the component supply tape to the component suction position. ing.
 11…テープフィーダ、12…部品供給テープ、13…フィーダ本体、21…テープサプライヤ、30…回動部材、41…スプロケット駆動ユニット、42…スプロケット、44…スプロケット回転用モータ、51…支持軸、56…スプロケット作動用モータ、63、64…噛合検出手段(噛合検出センサ、位置検出ドッグ)、66…フィーダ載置台、81…識別ID、82…リーダ、86…メモリ、87、87a…原点検出手段(原点検出センサ、原点検出マーク)、ステップ106~114…制御部。 DESCRIPTION OF SYMBOLS 11 ... Tape feeder, 12 ... Parts supply tape, 13 ... Feeder main body, 21 ... Tape supplier, 30 ... Turning member, 41 ... Sprocket drive unit, 42 ... Sprocket, 44 ... Motor for sprocket rotation, 51 ... Support shaft, 56 ... sprocket operation motor, 63, 64 ... mesh detection means (mesh detection sensor, position detection dog), 66 ... feeder mounting table, 81 ... identification ID, 82 ... reader, 86 ... memory, 87, 87a ... origin detection means ( Origin detection sensor, origin detection mark), steps 106 to 114... Control unit.

Claims (5)

  1.  多数の部品を所定ピッチで収納した部品供給テープに形成したスプロケット穴にスプロケットの歯を噛合わせ、該スプロケットの回転により前記部品供給テープに収納された部品を部品吸着位置へ送るテープフィーダを備え、
     前記スプロケットを、前記歯が前記部品供給テープのスプロケット穴に噛合う噛合位置と、前記歯が前記部品供給テープのスプロケット穴よりも下方に位置する退避位置との間で作動させる作動機構と、
     前記スプロケットの原点位置からの前記歯のピッチ誤差を記憶するピッチ誤差記憶手段と、
     前記スプロケットを前記ピッチ誤差に応じて回転制御する回転制御手段と、
     前記スプロケットの前記原点位置を検出する原点検出手段と、
     前記テープフィーダに所定のサイズよりも小さな部品を収納した前記部品供給テープがセットされた場合には、前記スプロケットを前記噛合位置に作動させる前に前記原点検出手段によって原点が検出されるまで前記スプロケットを回転し、前記テープフィーダに所定のサイズよりも大きな部品を収納した前記部品供給テープがセットされた場合には、前記スプロケットを前記退避位置から前記噛合位置に作動させ、その後、前記スプロケットの原点が検出されるまで前記スプロケットを前記ピッチ誤差に拘らず所定角度ずつ回転して前記部品を前記部品吸着位置へ送る制御部と、
    を備えたことを特徴とするフィーダ制御装置。
    A tape feeder is provided that meshes sprocket teeth with sprocket holes formed in a component supply tape that stores a large number of components at a predetermined pitch, and sends the components stored in the component supply tape to the component suction position by rotation of the sprocket.
    An operating mechanism for operating the sprocket between a meshing position where the teeth mesh with a sprocket hole of the component supply tape and a retracted position where the teeth are located below the sprocket hole of the component supply tape;
    Pitch error storage means for storing a pitch error of the teeth from the origin position of the sprocket;
    Rotation control means for controlling the rotation of the sprocket according to the pitch error;
    Origin detecting means for detecting the origin position of the sprocket;
    When the component supply tape containing components smaller than a predetermined size is set in the tape feeder, the sprocket is operated until the origin is detected by the origin detection means before operating the sprocket to the meshing position. , And the sprocket is operated from the retracted position to the meshing position when the component supply tape containing a component larger than a predetermined size is set in the tape feeder. A control unit that rotates the sprocket by a predetermined angle regardless of the pitch error and sends the component to the component suction position until the component is detected;
    A feeder control device comprising:
  2.  前記テープフィーダに識別IDを設け、該識別IDに基づいて、前記テープフィーダに所定のサイズよりも小さな部品を収納した前記部品供給テープがセットされたか、所定のサイズよりも大きな部品を収納した前記部品供給テープがセットされたかを判別できるようにした請求項1に記載のフィーダ制御装置。 The tape feeder is provided with an identification ID, and on the basis of the identification ID, the component feeder tape containing a component smaller than a predetermined size is set in the tape feeder, or a component larger than a predetermined size is stored. The feeder control device according to claim 1, wherein it is possible to determine whether the component supply tape is set.
  3.  前記スプロケットおよび前記作動機構を設けたテープサプライヤを前記フィーダ本体に着脱可能に装着し、前記テープサプライヤに前記識別IDを設け、該識別IDを、前記フィーダ本体に設けたリーダによって読み取る請求項2に記載のフィーダ制御装置。 The tape supplier provided with the sprocket and the operating mechanism is detachably attached to the feeder main body, the identification ID is provided to the tape supplier, and the identification ID is read by a reader provided on the feeder main body. The feeder control apparatus as described.
  4.  前記テープフィーダに所定のサイズよりも大きな部品を収納した前記部品供給テープがセットされた場合、前記スプロケットの原点が検出されるまで前記スプロケットが前記ピッチ誤差に拘らず所定角度ずつ回転されて前記部品を前記部品吸着位置へ送り、原点が検出された後は、前記スプロケットを前記ピッチ誤差に応じて回転制御する回転制御手段を備えた請求項1ないし請求項3のいずれか1項に記載のフィーダ制御装置。 When the component supply tape containing a component larger than a predetermined size is set in the tape feeder, the sprocket is rotated by a predetermined angle regardless of the pitch error until the origin of the sprocket is detected. 4. The feeder according to claim 1, further comprising: a rotation control unit that controls the rotation of the sprocket according to the pitch error after the origin is detected. Control device.
  5.  前記作動機構によって前記スプロケットを前記噛合位置へ作動させる際に、前記スプロケットの歯が前記部品供給テープの前記スプロケット穴に係合して、前記スプロケットが前記噛合位置まで作動したことを検出する噛合検出手段を備えている請求項1ないし請求項4のいずれか1項に記載のフィーダ制御装置。 When the sprocket is operated to the meshing position by the operation mechanism, the mesh detection is performed to detect that the sprocket teeth are engaged with the sprocket holes of the component supply tape and the sprocket is operated to the meshing position. The feeder control device according to any one of claims 1 to 4, further comprising means.
PCT/JP2013/067257 2013-06-24 2013-06-24 Feeder control device WO2014207808A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/067257 WO2014207808A1 (en) 2013-06-24 2013-06-24 Feeder control device
CN201380077697.6A CN105325069B (en) 2013-06-24 2013-06-24 Loader control device
JP2015523686A JP6143865B2 (en) 2013-06-24 2013-06-24 Feeder control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067257 WO2014207808A1 (en) 2013-06-24 2013-06-24 Feeder control device

Publications (1)

Publication Number Publication Date
WO2014207808A1 true WO2014207808A1 (en) 2014-12-31

Family

ID=52141215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067257 WO2014207808A1 (en) 2013-06-24 2013-06-24 Feeder control device

Country Status (3)

Country Link
JP (1) JP6143865B2 (en)
CN (1) CN105325069B (en)
WO (1) WO2014207808A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085027A (en) * 2015-10-30 2017-05-18 富士機械製造株式会社 feeder
JP2019186485A (en) * 2018-04-16 2019-10-24 パナソニックIpマネジメント株式会社 Component supply device
JP2019186484A (en) * 2018-04-16 2019-10-24 パナソニックIpマネジメント株式会社 Adapter for component supply device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227491A (en) * 2006-02-22 2007-09-06 Matsushita Electric Ind Co Ltd Feeder adjuster and tape feeder
JP2008306046A (en) * 2007-06-08 2008-12-18 Yamaha Motor Co Ltd Component supply device, and surface mounting device
JP2011060809A (en) * 2009-09-07 2011-03-24 Juki Corp Electronic component feeder
JP2013098382A (en) * 2011-11-01 2013-05-20 Fuji Mach Mfg Co Ltd Tape feeder
JP2013098375A (en) * 2011-11-01 2013-05-20 Fuji Mach Mfg Co Ltd Tape feeder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3666269B2 (en) * 1998-09-30 2005-06-29 松下電器産業株式会社 Tape feeder and tape feeding method
JP5689001B2 (en) * 2011-03-16 2015-03-25 富士機械製造株式会社 Tape feeder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227491A (en) * 2006-02-22 2007-09-06 Matsushita Electric Ind Co Ltd Feeder adjuster and tape feeder
JP2008306046A (en) * 2007-06-08 2008-12-18 Yamaha Motor Co Ltd Component supply device, and surface mounting device
JP2011060809A (en) * 2009-09-07 2011-03-24 Juki Corp Electronic component feeder
JP2013098382A (en) * 2011-11-01 2013-05-20 Fuji Mach Mfg Co Ltd Tape feeder
JP2013098375A (en) * 2011-11-01 2013-05-20 Fuji Mach Mfg Co Ltd Tape feeder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085027A (en) * 2015-10-30 2017-05-18 富士機械製造株式会社 feeder
JP2019186485A (en) * 2018-04-16 2019-10-24 パナソニックIpマネジメント株式会社 Component supply device
JP2019186484A (en) * 2018-04-16 2019-10-24 パナソニックIpマネジメント株式会社 Adapter for component supply device
JP7054770B2 (en) 2018-04-16 2022-04-15 パナソニックIpマネジメント株式会社 Parts supply equipment
JP7133800B2 (en) 2018-04-16 2022-09-09 パナソニックIpマネジメント株式会社 Adapter for parts feeder

Also Published As

Publication number Publication date
CN105325069A (en) 2016-02-10
CN105325069B (en) 2018-08-21
JPWO2014207808A1 (en) 2017-02-23
JP6143865B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP5777800B2 (en) Tape feeder
JP5846630B2 (en) Tape feeder
JP5748284B2 (en) Tape feeder
JP4672491B2 (en) Tape feeder and surface mounter
JP5797087B2 (en) Tape feeder
JP5758541B2 (en) Component mounter feeder management system
JP6717861B2 (en) Component mounting line
JP2013098375A5 (en)
JP6143865B2 (en) Feeder control device
JP6153611B2 (en) Component mounting equipment
JP4713330B2 (en) Electronic component mounting device
JP4917378B2 (en) Electronic component mounting device
JP2017117922A (en) feeder
JP4040198B2 (en) Tape feeder
JP4938607B2 (en) Component supply device and method for determining open state of suppressor in component supply device
JP6276398B2 (en) Tape feeder
JP6762126B2 (en) Cover tape pulling device
JP4387816B2 (en) Electronic component mounting device
JP5777190B2 (en) Tape feeder management system
JP6681190B2 (en) Control device for feeder
JP2020113797A (en) Automatic feeder replacement method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077697.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888153

Country of ref document: EP

Kind code of ref document: A1