WO2014206357A1 - 网络通信方法、装置和系统 - Google Patents

网络通信方法、装置和系统 Download PDF

Info

Publication number
WO2014206357A1
WO2014206357A1 PCT/CN2014/081072 CN2014081072W WO2014206357A1 WO 2014206357 A1 WO2014206357 A1 WO 2014206357A1 CN 2014081072 W CN2014081072 W CN 2014081072W WO 2014206357 A1 WO2014206357 A1 WO 2014206357A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
dch
active set
signaling
rnc
Prior art date
Application number
PCT/CN2014/081072
Other languages
English (en)
French (fr)
Inventor
周涵
花梦
张鹏
铁晓磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14818014.4A priority Critical patent/EP3001730B1/en
Priority to KR1020167001254A priority patent/KR101688450B1/ko
Priority to CA2916416A priority patent/CA2916416A1/en
Priority to JP2016522237A priority patent/JP6218157B2/ja
Publication of WO2014206357A1 publication Critical patent/WO2014206357A1/zh
Priority to US14/981,231 priority patent/US10028286B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/20Performing reselection for specific purposes for optimising the interference level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • Heterogeneous Network technology is a wireless access network technology for multi-layer networking in Hehe.
  • a conventional radio access network generally has only one network layer, which is called a macro network layer.
  • the base station (Mac) in the macro network needs to cover the entire network to provide continuous and uninterrupted service for users.
  • HetNet adds one or more micro network layers based on the macro network layer.
  • the base station (referred to as the micro base station) in the micro network has smaller transmission power and coverage is much smaller than the macro base station, so the micro base station is also called low power.
  • Node Low Power Node, hereinafter referred to as LPN).
  • the micro base station is deployed in a coverage area or a hotspot area of the macro base station, and is used for offloading the macro base station to improve the throughput of the entire network.
  • the uplink power balance line is the location where the macro base station and the micro base station have the same reception quality for the uplink transmission signal of the user equipment (User Equipment, hereinafter referred to as UE), and the downlink power balance line is the UE to the macro base station and the micro base station.
  • the downlink transmission signal has the same reception quality position. Since the uplink power balance line is only related to the path loss of the UE to the micro base station and the macro base station, the downlink power balance line also depends on the transmit power of the macro base station and the micro base station.
  • FIG. 1 shows the uplink power balance line and downlink power in the prior art.
  • the downlink reception of the macro base station by the UE is better than that of the micro base station, and the high speed downlink packet access (HSDPA) serving cell is a macro base station, but in the uplink, the path loss of the UE to the micro base station
  • the micro-base station is smaller than the macro base station, and the micro-base station is better than the macro base station, but the serving cell of the UE is a macro base station, and the UE does not enter the soft handover (hereinafter referred to as SH0) area, and the micro base station cannot perform the UE.
  • Power control so the uplink power of the UE is too high in the receiving power of the micro base station, causing uplink interference to the micro base station.
  • the embodiments of the present invention provide a network communication method, apparatus, and system, to reduce uplink interference and downlink interference caused by a micro base station when a UE is in a first area or a second area for performing service transmission in HetNet.
  • an embodiment of the present invention provides a network communication method, including:
  • the user equipment UE receives the indication information sent by the radio network controller RNC in the access network, and the indication information is used to indicate the UE:
  • the first area performing uplink and downlink service transmission with the macro base station of the access network, and performing uplink service transmission with the micro base station of the access network, where the first area is a common pilot channel of the micro base station
  • the quality reaches the area between the first threshold value of the first active set and the common pilot channel quality of the micro base station reaching the first condition threshold of the second active set, the common pilot channel quality of the micro base station Is measured by the UE in the first area;
  • the second area is a common pilot channel quality of the macro base station
  • the common pilot channel quality of the macro base station is to a region between a third threshold value of joining the third active set and a common pilot channel quality of the macro base station reaching a second condition threshold of joining the second active set Measured by the UE in the second area;
  • the first active set includes: an extended dedicated channel DCH active set and/or an extended enhanced dedicated channel E-DCH active set, the extended DCH active set supports the UE to send an uplink DCH service, and the extended DCH is activated.
  • the centralized micro base station receives the uplink DCH service sent by the UE, the extended E-DCH active set supports the UE to send an E-DCH service, and the micro base station in the extended E-DCH active set receives the UE The E-DCH service sent;
  • the UE may receive and obtain a log likelihood ratio LLR of the DCH service of the first active set macro base station, and input the LLR as a Viterbi decoder for Viterbi translation. code;
  • the second active set includes: a DCH active set and/or an E-DCH active set;
  • the third active set includes: an extended DCH active set, where the extended DCH active set supports the macro base station in the third active set to send downlink DCH service, and the UE receives the macro base station sent in the third active set. Downstream DCH service;
  • the UE may receive an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH sent by the third active centralized micro base station, if the E-HICH indicates an acknowledgement acknowledgement ACK, The UE transmits new data, and if the E-HICH indicates a non-acknowledgement acknowledgement NACK and does not reach the maximum number of retransmissions, the UE retransmits the data.
  • E-HICH enhanced dedicated channel hybrid automatic repeat request indication channel
  • the method before the UE performs the service transmission according to the indication information, the method further includes:
  • the UE adds the micro base station to the first active set when performing service transmission in the first area according to the activation set update signaling, and/or joins the macro base station when performing service transmission in the second area.
  • the method before the UE receives the activation set update signaling sent by the RNC, the method further includes: Common pilot channel quality of each cell; When the UE is in a non-soft handover area, when the UE measures that the common pilot channel quality of the micro base station exceeds a preset first threshold value of joining the first active set and is less than joining the second activation When the first condition threshold is set, the UE sends a first measurement report to the RNC, so that the RNC sends the activation set update signaling to the UE according to the first measurement report;
  • the UE When the UE is in the soft handover region corresponding to the second active set, when the UE measures that the common pilot channel quality of the micro base station is smaller than the third condition that the micro base station deletes from the second active set
  • the threshold is greater than a preset second threshold
  • the UE sends a first measurement report to the RNC, so that the RNC sends the activation set update message to the UE according to the first measurement report.
  • the UE continues to measure the common pilot channel quality of the micro base station, and when the common pilot channel quality of the micro base station is greater than a first condition threshold that is added to the second active set, the UE sends a second to the RNC. Measuring a report, so that the RNC sends the first control information to the UE;
  • the UE adds the micro base station to the second activation set according to the first control information
  • the UE continues to measure the common pilot channel quality of the micro base station, and when the common pilot channel quality of the micro base station is less than the second threshold, the UE sends a second measurement report to the RNC. So that the RNC sends the second control information to the UE;
  • the UE deletes the micro base station from the first active set according to the second control information.
  • the UE The transmitted service includes a DCH service, and the method further includes:
  • the service transmitted by the UE includes an E-DCH service, and the method further includes:
  • the TPC receives, by the UE, the TPC, the enhanced dedicated channel relative grant channel E-RGCH, and the E-HICH sent by the micro base station, where the TPC is used to adjust an uplink sending power of the UE, and the E-RGCH is used for adjusting a scheduling authorization value obtained by the UE, where the E-HICH is used to feed back the micro to the UE Whether the base station correctly receives data of the UE.
  • the method before the receiving, by the UE, the activation set update signaling sent by the RNC, the method further includes: Common pilot channel quality of each cell;
  • the UE When the UE is in a non-soft handover area, when the UE measures that the common pilot channel quality of the macro base station exceeds a preset third threshold value and is less than a second condition threshold that is added to the second active set. Sending, by the UE, a third measurement report to the RNC, so that the RNC sends the activation set update signaling to the UE according to the third measurement report;
  • the UE When the UE is in the soft handover region corresponding to the second active set, when the UE measures that the common pilot channel quality of the macro base station is lower than the fourth that the macro base station deletes from the second active set
  • the condition threshold is greater than a preset fourth threshold
  • the UE sends a third measurement report to the RNC, so that the RNC sends the activation set update to the UE according to the third measurement report.
  • the UE continues to measure the common pilot channel quality of the macro base station, and when the common pilot channel quality of the macro base station is greater than a second condition threshold that is added to the second active set, the UE sends the quality to the RNC. a fourth measurement report, to enable the RNC to send third control information to the UE;
  • the UE adds the macro base station to the second active set according to the third control information
  • the UE continues to measure the common pilot channel quality of the macro base station, and when the common pilot channel quality of the macro base station is less than the fourth threshold, the UE sends a fourth measurement report to the RNC. So that the RNC sends fourth control information to the UE;
  • an embodiment of the present invention provides a network communication method, including:
  • the radio network controller RNC in the access network generates the indication information, where the indication information is used to indicate that the user equipment UE: performs uplink and downlink service transmission with the macro base station of the access network in the first area, and the access The micro-base station of the network performs uplink service transmission, where the first area is that the common pilot channel quality of the micro base station reaches a first threshold value added to the first active set and a common pilot of the micro base station The channel quality reaches an area between the first condition thresholds of the second active set, and the common pilot channel quality of the micro base station is measured by the UE in the first area;
  • the second area is a common pilot channel quality of the macro base station a region between a third threshold of the third active set and a common pilot channel quality of the macro base station reaching a second condition threshold for joining the second active set, the common pilot channel quality of the macro base station being The UE of the second area is measured;
  • the first active set includes: an extended dedicated channel DCH active set and/or an extended enhanced dedicated channel E-DCH active set, the extended DCH active set supports the UE to send an uplink DCH service, and the extended DCH is activated.
  • the centralized micro base station receives the uplink DCH service sent by the UE, the extended E-DCH active set supports the UE to send an E-DCH service, and the micro base station in the extended E-DCH active set receives the UE The E-DCH service sent;
  • the UE may receive and obtain a log likelihood ratio LLR of the DCH service of the first active set macro base station, and input the LLR as a Viterbi decoder for Viterbi translation. code;
  • the second active set includes: a DCH active set and/or an E-DCH active set;
  • the third active set includes: an extended DCH active set, where the extended DCH active set supports the macro base station in the third active set to send downlink DCH service, and the UE receives the macro base station sent in the third active set. Downstream DCH service;
  • the UE may receive an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH sent by the third active centralized micro base station, if the E-HICH indicates an acknowledgement acknowledgement ACK, The UE transmits new data, and if the E-HICH indicates a non-acknowledgement acknowledgement NACK and does not reach the maximum number of retransmissions, the UE retransmits the data.
  • E-HICH enhanced dedicated channel hybrid automatic repeat request indication channel
  • the method before the RNC sends the indication information to the UE, the method further includes:
  • the method further includes:
  • the RNC Receiving, by the RNC, the first measurement report sent by the UE, where the first measurement report is that the UE is in a non-soft handover area, when the UE measures that the common pilot channel quality of the micro base station exceeds a preset And when the first threshold value of the first active set is added and is smaller than the first condition threshold that is added to the second active set, or sent to the RNC, or
  • the UE measures that the common pilot channel quality of the micro base station is smaller than the micro base station from the second Transmitted to the RNC when the third condition threshold of the set deletion is activated and greater than a preset second threshold.
  • the method further includes:
  • the RNC Receiving, by the RNC, a second measurement report sent by the UE, where the second measurement report is when the common pilot channel quality of the micro base station is greater than a first condition threshold that is added to the second active set, the UE Sent by the RNC;
  • the RNC sends second control information to the UE, so that the UE deletes the micro base station from the first active set according to the second control information.
  • the method before the sending, by the RNC, the activation set update signaling to the UE, the method further includes:
  • a third measurement report sent by the UE where the third measurement report is that the UE is in a non-soft handover area, when the UE measures that the quality of the common pilot channel of the macro base station exceeds a preset a predetermined third threshold value and less than a second condition threshold for joining the second active set,
  • the UE sends to the RNC; or,
  • the UE When the third measurement report is that the UE is in a soft handover area corresponding to the second active set, when the UE measures that the common pilot channel quality of the macro base station is lower than the macro base station from the first The UE sends the UE to the RNC when the fourth condition threshold of the active set deletion is greater than a preset fourth threshold.
  • the method further includes:
  • the RNC Receiving, by the RNC, a fourth measurement report sent by the UE, where the fourth measurement report is when the common pilot channel quality of the macro base station is greater than a second condition threshold that is added to the second active set, the UE Sent to the RNC;
  • the RNC sends fourth control information to the UE, so that the UE deletes the macro base station from the third active set according to the fourth control information.
  • an embodiment of the present invention provides a network communication method, including:
  • the micro base station receives the configuration information sent by the radio network controller RNC in the access network, where the configuration information is used to indicate that the micro base station receives the uplink dedicated channel DCH and/or the uplink enhanced dedicated channel E-DCH service sent by the user equipment UE;
  • the micro base station After the first base station is added to the first active set by the UE in the first area, the micro base station receives the uplink DCH and/or the uplink E- sent by the UE in the first active set according to the configuration information.
  • the DCH service, the first area is that the common pilot channel quality of the micro base station reaches a first threshold value added to the first active set, and a common pilot channel quality of the micro base station reaches a second active set.
  • An area between the first condition thresholds, the common pilot channel quality of the micro base station is measured by the UE in the first area;
  • the first active set includes: An extended DCH active set and/or an extended E-DCH active set, the extended DCH active set supports the UE to send an uplink DCH service, and the micro base station in the extended DCH active set receives the uplink DCH service sent by the UE.
  • the extended E-DCH active set supports the UE to send an E-DCH service, and the micro base station in the extended E-DCH active set receives the E-DCH service sent by the UE; Centrally, the UE may receive and obtain a log likelihood ratio LLR of the DCH service of the first active set macro base station, and perform the Viterbi decoding as the Viterbi decoder input.
  • the method further includes:
  • the micro base station sends a power control command TPC to the UE, where the TPC is used to adjust an uplink sending power of the UE;
  • the method further includes:
  • the micro base station sends a TPC, an enhanced dedicated channel relative grant channel E-RGCH, and an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH to the UE.
  • the TPC is used to adjust an uplink transmit power of the UE.
  • the E-RGCH is used to adjust a scheduling grant value obtained by the UE, and the E-HICH is used to feed back, to the UE, whether the micro base station correctly receives data of the UE.
  • an embodiment of the present invention provides a network communication method, including:
  • the macro base station receives the configuration information sent by the radio network controller RNC in the access network, where the configuration information is used to instruct the macro base station to send the downlink dedicated channel DCH service to the user equipment UE;
  • the macro base station After the third base station is added to the third active set by the UE in the second area, the macro base station sends a downlink dedicated channel DCH service to the UE in the third active set according to the configuration information, where the The second region is that the common pilot channel quality of the macro base station reaches a third threshold value of joining the third active set and the common pilot channel quality of the macro base station reaches a second condition threshold of joining the second active set.
  • An area, the common pilot channel quality of the macro base station is measured by the UE in the second area;
  • the third active set includes: an extended DCH active set, the extended DCH active set supports a macro base station in the third active set to send a downlink DCH service, and the UE receives a macro base station in the third active set The downlink DCH service sent;
  • the UE may receive the increase sent by the micro-base station in the third active set.
  • the strong dedicated channel hybrid automatic repeat request indication channel E-HICH if the E-HICH indicates an acknowledgment acknowledgment ACK, the UE transmits a new E-DCH service, if the E-HICH indicates a non-acknowledgement acknowledgement NACK and does not reach the maximum The number of retransmissions, the UE retransmits the E-DCH service.
  • the method further includes:
  • an embodiment of the present invention provides a user equipment, including:
  • the receiving module is configured to receive the indication information sent by the radio network controller RNC in the access network, where the indication information is used to indicate the UE:
  • the first area performing uplink and downlink service transmission with the macro base station of the access network, and performing uplink service transmission with the micro base station of the access network, where the first area is a common pilot channel of the micro base station
  • the quality reaches the area between the first threshold value of the first active set and the common pilot channel quality of the micro base station reaching the first condition threshold of the second active set, the common pilot channel quality of the micro base station Is measured by the UE in the first area;
  • the second area is a common pilot channel quality of the macro base station a region between a third threshold of the third active set and a common pilot channel quality of the macro base station reaching a second condition threshold for joining the second active set, the common pilot channel quality of the macro base station being The UE of the second area is measured;
  • a processing module configured to perform service transmission according to the indication information
  • the first active set includes: an extended dedicated channel DCH active set and/or an extended enhanced dedicated channel E-DCH active set, the extended DCH active set supports the UE to send an uplink DCH service, and the extended DCH is activated.
  • the centralized micro base station receives the uplink DCH service sent by the UE, the extended E-DCH active set supports the UE to send an E-DCH service, and the micro base station in the extended E-DCH active set receives the UE The E-DCH service sent;
  • the UE may receive and obtain a log likelihood ratio LLR of the DCH service of the first active set macro base station, and input the LLR as a Viterbi decoder for Viterbi translation. code;
  • the second active set includes: a DCH active set and/or an E-DCH active set;
  • the third active set includes: an extended DCH active set, where the extended DCH active set supports the macro base station in the third active set to send downlink DCH service, and the UE receives the macro base station sent in the third active set. Downstream DCH service;
  • the UE may receive an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH sent by the third active centralized micro base station, if the E-HICH indicates an acknowledgement acknowledgement ACK, The UE transmits new data, and if the E-HICH indicates a non-acknowledgement acknowledgement NACK and does not reach the maximum number of retransmissions, the UE retransmits the data.
  • E-HICH enhanced dedicated channel hybrid automatic repeat request indication channel
  • the receiving module is further configured to: before the processing module performs service transmission according to the indication information, receive an activation set update signaling sent by the RNC;
  • the processing module is further configured to: add the micro base station to the first active set when performing service transmission in the first area according to the activation set update signaling, and/or when the second area performs service transmission The macro base station is added to the third active set.
  • the method further includes:
  • a first measurement module configured to measure a common pilot channel quality of each cell before the receiving module receives the active set update signaling sent by the RNC;
  • a first sending module when the UE is in a non-soft handover area, when the first measurement module measures that the common pilot channel quality of the micro base station exceeds a preset first gate that is added to the first active set And when the limit is less than the first condition threshold that is added to the second active set, sending a first measurement report to the RNC, so that the RNC sends the active set update to the UE according to the first measurement report.
  • the first sending module is further configured to: when the UE is in a soft handover area corresponding to the second active set, when the UE measures that the common pilot channel quality of the micro base station is smaller than the micro base station from the second Sending a first measurement report to the RNC when the second condition threshold of the set deletion is exceeded and exceeding a preset second threshold, so that the RNC sends the to the UE according to the first measurement report.
  • the first measurement module is further configured to:
  • the processing module After the processing module performs service transmission according to the indication information, continue to measure the common pilot channel quality of the micro base station, where the common pilot channel quality of the micro base station is greater than a first condition threshold that is added to the second active set.
  • the first sending module is further configured to send a second measurement report to the RNC, so that the RNC sends the first control information to the UE;
  • the processing module is further configured to: add the micro base station to the second activation set according to the first control information;
  • the first measurement module is further configured to:
  • the processing module After the processing module performs the service transmission according to the indication information, continuing to measure the common pilot channel quality of the micro base station, when the common pilot channel quality of the micro base station is less than the second threshold,
  • the first sending module is further configured to send a second measurement report to the RNC, so that the RNC sends the second control information to the UE;
  • the processing module is further configured to: delete the micro base station from the first active set according to the second control information.
  • the service transmitted by the UE includes a DCH service, and the receiving module is further configured to:
  • the service transmitted by the UE includes an E-DCH service, and the receiving module is further configured to:
  • a power control command TPC an enhanced dedicated channel, a relative grant channel, an E-RGCH, and an E-HICH; wherein the TPC is used to adjust an uplink transmit power of the UE, and the E-RGCH is used to adjust a scheduling grant value obtained by the UE, where the E-HICH is used to feed back to the UE whether the micro base station correctly receives data of the UE.
  • the method further includes:
  • a second measurement module configured to measure a common pilot channel quality of each cell before the receiving module receives the activation set update signaling sent by the RNC
  • a second sending module configured to: when the UE is in a non-soft handover area, when the second measurement module measures that the common pilot channel quality of the macro base station exceeds a preset third threshold value and is smaller than adding the first And transmitting, by the RNC, a third measurement report, to enable the RNC to send the activation set update signaling to the UE according to the third measurement report;
  • the second sending module is further configured to: when the UE is in the soft handover area corresponding to the second active set, when the second measurement module measures that the common pilot channel quality of the macro base station is lower than the macro base station And sending, by the RNC, the third measurement report according to the third measurement report, when the fourth condition set value of the second active set deletion is greater than a preset fourth threshold value; The UE sends the activation set update signaling.
  • the second measurement module is further configured to:
  • the processing module After the processing module performs the service transmission according to the indication information, continuing to measure the common pilot channel quality of the macro base station, when the common pilot channel quality of the macro base station is greater than the second joining the second active set And the second sending module is further configured to send a fourth measurement report to the RNC, so that the RNC sends third control information to the UE;
  • the processing module is further configured to: add the macro base station to the second activation set according to the third control information;
  • the second measurement module is further configured to:
  • the second sending module is further configured to send a fourth measurement report to the RNC, so that the RNC sends fourth control information to the UE;
  • the processing module is further configured to: delete the macro base station from the third active set according to the fourth control information.
  • an embodiment of the present invention provides a radio network controller, including:
  • a generating module configured to generate indication information, where the indication information is used to indicate that the user equipment UE: performs uplink and downlink service transmission with a macro base station of the access network, and performs uplink with the micro base station of the access network in the first area.
  • Service transmission, the first area is a common pilot channel quality of the micro base station
  • the common pilot channel quality of the micro base station is the area between the first threshold value of the first active set and the first common threshold of the second active set. Measured by the UE in the first area;
  • the second area is a common pilot channel quality of the macro base station a region between a third threshold of the third active set and a common pilot channel quality of the macro base station reaching a second condition threshold for joining the second active set, the common pilot channel quality of the macro base station being The UE of the second area is measured;
  • a sending module configured to send the indication information to the UE, to enable the UE to perform service transmission according to the indication information
  • the first active set includes: an extended dedicated channel DCH active set and/or an extended enhanced dedicated channel E-DCH active set, the extended DCH active set supports the UE to send an uplink DCH service, and the extended DCH is activated.
  • the centralized micro base station receives the uplink DCH service sent by the UE, the extended E-DCH active set supports the UE to send an E-DCH service, and the micro base station in the extended E-DCH active set receives the UE The E-DCH service sent;
  • the UE may receive and obtain a log likelihood ratio LLR of the DCH service of the first active set macro base station, and input the LLR as a Viterbi decoder for Viterbi translation. code;
  • the second active set includes: a DCH active set and/or an E-DCH active set;
  • the third active set includes: an extended DCH active set, where the extended DCH active set supports the macro base station in the third active set to send downlink DCH service, and the UE receives the macro base station sent in the third active set. Downstream DCH service;
  • the UE may receive an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH sent by the third active centralized micro base station, if the E-HICH indicates an acknowledgement acknowledgement ACK, The UE transmits new data, and if the E-HICH indicates a non-acknowledgement acknowledgement NACK and does not reach the maximum number of retransmissions, the UE retransmits the data.
  • E-HICH enhanced dedicated channel hybrid automatic repeat request indication channel
  • the sending module is further configured to: before sending the indication information, send an activation set update signaling to the UE, so that the UE is activated according to the Set update signaling, adding the micro base station to the first active set when performing traffic transmission in the first area And, or/or, adding the macro base station to the third active set when performing traffic transmission in the second area.
  • the method further includes:
  • a first receiving module configured to receive a first measurement report sent by the UE, where the sending, by the sending module, sends the active set update signaling to the UE, where the first measurement report is that the UE is in a non-soft handover area And when the UE measures that the common pilot channel quality of the micro base station exceeds a preset first threshold value of joining the first active set and is less than a first condition threshold of joining the second active set
  • the RNC sends, or,
  • the UE measures that the common pilot channel quality of the micro base station is smaller than the micro base station from the second Transmitted to the RNC when the third condition threshold of the set deletion is activated and greater than a preset second threshold.
  • the first receiving module is further configured to: send, by the sending module, the indication to the UE Receiving, by the UE, a second measurement report sent by the UE, where the second measurement report is when the common pilot channel quality of the micro base station is greater than a first condition threshold that is added to the second active set, the UE Sent by the RNC;
  • the sending module is further configured to: send the first control information to the UE, to enable the UE to add the micro base station to the second active set according to the first control information;
  • the first receiving module is further configured to: after the transmitting module sends the indication information to the UE, receive a second measurement report sent by the UE, where the second measurement report is when the micro base station
  • the sending module is further configured to: send, by the sending, the second control information, to the UE, to enable the UE to be used according to the location, when the quality of the common pilot channel is less than the second threshold.
  • the second control information deletes the micro base station from the first active set.
  • the method further includes:
  • a second receiving module configured to receive, after the sending module sends the active set update signaling to the UE, a third measurement report sent by the UE, where the third measurement report is that the UE is in a non- Soft handover area, when the UE measures that the common pilot channel quality of the macro base station exceeds a preset third threshold value and is less than a second condition threshold for joining the second active set, the UE Sent to the RNC; or,
  • the UE When the third measurement report is that the UE is in a soft handover area corresponding to the second active set, when the UE measures that the common pilot channel quality of the macro base station is lower than the macro base station from the first The UE sends the UE to the RNC when the fourth condition threshold of the active set deletion is greater than a preset fourth threshold.
  • the second receiving module is further configured to: send, by the sending module, the indication to the UE After receiving the fourth measurement report sent by the UE, where the fourth measurement report is when the common pilot channel quality of the macro base station is greater than a second condition threshold that is added to the second active set, the UE Sent to the RNC;
  • the sending module is further configured to: send the third control information to the UE, to enable the UE to join the macro base station to the second active set according to the third control information;
  • the second receiving module is further configured to: after the transmitting module sends the indication information to the UE, receive a fourth measurement report sent by the UE, where the fourth measurement report is when the macro base station
  • the transmitting module is further configured to: send, to the UE, fourth control information, to enable the UE to perform the UE according to the The fourth control information deletes the macro base station from the third active set.
  • a seventh aspect of the present invention provides a micro base station, including:
  • the receiving module is configured to receive configuration information sent by the radio network controller RNC in the access network, where the configuration information is used to indicate that the micro base station receives the uplink dedicated channel DCH and/or the uplink enhanced dedicated channel E- sent by the user equipment UE.
  • a processing module configured to: after the first base station is added to the first base station by the UE in the first area, perform the uplink DCH and the uplink DCH sent by the UE in the first active set according to the configuration information. And the uplink E-DCH service, the first area is that the common pilot channel quality of the micro base station reaches a first threshold value of joining the first active set, and a common pilot channel quality of the micro base station is reached. An area between the first condition thresholds of the second active set, the common pilot of the micro base station Channel quality is measured by the UE in the first area;
  • the first active set includes:
  • An extended DCH active set and/or an extended E-DCH active set supports the UE to send an uplink DCH service, and the micro base station in the extended DCH active set receives the uplink DCH service sent by the UE
  • the extended E-DCH active set supports the UE to send an E-DCH service, and the micro base station in the extended E-DCH active set receives the E-DCH service sent by the UE;
  • the UE may receive and obtain a log likelihood ratio LLR of the DCH service of the first active set macro base station, and perform the Viterbi decoding as the Viterbi decoder input.
  • the method further includes:
  • a sending module if the service received by the micro base station is a DCH service, the sending module is configured to send a power control command TPC to the UE, where the TPC is used to adjust an uplink sending power of the UE;
  • the received service is an E-DCH service, and the sending module is configured to send a TPC, an enhanced dedicated channel relative grant channel E-RGCH, and an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH to the UE, where
  • the TPC is configured to adjust an uplink transmit power of the UE, where the E-RGCH is used to adjust a scheduling grant value obtained by the UE, and the E-HICH is used to feed back, to the UE, whether the micro base station correctly receives the UE data.
  • the eighth aspect of the present invention provides a macro base station, including:
  • a receiving module configured to receive configuration information sent by the radio network controller RNC in the access network, where the configuration information is used to instruct the macro base station to send a downlink dedicated channel DCH service to the user equipment UE, and a sending module, configured to After the macro base station is added to the third active set by the UE in the second area, the downlink active channel DCH service is sent to the UE in the third active set according to the configuration information, where the second area is
  • the common pilot channel quality of the macro base station reaches an area between a third threshold value added to the third active set and a second common threshold value of the macro base station reaching a second condition threshold of joining the second active set.
  • the common pilot channel quality of the macro base station is measured by the UE in the second area;
  • the third active set includes: an extended DCH active set, the extended DCH active set supports a macro base station in the third active set to send a downlink DCH service, and the UE receives a macro base station in the third active set The downlink DCH service sent;
  • the UE may receive an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH sent by the third active centralized micro base station, if the E-HICH indicates an acknowledgement acknowledgement ACK, The UE transmits a new E-DCH service, and if the E-HICH indicates a non-acknowledgement acknowledgement NACK and does not reach the maximum number of retransmissions, the UE retransmits the E-DCH service.
  • E-HICH enhanced dedicated channel hybrid automatic repeat request indication channel
  • the receiving module is further configured to: after the sending module sends a downlink dedicated channel DCH service to the UE in the third active set according to the configuration information, And receiving an uplink power control command TPC sent by the UE, where the TPC is used to control transmission power of the downlink DCH service.
  • the embodiment of the present invention provides an access network system, including the user equipment according to any one of the fifth aspect to the fifth aspect, and the sixth aspect to the sixth aspect A radio network controller according to any of the fifth possible implementations, and the micro base station according to the seventh aspect or the first possible implementation manner of the seventh aspect, and the eighth or eighth aspect The macro base station of the first possible implementation manner.
  • the tenth aspect of the present invention provides a network communication method, including:
  • the user equipment UE receives the first enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH sent by the first base station in the access network, where the first base station is located in the detection range of the UE and is not in the UE.
  • E-HICH enhanced dedicated channel hybrid automatic repeat request indication channel
  • the UE transmits new E-DCH data.
  • the first base station is located in a detection range of the UE, and includes:
  • the UE receives the first enhanced dedicated channel hybrid automatic weight sent by the first base station Before the request indication channel E-HICH is transmitted, it also includes:
  • the UE receives the first indication signaling sent by the radio network controller RNC, where the first indication signaling is used to indicate that the UE receives the first E-HICH sent by the first base station, and the first indication And including a channelization code and a signature sequence of the first E-HICH, where the channelization code is used to indicate that the UE decodes a spreading code that should be used by a channel occupied by the first E-HICH, the signature The sequence is used to instruct the UE to code an orthogonal sequence that should be used for each E-HICH subframe.
  • the first indication signaling further includes:
  • the timing information of the first E-HICH is used to indicate that the UE receives a start time position of each subframe of the first E-HICH.
  • the timing information of the first E-HICH is a part of the downlink physical channel F- of the first base station Timing offset and/or symbol position of the DPCH.
  • An indication signaling further includes:
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is a part of the downlink physical channel of the first base station
  • Timing offset of the F-DPCH ⁇ allocates to the F-DPCH ⁇ .
  • the UE Before receiving the first indication signaling sent by the radio network controller RNC, the method further includes:
  • the UE measures a common pilot channel quality of each serving cell
  • the UE When the UE measures that the common pilot channel quality of the first base station exceeds a preset first threshold, the UE sends a measurement report to the RNC, so that the RNC sends the measurement report to the UE according to the measurement report. Sending the first indication signaling.
  • an embodiment of the present invention provides a network communication method, including:
  • the first base station in the access network receives the E-DCH service sent by the user equipment UE, where the first base station is located in the detection range of the UE and is not in the enhanced dedicated channel E-DCH activation set of the UE;
  • the first base station sends a first enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH to the UE;
  • the first base station receives new E-DCH data that is sent by the UE when the first E-HICH indication is an acknowledgment ACK.
  • the first base station is located in a detection range of the UE, and includes:
  • the first base station in the access network receives the sending by the user equipment UE Before the E-DCH business, it also includes:
  • the first base station receives the second indication signaling sent by the radio network controller RNC, where the second indication signaling is used to indicate that the first base station receives the E-DCH service sent by the UE, and the second indication
  • the signaling includes: an uplink scrambling code of the UE, a channelization code of the first E-HICH, and a signature sequence, where the channelization code is used to instruct the UE to decode the channel occupied by the first E-HICH
  • the spreading code to be used, the signature sequence is used to indicate that the UE decodes the orthogonal sequence that should be used for each E-HICH subframe.
  • the second indication signaling further includes:
  • the timing information of the first E-HICH is used to indicate a start time position of each subframe in which the first E-HICH is sent.
  • the timing information of the first E-HICH is a part of the downlink physical channel of the first base station
  • the timing offset of the F-DPCH is ⁇ and/or the symbol position.
  • the second indication signaling further includes:
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is a timing offset and/or a symbol position of a part of the downlink physical channel F-DPCH of the first base station.
  • the method further includes: the first base station sending a receiving capability message to the RNC, where the receiving capability message is used to indicate the first base station
  • the E-DCH service sent by the UE may be received.
  • an embodiment of the present invention provides a network communication method, including:
  • the radio network controller RNC in the access network generates the first indication signaling and the second indication signaling, where the first indication signaling is used to indicate that the user equipment UE receives the first enhanced dedicated channel hybrid automatic weight sent by the first base station.
  • the request indication channel E-HICH is used to indicate that the first base station receives the E-DCH service sent by the UE, where the first base station is located in the detection range of the UE and is not in the The enhanced dedicated channel E-DCH active set of the UE;
  • the RNC sends the second indication signaling to the first base station, where the second indication signaling includes: an uplink scrambling code of the UE, a channelization code of the first E-HICH, and a signature sequence,
  • the channelization code is used to indicate that the UE decodes a spreading code that should be used by the channel occupied by the first E-HICH
  • the signature sequence is used to indicate that the UE decodes each E-HICH subframe.
  • the RNC sends the first indication signaling to the UE, where the first indication signaling includes a channelization code and a signature sequence of the first E-HICH.
  • the first base station is located in a detection range of the UE, and includes:
  • the first indication signaling further includes:
  • the timing information of the first E-HICH is used to indicate, by the UE, a start time position of each subframe of the first E-HICH;
  • the second indication signaling further includes: timing information of the first E-HICH, where timing information of the first E-HICH is used to indicate a start time of each subframe in which the first E-HICH is sent. position.
  • the timing information of the first E-HICH is a part of the downlink physical channel of the first base station
  • the timing offset of the F-DPCH is ⁇ and/or the symbol position.
  • the first indication signaling and the second indication signaling further include: enhancing a code channel and a signature sequence of the dedicated channel relative to the grant channel E-RGCH, where the E-RGCH is used for control E-DCH transmission power of the UE; or
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is a part of the downlink physical channel F- of the first base station
  • the timing offset of the DPCH is ⁇ and/or the symbol position.
  • the RNC generates the first indication Before the command and the second indication signaling, the method further includes:
  • the RNC receives the measurement report sent by the UE, where the measurement report is sent when the UE measures that the common pilot channel quality of the first base station exceeds a preset first threshold.
  • the method further includes:
  • the RNC receives the receiving capability message sent by the first base station, where the receiving capability message is used to indicate that the first base station can receive the E-DCH service sent by the UE.
  • the embodiment of the present invention provides a user equipment, including:
  • a receiving module configured to receive a first enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH sent by the first base station in the access network, where the first base station is located in the detection range of the UE and is not in the The enhanced dedicated channel E-DCH active set of the UE;
  • the first base station is located in a detection range of the UE, and includes:
  • the receiving module is further configured to:
  • the first indication signaling is used to indicate Receiving, by the UE, the first E-HICH sent by the first base station, where the first indication signaling includes a channelization code and a signature sequence of the first E-HICH, where the channelization code is used to indicate the UE And decoding a spreading code that should be used by the channel occupied by the first E-HICH, where the signature sequence is used to indicate that the UE decodes an orthogonal sequence that should be used by each E-HICH subframe.
  • the first indication signaling further includes:
  • the timing information of the first E-HICH is used to indicate that the UE receives a start time position of each subframe of the first E-HICH.
  • the timing information of the first E-HICH is a part of the downlink physical channel of the first base station
  • the timing offset of the F-DPCH is ⁇ and/or the symbol position.
  • the first indication signaling further includes:
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is a part of the downlink physical channel F- of the first base station
  • the timing offset of the DPCH is ⁇ and/or the symbol position.
  • the user equipment of any one of the thirteenth aspect further includes:
  • a processing module configured to measure a common pilot channel quality of each serving cell before the receiving module receives the first indication signaling sent by the radio network controller RNC;
  • the sending module is further configured to: when the processing module measures that the common pilot channel quality of the first base station exceeds a preset first threshold, the UE sends a measurement report to the RNC, so that the RNC And transmitting, according to the measurement report, the first indication signaling to the UE.
  • an embodiment of the present invention provides a base station, including:
  • a receiving module configured to receive an E-DCH service sent by the user equipment UE, where the base station is located in a detection range of the UE and is not in an enhanced dedicated channel E-DCH active set of the UE;
  • a sending module configured to send, to the UE, a first enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH;
  • the receiving module is further configured to: receive new E-DCH data that is sent by the UE when the first E-HICH indication is an acknowledgement ACK.
  • the base station is located in a detection range of the UE, and includes:
  • the downlink pilot quality of the base station measured by the UE exceeds a preset first threshold.
  • the receiving module is further configured to:
  • the second indication signaling includes: an uplink scrambling code of the UE, a channelization code of the first E-HICH, and a signature sequence, where the channelization code is used to instruct the UE to decode the A spreading code to be used by a channel occupied by an E-HICH, the signature sequence being used to indicate that the UE decodes an orthogonal sequence that should be used for each E-HICH subframe.
  • the second indication signaling further includes:
  • the timing information of the first E-HICH is used to indicate a start time position of each subframe in which the first E-HICH is transmitted.
  • the timing information of the first E-HICH is a part of the downlink physical channel of the first base station
  • the timing offset of the F-DPCH is ⁇ and/or the symbol position.
  • the base station according to any one of the fourth possible implementation of the fourteenth aspect, the fourth possible implementation of the fourteenth aspect, The second indication signaling further includes:
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is a part of the downlink physical channel F- of the first base station
  • the timing offset of the DPCH is ⁇ and/or the symbol position.
  • the sending module is further configured to:
  • the receiving module Before the receiving module receives the second indication signaling sent by the radio network controller RNC, sending a receiving capability message to the RNC, where the receiving capability message is used to indicate that the first base station can receive the E sent by the UE -DCH business.
  • an embodiment of the present invention provides an RNC, including:
  • a processing module configured to generate first indication signaling and second indication signaling, where the first indication signaling is used to indicate that the user equipment UE receives the first enhanced dedicated channel hybrid automatic repeat request indication channel E sent by the first base station - HICH, the second indication signaling is used to indicate that the first base station receives the E-DCH service sent by the UE, and the first base station is located in the detection range of the UE and is not in the enhancement of the UE Dedicated channel E-DCH active set;
  • a sending module configured to send the second indication signaling to the first base station, where the second indication signaling includes: an uplink scrambling code of the UE, a channelization code and a signature of the first E-HICH a sequence, the channelization code is used to indicate that the UE decodes a spreading code that should be used by a channel occupied by the first E-HICH, and the signature sequence is used to instruct the UE to decode each E-HICH sub- The orthogonal order in which the frame should be used Column
  • the sending module is further configured to: send the first indication signaling to the UE, where the first indication signaling includes a channelization code and a signature sequence of the first E-HICH.
  • the first base station is located in a detection range of the UE, and includes:
  • the first indication signaling further includes:
  • the timing information of the first E-HICH is used to indicate, by the UE, a start time position of each subframe of the first E-HICH;
  • the second indication signaling further includes: timing information of the first E-HICH, the first
  • the timing information of the E-HICH is used to indicate the start time position of each subframe in which the first E-HICH is transmitted.
  • the timing information of the first E-HICH is a part of the downlink physical channel of the first base station
  • the timing offset of the F-DPCH is ⁇ and/or the symbol position.
  • the first indication signaling and The second indication signaling further includes:
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is a part of the downlink physical channel F- of the first base station
  • the timing offset of the DPCH is ⁇ and/or the symbol position.
  • a receiving module before the processing module generates the first indication signaling and the second indication signaling, Receiving a measurement report sent by the UE, where the measurement report is sent when the UE measures that the common pilot channel quality of the first base station exceeds a preset first threshold.
  • the RNC according to any one of the fifteenth aspect of the fifteenth aspect, wherein the receiving module is further configured to: Receiving, by the sending module, the receiving, by the first base station, a receiving capability message sent by the first base station, where the receiving capability message is used to indicate that the first base station can receive the E-DCH service sent by the UE.
  • the network communication method, device, and system provided by the embodiment of the present invention receive the indication information sent by the RNC, and according to the indication information, the UE performs uplink and downlink service transmission with the macro base station in the first area, and performs uplink service transmission with the micro base station. And/or performing uplink service transmission with the micro base station in the second area, and performing downlink service transmission with the macro base station, so that uplink interference caused by the UE in the first area to the micro base station can be minimized, and the second area is used in the base area.
  • the downlink interference caused by the station to the micro base station is minimized, and the uplink coverage of the micro base station and the downlink coverage of the macro base station can be fully utilized, thereby increasing the throughput and reliability of the HetNet edge area transmission.
  • the embodiment of the invention further provides a network communication method, including:
  • the UE Receiving, by the user equipment UE in the access network, the first radio network control RRC signaling of the radio network controller RNC, according to the indication of the first RRC signaling, the UE adding the first base station to the extension of the UE An enhanced dedicated channel E-DCH active set; the UE receiving an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH of the first base station, when the E-HICH indication is an acknowledgement acknowledgement ACK, the UE sends New E-DCH data; when the UE does not receive the dedicated channel DCH data from the access network, the UE turns off receiving part of the dedicated physical channel of the first base station according to the indication of the first RRC signaling a function of the F-DPCH, where the RNC completes the indication by deleting F-DPCH configuration information in the first RRC signaling or by using a preset indication field in the first RRC signaling; When the access network receives the DCH data, the UE closes the function of receiving the downlink dedicated physical data channel DPDCH of the first
  • the method when the UE receives the DCH data from the access network, the method further includes: receiving, by the UE, the F-DPCH of the first base station according to the indication of the first RRC signaling, Description The F-DPCH is used to perform transmission power control on the UE.
  • the method when the UE receives the DCH data from the access network, the method further includes: the UE is configured to disable the function of receiving the downlink dedicated physical control channel DPCCH sent by the first base station.
  • the method further includes: receiving, by the UE, first control signaling sent by the network; And receiving an F-DPCH of the first base station; or receiving a downlink DPDCH sent by the first base station, where the downlink DPDCH is used to carry DCH data received by the UE from the first base station .
  • the receiving, by the UE, the downlink DPDCH sent by the first base station the method further includes: receiving, by the UE, a downlink DPCCH of the first base station, where the downlink DPCCH is used by the first base station The UE sends physical layer control signaling.
  • the first control signaling sent by the network includes: the second RRC signaling sent by the RNC; or the first physical layer signaling sent by the second base station in the access network,
  • the second base station is located in an E-DCH active set or a DCH active set of the UE.
  • the method before the receiving, by the UE, the first control signaling sent by the network, the method further includes: the UE measuring a common pilot channel quality of each cell; and when the UE measures the first When the common pilot channel quality of the base station exceeds a preset first threshold, the UE sends a measurement report to the RNC, so that the RNC sends the second RRC signaling to the UE according to the measurement report; Or to enable the RNC to instruct the second base station to send the first physical layer signaling to the UE.
  • the method before the receiving, by the UE, the F-DPCH of the first base station, the method further includes: receiving, by the UE, configuration information of an F-DPCH of the first base station, where the configuration information includes the At least one of a channelization code, a frame offset, and a slot format of the F-DPCH.
  • the method further includes: the F-DPCH configuration information of the first base station is carried in the first control signaling.
  • the method before the receiving, by the UE, the downlink DPDCH of the first base station, the method further includes: receiving, by the UE, configuration information of a downlink DPCH of the first base station, where configuration information of the downlink DPCH includes The channelization code or frame offset information of the DPCH.
  • the configuration information of the downlink DPCH is carried in the In the first control signaling.
  • the embodiment of the present invention further provides a network communication method, including: the RNC in the access network generates the first RRC signaling or the first network signaling, and the RNC sends the first RRC signaling or the forwarding to the UE.
  • the first base station in the network sends the first network signaling, where the first RRC signaling is used to instruct the UE to join the first base station to the E-DCH active set of the UE, and instruct the UE to receive E-HICH of the first base station;
  • the first network signaling is used to indicate that the first base station receives E-DCH data sent by the UE, and instructs the first base station to send E- to the UE HICH; when the UE does not receive DCH data from the access network, the first RRC signaling indicates that the UE closes a function of receiving an F-DPCH of the first base station, where the RNC deletes Determining the F-DPCH configuration information in the first RRC signaling or by setting a preset indication field in the first RRC
  • the RNC completes the indication by deleting the DPCH configuration information in the first RRC signaling, and further includes: the first RRC The signaling indicates that the UE receives the F-DPCH of the first base station, and the F-DPCH is used to perform uplink transmission power control on the UE; the first network signaling indicates that the first base station is to the The UE sends the F-DPCH.
  • the first RRC signaling indicates that the UE turns off the function of receiving the downlink DPDCH of the first base station
  • the method further includes: the first network signaling indicates that the first base station is turned off The function of the UE transmitting the DPCCH; or the first RRC signaling further instructing the UE to disable the function of receiving the downlink DPCCH of the first base station.
  • the RNC sends first RRC signaling to the UE and After the first base station sends the first network signaling, the method further includes: the RNC generating second RRC signaling, the RNC sending the second RRC signaling to the UE; when the UE does not access from the When the network receives the DCH data, the second RRC signaling is used to indicate that the UE receives the F-DPCH sent by the first base station; when the UE receives the DCH data from the access network, the The second RRC signaling is used to instruct the UE to receive the downlink DPDCH sent by the first base station.
  • the second RRC signaling is used to indicate that the UE receives the downlink DPDCH sent by the first base station, and further includes The second RRC signaling indicates that the UE receives the downlink DPCCH sent by the first base station.
  • the method further includes: when the UE does not receive DCH data from the access network, the second RRC signaling includes configuration information of the F-DPCH; When the DCH data is received in the access network, the second RRC signaling includes downlink DPCH configuration information of the first base station.
  • the method further includes: the RCN generating second network signaling, the RNC sending the second network signaling to the first base station; when the UE is not from the access network When receiving DCH data, the second network signaling is used to indicate that the first base station sends an F-DPCH to the UE; when the UE receives DCH data from the access network, the second network The signaling is used to instruct the first base station to send a DPDCH to the UE.
  • the second network signaling is used to indicate that the first base station sends a DPDCH to the UE, and further includes: The second network signaling indicates that the first base station sends a downlink DPCCH to the UE.
  • the method further includes: when the UE does not receive DCH data from the access network, the second network signaling includes configuration information of the F-DPCH; When the DCH data is received in the access network, the second network signaling includes downlink DPCH configuration information of the first base station.
  • the method before the RNC generates the second RRC signaling, the method further includes: the RNC receiving a measurement report sent by the UE, where the measuring includes: indicating, by the RNC, the UE Sending second RRC signaling.
  • the embodiment of the present invention further provides a network communication method, including: receiving, by a first base station in an access network, first network signaling sent by a radio network controller RNC, according to the first network signaling Instructing to receive E-DCH data sent by the user equipment UE in the access network, and sending an E-HICH to the UE; when the UE does not receive DCH data from the access network, the first base station is configured according to The indication of the first network signaling is to disable the function of sending an F-DPCH to the UE; when the UE receives DCH data from the access network, the first base station is configured according to the first network signaling Instructing to disable the function of sending a downlink DPDCH to the UE.
  • the RNC completes the indication by deleting F-DPCH configuration information in the first network signaling or by setting a preset indication field in the first network signaling.
  • the first base station when the UE receives the DCH data from the access network, the first base station disables the function of sending a downlink DPDCH to the UE, and the method includes: the first base station to the The UE sends an F-DPCH, and the F-DPCH is used by the first base station to perform uplink transmission power control on the UE.
  • the first base station when the UE receives the DCH data from the access network, the first base station disables the function of sending a downlink DPDCH to the UE, and further includes: the first base station is shutting down the The function of the UE transmitting the downlink DPCCH.
  • the first base station further includes: receiving, by the first base station, second RRC signaling sent by the RNC; When receiving the DCH data in the access network, the first base station sends an F-DPCH to the UE according to the indication of the second RRC signaling; when the UE receives DCH data from the access network, according to The second RRC signaling indicates that the first base station sends a downlink DPDCH to the UE.
  • the method further includes: when the UE does not receive DCH data from the access network, the first network signaling received by the first base station includes F-DPCH configuration information; When the UE receives the DCH data from the access network, the first network signaling received by the first base station includes downlink DPCH configuration information.
  • the first base station when the UE receives the DCH data from the access network, the first base station sends a downlink DPDCH to the UE, and the method further includes: sending, by the first base station, the downlink to the UE DPCCHo
  • the embodiment of the present invention further provides a user equipment UE in an access network, including: a wireless transceiver unit, configured to receive a first radio network control RRC signaling of a radio network controller RNC, according to the first RRC signaling Instructing to join the first base station to the extended enhanced dedicated channel of the UE E-DCH active set; receiving an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH of the first base station, and transmitting new E-DCH data when the E-HICH indication is an acknowledgement acknowledgement ACK; For: when the UE does not receive the dedicated channel DCH data from the access network, shutting down, according to the indication of the first RRC signaling, the function of receiving a part of the dedicated physical channel F-DPCH of the first base station; The RNC completes the indication by deleting F-DPCH configuration information in the first RRC signaling or by using a preset indication field in the first RRC signaling; when the UE receives the DCH from the access network The function of receiving the downlink dedicated physical data channel
  • the wireless transceiver unit when the UE receives the DCH data from the access network, the wireless transceiver unit is further configured to receive the F- of the first base station according to the indication of the first RRC signaling
  • the DPCH, the F-DPCH is used to perform transmission power control on the UE.
  • the processing unit when the UE receives the DCH data from the access network, the processing unit is further configured to disable the function of receiving the downlink dedicated physical control channel DPCCH sent by the first base station.
  • the wireless transceiver unit is further configured to receive first control signaling sent by the network; Receiving, by an instruction of the control signaling, the F-DPCH of the first base station; or receiving a downlink DPDCH sent by the first base station, where the downlink DPDCH is used to carry the DCH received by the UE from the first base station data.
  • the wireless transceiver unit is further configured to receive a downlink DPCCH of the first base station, where the downlink DPCCH is used by the first base station to send a physical layer control signal to the UE in another
  • the first control signaling sent by the network includes: the second RRC signaling sent by the RNC; or the first physical layer signaling sent by the second base station in the access network, where the The two base stations are located in the E-DCH active set or DCH active set of the UE.
  • the wireless transceiver unit before receiving the first control signaling sent by the network, is further configured to measure a common pilot channel quality of each cell; When the quality of the common pilot channel of a base station exceeds a preset first threshold, the measurement report is sent to the RNC, so that the RNC sends the second RRC signaling to the UE according to the measurement report, or And causing the RNC to instruct the second base station to send the first physical layer signaling to the UE.
  • the radio transceiver unit before receiving the F-DPCH of the first base station, is further configured to receive configuration information of an F-DPCH of the first base station, where the configuration information includes At least one of a channelization code, a frame offset, and a slot format of the F-DPCH.
  • the F-DPCH configuration information of the first base station is carried in the first control signaling.
  • the radio transceiver unit before receiving the downlink DPDCH of the first base station, is further configured to receive configuration information of a downlink DPCH of the first base station, where configuration information of the downlink DPCH includes Channelization code or frame offset information of the DPCH.
  • the configuration information of the downlink DPCH is carried in the first control signaling.
  • An embodiment of the present invention further provides an RNC in an access network, including: a processing unit, configured to generate first RRC signaling or first network signaling, and a wireless transceiver unit, configured to send the first RRC to a UE Transmitting or transmitting the first network signaling to the first base station in the access network, where the first RRC signaling is used to instruct the UE to join the first base station to the E-DCH active set of the UE, and Instructing the UE to receive the E-HICH of the first base station; the first network signaling is used to instruct the first base station to receive E-DCH data sent by the UE, and instructing the first base station to The UE sends an E-HICH; when the UE does not receive the DCH data from the access network, the first RRC signaling indicates that the UE closes the function of receiving the F-DPCH of the first base station, where The processing unit completes the indication by deleting F-DPCH configuration information in the first RRC signaling or by setting a preset indication
  • the first RRC signaling indicates that the UE receives an F-DPCH of the first base station, where the F-DPCH is used. And performing uplink transmission power control on the UE; the first network signaling instructing the first base station to send an F-DPCH to the UE.
  • the first network signaling indicates that the first base station disables a function of sending a DPCCH to the UE; or the first RRC signaling further indicates that the UE is closed to receive the first The function of the downlink DPCCH of the base station.
  • the processing unit is further configured to generate a second RRC signal.
  • the wireless transceiver unit is further configured to send the second RRC signaling to the UE; when the UE does not receive DCH data from the access network, the second RRC signaling is used to indicate Receiving, by the UE, the F-DPCH sent by the first base station; when the UE receives DCH data from the access network, the second RRC signaling is used to indicate that the UE receives the first base station Sending downlink DPDCHo
  • the second RRC signaling when the UE receives DCH data from the access network, the second RRC signaling further indicates that the UE receives the downlink DPCCH sent by the first base station.
  • the second RRC signaling when the UE does not receive DCH data from the access network, includes configuration information of the F-DPCH; when the UE is connected from the When the DCH data is received in the network, the second RRC signaling includes the downlink DPCH configuration information of the first base station.
  • the processing unit is further configured to generate second network signaling, where the wireless transceiver unit is further configured to send the second network signaling to the first base station;
  • the second network signaling is used to instruct the first base station to send an F-DPCH to the UE;
  • the UE receives DCH data from the access network
  • the second network signaling is used to instruct the first base station to send a DPDCH to the UE.
  • the second network signaling when the UE receives DCH data from the access network, the second network signaling further instructs the first base station to send a downlink DPCCH to the UE. In another implementation manner, when the UE does not receive DCH data from the access network, the second network signaling includes configuration information of the F-DPCH; when the UE is connected from the When the DCH data is received in the network, the second network signaling includes downlink DPCH configuration information of the first base station.
  • the wireless transceiver unit before the processing unit generates the second RRC signaling, is further configured to receive a measurement report sent by the UE, where the measurement includes indicating the RNC Sending second RRC signaling to the UE.
  • the embodiment of the present invention further provides a first base station in an access network, comprising: a wireless transceiver unit, configured to receive first network signaling sent by a radio network controller RNC, according to the indication of the first network signaling Receiving E-DCH data sent by the user equipment UE in the access network, and sending an E-HICH to the UE; and processing unit, configured to: when the UE does not receive DCH data from the access network, according to Determining, by the first network signaling, a function of sending an F-DPCH to the UE; when the UE receives DCH data from the access network, shutting down the indication according to the indication of the first network signaling The UE sends the downlink DPDCH function.
  • a wireless transceiver unit configured to receive first network signaling sent by a radio network controller RNC, according to the indication of the first network signaling
  • Receiving E-DCH data sent by the user equipment UE in the access network and sending an E-HICH to the UE
  • processing unit configured to
  • the RNC completes the indication by deleting F-DPCH configuration information in the first network signaling or by setting a preset indication field in the first network signaling.
  • the wireless transceiver unit when the UE receives DCH data from the access network, the wireless transceiver unit is further configured to send an F-DPCH to the UE, where the F-DPCH is used to The first base station performs uplink transmission power control on the UE.
  • the wireless transceiver unit when the UE receives DCH data from the access network, the wireless transceiver unit is further configured to disable the function of sending a downlink DPCCH to the UE.
  • the wireless transceiver unit after receiving the first RRC signaling, is further configured to receive second RRC signaling that is sent by the RNC, and the processing unit is further configured to: When the UE does not receive DCH data from the access network, send an F-DPCH to the UE according to the indication of the second RRC signaling; when the UE receives DCH data from the access network, according to the UE The indication of the second RRC signaling sends a downlink DPDCH to the UE.
  • the wireless transceiver unit is further configured to: when the UE does not receive DCH data from the access network, the received first network signaling includes F-DPCH configuration information. When the UE receives DCH data from the access network, the received first network signaling includes a downlink DPCH configuration information.
  • the wireless transceiver unit when the UE receives DCH data from the access network, the wireless transceiver unit is further configured to send a downlink DPCCH to the UE.
  • the UE does not receive the F-DPCH or the DPCCH or the DPDCH when necessary, in some explicit or implicit manner, for example, the UE can be flexibly turned off when the downlink quality of one base station to the UE is degraded. Receive function, or disable the corresponding sending function to the UE, mitigate the link
  • FIG. 1 is a schematic diagram of an uplink power balance line and a downlink power balance line and a soft handover area in the prior art
  • Embodiment 1 of a network communication method according to the present invention is a flowchart of Embodiment 1 of a network communication method according to the present invention
  • Embodiment 3 is a flowchart of Embodiment 2 of a network communication method according to the present invention.
  • FIG. 5 is a flowchart of Embodiment 4 of a network communication method according to the present invention.
  • FIG. 7 is a flowchart of Embodiment 6 of a network communication method according to the present invention.
  • Embodiment 8 is a flowchart of Embodiment 7 of a network communication method according to the present invention.
  • Embodiment 8 of a network communication method according to the present invention is a flowchart of Embodiment 8 of a network communication method according to the present invention.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • Embodiment 11 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • Embodiment 3 of a user equipment according to the present invention is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • Embodiment 13 is a schematic structural diagram of Embodiment 1 of a radio network controller according to the present invention.
  • Embodiment 2 of a radio network controller according to the present invention.
  • 15 is a schematic structural diagram of Embodiment 3 of a radio network controller according to the present invention
  • 16 is a schematic structural diagram of Embodiment 1 of a micro base station according to the present invention
  • Embodiment 17 is a schematic structural diagram of Embodiment 2 of a micro base station according to the present invention.
  • Embodiment 1 of a macro base station is a schematic structural diagram of Embodiment 1 of a macro base station according to the present invention.
  • FIG. 21 is a flowchart of Embodiment 1 of a network communication method according to the present invention.
  • Embodiment 4 of a user equipment according to the present invention is a schematic structural diagram of Embodiment 4 of a user equipment according to the present invention.
  • Embodiment 1 of a base station is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • Embodiment 4 of a radio network controller is a schematic structural diagram of Embodiment 4 of a radio network controller according to the present invention.
  • 26 is a flowchart of another embodiment of a network communication method according to the present invention.
  • FIG. 27 is a flowchart of another embodiment of a network communication method according to the present invention.
  • 29 is a schematic diagram of another user equipment embodiment provided by the present invention.
  • FIG. 30 is a schematic diagram of another embodiment of a radio network controller according to the present invention.
  • FIG. 31 is a schematic diagram of another base station embodiment provided by the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 2 is a flowchart of a first embodiment of a network communication method according to the present invention.
  • a UE is used as an execution host as an example.
  • the method in this embodiment may include:
  • the UE receives the indication information sent by the radio network controller (Radio Network Controller, RNC) in the access network, where the indication information is used to indicate that the UE: performs uplink and downlink services with the macro base station of the access network in the first area.
  • RNC Radio Network Controller
  • the first condition threshold is a threshold for the micro base station to join the second active set
  • the second condition threshold is a threshold for the macro base station to join the second active set
  • the UE performs service transmission according to the indication information.
  • the first active set includes: a Dedicated Channel (DCH) activation set and/or an Extended Dedicated Channel (E-DCH) activation set
  • the extended DCH active set supports the UE to send the uplink DCH service
  • the extended DCH active set receives the uplink DCH service sent by the UE
  • the extended E-DCH active set supports the UE to send the E-DCH service, and extends the micro of the E-DCH active set.
  • the base station receives the E-DCH service sent by the UE.
  • the UE may receive and obtain a log likelihood ratio (LLR) of the DCH service of the macro base station in the first active set, and use the LLR as a Viterbi decoder input for Viterbi decoding. .
  • LLR log likelihood ratio
  • the second active set includes: a DCH active set and/or an E-DCH active set.
  • the macro base station and the micro base station can simultaneously send the downlink DCH service to the UE, and simultaneously receive the uplink DCH service sent by the UE and/or The E-DCH service, the UE simultaneously receives the downlink DCH service sent by the macro base station and the micro base station.
  • the communication link signal quality between the UE and the target base station gradually increases, when the common pilot signal of the target base station
  • the UE may report the common pilot channel quality rising event of the target base station to the network side through the communication link, so that The radio network controller RNC joins the target base station to the second active set.
  • the third active set includes: an extended DCH active set, the macro DeNB in the third active set supports the downlink DCH service, and the UE receives the downlink DCH service sent by the macro base station in the third active set.
  • the UE may receive the enhanced dedicated transmission sent by the third active centralized micro base station.
  • the channel hybrid automatic repeat request indication channel E-DCH Hybrid ARQ Indicator Channel, hereinafter referred to as E-HICH. If the E-HICH indicates an acknowledgement response (Acknowledgement, hereinafter referred to as ACK), the UE transmits new data, if E-HICH Indicating non-confirmed response (Negative
  • NACK Acknowledgement
  • the first area is the area B
  • the second area is the area E.
  • the first area B the downlink reception of the macro base station by the UE is better than that of the micro base station, but in the uplink, the reception of the micro base station to the UE is better than that of the macro base station. Therefore, according to the indication of the indication information, the UE is in the first area B and the macro base station according to the indication information.
  • both the uplink and the downlink of the UE are good for the link quality of the micro base station, but since the UE still has strong receiving power for the downlink signal of the macro base station, the UE according to the indication of the indication information, the UE is in the area and The micro base station performs uplink and downlink service transmission, and performs downlink service transmission with the macro base station. In the transmission process, the UE can perform downlink power control on the macro base station, so that the downlink of the macro base station in the second area E macro base station can be caused. Interference is minimized and the downlink coverage of the macro base station can be fully utilized.
  • the UE receives the indication information sent by the RNC, and according to the indication information, the UE performs uplink and downlink service transmission with the macro base station in the first area, and performs uplink service transmission with the micro base station, and/or
  • the second area performs uplink service transmission with the micro base station, and performs downlink service transmission with the macro base station, so that uplink interference caused by the UE in the first area to the micro base station can be minimized, and the macro base station in the second area is caused to the micro base station.
  • the downlink interference is minimized, and the uplink coverage of the micro base station and the downlink coverage of the macro base station can be fully utilized, thereby increasing the throughput and reliability of the HetNet edge area transmission.
  • FIG. 3 is a flowchart of Embodiment 2 of a network communication method according to the present invention. As shown in FIG. 3, this embodiment provides a specific implementation method according to the embodiment shown in FIG. 2, where the UE according to the indication information is performed in S102. Before performing business transmission, it also includes:
  • the UE receives the activation set update signaling sent by the RNC.
  • S104. The UE joins the micro base station to the first active set when performing service transmission in the first area according to the active set update signaling, and/or adds the macro base station to the third active set when performing service transmission in the second area.
  • the method further includes:
  • the UE measures the common pilot channel quality of each cell.
  • the UE is in the non-soft handover area, that is, when the serving cell of the UE is the macro base station and moves from the area A to the area B, when the UE measures that the common pilot channel quality of the micro base station exceeds the preset number of joining the first active set.
  • a threshold value is less than the first condition threshold for joining the second active set
  • the UE sends a first measurement report to the RNC, so that the RNC sends the active set update signaling to the UE according to the first measurement report.
  • the UE sends a first measurement report to the macro base station, and the macro base station forwards the first measurement report to the RNC.
  • the UE When the UE is in the soft handover area corresponding to the second active set, that is, when the UE moves from the area C to the area B, when the UE measures that the common pilot channel quality of the micro base station drops to the third that the micro base station deletes from the second active set.
  • the condition threshold exceeds the preset second threshold, the UE sends a first measurement report to the RNC, so that the RNC sends the active set update signaling to the UE according to the first measurement report.
  • the UE sends a first measurement report to the macro base station or the micro base station, and the macro base station or the micro base station forwards the first measurement report to the RNC.
  • first threshold value and the second threshold value may also be equal.
  • the UE After receiving the activation set update signaling, the UE joins the micro base station to the first active set, and then the UE performs service transmission according to the received indication information and the activated set that is added.
  • the method further includes:
  • the UE continues to measure the common pilot channel quality of the micro base station.
  • the UE sends a second measurement report to the RNC, specifically, the UE sends the macro base station or The micro base station sends the second measurement report, and the macro base station or the micro base station forwards the information to the RNC, so that the RNC sends the first control information to the UE, and the UE adds the micro base station to the second active set according to the first control information.
  • the UE continues to measure the common pilot channel quality of the micro base station.
  • the UE sends a second measurement report to the RNC, specifically, the UE sends the Acer to the Acer.
  • the station or the micro base station sends a second measurement report, and the macro base station or the micro base station forwards the second measurement information to the RNC, so that the RNC sends the second control information to the UE, and the UE deletes the micro base station from the first active set according to the second control information.
  • the UE when the UE transmits the uplink signal, the UE also receives a power control command (Transmit Power Control Command, TPC) sent by the micro base station, and the TPC is used for adjustment.
  • TPC Transmit Power Control Command
  • the uplink transmit power of the UE.
  • the UE If the service transmitted by the UE includes the E-DCH service, the UE also needs to receive the TPC and the enhanced dedicated channel relative grant channel (E-DCH Relative Grant) (hereinafter referred to as E-RGCH) when the UE transmits the uplink signal.
  • E-RGCH enhanced dedicated channel relative grant channel
  • the TPC is used to adjust the uplink transmit power of the UE
  • the E-RGCH is used to adjust the uplink scheduling grant value obtained by the UE
  • the E-HICH is used to feed back to the UE whether the micro base station correctly receives the data of the UE.
  • the method further includes:
  • the UE measures the common pilot channel quality of each cell.
  • the UE When the UE is in the non-soft handover area, that is, when the UE moves from the area close to the micro base station to the E area, when the UE measures that the common pilot channel quality of the macro base station exceeds a preset third threshold value and is less than the second
  • the UE sends a third measurement report to the RNC, so that the RNC sends the active set update signaling to the UE according to the third measurement report.
  • the UE sends a third measurement report to the micro base station, and the micro base station forwards the data to the RNC.
  • the UE When the UE is in the soft handover area corresponding to the second active set, that is, when the UE moves from the area D to the area E, when the UE measures that the common pilot channel quality of the macro base station is lower than the fourth that the macro base station deletes from the second active set.
  • the condition threshold is greater than the preset fourth threshold, the UE sends a third measurement report to the RNC. Specifically, the UE sends a third measurement report to the macro base station or the micro base station, and the macro base station or the micro base station forwards the third measurement report to the RNC.
  • the RNC is caused to send an activation set update signaling to the UE according to the third measurement report.
  • the third threshold and the fourth threshold may also be equal.
  • the UE After receiving the activation set update signaling, the UE adds the macro base station to the third active set, and then the UE performs service transmission according to the received indication information and the activated set that is added.
  • the method further includes:
  • the UE continues to measure the common pilot channel quality of the macro base station.
  • the UE sends a fourth measurement report to the RNC.
  • the UE sends a fourth measurement report to the micro base station, and the micro base station forwards the fourth measurement information to the RNC, so that the RNC sends the third control information to the UE, and the UE adds the macro base station to the second active set according to the third control information. or,
  • the UE continues to measure the common pilot channel quality of the macro base station.
  • the UE sends a fourth measurement report to the RNC, specifically, the UE sends a fourth measurement report to the micro base station.
  • the micro base station is further forwarded to the RNC, so that the RNC sends the fourth control information to the UE, and the UE deletes the macro base station from the third active set according to the fourth control information.
  • the network communication method provided in this embodiment, after the UE receives the activation set update signaling, adds the micro base station to the first active set, and then the UE performs service transmission according to the received indication information and the activated set that is added, and/ Or, after receiving the activation set update signaling, the UE adds the macro base station to the third active set, and then the UE performs service transmission according to the received indication information and the activated set that is added, so that the UE may be in the first area.
  • the uplink interference caused by the base station is minimized, and the downlink interference caused by the macro base station to the micro base station in the second area is minimized, and the uplink coverage of the micro base station and the downlink coverage of the macro base station are fully utilized, and the HetNet edge area transmission is increased. Throughput and reliability.
  • FIG. 4 is a flowchart of a third embodiment of a network communication method according to the present invention.
  • This embodiment uses an RNC as an execution entity as an example. As shown in FIG. 4, the method in this embodiment may include:
  • the RNC generates the indication information in the access network, where the indication information is used to indicate that the UE performs uplink and downlink service transmission with the macro base station of the access network in the first area, and performs uplink service transmission with the micro base station of the access network.
  • An area is a region where the common pilot channel quality of the micro base station reaches a region between a first threshold value of joining the first active set and a common pilot channel quality of the micro base station reaching a first condition threshold for joining the second active set, the micro base station
  • the common pilot channel quality is measured by the UE in the first region; and/or, in the second region, uplink and downlink traffic transmission with the micro base station, and downlink traffic transmission with the macro base station, and the second region is a macro base station
  • the common pilot channel quality reaches a region between the third threshold value of the third active set and the common pilot channel quality of the macro base station reaching a second condition threshold for joining the second active set, the common pilot channel of the macro base station Quality is measured by the UE in the second zone.
  • the RNC sends the indication information to the UE, so that the UE performs the service transmission according to the indication information.
  • the first active set includes: an extended DCH active set and/or an extended E-DCH active set, extended
  • the DCH active set supports the UE to send the uplink DCH service
  • the micro base station in the extended DCH active set receives the uplink DCH service sent by the UE
  • the extended E-DCH active set supports the UE to send the E-DCH service, and expands.
  • the micro base station in the E-DCH active set receives the E-DCH service sent by the UE.
  • the UE may receive and obtain the LLR of the DCH service of the macro base station in the first active set, and input the LLR as a Viterbi decoder for Viterbi decoding.
  • the second active set includes: a DCH active set and/or an E-DCH active set.
  • the macro base station and the micro base station can simultaneously send the downlink DCH service to the UE, and simultaneously receive the uplink DCH service sent by the UE and/or The E-DCH service, the UE simultaneously receives the downlink DCH service sent by the macro base station and the micro base station.
  • the third active set includes: an extended DCH active set, and the extended DCH active set supports the macro base station in the third active set to send the downlink DCH service, and the UE receives the downlink DCH service sent by the macro base station in the third active set.
  • the UE may receive the E-HICH sent by the micro-base station in the third active set. If the E-HICH indicates the ACK, the UE transmits new data. If the E-HICH indicates the NACK and the maximum number of retransmissions is not reached, the UE retransmits. data.
  • the first area is the area B
  • the second area is the area E.
  • the downlink reception of the macro base station by the UE is better than that of the micro base station, but in the uplink, the reception of the micro base station to the UE is better than that of the macro base station, so the indication information is sent to the UE through the RNC, so that the UE is in accordance with the indication information.
  • An area B and a macro base station perform uplink and downlink service transmission, and perform uplink service transmission with the micro base station.
  • the micro base station can perform uplink power control on the UE, so that the UE can be in the first area B to the micro base station.
  • the resulting uplink interference is minimized, and the micro base station in the area has better uplink signal quality, so that the uplink coverage of the micro base station can be fully utilized to improve the uplink throughput and reliability of the network.
  • both the uplink and the downlink of the UE are good for the link quality of the micro base station, but because the UE still has strong receiving power for the downlink of the macro base station, the RNC sends the indication information to the UE, so that the UE according to the indication information.
  • the uplink and downlink services are transmitted with the micro base station, and the macro base station performs downlink service transmission.
  • the UE can perform downlink power control on the macro base station, so that the macro base station in the second area E can be The downlink interference caused by the base station is minimized, and the downlink coverage of the macro base station can also be fully utilized.
  • the network communication method provided in this embodiment generates the indication information by using the RNC and sends the indication information to the UE, so that the UE performs uplink and downlink service transmission with the macro base station in the first area, and performs uplink service transmission with the micro base station, and/or The second area and the micro base station perform uplink service transmission, and perform downlink service transmission with the macro base station, so that uplink interference caused by the UE in the first area to the micro base station can be minimized, The downlink interference caused by the macro base station to the micro base station in the second area is minimized, and the uplink coverage of the micro base station and the downlink coverage of the macro base station can be fully utilized, thereby increasing the throughput and reliability of the HetNet edge area transmission.
  • FIG. 5 is a flowchart of Embodiment 4 of a network communication method according to the present invention. As shown in FIG. 5, this embodiment provides a specific implementation method according to the embodiment shown in FIG. 4, where the RNC sends a message to the UE. Before the instructions, it also includes:
  • the RNC sends the activation set update signaling to the UE, so that the UE adds the micro base station to the first active set when performing service transmission in the first area according to the active set update signaling, and/or performs service transmission in the second area.
  • the macro base station is added to the third active set.
  • the method further includes:
  • the RNC receives the first measurement report sent by the UE, where the UE is in the non-soft handover area, that is, when the serving cell of the UE is the macro base station and moves from the area A to the area B, when the UE measures the public of the micro base station
  • the quality of the pilot channel exceeds a preset first threshold and is less than the first condition threshold when the second active set is added, or is sent to the RNC, or
  • the first measurement report is when the UE is in the soft handover area corresponding to the second active set, that is, when the UE moves from the area C to the area B, when the UE measures that the common pilot channel quality of the micro base station is smaller than the micro base station from the second active set.
  • the third condition threshold is deleted and sent to the RNC when the preset second threshold is exceeded.
  • first threshold value and the second threshold value may also be equal.
  • the method further includes:
  • the RNC receives the second measurement report sent by the UE, where the second measurement report is sent by the UE to the RNC when the common pilot channel quality of the micro base station is greater than the first condition threshold of joining the second active set.
  • the RNC sends the first control information to the UE, so that the UE instructs to join the micro base station to the second active set according to the first control information.
  • the method further includes:
  • the RNC receives the second measurement report sent by the UE, where the second measurement report is sent by the UE to the RNC when the common pilot channel quality of the micro base station is less than the second threshold;
  • the RNC sends the second control information to the UE, so that the UE deletes the micro base station from the first active set according to the second control information.
  • the method further includes:
  • the RNC receives the third measurement report sent by the UE, where the third measurement report is when the UE is in the non-soft handover area, that is, when the UE moves from the area close to the micro base station to the E area, when the UE measures the common pilot channel quality of the macro base station.
  • the third threshold value is exceeded and is less than the second condition threshold that is added to the second active set, the UE sends the information to the RNC; or
  • the third measurement report is when the UE is in the soft handover area corresponding to the second active set, that is, when the UE moves from the area D to the area E, when the UE measures that the common pilot channel quality of the macro base station is lower than the macro base station from the second activation.
  • the fourth condition threshold of the deletion is set and is greater than a preset fourth threshold, the UE sends the signal to the RNC.
  • the third threshold and the fourth threshold may also be equal.
  • the method further includes:
  • the RNC receives the fourth measurement report sent by the UE, where the fourth measurement report is sent by the UE to the RNC when the common pilot channel quality of the macro base station is greater than the second condition threshold of joining the second active set;
  • the RNC sends third control information to the UE, so that the UE adds the macro base station to the second active set according to the third control information.
  • the method further includes:
  • the RNC receives the fourth measurement report sent by the UE, where the fourth measurement report is sent by the UE to the RNC when the common pilot channel quality of the macro base station is less than the fourth threshold;
  • the RNC sends fourth control information to the UE, so that the UE deletes the macro base station from the third active set according to the fourth control information.
  • the network communication method provided in this embodiment sends the activation set update signaling to the UE through the RNC, so that after receiving the activation set update signaling, the UE adds the micro base station to the first active set, and then the UE sends the indication information according to the RNC.
  • the RNC sends the active set update signaling to the UE, so that after receiving the active set update signaling, the UE adds the macro base station to the third active set, and then the UE according to the RNC Instructions sent and the activation set added
  • the service transmission is performed, so that the uplink interference caused by the UE in the first area to the micro base station can be minimized, the downlink interference caused by the macro base station in the second area to the micro base station is minimized, and the uplink of the micro base station can be fully utilized.
  • the coverage and coverage of the macro base station increase the throughput and reliability of the HetNet edge area transmission.
  • FIG. 6 is a flowchart of Embodiment 5 of a network communication method according to the present invention. As shown in FIG. 6, the method in this embodiment includes:
  • the micro base station receives the configuration information sent by the RNC in the access network, where the configuration information is used to indicate that the micro base station receives the uplink DCH and/or the uplink E-DCH service sent by the user equipment UE.
  • the micro base station After receiving the first active set by the UE in the first area, the micro base station receives the uplink DCH and/or the uplink E-DCH service sent by the UE in the first active set according to the configuration information, where the first area is micro
  • the common pilot channel quality of the base station reaches a common pilot channel of the regional micro base station between the first threshold value added to the first active set and the common pilot channel quality of the micro base station reaching the first condition threshold of joining the second active set Quality is measured by the UE in the first zone.
  • the first active set includes:
  • the extended DCH active set and/or the extended E-DCH active set are supported.
  • the extended DCH active set supports the UE to send the uplink DCH service, and the extended DCH active set receives the uplink DCH service sent by the UE, and the extended E-DCH active set supports the UE to send.
  • the E-DCH service, and the extended base station of the E-DCH active set receives the E-DCH service sent by the UE.
  • the UE may receive and obtain the LLR of the first active centralized macro base station DCH service, and use the LLR as a Viterbi decoder input for Viterbi decoding.
  • the method further includes:
  • the micro base station sends a TPC to the UE, and the TPC is used to adjust the uplink transmission power of the UE.
  • the method further includes:
  • the MeNB sends the TPC, the E-RGCH, and the E-HICH to the UE.
  • the TPC is used to adjust the uplink transmit power of the UE
  • the E-RGCH is used to adjust the scheduling grant value obtained by the UE
  • the E-HICH is used to feed back the micro base station to the UE. Whether to receive the data of the UE correctly.
  • the micro base station receives the configuration information sent by the RNC, and the micro base station joins the first active set when the UE performs the service transmission in the first area, and then receives the UE in the first active set according to the configuration information.
  • Uplink DCH and/or uplink E-DCH service thereby minimizing uplink interference caused by the UE in the first area to the micro base station, and also fully utilizing the micro base station Upstream coverage. Increased throughput and reliability of HetNet edge zone transmissions.
  • FIG. 7 is a flowchart of Embodiment 6 of a network communication method according to the present invention. As shown in FIG. 7, the method in this embodiment includes:
  • the macro base station receives the configuration information sent by the RNC in the access network, where the configuration information is used to indicate that the macro base station sends the downlink DCH service to the user equipment UE.
  • the macro base station After the third base station is added to the third active set by the UE in the second area, the macro base station sends the downlink DCH service to the UE in the third active set according to the configuration information, and the common pilot channel quality of the second area macro base station is added.
  • a third threshold value of the third active set and an area between the common pilot channel quality of the macro base station reaching a second condition threshold added to the second active set, and the common pilot channel quality of the macro base station is from the second area The UE measured it.
  • the third active set includes: an extended DCH active set, and the extended DCH active set supports the macro base station in the third active set to send the downlink DCH service, and the UE receives the downlink DCH service sent by the macro base station in the third active set.
  • the UE may receive the E-HICH sent by the micro-base station in the third active set. If the E-HICH indicates the ACK, the UE transmits the new E-DCH service. If the E-HICH indicates the NACK and the maximum number of retransmissions is not reached, the UE retransmits the E-DCH. business.
  • the method further includes:
  • the uplink TPC sent by the UE is received, and the TPC is used to control the transmission power of the downlink DCH service.
  • the macro base station receives the configuration information sent by the RNC in the access network, and the macro base station joins the third activation set when the UE performs the service transmission in the second area, and then activates according to the configuration information.
  • the downlink DCH service is sent to the UE in a centralized manner, so that the downlink interference caused by the macro base station in the second area to the micro base station can be minimized, and the downlink coverage of the macro base station can also be fully utilized. Increased throughput and reliability of HetNet edge area transmissions.
  • FIG. 8 is a flowchart of Embodiment 7 of the network communication method of the present invention. As shown in FIG. 8, in this embodiment, the UE is in the vicinity of the first area B as an example.
  • the method in this embodiment may include:
  • the UE measures a common pilot channel quality of each cell, and sends a first measurement report to the RNC. Specifically, when the UE is in the non-soft handover area, that is, when the UE moves from the area A to the area B, When the UE measures that the common pilot channel quality of the micro base station exceeds a preset first threshold and is less than a first condition threshold for joining the second active set, the UE sends a first measurement report to the RNC.
  • the UE When the UE is in the soft handover area corresponding to the second active set, that is, when the UE moves from the area C to the area B, when the UE measures that the common pilot channel quality of the micro base station is smaller than the third condition that the micro base station deletes from the second active set.
  • the threshold exceeds a preset second threshold, the UE sends a first measurement report to the RNC.
  • the RNC After receiving the first measurement report sent by the UE, the RNC sends the activation set update signaling to the UE.
  • the RNC sends the indication information to the UE, where the indication information is used to indicate that the UE: performs uplink and downlink service transmission with the macro base station in the first area, and performs uplink service transmission with the micro base station, where the first area is the common pilot channel quality of the micro base station. And reaching an area between a first threshold value of joining the first active set and a common pilot channel quality of the micro base station reaching a first condition threshold for joining the second active set.
  • the UE After receiving the activation set update signaling sent by the RNC, the UE adds the micro base station to the first active set according to the active set update signaling, when performing service transmission in the first area.
  • the UE After receiving the indication information sent by the RNC, the UE performs service transmission according to the indication information and the activated set that is added.
  • the UE continues to measure the common pilot channel quality of the micro base station.
  • the UE sends a second measurement report to the RNC.
  • the RNC sends the first control information to the UE, so that the UE adds the micro base station to the second active set according to the first control information.
  • the UE continues to measure the common pilot channel quality of the micro base station, and when the common pilot channel quality of the micro base station is less than the second threshold, the UE sends a second measurement report to the RNC.
  • the RNC sends the second control information to the UE, so that the UE deletes the micro base station from the first active set according to the second control information.
  • the UE also receives the TPC sent by the micro base station when the UE transmits the uplink signal, and the TPC is used to adjust the uplink transmission power of the UE.
  • the UE If the service transmitted by the UE includes the E-DCH service, the UE also receives the TPC, the E-RGCH, and the E-HICH sent by the micro-base station when the UE transmits the uplink signal.
  • the TPC is used to adjust the uplink transmit power of the UE.
  • the E-RGCH is used to adjust the uplink scheduling grant value obtained by the UE, and the E-HICH is used to the UE.
  • the feedback micro base station correctly receives the data of the UE.
  • FIG. 9 is a flowchart of Embodiment 8 of the network communication method according to the present invention.
  • the UE is in the vicinity of the first area E as an example.
  • the method in this embodiment may include:
  • the S60U UE measures the common pilot channel quality of each cell, and sends a third measurement report to the RNC. Specifically, when the UE is in the non-soft handover area, that is, when the UE moves from the area close to the micro base station to the E area, when the UE measures that the common pilot channel quality of the macro base station exceeds a preset third threshold value and is smaller than When joining the second condition threshold of the second active set, the UE sends a third measurement report to the RNC.
  • the UE When the UE is in the soft handover area corresponding to the second active set, that is, when the UE moves from the area D to the area E, when the UE measures that the common pilot channel quality of the macro base station is lower than the fourth that the macro base station deletes from the second active set.
  • the condition threshold is greater than the preset fourth threshold, the UE sends a third measurement report to the RNC.
  • the RNC After receiving the third measurement report sent by the UE, the RNC sends the activation set update signaling to the UE.
  • the RNC sends the indication information to the UE, where the indication information is used to indicate that the UE: performs uplink and downlink service transmission with the micro base station in the second area, and performs downlink service transmission with the macro base station, where the second area is the common pilot channel quality of the macro base station.
  • a region between the third threshold value of joining the third active set and the common pilot channel quality of the macro base station reaching a second condition threshold for joining the second active set is reached.
  • the UE After receiving the activation set update signaling sent by the RNC, the UE adds the macro base station to the third active set according to the active set update signaling, when performing service transmission in the second area.
  • the UE After the UE receives the indication information sent by the RNC, the UE performs service transmission according to the indication information and the activated activation group.
  • the UE continues to measure the common pilot channel quality of the micro base station.
  • the UE sends a fourth measurement report to the RNC.
  • the RNC sends third control information to the UE, and the UE adds the macro base station to the second active set according to the third control information.
  • the UE continues to measure the common pilot channel quality of the micro base station, and when the common pilot channel quality of the macro base station is less than the fourth threshold, the UE sends a fourth measurement report to the RNC.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • the apparatus in this embodiment may include: a receiving module 11 and a processing module 12, where the receiving module 11 is configured to receive an RNC transmission in an access network. Instructing information, the indication information is used to indicate that the UE: in the first area, performs uplink and downlink service transmission with the macro base station, and performs uplink service transmission with the micro base station, where the first area is the common pilot channel quality of the micro base station reaches the first activation.
  • the first threshold value of the set and the common pilot channel quality of the micro base station reach an area between the first condition thresholds of the second active set, and the common pilot channel quality of the micro base station is measured by the UE in the first area. And/or, in the second area, performing uplink and downlink traffic transmission with the micro base station, and performing downlink traffic transmission with the macro base station, and the common pilot channel quality of the second regional macro base station reaches the third threshold of joining the third active set.
  • the value of the common pilot channel of the macro base station is equal to the area of the common base channel of the macro base station, and the common pilot channel quality of the macro base station is UE measurements obtained in the second region.
  • the processing module 12 is configured to perform service transmission according to the indication information.
  • the first active set includes: an extended DCH active set and/or an extended E-DCH active set, the extended DCH active set supports the UE to send an uplink DCH service, and the extended DCH active set receives the uplink DCH service sent by the UE, and the extended The E-DCH active set supports the UE to send the E-DCH service, and the extended micro-base station in the E-DCH active set receives the E-DCH service sent by the UE.
  • the UE may receive and obtain the LLR of the DCH service of the first active set macro base station, and input the LLR as a Viterbi decoder for Viterbi decoding.
  • the second active set includes: a DCH active set and/or an E-DCH active set.
  • the third active set includes: an extended DCH active set, and the extended DCH active set supports the macro base station in the third active set to send the downlink DCH service, and the UE receives the downlink DCH service sent by the macro base station in the third active set.
  • the UE may receive the E-HICH sent by the micro-base station in the third active set. If the E-HICH indicates ACK, the UE transmits new data. If the E-HICH indicates NACK and the maximum number of retransmissions is not reached, the UE performs data. Retransmission.
  • the user equipment in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2, and the implementation principle is similar, and details are not described herein again.
  • the user equipment provided in this embodiment receives the indication information sent by the RNC through the receiving module, and the processing module performs uplink and downlink service transmission with the macro base station in the first area according to the indication information, and performs uplink service transmission with the micro base station, and/or, Performing uplink and downlink traffic transmission with the micro base station in the second area, And performing downlink service transmission with the macro base station, so as to minimize uplink interference caused by the UE in the first area to the micro base station, and minimize downlink interference caused by the macro base station in the second area to the micro base station, and may also be sufficient
  • the uplink coverage of the micro base station and the downlink coverage of the macro base station increase the throughput and reliability of the HetNet edge area transmission.
  • the receiving module 11 is further configured to: before the processing module 12 performs the service transmission according to the indication information, receive the activation set update signaling sent by the RNC.
  • the processing module 12 is further configured to: join the micro base station to the first active set when performing traffic transmission in the first area according to the active set update signaling, and/or add the macro base station to the third active when performing service transmission in the second area; concentrated.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • the apparatus in this embodiment further includes: a first measurement module 13 and a first A transmitting module 14, the first measuring module 13 is configured to measure the common pilot channel quality of each cell before the receiving module 11 receives the active set update signaling sent by the RNC.
  • the first transmitting module 14 is configured to be in the non-soft handover area
  • the first measurement module 13 measures that the common pilot channel quality of the micro base station exceeds a preset first threshold value and is smaller than the second activation set.
  • the threshold is a condition
  • the first measurement report is sent to the RNC, so that the RNC sends the active set update signaling to the UE according to the first measurement report.
  • the first sending module 14 is further configured to:
  • the first measurement report is sent to the RNC, so that the RNC sends the activation set update signaling to the UE according to the first measurement report.
  • the first measurement module 13 is also used to:
  • the processing module 12 After the processing module 12 performs the service transmission according to the indication information, the common pilot channel quality of the micro base station is continuously measured.
  • the first sending module 14 is used.
  • the method is further configured to send a second measurement report to the RNC, so that the RNC sends the first control information to the UE.
  • the processing module 12 is further configured to: join the micro base station to the second active set according to the first control information.
  • the first measurement module 13 is further configured to: After the processing module 12 performs the service transmission according to the indication information, the common pilot channel quality of the micro base station is continuously measured.
  • the first sending module 14 is further used to the RNC. Sending a second measurement report, so that the RNC sends the second control information to the UE.
  • the processing module 12 is further configured to: delete the micro base station from the first active set according to the second control information.
  • the service transmitted by the UE includes the DCH service
  • the receiving module 11 is further configured to: receive the TPC sent by the micro base station, where the TPC is used to adjust the uplink sending power of the UE.
  • the service transmitted by the UE includes an E-DCH service, and the receiving module 11 is further configured to:
  • the TPC is used to adjust the uplink transmit power of the UE
  • the E-RGCH is used to adjust the scheduling grant value obtained by the UE
  • the E-HICH is used to feed back the micro-base station to the UE. Whether to receive the data of the UE correctly.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • the apparatus of this embodiment is further based on the apparatus structure shown in FIG. 10, and further includes: a second measurement module 15 and a
  • the second sending module 16 is configured to measure the common pilot channel quality of each cell before the receiving module 11 receives the active set update signaling sent by the RNC.
  • the second sending module 16 is configured to: when the UE is in the non-soft handover area, when the second measurement module 15 measures that the common pilot channel quality of the macro base station exceeds a preset third threshold value and is less than the second activation set.
  • the third measurement report is sent to the RNC, so that the RNC sends the active set update signaling to the UE according to the third measurement report.
  • the second sending module 16 is further configured to: when the UE is in the soft handover area corresponding to the second active set, when the second measurement module 15 measures that the common pilot channel quality of the macro base station is lower than that of the micro base station deleted from the second active set. And when the second condition threshold exceeds the preset second threshold, the third measurement report is sent to the RNC, so that the RNC sends the activation set update signaling to the UE according to the third measurement report.
  • the second measurement module 15 is also used to:
  • the processing module 12 After the processing module 12 performs the service transmission according to the indication information, it continues to measure the common pilot channel quality of the macro base station.
  • the second sending module 16 The method is further configured to send a fourth measurement report to the RNC, so that the RNC sends the third control information to the UE.
  • the processing module 12 is further configured to: add the macro base station to the second active set according to the third control information.
  • the second measurement module 15 is further configured to: After the processing module 12 performs the service transmission according to the indication information, the public pilot channel quality of the macro base station is continuously measured. When the common pilot channel quality of the macro base station is less than the fourth threshold, the second sending module 16 is further configured to send the RNC. Sending a fourth measurement report, so that the RNC sends the fourth control information to the UE. The processing module 12 is further configured to: delete the macro base station from the third active set according to the fourth control information.
  • the user equipment of the embodiment shown in FIG. 11 and FIG. 12 can be used to implement the technical solution of the method embodiment shown in FIG. 3, and the implementation principle thereof is similar, and details are not described herein again.
  • the processing module after receiving the activation set update signaling by the receiving module, the processing module adds the micro base station to the first active set, and then according to the received indication information and the added activation. After the set transmits the service, and/or after the receiving module receives the activation set update signaling, the processing module adds the macro base station to the third active set, and then performs the service transmission according to the received indication information and the activated set that is added.
  • the uplink interference caused by the UE in the first area to the micro base station can be minimized
  • the downlink interference caused by the macro base station in the second area to the micro base station can be minimized
  • the uplink coverage of the micro base station and the macro base station can be fully utilized. Downstream coverage increases the throughput and reliability of HetNet edge area transmissions.
  • FIG. 13 is a schematic structural diagram of Embodiment 1 of a radio network controller according to the present invention.
  • the apparatus in this embodiment may include: a generating module 21 and a sending module 22, where the generating module 21 is configured to generate indication information, and indicate The information is used to indicate that the user equipment UE: in the first area, performs uplink and downlink service transmission with the macro base station of the access network, and performs uplink service transmission with the micro base station, and the common pilot channel quality of the first area is the micro base station reaches the The first threshold value of an active set and the common pilot channel quality of the micro base station reach an area between the first condition thresholds of the second active set, and the common pilot channel quality of the micro base station is determined by the UE in the first area.
  • the sending module 22 is configured to send indication information to the UE, so that the UE performs service transmission according to the indication information.
  • the first active set includes:
  • the extended DCH active set and/or the extended E-DCH active set are supported, and the extended DCH active set supports the UE to send the uplink DCH service, and the extended micro-base station in the extended DCH active set receives the uplink DCH service sent by the UE,
  • the extended E-DCH active set supports the UE to send the E-DCH service, and the extended base station of the E-DCH active set receives the E-DCH service sent by the UE.
  • the UE may receive and obtain an LLR of the DCH service of the macro base station in the first active set, and input the LLR as a Viterbi decoder for Viterbi decoding.
  • the second active set includes: a DCH active set and/or an E-DCH active set.
  • the third active set includes: an extended DCH active set, and the extended DCH active set supports the macro base station in the third active set to send the downlink DCH service, and the UE receives the downlink DCH service sent by the macro base station in the third active set.
  • the UE may receive the E-HICH sent by the micro-base station in the third active set. If the E-HICH indicates the ACK, the UE transmits new data on the E-DCH, if the E-HICH indicates the NACK and the maximum retransmission is not reached. The number of times, the UE performs data retransmission on the E-DCH.
  • the radio network controller of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the implementation principle thereof is similar, and details are not described herein again.
  • the radio network controller provided in this embodiment generates the indication information by using the generating module, and the sending module sends the indication information to the UE, so that the UE performs uplink and downlink service transmission with the macro base station in the first area, and performs uplink service transmission with the micro base station.
  • the sending module 22 is further configured to: before sending the indication information, send the activation set update signaling to the UE, so that the UE adds the micro base station to the first when performing service transmission in the first area according to the active set update signaling.
  • the active set, and/or the macro base station is added to the third active set when the second area performs traffic transmission.
  • FIG. 14 is a schematic structural diagram of Embodiment 2 of a radio network controller according to the present invention.
  • the apparatus in this embodiment may further include: a first receiving module, based on the apparatus structure shown in FIG.
  • the first receiving module 23 is configured to receive the first measurement report sent by the UE before the sending module 22 sends the activation set update signaling to the UE, where the first measurement report is when the UE is in the non-soft handover area, when the UE measures The common pilot channel quality of the micro base station exceeds a preset first threshold value and is smaller than the first condition threshold value when the second active set is added, or is sent to the RNC, or the first measurement
  • the UE measures that the common pilot channel quality of the micro base station is smaller than the third condition threshold that the micro base station deletes from the second active set and is greater than a preset second gate.
  • the limit is sent to the RNC.
  • the first receiving module 23 is further configured to: after the sending module 22 sends the indication information to the UE, receive the second measurement report sent by the UE, where the second measurement report is when the common pilot channel quality of the micro base station is greater than the joining
  • the second condition threshold of the active set is sent by the UE to the RNC.
  • the sending module 22 is further configured to: send the first control information to the UE, so that the UE indicates to join the micro base station to the second active set according to the first control information.
  • the first receiving module 23 is further configured to: after the sending module 22 sends the indication information to the UE, receive the second measurement report sent by the UE, where the second measurement report is when the common pilot channel quality of the micro base station is less than the second threshold.
  • the value is sent by the UE to the RNC.
  • the sending module 22 is further configured to: send the second control information to the UE, so that the UE deletes the micro base station from the first active set according to the second control information.
  • FIG. 15 is a schematic structural diagram of Embodiment 3 of a radio network controller according to the present invention.
  • the apparatus of this embodiment may further include: a second receiving module, based on the apparatus structure shown in FIG.
  • the second receiving module 24 is configured to receive a third measurement report sent by the UE before the sending module 22 sends the activation set update signaling to the UE, where the third measurement report is when the UE is in the non-soft handover area, when the UE measures When the quality of the common pilot channel of the macro base station exceeds a preset third threshold and is less than the second condition threshold of the second active set, the UE sends the signal to the RNC.
  • the UE when the third measurement report is that the UE is in the soft handover area corresponding to the second active set, when the UE measures that the common pilot channel quality of the macro base station is lower than the fourth condition threshold that the macro base station deletes from the second active set, and is greater than the pre- When the fourth threshold is set, the UE sends it to the RNC.
  • the second receiving module 24 is further configured to: after the sending module 22 sends the indication information to the UE, receive the fourth measurement report sent by the UE, where the fourth measurement report is when the quality of the common pilot channel of the macro base station is greater than The second condition threshold of the active set is sent by the UE to the RNC.
  • the sending module 22 is further configured to: send third control information to the UE, so that the UE adds the macro base station to the second active set according to the third control information.
  • the second receiving module 24 is further configured to: after the sending module 22 sends the indication information to the UE, receive the fourth measurement report sent by the UE, where the fourth measurement report is when the quality of the common pilot channel of the macro base station is less than the fourth threshold.
  • the value is sent by the UE to the RNC.
  • the sending module 22 is further configured to: send the fourth to the UE Controlling information, so that the UE deletes the macro base station from the third active set according to the fourth control information.
  • the radio network controller shown in FIG. 14 and FIG. 15 can be used to implement the technical solution of the method embodiment shown in FIG. 5, and the implementation principle is similar, and details are not described herein again.
  • the radio network controller provided in the embodiment shown in FIG. 14 and FIG. 15 sends the activation set update signaling to the UE through the sending module, so that after receiving the activation set update signaling, the UE joins the micro base station to the first active set, and then The UE then performs service transmission according to the indication information sent by the sending module and the activated set that is added, and/or sends each module to send the activation set update signaling to the UE, so that after the UE receives the activation set update signaling, the macro base station is sent.
  • the third activation set is added, and then the UE performs the service transmission according to the indication information sent by the sending module and the activated set that is added, so that the uplink interference caused by the UE in the first area to the micro base station can be minimized, and the second area is The downlink interference caused by the macro base station to the micro base station is minimized, and the uplink coverage of the micro base station and the downlink coverage of the macro base station can be fully utilized, thereby increasing the throughput and reliability of the HetNet edge area transmission.
  • FIG. 16 is a schematic structural diagram of Embodiment 1 of a micro base station according to the present invention.
  • the apparatus in this embodiment may include: a receiving module 31 and a processing module 32, where the receiving module 31 is configured to receive an RNC transmission in an access network.
  • the configuration information is used to indicate that the micro base station receives the uplink DCH and/or the uplink E-DCH service sent by the user equipment UE.
  • the processing module 32 is configured to: after the micro base station joins the first active set by the UE in the first area, receive the uplink DCH and/or the uplink E-DCH service sent by the UE in the first active set according to the configuration information, where The area is a region where the common pilot channel quality of the micro base station reaches a region between a first threshold value of joining the first active set and a common pilot channel quality of the micro base station reaching a first condition threshold for joining the second active set, the micro base station The common pilot channel quality is measured by the UE in the first region.
  • the first active set includes:
  • the extended DCH active set and/or the extended E-DCH active set are supported.
  • the extended DCH active set supports the UE to send the uplink DCH service, and the extended DCH active set receives the uplink DCH service sent by the UE, and the extended E-DCH active set supports the UE to send.
  • the E-DCH service, and the extended base station of the E-DCH active set receives the E-DCH service sent by the UE; in the first active set, the UE can receive and obtain the LLR of the DCH service of the macro base station in the first active set, and use the LLR as
  • the Viterbi decoder input performs Viterbi decoding.
  • the micro base station in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 6.
  • the implementation principle is similar, and details are not described herein again.
  • the micro base station provided by the embodiment receives the configuration information sent by the RNC through the receiving module, and after the micro base station joins the first active set when the UE performs the service transmission in the first area, the processing module receives the UE in the first active set according to the configuration information.
  • the uplink DCH and/or the uplink E-DCH service are sent, so that the uplink interference caused by the UE in the first area to the micro base station can be minimized, and the uplink coverage of the micro base station can also be fully utilized. Increased throughput and reliability of HetNet edge zone transmissions.
  • FIG. 17 is a schematic structural diagram of Embodiment 2 of a micro base station according to the present invention.
  • the apparatus in this embodiment may further include: a sending module 33, if the device is configured on the basis of the device structure shown in FIG.
  • the service received by the base station is a DCH service
  • the sending module 33 is configured to send a TPC to the UE, where the TPC is used to adjust the uplink transmit power of the UE.
  • the sending module 33 is configured to send the TPC, the E-RGCH, and the E-HICH to the UE.
  • the TPC is used to adjust the uplink transmit power of the UE
  • the E-RGCH is used to adjust the UE.
  • the scheduling grant value, the E-HICH is used to feed back to the UE whether the micro base station correctly receives the data of the UE.
  • FIG. 18 is a schematic structural diagram of Embodiment 1 of a macro base station according to the present invention.
  • the apparatus in this embodiment may include: a receiving module 41 and a sending module 42, where the receiving module 41 is configured to receive an address sent by an access website RNC.
  • the configuration information is used to indicate that the macro base station sends the downlink DCH service to the user equipment UE.
  • the sending module 42 is configured to: after the macro base station joins the third active set by the UE in the second area, send the downlink DCH service to the UE in the third active set according to the configuration information, and the common pilot channel of the second area macro base station The quality reaches the area between the third threshold value of the third active set and the common pilot channel quality of the macro base station reaching the second condition threshold of the second active set, and the common pilot channel quality of the macro base station is The UE of the two regions is measured.
  • the third active set includes: an extended DCH active set, and the extended DCH active set supports the macro base station in the third active set to send the downlink DCH service, and the UE receives the downlink DCH service sent by the macro base station in the third active set.
  • the UE may receive the third active centralized micro base station to send
  • E-HICH if the E-HICH indicates ACK, the UE transmits new data on the E-DCH. If the E-HICH indicates NACK and the maximum number of retransmissions is not reached, the UE performs data retransmission on the E-DCH.
  • receiving module 41 is also used to:
  • the sending module After the sending module sends the downlink DCH service to the UE in the third active set according to the configuration information, The uplink TPC sent by the UE is received, and the TPC is used to control the transmission power of the downlink DCH service.
  • the macro base station in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 7. The implementation principle is similar, and details are not described herein again.
  • the macro base station provided by the embodiment receives the configuration information sent by the RNC through the receiving module, and after the macro base station joins the third active set when the UE performs the service transmission in the second area, the sending module sends the third active set to the UE according to the configuration information.
  • the downlink DCH service is sent, so that the downlink interference caused by the macro base station in the second area to the micro base station can be minimized, and the downlink coverage of the macro base station can also be fully utilized. Increased throughput and reliability of HetNet edge area transmissions.
  • the access network system provided in this embodiment includes the user equipment shown in any one of FIG. 1 and the radio network controller shown in any of FIG. 13 to FIG. 15, and the micro The base station and the macro base station shown in FIG.
  • the downlink reception of the macro base station by the UE is better than the micro base station in the area, and the HSDPA serving cell is a macro base station, but in the uplink, the path loss of the UE to the micro base station is smaller than the path to the macro base station. Loss, the receiving of the UE by the micro base station is better than that of the macro base station, but the serving cell of the UE is a macro base station.
  • the uplink of the micro base station is relatively idle and has more uplink capacity, so the network uplink throughput performance is not high.
  • the UE does not enter the soft handover SH0 area, and the micro base station cannot perform power control on the UE. Therefore, the uplink power of the UE is too high in the receiving power of the micro base station, causing uplink interference to the micro base station.
  • the scenario of the uplink and downlink imbalance in the heterogeneous network may be caused.
  • the above problem also exists in this scenario.
  • the embodiment of the present invention further provides a network communication method, which can well utilize the uplink coverage of the micro base station, increase the throughput and reliability of the HetNet edge area transmission, and further reduce the UE in the HetNet. Indicates the uplink interference caused by the area B to the micro base station when performing service transmission.
  • FIG. 19 is a flowchart of a network communication method according to Embodiment 9 of the present invention.
  • a UE is used as an execution entity as an example.
  • the method in this embodiment may include:
  • the UE receives the first enhanced dedicated channel hybrid automatic repeat request indication channel (E-DCH Hybrid ARQ Indicator Channel, E-HICH) sent by the first base station in the access network, where the first base station is located in the UE.
  • E-DCH Hybrid ARQ Indicator Channel E-HICH
  • the first base station may be any micro base station or macro base station in the access network, where the macro base station refers to: two macro base stations are affected by the surrounding environment, building occlusion, etc., and may also be similar to heterogeneous In the case of a macro base station and a micro base station in a network, a macro base station is similar to a micro base station in a heterogeneous network.
  • the first base station in the access network is not in the E-DCH active set of the UE, that is, when the SH0 area is not entered (for example, in the B area shown in FIG. 1).
  • the E-HICH contains two pieces of information: an acknowledgement (ACK) and a non-acknowledgement (NACK).
  • ACK indicates that the base station receives the E-DCH service correctly in the previous process
  • NACK indicates that the base station receives the E-DCH service in the previous process. error.
  • the UE will send new data in the next process. If it is NACK, the UE will retransmit the data in the next process. If the maximum number of retransmissions has not been successful, the UE will also send new data.
  • the UE If the UE receives the E-HICH of multiple cells, the UE will transmit new data as long as there is an E-HICH indicating ACK. The UE will retransmit the last transmitted E-DCH data only when all E-HICHs indicate NACK.
  • the UE sends new E-DCH data when the first E-HICH indicates an acknowledgement ACK. Specifically, after the UE receives the first E-HICH sent by the first base station, if the received first E-HICH sends an ACK, the first base station correctly receives the E-DCH service sent by the UE, then the UE sends a new E. -DCH data.
  • the first base station has a higher probability of correctly receiving the UE.
  • the E-DCH data is sent, so that the new E-DCH data sent by the UE can be received by the first base station and sent to the RNC.
  • more E-HICH feedback ACKs are sent to the UE. This reduces the situation that all E-HICH feedbacks of the UE are NACK, reduces the number of times the UE retransmits the E-DCH, and improves the transmission efficiency of the E-DCH.
  • the UE When the first E-HICH indicates a negative acknowledgement NACK, the UE retransmits the E-DCH data.
  • the first base station is located in the detection range of the UE, and includes:
  • the downlink pilot quality of the first base station measured by the UE exceeds a preset first threshold.
  • the first threshold is that the UE correctly decodes the minimum value of the pilot quality of the E-HICH transmitted by the first base station.
  • the UE may further include:
  • the UE receives the first indication signaling that is sent by the RNC, where the first indication signaling is used to indicate that the UE receives the first E-HICH sent by the first base station, where the first indication signaling includes a channelization code of the first E-HICH. a signature sequence, the channelization code is used to indicate that the UE decodes the channel occupied by the first E-HICH. The frequency code, the signature sequence is used to instruct the UE to decode the orthogonal sequence that should be used for each E-HICH subframe.
  • the channelization code is used in the Wideband Code Division Multiple Access (WCDMA) system to distinguish multiple channels in the air interface. Since the channelization codes are orthogonal to each other, there is no multipath interference and intersymbol interference. In the case, the channels transmitted by the different channelization codes are not interfered with each other and have good performance.
  • WCDMA Wideband Code Division Multiple Access
  • the receiver receives the signal, it will first despread the signal with the channelization code.
  • the despread channelization code is the extended channelization code, the receiver can correctly solve the data.
  • the signature sequence is used to distinguish users. A user can solve the E-HICH and the E-DCH Relative Grant Channel (E-RGCH) by using its own signature sequence. The data that is sent to itself.
  • E-RGCH E-DCH Relative Grant Channel
  • the first indication signaling further includes: timing information of the first E-HICH, where the timing information of the first E-HICH is used to indicate that the UE receives the start time position of each subframe of the first E-HICH.
  • the UE may determine the start position of the E-HICH at each subframe according to the timing information, so as to correctly receive and decode the information on the E-HICH.
  • the timing information of the first E-HICH may be a timing offset or a symbol position of a part of a downlink physical channel (Fractional Downlink Physical Channel, hereinafter referred to as F-DPCH) of the first base station.
  • F-DPCH Downlink Physical Channel
  • the reference channel is the primary common control physical channel (Primary Common Control Physical Channel, below: P-CCPCH)
  • P-CCPCH Primary Common Control Physical Channel
  • the timing offset is r F ⁇ ff detoxifying each F-DPCH frame/subframe is better than P- CCPCH night T F — DPCH , mecanic time.
  • the channel timing of the first E-HICH is known by the timing offset r F — DPeff of the F-DPCH.
  • the first indication signaling may further include:
  • E-RGCH code channel and signature sequence E-RGCH is used to control the UE's E-DCH transmission power
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is the timing offset r F — ⁇ réelle and/or the symbol position of the partial downlink physical channel F-DPCH of the first base station.
  • the E-DCH transmission power of the UE is controlled by the E-RGCH.
  • the first base station can send a power reduction indication to the UE through the E-RGCH, so as to avoid excessive power to the first base station.
  • Cause interference For example, uplink interference caused to the micro base station when the UE is in the illustrated area B for service transmission in the HetNet can be reduced.
  • the UE may further include:
  • the UE measures a common pilot channel quality of each serving cell.
  • the UE When the UE measures that the common pilot channel quality of the first base station exceeds the preset first threshold, the UE sends a measurement report to the RNC, so that the RNC sends the first indication signaling to the UE according to the measurement report.
  • the UE when the first base station in the access network is not in the E-DCH active set of the UE, the UE may receive the E-HICH sent by the first base station, so that the UE may be based on the E-HICH.
  • the UE may send the E-DCH service to the first base station, so that the uplink coverage of the first base station can be utilized well, and the throughput rate of the HetNet edge area transmission is increased.
  • the reliability can further reduce the uplink interference caused to the first base station when the UE is in the illustrated area B for service transmission in the HetNet.
  • FIG. 20 is a flowchart of a tenth embodiment of a network communication method according to the present invention.
  • a base station is used as an execution entity as an example.
  • the method in this embodiment may include:
  • the first base station in the access network receives the E-DCH service sent by the UE, where the first base station is located in the detection range of the UE and is not in the enhanced dedicated channel E-DCH active set of the UE.
  • the first base station may be any micro base station or macro base station in the access network, where the macro base station refers to: two macro base stations are affected by the surrounding environment, building occlusion, etc., and may also be similar to the heterogeneous network.
  • a macro base station is similar to a micro base station in a heterogeneous network.
  • the first base station in the access network is not in the UE's E-DCH active set, i.e., when it does not enter the SH0 area (e.g., in the B area shown in Figure 1).
  • the first base station sends a first E-HICH to the UE.
  • the first base station receives new E-DCH data that is sent by the UE when the first E-HICH indication is an acknowledgment ACK.
  • the first base station receives the E-DCH data that the UE retransmits when the first E-HICH indicates a negative acknowledgement NACK.
  • the E-HICH includes two pieces of information: an acknowledgement (ACK) and a non-acknowledgement (NACK).
  • ACK indicates that the base station receives the E-DCH service correctly in the previous process
  • NACK indicates that the base station receives the E-DCH service in the previous process. error.
  • the UE will send new data in the next process. If it is NACK, the UE will retransmit the data in the next process. If the maximum number of times is re-transmitted, it has not yet become The UE will also send new data. If the UE receives the E-HICH of multiple cells (the UE has more than one E-DCH active set), the UE will transmit new data as long as there is an E-HICH indicating ACK.
  • the first base station is located in the detection range of the UE, and includes:
  • the downlink pilot quality of the first base station measured by the UE exceeds a preset first threshold.
  • the first threshold is that the UE correctly decodes the minimum value of the pilot quality of the E-HICH transmitted by the first base station.
  • the first base station may further include: S804: The first base station receives the second indication signaling sent by the RNC, where the second indication signaling is used to indicate that the first base station receives the UE sending The E-DCH service, the second indication signaling includes: an uplink scrambling code of the UE, a channelization code of the first E-HICH, and a signature sequence, where the channelization code is used to indicate that the UE decodes the channel occupied by the first E-HICH The spreading code used, the signature sequence is used to instruct the UE to decode the orthogonal sequence that should be used for each E-HICH subframe.
  • the scrambling code is a string of pseudo-random codes.
  • the base station distinguishes and identifies the user by identifying the scrambling code.
  • the channelization code of the first E-HICH indicates which code channel is used by the first E-HICH transmitted to the UE.
  • the signature sequence of the first E-HICH indicates the signature sequence used by the UE.
  • the second indication signaling further includes: timing information of the first E-HICH, where timing information of the first E-HICH is used to indicate a start time position of each subframe in which the first E-HICH is transmitted.
  • the timing information of the second E-HICH is a timing offset r F — ⁇ admir and/or a symbol position of a part of the downlink physical channel F-DPCH of the first base station.
  • the reference channel is P-CCPCH
  • the timing offset is ⁇ ⁇ — goes indicates the time when each F-DPCH frame/subframe is later than P-CCPCH ⁇ roy.
  • the timing offset of the F-DPCH, r F - ⁇ can be used to know the channel timing of the first E-HICH.
  • the second indication signaling further includes:
  • E-RGCH code channel and signature sequence E-RGCH is used to control the UE's E-DCH transmission power
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is the timing offset r F — ⁇ réelle and/or the symbol position of the partial downlink physical channel F-DPCH of the first base station.
  • the first base station receives the second indication signaling sent by the RNC, and further includes:
  • the first base station sends a receiving capability message to the RNC, where the receiving capability message is used to indicate that the first base station can receive the E-DCH service sent by the UE.
  • the network communication method provided in this embodiment when the first base station in the access network is not in the E-DCH active set of the UE, after receiving the E-DCH service sent by the UE by the first base station, sending the E-HICH to the UE Therefore, the UE may continue to send the E-DCH service to the first base station according to the E-HICH when the first base station correctly receives the E-DCH service sent by the UE. Therefore, the uplink coverage of the first base station can be well utilized, and the throughput and reliability of the HetNet edge area transmission can be increased. Further, the uplink of the first base station when the UE is in the illustrated area B for service transmission in the HetNet can be reduced. interference.
  • FIG. 21 is a flowchart of the first embodiment of the network communication method of the present invention.
  • the embodiment of the present invention is described by using the RNC as an execution subject. As shown in FIG. 21, the method in this embodiment may include:
  • the RNC in the access network generates the first indication signaling and the second indication signaling, where the first indication signaling is used to instruct the UE to receive the first enhanced dedicated channel hybrid automatic repeat request indication channel E- sent by the first base station.
  • the HICH, the second indication signaling is used to indicate that the first base station receives the E-DCH service sent by the UE, where the first base station is located in the detection range of the UE and is not in the enhanced dedicated channel E-DCH active set of the UE.
  • the first indication signaling, the channelization code of the first E-HICH indicates, by the UE, which spreading code is used for spreading the first E-HICH.
  • the signature sequence of the first E-HICH indicates the signature sequence used by the UE.
  • the scrambling code is a string of pseudo-random codes, and in the uplink, the base station distinguishes and identifies the user by identifying the scrambling code.
  • the channelization code of the first E-HICH indicates which code channel is used by the first E-HICH transmitted to the UE.
  • the signature sequence of the first E-HICH indicates the signature sequence used by the UE.
  • the first base station may be any micro base station or macro base station in the access network, where the macro base station refers to: two macro base stations are affected by the surrounding environment, building occlusion, etc., and may also be similar to heterogeneous In the case of a macro base station and a micro base station in a network, a macro base station is similar to a micro base station in a heterogeneous network.
  • the first base station in the access network is not in the E-DCH active set of the UE, that is, when the SH0 area is not entered (for example, in the B area shown in FIG. 1).
  • the E-HICH contains two pieces of information: an acknowledgement (ACK) and a non-acknowledgement (NACK), and the ACK indicates that the base station receives the E-DCH in the previous process. Correct, NACK indicates that the base station received an E-DCH service error in the previous process.
  • the UE After receiving the ACK, the UE will send new data in the next process. If it is NACK, the UE will retransmit the data in the next process. If the maximum number of retransmissions has not been successful, the UE will also send new data. If the UE receives the E-HICH of multiple cells (the UE has more than one E-DCH active set), the UE will transmit new data as long as there is an E-HICH indicating ACK.
  • ACK acknowledgement
  • NACK non-acknowledgement
  • the RNC sends the second indication signaling to the first base station, where the second indication signaling includes: an uplink scrambling code of the UE, a channelization code of the first E-HICH, and a signature sequence, where the channelization code is used to indicate the UE decoding.
  • a spreading code that should be used for the channel occupied by the E-HICH, and the signature sequence is used to instruct the UE to decode each
  • the second indication signaling may be sent by using the Iub interface between the RNC and the base station.
  • the RNC may send the second indication signal by using the base station application part signaling (abbreviation: NBAP). make.
  • NBAP base station application part signaling
  • the RNC sends first indication signaling to the UE, where the first indication signaling includes a channelization code and a signature sequence of the first E-HICH.
  • the RNC may send the first indication signaling to the UE by using Radio Resource Control and Signaling (RRC).
  • RRC Radio Resource Control and Signaling
  • the first base station is located in the detection range of the UE, and includes:
  • the downlink pilot quality of the first base station measured by the UE exceeds a preset first threshold.
  • the first threshold is that the UE correctly decodes the minimum value of the pilot quality of the E-HICH transmitted by the first base station.
  • the first indication signaling may further include:
  • Timing information of the first E-HICH is used to indicate that the UE receives the start time position of each subframe of the first E-HICH;
  • the second indication signaling further includes: timing information of the first E-HICH, where the timing information of the first E-HICH is used to indicate a start time position of each subframe in which the first E-HICH is transmitted.
  • the timing information of the first E-HICH is a timing offset r F — ⁇ admir and/or a symbol position of a part of the downlink physical channel F-DPCH of the first base station.
  • the reference channel is P-CCPCH
  • the timing offset is ⁇ ⁇ — goes indicates the time when each F-DPCH frame/subframe is later than P-CCPCH ⁇ roy.
  • the timing offset of the F-DPCH, r F - ⁇ can be used to know the channel timing of the first E-HICH.
  • first indication signaling and the second indication signaling are further Includes:
  • E-RGCH code channel and signature sequence E-RGCH is used to control the UE's E-DCH transmission power
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is the timing offset r F — ⁇ réelle and/or the symbol position of the partial downlink physical channel F-DPCH of the first base station.
  • the E-DCH transmission power of the UE By controlling the E-DCH transmission power of the UE through the E-RGCH, it is possible to avoid interference caused by excessive power to the first base station. For example, the uplink interference caused to the micro base station when the UE is in the illustrated area B for service transmission in the HetNet can be reduced.
  • the RNC may further include:
  • the RNC receives the measurement report sent by the UE, and the measurement report is sent when the UE measures that the common pilot channel quality of the first base station exceeds a preset first threshold.
  • the RNC may further include:
  • the RNC receives the receiving capability message sent by the first base station, and the receiving capability message is used to indicate that the first base station can receive the E-DCH service sent by the UE.
  • the network communication method provided in this embodiment when the first base station in the access network is not in the E-DCH active set of the UE, generates the first indication signaling and the second indication signaling by the RNC, respectively, to the UE and the first A base station transmits, so that the UE can receive the E-HICH sent by the first base station, so that the UE can send the E-DCH to the first base station when the first base station correctly receives the E-DCH service sent by the UE according to the E-HICH. Service, so the uplink coverage of the first base station can be well utilized, and the throughput and reliability of the HetNet edge area transmission can be increased. Further, the first base station can be reduced when the UE is in the illustrated area B for service transmission in HetNet. Uplink interference.
  • FIG. 22 is an interaction flowchart of the network communication method according to Embodiment 12 of the present invention.
  • the serving base station of the UE is a macro base station, and the micro base station in the access network is not at this time.
  • the E-DCH active set of the UE is used as an example.
  • the method in this embodiment may include:
  • the S 100 U UE measures the common pilot channel quality of each serving cell.
  • S1003 can also include:
  • the RNC receives the receiving capability message sent by the micro base station, and the receiving capability message is used to indicate that the micro base station can receive the E-DCH service sent by the UE.
  • the RNC sends the second indication signaling to the micro base station.
  • the second indication signaling is used to indicate that the micro base station receives the E-DCH service sent by the UE.
  • the second indication signaling includes: an uplink scrambling code of the UE, a channelization code of the first E-HICH, and a signature sequence.
  • the second indication signaling further includes: timing information of the first E-HICH, where timing information of the first E-HICH is used to indicate a sending time of the first E-HICH.
  • the timing information of the first E-HICH is a timing offset r F — ⁇ foster and/or a symbol position of a part of the downlink physical channel F-DPCH of the micro base station.
  • first indication signaling and the second indication signaling further include:
  • E-RGCH code channel and signature sequence E-RGCH is used to control the UE's E-DCH transmission power
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is the timing offset r F — ⁇ réelle and/or the symbol position of the partial downlink physical channel F-DPCH of the micro base station.
  • the E-DCH transmission power of the UE is controlled by the E-RGCH.
  • the micro base station can send a power reduction indication to the UE through the E-RGCH, so as to avoid interference caused by excessive power to the micro base station. .
  • the uplink interference caused to the micro base station when the UE is in the illustrated area B for service transmission in HetNet can be reduced.
  • the UE sends an E-DCH service to the micro base station.
  • the micro base station After receiving the E-DCH service, the micro base station sends the first E_HICH to the UE.
  • the RNC sends the first indication signaling to the UE.
  • the first indication signaling is used to indicate that the UE receives the first E-HICH sent by the micro base station, where the first E-HICH is used to indicate whether the UE micro base station correctly receives the E-DCH service sent by the UE.
  • the first indication signaling includes a channelization code and a signature sequence of the first E-HICH.
  • the first indication signaling further includes: timing information of the first E-HICH, where timing information of the first E-HICH is used to indicate a time when the UE receives the first E-HICH.
  • the timing information of the first E-HICH may be a timing offset and/or a symbol position of the F-DPCH of the micro base station.
  • the first indication signaling may further include:
  • E-RGCH code channel and signature sequence E-RGCH is used to control the UE's E-DCH transmission power
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is the timing offset of the partial downlink physical channel F-DPCH of the micro base station, and/or the symbol position.
  • the UE adjusts the sending of the E-DCH service according to the received first E-HICH.
  • This embodiment is also applicable to the case where two macro base stations are affected by the surrounding environment, building occlusion, etc., and may also be similar to the case of the macro base station and the micro base station in the heterogeneous network.
  • One of the macro base stations is equivalent to the micro in the embodiment. Base station.
  • FIG. 23 is a schematic structural diagram of Embodiment 4 of a user equipment according to the present invention.
  • the user equipment in this embodiment may include: a receiving module 101 and a sending module 102, where the receiving module 101 is configured to receive in an access network.
  • the first enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH transmitted by the first base station is located in the detection range of the UE and is not in the enhanced dedicated channel E-DCH active set of the UE.
  • the sending module 102 is configured to send new E-DCH data when the first E-HICH indicates an acknowledgment ACK.
  • the sending module 102 is further configured to retransmit the E-DCH data when the first E-HICH indicates a negative acknowledgement NACK.
  • the first base station is located in the detection range of the UE, and includes:
  • the downlink pilot quality of the first base station measured by the UE exceeds a preset first threshold.
  • the receiving module 101 is further configured to: before receiving the first enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH sent by the first base station, receive the first indication signaling sent by the RNC, where the first indication signaling includes a channelization code and a signature sequence of the first E-HICH, the channelization code is used to indicate that the UE decodes a spreading code to be used by the channel occupied by the first E-HICH, and the signature sequence is used to instruct the UE to decode each E-HICH.
  • the first indication signaling may further include:
  • Timing information of the first E-HICH is used to indicate that the UE receives the first The start time position of each subframe of the E-HICH.
  • the timing information of the first E-HICH may be the timing offset r F — ⁇ réelle and/or the symbol position of the -DPCH of the first base station.
  • Enhancing the code channel and signature sequence of the dedicated channel relative to the grant channel E-RGCH, and the E-RGCH is used to control the E-DCH transmit power of the UE;
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is a timing offset r F — DPCH n and/or a symbol position of a part of the downlink physical channel F-DPCH of the first base station.
  • the user equipment further includes: a processing module, configured to measure a common pilot channel quality of each serving cell before the receiving module 101 receives the first indication signaling sent by the RNC.
  • the sending module 102 is further configured to: when the processing module measures that the common pilot channel quality of the first base station exceeds a preset first threshold, the UE sends a measurement report to the RNC, so that the RNC sends the first indication signaling to the UE according to the measurement report. .
  • the user equipment in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 19, and the implementation principle is similar, and details are not described herein again.
  • the UE when the first base station in the access network is not in the E-DCH active set of the UE, the UE may receive the E-HICH sent by the first base station, so that the UE may be in accordance with the E-HICH.
  • the UE may send the E-DCH service to the first base station, so that the uplink coverage of the first base station can be well utilized, and the throughput and reliability of the HetNet edge area transmission are increased. Sexuality can further reduce the uplink interference caused to the first base station when the UE is in the illustrated area B for service transmission in HetNet.
  • FIG. 24 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station in this embodiment may include: a receiving module 1 1 1 and a sending module 1 12, where the receiving module 1 1 1 is configured to receive a UE. E-DCH service, wherein the base station is located within the detection range of the UE and is not within the enhanced dedicated channel E-DCH active set of the UE.
  • the sending module 1 12 is configured to send the first enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH to the UE.
  • the receiving module 1 1 1 is further configured to: receive new E-DCH data that is sent by the UE when the first E-HICH indicates an acknowledgement ACK.
  • the receiving module is also used to: Receiving E-DCH data retransmitted by the UE when the first E-HICH indication is a negative acknowledgement NACK.
  • the base station is located in the detection range of the UE, and includes:
  • the downlink pilot quality of the base station measured by the UE exceeds a preset first threshold.
  • the receiving module 111 is further configured to: before receiving the E-DCH service sent by the UE, receive the second indication signaling sent by the RNC, where the second indication signaling is used to indicate that the first base station receives the E-DCH service sent by the UE.
  • the second indication signaling includes: an uplink scrambling code of the UE, a channelization code of the first E-HICH, and a signature sequence, where the channelization code is used to indicate that the UE decodes the spreading code that should be used by the channel occupied by the first E-HICH.
  • the signature sequence is used to instruct the UE to decode the orthogonal sequence that should be used for each E-HICH subframe.
  • the second indication signaling may further include:
  • Timing information of the first E-HICH is used to indicate a start time position of each subframe in which the first E-HICH is transmitted.
  • the timing information of the first E-HICH may be a timing offset r F — ⁇ réelle and/or a symbol position of a part of the downlink physical channel F-DPCH of the first base station.
  • the second indication signaling may further include:
  • Enhancing the code channel and signature sequence of the dedicated channel relative to the grant channel E-RGCH, and the E-RGCH is used to control the E-DCH transmit power of the UE;
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH is the timing offset r F — DPeff , merit and/or the symbol position of the partial F-DPCH of the first base station.
  • the sending module 112 is further configured to:
  • the receiving module Before receiving the second indication signaling sent by the RNC, the receiving module sends a receiving capability message to the RNC, where the receiving capability message is used to indicate that the first base station can receive the E-DCH service sent by the UE.
  • the base station of this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 20, and the principle is similar, and details are not described herein again.
  • the base station when the first base station in the access network is not in the E-DCH active set of the UE, after the receiving module receives the E-DCH service sent by the UE, the sending module sends the E-HICH to the UE. Therefore, when the UE can correctly receive the E-DCH service sent by the UE according to the E-HICH, the sending module can continue to send the E-DCH service to the first base station. Therefore, the uplink coverage of the first base station can be well utilized, and the throughput and reliability of the HetNet edge area transmission can be increased. The uplink interference caused to the first base station when the UE is in the illustrated area B for service transmission in the HetNet can be reduced.
  • the radio network controller of this embodiment may include: a processing module 121 and a sending module 122, where the processing module 121 is configured to generate An indication signaling and a second indication signaling, where the first indication signaling is used to indicate that the UE receives the first enhanced dedicated channel hybrid automatic repeat request indication channel sent by the first base station
  • the E-HICH the second indication signaling is used to indicate that the first base station receives the E-DCH service sent by the UE, where the first base station is located in the detection range of the UE and is not in the enhanced dedicated channel E-DCH active set of the UE.
  • the sending module 122 is configured to send the second indication signaling to the first base station, where the second indication signaling includes: an uplink scrambling code of the UE, a channelization code of the first E-HICH, and a signature sequence, where the channelization code is used to indicate The UE decodes the spreading code that should be used by the channel occupied by the first E-HICH, and the signature sequence is used to indicate that the UE decodes the orthogonal sequence that should be used for each E-HICH subframe.
  • the sending module 122 is further configured to: send, to the UE, first indication signaling, where the first indication signaling includes a channelization code and a signature sequence of the first E-HICH.
  • the first base station is located in the detection range of the UE, and includes:
  • the downlink pilot quality of the first base station measured by the UE exceeds a preset first threshold.
  • the first indication signaling may further include:
  • Timing information of the first E-HICH is used to indicate that the UE receives the start time position of each subframe of the first E-HICH;
  • the second indication signaling may further include: timing information of the first E-HICH, where timing information of the first E-HICH is used to indicate a start time position of each subframe in which the first E-HICH is transmitted.
  • the timing information of the first E-HICH may be a timing offset r F — DPeff , deliberately and/or symbol position of a part of the downlink physical channel F-DPCH of the first base station.
  • first indication signaling and the second indication signaling may further include:
  • E-RGCH code channel and signature sequence E-RGCH is used to control the UE's E-DCH transmission power
  • the code channel of the E-RGCH, the signature sequence, and the timing information of the E-RGCH, and the timing information of the E-RGCH is used to indicate the time when the UE receives the E-RGCH.
  • the timing information of the E-RGCH may be a timing offset r F — ⁇ réelle and/or a symbol position of a part of the downlink physical channel F-DPCH of the first base station.
  • the RNC may further include: a receiving module, the receiving module is used in the processing module 121 Before generating the first indication signaling and the second indication signaling, receiving a measurement report sent by the UE, where the measurement report is sent when the UE measures that the common pilot channel quality of the first base station exceeds a preset first threshold.
  • the receiving module is further configured to: before the sending the module 122 sends the second indication signaling to the first base station, receive a receiving capability message sent by the first base station, where the receiving capability message is used to indicate that the first base station can receive the UE. E-DCH service sent.
  • the RNC of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 21, and the principle is similar, and details are not described herein again.
  • the RNC provided in this embodiment, when the first base station in the access network is not in the E-DCH active set of the UE, after the processing module generates the first indication signaling and the second indication signaling, the sending module separately sends the UE to the UE. And transmitting, by the first base station, the UE may receive the E-HICH sent by the first base station, so that the UE may send the E to the first base station when the first base station correctly receives the E-DCH service sent by the UE according to the E-HICH.
  • -DCH service therefore, can make good use of the uplink coverage of the first base station, increase the throughput and reliability of the HetNet edge area transmission, and further reduce the first time when the UE is in the illustrated area B for service transmission in HetNet. Uplink interference caused by the base station.
  • an embodiment of the present invention further provides a network communication method, including:
  • the user equipment UE in the access network receives the first radio network control RRC signaling of the radio network controller RNC, and according to the indication of the first RRC signaling, the UE joins the first base station to the UE.
  • the UE receives an enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH of the first base station, and when the E-HICH indicates an acknowledgement ACK, the UE sends new E-DCH data;
  • E-HICH enhanced dedicated channel hybrid automatic repeat request indication channel
  • the UE When the UE does not receive the dedicated channel DCH data from the access network, the UE turns off receiving the partial dedicated physical channel F-DPCH of the first base station according to the indication of the first RRC signaling.
  • the RNC completes the indication by deleting F-DPCH configuration information in the first RRC signaling or by using a preset indication field in the first RRC signaling;
  • the UE When the UE receives the DCH data from the access network, the UE closes the function of receiving the downlink dedicated physical data channel DPDCH of the first base station according to the indication of the first RRC signaling;
  • the RNC completes the indication by deleting DPCH configuration information in the first RRC signaling or by a preset indication field in the first RRC signaling.
  • some modifications may be made to the existing signaling, such as the first RRC signaling mentioned above.
  • the UE may be instructed not to perform the execution. This field or configuration information related function.
  • the indication field may be added in the existing first RRC signaling to implement the indication, or the first RRC signaling may be in a newly defined signaling, and the identifier field is added by Instructions.
  • the method further includes: receiving, by the UE, the F-DPCH of the first base station according to the indication of the first RRC signaling, The F-DPCH is used to perform transmission power control on the UE.
  • the method when the UE receives the DCH data from the access network, the method further includes: the UE is configured to disable the function of receiving the downlink dedicated physical control channel DPCCH sent by the first base station.
  • the method further includes: receiving, by the UE, first control signaling sent by the network; And receiving an F-DPCH of the first base station; or receiving a downlink DPDCH sent by the first base station, where the downlink DPDCH is used to carry DCH data received by the UE from the first base station .
  • the receiving, by the UE, the downlink DPDCH sent by the first base station the method further includes: receiving, by the UE, a downlink DPCCH of the first base station, where the downlink DPCCH is used by the first base station The UE sends physical layer control signaling.
  • the first control signaling sent by the network includes: the second RRC signaling sent by the RNC; or the first physical layer signaling sent by the second base station in the access network,
  • the second base station is located in an E-DCH active set or a DCH active set of the UE.
  • the method before the receiving, by the UE, the first control signaling sent by the network, the method further includes: the UE measuring a common pilot channel quality of each cell; and when the UE measures the first When the common pilot channel quality of the base station exceeds a preset first threshold, the UE sends a measurement report to the RNC, so that the RNC sends the second RRC signaling to the UE according to the measurement report; Or to enable the RNC to instruct the second base station to send the first physical layer signaling to the UE.
  • the method before the receiving, by the UE, the F-DPCH of the first base station, the method further includes: receiving, by the UE, configuration information of an F-DPCH of the first base station, where the configuration information includes At least one of a channelization code, a frame offset, and a slot format of the F-DPCH.
  • the method further includes: the F-DPCH configuration information of the first base station is carried in the first control signaling.
  • the method before the receiving, by the UE, the downlink DPDCH of the first base station, the method further includes: receiving, by the UE, configuration information of a downlink DPCH of the first base station, where configuration information of the downlink DPCH includes The channelization code or frame offset information of the DPCH.
  • the configuration information of the downlink DPCH is carried in the first control signaling.
  • an embodiment of the present invention further provides a network communication method, including:
  • the RNC in the access network generates the first RRC signaling or the first network signaling.
  • the RNC sends the first RRC signaling to the UE or sends the first network signaling to the first base station in the access network, where the first RRC signaling is used to indicate that the UE is to be the first
  • the base station joins the E-DCH active set of the UE, and instructs the UE to receive the E-HICH of the first base station;
  • the first network signaling is used to indicate that the first base station receives the E sent by the UE - DCH data, and instructing the first base station to send an E-HICH to the UE; when the UE does not receive DCH data from the access network, the first RRC signaling indicates that the UE turns off the receiving station
  • the function of the F-DPCH of the first base station where the RNC completes the indication by deleting the F-DPCH configuration information in the first RRC signaling or by setting a preset indication field in the first RRC signaling; or
  • the first network signaling indicates that the first base station disables the function of sending an F-DPCH
  • the first RRC signaling indicates that the UE closes the function of receiving the downlink DPDCH of the first base station, where the RNC deletes the DPCH configuration information in the first RRC signaling or passes the The preset indication field in an RRC signaling completes the indication; or the first network signaling indicates that the first base station disables a function of transmitting a downlink DPDCH; wherein the RNC deletes the first network signaling by deleting The instruction is completed in the DPCH configuration information or by setting a preset indication field in the first network signaling.
  • the RNC when the UE receives the DCH data from the access network, the RNC completes the indication by deleting the DPCH configuration information in the first RRC signaling, and further includes:
  • the first RRC signaling indicates that the UE receives the F-DPCH of the first base station, and the F-DPCH Performing uplink transmission power control on the UE;
  • the first network signaling indicates that the first base station sends an F-DPCH to the UE.
  • the first RRC signaling instructing the UE to disable the function of receiving the downlink DPDCH of the first base station, further includes: the first network signaling indicating the first The base station turns off the function of transmitting the DPCCH to the UE; or the first RRC signaling further instructs the UE to disable the function of receiving the downlink DPCCH of the first base station.
  • the method further includes: the RNC generating a second RRC message.
  • the RNC sends the second RRC signaling to the UE; when the UE does not receive DCH data from the access network, the second RRC signaling is used to instruct the UE to receive the The F-DPCH sent by the first base station; when the UE receives the DCH data from the access network, the second RRC signaling is used to instruct the UE to receive the downlink DPDCH sent by the first base station.
  • the second RRC signaling when the UE receives the DCH data from the access network, the second RRC signaling is used to indicate that the UE receives the downlink DPDCH sent by the first base station.
  • the method further includes: the second RRC signaling, instructing the UE to receive the downlink DPCCH sent by the first base station
  • the method further includes: when the UE does not receive DCH data from the access network, the second RRC signaling includes configuration information of the F-DPCH; When the UE receives DCH data from the access network, the second RRC signaling includes downlink DPCH configuration information of the first base station.
  • the method further includes: the RCN generating second network signaling, the RNC sending the second network signaling to the first base station; when the UE is not from the When the access network receives the DCH data, the second network signaling is used to indicate that the first base station sends an F-DPCH to the UE; when the UE receives DCH data from the access network, The second network signaling is used to instruct the first base station to send a DPDCH to the UE.
  • the second network signaling when the UE receives DCH data from the access network, the second network signaling is used to indicate that the first base station sends a DPDCH to the UE, and The method includes: the second network signaling indicates that the first base station sends a downlink DPCCH to the UE.
  • the method further includes: when the UE does not access the access network When receiving DCH data, the second network signaling includes configuration information of the F-DPCH; when the UE receives DCH data from the access network, the second network signaling includes the Downlink DPCH configuration information of the first base station.
  • the method before the RNC generates the second RRC signaling, the method further includes: the RNC receiving a measurement report sent by the UE, where the measuring includes: indicating, by the RNC, the UE Sending second RRC signaling.
  • an embodiment of the present invention further provides a network communication method, including:
  • the first base station in the access network receives the first network signaling sent by the radio network controller RNC, and receives the E-DCH data sent by the user equipment UE in the access network according to the indication of the first network signaling. And transmitting an E-HICH to the UE;
  • the first base station When the UE does not receive DCH data from the access network, the first base station disables a function of sending an F-DPCH to the UE according to the indication of the first network signaling;
  • the first base station turns off a function of sending a downlink DPDCH to the UE according to the indication of the first network signaling.
  • the RNC completes the indication by deleting F-DPCH configuration information in the first network signaling or by setting a preset indication field in the first network signaling.
  • the first base station when the UE receives DCH data from the access network, the first base station disables a function of sending a downlink DPDCH to the UE, and the method further includes: the first base station Sending an F-DPCH to the UE, where the F-DPCH is used by the first base station to perform uplink transmission power control on the UE.
  • the first base station when the UE receives DCH data from the access network, the first base station disables a function of sending a downlink DPDCH to the UE, and the method further includes: the first base station The function of sending a downlink DPCCH to the UE is turned off.
  • the method further includes: receiving, by the first base station, second RRC signaling sent by the RNC; When receiving DCH data from the access network, the first base station sends an F-DPCH to the UE according to the indication of the second RRC signaling; when the UE receives DCH data from the access network And transmitting, by the first base station, a downlink DPDCH to the UE according to the indication of the second RRC signaling.
  • the method further includes: when the UE does not access the access network
  • the first network signaling received by the first base station includes F-DPCH configuration information
  • the first base station receives the first A network signaling includes downlink DPCH configuration information.
  • the first base station when the UE receives DCH data from the access network, the first base station sends a downlink DPDCH to the UE, and the method further includes: The UE sends a downlink DPCCH.
  • an embodiment of the present invention further provides a user equipment UE290 in an access network, including: a wireless transceiver unit 291, configured to receive a first radio network control RRC signaling of a radio network controller RNC, according to Instructing the first RRC signaling to join the first base station to an extended enhanced dedicated channel E-DCH active set of the UE; receiving an enhanced dedicated channel hybrid automatic repeat request indication channel E- of the first base station HICH, when the E-HICH indication is an acknowledgment ACK, sending new E-DCH data; and processing unit 292, configured to: when the UE does not receive dedicated channel DCH data from the access network, according to the Determining, by the first RRC signaling, a function of receiving a part of the dedicated physical channel F-DPCH of the first base station; where the RNC deletes the F-DPCH configuration information in the first RRC signaling or passes the first The preset indication field in the RRC signaling completes the indication; when the UE receives the DCH data from the access network,
  • the wireless transceiver unit 291 when the UE receives the DCH data from the access network, the wireless transceiver unit 291 is further configured to receive, according to the indication of the first RRC signaling, the F of the first base station. - DPCH, the F-DPCH is used to perform transmission power control on the UE.
  • the processing unit 292 is further configured to disable the function of receiving the downlink dedicated physical control channel DPCCH sent by the first base station.
  • the wireless transceiver unit 291 is further configured to receive first control signaling sent by the network; Receiving, by the first control signaling, the F-DPCH of the first base station; or receiving the downlink DPDCH sent by the first base station, where the downlink DPDCH is used to carry the UE from the first base station Received DCH data.
  • the radio transceiver unit 291 is further configured to receive a downlink DPCCH of the first base station, where the downlink DPCCH is used by the first base station to send physical layer control signaling to the UE.
  • the first control signaling sent by the network includes: the second RRC signaling sent by the RNC; or the first physical layer signaling sent by the second base station in the access network,
  • the second base station is located in an E-DCH active set or a DCH active set of the UE.
  • the wireless transceiver unit 291 before receiving the first control signaling sent by the network, is further configured to measure a common pilot channel quality of each cell; When the common pilot channel quality of the first base station exceeds a preset first threshold, sending a measurement report to the RNC, so that the RNC sends the second RRC signaling to the UE according to the measurement report, or And causing the RNC to instruct the second base station to send the first physical layer signaling to the UE.
  • the radio transceiver unit 291 before receiving the F-DPCH of the first base station, is further configured to receive configuration information of an F-DPCH of the first base station, where the configuration information includes At least one of a channelization code, a frame offset, and a slot format of the F-DPCH.
  • the F-DPCH configuration information of the first base station is carried in the first control signaling.
  • the radio transceiver unit 291 before receiving the downlink DPDCH of the first base station, is further configured to receive configuration information of a downlink DPCH of the first base station, and configuration information of the downlink DPCH.
  • a channelization code or frame offset information of the DPCH is included.
  • the configuration information of the downlink DPCH is carried in the first control signaling.
  • an embodiment of the present invention further provides an RNC 300 in an access network, including: a processing unit 3001, configured to generate first RRC signaling or first network signaling; and a wireless transceiver unit 3002, configured to: Transmitting the first RRC signaling to the UE or transmitting the first network signaling to the first base station in the access network, where the first RRC signaling is used to indicate that the UE joins the first base station to the UE E-DCH active set, and instructing the UE to receive the E-HICH of the first base station; the first network signaling is used to indicate that the first base station receives E-DCH data sent by the UE, and Indicating the first The base station sends an E-HICH to the UE; when the UE does not receive DCH data from the access network, the first RRC signaling indicates that the UE closes the function of receiving the F-DPCH of the first base station
  • the processing unit 3001 completes the indication by deleting F-DPCH configuration information in the first RRC signal
  • the first RRC signaling indicates that the UE is configured to disable the function of receiving the downlink DPDCH of the first base station, where the processing unit 3001 Deleting the indication by deleting DPCH configuration information in the first RRC signaling or by using a preset indication field in the first RRC signaling; or the first network signaling instructing the first base station to disable sending the downlink DPDCH Function; wherein the processing unit The 3001 processing unit completes the indication by deleting DPCH configuration information in the first network signaling or by setting a preset indication field in the first network signaling.
  • the first RRC signaling indicates that the UE receives an F-DPCH of the first base station, where the F-DPCH is used. And performing uplink transmission power control on the UE; the first network signaling instructing the first base station to send an F-DPCH to the UE.
  • the first network signaling indicates that the first base station disables a function of sending a DPCCH to the UE; or the first RRC signaling further indicates that the UE is closed to receive the first The function of the downlink DPCCH of the base station.
  • the processing unit 3001 is further configured to generate a second RRC signaling
  • the radio transceiver unit 3002 is further configured to send the second RRC signaling to the UE; when the UE does not receive DCH data from the access network, the second RRC signaling Instructing the UE to receive the F-DPCH sent by the first base station; when the UE receives DCH data from the access network, the second RRC signaling is used to instruct the UE to receive the The downlink DPDCH sent by the first base station.
  • the second RRC signaling when the UE receives DCH data from the access network, the second RRC signaling further instructs the UE to receive a downlink DPCCH sent by the first base station.
  • the second RRC signaling when the UE does not receive DCH data from the access network, the second RRC signaling includes configuration information of the F-DPCH; when the UE is connected from the When the DCH data is received in the network, the second RRC signaling includes the downlink DPCH configuration information of the first base station.
  • the processing unit 3001 is further configured to generate second network signaling, where the wireless transceiver unit 3002 is further configured to send the second network signaling to the first base station;
  • the second network signaling is used to instruct the first base station to send an F-DPCH to the UE;
  • the UE receives from the access network The second network signaling is used to instruct the first base station to send a DPDCH to the UE.
  • the second network signaling when the UE receives DCH data from the access network, the second network signaling further instructs the first base station to send a downlink DPCCH to the UE.
  • the second network signaling when the UE does not receive DCH data from the access network, includes configuration information of the F-DPCH; when the UE is connected from the When the DCH data is received in the network, the second network signaling includes downlink DPCH configuration information of the first base station.
  • the radio transceiver unit 3002 is further configured to receive a measurement report sent by the UE, where the measurement includes The RNC sends the second RRC signaling to the UE.
  • an embodiment of the present invention further provides a first base station 310 in an access network, including: a wireless transceiver unit 311, configured to receive a first network signaling sent by a radio network controller RNC, according to the Receiving the indication of the first network signaling, receiving the E-DCH data sent by the user equipment UE in the access network, and sending the E-HICH to the UE; the processing unit 312, configured to: when the UE is not connected from the When receiving the DCH data in the network, the function of sending the F-DPCH to the UE is closed according to the indication of the first network signaling; when the UE receives the DCH data from the access network, according to the first The indication of the network signaling turns off the function of transmitting the downlink DPDCH to the UE.
  • a wireless transceiver unit 311 configured to receive a first network signaling sent by a radio network controller RNC, according to the Receiving the indication of the first network signaling, receiving the E-DCH data sent by the user equipment UE in the
  • the RNC completes the indication by deleting F-DPCH configuration information in the first network signaling or by setting a preset indication field in the first network signaling.
  • the wireless transceiver unit 311 when the UE receives DCH data from the access network, the wireless transceiver unit 311 is further configured to send an F-DPCH to the UE, where the F-DPCH is used by the UE.
  • the base station performs uplink transmission power control on the UE.
  • the wireless transceiver unit 311 when the UE receives DCH data from the access network, the wireless transceiver unit 311 is further configured to disable the function of sending a downlink DPCCH to the UE.
  • the radio transceiver unit 311 is further configured to receive the second RRC signaling sent by the RNC.
  • the processing unit 312 is further configured to: When the UE does not receive DCH data from the access network, send an F-DPCH to the UE according to the indication of the second RRC signaling; when the UE receives DCH data from the access network And sending, according to the indication of the second RRC signaling, a downlink DPDCH to the UE.
  • the wireless transceiver unit 311 is further configured to: when the UE does not receive DCH data from the access network, the received first network signaling includes an F-DPCH configuration.
  • the wireless transceiver unit 311 when the UE receives DCH data from the access network, the wireless transceiver unit 311 is further configured to send a downlink DPCCH to the UE.
  • each device whether UE, RNC or base station, can be implemented by hardware, such as an integrated circuit or a PCB.
  • Any of the transceiver units can be a radio unit, such as a transceiver, and any of the processing units can be a processor, including but not limited to a baseband processor or a central processing unit.
  • the UE When transmitting E-DCH data, the UE is still receiving DCH data (generally voice or high-layer control signaling).
  • the DCH data is carried on the downlink DPCH channel, and the DPCH channel can be divided into two parts, DPDCH and DPCCH, and DPDCH bearer.
  • the DPCCH For DCH data, the DPCCH carries the physical control information required to receive the DCH data, such as the transmission power control TPCXTransmit Power Control, the pilot pilot, and the transport format combination indication TFCI (Transmit)
  • the UE When the UE sends the E-DCH data, if the DCH data is not received, in the prior art, the UE does not need (and does not need to) receive the DPCH, but needs to receive the F-DPCH, and the F-DPCH carries the transmission power control.
  • the TPC is used to perform uplink power control on the UE.
  • the UE may add the LPN (low power node, ie, the micro base station, corresponding to the first base station mentioned in FIG. 26 to FIG. 31 before) to the E-DCH activation in the B area shown in FIG. 1 .
  • the LPN can receive the E-DCH data sent by the UE, but the downlink quality of the LPN is relatively poor.
  • the UE should The F-DPCH is received from the LPN.
  • the downlink of the LPN is relatively poor.
  • the UE may not receive the F-DPCH of the LPN, and the LPN may not send the F-DPCH, thereby saving power consumption of the LPN, saving power consumption of the UE, and avoiding The high error rate caused by the poor downlink transmission quality of the LPN affects the uplink transmission of the UE.
  • the UE should also receive the DCH from the LPN, that is, simultaneously receive the DPCCH and the DPDCH, but due to the poor downlink quality of the LPN, the DPCCH
  • the error rate of the DPDCH is relatively high.
  • the UE does not receive the DPDCH from the LPN, but receives some control information that is carried on the DPCCH.
  • the UE does not receive the DPCCH, and further reduces the power consumption of the downlink channel received by the UE. If the LPN needs to perform uplink power control on the UE, the UE may receive the F-DPCH sent by the LPN.
  • the transmit power overhead and the receive power overhead of the F-DPCH are smaller than the DPCCH, and the UE decodes the TPC on the F-DPCH to adjust. Send your own uplink power.
  • the UE moves from the B area to the C, the downlink quality of the LPN gradually improves, and the RNC control UE can return to the soft handover procedure of the prior art.
  • the network indicates that the UE starts to receive the DPCH sent by the LPN. If the UE does not receive the DCH data from the network, the embodiment indicates that the UE receives the F-DPCH sent by the LPN through network signaling. .
  • the embodiment of the present invention enables the UE to not receive the F-DPCH or the DPCCH or the DPDCH when needed, for example, the UE can be flexibly shut down when the downlink quality of a base station to the UE is degraded. Partially receiving the function, or turning off the corresponding sending function to the UE, reducing the transmission power loss of the low-quality wireless link sent by the base station, and reducing the receiving power loss of the low-quality wireless link received by the UE, reducing the link quality degradation and causing network communication
  • the base station and the RNC can use the closed wireless link to serve other UEs, increasing the downlink capacity of the network.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or Some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the method of various embodiments of the present invention.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种网络通信方法、装置和系统。该方法包括以下步骤:用户设备(UE)接收接入网中无线网络控制器(RNC)发送的指示信息(S101),指示信息用于指示UE:在第一区域,与宏基站进行上下行业务传输,以及与微基站进行上行业务传输,和/或,在第二区域,与微基站进行上下行业务传输,以及与宏基站进行下行业务传输,UE根据指示信息进行业务传输(S102)。本发明实施例提供的网络通信方法、装置和系统,可将在第一区域UE对微基站造成的上行干扰降到最低,将在第二区域宏基站对微基站造成的下行干扰降到最低,而且还可充分利用微基站的上行覆盖和宏基站的下行覆盖,增加了异构网络(HetNet)边缘区域传输的吞吐率和可靠性。

Description

网络通信方法、 装置和系统 本申请要求 2013年 06月 29日向中华人民共和国国家知识产权局递交的 申请号为 201310270843. 9的发明申请、 2014年 03月 19日向中华人民共和 国国家知识产权局递交的申请号为 201410103869. 9的发明申请以及 2014年 05月 8日向中华人民共和国国家知识产权局递交的申请号为 201410192727. 4 的发明申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域 本发明实施例涉及通信技术领域, 尤其涉及一种网络通信方法、 装置和 系统。 背景技术 异构网络 (Heterogeneous Network , 以下简称: HetNet )技术是一禾中多 层次组网的无线接入网技术。 传统的无线接入网一般只存在一个网络层, 称 之为宏网络层, 宏网络中的基站(简称宏基站: Macro )需覆盖整个网络, 为 用户提供连续不间断的服务。 HetNet在宏网络层基础上增加了一个或多个微 网络层, 微网络中的基站 (简称微基站) 的发射功率较小, 覆盖范围也远小 于宏基站, 因此微基站也被称为低功率节点 (Low Power Node , 以下简称: LPN)。 一般是将微基站部署于宏基站的覆盖盲区或热点区域, 用于对宏基站 进行负载分流, 提升整个网络的吞吐率。
在 HetNet中, 上行功率平衡线为宏基站和微基站对用户设备(User Equipment , 以下简称: UE)的上行发送信号有相同的接收质量的位置, 下 行功率平衡线为 UE对宏基站和微基站的下行发送信号有相同接收质量的 位置。 由于上行功率平衡线只与 UE到微基站和宏基站的路径损耗有关, 而下行功率平衡线还取决于宏基站和微基站的发射功率。宏基站导频发射 功率与微基站具有较大的差异, 所以下行功率平衡线将向微基站偏移, 因 此就存在宏基站和微基站之间的上行功率平衡线和下行功率平衡线不一 致的问题。 而这种不一致最终会导致: 在小区切换区域附近, 当 UE处于 不同的区域进行不同业务的接收和发送时, 会面临不同的干扰问题, 图 1 为现有技术中上行功率平衡线与下行功率平衡线以及软切换区域示意图, 如图 1所示:
在区域 B: UE对宏基站的下行接收好于微基站,高速下行分组接入 (High Speed Downlink Packet Access, 以下简称: HSDPA) 服务小区为宏基站, 但 在上行, UE到微基站的路径损耗小于到宏基站的路径损耗, 微基站对 UE的 接收好于宏基站, 但 UE的服务小区为宏基站, 并且 UE未进入软切换 (soft handover , 以下简称 SH0) 区域, 微基站无法对 UE进行功率控制, 因此 UE 的上行业务在微基站的接收功率过高, 对微基站造成上行干扰。
在区域 E: 虽然在该区域 UE上行和下行都是微基站的链路质量好, 但是 UE对宏基站下行信号仍有较强的接收功率, 因此可能会对微基站造成下行干 扰。 发明内容 本发明实施例提供一种网络通信方法、 装置和系统, 以降低在 HetNet 中 UE处于第一区域或第二区域进行业务传输时对微基站造成的上行干扰和 下行干扰的问题。
第一方面, 本发明实施例提供一种网络通信方法, 包括:
用户设备 UE接收接入网中无线网络控制器 RNC发送的指示信息,所述指 示信息用于指示所述 UE:
在第一区域, 与所述接入网的宏基站进行上下行业务传输, 以及与所述 接入网的微基站进行上行业务传输, 所述第一区域为所述微基站的公共导频 信道质量达到加入第一激活集的第一门限值与所述微基站的公共导频信道质 量达到加入第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频 信道质量是由处于所述第一区域的所述 UE测量得到;
和 /或, 在第二区域, 与所述微基站进行上下行业务传输, 以及与所述宏 基站进行下行业务传输, 所述第二区域为所述宏基站的公共导频信道质量达 到加入第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到;
所述 UE根据所述指示信息进行业务传输;
其中,所述第一激活集包括:扩展专用信道 DCH激活集和 /或扩展增强专 用信道 E-DCH激活集, 所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送的所述上行 DCH业务,所 述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务,且所述扩展 E-DCH激活集 中的微基站接收所述 UE发送的所述 E-DCH业务;
在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR,并将所述 LLR作为维特比译码器输入进行维特比 译码;
所述第二激活集包括: DCH激活集和 /或 E-DCH激活集;
所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支持所述 第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激活集中 的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新数据, 若所述 E-HICH指示非确认应答 NACK并且未到 达最大重传次数, 所述 UE重传数据。
在第一方面的第一种可能的实施方式中,所述 UE根据所述指示信息进行 业务传输之前, 还包括:
所述 UE接收所述 RNC发送的激活集更新信令;
所述 UE根据所述激活集更新信令,在第一区域进行业务传输时将所述微 基站加入第一激活集中,和 /或,在第二区域进行业务传输时将所述宏基站加 入第三激活集中。
结合第一方面的第一种可能的实施方式, 在第一方面的第二种可能的实 施方式中, 所述 UE接收所述 RNC发送的激活集更新信令之前, 还包括: 所述 UE测量各个小区的公共导频信道质量; 所述 UE处于非软切换区域时, 当所述 UE测量到所述微基站的公共导频 信道质量超过预先设定的加入第一激活集的第一门限值且小于加入所述第二 激活集的第一条件阈值时,所述 UE向所述 RNC发送第一测量报告, 以使所述 RNC根据所述第一测量报告向所述 UE发送所述激活集更新信令;
所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所 述微基站的公共导频信道质量小于所述微基站从所述第二激活集删除的第三 条件阈值且大于预先设定的第二门限值时,所述 UE向所述 RNC发送第一测量 报告,以使所述 RNC根据所述第一测量报告向所述 UE发送所述激活集更新信 结合第一方面的第二种可能的实施方式, 在第一方面的第三种可能的实 施方式中, 所述 UE根据所述指示信息进行业务传输之后, 还包括:
所述 UE继续测量所述微基站的公共导频信道质量,当所述微基站的公共 导频信道质量大于加入第二激活集的第一条件阈值时, 所述 UE向所述 RNC 发送第二测量报告, 以使所述 RNC向所述 UE发送第一控制信息;
所述 UE根据所述第一控制信息将所述微基站加入第二激活集中; 或者,
所述 UE继续测量所述微基站的公共导频信道质量,当所述微基站的公共 导频信道质量小于所述第二门限值时,所述 UE向所述 RNC发送第二测量报告, 以使所述 RNC向所述 UE发送第二控制信息;
所述 UE根据所述第二控制信息将所述微基站从所述第一激活集中删除。 结合第一方面的第一种可能的实施方式至第一方面的第三种可能的实施 方式中任一项所述的方法, 在第一方面的第四种可能的实施方式中, 所述 UE 传输的业务包括 DCH业务, 所述方法还包括:
所述 UE接收所述微基站发送的功率控制命令 TPC,所述 TPC用于调整所 述 UE的上行发送功率;
所述 UE传输的业务包括 E-DCH业务, 所述方法还包括:
所述 UE接收所述微基站发送的 TPC、增强专用信道相对授权信道 E-RGCH 和 E-HICH; 其中, 所述 TPC用于调整所述 UE的上行发送功率, 所述 E-RGCH 用于调整所述 UE获得的调度授权值,所述 E-HICH用于向所述 UE反馈所述微 基站是否正确接收所述 UE的数据。
结合第一方面的第一种可能的实施方式, 在第一方面的第五种可能的实 施方式中, 所述 UE接收所述 RNC发送的激活集更新信令之前, 还包括: 所述 UE测量各个小区的公共导频信道质量;
所述 UE处于非软切换区域时, 当所述 UE测量到所述宏基站的公共导频 信道质量超过预先设定的第三门限值且小于加入所述第二激活集的第二条件 阈值时,所述 UE向所述 RNC发送第三测量报告, 以使所述 RNC根据所述第三 测量报告向所述 UE发送所述激活集更新信令;
所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所 述宏基站的公共导频信道质量低于所述宏基站从所述第二激活集删除的第四 条件阈值且大于预先设定的第四门限值时,所述 UE向所述 RNC发送第三测量 报告,以使所述 RNC根据所述第三测量报告向所述 UE发送所述激活集更新信 结合第一方面的第五种可能的实施方式, 在第一方面的第六种可能的实 施方式中, 所述 UE根据所述指示信息进行业务传输之后, 还包括:
所述 UE继续测量所述宏基站的公共导频信道质量,当所述宏基站的公共 导频信道质量大于加入所述第二激活集的第二条件阈值时, 所述 UE向所述 RNC发送第四测量报告, 以使所述 RNC向所述 UE发送第三控制信息;
所述 UE根据所述第三控制信息将所述宏基站加入第二激活集中; 或者,
所述 UE继续测量所述宏基站的公共导频信道质量,当所述宏基站的公共 导频信道质量小于所述第四门限值时,所述 UE向所述 RNC发送第四测量报告, 以使所述 RNC向所述 UE发送第四控制信息;
所述 UE根据所述第四控制信息将所述宏基站从所述第三激活集中删除。 第二方面, 本发明实施例提供一种网络通信方法, 包括:
接入网中无线网络控制器 RNC生成指示信息, 所述指示信息用于指示用 户设备 UE: 在第一区域, 与所述接入网的宏基站进行上下行业务传输, 以及 与所述接入网的微基站进行上行业务传输, 所述第一区域为所述微基站的公 共导频信道质量达到加入第一激活集的第一门限值与所述微基站的公共导频 信道质量达到加入第二激活集的第一条件阈值之间的区域, 所述微基站的公 共导频信道质量是由处于所述第一区域的所述 UE测量得到;
和 /或, 在第二区域, 与所述微基站进行上下行业务传输, 以及与所述宏 基站进行下行业务传输, 所述第二区域为所述宏基站的公共导频信道质量达 到加入第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到;
所述 RNC向所述 UE发送所述指示信息, 以使所述 UE根据所述指示信息 进行业务传输;
其中,所述第一激活集包括:扩展专用信道 DCH激活集和 /或扩展增强专 用信道 E-DCH激活集, 所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送的所述上行 DCH业务,所 述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务,且所述扩展 E-DCH激活集 中的微基站接收所述 UE发送的所述 E-DCH业务;
在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR,并将所述 LLR作为维特比译码器输入进行维特比 译码;
所述第二激活集包括: DCH激活集和 /或 E-DCH激活集;
所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支持所述 第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激活集中 的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新数据, 若所述 E-HICH指示非确认应答 NACK并且未到 达最大重传次数, 所述 UE重传数据。
在第二方面的第一种可能的实施方式中,所述 RNC向所述 UE发送所述指 示信息之前, 还包括:
所述 RNC向所述 UE发送激活集更新信令, 以使所述 UE根据所述激活集 更新信令,在第一区域进行业务传输时将所述微基站加入第一激活集中,和 / 或, 在第二区域进行业务传输时将所述宏基站加入第三激活集中。 结合第二方面的第一种可能的实施方式, 在第二方面的第二种可能的实 施方式中, 所述 RNC向所述 UE发送激活集更新信令之前, 还包括:
所述 RNC接收所述 UE发送的第一测量报告, 所述第一测量报告是所述 UE处于非软切换区域时, 当所述 UE测量到所述微基站的公共导频信道质量 超过预先设定的加入第一激活集的第一门限值且小于加入所述第二激活集的 第一条件阈值时向所述 RNC发送的, 或者,
所述第一测量报告是所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所述微基站的公共导频信道质量小于所述微基站从所述第 二激活集删除的第三条件阈值且大于预先设定的第二门限值时向所述 RNC发 送的。
结合第二方面的第二种可能的实施方式, 在第二方面的第三种可能的实 施方式中, 所述 RNC向所述 UE发送所述指示信息之后, 还包括:
所述 RNC接收所述 UE发送的第二测量报告,所述第二测量报告是当所述 微基站的公共导频信道质量大于加入第二激活集的第一条件阈值时,所述 UE 向所述 RNC发送的;
所述 RNC向所述 UE发送第一控制信息, 以使所述 UE根据所述第一控制 信息指示将所述微基站加入第二激活集中;
或者,
所述 RNC接收所述 UE发送的第二测量报告,所述第二测量报告是当所述 微基站的公共导频信道质量小于所述第二门限值时,所述 UE向所述 RNC发送 的;
所述 RNC向所述 UE发送第二控制信息, 以使所述 UE根据所述第二控制 信息将所述微基站从所述第一激活集中删除。
结合第二方面的第一种可能的实施方式, 在第二方面的第四种可能的实 施方式中, 所述 RNC向所述 UE发送激活集更新信令之前, 还包括:
所述 RNC接收所述 UE发送的第三测量报告, 所述第三测量报告是所述 UE处于非软切换区域时, 当所述 UE测量到所述宏基站的公共导频信道质量 超过预先设定的第三门限值且小于加入所述第二激活集的第二条件阈值时, 所述 UE向所述 RNC发送的; 或者,
所述第三测量报告是所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所述宏基站的公共导频信道质量低于所述宏基站从所述第 二激活集删除的第四条件阈值且大于预先设定的第四门限值时,所述 UE向所 述 RNC发送的。
结合第二方面的第四种可能的实施方式, 在第二方面的第五种可能的实 施方式中, 所述 RNC向所述 UE发送所述指示信息之后, 还包括:
所述 RNC接收所述 UE发送的第四测量报告,所述第四测量报告是当所述 宏基站的公共导频信道质量大于加入所述第二激活集的第二条件阈值时, 所 述 UE向所述 RNC发送的;
所述 RNC向所述 UE发送第三控制信息, 以使所述 UE根据所述第三控制 信息将所述宏基站加入第二激活集中;
或者,
所述 RNC接收所述 UE发送的第四测量报告,所述第四测量报告是当所述 宏基站的公共导频信道质量小于所述第四门限值时,所述 UE向所述 RNC发送 的;
所述 RNC向所述 UE发送第四控制信息, 以使所述 UE根据所述第四控制 信息将所述宏基站从所述第三激活集中删除。
第三方面, 本发明实施例提供一种网络通信方法, 包括:
微基站接收接入网中无线网络控制器 RNC发送的配置信息, 所述配置信 息用于指示所述微基站接收用户设备 UE发送的上行专用信道 DCH和 /或上行 增强专用信道 E-DCH业务;
所述微基站在被所述 UE在第一区域进行业务传输时加入第一激活集之 后, 根据所述配置信息在所述第一激活集中接收所述 UE发送的上行 DCH和 / 或上行 E-DCH业务, 所述第一区域为所述微基站的公共导频信道质量达到加 入所述第一激活集的第一门限值与所述微基站的公共导频信道质量达到加入 第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频信道质量是 由处于所述第一区域的所述 UE测量得到;
其中, 所述第一激活集包括: 扩展 DCH激活集和 /或扩展 E-DCH激活集,所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送 的所述上行 DCH业务, 所述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务, 且所述扩展 E-DCH激活集中的微基站接收所述 UE发送的所述 E-DCH业务; 在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR ,并将所述 LLR作为维特比译码器输入进行维特比 译码。
在第三方面的第一种可能的实施方式中, 若所述微基站接收的业务为 DCH业务, 所述方法还包括:
所述微基站向所述 UE发送功率控制命令 TPC,所述 TPC用于调整所述 UE 的上行发送功率;
若所述微基站接收的业务为 E-DCH业务, 所述方法还包括:
所述微基站向所述 UE发送 TPC、 增强专用信道相对授权信道 E-RGCH和 增强专用信道混合自动重传请求指示信道 E-HICH; 其中, 所述 TPC用于调整 所述 UE的上行发送功率, 所述 E-RGCH用于调整所述 UE获得的调度授权值, 所述 E-HICH用于向所述 UE反馈所述微基站是否正确接收所述 UE的数据。
第四方面, 本发明实施例提供一种网络通信方法, 包括:
宏基站接收接入网中无线网络控制器 RNC发送的配置信息, 所述配置信 息用于指示所述宏基站向用户设备 UE发送下行专用信道 DCH业务;
所述宏基站在被所述 UE在第二区域进行业务传输时加入第三激活集之 后,根据所述配置信息在所述第三激活集中向所述 UE发送下行专用信道 DCH 业务, 所述第二区域为所述宏基站的公共导频信道质量达到加入第三激活集 的第三门限值与所述宏基站的公共导频信道质量达到加入第二激活集的第二 条件阈值之间的区域, 所述宏基站的公共导频信道质量是由处于所述第二区 域的所述 UE测量得到;
其中, 所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支 持所述第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激 活集中的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新 E-DCH业务, 若所述 E-HICH指示非确认应答 NACK并 且未到达最大重传次数, 所述 UE重传 E-DCH业务。
在第四方面的第一种可能的实施方式中, 所述根据所述配置信息在所述 第三激活集中向所述 UE发送下行专用信道 DCH业务之后, 还包括:
接收所述 UE发送的上行功率控制命令 TPC,所述 TPC用于控制所述下行 DCH业务的发送功率。
第五方面, 本发明实施例提供一种用户设备, 包括:
接收模块, 用于接收接入网中无线网络控制器 RNC发送的指示信息, 所 述指示信息用于指示所述 UE:
在第一区域, 与所述接入网的宏基站进行上下行业务传输, 以及与所述 接入网的微基站进行上行业务传输, 所述第一区域为所述微基站的公共导频 信道质量达到加入第一激活集的第一门限值与所述微基站的公共导频信道质 量达到加入第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频 信道质量是由处于所述第一区域的所述 UE测量得到;
和 /或, 在第二区域, 与所述微基站进行上下行业务传输, 以及与所述宏 基站进行下行业务传输, 所述第二区域为所述宏基站的公共导频信道质量达 到加入第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到;
处理模块, 用于根据所述指示信息进行业务传输;
其中,所述第一激活集包括:扩展专用信道 DCH激活集和 /或扩展增强专 用信道 E-DCH激活集, 所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送的所述上行 DCH业务,所 述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务,且所述扩展 E-DCH激活集 中的微基站接收所述 UE发送的所述 E-DCH业务;
在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR,并将所述 LLR作为维特比译码器输入进行维特比 译码; 所述第二激活集包括: DCH激活集和 /或 E-DCH激活集;
所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支持所述 第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激活集中 的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新数据, 若所述 E-HICH指示非确认应答 NACK并且未到 达最大重传次数, 所述 UE重传数据。
在第五方面的第一种可能的实施方式中, 所述接收模块还用于: 在所述处理模块根据所述指示信息进行业务传输之前, 接收所述 RNC发 送的激活集更新信令;
所述处理模块还用于: 根据所述激活集更新信令, 在第一区域进行业务 传输时将所述微基站加入第一激活集中,和 /或,在第二区域进行业务传输时 将所述宏基站加入第三激活集中。
结合第五方面的第一种可能的实施方式, 在第五方面的第二种可能的实 施方式中, 还包括:
第一测量模块, 用于在所述接收模块接收所述 RNC发送的激活集更新信 令之前, 测量各个小区的公共导频信道质量;
第一发送模块,用于所述 UE处于非软切换区域时, 当所述第一测量模块 测量到所述微基站的公共导频信道质量超过预先设定的加入第一激活集的第 一门限值且小于加入所述第二激活集的第一条件阈值时, 向所述 RNC发送第 一测量报告,以使所述 RNC根据所述第一测量报告向所述 UE发送所述激活集 更新信令;
所述第一发送模块还用于所述 UE处于所述第二激活集对应的软切换区 域时,当所述 UE测量到所述微基站的公共导频信道质量小于所述微基站从第 二激活集删除的第二条件阈值且超过预先设定的第二门限值时, 向所述 RNC 发送第一测量报告,以使所述 RNC根据所述第一测量报告向所述 UE发送所述 激活集更新信令。
结合第五方面的第二种可能的实施方式, 在第五方面的第三种可能的实 施方式中, 所述第一测量模块还用于:
在所述处理模块根据所述指示信息进行业务传输之后, 继续测量所述微 基站的公共导频信道质量, 当所述微基站的公共导频信道质量大于加入第二 激活集的第一条件阈值时, 所述第一发送模块还用于向所述 RNC发送第二测 量报告, 以使所述 RNC向所述 UE发送第一控制信息;
所述处理模块还用于: 根据所述第一控制信息将所述微基站加入第二激 活集中;
或者,
所述第一测量模块还用于:
在所述处理模块根据所述指示信息进行业务传输之后, 继续测量所述微 基站的公共导频信道质量, 当所述微基站的公共导频信道质量小于所述第二 门限值时, 所述第一发送模块还用于向所述 RNC发送第二测量报告, 以使所 述 RNC向所述 UE发送第二控制信息;
所述处理模块还用于: 根据所述第二控制信息将所述微基站从所述第一 激活集中删除。
结合第五方面的第一种可能的实施方式至第五方面的第三种可能的实施 方式中任一项所述的用户设备, 在第五方面的第四种可能的实施方式中, 所 述 UE传输的业务包括 DCH业务, 所述接收模块还用于:
接收所述微基站发送的功率控制命令 TPC ,所述 TPC用于调整所述 UE的 上行发送功率;
所述 UE传输的业务包括 E-DCH业务, 所述接收模块还用于:
接收所述微基站发送的功率控制命令 TPC、 增强专用信道相对授权信道 E-RGCH和 E-HICH; 其中, 所述 TPC用于调整所述 UE的上行发送功率, 所述 E-RGCH用于调整所述 UE获得的调度授权值, 所述 E-HICH用于向所述 UE反 馈所述微基站是否正确接收所述 UE的数据。
结合第五方面的第一种可能的实施方式, 在第五方面的第五种可能的实 施方式中, 还包括:
第二测量模块, 用于在所述接收模块接收所述 RNC发送的激活集更新信 令之前, 测量各个小区的公共导频信道质量; 第二发送模块,用于所述 UE处于非软切换区域时, 当第二测量模块测量 到所述宏基站的公共导频信道质量超过预先设定的第三门限值且小于加入所 述第二激活集的第二条件阈值时, 向所述 RNC发送第三测量报告, 以使所述 RNC根据所述第三测量报告向所述 UE发送所述激活集更新信令;
所述第二发送模块还用于所述 UE处于所述第二激活集对应的软切换区 域时, 当第二测量模块测量到所述宏基站的公共导频信道质量低于所述宏基 站从所述第二激活集删除的第四条件阈值且大于预先设定的第四门限值时, 向所述 RNC发送第三测量报告, 以使所述 RNC根据所述第三测量报告向所述 UE发送所述激活集更新信令。
结合第五方面的第五种可能的实施方式, 在第五方面的第六种可能的实 施方式中, 所述第二测量模块还用于:
在所述处理模块根据所述指示信息进行业务传输之后, 继续测量所述宏 基站的公共导频信道质量, 当所述宏基站的公共导频信道质量大于加入所述 第二激活集的第二条件阈值时, 所述第二发送模块还用于向所述 RNC发送第 四测量报告, 以使所述 RNC向所述 UE发送第三控制信息;
所述处理模块还用于: 根据所述第三控制信息将所述宏基站加入第二激 活集中;
或者,
所述第二测量模块还用于:
在所述处理模块根据所述指示信息进行业务传输之后, 继续测量所述宏 基站的公共导频信道质量, 当所述宏基站的公共导频信道质量小于所述第四 门限值时, 所述第二发送模块还用于向所述 RNC发送第四测量报告, 以使所 述 RNC向所述 UE发送第四控制信息;
所述处理模块还用于: 根据所述第四控制信息将所述宏基站从所述第三 激活集中删除。
第六方面, 本发明实施例提供一种无线网络控制器, 包括:
生成模块, 用于生成指示信息, 所述指示信息用于指示用户设备 UE : 在 第一区域, 与接入网的宏基站进行上下行业务传输, 以及与所述接入网的微 基站进行上行业务传输, 所述第一区域为所述微基站的公共导频信道质量达 到加入第一激活集的第一门限值与所述微基站的公共导频信道质量达到加入 第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频信道质量是 由处于所述第一区域的所述 UE测量得到;
和 /或, 在第二区域, 与所述微基站进行上下行业务传输, 以及与所述宏 基站进行下行业务传输, 所述第二区域为所述宏基站的公共导频信道质量达 到加入第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到;
发送模块,用于向所述 UE发送所述指示信息, 以使所述 UE根据所述指 示信息进行业务传输;
其中,所述第一激活集包括:扩展专用信道 DCH激活集和 /或扩展增强专 用信道 E-DCH激活集, 所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送的所述上行 DCH业务,所 述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务,且所述扩展 E-DCH激活集 中的微基站接收所述 UE发送的所述 E-DCH业务;
在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR,并将所述 LLR作为维特比译码器输入进行维特比 译码;
所述第二激活集包括: DCH激活集和 /或 E-DCH激活集;
所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支持所述 第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激活集中 的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新数据, 若所述 E-HICH指示非确认应答 NACK并且未到 达最大重传次数, 所述 UE重传数据。
在第六方面的第一种可能的实施方式中, 所述发送模块还用于: 在发送 所述指示信息之前, 向所述 UE发送激活集更新信令, 以使所述 UE根据所述 激活集更新信令, 在第一区域进行业务传输时将所述微基站加入第一激活集 中, 和 /或, 在第二区域进行业务传输时将所述宏基站加入第三激活集中。 结合第六方面的第一种可能的实施方式, 在第六方面的第二种可能的实 施方式中, 还包括:
第一接收模块, 用于在所述发送模块向所述 UE发送激活集更新信令之 前, 接收所述 UE发送的第一测量报告,所述第一测量报告是所述 UE处于非 软切换区域时,当所述 UE测量到所述微基站的公共导频信道质量超过预先设 定的加入第一激活集的第一门限值且小于加入所述第二激活集的第一条件阈 值时向所述 RNC发送的, 或者,
所述第一测量报告是所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所述微基站的公共导频信道质量小于所述微基站从所述第 二激活集删除的第三条件阈值且大于预先设定的第二门限值时向所述 RNC发 送的。
结合第六方面的第二种可能的实施方式, 在第六方面的第三种可能的实 施方式中,所述第一接收模块还用于:在所述发送模块向所述 UE发送所述指 示信息之后,接收所述 UE发送的第二测量报告,所述第二测量报告是当所述 微基站的公共导频信道质量大于加入第二激活集的第一条件阈值时,所述 UE 向所述 RNC发送的;
所述发送模块还用于: 向所述 UE发送第一控制信息, 以使所述 UE根据 所述第一控制信息指示将所述微基站加入第二激活集中;
或者,
所述第一接收模块还用于:在所述发送模块向所述 UE发送所述指示信息 之后,接收所述 UE发送的第二测量报告,所述第二测量报告是当所述微基站 的公共导频信道质量小于所述第二门限值时, 所述 UE向所述 RNC发送的; 所述发送模块还用于: 向所述 UE发送第二控制信息, 以使所述 UE根据 所述第二控制信息将所述微基站从所述第一激活集中删除。
结合第六方面的第一种可能的实施方式, 在第六方面的第四种可能的实 施方式中, 还包括:
第二接收模块, 用于在所述发送模块向所述 UE发送激活集更新信令之 前, 接收所述 UE发送的第三测量报告, 所述第三测量报告是所述 UE处于非 软切换区域时,当所述 UE测量到所述宏基站的公共导频信道质量超过预先设 定的第三门限值且小于加入所述第二激活集的第二条件阈值时,所述 UE向所 述 RNC发送的; 或者,
所述第三测量报告是所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所述宏基站的公共导频信道质量低于所述宏基站从所述第 二激活集删除的第四条件阈值且大于预先设定的第四门限值时,所述 UE向所 述 RNC发送的。
结合第六方面的第四种可能的实施方式, 在第六方面的第五种可能的实 施方式中,所述第二接收模块还用于:在所述发送模块向所述 UE发送所述指 示信息之后,接收所述 UE发送的第四测量报告,所述第四测量报告是当所述 宏基站的公共导频信道质量大于加入所述第二激活集的第二条件阈值时, 所 述 UE向所述 RNC发送的;
所述发送模块还用于: 向所述 UE发送第三控制信息, 以使所述 UE根据 所述第三控制信息将所述宏基站加入第二激活集中;
或者,
所述第二接收模块还用于:在所述发送模块向所述 UE发送所述指示信息 之后,接收所述 UE发送的第四测量报告,所述第四测量报告是当所述宏基站 的公共导频信道质量小于所述第四门限值时, 所述 UE向所述 RNC发送的; 所述发送模块还用于: 向所述 UE发送第四控制信息, 以使所述 UE根据 所述第四控制信息将所述宏基站从所述第三激活集中删除。
第七方面, 本发明实施例提供一种微基站, 包括:
接收模块, 用于接收接入网中无线网络控制器 RNC发送的配置信息, 所 述配置信息用于指示所述微基站接收用户设备 UE发送的上行专用信道 DCH 和 /或上行增强专用信道 E-DCH业务;
处理模块,用于在所述微基站被所述 UE在第一区域进行业务传输时加入 第一激活集之后,根据所述配置信息在所述第一激活集中接收所述 UE发送的 上行 DCH和 /或上行 E-DCH业务,所述第一区域为所述微基站的公共导频信道 质量达到加入所述第一激活集的第一门限值与所述微基站的公共导频信道质 量达到加入第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频 信道质量是由处于所述第一区域的所述 UE测量得到;
其中, 所述第一激活集包括:
扩展 DCH激活集和 /或扩展 E-DCH激活集,所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送 的所述上行 DCH业务, 所述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务, 且所述扩展 E-DCH激活集中的微基站接收所述 UE发送的所述 E-DCH业务; 在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR ,并将所述 LLR作为维特比译码器输入进行维特比 译码。
在第七方面的第一种可能的实施方式中, 还包括:
发送模块, 若所述微基站接收的业务为 DCH业务, 所述发送模块用于向 所述 UE发送功率控制命令 TPC ,所述 TPC用于调整所述 UE的上行发送功率; 若所述微基站接收的业务为 E-DCH业务, 所述发送模块用于向所述 UE 发送 TPC、增强专用信道相对授权信道 E-RGCH和增强专用信道混合自动重传 请求指示信道 E-HICH; 其中, 所述 TPC用于调整所述 UE的上行发送功率, 所述 E-RGCH用于调整所述 UE获得的调度授权值, 所述 E-HICH用于向所述 UE反馈所述微基站是否正确接收所述 UE的数据。
第八方面, 本发明实施例提供一种宏基站, 包括:
接收模块, 用于接收接入网中无线网络控制器 RNC发送的配置信息, 所 述配置信息用于指示所述宏基站向用户设备 UE发送下行专用信道 DCH业务; 发送模块,用于在所述宏基站被所述 UE在第二区域进行业务传输时加入 第三激活集之后,根据所述配置信息在所述第三激活集中向所述 UE发送下行 专用信道 DCH业务, 所述第二区域为所述宏基站的公共导频信道质量达到加 入所述第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到;
其中, 所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支 持所述第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激 活集中的宏基站发送的下行 DCH业务; 在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新 E-DCH业务, 若所述 E-HICH指示非确认应答 NACK并 且未到达最大重传次数, 所述 UE重传 E-DCH业务。
在第八方面的第一种可能的实施方式中, 所述接收模块还用于: 在所述发送模块根据所述配置信息在所述第三激活集中向所述 UE发送 下行专用信道 DCH业务之后, 接收所述 UE发送的上行功率控制命令 TPC, 所 述 TPC用于控制所述下行 DCH业务的发送功率。
第九方面, 本发明实施例提供一种接入网系统, 包括如第五方面至第五 方面的第六种可能的实施方式中任一所述的用户设备和如第六方面至第六方 面的第五种可能的实施方式中任一所述的无线网络控制器, 以及如第七方面 或第七方面的第一种可能的实施方式所述的微基站和如第八方面或第八方面 的第一种可能的实施方式所述的宏基站。
第十方面, 本发明实施例提供一种网络通信方法, 包括:
用户设备 UE接收接入网中的第一基站发送的第一增强专用信道混合自 动重传请求指示信道 E-HICH, 所述第一基站位于所述 UE的检测范围内且不 处于所述 UE的增强专用信道 E-DCH激活集内;
当所述第一 E-HICH指示为确认应答 ACK时,所述 UE发送新 E-DCH数据。 在第十方面的第一种可能的实施方式中, 所述第一基站位于所述 UE的检 测范围内, 包括:
所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。 结合第十方面或第十方面的第一种可能的实施方式, 在第十方面的第二 种可能的实施方式中,所述 UE接收所述第一基站发送的第一增强专用信道混 合自动重传请求指示信道 E-HICH之前, 还包括:
所述 UE接收无线网络控制器 RNC发送的第一指示信令,所述第一指示信 令用于指示所述 UE接收所述第一基站发送的第一 E-HICH, 所述第一指示信 令包括所述第一 E-HICH的信道化码和签名序列,所述信道化码用以指示所述 UE译码所述第一 E-HICH占用的信道应使用的扩频码, 所述签名序列用以指 示所述 UE译码每个 E-HICH子帧应使用的正交序列。 结合第十方面的第二种可能的实施方式, 在第十方面的第三种可能的实 施方式中, 所述第一指示信令还包括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示所 述 UE接收所述第一 E-HICH的每个子帧的起始时间位置。
结合第十方面的第三种可能的实施方式, 在第十方面的第四种可能的实 施方式中,所述第一 E-HICH的定时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 和 /或符号位置。
结合第十方面的第二种可能的实施方式至第十方面的第四种可能的实施 方式中任一项所述的方法, 在第十方面的第五种可能的实施方式中, 所述第 一指示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
结合第十方面的第五种可能的实施方式, 在第十方面的第六种可能的实 施方式中, 所述 E-RGCH的定时信息为所述第一基站的部分下行物理信道
F-DPCH的定时偏置 ^^„和/或符号位置。
结合第十方面的第二种可能的实施方式至第十方面的第六种可能的实施 方式中任一项所述的方法, 在第十方面的第七种可能的实施方式中, 所述 UE 接收无线网络控制器 RNC发送的第一指示信令之前, 还包括:
所述 UE测量各个服务小区的公共导频信道质量;
所述 UE测量到所述第一基站的公共导频信道质量超过预设的第一门限 时,所述 UE向所述 RNC发送测量报告, 以使所述 RNC根据所述测量报告向所 述 UE发送所述第一指示信令。
第十一方面, 本发明实施例提供一种网络通信方法, 包括:
接入网中的第一基站接收用户设备 UE发送的 E-DCH业务,所述第一基站 位于所述 UE的检测范围内且不处于所述 UE的增强专用信道 E-DCH激活集内; 所述第一基站向所述 UE发送第一增强专用信道混合自动重传请求指示 信道 E-HICH; 所述第一基站接收所述 UE在所述第一 E-HICH指示为确认应答 ACK时发 送的新 E-DCH数据。
在第 ^一方面的第一种可能的实施方式中, 所述第一基站位于所述 UE的 检测范围内, 包括:
所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。 结合第 ^一方面或第 ^一方面的第一种可能的实施方式, 在第 ^一方面 的第二种可能的实施方式中,所述接入网中的第一基站接收用户设备 UE发送 的 E-DCH业务之前, 还包括:
所述第一基站接收无线网络控制器 RNC发送的第二指示信令, 所述第二 指示信令用于指示所述第一基站接收所述 UE发送的 E-DCH业务,所述第二指 示信令包括:所述 UE的上行扰码、所述第一 E-HICH的信道化码和签名序列, 所述信道化码用以指示所述 UE译码所述第一 E-HICH占用的信道应使用的扩 频码, 所述签名序列用以指示所述 UE译码每个 E-HICH子帧应使用的正交序 列。
结合第 ^一方面的第二种可能的实施方式, 在第十一方面的第三种可能 的实施方式中, 所述第二指示信令还包括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示发 送所述第一 E-HICH的每个子帧的起始时间位置。
结合第 ^一方面的第三种可能的实施方式, 在第十一方面的第四种可能 的实施方式中,所述第一 E-HICH的定时信息为所述第一基站的部分下行物理 信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第 ^一方面的第二种可能的实施方式至第 ^一方面的第四种可能的 实施方式中任一项所述的方法, 在第 ^一方面的第五种可能的实施方式中, 所述第二指示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
结合第 ^一方面的第五种可能的实施方式, 在第十一方面的第六种可能 的实施方式中,所述 E-RGCH的定时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第 ^一方面的第二种可能的实施方式至第 ^一方面的第六种可能的 实施方式中任一项所述的方法, 在第 ^一方面的第七种可能的实施方式中, 所述第一基站接收无线网络控制器 RNC发送的第二指示信令之前, 还包括: 所述第一基站向所述 RNC发送接收能力消息, 所述接收能力消息用于指 示所述第一基站可以接收所述 UE发送的 E-DCH业务。
第十二方面, 本发明实施例提供一种网络通信方法, 包括:
接入网中的无线网络控制器 RNC生成第一指示信令和第二指示信令, 所 述第一指示信令用于指示用户设备 UE接收第一基站发送的第一增强专用信 道混合自动重传请求指示信道 E-HICH,所述第二指示信令用于指示所述第一 基站接收所述 UE发送的 E-DCH业务, 所述第一基站位于所述 UE的检测范围 内且不处于所述 UE的增强专用信道 E-DCH激活集内;
所述 RNC向所述第一基站发送所述第二指示信令, 所述第二指示信令包 括: 所述 UE的上行扰码、 所述第一 E-HICH的信道化码和签名序列, 所述信 道化码用以指示所述 UE译码所述第一 E-HICH占用的信道应使用的扩频码, 所述签名序列用以指示所述 UE译码每个 E-HICH子帧应使用的正交序列; 所述 RNC向所述 UE发送所述第一指示信令,所述第一指示信令包括所述 第一 E-HICH的信道化码和签名序列。
在第十二方面的第一种可能的实施方式中, 所述第一基站位于所述 UE的 检测范围内, 包括:
所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。 结合第十二方面或第十二方面的第一种可能的实施方式, 在第十二方面 的第二种可能的实施方式中, 所述第一指示信令还包括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示所 述 UE接收所述第一 E-HICH的每个子帧的起始时间位置;
所述第二指示信令还包括: 所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示发送所述第一 E-HICH的每个子帧的起始时间位 置。 结合第十二方面的第二种可能的实施方式, 在第十二方面的第三种可能 的实施方式中,所述第一 E-HICH的定时信息为所述第一基站的部分下行物理 信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第十二方面或第十二方面的第一种可能的实施方式或第十二方面的 第二种可能的实施方式或第十二方面的第三种可能的实施方式, 在第十二方 面的第四种可能的实施方式中, 所述第一指示信令和第二指示信令还包括: 增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
结合第十二方面的第四种可能的实施方式, 在第十二方面的第五种可能 的实施方式中,所述 E-RGCH的定时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第十二方面至第十二方面的第五种可能的实施方式中任一项所述的 方法, 在第十二方面的第六种可能的实施方式中, 所述 RNC生成第一指示信 令和第二指示信令之前, 还包括:
所述 RNC接收所述 UE发送的测量报告, 所述测量报告是所述 UE测量到 所述第一基站的公共导频信道质量超过预设的第一门限时发送的。
结合第十二方面至第十二方面的第六种可能的实施方式中任一项所述的 方法, 在第十二方面的第六种可能的实施方式中, 所述 RNC向所述第一基站 发送所述第二指示信令之前, 还包括:
所述 RNC接收所述第一基站发送的接收能力消息, 所述接收能力消息用 于指示所述第一基站可以接收所述 UE发送的 E-DCH业务。
第十三方面, 本发明实施例提供一种用户设备, 包括:
接收模块, 用于接收接入网中的第一基站发送的第一增强专用信道混合 自动重传请求指示信道 E-HICH, 所述第一基站位于所述 UE的检测范围内且 不处于所述 UE的增强专用信道 E-DCH激活集内;
发送模块,用于当所述第一 E-HICH指示为确认应答 ACK时,发送新 E-DCH 数据。 在第十三方面的第一种可能的实施方式中, 所述第一基站位于所述 UE的 检测范围内, 包括:
所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。 结合第十三方面或第十三方面的第一种可能的实施方式, 在第十三方面 的第二种可能的实施方式中, 所述接收模块还用于:
接收所述第一基站发送的第一增强专用信道混合自动重传请求指示信道 E-HICH之前, 接收无线网络控制器 RNC发送的第一指示信令, 所述第一指示 信令用于指示所述 UE接收所述第一基站发送的第一 E-HICH, 所述第一指示 信令包括所述第一 E-HICH的信道化码和签名序列,所述信道化码用以指示所 述 UE译码所述第一 E-HICH占用的信道应使用的扩频码, 所述签名序列用以 指示所述 UE译码每个 E-HICH子帧应使用的正交序列。
结合第十三方面的第二种可能的实施方式, 在第十三方面的第三种可能 的实施方式中, 所述第一指示信令还包括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示所 述 UE接收所述第一 E-HICH的每个子帧的起始时间位置。
结合第十三方面的第三种可能的实施方式, 在第十三方面的第四种可能 的实施方式中,所述第一 E-HICH的定时信息为所述第一基站的部分下行物理 信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第十三方面的第二种可能的实施方式至第十三方面的第四种可能的 实施方式中任一所述的用户设备,在第十三方面的第五种可能的实施方式中, 所述第一指示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
结合第十三方面的第五种可能的实施方式, 在第十三方面的第六种可能 的实施方式中,所述 E-RGCH的定时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第十三方面的第二种可能的实施方式至第十三方面的第六种可能的 实施方式中任一项所述的用户设备, 在第十三方面的第七种可能的实施方式 中, 所述用户设备还包括:
处理模块, 用于在所述接收模块接收无线网络控制器 RNC发送的第一指 示信令之前, 测量各个服务小区的公共导频信道质量;
所述发送模块还用于在所述处理模块测量到所述第一基站的公共导频信 道质量超过预设的第一门限时,所述 UE向所述 RNC发送测量报告, 以使所述 RNC根据所述测量报告向所述 UE发送所述第一指示信令。
第十四方面, 本发明实施例提供一种基站, 包括:
接收模块,用于接收用户设备 UE发送的 E-DCH业务,所述基站位于所述 UE的检测范围内且不处于所述 UE的增强专用信道 E-DCH激活集内;
发送模块,用于向所述 UE发送第一增强专用信道混合自动重传请求指示 信道 E- HICH;
所述接收模块还用于: 接收所述 UE在所述第一 E-HICH指示为确认应答 ACK时发送的新 E-DCH数据。
在第十四方面的第一种可能的实施方式中, 所述基站位于所述 UE的检测 范围内, 包括:
所述 UE测量到的所述基站的下行导频质量超过预设的第一阈值。
结合第十四方面或第十四方面的第一种可能的实施方式, 在第十四方面 的第二种可能的实施方式中, 所述接收模块还用于:
接收所述 UE发送的 E-DCH业务之前,接收无线网络控制器 RNC发送的第 二指示信令, 所述第二指示信令用于指示所述第一基站接收所述 UE发送的 E-DCH业务, 所述第二指示信令包括: 所述 UE的上行扰码、所述第一 E-HICH 的信道化码和签名序列,所述信道化码用以指示所述 UE译码所述第一 E-HICH 占用的信道应使用的扩频码,所述签名序列用以指示所述 UE译码每个 E-HICH 子帧应使用的正交序列。
结合第十四方面的第二种可能的实施方式, 在第十四方面的第三种可能 的实施方式中, 所述第二指示信令还包括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示发 送所述第一 E-HICH的每个子帧的起始时间位置。 结合第十四方面的第三种可能的实施方式, 在第十四方面的第四种可能 的实施方式中,所述第一 E-HICH的定时信息为所述第一基站的部分下行物理 信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第十四方面的第二种可能的实施方式至第十四方面的第四种可能的 实施方式中任一项所述基站, 在第十四方面的第五种可能的实施方式中, 所 述第二指示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
结合第十四方面的第五种可能的实施方式, 在第十四方面的第六种可能 的实施方式中,所述 E-RGCH的定时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第十四方面的第二种可能的实施方式至第十四方面的第六种可能的 实施方式中任一项所述的基站, 在第十四方面的第七种可能的实施方式中, 所述发送模块还用于:
在所述接收模块接收无线网络控制器 RNC发送的第二指示信令之前, 向 所述 RNC发送接收能力消息, 所述接收能力消息用于指示所述第一基站可以 接收所述 UE发送的 E-DCH业务。
第十五方面, 本发明实施例提供一种 RNC , 包括:
处理模块, 用于生成第一指示信令和第二指示信令, 所述第一指示信令 用于指示用户设备 UE接收第一基站发送的第一增强专用信道混合自动重传 请求指示信道 E-HICH,所述第二指示信令用于指示所述第一基站接收所述 UE 发送的 E-DCH业务, 所述第一基站位于所述 UE的检测范围内且不处于所述 UE的增强专用信道 E-DCH激活集内;
发送模块, 用于向所述第一基站发送所述第二指示信令, 所述第二指示 信令包括: 所述 UE的上行扰码、 所述第一 E-HICH的信道化码和签名序列, 所述信道化码用以指示所述 UE译码所述第一 E-HICH占用的信道应使用的扩 频码, 所述签名序列用以指示所述 UE译码每个 E-HICH子帧应使用的正交序 列;
所述发送模块还用于: 向所述 UE发送所述第一指示信令,所述第一指示 信令包括所述第一 E-HICH的信道化码和签名序列。
在第十五方面的第一种可能的实施方式中, 所述第一基站位于所述 UE的 检测范围内, 包括:
所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。 结合第十五方面或第十五方面的第一种可能的实施方式, 在第十五方面 的第二种可能的实施方式中, 所述第一指示信令还包括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示所 述 UE接收所述第一 E-HICH的每个子帧的起始时间位置;
所述第二指示信令还包括: 所述第一 E-HICH的定时信息, 所述第一
E-HICH的定时信息用于指示发送所述第一 E-HICH的每个子帧的起始时间位 置。
结合第十五方面的第二种可能的实施方式, 在第十五方面的第三种可能 的实施方式中,所述第一 E-HICH的定时信息为所述第一基站的部分下行物理 信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第十五方面至第十五方面的第三种可能的实施方式中任一项所述的 RNC,在第十五方面的第四种可能的实施方式中,所述第一指示信令和第二指 示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
结合第十五方面的第四种可能的实施方式, 在第十五方面的第五种可能 的实施方式中,所述 E-RGCH的定时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 ^^„和/或符号位置。
结合第十五方面至第十五方面的第五种可能的实施方式中任一项所述的 RNC, 在第十五方面的第六种可能的实施方式中, 还包括:
接收模块,用于在所述处理模块生成第一指示信令和第二指示信令之前, 接收所述 UE发送的测量报告, 所述测量报告是所述 UE测量到所述第一基站 的公共导频信道质量超过预设的第一门限时发送的。
结合第十五方面至第十五方面的第六种可能的实施方式中任一项所述的 RNC , 在第十五方面的第七种可能的实施方式中, 所述接收模块还用于: 在所述发送模块向所述第一基站发送所述第二指示信令之前, 接收所述 第一基站发送的接收能力消息, 所述接收能力消息用于指示所述第一基站可 以接收所述 UE发送的 E-DCH业务。
本发明实施例提供的网络通信方法、装置和系统,通过 UE接收 RNC发送 的指示信息, 根据指示信息, UE在第一区域与宏基站进行上下行业务传输, 以及与微基站进行上行业务传输,和 /或,在第二区域与微基站进行上行业务 传输, 以及与宏基站进行下行业务传输,从而可将在第一区域 UE对微基站造 成的上行干扰降到最低, 将在第二区域宏基站对微基站造成的下行干扰降到 最低, 而且还可充分利用微基站的上行覆盖和宏基站的下行覆盖, 增加了 HetNet边缘区域传输的吞吐率和可靠性。
本发明实施例还提供了一种网络通信方法, 包括:
接入网中的用户设备 UE接收无线网络控制器 RNC的第一无线网络控制 RRC信令, 根据所述第一 RRC信令的指示, 所述 UE将所述第一基站加入所述 UE的扩展增强专用信道 E-DCH激活集中; 所述 UE接收所述第一基站的增强 专用信道混合自动重传请求指示信道 E-HICH , 当所述 E-HICH指示为确认应 答 ACK时, 所述 UE发送新 E-DCH数据; 当所述 UE没有从所述接入网接收专 用信道 DCH数据时,所述 UE根据所述第一 RRC信令的指示,关闭接收所述第 一基站的部分专用物理信道 F-DPCH的功能; 其中, 所述 RNC通过删除第一 RRC信令中的 F-DPCH配置信息或通过在第一 RRC信令中的预设指示字段完成 所述指示; 当所述 UE从所述接入网接收 DCH数据时, 所述 UE根据所述第一 RRC信令的指示, 关闭接收所述第一基站的下行专用物理数据信道 DPDCH的 功能;其中,所述 RNC通过删除第一 RRC信令中的 DPCH配置信息或通过在第 一 RRC信令中的预设指示字段完成所述指示。
在一种实现方式中, 所述 UE从所述接入网接收 DCH数据时, 还包括: 所 述 UE根据所述第一 RRC信令的指示, 接收所述第一基站的 F-DPCH, 所述 F-DPCH用以对所述 UE进行传输功率控制。
在另一种实现方式中, 所述 UE从所述接入网接收 DCH数据时, 还包括: 所述 UE关闭接收所述第一基站发送的下行专用物理控制信道 DPCCH的功能。
在另一种实现方式中, 所述 UE将所述第一基站加入所述 UE的 E-DCH激 活集之后, 还包括: 所述 UE接收网络发送的第一控制信令; 根据所述第一控 制信令的指示, 接收所述第一基站的 F-DPCH; 或者, 接收所述第一基站发送 的下行 DPDCH , 所述下行 DPDCH用于承载所述 UE从所述第一基站接收的 DCH 数据。
在另一种实现方式中, 所述 UE接收所述第一基站发送的下行 DPDCH, 还 包括: 所述 UE接收所述第一基站的下行 DPCCH, 所述下行 DPCCH用于所述第 一基站向所述 UE发送物理层控制信令。
在另一种实现方式中, 所述网络发送的第一控制信令包括: 所述 RNC发 送的第二 RRC信令; 或者, 接入网中的第二基站发送的第一物理层信令, 所 述第二基站位于所述 UE的 E-DCH激活集或 DCH激活集内。
在另一种实现方式中, 所述 UE接收所述网络发送的第一控制信令之前, 还包括: 所述 UE测量各个小区的公共导频信道质量; 当所述 UE测量到所述 第一基站的公共导频信道质量超过预设的第一门限时, 所述 UE向所述 RNC 发送测量报告, 以使所述 RNC根据所述测量报告向所述 UE发送所述第二 RRC 信令;或者, 以使所述 RNC指示所述第二基站向所述 UE发送所述第一物理层 信令。
在另一种实现方式中, 所述 UE接收所述第一基站的 F-DPCH之前, 还包 括: 所述 UE接收所述第一基站的 F-DPCH的配置信息, 所述配置信息包括所 述 F-DPCH的信道化码、 帧偏移和时隙格式中至少一个。
在另一种实现方式中,还包括:所述第一基站的 F-DPCH配置信息承载于 所述第一控制信令中。
在另一种实现方式中,所述 UE接收所述第一基站的下行 DPDCH之前,还 包括: 所述 UE接收所述第一基站的下行 DPCH的配置信息, 所述下行 DPCH 的配置信息包括所述 DPCH的信道化码或帧偏移信息。
在另一种实现方式中,其特征在于,所述下行 DPCH的配置信息承载于所 述第一控制信令中。
本发明实施例还提供了一种网络通信方法, 包括: 接入网中的 RNC生成 第一 RRC信令或第一网络信令,所述 RNC向 UE发送所述第一 RRC信令或向接 入网中的第一基站发送第一网络信令, 所述第一 RRC信令用以指示所述 UE 将所述第一基站加入所述 UE的 E-DCH激活集中, 并且指示所述 UE接收所述 第一基站的 E-HICH; 所述第一网络信令用以指示所述第一基站接收所述 UE 发送的 E-DCH数据, 并且指示所述第一基站向所述 UE发送 E-HICH; 当所述 UE没有从所述接入网接收 DCH数据时, 所述第一 RRC信令指示所述 UE关闭 接收所述第一基站的 F-DPCH的功能,其中,所述 RNC通过删除第一 RRC信令 中的 F-DPCH配置信息或通过在第一 RRC信令中设置预设指示字段完成所述指 示;或者所述第一网络信令指示所述第一基站关闭发送 F-DPCH的功能,其中, 所述 RNC通过删除所述第一网络信令中 F-DPCH配置信息或通过在第一网络信 令中设置预设指示字段完成所述指示;当所述 UE从所述接入网接收 DCH数据 时,所述第一 RRC信令指示所述 UE关闭接收所述第一基站的下行 DPDCH的功 能,其中,所述 RNC通过删除第一 RRC信令中的 DPCH配置信息或通过在第一 RRC信令中的预设指示字段完成所述指示; 或者所述第一网络信令指示所述 第一基站关闭发送下行 DPDCH的功能。 其中, 所述 RNC通过删除所述第一网 络信令中 DPCH配置信息或通过在第一网络信令中设置预设指示字段完成所 述指示。
在一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时, 所述 RNC 通过删除第一 RRC信令中的 DPCH配置信息完成所述指示,还包括:所述第一 RRC信令指示所述 UE接收所述第一基站的 F-DPCH, 所述 F-DPCH用以对所述 UE进行上行传输功率控制; 所述第一网络信令指示所述第一基站向所述 UE 发送 F-DPCH。
在另一种实现方式中,所述第一 RRC信令指示所述 UE关闭接收所述第一 基站的下行 DPDCH的功能, 还包括: 所述第一网络信令指示所述第一基站关 闭向所述 UE发送 DPCCH的功能; 或所述第一 RRC信令还指示所述 UE关闭接 收所述第一基站的下行 DPCCH的功能。
在另一种实现方式中,所述 RNC向所述 UE发送第一 RRC信令并且向所述 第一基站发送第一网络信令之后, 还包括: 所述 RNC生成第二 RRC信令, 所 述 RNC向所述 UE发送所述第二 RRC信令; 当所述 UE没有从所述接入网接收 DCH数据时, 所述第二 RRC信令用以指示所述 UE接收所述第一基站发送的 F-DPCH; 当所述 UE从所述接入网中接收 DCH数据时,所述第二 RRC信令用以 指示所述 UE接收所述第一基站发送的下行 DPDCH。
在另一种实现方式中, 当所述 UE从所述接入网中接收 DCH数据时,所述 第二 RRC信令用以指示所述 UE接收所述第一基站发送的下行 DPDCH ,还包括: 所述第二 RRC信令指示所述 UE接收所述第一基站发送的下行 DPCCH。
在另一种实现方式中, 还包括: 当所述 UE没有从所述接入网接收 DCH 数据时, 所述第二 RRC信令包含有所述 F-DPCH的配置信息; 当所述 UE从所 述接入网中接收 DCH数据时, 所述第二 RRC信令包含有所述第一基站的下行 DPCH配置信息。
在另一种实现方式中, 还包括: 所述 RCN生成第二网络信令, 所述 RNC 向所述第一基站发送所述第二网络信令; 当所述 UE没有从所述接入网接收 DCH数据时,所述第二网络信令用以指示所述第一基站向所述 UE发送 F-DPCH; 当所述 UE从所述接入网中接收 DCH数据时,所述第二网络信令用以指示所述 第一基站向所述 UE发送 DPDCH。
在另一种实现方式中, 当所述 UE从所述接入网中接收 DCH数据时,所述 第二网络信令用以指示所述第一基站向所述 UE发送 DPDCH, 还包括: 所述第 二网路信令指示所述第一基站向所述 UE发送下行 DPCCH。
在另一种实现方式中, 还包括: 当所述 UE没有从所述接入网接收 DCH 数据时, 所述第二网络信令包含有所述 F-DPCH的配置信息; 当所述 UE从所 述接入网中接收 DCH数据时, 所述第二网络信令包含有所述第一基站的下行 DPCH配置信息。
在另一种实现方式中, 所述 RNC生成所述第二 RRC信令前, 还包括: 所 述 RNC接收所述 UE发送的测量报告,所述测量包括用以指示所述 RNC向所述 UE发送第二 RRC信令。
本发明实施例还提供了一种网络的通信方法, 包括: 接入网中的第一基 站接收无线网络控制器 RNC发送的第一网络信令, 根据所述第一网络信令的 指示, 接收接入网中用户设备 UE发送的 E-DCH数据, 并且向所述 UE发送 E-HICH; 当所述 UE没有从所述接入网中接收 DCH数据时,所述第一基站根据 所述第一网络信令的指示关闭向所述 UE发送 F-DPCH的功能;当所述 UE从所 述接入网接收 DCH数据时, 所述第一基站根据所述第一网络信令的指示关闭 向所述 UE发送下行 DPDCH的功能。
在一种实现方式中,所述 RNC通过删除所述第一网络信令中 F-DPCH配置 信息或通过在第一网络信令中设置预设指示字段完成所述指示。
在另一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述第 一基站关闭向所述 UE发送下行 DPDCH的功能,还包括:所述第一基站向所述 UE发送 F-DPCH,所述 F-DPCH用以所述第一基站对所述 UE进行上行传输功率 控制。
在另一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述第 一基站关闭向所述 UE发送下行 DPDCH的功能,还包括:所述第一基站关闭向 所述 UE发送下行 DPCCH的功能。
在另一种实现方式中,所述第一基站接收所述第一 RRC信令后,还包括: 所述第一基站接收所述 RNC发送的第二 RRC信令;当所述 UE没有从所述接入 网中接收 DCH数据时,根据所述第二 RRC信令的指示所述第一基站向所述 UE 发送 F-DPCH; 当所述 UE从所述接入网接收 DCH数据时, 根据所述第二 RRC 信令的指示所述第一基站向所述 UE发送下行 DPDCH。
在另一种实现方式中, 还包括: 当所述 UE没有从所述接入网中接收 DCH 数据时,所述第一基站接收的第一网络信令中包含有 F-DPCH配置信息; 当所 述 UE从所述接入网接收 DCH数据时,所述第一基站接收的第一网络信令中包 含有下行 DPCH配置信息。
在另一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述第 一基站向所述 UE发送下行 DPDCH, 还包括: 所述第一基站向所述 UE发送下 行 DPCCHo
本发明实施例还提供了一种接入网中的用户设备 UE, 包括: 无线收发单 元, 用于接收无线网络控制器 RNC的第一无线网络控制 RRC信令, 根据所述 第一 RRC信令的指示, 将所述第一基站加入所述 UE的扩展增强专用信道 E-DCH激活集中; 接收所述第一基站的增强专用信道混合自动重传请求指示 信道 E-HICH, 当所述 E-HICH指示为确认应答 ACK时, 发送新 E-DCH数据; 处理单元, 用于: 当所述 UE没有从所述接入网接收专用信道 DCH数据时, 根 据所述第一 RRC信令的指示, 关闭接收所述第一基站的部分专用物理信道 F-DPCH的功能; 其中, 所述 RNC通过删除第一 RRC信令中的 F-DPCH配置信 息或通过在第一 RRC信令中的预设指示字段完成所述指示;当所述 UE从所述 接入网接收 DCH数据时, 根据所述第一 RRC信令的指示, 关闭接收所述第一 基站的下行专用物理数据信道 DPDCH的功能; 其中, 所述 RNC通过删除第一 RRC信令中的 DPCH配置信息或通过在第一 RRC信令中的预设指示字段完成所 述指示。
在一种实现方式中,所述 UE从所述接入网接收 DCH数据时,所述无线收 发单元,还用于根据所述第一 RRC信令的指示,接收所述第一基站的 F-DPCH, 所述 F-DPCH用以对所述 UE进行传输功率控制。
在另一种实现方式中,所述 UE从所述接入网接收 DCH数据时,所述处理 单元, 还用于关闭接收所述第一基站发送的下行专用物理控制信道 DPCCH的 功能。
在另一种实现方式中,在将所述第一基站加入所述 UE的 E-DCH激活集之 后, 所述无线收发单元, 还用于接收网络发送的第一控制信令; 根据所述第 一控制信令的指示, 接收所述第一基站的 F-DPCH; 或者, 接收所述第一基站 发送的下行 DPDCH,所述下行 DPDCH用于承载所述 UE从所述第一基站接收的 DCH数据。
在另一种实现方式中, 所述无线收发单元, 还用于接收所述第一基站的 下行 DPCCH,所述下行 DPCCH用于所述第一基站向所述 UE发送物理层控制信 在另一种实现方式中, 所述网络发送的第一控制信令包括: 所述 RNC发 送的第二 RRC信令; 或者, 接入网中的第二基站发送的第一物理层信令, 所 述第二基站位于所述 UE的 E-DCH激活集或 DCH激活集内。
在另一种实现方式中, 在接收所述网络发送的第一控制信令之前, 所述 无线收发单元, 还用于测量各个小区的公共导频信道质量; 当测量到所述第 一基站的公共导频信道质量超过预设的第一门限时, 向所述 RNC发送测量报 告,以使所述 RNC根据所述测量报告向所述 UE发送所述第二 RRC信令,或者, 以使所述 RNC指示所述第二基站向所述 UE发送所述第一物理层信令。
在另一种实现方式中,在接收所述第一基站的 F-DPCH之前,所述无线收 发单元,还用于接收所述第一基站的 F-DPCH的配置信息,所述配置信息包括 所述 F-DPCH的信道化码、 帧偏移和时隙格式中至少一个。
在另一种实现方式中,所述第一基站的 F-DPCH配置信息承载于所述第一 控制信令中。
在另一种实现方式中, 在接收所述第一基站的下行 DPDCH之前, 所述无 线收发单元, 还用于接收所述第一基站的下行 DPCH的配置信息, 所述下行 DPCH的配置信息包括所述 DPCH的信道化码或帧偏移信息。
在另一种实现方式中,所述下行 DPCH的配置信息承载于所述第一控制信 令中。
本发明实施例还提供了一种接入网中的 RNC , 包括: 处理单元, 用于生 成第一 RRC信令或第一网络信令; 无线收发单元, 用于向 UE发送所述第一 RRC信令或向接入网中的第一基站发送第一网络信令, 所述第一 RRC信令用 以指示所述 UE将所述第一基站加入所述 UE的 E-DCH激活集中, 并且指示所 述 UE接收所述第一基站的 E-HICH; 所述第一网络信令用以指示所述第一基 站接收所述 UE发送的 E-DCH数据, 并且指示所述第一基站向所述 UE发送 E-HICH; 当所述 UE没有从所述接入网接收 DCH数据时,所述第一 RRC信令指 示所述 UE关闭接收所述第一基站的 F-DPCH的功能, 其中, 所述处理单元通 过删除第一 RRC信令中的 F-DPCH配置信息或通过在第一 RRC信令中设置预设 指示字段完成所述指示; 或者所述第一网络信令指示所述第一基站关闭发送 F-DPCH的功能, 其中, 所述处理单元通过删除所述第一网络信令中 F-DPCH 配置信息或通过在第一网络信令中设置预设指示字段完成所述指示; 当所述 UE从所述接入网接收 DCH数据时, 所述第一 RRC信令指示所述 UE关闭接收 所述第一基站的下行 DPDCH的功能, 其中, 所述处理单元通过删除第一 RRC 信令中的 DPCH配置信息或通过在第一 RRC信令中的预设指示字段完成所述指 示; 或者所述第一网络信令指示所述第一基站关闭发送下行 DPDCH的功能; 其中,所述处理单元通过删除所述第一网络信令中 DPCH配置信息或通过在第 一网络信令中设置预设指示字段完成所述指示。
在一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述第一 RRC信令指示所述 UE接收所述第一基站的 F-DPCH, 所述 F-DPCH用以对所述 UE进行上行传输功率控制; 所述第一网络信令指示所述第一基站向所述 UE 发送 F-DPCH。
在另一种实现方式中, 所述第一网络信令指示所述第一基站关闭向所述 UE发送 DPCCH的功能; 或所述第一 RRC信令还指示所述 UE关闭接收所述第 一基站的下行 DPCCH的功能。
在另一种实现方式中,所述无线收发单元向所述 UE发送第一 RRC信令并 且向所述第一基站发送第一网络信令之后, 所述处理单元还用于生成第二 RRC信令, 所述无线收发单元, 还用于向所述 UE发送所述第二 RRC信令; 当 所述 UE没有从所述接入网接收 DCH数据时,所述第二 RRC信令用以指示所述 UE接收所述第一基站发送的 F-DPCH; 当所述 UE从所述接入网中接收 DCH数 据时, 所述第二 RRC信令用以指示所述 UE接收所述第一基站发送的下行 DPDCHo
在另一种实现方式中, 当所述 UE从所述接入网中接收 DCH数据时,所述 第二 RRC信令还指示所述 UE接收所述第一基站发送的下行 DPCCH。
在另一种实现方式中, 当所述 UE没有从所述接入网接收 DCH数据时,所 述第二 RRC信令包含有所述 F-DPCH的配置信息; 当所述 UE从所述接入网中 接收 DCH数据时,所述第二 RRC信令包含有所述第一基站的下行 DPCH配置信 息。
在另一种实现方式中, 所述处理单元还用于生成第二网络信令, 所述无 线收发单元,还用于向所述第一基站发送所述第二网络信令; 当所述 UE没有 从所述接入网接收 DCH数据时, 所述第二网络信令用以指示所述第一基站向 所述 UE发送 F-DPCH; 当所述 UE从所述接入网中接收 DCH数据时, 所述第二 网络信令用以指示所述第一基站向所述 UE发送 DPDCH。
在另一种实现方式中, 当所述 UE从所述接入网中接收 DCH数据时,所述 第二网路信令还指示所述第一基站向所述 UE发送下行 DPCCH。 在另一种实现方式中, 当所述 UE没有从所述接入网接收 DCH数据时,所 述第二网络信令包含有所述 F-DPCH的配置信息; 当所述 UE从所述接入网中 接收 DCH数据时,所述第二网络信令包含有所述第一基站的下行 DPCH配置信 息。
在另一种实现方式中, 所述处理单元生成所述第二 RRC信令前, 所述无 线收发单元,还用于接收所述 UE发送的测量报告,所述测量包括用以指示所 述 RNC向所述 UE发送第二 RRC信令。
本发明实施例还提供了一种接入网中的第一基站,包括:无线收发单元, 用于接收无线网络控制器 RNC发送的第一网络信令, 根据所述第一网络信令 的指示, 接收接入网中用户设备 UE发送的 E-DCH数据, 并且向所述 UE发送 E-HICH; 处理单元, 用于: 当所述 UE没有从所述接入网中接收 DCH数据时, 根据所述第一网络信令的指示关闭向所述 UE发送 F-DPCH的功能; 当所述 UE 从所述接入网接收 DCH数据时,根据所述第一网络信令的指示关闭向所述 UE 发送下行 DPDCH的功能。
在一种实现方式中,所述 RNC通过删除所述第一网络信令中 F-DPCH配置 信息或通过在第一网络信令中设置预设指示字段完成所述指示。
在另一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述无 线收发单元, 还用于向所述 UE发送 F-DPCH , 所述 F-DPCH用以所述第一基站 对所述 UE进行上行传输功率控制。
在另一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述无 线收发单元, 还用于关闭向所述 UE发送下行 DPCCH的功能。
在另一种实现方式中, 所述无线收发单元在接收所述第一 RRC信令后, 还用于接收所述 RNC发送的第二 RRC信令; 所述处理单元, 还用于: 当所述 UE没有从所述接入网中接收 DCH数据时,根据所述第二 RRC信令的指示向所 述 UE发送 F-DPCH; 当所述 UE从所述接入网接收 DCH数据时, 根据所述第二 RRC信令的指示向所述 UE发送下行 DPDCH。
在另一种实现方式中, 所述无线收发单元, 还用于: 当所述 UE没有从所 述接入网中接收 DCH数据时,接收的第一网络信令中包含有 F-DPCH配置信息; 当所述 UE从所述接入网接收 DCH数据时,接收的第一网络信令中包含有下行 DPCH配置信息。
在另一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述无 线收发单元, 还用于向所述 UE发送下行 DPCCH。
根据上述实施例, 通过某种显式或隐式方式使得 UE在需要时不接收 F-DPCH或 DPCCH或 DPDCH,例如,可以在一个基站到 UE的下行链路质量变差 时灵活关闭 UE—部分接收功能, 或者关闭对 UE的相应发送功能, 减轻链路
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中上行功率平衡线与下行功率平衡线以及软切换区 域示意图;
图 2为本发明网络通信方法实施例一的流程图;
图 3为本发明网络通信方法实施例二的流程图;
图 4为本发明网络通信方法实施例三的流程图;
图 5为本发明网络通信方法实施例四的流程图;
图 6为本发明网络通信方法实施例五的流程图;
图 7为本发明网络通信方法实施例六的流程图;
图 8为本发明网络通信方法实施例七的流程图;
图 9为本发明网络通信方法实施例八的流程图;
图 10为本发明用户设备实施例一的结构示意图;
图 11为本发明用户设备实施例二的结构示意图;
图 12为本发明用户设备实施例三的结构示意图;
图 13为本发明无线网络控制器实施例一的结构示意图;
图 14为本发明无线网络控制器实施例二的结构示意图;
图 15为本发明无线网络控制器实施例三的结构示意图; 图 16为本发明微基站实施例一的结构示意图;
图 17为本发明微基站实施例二的结构示意图;
图 18为本发明宏基站实施例一的结构示意图;
图 19为本发明网络通信方法实施例九的流程图;
图 20为本发明网络通信方法实施例十的流程图;
图 21为本发明网络通信方法实施例 ^一的流程图;
图 22为本发明网络通信方法实施例十二的交互流程图;
图 23为本发明用户设备实施例四的结构示意图;
图 24为本发明基站实施例一的结构示意图;
图 25为本发明无线网络控制器实施例四的结构示意图;
图 26为本发明网络通信方法另一实施例的流程图;
图 27为本发明网络通信方法另一实施例的流程图;
图 28为本发明网络通信方法另一实施例的流程图;
图 29为本发明提供的另一用户设备实施例的示意图;
图 30为本发明提供的另一无线网络控制器实施例的示意图;
图 31为本发明提供的另一基站实施例的示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明网络通信方法实施例一的流程图,本实施例以 UE为执行主 体为例进行说明, 如图 2所示, 本实施例的方法可以包括:
S101、 UE接收接入网中无线网络控制器 (Radio Network Controller, 以下简称: RNC) 发送的指示信息, 指示信息用于指示 UE: 在第一区域, 与 接入网的宏基站进行上下行业务传输, 以及与接入网的微基站进行上行业务 传输, 第一区域为微基站的公共导频信道质量达到加入第一激活的第一门限 值与该微基站的公共导频信道质量达到加入第二激活集的第一条件阈值之间 的区域, 微基站的公共导频信道质量是由处于第一区域的 UE测量得到; 和 / 或, 在第二区域, 与微基站进行上下行业务传输, 以及与宏基站进行下行业 务传输, 第二区域为宏基站的公共导频信道质量达到加入第三激活集的第三 门限值与该宏基站的公共导频信道质量达到加入第二激活集的第二条件阈值 之间的区域, 宏基站的公共导频信道质量是由处于第二区域的 UE测量得到。
其中, 第一条件阈值为微基站加入第二激活集的门限, 第二条件阈值为 宏基站加入第二激活集的门限。
S102、 UE根据指示信息进行业务传输。
具体来说,在 HetNet中,第一激活集包括:扩展专用信道(Dedicated Channel , 以下简称: DCH) 激活集和 /或扩展增强专用信道 (Enhanced Dedicated Channel , 以下简称: E-DCH) 激活集, 扩展 DCH激活集支持 UE 发送上行 DCH业务, 且扩展 DCH激活集中的微基站接收 UE发送的上行 DCH 业务,扩展 E-DCH激活集支持 UE发送 E-DCH业务,且扩展 E-DCH激活集中的 微基站接收 UE发送的 E-DCH业务。 在第一激活集中 UE可接收并求取第一激 活集中宏基站 DCH业务的对数似然比(Log likelihood ratio,以下简称 LLR), 并将 LLR作为维特比译码器输入进行维特比译码。
第二激活集包括: DCH激活集和 /或 E-DCH激活集, 在第二激活集中, 宏基站和微基站可同时对 UE发送下行 DCH业务, 并同时接收 UE发送的上行 DCH业务和 /或 E-DCH业务, UE同时接收宏基站和微基站发送的下行 DCH业务。 当 UE从服务小区 (或服务基站) 向另一宏基站或微基站 (统称为目标基站) 移动时, UE与目标基站之间的通信链路信号质量逐渐上升, 当目标基站的公 共导频信号质量达到第一条件阈值(目标基站为微基站)或第二条件阈值(目 标基站为宏基站)时, UE可以通过该通信链路向网络侧上报目标基站的公共 导频信道质量上升事件, 以便无线网络控制器 RNC将目标基站加入第二激活 集中。
第三激活集包括: 扩展 DCH激活集, 扩展 DCH激活集支持第三激活集中 的宏基站发送下行 DCH业务, 且 UE接收第三激活集中的宏基站发送的下行 DCH业务。 在第三激活集中, UE可接收第三激活集中微基站发送的增强专用 信道混合自动重传请求指示信道 (E-DCH Hybrid ARQ Indicator Channel , 以下简称: E-HICH) ,若 E-HICH指示确认应答(Acknowledgement , 以下简称: ACK) , UE传输新数据, 若 E-HICH指示非确认应答 (Negative
Acknowledgement , 以下简称: NACK) 并且未到达最大重传次数, UE重传数 据。
结合图 1所示, 第一区域即为区域 B, 第二区域即为区域 E。在第一区域 B, UE对宏基站的下行接收好于微基站, 但在上行, 微基站对 UE的接收好于 宏基站, 因此 UE根据指示信息的指示, UE 在第一区域 B与宏基站进行上下 行业务传输, 与微基站进行上行业务传输, 在该传输过程中, 微基站可以对 UE进行上行功率控制, 从而就可将在第一区域 B中 UE对微基站造成的上行 干扰降到最低, 而且在该区域微基站有较好的上行信号质量, 因此还可充分 利用微基站的上行覆盖, 提升网络的上行吞吐率和可靠性。
在第二区域 E, UE上行和下行都是微基站的链路质量好, 但是由于 UE 对宏基站的下行信号仍有较强的接收功率, 因此 UE根据指示信息的指示, UE 在该区域与微基站进行上下行业务传输, 与宏基站进行下行业务传输, 在该 传输过程中, UE可以对宏基站的进行下行功率控制, 从而就可将在第二区域 E宏基站对微基站造成的下行干扰降到最低, 而且还可充分利用宏基站的下 行覆盖。
本实施例提供的网络通信方法,通过 UE接收 RNC发送的指示信息,根据 指示信息, UE在第一区域与宏基站进行上下行业务传输, 以及与微基站进行 上行业务传输, 和 /或, 在第二区域与微基站进行上行业务传输, 以及与宏基 站进行下行业务传输,从而可将在第一区域 UE对微基站造成的上行干扰降到 最低, 将在第二区域宏基站对微基站造成的下行干扰降到最低, 而且还可充 分利用微基站的上行覆盖和宏基站的下行覆盖, 增加了 HetNet边缘区域传 输的吞吐率和可靠性。
图 3为本发明网络通信方法实施例二的流程图, 如图 3所示, 本实施例 在图 2所示实施例的基础上, 提供一种具体的实现方法, 在 S102中 UE根据 指示信息进行业务传输之前, 还包括:
S103、 UE接收 RNC发送的激活集更新信令。 S104、 UE根据激活集更新信令, 在第一区域进行业务传输时将微基站加 入第一激活集中,和 /或,在第二区域进行业务传输时将宏基站加入第三激活 集中。
具体地, 结合图 1, 在第一区域 B附近, 在 S103UE接收 RNC发送的激活 集更新信令之前, 还包括:
UE测量各个小区的公共导频信道质量。 UE处于非软切换区域时, 即 UE 的服务小区为宏基站并且从区域 A向区域 B移动时,当 UE测量到微基站的公 共导频信道质量超过预先设定的加入第一激活集的第一门限值且小于加入第 二激活集的第一条件阈值时, UE向 RNC发送第一测量报告, 以使 RNC根据第 一测量报告向 UE发送激活集更新信令。 具体是 UE向宏基站发送第一测量报 告, 宏基站将第一测量报告转发给 RNC。
UE处于第二激活集对应的软切换区域时, 即就是 UE从区域 C向区域 B 移动时,当 UE测量到微基站的公共导频信道质量下降到微基站从第二激活集 删除的第三条件阈值且超过预先设定的第二门限值时, UE向 RNC发送第一测 量报告, 以使 RNC根据第一测量报告向 UE发送激活集更新信令。 具体是 UE 向宏基站或者微基站发送第一测量报告, 宏基站或者微基站将第一测量报告 转发给 RNC。
此处需说明的是, 第一门限值和第二门限值还可以相等。
UE接收到激活集更新信令之后, 将微基站加入第一激活集中, 然后 UE 再根据接收到的指示信息以及所加入的激活集进行业务传输。
UE根据指示信息进行业务传输之后,具体即就是 UE移动出区域 B之后, 还包括:
UE继续测量微基站的公共导频信道质量, 当微基站的公共导频信道质量 大于加入第二激活集的第一条件阈值时, UE向 RNC发送第二测量报告, 具体 是 UE向宏基站或微基站发送第二测量报告, 宏基站或微基站再转发给 RNC, 以使 RNC向 UE发送第一控制信息, UE根据第一控制信息将微基站加入第二 激活集中。
或者, UE继续测量微基站的公共导频信道质量, 当微基站的公共导频信 道质量小于第二门限值时, UE向 RNC发送第二测量报告, 具体是 UE向宏基 站或微基站发送第二测量报告, 宏基站或微基站再转发给 RNC, 以使 RNC向 UE发送第二控制信息, UE根据第二控制信息将微基站从第一激活集中删除。
进一歩地, 若 UE传输的业务包括 DCH业务, 则 UE在进行上行信号的发 送时, UE还要接收微基站发送的功率控制命令 (Transmit Power Control Command, 以下简称: TPC ) , TPC用于调整 UE的上行发送功率。
若 UE传输的业务包括 E-DCH业务, 则 UE在进行上行信号的发送时, UE 还要接收微基站发送的 TPC、 增强专用信道相对授权信道 (E-DCH Relative Grant , 以下简称: E-RGCH)和 E-HICH; 其中, TPC用于调整 UE的上行发送 功率, E-RGCH用于调整 UE获得的上行调度授权值, E-HICH用于向 UE反馈微 基站是否正确接收 UE的数据。
具体地, 结合图 1, 在第二区域 E附近, 在 S103 UE接收 RNC发送的激 活集更新信令之前, 还包括:
UE测量各个小区的公共导频信道质量。 UE处于非软切换区域时, 即就是 UE从靠近微基站的区域向 E区域移动时, 当 UE测量到宏基站的公共导频信 道质量超过预先设定的第三门限值且小于加入第二激活集的第二条件阈值 时, UE向 RNC发送第三测量报告, 以使 RNC根据第三测量报告向 UE发送激 活集更新信令。具体是 UE向微基站发送第三测量报告,微基站再转发给 RNC。
UE处于第二激活集对应的软切换区域时, 即就是 UE从区域 D向区域 E 移动时,当 UE测量到宏基站的公共导频信道质量低于宏基站从第二激活集删 除的第四条件阈值且大于预先设定的第四门限值时, UE向 RNC发送第三测量 报告,具体是 UE向宏基站或微基站发送第三测量报告,宏基站或微基站再转 发给 RNC, 以使 RNC根据第三测量报告向 UE发送激活集更新信令。
此处需说明的是, 第三门限值和第四门限值还可以相等。
UE接收到激活集更新信令之后, 将宏基站加入第三激活集中, 然后 UE 再根据接收到的指示信息以及所加入的激活集进行业务传输。
UE根据指示信息进行业务传输之后,具体即就是 UE移动出区域 E之后, 还包括:
UE继续测量宏基站的公共导频信道质量, 当宏基站的公共导频信道质量 大于加入第二激活集的第二条件阈值时, UE向 RNC发送第四测量报告, 具体 是 UE向微基站发送第四测量报告, 微基站再转发给 RNC , 以使 RNC向 UE发 送第三控制信息, UE根据第三控制信息将宏基站加入第二激活集中。 或者,
UE继续测量宏基站的公共导频信道质量, 当宏基站的公共导频信道质量 小于第四门限值时, UE向 RNC发送第四测量报告, 具体是 UE向微基站发送 第四测量报告, 微基站再转发给 RNC, 以使 RNC向 UE发送第四控制信息, UE 根据第四控制信息将宏基站从第三激活集中删除。
本实施例提供的网络通信方法,通过 UE接收到激活集更新信令之后,将 微基站加入第一激活集中,然后 UE再根据接收到的指示信息以及所加入的激 活集进行业务传输, 和 /或, UE接收到激活集更新信令之后, 将宏基站加入 第三激活集中,然后 UE再根据接收到的指示信息以及所加入的激活集进行业 务传输,从而可将在第一区域 UE对微基站造成的上行干扰降到最低,将在第 二区域宏基站对微基站造成的下行干扰降到最低, 而且还可充分利用微基站 的上行覆盖和宏基站的下行覆盖, 增加了 HetNet边缘区域传输的吞吐率和 可靠性。
图 4为本发明网络通信方法实施例三的流程图, 本实施例以 RNC为执行 主体为例进行说明, 如图 4所示, 本实施例的方法可以包括:
5201、接入网中 RNC生成指示信息,指示信息用于指示 UE :在第一区域, 与接入网的宏基站进行上下行业务传输, 以及与接入网的微基站进行上行业 务传输, 第一区域为微基站的公共导频信道质量达到加入第一激活集的第一 门限值与微基站的公共导频信道质量达到加入第二激活集的第一条件阈值之 间的区域,微基站的公共导频信道质量是由处于第一区域的 UE测量得到;和 /或, 在第二区域, 与微基站进行上下行业务传输, 以及与宏基站进行下行业 务传输, 第二区域为宏基站的公共导频信道质量达到加入第三激活集的第三 门限值与宏基站的公共导频信道质量达到加入第二激活集的第二条件阈值之 间的区域, 宏基站的公共导频信道质量是由处于第二区域的 UE测量得到。
5202、 RNC向 UE发送指示信息, 以使 UE根据指示信息进行业务传输。 其中, 第一激活集包括: 扩展 DCH激活集和 /或扩展 E-DCH激活集, 扩展
DCH激活集支持 UE发送上行 DCH业务,且扩展 DCH激活集中的微基站接收 UE 发送的上行 DCH业务, 扩展 E-DCH激活集支持 UE发送 E-DCH业务, 且扩展 E-DCH激活集中的微基站接收 UE发送的 E-DCH业务。 在第一激活集中 UE可 接收并求取第一激活集中宏基站 DCH业务的 LLR, 并将 LLR作为维特比译码 器输入进行维特比译码。
第二激活集包括: DCH激活集和 /或 E-DCH激活集, 在第二激活集中, 宏 基站和微基站可同时对 UE发送下行 DCH业务,并同时接收 UE发送的上行 DCH 业务和 /或 E-DCH业务, UE同时接收宏基站和微基站发送的下行 DCH业务。
第三激活集包括: 扩展 DCH激活集, 扩展 DCH激活集支持第三激活集中 的宏基站发送下行 DCH业务, 且 UE接收第三激活集中的宏基站发送的下行 DCH业务。 在第三激活集中, UE可接收第三激活集中微基站发送的 E-HICH, 若 E-HICH指示 ACK, UE传输新数据,若 E-HICH指示 NACK并且未到达最大重 传次数, UE重传数据。
结合图 1所示, 第一区域即为区域 B , 第二区域即为区域 E。在第一区域 B, UE对宏基站的下行接收好于微基站, 但在上行, 微基站对 UE的接收好于 宏基站, 因此通过 RNC向 UE发送指示信息, 以使 UE根据指示信息在第一区 域 B与宏基站进行上下行业务传输, 与微基站进行上行业务传输, 在该传输 过程中, 微基站可以对 UE进行上行功率控制, 从而就可将在第一区域 B中 UE对微基站造成的上行干扰降到最低,而且在该区域微基站有较好的上行信 号质量, 因此还可充分利用微基站的上行覆盖, 提升网络的上行吞吐率和可 靠性。
在第二区域 E, UE上行和下行都是微基站的链路质量好, 但是由于 UE 对宏基站下行仍有较强的接收功率, 因此通过 RNC向 UE发送指示信息, 以使 UE根据指示信息在该区域与微基站进行上下行业务传输,与宏基站进行下行 业务传输, 在该传输过程中, UE可以对宏基站的进行下行功率控制, 从而就 可将在第二区域 E宏基站对微基站造成的下行干扰降到最低, 而且还可充分 利用宏基站的下行覆盖。
本实施例提供的网络通信方法,通过 RNC生成指示信息并向 UE发送, 以 使 UE在第一区域与宏基站进行上下行业务传输,以及与微基站进行上行业务 传输, 和 /或, 在第二区域与微基站进行上行业务传输, 以及与宏基站进行下 行业务传输,从而可将在第一区域 UE对微基站造成的上行干扰降到最低,将 在第二区域宏基站对微基站造成的下行干扰降到最低, 而且还可充分利用微 基站的上行覆盖和宏基站的下行覆盖, 增加了 HetNet边缘区域传输的吞吐 率和可靠性。
图 5为本发明网络通信方法实施例四的流程图, 如图 5所示, 本实施例 在图 4所示实施例的基础上, 提供一种具体的实现方法, 在 S202中 RNC向 UE发送指示信息之前, 还包括:
S203、 RNC向 UE发送激活集更新信令, 以使 UE根据激活集更新信令, 在第一区域进行业务传输时将微基站加入第一激活集中,和 /或,在第二区域 进行业务传输时将宏基站加入第三激活集中。
具体地, 结合图 1, 在第一区域 B附近, 在 S203 RNC向 UE发送激活集 更新信令之前, 还包括:
RNC接收 UE发送的第一测量报告, 第一测量报告是 UE处于非软切换区 域时, 即就是 UE的服务小区为宏基站并且从区域 A向区域 B移动时, 当 UE 测量到微基站的公共导频信道质量超过预先设定的第一门限值且小于加入第 二激活集的第一条件阈值时向 RNC发送的, 或者,
第一测量报告是 UE处于第二激活集对应的软切换区域时, 即就是 UE从 区域 C向区域 B移动时,当 UE测量到微基站的公共导频信道质量小于微基站 从第二激活集删除的第三条件阈值且超过预先设定的第二门限值时向 RNC发 送的。
此处需说明的是, 第一门限值和第二门限值还可以相等。
进一歩地, 在 RNC向 UE发送指示信息之后, 相应地 UE根据指示信息进 行业务传输之后, 具体即就是 UE移动出区域 B之后, 还包括:
RNC接收 UE发送的第二测量报告,第二测量报告是当微基站的公共导频 信道质量大于加入第二激活集的第一条件阈值时, UE向 RNC发送的。
RNC向 UE发送第一控制信息, 以使 UE根据第一控制信息指示将微基站 加入第二激活集中。
或者, 在 RNC向 UE发送指示信息之后, 还包括:
RNC接收 UE发送的第二测量报告,第二测量报告是当微基站的公共导频 信道质量小于第二门限值时, UE向 RNC发送的; RNC向 UE发送第二控制信息, 以使 UE根据第二控制信息将微基站从第 一激活集中删除。
具体地, 结合图 1, 在第二区域 E附近, 在 S203 RNC向 UE发送激活集 更新信令之前, 还包括:
RNC接收 UE发送的第三测量报告, 第三测量报告是 UE处于非软切换区 域时, 即就是 UE从靠近微基站的区域向 E区域移动时, 当 UE测量到宏基站 的公共导频信道质量超过预先设定的第三门限值且小于加入第二激活集的第 二条件阈值时, UE向 RNC发送的; 或者,
第三测量报告是 UE处于第二激活集对应的软切换区域时, 即就是 UE从 区域 D向区域 E移动时,当 UE测量到宏基站的公共导频信道质量低于宏基站 从第二激活集删除的第四条件阈值且大于预先设定的第四门限值时, UE向 RNC发送的。
此处需说明的是, 第三门限值和第四门限值还可以相等。
进一歩地,在 RNC向 UE发送指示信息之后,相应地 UE根据指示信息进行 业务传输之后, 具体即就是 UE移动出区域 E之后, 还包括:
RNC接收 UE发送的第四测量报告,第四测量报告是当宏基站的公共导频 信道质量大于加入第二激活集的第二条件阈值时, UE向 RNC发送的;
RNC向 UE发送第三控制信息, 以使 UE根据第三控制信息将宏基站加入 第二激活集中。
或者, 在 RNC向 UE发送指示信息之后, 还包括:
RNC接收 UE发送的第四测量报告,第四测量报告是当宏基站的公共导频 信道质量小于第四门限值时, UE向 RNC发送的;
RNC向 UE发送第四控制信息, 以使 UE根据第四控制信息将宏基站从第 三激活集中删除。
本实施例提供的网络通信方法,通过 RNC向 UE发送激活集更新信令, 以 使 UE接收到激活集更新信令之后, 将微基站加入第一激活集中, 然后 UE再 根据 RNC发送的指示信息以及所加入的激活集进行业务传输, 和 /或, RNC向 UE发送激活集更新信令, 以使 UE接收到激活集更新信令之后, 将宏基站加 入第三激活集中,然后 UE再根据 RNC发送的指示信息以及所加入的激活集进 行业务传输,从而可将在第一区域 UE对微基站造成的上行干扰降到最低,将 在第二区域宏基站对微基站造成的下行干扰降到最低, 而且还可充分利用微 基站的上行覆盖和宏基站的下行覆盖, 增加了 HetNet边缘区域传输的吞吐 率和可靠性。
图 6为本发明网络通信方法实施例五的流程图, 如图 6所示, 本实施例 的方法包括:
5301、 微基站接收接入网中 RNC发送的配置信息, 配置信息用于指示微 基站接收用户设备 UE发送的上行 DCH和 /或上行 E-DCH业务。
5302、 微基站在被 UE在第一区域进行业务传输时加入第一激活集之后, 根据配置信息在第一激活集中接收 UE发送的上行 DCH和 /或上行 E-DCH业务, 第一区域为微基站的公共导频信道质量达到加入第一激活集的第一门限值与 微基站的公共导频信道质量达到加入第二激活集的第一条件阈值之间的区域 微基站的公共导频信道质量是由处于第一区域的 UE测量得到。
其中, 第一激活集包括:
扩展 DCH激活集和 /或扩展 E-DCH激活集, 扩展 DCH激活集支持 UE发送 上行 DCH业务, 且扩展 DCH激活集中的微基站接收 UE发送的上行 DCH业务, 扩展 E-DCH激活集支持 UE发送 E-DCH业务,且扩展 E-DCH激活集中的微基站 接收 UE发送的 E-DCH业务。 在第一激活集中 UE可接收并求取第一激活集中 宏基站 DCH业务的 LLR , 并将 LLR作为维特比译码器输入进行维特比译码。
进一歩地, 若微基站接收的业务为 DCH业务, 还包括:
微基站向 UE发送 TPC, TPC用于调整 UE的上行发送功率。
若微基站接收的业务为 E-DCH业务, 还包括:
微基站向 UE发送 TPC、 E-RGCH和 E-HICH; 其中, TPC用于调整 UE的上 行发送功率, E-RGCH用于调整 UE获得的调度授权值, E-HICH用于向 UE反馈 微基站是否正确接收 UE的数据。
本实施例提供的网络通信方法, 通过微基站接收 RNC发送的配置信息, 微基站在被 UE在第一区域进行业务传输时加入第一激活集之后,根据配置信 息在第一激活集中接收 UE发送的上行 DCH和 /或上行 E-DCH业务, 从而可将 在第一区域 UE对微基站造成的上行干扰降到最低,而且还可充分利用微基站 的上行覆盖。 增加了 HetNet边缘区域传输的吞吐率和可靠性。
图 7为本发明网络通信方法实施例六的流程图, 如图 7所示, 本实施例 的方法包括:
5401、 宏基站接收接入网中 RNC发送的配置信息, 配置信息用于指示宏 基站向用户设备 UE发送下行 DCH业务。
5402、 宏基站在被 UE在第二区域进行业务传输时加入第三激活集之后, 根据配置信息在第三激活集中向 UE发送下行 DCH业务,第二区域宏基站的公 共导频信道质量达到加入第三激活集的第三门限值与宏基站的公共导频信道 质量达到加入第二激活集的第二条件阈值之间的区域, 宏基站的公共导频信 道质量是由处于第二区域的 UE测量得到。
其中, 第三激活集包括: 扩展 DCH激活集, 扩展 DCH激活集支持第三激 活集中的宏基站发送下行 DCH业务,且 UE接收第三激活集中的宏基站发送的 下行 DCH业务。 UE可接收第三激活集中微基站发送的 E-HICH, 若 E-HICH指 示 ACK, UE传输新 E-DCH业务,若 E-HICH指示 NACK并且未到达最大重传次 数, UE重传 E-DCH业务。
进一歩地,宏基站根据配置信息在第三激活集中向 UE发送下行 DCH业务 之后, 还包括:
接收 UE发送的上行 TPC, TPC用于控制下行 DCH业务的发送功率。
本实施例提供的网络通信方法, 通过宏基站接收接入网中 RNC发送的配 置信息,宏基站在被 UE在第二区域进行业务传输时加入第三激活集之后,根 据配置信息在第三激活集中向 UE发送下行 DCH业务,从而可将在第二区域宏 基站对微基站造成的下行干扰降到最低, 而且还可充分利用宏基站的下行覆 盖。 增加了 HetNet边缘区域传输的吞吐率和可靠性。
下面采用几个具体的实施例,对图 2-图 7所示方法实施例的技术方案进 行详细说明。
图 8为本发明网络通信方法实施例七的流程图, 如图 8所示, 本实施例 中以 UE在第一区域 B附近为例进行说明, 本实施例的方法可以包括:
S501、UE测量各个小区的公共导频信道质量,向 RNC发送第一测量报告。 具体地, UE处于非软切换区域时, 即就是 UE从区域 A向区域 B移动时, 当 UE测量到微基站的公共导频信道质量超过预先设定的第一门限值且小于 加入第二激活集的第一条件阈值时, UE向 RNC发送第一测量报告。
UE处于第二激活集对应的软切换区域时, 即就是 UE从区域 C向区域 B 移动时,当 UE测量到微基站的公共导频信道质量小于微基站从第二激活集删 除的第三条件阈值且超过预先设定的第二门限值时, UE向 RNC发送第一测量 报告。
5502、 RNC接收 UE发送的第一测量报告后, 向 UE发送激活集更新信令。
5503、 RNC向 UE发送指示信息, 指示信息用于指示 UE: 在第一区域与宏 基站进行上下行业务传输, 以及与微基站进行上行业务传输, 第一区域为微 基站的公共导频信道质量达到加入第一激活集的第一门限值与微基站的公共 导频信道质量达到加入第二激活集的第一条件阈值之间的区域。
5504、 UE接收 RNC发送的激活集更新信令后, 根据激活集更新信令, 在 第一区域进行业务传输时将微基站加入第一激活集中。
5505、 UE接收 RNC发送的指示信息后, 根据指示信息和所加入的激活集 进行业务传输。
5506、 UE继续测量微基站的公共导频信道质量, 当微基站的公共导频信 道质量大于加入第二激活集的第一条件阈值时, UE向 RNC发送第二测量报告。
5507、 RNC向 UE发送第一控制信息, 以使 UE根据第一控制信息将微基 站加入第二激活集中。
或者,
S506 ' 、 UE继续测量微基站的公共导频信道质量, 当微基站的公共导频 信道质量小于第二门限值时, UE向 RNC发送第二测量报告。
S507 ' 、 RNC向 UE发送第二控制信息, 以使 UE根据第二控制信息将微 基站从第一激活集中删除。
进一歩地, 若 UE传输的业务包括 DCH业务, 则 UE在进行上行信号的发 送时, UE还要接收微基站发送的 TPC , TPC用于调整 UE的上行发送功率。
若 UE传输的业务包括 E-DCH业务, 则 UE在进行上行信号的发送时, UE 还要接收微基站发送的 TPC、 E-RGCH和 E-HICH; 其中, TPC用于调整 UE的上 行发送功率, E-RGCH用于调整 UE获得的上行调度授权值, E-HICH用于向 UE 反馈微基站是否正确接收 UE的数据。
图 9为本发明网络通信方法实施例八的流程图, 如图 9所示, 本实施例 中以 UE在第一区域 E附近为例进行说明, 本实施例的方法可以包括:
S60U UE测量各个小区的公共导频信道质量,向 RNC发送第三测量报告。 具体地, UE处于非软切换区域时, 即就是 UE从靠近微基站的区域向 E 区域移动时,当 UE测量到宏基站的公共导频信道质量超过预先设定的第三门 限值且小于加入第二激活集的第二条件阈值时, UE向 RNC发送第三测量报告。
UE处于第二激活集对应的软切换区域时, 即就是 UE从区域 D向区域 E 移动时,当 UE测量到宏基站的公共导频信道质量低于宏基站从第二激活集删 除的第四条件阈值且大于预先设定的第四门限值时, UE向 RNC发送第三测量 报告。
5602、 RNC接收 UE发送的第三测量报告后, 向 UE发送激活集更新信令。
5603、 RNC向 UE发送指示信息, 指示信息用于指示 UE: 在第二区域与微 基站进行上下行业务传输, 以及与宏基站进行下行业务传输, 第二区域为宏 基站的公共导频信道质量达到加入第三激活集的第三门限值与宏基站的公共 导频信道质量达到加入第二激活集的第二条件阈值之间的区域。
5604、 UE接收 RNC发送的激活集更新信令后, 根据激活集更新信令, 在 第二区域进行业务传输时将宏基站加入第三激活集中。
5605、 UE接收 RNC发送的指示信息后, UE根据指示信息和所加入的激活 集进行业务传输。
5606、 UE继续测量微基站的公共导频信道质量, 当宏基站的公共导频信 道质量大于加入第二激活集的第二条件阈值时, UE向 RNC发送第四测量报告。
5607、 RNC向 UE发送第三控制信息, UE根据第三控制信息将宏基站加入 第二激活集中。
或者,
S606 ' 、 UE继续测量微基站的公共导频信道质量, 当宏基站的公共导频 信道质量小于第四门限值时, UE向 RNC发送第四测量报告。
S607 ' 、 RNC向 UE发送第四控制信息, UE根据第四控制信息将宏基站从 第三激活集中删除。 图 10为本发明用户设备实施例一的结构示意图, 如图 10所示, 本实施 例的装置可以包括: 接收模块 11和处理模块 12, 其中, 接收模块 11用于接 收接入网中 RNC发送的指示信息, 指示信息用于指示 UE: 在第一区域, 与宏 基站进行上下行业务传输, 与微基站进行上行业务传输, 第一区域为微基站 的公共导频信道质量达到加入第一激活集的第一门限值与微基站的公共导频 信道质量达到加入第二激活集的第一条件阈值之间的区域, 微基站的公共导 频信道质量是由处于第一区域的 UE测量得到; 和 /或, 在第二区域, 与微基 站进行上下行业务传输, 以及与宏基站进行下行业务传输, 第二区域宏基站 的公共导频信道质量达到加入第三激活集的第三门限值与宏基站的公共导频 信道质量达到加入第二激活集的第二条件阈值之间的区域, 宏基站的公共导 频信道质量是由处于第二区域的 UE测量得到。 处理模块 12用于根据指示信 息进行业务传输。
其中, 第一激活集包括: 扩展 DCH激活集和 /或扩展 E-DCH激活集, 扩 展 DCH激活集支持 UE发送上行 DCH业务,且扩展 DCH激活集中的微基站接收 UE发送的上行 DCH业务, 扩展 E-DCH激活集支持 UE发送 E-DCH业务, 且扩 展 E-DCH激活集中的微基站接收 UE发送的 E-DCH业务。 在第一激活集中 UE 可接收并求取第一激活集中宏基站 DCH业务的 LLR, 并将 LLR作为维特比译 码器输入进行维特比译码。
第二激活集包括: DCH激活集和 /或 E-DCH激活集。
第三激活集包括: 扩展 DCH激活集, 扩展 DCH激活集支持第三激活集中 的宏基站发送下行 DCH业务, 且 UE接收第三激活集中的宏基站发送的下行 DCH业务。 在第三激活集中, UE可接收第三激活集中微基站发送的 E-HICH, 若 E-HICH指示 ACK, UE传输新数据, 若 E-HICH指示 NACK并且未到达最大 重传次数, UE进行数据重传。
本实施例的用户设备, 可以用于执行图 2所示方法实施例的技术方案, 其实现原理类似, 此处不再赘述。
本实施例提供的用户设备, 通过接收模块接收 RNC发送的指示信息, 处 理模块根据指示信息, 在第一区域与宏基站进行上下行业务传输, 以及与微 基站进行上行业务传输, 和 /或, 在第二区域与微基站进行上下行业务传输, 以及与宏基站进行下行业务传输,从而可将在第一区域 UE对微基站造成的上 行干扰降到最低, 将在第二区域宏基站对微基站造成的下行干扰降到最低, 而且还可充分利用微基站的上行覆盖和宏基站的下行覆盖, 增加了 HetNet 边缘区域传输的吞吐率和可靠性。
在图 10所示用户设备结构的基础上, 进一歩地, 接收模块 11还用于: 在处理模块 12根据指示信息进行业务传输之前,接收 RNC发送的激活集更新 信令。处理模块 12还用于: 根据激活集更新信令, 在第一区域进行业务传输 时将微基站加入第一激活集中,和 /或,在第二区域进行业务传输时将宏基站 加入第三激活集中。
图 11为本发明用户设备实施例二的结构示意图, 如图 11所示, 本实施 例的装置在图 10所示装置结构的基础上, 进一歩地, 还包括: 第一测量模块 13和第一发送模块 14,第一测量模块 13用于在接收模块 11接收 RNC发送的 激活集更新信令之前, 测量各个小区的公共导频信道质量。第一发送模块 14 用于 UE处于非软切换区域时, 当第一测量模块 13测量到微基站的公共导频 信道质量超过预先设定的第一门限值且小于加入第二激活集的第一条件阈值 时, 向 RNC发送第一测量报告, 以使 RNC根据第一测量报告向 UE发送激活集 更新信令。
第一发送模块 14还用于:
UE处于第二激活集对应的软切换区域时, 当 UE测量到微基站的公共导 频信道质量小于微基站从第二激活集删除的第二条件阈值且超过预先设定的 第二门限值时, 向 RNC发送第一测量报告, 以使 RNC根据第一测量报告向 UE 发送激活集更新信令。
进一歩地, 第一测量模块 13还用于:
在处理模块 12根据指示信息进行业务传输之后,继续测量微基站的公共 导频信道质量, 当微基站的公共导频信道质量大于加入第二激活集的第一条 件阈值时, 第一发送模块 14还用于向 RNC发送第二测量报告, 以使 RNC向 UE发送第一控制信息。
处理模块 12还用于: 根据第一控制信息将微基站加入第二激活集中。 或者, 第一测量模块 13还用于: 在处理模块 12根据指示信息进行业务传输之后,继续测量微基站的公共 导频信道质量, 当微基站的公共导频信道质量小于第二门限值时, 第一发送 模块 14还用于向 RNC发送第二测量报告,以使 RNC向 UE发送第二控制信息。
处理模块 12还用于: 根据第二控制信息将微基站从第一激活集中删除。 进一歩地, UE传输的业务包括 DCH业务, 接收模块 11还用于: 接收微基站发送的 TPC, TPC用于调整 UE的上行发送功率。
UE传输的业务包括 E-DCH业务, 接收模块 11还用于:
接收微基站发送的 TPC、 E-RGCH和 E-HICH; 其中, TPC用于调整 UE的上 行发送功率, E-RGCH用于调整 UE获得的调度授权值, E-HICH用于向 UE反馈 微基站是否正确接收 UE的数据。
图 12为本发明用户设备实施例三的结构示意图, 如图 12所示, 本实施 例的装置在图 10所示装置结构的基础上, 进一歩地, 还包括: 第二测量模块 15和第二发送模块 16, 其中, 第二测量模块 15用于在接收模块 11接收 RNC 发送的激活集更新信令之前, 测量各个小区的公共导频信道质量。 第二发送 模块 16用于 UE处于非软切换区域时,当第二测量模块 15测量到宏基站的公 共导频信道质量超过预先设定的第三门限值且小于加入第二激活集的第二条 件阈值时, 向 RNC发送第三测量报告, 以使 RNC根据第三测量报告向 UE发送 激活集更新信令。
第二发送模块 16还用于: UE处于第二激活集对应的软切换区域时, 当 第二测量模块 15测量到宏基站的公共导频信道质量低于微基站从第二激活 集删除的第二条件阈值且超过预先设定的第二门限值时, 向 RNC发送第三测 量报告, 以使 RNC根据第三测量报告向 UE发送激活集更新信令。
进一歩地, 第二测量模块 15还用于:
在处理模块 12根据指示信息进行业务传输之后,继续测量宏基站的公共 导频信道质量, 当宏基站的公共导频信道质量大于加入第二激活集的第二条 件阈值时, 第二发送模块 16还用于向 RNC发送第四测量报告, 以使 RNC向 UE发送第三控制信息。 处理模块 12还用于: 根据第三控制信息将宏基站加 入第二激活集中。
或者, 第二测量模块 15还用于: 在处理模块 12根据指示信息进行业务传输之后,继续测量宏基站的公共 导频信道质量, 当宏基站的公共导频信道质量小于第四门限值时, 第二发送 模块 16还用于向 RNC发送第四测量报告,以使 RNC向 UE发送第四控制信息。 处理模块 12还用于: 根据第四控制信息将宏基站从第三激活集中删除。
图 11和图 12所示实施例的用户设备, 可以用于执行图 3所示方法实施 例的技术方案, 其实现原理类似, 此处不再赘述。
图 11和图 12所示实施例提供的用户设备, 通过接收模块接收到激活集 更新信令之后, 处理模块将微基站加入第一激活集中, 然后再根据接收到的 指示信息以及所加入的激活集进行业务传输,和 /或,接收模块接收到激活集 更新信令之后, 处理模块将宏基站加入第三激活集中, 然后再根据接收到的 指示信息以及所加入的激活集进行业务传输,从而可将在第一区域 UE对微基 站造成的上行干扰降到最低, 将在第二区域宏基站对微基站造成的下行干扰 降到最低, 而且还可充分利用微基站的上行覆盖和宏基站的下行覆盖, 增加 了 HetNet边缘区域传输的吞吐率和可靠性。
图 13为本发明无线网络控制器实施例一的结构示意图, 如图 13所示, 本实施例的装置可以包括: 生成模块 21和发送模块 22, 其中, 生成模块 21 用于生成指示信息, 指示信息用于指示用户设备 UE: 在第一区域, 与接入网 的宏基站进行上下行业务传输, 以及与微基站进行上行业务传输, 第一区域 为微基站的公共导频信道质量达到加入第一激活集的第一门限值与微基站的 公共导频信道质量达到加入第二激活集的第一条件阈值之间的区域, 微基站 的公共导频信道质量是由处于第一区域的 UE测量得到;和 /或,在第二区域, 与微基站进行上下行业务传输, 以及与宏基站进行下行业务传输, 第二区域 为宏基站的公共导频信道质量达到加入第三激活集的第三门限值与宏基站的 公共导频信道质量达到加入第二激活集的第二条件阈值之间的区域, 宏基站 的公共导频信道质量是由处于第二区域的 UE测量得到。 发送模块 22用于向 UE发送指示信息, 以使 UE根据指示信息进行业务传输。
其中, 第一激活集包括:
扩展 DCH激活集和 /或扩展 E-DCH激活集, 扩展 DCH激活集支持 UE发送 上行 DCH业务, 且扩展 DCH激活集中的微基站接收 UE发送的上行 DCH业务, 扩展 E-DCH激活集支持 UE发送 E-DCH业务,且扩展 E-DCH激活集中的微基站 接收 UE发送的 E-DCH业务。 在第一激活集中 UE可接收并求取所述第一激活 集中宏基站 DCH业务的 LLR , 并将 LLR作为维特比译码器输入进行维特比译 码。
第二激活集包括: DCH激活集和 /或 E-DCH激活集。
第三激活集包括: 扩展 DCH激活集, 扩展 DCH激活集支持第三激活集中 的宏基站发送下行 DCH业务, 且 UE接收第三激活集中的宏基站发送的下行 DCH业务。 在第三激活集中, UE可接收第三激活集中微基站发送的 E-HICH, 若 E-HICH指示 ACK, UE在 E-DCH上传输新数据, 若 E-HICH指示 NACK并且 未到达最大重传次数, UE在 E-DCH上进行数据重传。
本实施例的无线网络控制器, 可以用于执行图 4所示方法实施例的技术 方案, 其实现原理类似, 此处不再赘述。
本实施例提供的无线网络控制器, 通过生成模块生成指示信息, 发送模 块向 UE发送指示信息, 以使 UE在第一区域与宏基站进行上下行业务传输, 以及与微基站进行上行业务传输,和 /或,在第二区域与微基站进行上下行业 务传输, 以及与宏基站进行下行业务传输,从而可将在第一区域 UE对微基站 造成的上行干扰降到最低, 将在第二区域宏基站对微基站造成的下行干扰降 到最低, 而且还可充分利用微基站的上行覆盖和宏基站的下行覆盖, 增加了 HetNet边缘区域传输的吞吐率和可靠性。
进一歩地, 发送模块 22还用于: 在发送指示信息之前, 向 UE发送激活 集更新信令, 以使 UE根据激活集更新信令,在第一区域进行业务传输时将微 基站加入第一激活集中,和 /或,在第二区域进行业务传输时将宏基站加入第 三激活集中。
图 14为本发明无线网络控制器实施例二的结构示意图, 如图 14所示, 本实施例的装置在图 11所示装置结构的基础上, 进一歩地, 还可以包括: 第 一接收模块 23, 该第一接收模块 23用于在发送模块 22向 UE发送激活集更 新信令之前, 接收 UE发送的第一测量报告,第一测量报告是 UE处于非软切 换区域时,当 UE测量到微基站的公共导频信道质量超过预先设定的第一门限 值且小于加入第二激活集的第一条件阈值时向 RNC发送的, 或者, 第一测量 报告是 UE处于第二激活集对应的软切换区域时, 当 UE测量到微基站的公共 导频信道质量小于微基站从第二激活集删除的第三条件阈值且大于预先设定 的第二门限值时向 RNC发送的。
进一歩地,第一接收模块 23还用于:在发送模块 22向 UE发送指示信息 之后,接收 UE发送的第二测量报告,第二测量报告是当微基站的公共导频信 道质量大于加入第二激活集的第一条件阈值时, UE向 RNC发送的。发送模块 22还用于: 向 UE发送第一控制信息, 以使 UE根据第一控制信息指示将微基 站加入第二激活集中。
或者,第一接收模块 23还用于:在发送模块 22向 UE发送指示信息之后, 接收 UE发送的第二测量报告,第二测量报告是当微基站的公共导频信道质量 小于第二门限值时, UE向 RNC发送的。 发送模块 22还用于: 向 UE发送第二 控制信息, 以使 UE根据第二控制信息将微基站从第一激活集中删除。
图 15为本发明无线网络控制器实施例三的结构示意图, 如图 15所示, 本实施例的装置在图 13所示装置结构的基础上, 进一歩地, 还可以包括: 第 二接收模块 24, 该第二接收模块 24用于在发送模块 22向 UE发送激活集更 新信令之前, 接收 UE发送的第三测量报告, 第三测量报告是 UE处于非软切 换区域时,当 UE测量到宏基站的公共导频信道质量超过预先设定的第三门限 值且小于加入第二激活集的第二条件阈值时, UE向 RNC发送的。 或者, 第三 测量报告是 UE处于第二激活集对应的软切换区域时, 当 UE测量到宏基站的 公共导频信道质量低于宏基站从第二激活集删除的第四条件阈值且大于预先 设定的第四门限值时, UE向 RNC发送的。
进一歩地,第二接收模块 24还用于:在发送模块 22向 UE发送指示信息 之后,接收 UE发送的第四测量报告,第四测量报告是当宏基站的公共导频信 道质量大于加入第二激活集的第二条件阈值时, UE向 RNC发送的。发送模块 22还用于: 向 UE发送第三控制信息, 以使 UE根据第三控制信息将宏基站加 入第二激活集中。
或者,第二接收模块 24还用于:在发送模块 22向 UE发送指示信息之后, 接收 UE发送的第四测量报告,第四测量报告是当宏基站的公共导频信道质量 小于第四门限值时, UE向 RNC发送的。 发送模块 22还用于: 向 UE发送第四 控制信息, 以使 UE根据第四控制信息将宏基站从第三激活集中删除。
图 14和图 15所示的无线网络控制器, 可以用于执行图 5所示方法实施 例的技术方案, 其实现原理类似, 此处不再赘述。
图 14和图 15所示实施例提供的无线网络控制器, 通过发送模块向 UE 发送激活集更新信令, 以使 UE接收到激活集更新信令之后,将微基站加入第 一激活集中,然后 UE再根据发送模块发送的指示信息以及所加入的激活集进 行业务传输, 和 /或, 发送各模块向 UE发送激活集更新信令, 以使 UE接收到 激活集更新信令之后,将宏基站加入第三激活集中,然后 UE再根据发送模块 发送的指示信息以及所加入的激活集进行业务传输,从而可将在第一区域 UE 对微基站造成的上行干扰降到最低, 将在第二区域宏基站对微基站造成的下 行干扰降到最低,而且还可充分利用微基站的上行覆盖和宏基站的下行覆盖, 增加了 HetNet边缘区域传输的吞吐率和可靠性。
图 16为本发明微基站实施例一的结构示意图, 如图 16所示, 本实施例 的装置可以包括: 接收模块 31和处理模块 32, 其中, 接收模块 31用于接收 接入网中 RNC发送的配置信息, 配置信息用于指示微基站接收用户设备 UE 发送的上行 DCH和 /或上行 E-DCH业务。处理模块 32用于在微基站被 UE在第 一区域进行业务传输时加入第一激活集之后, 根据配置信息在第一激活集中 接收 UE发送的上行 DCH和 /或上行 E-DCH业务, 第一区域为微基站的公共导 频信道质量达到加入第一激活集的第一门限值与微基站的公共导频信道质量 达到加入第二激活集的第一条件阈值之间的区域, 微基站的公共导频信道质 量是由处于第一区域的 UE测量得到。
其中, 第一激活集包括:
扩展 DCH激活集和 /或扩展 E-DCH激活集, 扩展 DCH激活集支持 UE发送 上行 DCH业务, 且扩展 DCH激活集中的微基站接收 UE发送的上行 DCH业务, 扩展 E-DCH激活集支持 UE发送 E-DCH业务,且扩展 E-DCH激活集中的微基站 接收 UE发送的 E-DCH业务; 在第一激活集中 UE可接收并求取第一激活集中 宏基站 DCH业务的 LLR, 并将 LLR作为维特比译码器输入进行维特比译码。
本实施例的微基站, 可以用于执行图 6所示方法实施例的技术方案, 其 实现原理类似, 此处不再赘述。 本实施例提供的微基站, 通过接收模块接收 RNC发送的配置信息, 微基 站在被 UE在第一区域进行业务传输时加入第一激活集之后,处理模块根据配 置信息在第一激活集中接收 UE发送的上行 DCH和 /或上行 E-DCH业务, 从而 可将在第一区域 UE对微基站造成的上行干扰降到最低,而且还可充分利用微 基站的上行覆盖。 增加了 HetNet边缘区域传输的吞吐率和可靠性。
图 17为本发明微基站实施例二的结构示意图, 如图 17所示, 本实施例 的装置在图 16所示装置结构的基础上, 进一歩地, 还可以包括: 发送模块 33, 若微基站接收的业务为 DCH业务, 发送模块 33用于向 UE发送 TPC, TPC 用于调整 UE的上行发送功率。
若微基站接收的业务为 E-DCH业务, 发送模块 33用于向 UE发送 TPC、 E-RGCH和 E-HICH; 其中, TPC用于调整 UE的上行发送功率, E-RGCH用于调 整 UE获得的调度授权值, E-HICH用于向 UE反馈微基站是否正确接收 UE的 数据。
图 18为本发明宏基站实施例一的结构示意图, 如图 18所示, 本实施例 的装置可以包括: 接收模块 41和发送模块 42, 其中, 接收模块 41用于接收 接入网站 RNC发送的配置信息,配置信息用于指示宏基站向用户设备 UE发送 下行 DCH业务。
发送模块 42用于在宏基站被 UE在第二区域进行业务传输时加入第三激 活集之后,根据配置信息在第三激活集中向 UE发送下行 DCH业务,第二区域 宏基站的公共导频信道质量达到加入第三激活集的第三门限值与宏基站的公 共导频信道质量达到加入第二激活集的第二条件阈值之间的区域, 宏基站的 公共导频信道质量是由处于第二区域的 UE测量得到。
其中, 第三激活集包括: 扩展 DCH激活集, 扩展 DCH激活集支持第三激 活集中的宏基站发送下行 DCH业务,且 UE接收第三激活集中的宏基站发送的 下行 DCH业务。 在第三激活集中, UE可接收第三激活集中微基站发送的
E-HICH, 若 E-HICH指示 ACK, UE在 E-DCH上传输新数据, 若 E-HICH指示 NACK并且未到达最大重传次数, UE在 E-DCH上进行数据重传。
进一歩地, 接收模块 41还用于:
在发送模块根据配置信息在第三激活集中向 UE发送下行 DCH业务之后, 接收 UE发送的上行 TPC, TPC用于控制下行 DCH业务的发送功率。 本实施例的宏基站, 可以用于执行图 7所示方法实施例的技术方案, 其 实现原理类似, 此处不再赘述。
本实施例提供的宏基站, 通过接收模块接收 RNC发送的配置信息, 宏基 站在被 UE在第二区域进行业务传输时加入第三激活集之后,发送模块根据配 置信息在第三激活集中向 UE发送下行 DCH业务,从而可将在第二区域宏基站 对微基站造成的下行干扰降到最低, 而且还可充分利用宏基站的下行覆盖。 增加了 HetNet边缘区域传输的吞吐率和可靠性。
本实施提供的接入网系统, 包括如图 1(Γ图 12任一所示的用户设备 和如图 13〜图 15任一所示的无线网络控制器, 以及图 16或 17所示的微基 站和图 18所示的宏基站。
结合图 1, 在图示区域 B: UE对宏基站的下行接收好于该区域中的微基 站, HSDPA服务小区为宏基站, 但在上行, UE到微基站的路径损耗小于到宏 基站的路径损耗, 微基站对 UE的接收好于宏基站, 但 UE的服务小区为宏基 站, 此时微基站的上行较为空闲, 具有更多的上行容量, 因此网络上行吞吐 性能不高。并且 UE未进入软切换 SH0区域,微基站无法对 UE进行功率控制, 因此 UE的上行业务在微基站的接收功率过高, 对微基站造成上行干扰。
另外, 在两个宏基站之间, 由于基站部署环境, 如建筑物、 地形遮挡等 因素, 可以造成类似异构网中上、 下行不平衡的场景, 在这种场景中也存在 上述问题。
基于上述问题, 本发明实施例还提供一种网络通信方法, 可以很好地利 用微基站的上行覆盖, 增加 HetNet边缘区域传输的吞吐率和可靠性, 进一 歩还可降低在 HetNet中 UE处于图示区域 B进行业务传输时对微基站造成的 上行干扰。
图 19为本发明网络通信方法实施例九的流程图, 本实施例以 UE为执行 主体为例进行说明, 如图 19所示, 本实施例的方法可以包括:
S701、 UE接收接入网中的第一基站发送的第一增强专用信道混合自动重 传请求指示信道(E-DCH Hybrid ARQ Indicator Channel,以下简称: E-HICH), 第一基站位于 UE的检测范围内且不处于 UE的增强专用信道 E-DCH激活集内。 具体地, 第一基站可以是接入网中的任一微基站或宏基站, 此处的宏基 站是指: 两个宏基站受周围环境、 建筑物遮挡等影响, 也可能造成类似于异 构网中宏基站与微基站的情况,此时一宏基站就类似于异构网中的一微基站。 接入网中的第一基站不处于 UE的 E-DCH激活集内,即就是没有进入 SH0区域 时(例如处于图 1所示的 B区域) 。 其中, E-HICH包含有两个信息: 确认应 答 (ACK) 和非确认应答 (NACK) , ACK表示基站在上一个进程接收 E-DCH业 务正确, NACK表示基站在上一个进程接收 E-DCH业务错误。 UE收到 ACK后, 将在下一个进程中发送新数据,如果为 NACK,UE会在下一个进程中重传数据, 如果重传达到最大次数还没有成功, UE也会发送新数据。 如果 UE收到了多 个小区的 E-HICH, 只要有一个 E-HICH指示 ACK, UE都会传输新数据。 只有 当所有的 E-HICH都指示 NACK时, UE才会重新传输上一次发送的 E-DCH数据。
5702、 当第一 E-HICH指示为确认应答 ACK时, UE发送新 E-DCH数据。 具体地,UE接收第一基站发送的第一 E-HICH后,若接收到的第一 E-HICH 发送 ACK指示 UE第一基站正确接收到了 UE发送的 E-DCH业务, 则之后 UE 发送新 E-DCH数据。
在异构网中的 B区域以及相似环境中,由于 UE到第一基站的上行信道质 量要好于 UE到其他基站(如宏基站)的上行信道质量, 第一基站有更高的概 率正确接收 UE发送的 E-DCH数据, 因此, 可以利用第一基站接收 UE发送的 新 E-DCH数据,并上行给 RNC,采用本发明的技术方案,就会有更多的 E-HICH 反馈 ACK给 UE, 这样就减少了 UE所有的 E-HICH反馈都为 NACK的情况, 减 少了 UE重新传输 E-DCH次数, 提高了 E-DCH的传输效率。
当第一 E-HICH指示为否定应答 NACK时, UE重传 E-DCH数据。
其中, 第一基站位于 UE的检测范围内, 包括:
UE测量到的第一基站的下行导频质量超过预设的第一阈值。第一阈值是 指 UE正确解码第一基站发送的 E-HICH的导频质量的最小值。
进一歩地, UE接收第一基站发送的第一 E-HICH之前, 还可以包括:
5703、 UE接收 RNC发送的第一指示信令, 第一指示信令用于指示 UE接 收第一基站发送的第一 E-HICH, 第一指示信令包括第一 E-HICH的信道化码 和签名序列, 信道化码用以指示 UE译码第一 E-HICH占用的信道应使用的扩 频码, 签名序列用以指示 UE译码每个 E-HICH子帧应使用的正交序列。
其中, 信道化码是宽带码分多址接入系统 (WCDMA 系统) 中用来区分空 中接口中的多个信道, 由于信道化码之间彼此正交, 在不存在多径干扰和码 间干扰的情况下, 采用不同信道化码加扩传输的信道彼此之间并不会出现相 互干扰, 具有良好的性能。 接收机在接收信号时, 会先用信道化码去对信号 进行解扩, 只有解扩的信道化码为加扩的信道化码时, 接收机才能正确解出 数据。 签名序列是用来区分用户的, 一个用户只有用自身的签名序列去解 E-HICH和增强专用信道相对授权信道 (E-DCH Relative Grant Channel , 以 下简称: E-RGCH) , 才能从信道中解出发送给自身的数据。
进一歩地,第一指示信令还包括:第一 E-HICH的定时信息,第一 E-HICH 的定时信息用于指示 UE接收第一 E-HICH的每个子帧的起始时间位置。 UE可 根据该定时信息确定 E-HICH在每一子帧的起始位置, 以便于正确接收、译码 E-HICH上的信息。
其中, 第一 E-HICH 的定时信息可以为第一基站的部分下行物理信道 (Fractional Downlink Physical Channel , 以下简称: F-DPCH) 的定时偏 置 — 或符号位置。 例如基准信道是主公共控制物理信道 (Primary Common Control Physical Channel ,以下简禾尔: P-CCPCH),定时偏置为 rFff „ , 表示每个 F-DPCH帧 /子帧都比 P-CCPCH晚 TFDPCH,„的时间。 通过 F-DPCH的定 时偏置 rFDPeff,„就可知道第一 E-HICH的信道定时。
在另一种可实施的方式中, 进一歩地, 第一指示信令还可以包括:
E-RGCH的码道和签名序列, E-RGCH用于控制 UE的 E-DCH发送功率; 或 者,
E-RGCH的码道、 签名序列和 E-RGCH的定时信息, E-RGCH的定时信息用 于指示 UE接收 E-RGCH的时间。 E-RGCH的定时信息为第一基站的部分下行物 理信道 F-DPCH的定时偏置 rF— ^^„和/或符号位置。
通过 E-RGCH控制 UE的 E-DCH发送功率,当 UE的 E-DCH发送功率过大时, 第一基站可通过 E-RGCH向 UE发送降功率指示, 就可避免功率过大给第一基 站造成干扰。 例如可降低在 HetNet中 UE处于图示区域 B进行业务传输时对 微基站造成的上行干扰。 在上述实施例中, 进一歩地, UE接收 RNC发送的第一指示信令之前, 还 可以包括:
5704、 UE测量各个服务小区的公共导频信道质量。
5705、 UE测量到第一基站的公共导频信道质量超过预设的第一门限时, UE向 RNC发送测量报告, 以使 RNC根据测量报告向 UE发送第一指示信令。
本实施例提供的网络通信方法, 当接入网中的第一基站不处于 UE的 E-DCH激活集内时, 通过 UE可接收第一基站发送的 E-HICH, 从而 UE可以根 据 E-HICH在得到第一基站正确接收 UE发送的 E-DCH业务时, UE可向第一基 站发送 E-DCH业务, 因此可以很好地利用第一基站的上行覆盖, 增加 HetNet 边缘区域传输的吞吐率和可靠性, 进一歩还可降低在 HetNet中 UE处于图 示区域 B进行业务传输时对第一基站造成的上行干扰。
图 20为本发明网络通信方法实施例十的流程图,本实施例以基站为执行 主体为例进行说明, 如图 20所示, 本实施例的方法可以包括:
5801、 接入网中的第一基站接收 UE发送的 E-DCH业务, 第一基站位于 UE的检测范围内且不处于 UE的增强专用信道 E-DCH激活集内。
其中, 第一基站可以是接入网中的任一微基站或宏基站, 此处的宏基站 是指: 两个宏基站受周围环境、 建筑物遮挡等影响, 也可能造成类似于异构 网中宏基站与微基站的情况, 此时一宏基站就类似于异构网中的一微基站。 接入网中的第一基站不处于 UE的 E-DCH激活集内,即就是没有进入 SH0区域 时 (例如处于图 1所示的 B区域) 。
5802、 第一基站向 UE发送第一 E-HICH。
5803、 第一基站接收 UE在第一 E-HICH指示为确认应答 ACK时发送的新 E-DCH数据。
还可以是:第一基站接收 UE在第一 E-HICH指示为否定应答 NACK时重传 的 E-DCH数据。
其中, E-HICH包含有两个信息: 确认应答(ACK)和非确认应答(NACK) , ACK表示基站在上一个进程接收 E-DCH业务正确, NACK表示基站在上一个进 程接收 E-DCH业务错误。 UE收到 ACK后, 将在下一个进程中发送新数据, 如 果为 NACK, UE会在下一个进程中重传数据,如果重传达到最大次数还没有成 功, UE也会发送新数据。 如果 UE收到了多个小区的 E-HICH ( UE的 E-DCH激 活集有一个以上的小区),只要有一个 E-HICH指示 ACK, UE都会传输新数据。
其中, 第一基站位于 UE的检测范围内, 包括:
UE测量到的第一基站的下行导频质量超过预设的第一阈值。第一阈值是 指 UE正确解码第一基站发送的 E-HICH的导频质量的最小值。
进一歩地, 第一基站接收 UE发送的 E-DCH业务之前, 还可以包括: S804、 第一基站接收 RNC发送的第二指示信令, 第二指示信令用于指示 第一基站接收 UE发送的 E-DCH业务, 第二指示信令包括: UE的上行扰码、 第一 E-HICH的信道化码和签名序列,信道化码用以指示 UE译码第一 E-HICH 占用的信道应使用的扩频码, 签名序列用以指示 UE译码每个 E-HICH子帧应 使用的正交序列。
其中, 扰码为一串伪随机码, 在上行, 基站通过识别扰码来区分和识别 用户。第一 E-HICH的信道化码指示发送给 UE的第一 E-HICH采用了哪一个码 道。 第一 E-HICH的签名序列指示 UE使用的签名序列。
进一歩地,第二指示信令还包括:第一 E-HICH的定时信息,第一 E-HICH 的定时信息用于指示发送第一 E-HICH的每个子帧的起始时间位置。
其中, 第二 E-HICH的定时信息为第一基站的部分下行物理信道 F-DPCH 的定时偏置 rF— ^^„和/或符号位置。 例如基准信道是 P-CCPCH , 定时偏置为 τρ—„ 表示每个 F-DPCH帧 /子帧都比 P-CCPCH晚^—^^„的时间。 通过
F-DPCH的定时偏置 rF— ^^„就可知道第一 E-HICH的信道定时。
在另一种可实施的方式中, 进一歩地, 第二指示信令还包括:
E-RGCH的码道和签名序列, E-RGCH用于控制 UE的 E-DCH发送功率; 或 者,
E-RGCH的码道、 签名序列和 E-RGCH的定时信息, E-RGCH的定时信息用 于指示 UE接收 E-RGCH的时间。 E-RGCH的定时信息为第一基站的部分下行物 理信道 F-DPCH的定时偏置 rF— ^^„和/或符号位置。
通过 E-RGCH控制 UE的 E-DCH发送功率, 就可避免功率过大给第一基站 造成干扰。 例如可降低在 HetNet中 UE处于图示区域 B进行业务传输时对微 基站造成的上行干扰。 在上述实施例中, 进一歩地, 第一基站接收 RNC发送的第二指示信令之 m , 还包括:
第一基站向 RNC发送接收能力消息, 接收能力消息用于指示第一基站可 以接收 UE发送的 E-DCH业务。
本实施例提供的网络通信方法, 当接入网中的第一基站不处于 UE的 E-DCH激活集内时, 通过第一基站接收 UE发送的 E-DCH业务后, 向 UE发送 E-HICH, 从而使得 UE可以根据 E-HICH在得到第一基站正确接收 UE发送的 E-DCH业务时, UE可继续向第一基站发送 E-DCH业务。 因此可以很好地利用 第一基站的上行覆盖, 增加 HetNet边缘区域传输的吞吐率和可靠性, 进一 歩还可降低在 HetNet中 UE处于图示区域 B进行业务传输时对第一基站造成 的上行干扰。
图 21为本发明网络通信方法实施例 ^一的流程图,本实施例以 RNC为执 行主体为例进行说明, 如图 21所示, 本实施例的方法可以包括:
S901、 接入网中的 RNC生成第一指示信令和第二指示信令, 第一指示信 令用于指示 UE接收第一基站发送的第一增强专用信道混合自动重传请求指 示信道 E-HICH,第二指示信令用于指示第一基站接收 UE发送的 E-DCH业务, 第一基站位于 UE的检测范围内且不处于 UE的增强专用信道 E-DCH激活集内。
其中, 第一指示信令中, 第一 E-HICH的信道化码指示 UE该第一 E-HICH 采用了哪个扩频码进行的扩频。 第一 E-HICH的签名序列指示 UE使用的签名 序列。
第二指示信令中, 扰码为一串伪随机码, 在上行, 基站通过识别扰码来 区分和识别用户。第一 E-HICH的信道化码指示发送给 UE的第一 E-HICH采用 了哪一个码道。 第一 E-HICH的签名序列指示 UE使用的签名序列。
具体地, 第一基站可以是接入网中的任一微基站或宏基站, 此处的宏基 站是指: 两个宏基站受周围环境、 建筑物遮挡等影响, 也可能造成类似于异 构网中宏基站与微基站的情况,此时一宏基站就类似于异构网中的一微基站。 接入网中的第一基站不处于 UE的 E-DCH激活集内,即就是没有进入 SH0区域 时(例如处于图 1所示的 B区域) 。 其中, E-HICH包含有两个信息: 确认应 答 (ACK) 和非确认应答 (NACK) , ACK表示基站在上一个进程接收 E-DCH业 务正确, NACK表示基站在上一个进程接收 E-DCH业务错误。 UE收到 ACK后, 将在下一个进程中发送新数据,如果为 NACK,UE会在下一个进程中重传数据, 如果重传达到最大次数还没有成功, UE也会发送新数据。 如果 UE收到了多 个小区的 E-HICH( UE的 E-DCH激活集有一个以上的小区),只要有一个 E-HICH 指示 ACK, UE都会传输新数据。
5902、 RNC向第一基站发送第二指示信令, 第二指示信令包括: UE的上 行扰码、 第一 E-HICH的信道化码和签名序列, 信道化码用以指示 UE译码第 一 E-HICH占用的信道应使用的扩频码, 签名序列用以指示 UE译码每个
E-HICH子帧应使用的正交序列。
具体发送方式例如可以是: 第二指示信令可以通过 RNC和基站间的 Iub 接口发送, 例如 RNC可以通过基站应用部分信令(Node B App l icat ion Part , 简称: NBAP ) 发送第二指示信令。
5903、 RNC向 UE发送第一指示信令, 第一指示信令包括第一 E-HICH的 信道化码和签名序列。
具体发送方式例如可以是: RNC通过无线资源控制信令(Radi o Resource Control , 简称 RRC ) 向 UE发送第一指示信令。
其中, 第一基站位于 UE的检测范围内, 包括:
UE测量到的第一基站的下行导频质量超过预设的第一阈值。第一阈值是 指 UE正确解码第一基站发送的 E-HICH的导频质量的最小值。
进一歩地, 第一指示信令还可以包括:
第一 E-HICH的定时信息,第一 E-HICH的定时信息用于指示 UE接收第一 E-HICH的每个子帧的起始时间位置;
第二指示信令还包括: 第一 E-HICH的定时信息, 第一 E-HICH的定时信 息用于指示发送第一 E-HICH的每个子帧的起始时间位置。
其中, 第一 E-HICH的定时信息为第一基站的部分下行物理信道 F-DPCH 的定时偏置 rF— ^^„和/或符号位置。 例如基准信道是 P-CCPCH , 定时偏置为 τρ—„ 表示每个 F-DPCH帧 /子帧都比 P-CCPCH晚^—^^„的时间。 通过
F-DPCH的定时偏置 rF— ^^„就可知道第一 E-HICH的信道定时。
在另一种可实施的方式中, 进一歩地, 第一指示信令和第二指示信令还 包括:
E-RGCH的码道和签名序列, E-RGCH用于控制 UE的 E-DCH发送功率; 或 者,
E-RGCH的码道、 签名序列和 E-RGCH的定时信息, E-RGCH的定时信息用 于指示 UE接收 E-RGCH的时间。 E-RGCH的定时信息为第一基站的部分下行物 理信道 F-DPCH的定时偏置 rF— ^^„和/或符号位置。
通过 E-RGCH控制 UE的 E-DCH发送功率, 就可避免功率过大给第一基站 造成干扰。 例如可降低在 HetNet中 UE处于图示区域 B进行业务传输时对微 基站造成的上行干扰。
在上述实施例中, 进一歩地, RNC生成第一指示信令和第二指示信令之 前, 还可以包括:
RNC接收 UE发送的测量报告, 测量报告是 UE测量到第一基站的公共导 频信道质量超过预设的第一门限时发送的。
进一歩地, RNC向第一基站发送第二指示信令之前, 还可以包括:
RNC接收第一基站发送的接收能力消息, 接收能力消息用于指示第一基 站可以接收 UE发送的 E-DCH业务。
本实施例提供的网络通信方法, 当接入网中的第一基站不处于 UE的 E-DCH激活集内时, 通过 RNC生成第一指示信令和第二指示信令后分别向 UE 和第一基站发送, 使得 UE可接收第一基站发送的 E-HICH, 从而 UE可以根据 E-HICH在得到第一基站正确接收 UE发送的 E-DCH业务时, UE可向第一基站 发送 E-DCH业务, 因此可以很好地利用第一基站的上行覆盖, 增加 HetNet 边缘区域传输的吞吐率和可靠性, 进一歩还可降低在 HetNet中 UE处于图 示区域 B进行业务传输时对第一基站造成的上行干扰。
图 22为本发明网络通信方法实施例十二的交互流程图, 本实施例以当 UE还没有进入软切换区域时, UE的服务基站为宏基站,此时接入网中的微基 站不处于 UE的 E-DCH激活集内为例进行说明, 如图 22所示, 本实施例的方 法可以包括:
S 100 U UE测量各个服务小区的公共导频信道质量。
S 1002、 UE测量到微基站的公共导频信道质量超过预设的第一门限时, UE向 RNC发送测量报告。
51003、 RNC接收到测量报告后, 生成第一指示信令和第二指示信令。 进一歩地, S1003之后还可以包括:
RNC接收微基站发送的接收能力消息, 接收能力消息用于指示微基站可 以接收 UE发送的 E-DCH业务。
51004、 RNC向微基站发送第二指示信令。
第二指示信令用于指示微基站接收 UE发送的 E-DCH业务。第二指示信令 包括: UE的上行扰码、 第一 E-HICH的信道化码和签名序列。
进一歩地,第二指示信令还包括:第一 E-HICH的定时信息,第一 E-HICH 的定时信息用于指示第一 E-HICH的发送时间。 其中, 第一 E-HICH的定时信 息为微基站的部分下行物理信道 F-DPCH的定时偏置 rF— ^^„和/或符号位置。
进一歩地, 第一指示信令和第二指示信令还包括:
E-RGCH的码道和签名序列, E-RGCH用于控制 UE的 E-DCH发送功率; 或 者,
E-RGCH的码道、 签名序列和 E-RGCH的定时信息, E-RGCH的定时信息用 于指示 UE接收 E-RGCH的时间。 E-RGCH的定时信息为微基站的部分下行物理 信道 F-DPCH的定时偏置 rF— ^^„和/或符号位置。
通过 E-RGCH控制 UE的 E-DCH发送功率,当 UE的 E-DCH发送功率过大时, 微基站可通过 E-RGCH向 UE发送降功率指示, 就可避免功率过大给微基站造 成干扰。 例如可降低在 HetNet中 UE处于图示区域 B进行业务传输时对微基 站造成的上行干扰。
51005、 UE向微基站发送 E-DCH业务。
51006、 微基站接收到 E-DCH业务后, 向 UE发送第一 E_HICH。
51007、 RNC向 UE发送第一指示信令。
第一指示信令用于指示 UE接收微基站发送的第一 E-HICH, 第一 E-HICH 用于指示 UE微基站是否正确接收 UE发送的 E-DCH业务。 第一指示信令包括 第一 E-HICH的信道化码和签名序列。
进一歩地,第一指示信令还包括:第一 E-HICH的定时信息,第一 E-HICH 的定时信息用于指示 UE接收第一 E-HICH的时间。 其中,第一 E-HICH的定时信息可以为微基站的 F-DPCH的定时偏置 和 /或符号位置。
进一歩地, 第一指示信令还可以包括:
E-RGCH的码道和签名序列, E-RGCH用于控制 UE的 E-DCH发送功率; 或 者,
E-RGCH的码道、 签名序列和 E-RGCH的定时信息, E-RGCH的定时信息用 于指示 UE接收 E-RGCH的时间。 E-RGCH的定时信息为微基站的部分下行物理 信道 F-DPCH的定时偏置 ^^„和/或符号位置。
S1008、 UE根据接收到的第一 E-HICH调整 E-DCH业务的发送。
本实施例也适用于两个宏基站受周围环境、 建筑物遮挡等影响, 也可能 造成类似于异构网中宏基站与微基站的情况时, 其中一宏基站相当于本实施 例中的微基站。
图 23为本发明用户设备实施例四的结构示意图, 如图 23所示, 本实施 例的用户设备可以包括: 接收模块 101和发送模块 102, 其中, 接收模块 101 用于接收接入网中的第一基站发送的第一增强专用信道混合自动重传请求指 示信道 E-HICH,第一基站位于 UE的检测范围内且不处于 UE的增强专用信道 E-DCH激活集内。 发送模块 102用于当第一 E-HICH指示为确认应答 ACK时, 发送新 E-DCH数据。
发送模块 102还用于:当第一 E-HICH指示为否定应答 NACK时,重传 E-DCH 数据。
其中, 第一基站位于 UE的检测范围内, 包括:
UE测量到的第一基站的下行导频质量超过预设的第一阈值。
进一歩地, 接收模块 101还用于: 接收第一基站发送的第一增强专用信 道混合自动重传请求指示信道 E-HICH之前, 接收 RNC发送的第一指示信令, 第一指示信令包括第一 E-HICH的信道化码和签名序列, 信道化码用以指示 UE译码第一 E-HICH占用的信道应使用的扩频码,签名序列用以指示 UE译码 每个 E-HICH子帧应使用的正交序列。
其中, 第一指示信令还可以包括:
第一 E-HICH的定时信息,第一 E-HICH的定时信息用于指示 UE接收第一 E-HICH的每个子帧的起始时间位置。 第一 E-HICH的定时信息可以为第一基 站的 -DPCH的定时偏置 rF— ^^„和/或符号位置。
Figure imgf000070_0001
增强专用信道相对授权信道 E-RGCH的码道和签名序列, E-RGCH用于控 制 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、 签名序列和 E-RGCH的定时信息, E-RGCH的定时信息用 于指示 UE接收 E-RGCH的时间。
其中, E-RGCH的定时信息为第一基站的部分下行物理信道 F-DPCH的定 时偏置 rFDPCH n和 /或符号位置。
进一歩地, 用户设备还包括: 处理模块, 用于在接收模块 101接收 RNC 发送的第一指示信令之前, 测量各个服务小区的公共导频信道质量。 发送模 块 102还用于在处理模块测量到第一基站的公共导频信道质量超过预设的第 一门限时, UE向 RNC发送测量报告, 以使 RNC根据测量报告向 UE发送第一 指示信令。
本实施例的用户设备, 可以用于执行图 19所示方法实施例的技术方案, 其实现原理类似, 此处不再赘述。
本实施例提供的用户设备, 当接入网中的第一基站不处于 UE的 E-DCH 激活集内时,通过 UE可接收第一基站发送的 E-HICH ,从而 UE可以根据 E-HICH 在得到第一基站正确接收 UE发送的 E-DCH业务时, UE可向第一基站发送 E-DCH业务, 因此可以很好地利用第一基站的上行覆盖,增加 HetNet边缘区 域传输的吞吐率和可靠性,进一歩还可降低在 HetNet中 UE处于图示区域 B 进行业务传输时对第一基站造成的上行干扰。
图 24为本发明基站实施例一的结构示意图, 如图 24所示, 本实施例的 基站可以包括: 接收模块 1 1 1和发送模块 1 12, 其中, 接收模块 1 1 1用于接 收 UE发送的 E-DCH业务,其中,基站位于 UE的检测范围内且不处于 UE的增 强专用信道 E-DCH激活集内。发送模块 1 12用于向 UE发送第一增强专用信道 混合自动重传请求指示信道 E-HICH。 接收模块 1 1 1还用于: 接收 UE在第一 E-HICH指示为确认应答 ACK时发送的新 E-DCH数据。
接收模块还用于: 接收 UE在第一 E-HICH指示为否定应答 NACK时重传的 E-DCH数据。 其中, 基站位于 UE的检测范围内, 包括:
UE测量到的基站的下行导频质量超过预设的第一阈值。
进一歩地, 接收模块 111还用于: 接收 UE发送的 E-DCH业务之前, 接收 RNC发送的第二指示信令, 第二指示信令用于指示第一基站接收 UE发送的 E-DCH业务, 第二指示信令包括: UE的上行扰码、第一 E-HICH的信道化码和 签名序列, 信道化码用以指示 UE译码第一 E-HICH占用的信道应使用的扩频 码, 签名序列用以指示 UE译码每个 E-HICH子帧应使用的正交序列。
第二指示信令还可以包括:
第一 E-HICH的定时信息, 第一 E-HICH的定时信息用于指示发送第一 E-HICH的每个子帧的起始时间位置。 第一 E-HICH的定时信息可以为第一基 站的部分下行物理信道 F-DPCH的定时偏置 rF— ^^„和/或符号位置。
进一歩地, 第二指示信令还可以包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, E-RGCH用于控 制 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、 签名序列和 E-RGCH的定时信息, E-RGCH的定时信息用 于指示 UE接收 E-RGCH的时间。
其中, E-RGCH的定时信息为第一基站的部分 F-DPCH的定时偏置 rFDPeff,„ 和 /或符号位置。
在上述实施例中, 发送模块 112还用于:
在接收模块接收 RNC发送的第二指示信令之前, 向 RNC发送接收能力消 息, 接收能力消息用于指示第一基站可以接收 UE发送的 E-DCH业务。
本实施例的基站,可以用于执行图 20所示方法实施例的技术方案,其实 现原理类似, 此处不再赘述。
本实施例提供的基站,当接入网中的第一基站不处于 UE的 E-DCH激活集 内时,通过接收模块接收 UE发送的 E-DCH业务后,发送模块向 UE发送 E-HICH, 从而使得 UE可以根据 E-HICH在得到第一基站正确接收 UE发送的 E-DCH业务 时, 发送模块可继续向第一基站发送 E-DCH业务。 因此可以很好地利用第一 基站的上行覆盖,增加 HetNet边缘区域传输的吞吐率和可靠性,进一歩还 可降低在 HetNet中 UE处于图示区域 B进行业务传输时对第一基站造成的上 行干扰。
图 25为本发明无线网络控制器实施例四的结构示意图, 如图 25所示, 本实施例的无线网络控制器可以包括: 处理模块 121和发送模块 122, 其中, 处理模块 121用于生成第一指示信令和第二指示信令, 第一指示信令用于指 示 UE接收第一基站发送的第一增强专用信道混合自动重传请求指示信道
E-HICH,第二指示信令用于指示第一基站接收 UE发送的 E-DCH业务,第一基 站位于 UE的检测范围内且不处于 UE的增强专用信道 E-DCH激活集内。
发送模块 122用于用于向第一基站发送第二指示信令, 第二指示信令包 括: UE的上行扰码、 第一 E-HICH的信道化码和签名序列, 信道化码用以指 示 UE译码第一 E-HICH占用的信道应使用的扩频码, 签名序列用以指示 UE 译码每个 E-HICH子帧应使用的正交序列。 发送模块 122还用于: 向 UE发送 第一指示信令, 第一指示信令包括第一 E-HICH的信道化码和签名序列。
其中, 第一基站位于 UE的检测范围内, 包括:
UE测量到的第一基站的下行导频质量超过预设的第一阈值。
其中, 第一指示信令还可以包括:
第一 E-HICH的定时信息,第一 E-HICH的定时信息用于指示 UE接收第一 E-HICH的每个子帧的起始时间位置;
第二指示信令还可以包括: 第一 E-HICH的定时信息, 第一 E-HICH的定 时信息用于指示发送第一 E-HICH的每个子帧的起始时间位置。 第一 E-HICH 的定时信息可以为第一基站的部分下行物理信道 F-DPCH的定时偏置 rFDPeff,„ 和 /或符号位置。
进一歩地, 第一指示信令和第二指示信令还可以包括:
E-RGCH的码道和签名序列, E-RGCH用于控制 UE的 E-DCH发送功率; 或 者,
E-RGCH的码道、 签名序列和 E-RGCH的定时信息, E-RGCH的定时信息用 于指示 UE接收 E-RGCH的时间。 E-RGCH的定时信息可以为第一基站的部分下 行物理信道 F-DPCH的定时偏置 rF— ^^„和/或符号位置。
进一歩地, RNC还可以包括: 接收模块, 该接收模块用于在处理模块 121 生成第一指示信令和第二指示信令之前, 接收 UE发送的测量报告, 测量报 告是 UE测量到第一基站的公共导频信道质量超过预设的第一门限时发送的。
在上述实施例中, 接收模块还用于: 在发送模块 122向第一基站发送第 二指示信令之前, 接收第一基站发送的接收能力消息,接收能力消息用于指 示第一基站可以接收 UE发送的 E-DCH业务。
本实施例的 RNC, 可以用于执行图 21所示方法实施例的技术方案, 其实 现原理类似, 此处不再赘述。
本实施例提供的 RNC, 当接入网中的第一基站不处于 UE的 E-DCH激活集 内时, 通过处理模块生成第一指示信令和第二指示信令后, 发送模块分别向 UE和第一基站发送,使得 UE可接收第一基站发送的 E-HICH,从而 UE可以根 据 E-HICH在得到第一基站正确接收 UE发送的 E-DCH业务时, UE可向第一基 站发送 E-DCH业务, 因此可以很好地利用第一基站的上行覆盖, 增加 HetNet 边缘区域传输的吞吐率和可靠性, 进一歩还可降低在 HetNet中 UE处于图 示区域 B进行业务传输时对第一基站造成的上行干扰。
如图 26所示, 本发明实施例还提供了一种网络通信方法, 包括:
S261 :接入网中的用户设备 UE接收无线网络控制器 RNC的第一无线网络 控制 RRC信令,根据所述第一 RRC信令的指示,所述 UE将所述第一基站加入 所述 UE的扩展增强专用信道 E-DCH激活集中;
S262 :所述 UE接收所述第一基站的增强专用信道混合自动重传请求指示 信道 E-HICH, 当所述 E-HICH指示为确认应答 ACK时, 所述 UE发送新 E-DCH 数据;
S263 : 当所述 UE没有从所述接入网接收专用信道 DCH数据时, 所述 UE 根据所述第一 RRC信令的指示, 关闭接收所述第一基站的部分专用物理信道 F-DPCH的功能; 其中, 所述 RNC通过删除第一 RRC信令中的 F-DPCH配置信 息或通过在第一 RRC信令中的预设指示字段完成所述指示;
S264: 当所述 UE从所述接入网接收 DCH数据时, 所述 UE根据所述第一 RRC信令的指示, 关闭接收所述第一基站的下行专用物理数据信道 DPDCH的 功能;其中,所述 RNC通过删除第一 RRC信令中的 DPCH配置信息或通过在第 一 RRC信令中的预设指示字段完成所述指示。 在本发明各个实施例中,可以对现有信令,如前文提到的第一 RRC信令, 做一些修改,通过将其中的某些字段或配置信息删除,可以实现向 UE指示无 需执行与该字段或配置信息相关的功能。 当然, 也可在现有的第一 RRC信令 中增加指示字段来实现所述指示, 或者第一 RRC信令可以是一个新定义的信 令中, 并通过在其中增加指示字段来实现所述指示。
在一种实现方式中, 所述 UE从所述接入网接收 DCH数据时, 还包括: 所 述 UE根据所述第一 RRC信令的指示, 接收所述第一基站的 F-DPCH, 所述 F-DPCH用以对所述 UE进行传输功率控制。
在另一种实现方式中, 所述 UE从所述接入网接收 DCH数据时, 还包括: 所述 UE关闭接收所述第一基站发送的下行专用物理控制信道 DPCCH的功能。
在另一种实现方式中, 所述 UE将所述第一基站加入所述 UE的 E-DCH激 活集之后, 还包括: 所述 UE接收网络发送的第一控制信令; 根据所述第一控 制信令的指示, 接收所述第一基站的 F-DPCH; 或者, 接收所述第一基站发送 的下行 DPDCH , 所述下行 DPDCH用于承载所述 UE从所述第一基站接收的 DCH 数据。
在另一种实现方式中, 所述 UE接收所述第一基站发送的下行 DPDCH, 还 包括: 所述 UE接收所述第一基站的下行 DPCCH, 所述下行 DPCCH用于所述第 一基站向所述 UE发送物理层控制信令。
在另一种实现方式中, 所述网络发送的第一控制信令包括: 所述 RNC发 送的第二 RRC信令; 或者, 接入网中的第二基站发送的第一物理层信令, 所 述第二基站位于所述 UE的 E-DCH激活集或 DCH激活集内。
在另一种实现方式中, 所述 UE接收所述网络发送的第一控制信令之前, 还包括: 所述 UE测量各个小区的公共导频信道质量; 当所述 UE测量到所述 第一基站的公共导频信道质量超过预设的第一门限时, 所述 UE向所述 RNC 发送测量报告, 以使所述 RNC根据所述测量报告向所述 UE发送所述第二 RRC 信令;或者, 以使所述 RNC指示所述第二基站向所述 UE发送所述第一物理层 信令。
在另一种实现方式中, 所述 UE接收所述第一基站的 F-DPCH之前, 还包 括: 所述 UE接收所述第一基站的 F-DPCH的配置信息, 所述配置信息包括所 述 F-DPCH的信道化码、 帧偏移和时隙格式中至少一个。
在另一种实现方式中,还包括:所述第一基站的 F-DPCH配置信息承载于 所述第一控制信令中。
在另一种实现方式中,所述 UE接收所述第一基站的下行 DPDCH之前,还 包括: 所述 UE接收所述第一基站的下行 DPCH的配置信息, 所述下行 DPCH 的配置信息包括所述 DPCH的信道化码或帧偏移信息。
在另一种实现方式中,其特征在于,所述下行 DPCH的配置信息承载于所 述第一控制信令中。
如图 27所示, 本发明实施例还提供了一种网络通信方法, 包括:
S271 : 接入网中的 RNC生成第一 RRC信令或第一网络信令;
S272 :所述 RNC向 UE发送所述第一 RRC信令或向接入网中的第一基站发 送第一网络信令,所述第一 RRC信令用以指示所述 UE将所述第一基站加入所 述 UE的 E-DCH激活集中, 并且指示所述 UE接收所述第一基站的 E-HICH; 所 述第一网络信令用以指示所述第一基站接收所述 UE发送的 E-DCH数据,并且 指示所述第一基站向所述 UE发送 E-HICH; 当所述 UE没有从所述接入网接收 DCH数据时,所述第一 RRC信令指示所述 UE关闭接收所述第一基站的 F-DPCH 的功能,其中,所述 RNC通过删除第一 RRC信令中的 F-DPCH配置信息或通过 在第一 RRC信令中设置预设指示字段完成所述指示; 或者所述第一网络信令 指示所述第一基站关闭发送 F-DPCH的功能,其中,所述 RNC通过删除所述第 一网络信令中 F-DPCH配置信息或通过在第一网络信令中设置预设指示字段 完成所述指示; 当所述 UE从所述接入网接收 DCH数据时,所述第一 RRC信令 指示所述 UE关闭接收所述第一基站的下行 DPDCH的功能, 其中, 所述 RNC 通过删除第一 RRC信令中的 DPCH配置信息或通过在第一 RRC信令中的预设指 示字段完成所述指示; 或者所述第一网络信令指示所述第一基站关闭发送下 行 DPDCH的功能;其中,所述 RNC通过删除所述第一网络信令中 DPCH配置信 息或通过在第一网络信令中设置预设指示字段完成所述指示。
在上述方法的一种实现方式中,当所述 UE从所述接入网接收 DCH数据时, 所述 RNC通过删除第一 RRC信令中的 DPCH配置信息完成所述指示, 还包括: 所述第一 RRC信令指示所述 UE接收所述第一基站的 F-DPCH,所述 F-DPCH用 以对所述 UE进行上行传输功率控制;所述第一网络信令指示所述第一基站向 所述 UE发送 F-DPCH。
在上述方法的另一种实现方式中,所述第一 RRC信令指示所述 UE关闭接 收所述第一基站的下行 DPDCH的功能, 还包括: 所述第一网络信令指示所述 第一基站关闭向所述 UE发送 DPCCH的功能;或所述第一 RRC信令还指示所述 UE关闭接收所述第一基站的下行 DPCCH的功能。
在上述方法的另一种实现方式中,所述 RNC向所述 UE发送第一 RRC信令 并且向所述第一基站发送第一网络信令之后,还包括:所述 RNC生成第二 RRC 信令, 所述 RNC向所述 UE发送所述第二 RRC信令; 当所述 UE没有从所述接 入网接收 DCH数据时,所述第二 RRC信令用以指示所述 UE接收所述第一基站 发送的 F-DPCH; 当所述 UE从所述接入网中接收 DCH数据时, 所述第二 RRC 信令用以指示所述 UE接收所述第一基站发送的下行 DPDCH。
在上述方法的另一种实现方式中, 当所述 UE从所述接入网中接收 DCH 数据时, 所述第二 RRC信令用以指示所述 UE接收所述第一基站发送的下行 DPDCH, 还包括: 所述第二 RRC信令指示所述 UE接收所述第一基站发送的下 行 DPCCH
在上述方法的另一种实现方式中,还包括: 当所述 UE没有从所述接入网 接收 DCH数据时,所述第二 RRC信令包含有所述 F-DPCH的配置信息; 当所述 UE从所述接入网中接收 DCH数据时,所述第二 RRC信令包含有所述第一基站 的下行 DPCH配置信息。
在上述方法的另一种实现方式中,还包括:所述 RCN生成第二网络信令, 所述 RNC向所述第一基站发送所述第二网络信令;当所述 UE没有从所述接入 网接收 DCH数据时,所述第二网络信令用以指示所述第一基站向所述 UE发送 F-DPCH; 当所述 UE从所述接入网中接收 DCH数据时,所述第二网络信令用以 指示所述第一基站向所述 UE发送 DPDCH。
在上述方法的另一种实现方式中, 当所述 UE从所述接入网中接收 DCH 数据时, 所述第二网络信令用以指示所述第一基站向所述 UE发送 DPDCH, 还 包括: 所述第二网路信令指示所述第一基站向所述 UE发送下行 DPCCH。
在上述方法的另一种实现方式中,还包括: 当所述 UE没有从所述接入网 接收 DCH数据时,所述第二网络信令包含有所述 F-DPCH的配置信息; 当所述 UE从所述接入网中接收 DCH数据时,所述第二网络信令包含有所述第一基站 的下行 DPCH配置信息。
在另一种实现方式中, 所述 RNC生成所述第二 RRC信令前, 还包括: 所 述 RNC接收所述 UE发送的测量报告,所述测量包括用以指示所述 RNC向所述 UE发送第二 RRC信令。
如图 28, 本发明实施例还提供了一种网络的通信方法, 包括:
S281 : 接入网中的第一基站接收无线网络控制器 RNC发送的第一网络信 令, 根据所述第一网络信令的指示, 接收接入网中用户设备 UE发送的 E-DCH 数据, 并且向所述 UE发送 E-HICH;
S282 : 当所述 UE没有从所述接入网中接收 DCH数据时,所述第一基站根 据所述第一网络信令的指示关闭向所述 UE发送 F-DPCH的功能;
S283 : 当所述 UE从所述接入网接收 DCH数据时,所述第一基站根据所述 第一网络信令的指示关闭向所述 UE发送下行 DPDCH的功能。
在上述方法的一种实现方式中, 所述 RNC通过删除所述第一网络信令中 F-DPCH配置信息或通过在第一网络信令中设置预设指示字段完成所述指示。
在上述方法的另一种实现方式中,当所述 UE从所述接入网接收 DCH数据 时, 所述第一基站关闭向所述 UE发送下行 DPDCH的功能, 还包括: 所述第一 基站向所述 UE发送 F-DPCH , 所述 F-DPCH用以所述第一基站对所述 UE进行 上行传输功率控制。
在上述方法的另一种实现方式中,当所述 UE从所述接入网接收 DCH数据 时, 所述第一基站关闭向所述 UE发送下行 DPDCH的功能, 还包括: 所述第一 基站关闭向所述 UE发送下行 DPCCH的功能。
在上述方法的另一种实现方式中, 所述第一基站接收所述第一 RRC信令 后, 还包括: 所述第一基站接收所述 RNC发送的第二 RRC信令; 当所述 UE 没有从所述接入网中接收 DCH数据时, 根据所述第二 RRC信令的指示所述第 一基站向所述 UE发送 F-DPCH; 当所述 UE从所述接入网接收 DCH数据时, 根 据所述第二 RRC信令的指示所述第一基站向所述 UE发送下行 DPDCH。
在上述方法的另一种实现方式中,还包括: 当所述 UE没有从所述接入网 中接收 DCH数据时,所述第一基站接收的第一网络信令中包含有 F-DPCH配置 信息; 当所述 UE从所述接入网接收 DCH数据时,所述第一基站接收的第一网 络信令中包含有下行 DPCH配置信息。
在上述方法的另一种实现方式中,当所述 UE从所述接入网接收 DCH数据 时, 所述第一基站向所述 UE发送下行 DPDCH , 还包括: 所述第一基站向所述 UE发送下行 DPCCH。
如图 29所示, 本发明实施例还提供了一种接入网中的用户设备 UE290 , 包括: 无线收发单元 291, 用于接收无线网络控制器 RNC的第一无线网络控 制 RRC信令, 根据所述第一 RRC信令的指示, 将所述第一基站加入所述 UE 的扩展增强专用信道 E-DCH激活集中; 接收所述第一基站的增强专用信道混 合自动重传请求指示信道 E-HICH, 当所述 E-HICH指示为确认应答 ACK时, 发送新 E-DCH数据; 处理单元 292, 用于: 当所述 UE没有从所述接入网接收 专用信道 DCH数据时, 根据所述第一 RRC信令的指示, 关闭接收所述第一基 站的部分专用物理信道 F-DPCH的功能; 其中, 所述 RNC通过删除第一 RRC 信令中的 F-DPCH配置信息或通过在第一 RRC信令中的预设指示字段完成所述 指示; 当所述 UE从所述接入网接收 DCH数据时,根据所述第一 RRC信令的指 示, 关闭接收所述第一基站的下行专用物理数据信道 DPDCH的功能; 其中, 所述 RNC通过删除第一 RRC信令中的 DPCH配置信息或通过在第一 RRC信令中 的预设指示字段完成所述指示。
在一种实现方式中,所述 UE从所述接入网接收 DCH数据时,所述无线收 发单元 291, 还用于根据所述第一 RRC信令的指示, 接收所述第一基站的 F-DPCH, 所述 F-DPCH用以对所述 UE进行传输功率控制。
在另一种实现方式中,所述 UE从所述接入网接收 DCH数据时,所述处理 单元 292,还用于关闭接收所述第一基站发送的下行专用物理控制信道 DPCCH 的功能。
在另一种实现方式中,在将所述第一基站加入所述 UE的 E-DCH激活集之 后, 所述无线收发单元 291, 还用于接收网络发送的第一控制信令; 根据所 述第一控制信令的指示, 接收所述第一基站的 F-DPCH; 或者, 接收所述第一 基站发送的下行 DPDCH,所述下行 DPDCH用于承载所述 UE从所述第一基站接 收的 DCH数据。
在另一种实现方式中, 所述无线收发单元 291, 还用于接收所述第一基 站的下行 DPCCH,所述下行 DPCCH用于所述第一基站向所述 UE发送物理层控 制信令。
在另一种实现方式中, 所述网络发送的第一控制信令包括: 所述 RNC发 送的第二 RRC信令; 或者, 接入网中的第二基站发送的第一物理层信令, 所 述第二基站位于所述 UE的 E-DCH激活集或 DCH激活集内。
在上述方法的另一种实现方式中, 在接收所述网络发送的第一控制信令 之前, 所述无线收发单元 291, 还用于测量各个小区的公共导频信道质量; 当测量到所述第一基站的公共导频信道质量超过预设的第一门限时, 向所述 RNC发送测量报告, 以使所述 RNC根据所述测量报告向所述 UE发送所述第二 RRC信令, 或者, 以使所述 RNC指示所述第二基站向所述 UE发送所述第一物 理层信令。
在另一种实现方式中,在接收所述第一基站的 F-DPCH之前,所述无线收 发单元 291, 还用于接收所述第一基站的 F-DPCH的配置信息, 所述配置信息 包括所述 F-DPCH的信道化码、 帧偏移和时隙格式中至少一个。
在另一种实现方式中,所述第一基站的 F-DPCH配置信息承载于所述第一 控制信令中。
在另一种实现方式中, 在接收所述第一基站的下行 DPDCH之前, 所述无 线收发单元 291, 还用于接收所述第一基站的下行 DPCH的配置信息, 所述下 行 DPCH的配置信息包括所述 DPCH的信道化码或帧偏移信息。
在另一种实现方式中,所述下行 DPCH的配置信息承载于所述第一控制信 令中。
如图 30所示, 本发明实施例还提供了一种接入网中的 RNC300 , 包括: 处理单元 3001,用于生成第一 RRC信令或第一网络信令;无线收发单元 3002, 用于向 UE发送所述第一 RRC信令或向接入网中的第一基站发送第一网络信 令,所述第一 RRC信令用以指示所述 UE将所述第一基站加入所述 UE的 E-DCH 激活集中, 并且指示所述 UE接收所述第一基站的 E-HICH; 所述第一网络信 令用以指示所述第一基站接收所述 UE发送的 E-DCH数据,并且指示所述第一 基站向所述 UE发送 E-HICH; 当所述 UE没有从所述接入网接收 DCH数据时, 所述第一 RRC信令指示所述 UE关闭接收所述第一基站的 F-DPCH的功能, 其 中, 所述处理单元 3001通过删除第一 RRC信令中的 F-DPCH配置信息或通过 在第一 RRC信令中设置预设指示字段完成所述指示; 或者所述第一网络信令 指示所述第一基站关闭发送 F-DPCH的功能, 其中, 所述处理单元 3001通过 删除所述第一网络信令中 F-DPCH配置信息或通过在第一网络信令中设置预 设指示字段完成所述指示; 当所述 UE从所述接入网接收 DCH数据时,所述第 一 RRC信令指示所述 UE关闭接收所述第一基站的下行 DPDCH的功能, 其中, 所述处理单元 3001通过删除第一 RRC信令中的 DPCH配置信息或通过在第一 RRC信令中的预设指示字段完成所述指示; 或者所述第一网络信令指示所述 第一基站关闭发送下行 DPDCH的功能;其中,所述处理单元 3001处理单元通 过删除所述第一网络信令中 DPCH配置信息或通过在第一网络信令中设置预 设指示字段完成所述指示。
在一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述第一 RRC信令指示所述 UE接收所述第一基站的 F-DPCH, 所述 F-DPCH用以对所述 UE进行上行传输功率控制; 所述第一网络信令指示所述第一基站向所述 UE 发送 F-DPCH。
在另一种实现方式中, 所述第一网络信令指示所述第一基站关闭向所述 UE发送 DPCCH的功能; 或所述第一 RRC信令还指示所述 UE关闭接收所述第 一基站的下行 DPCCH的功能。
在另一种实现方式中, 所述无线收发单元 3002向所述 UE发送第一 RRC 信令并且向所述第一基站发送第一网络信令之后,所述处理单元 3001还用于 生成第二 RRC信令, 所述无线收发单元 3002, 还用于向所述 UE发送所述第 二 RRC信令; 当所述 UE没有从所述接入网接收 DCH数据时, 所述第二 RRC 信令用以指示所述 UE接收所述第一基站发送的 F-DPCH; 当所述 UE从所述接 入网中接收 DCH数据时,所述第二 RRC信令用以指示所述 UE接收所述第一基 站发送的下行 DPDCH。
在另一种实现方式中, 当所述 UE从所述接入网中接收 DCH数据时,所述 第二 RRC信令还指示所述 UE接收所述第一基站发送的下行 DPCCH。 在另一种实现方式中, 当所述 UE没有从所述接入网接收 DCH数据时,所 述第二 RRC信令包含有所述 F-DPCH的配置信息; 当所述 UE从所述接入网中 接收 DCH数据时,所述第二 RRC信令包含有所述第一基站的下行 DPCH配置信 息。
在另一种实现方式中,所述处理单元 3001还用于生成第二网络信令,所 述无线收发单元 3002, 还用于向所述第一基站发送所述第二网络信令; 当所 述 UE没有从所述接入网接收 DCH数据时,所述第二网络信令用以指示所述第 一基站向所述 UE发送 F-DPCH; 当所述 UE从所述接入网中接收 DCH数据时, 所述第二网络信令用以指示所述第一基站向所述 UE发送 DPDCH。
在另一种实现方式中, 当所述 UE从所述接入网中接收 DCH数据时,所述 第二网路信令还指示所述第一基站向所述 UE发送下行 DPCCH。
在另一种实现方式中, 当所述 UE没有从所述接入网接收 DCH数据时,所 述第二网络信令包含有所述 F-DPCH的配置信息; 当所述 UE从所述接入网中 接收 DCH数据时,所述第二网络信令包含有所述第一基站的下行 DPCH配置信 息。
在另一种实现方式中,所述处理单元 3001生成所述第二 RRC信令前,所 述无线收发单元 3002, 还用于接收所述 UE发送的测量报告, 所述测量包括 用以指示所述 RNC向所述 UE发送第二 RRC信令。
如图 31所示, 本发明实施例还提供了一种接入网中的第一基站 310, 包 括: 无线收发单元 311, 用于接收无线网络控制器 RNC发送的第一网络信令, 根据所述第一网络信令的指示,接收接入网中用户设备 UE发送的 E-DCH数据, 并且向所述 UE发送 E-HICH; 处理单元 312, 用于: 当所述 UE没有从所述接 入网中接收 DCH数据时, 根据所述第一网络信令的指示关闭向所述 UE发送 F-DPCH的功能; 当所述 UE从所述接入网接收 DCH数据时, 根据所述第一网 络信令的指示关闭向所述 UE发送下行 DPDCH的功能。
在一种实现方式中,所述 RNC通过删除所述第一网络信令中 F-DPCH配置 信息或通过在第一网络信令中设置预设指示字段完成所述指示。
在另一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述无 线收发单元 311, 还用于向所述 UE发送 F-DPCH, 所述 F-DPCH用以所述第一 基站对所述 UE进行上行传输功率控制。
在另一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述无 线收发单元 311, 还用于关闭向所述 UE发送下行 DPCCH的功能。
在另一种实现方式中, 所述无线收发单元 311在接收所述第一 RRC信令 后, 还用于接收所述 RNC发送的第二 RRC信令; 所述处理单元 312, 还用于: 当所述 UE没有从所述接入网中接收 DCH数据时,根据所述第二 RRC信令的指 示向所述 UE发送 F-DPCH; 当所述 UE从所述接入网接收 DCH数据时, 根据所 述第二 RRC信令的指示向所述 UE发送下行 DPDCH。
在另一种实现方式中, 所述无线收发单元 311, 还用于: 当所述 UE没有 从所述接入网中接收 DCH数据时,接收的第一网络信令中包含有 F-DPCH配置 信息; 当所述 UE从所述接入网接收 DCH数据时,接收的第一网络信令中包含 有下行 DPCH配置信息。
在另一种实现方式中, 当所述 UE从所述接入网接收 DCH数据时,所述无 线收发单元 311, 还用于向所述 UE发送下行 DPCCH。
需要说明的是, 在上述实施例中, 各装置, 无论是 UE、 RNC还是基站, 都可以通过硬件, 如集成电路或 PCB板, 来实现。 任一无线收发单元可以是 一个射频单元, 如收发信机(Transceiver) , 任一处理单元可以是一个处理 器, 包括但不限于基带处理器或中央处理器等。
需要说明的是, 在以上实施例中, UE向基站 Node B发送 E-DCH数据(高 速上行分组业务) 时, 接收的下行信道可能有两种情况:
1. UE在发送 E-DCH数据时, 还在接收 DCH数据(一般是语音或者是高层 控制信令) , DCH数据承载于下行 DPCH信道上, DPCH信道可以时分 为 DPDCH和 DPCCH两部分, DPDCH承载了 DCH数据, DPCCH承载了接 收 DCH数据所需要的物理控制信息,例如传输功率控制 TPCXTransmit Power Control ) 、 导频 pilot, 传输格式组合指示 TFCI (Transmit
Format Combination Indication)
2. UE在发送 E-DCH数据时, 如果没有接收 DCH数据, 在现有技术中, UE 不需要 (也没有需求) 接收 DPCH, 而是需要接收 F-DPCH, F-DPCH承 载了传输功率控制 TPC, 用以对 UE进行上行功控。 在本发明实施例中, UE可以在图 1所示的 B区域就将 LPN (低功率节点, 即微基站,对应之前图 26至图 31中提到的第一基站)加入了 E-DCH激活集, LPN可以接收 UE发送的 E-DCH数据,但是 LPN的下行链路质量比较差,为此: 如果 UE只在发送 E-DCH数据, 没有从网络接收 DCH数据, 按现有技术, UE应该从 LPN接收 F-DPCH。 但是由于 LPN的下行比较差, 本发明实施例中, 可以让 UE不收 LPN的 F-DPCH, LPN也可以不发 F-DPCH, 从而节省了 LPN的 功率开销,节省了 UE的功率开销,避免由于 LPN的下行传输质量差导致的错 误率很高对 UE的上行发送造成影响。
如果 UE发送 E-DCH数据的同时,还在从网络接收 DCH数据,按现有技术, UE应该同时也从 LPN接收 DCH, 即同时收 DPCCH和 DPDCH, 但是由于 LPN的 下行链路质量差, DPCCH和 DPDCH的错误率比较高,本实施例使得 UE不从 LPN 接收 DPDCH, 但还是接收一些承载在 DPCCH上的控制信息; 或者, UE也不收 DPCCH, 进一歩降低 UE接收下行信道的功率开销; 如果 LPN需要对 UE进行 上行功率控制, 可以让 UE接收 LPN发送的 F-DPCH, F-DPCH的发送功率开销 和接收功率开销都比 DPCCH要小, UE译码 F-DPCH上的 TPC,来调整自己的上 行功率发送。当 UE从 B区域移动到 C时, LPN的下行链路质量逐渐好转, RNC 控制 UE可以回到现有技术的软切换流程的中。如果 UE从网络接收 DCH数据, 本实施例中通过网络信令指示 UE开始接收 LPN发送的 DPCH;如果 UE没有从 网络接收 DCH数据,本实施例通过网络信令指示 UE接收 LPN发送的 F-DPCH。
总之, 本发明实施例通过某种显式或隐式方式使得 UE在需要时不接收 F-DPCH或 DPCCH或 DPDCH,例如,可以在一个基站到 UE的下行链路质量变差 时灵活关闭 UE—部分接收功能, 或者关闭对 UE的相应发送功能, 减少基站 发送低质量无线链路的发送功率损耗,也可以减少 UE接收低质量无线链路的 接收功率损耗, 减轻链路质量降低对网络通信造成的影响, 进一歩的, 基站 和 RNC可以将关闭的无线链路用于服务其他 UE, 增加网络的下行容量。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其它的方式实现。例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外 的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或 直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连 接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用硬件加软件 功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 或处理器(processor )执行本发明各个实施例所述方法的部分歩骤。而前述 的存储介质包括: U盘、 移动硬盘、 只读存储器 (Read-Only Memory, ROM), 随机存取存储器 (Random Access Memory , RAM), 磁碟或者光盘等各种可以 存储程序代码的介质。
本领域技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上述各 功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分 配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以 完成以上描述的全部或者部分功能。 上述描述的装置的具体工作过程, 可以 参考前述方法实施例中的对应过程, 在此不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利要求
1、 一种网络通信方法, 其特征在于, 包括:
用户设备 UE接收接入网中无线网络控制器 RNC发送的指示信息,所述指 示信息用于指示所述 UE:
在第一区域, 与所述接入网的宏基站进行上下行业务传输, 以及与所述 接入网的微基站进行上行业务传输, 所述第一区域为所述微基站的公共导频 信道质量达到加入第一激活集的第一门限值与所述微基站的公共导频信道质 量达到加入第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频 信道质量是由处于所述第一区域的所述 UE测量得到;
和 /或, 在第二区域, 与所述微基站进行上下行业务传输, 以及与所述宏 基站进行下行业务传输, 所述第二区域为所述宏基站的公共导频信道质量达 到加入第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到;
所述 UE根据所述指示信息进行业务传输;
其中,所述第一激活集包括:扩展专用信道 DCH激活集和 /或扩展增强专 用信道 E-DCH激活集, 所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送的所述上行 DCH业务,所 述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务,且所述扩展 E-DCH激活集 中的微基站接收所述 UE发送的所述 E-DCH业务;
在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR,并将所述 LLR作为维特比译码器输入进行维特比 译码;
所述第二激活集包括: DCH激活集和 /或 E-DCH激活集;
所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支持所述 第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激活集中 的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新数据, 若所述 E-HICH指示非确认应答 NACK并且未到 达最大重传次数, 所述 UE重传数据。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 UE根据所述指示信 息进行业务传输之前, 还包括:
所述 UE接收所述 RNC发送的激活集更新信令;
所述 UE根据所述激活集更新信令,在第一区域进行业务传输时将所述微 基站加入第一激活集中,和 /或,在第二区域进行业务传输时将所述宏基站加 入第三激活集中。
3、 根据权利要求 2所述的方法, 其特征在于, 所述 UE接收所述 RNC发 送的激活集更新信令之前, 还包括:
所述 UE测量各个小区的公共导频信道质量;
所述 UE处于非软切换区域时, 当所述 UE测量到所述微基站的公共导频 信道质量超过预先设定的加入第一激活集的第一门限值且小于加入所述第二 激活集的第一条件阈值时,所述 UE向所述 RNC发送第一测量报告, 以使所述 RNC根据所述第一测量报告向所述 UE发送所述激活集更新信令;
所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所 述微基站的公共导频信道质量小于所述微基站从所述第二激活集删除的第三 条件阈值且大于预先设定的第二门限值时,所述 UE向所述 RNC发送第一测量 报告,以使所述 RNC根据所述第一测量报告向所述 UE发送所述激活集更新信
4、 根据权利要求 3所述的方法, 其特征在于, 所述 UE根据所述指示信 息进行业务传输之后, 还包括:
所述 UE继续测量所述微基站的公共导频信道质量,当所述微基站的公共 导频信道质量大于加入第二激活集的第一条件阈值时, 所述 UE向所述 RNC 发送第二测量报告, 以使所述 RNC向所述 UE发送第一控制信息;
所述 UE根据所述第一控制信息将所述微基站加入第二激活集中; 或者,
所述 UE继续测量所述微基站的公共导频信道质量,当所述微基站的公共 导频信道质量小于所述第二门限值时,所述 UE向所述 RNC发送第二测量报告, 以使所述 RNC向所述 UE发送第二控制信息;
所述 UE根据所述第二控制信息将所述微基站从所述第一激活集中删除。
5、 根据权利要求 2 任一项所述的方法, 其特征在于, 所述 UE传输的 业务包括 DCH业务, 所述方法还包括:
所述 UE接收所述微基站发送的功率控制命令 TPC,所述 TPC用于调整所 述 UE的上行发送功率;
所述 UE传输的业务包括 E-DCH业务, 所述方法还包括:
所述 UE接收所述微基站发送的 TPC、增强专用信道相对授权信道 E-RGCH 和 E-HICH; 其中, 所述 TPC用于调整所述 UE的上行发送功率, 所述 E-RGCH 用于调整所述 UE获得的调度授权值,所述 E-HICH用于向所述 UE反馈所述微 基站是否正确接收所述 UE的数据。
6、 根据权利要求 2 任一所述的方法, 其特征在于, 所述 UE传输的业 务包括 E-DCH业务, 所述方法还包括:
所述 UE接收所述微基站发送的 E-HICH , 所述 E-HICH用于向所述 UE反 馈所述基站是否正确接收所述 UE的数据;
所述 UE关闭接收所述微基站的 TPC的功能。
7、 根据权利要求 2所述的方法, 其特征在于, 所述 UE接收所述 RNC发 送的激活集更新信令之前, 还包括:
所述 UE测量各个小区的公共导频信道质量;
所述 UE处于非软切换区域时, 当所述 UE测量到所述宏基站的公共导频 信道质量超过预先设定的第三门限值且小于加入所述第二激活集的第二条件 阈值时,所述 UE向所述 RNC发送第三测量报告, 以使所述 RNC根据所述第三 测量报告向所述 UE发送所述激活集更新信令;
所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所 述宏基站的公共导频信道质量低于所述宏基站从所述第二激活集删除的第四 条件阈值且大于预先设定的第四门限值时,所述 UE向所述 RNC发送第三测量 报告,以使所述 RNC根据所述第三测量报告向所述 UE发送所述激活集更新信
8、 根据权利要求 7所述的方法, 其特征在于, 所述 UE根据所述指示信 息进行业务传输之后, 还包括:
所述 UE继续测量所述宏基站的公共导频信道质量,当所述宏基站的公共 导频信道质量大于加入所述第二激活集的第二条件阈值时, 所述 UE向所述 RNC发送第四测量报告, 以使所述 RNC向所述 UE发送第三控制信息;
所述 UE根据所述第三控制信息将所述宏基站加入第二激活集中; 或者,
所述 UE继续测量所述宏基站的公共导频信道质量,当所述宏基站的公共 导频信道质量小于所述第四门限值时,所述 UE向所述 RNC发送第四测量报告, 以使所述 RNC向所述 UE发送第四控制信息;
所述 UE根据所述第四控制信息将所述宏基站从所述第三激活集中删除。
9、 一种网络通信方法, 其特征在于, 包括:
接入网中无线网络控制器 RNC生成指示信息, 所述指示信息用于指示用 户设备 UE: 在第一区域, 与所述接入网的宏基站进行上下行业务传输, 以及 与所述接入网的微基站进行上行业务传输, 所述第一区域为所述微基站的公 共导频信道质量达到加入第一激活集的第一门限值与所述微基站的公共导频 信道质量达到加入第二激活集的第一条件阈值之间的区域, 所述微基站的公 共导频信道质量是由处于所述第一区域的所述 UE测量得到;
和 /或, 在第二区域, 与所述微基站进行上下行业务传输, 以及与所述宏 基站进行下行业务传输, 所述第二区域为所述宏基站的公共导频信道质量达 到加入第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到;
所述 RNC向所述 UE发送所述指示信息, 以使所述 UE根据所述指示信息 进行业务传输;
其中,所述第一激活集包括:扩展专用信道 DCH激活集和 /或扩展增强专 用信道 E-DCH激活集, 所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送的所述上行 DCH业务,所 述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务,且所述扩展 E-DCH激活集 中的微基站接收所述 UE发送的所述 E-DCH业务; 在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR,并将所述 LLR作为维特比译码器输入进行维特比 译码;
所述第二激活集包括: DCH激活集和 /或 E-DCH激活集;
所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支持所述 第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激活集中 的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新数据, 若所述 E-HICH指示非确认应答 NACK并且未到 达最大重传次数, 所述 UE重传数据。
10、根据权利要求 9所述的方法, 其特征在于, 所述 RNC向所述 UE发送 所述指示信息之前, 还包括:
所述 RNC向所述 UE发送激活集更新信令, 以使所述 UE根据所述激活集 更新信令,在第一区域进行业务传输时将所述微基站加入第一激活集中,和 / 或, 在第二区域进行业务传输时将所述宏基站加入第三激活集中。
11、 根据权利要求 10所述的方法, 其特征在于, 所述 RNC向所述 UE发 送激活集更新信令之前, 还包括:
所述 RNC接收所述 UE发送的第一测量报告, 所述第一测量报告是所述 UE处于非软切换区域时, 当所述 UE测量到所述微基站的公共导频信道质量 超过预先设定的加入第一激活集的第一门限值且小于加入所述第二激活集的 第一条件阈值时向所述 RNC发送的, 或者,
所述第一测量报告是所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所述微基站的公共导频信道质量小于所述微基站从所述第 二激活集删除的第三条件阈值且大于预先设定的第二门限值时向所述 RNC发 送的。
12、 根据权利要求 11所述的方法, 其特征在于, 所述 RNC向所述 UE发 送所述指示信息之后, 还包括:
所述 RNC接收所述 UE发送的第二测量报告,所述第二测量报告是当所述 微基站的公共导频信道质量大于加入第二激活集的第一条件阈值时,所述 UE 向所述 RNC发送的;
所述 RNC向所述 UE发送第一控制信息, 以使所述 UE根据所述第一控制 信息指示将所述微基站加入第二激活集中;
或者,
所述 RNC接收所述 UE发送的第二测量报告,所述第二测量报告是当所述 微基站的公共导频信道质量小于所述第二门限值时,所述 UE向所述 RNC发送 的;
所述 RNC向所述 UE发送第二控制信息, 以使所述 UE根据所述第二控制 信息将所述微基站从所述第一激活集中删除。
13、 根据权利要求 10所述的方法, 其特征在于, 所述 RNC向所述 UE发 送激活集更新信令之前, 还包括:
所述 RNC接收所述 UE发送的第三测量报告, 所述第三测量报告是所述 UE处于非软切换区域时, 当所述 UE测量到所述宏基站的公共导频信道质量 超过预先设定的第三门限值且小于加入所述第二激活集的第二条件阈值时, 所述 UE向所述 RNC发送的; 或者,
所述第三测量报告是所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所述宏基站的公共导频信道质量低于所述宏基站从所述第 二激活集删除的第四条件阈值且大于预先设定的第四门限值时,所述 UE向所 述 RNC发送的。
14、 根据权利要求 13所述的方法, 其特征在于, 所述 RNC向所述 UE发 送所述指示信息之后, 还包括:
所述 RNC接收所述 UE发送的第四测量报告,所述第四测量报告是当所述 宏基站的公共导频信道质量大于加入所述第二激活集的第二条件阈值时, 所 述 UE向所述 RNC发送的;
所述 RNC向所述 UE发送第三控制信息, 以使所述 UE根据所述第三控制 信息将所述宏基站加入第二激活集中;
或者,
所述 RNC接收所述 UE发送的第四测量报告,所述第四测量报告是当所述 宏基站的公共导频信道质量小于所述第四门限值时,所述 UE向所述 RNC发送 的;
所述 RNC向所述 UE发送第四控制信息, 以使所述 UE根据所述第四控制 信息将所述宏基站从所述第三激活集中删除。
15、 一种网络通信方法, 其特征在于, 包括:
微基站接收接入网中无线网络控制器 RNC发送的配置信息, 所述配置信 息用于指示所述微基站接收用户设备 UE发送的上行专用信道 DCH和 /或上行 增强专用信道 E-DCH业务;
所述微基站在被所述 UE在第一区域进行业务传输时加入第一激活集之 后, 根据所述配置信息在所述第一激活集中接收所述 UE发送的上行 DCH和 / 或上行 E-DCH业务, 所述第一区域为所述微基站的公共导频信道质量达到加 入所述第一激活集的第一门限值与所述微基站的公共导频信道质量达到加入 第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频信道质量是 由处于所述第一区域的所述 UE测量得到;
其中, 所述第一激活集包括:
扩展 DCH激活集和 /或扩展 E-DCH激活集,所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送 的所述上行 DCH业务, 所述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务, 且所述扩展 E-DCH激活集中的微基站接收所述 UE发送的所述 E-DCH业务; 在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR ,并将所述 LLR作为维特比译码器输入进行维特比 译码。
16、根据权利要求 15所述的方法, 其特征在于, 若所述微基站接收的业 务为 DCH业务, 所述方法还包括:
所述微基站向所述 UE发送功率控制命令 TPC,所述 TPC用于调整所述 UE 的上行发送功率;
若所述微基站接收的业务为 E-DCH业务, 所述方法还包括:
所述微基站向所述 UE发送 TPC、 增强专用信道相对授权信道 E-RGCH和 增强专用信道混合自动重传请求指示信道 E-HICH; 其中, 所述 TPC用于调整 所述 UE的上行发送功率, 所述 E-RGCH用于调整所述 UE获得的调度授权值, 所述 E-HICH用于向所述 UE反馈所述微基站是否正确接收所述 UE的数据。
17、根据权利要求 15所述的方法, 其特征在于, 所述微基站接收的业务 为 E-DCH业务, 所述方法还包括:
所述微基站向所述 UE发送所述 E-HICH , 所述 E-HICH用于向所述 UE反 馈所述微基站是否正确接收所述 UE的数据;
所述微基站关闭向所述 UE发送 TPC的功能。
18、 一种网络通信方法, 其特征在于, 包括:
宏基站接收接入网中无线网络控制器 RNC发送的配置信息, 所述配置信 息用于指示所述宏基站向用户设备 UE发送下行专用信道 DCH业务;
所述宏基站在被所述 UE在第二区域进行业务传输时加入第三激活集之 后,根据所述配置信息在所述第三激活集中向所述 UE发送下行专用信道 DCH 业务, 所述第二区域为所述宏基站的公共导频信道质量达到加入第三激活集 的第三门限值与所述宏基站的公共导频信道质量达到加入第二激活集的第二 条件阈值之间的区域, 所述宏基站的公共导频信道质量是由处于所述第二区 域的所述 UE测量得到;
其中, 所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支 持所述第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激 活集中的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新 E-DCH业务, 若所述 E-HICH指示非确认应答 NACK并 且未到达最大重传次数, 所述 UE重传 E-DCH业务。
19、根据权利要求 18所述的方法, 其特征在于, 所述根据所述配置信息 在所述第三激活集中向所述 UE发送下行专用信道 DCH业务之后, 还包括: 接收所述 UE发送的上行功率控制命令 TPC,所述 TPC用于控制所述下行 DCH业务的发送功率。
20、 一种用户设备, 其特征在于, 包括:
接收模块, 用于接收接入网中无线网络控制器 RNC发送的指示信息, 所 述指示信息用于指示所述 UE;
在第一区域, 与所述接入网的宏基站进行上下行业务传输, 以及与所述 接入网的微基站进行上行业务传输, 所述第一区域为所述微基站的公共导频 信道质量达到加入第一激活集的第一门限值与所述微基站的公共导频信道质 量达到加入第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频 信道质量是由处于所述第一区域的所述 UE测量得到;
和 /或, 在第二区域, 与所述微基站进行上下行业务传输, 以及与所述宏 基站进行下行业务传输, 所述第二区域为所述宏基站的公共导频信道质量达 到加入第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到;
处理模块, 用于根据所述指示信息进行业务传输;
其中,所述第一激活集包括:扩展专用信道 DCH激活集和 /或扩展增强专 用信道 E-DCH激活集, 所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送的所述上行 DCH业务,所 述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务,且所述扩展 E-DCH激活集 中的微基站接收所述 UE发送的所述 E-DCH业务;
在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR,并将所述 LLR作为维特比译码器输入进行维特比 译码;
所述第二激活集包括: DCH激活集和 /或 E-DCH激活集;
所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支持所述 第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激活集中 的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新数据, 若所述 E-HICH指示非确认应答 NACK并且未到 达最大重传次数, 所述 UE重传数据。
21、根据权利要求 20所述的用户设备, 其特征在于, 所述接收模块还用 于:
在所述处理模块根据所述指示信息进行业务传输之前, 接收所述 RNC发 送的激活集更新信令;
所述处理模块还用于: 根据所述激活集更新信令, 在第一区域进行业务 传输时将所述微基站加入第一激活集中,和 /或,在第二区域进行业务传输时 将所述宏基站加入第三激活集中。
22、 根据权利要求 21所述的用户设备, 其特征在于, 还包括: 第一测量模块, 用于在所述接收模块接收所述 RNC发送的激活集更新信 令之前, 测量各个小区的公共导频信道质量;
第一发送模块,用于所述 UE处于非软切换区域时, 当所述第一测量模块 测量到所述微基站的公共导频信道质量超过预先设定的加入第一激活集的第 一门限值且小于加入所述第二激活集的第一条件阈值时, 向所述 RNC发送第 一测量报告,以使所述 RNC根据所述第一测量报告向所述 UE发送所述激活集 更新信令;
所述第一发送模块还用于所述 UE处于所述第二激活集对应的软切换区 域时,当所述 UE测量到所述微基站的公共导频信道质量小于所述微基站从第 二激活集删除的第二条件阈值且超过预先设定的第二门限值时, 向所述 RNC 发送第一测量报告,以使所述 RNC根据所述第一测量报告向所述 UE发送所述 激活集更新信令。
23、根据权利要求 22所述的用户设备, 其特征在于, 所述第一测量模块 还用于:
在所述处理模块根据所述指示信息进行业务传输之后, 继续测量所述微 基站的公共导频信道质量, 当所述微基站的公共导频信道质量大于加入第二 激活集的第一条件阈值时, 所述第一发送模块还用于向所述 RNC发送第二测 量报告, 以使所述 RNC向所述 UE发送第一控制信息;
所述处理模块还用于: 根据所述第一控制信息将所述微基站加入第二激 活集中;
或者,
所述第一测量模块还用于: 在所述处理模块根据所述指示信息进行业务传输之后, 继续测量所述微 基站的公共导频信道质量, 当所述微基站的公共导频信道质量小于所述第二 门限值时, 所述第一发送模块还用于向所述 RNC发送第二测量报告, 以使所 述 RNC向所述 UE发送第二控制信息;
所述处理模块还用于: 根据所述第二控制信息将所述微基站从所述第一 激活集中删除。
24、 根据权利要求 2广 23任一项所述的用户设备, 其特征在于, 所述 UE 传输的业务包括 DCH业务, 所述接收模块还用于:
接收所述微基站发送的功率控制命令 TPC ,所述 TPC用于调整所述 UE的 上行发送功率;
所述 UE传输的业务包括 E-DCH业务, 所述接收模块还用于:
接收所述微基站发送的功率控制命令 TPC、 增强专用信道相对授权信道 E-RGCH和 E-HICH; 其中, 所述 TPC用于调整所述 UE的上行发送功率, 所述 E-RGCH用于调整所述 UE获得的调度授权值, 所述 E-HICH用于向所述 UE反 馈所述微基站是否正确接收所述 UE的数据; 或者
用于接收所述微基站发送的 E-HICH,所述 E-HICH用于向所述 UE反馈所 述基站是否正确接收所述 UE的数据; 并
关闭接收所述微基站的 TPC的功能。
25、 根据权利要求 21所述的用户设备, 其特征在于, 还包括: 第二测量模块, 用于在所述接收模块接收所述 RNC发送的激活集更新信 令之前, 测量各个小区的公共导频信道质量;
第二发送模块,用于所述 UE处于非软切换区域时, 当第二测量模块测量 到所述宏基站的公共导频信道质量超过预先设定的第三门限值且小于加入所 述第二激活集的第二条件阈值时, 向所述 RNC发送第三测量报告, 以使所述 RNC根据所述第三测量报告向所述 UE发送所述激活集更新信令;
所述第二发送模块还用于所述 UE处于所述第二激活集对应的软切换区 域时, 当第二测量模块测量到所述宏基站的公共导频信道质量低于所述宏基 站从所述第二激活集删除的第四条件阈值且大于预先设定的第四门限值时, 向所述 RNC发送第三测量报告, 以使所述 RNC根据所述第三测量报告向所述 UE发送所述激活集更新信令。
26、根据权利要求 25所述的用户设备, 其特征在于, 所述第二测量模块 还用于:
在所述处理模块根据所述指示信息进行业务传输之后, 继续测量所述宏 基站的公共导频信道质量, 当所述宏基站的公共导频信道质量大于加入所述 第二激活集的第二条件阈值时, 所述第二发送模块还用于向所述 RNC发送第 四测量报告, 以使所述 RNC向所述 UE发送第三控制信息;
所述处理模块还用于: 根据所述第三控制信息将所述宏基站加入第二激 活集中;
或者,
所述第二测量模块还用于:
在所述处理模块根据所述指示信息进行业务传输之后, 继续测量所述宏 基站的公共导频信道质量, 当所述宏基站的公共导频信道质量小于所述第四 门限值时, 所述第二发送模块还用于向所述 RNC发送第四测量报告, 以使所 述 RNC向所述 UE发送第四控制信息;
所述处理模块还用于: 根据所述第四控制信息将所述宏基站从所述第三 激活集中删除。
27、 一种无线网络控制器, 其特征在于, 包括:
生成模块, 用于生成指示信息, 所述指示信息用于指示用户设备 UE : 在 第一区域, 与接入网的宏基站进行上下行业务传输, 以及与所述接入网的微 基站进行上行业务传输, 所述第一区域为所述微基站的公共导频信道质量达 到加入第一激活集的第一门限值与所述微基站的公共导频信道质量达到加入 第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频信道质量是 由处于所述第一区域的所述 UE测量得到;
和 /或, 在第二区域, 与所述微基站进行上下行业务传输, 以及与所述宏 基站进行下行业务传输, 所述第二区域为所述宏基站的公共导频信道质量达 到加入第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到; 发送模块,用于向所述 UE发送所述指示信息, 以使所述 UE根据所述指 示信息进行业务传输;
其中,所述第一激活集包括:扩展专用信道 DCH激活集和 /或扩展增强专 用信道 E-DCH激活集, 所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送的所述上行 DCH业务,所 述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务,且所述扩展 E-DCH激活集 中的微基站接收所述 UE发送的所述 E-DCH业务;
在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR,并将所述 LLR作为维特比译码器输入进行维特比 译码;
所述第二激活集包括: DCH激活集和 /或 E-DCH激活集;
所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支持所述 第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激活集中 的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新数据, 若所述 E-HICH指示非确认应答 NACK并且未到 达最大重传次数, 所述 UE重传数据。
28、根据权利要求 27所述的无线网络控制器, 其特征在于, 所述发送模 块还用于: 在发送所述指示信息之前, 向所述 UE发送激活集更新信令, 以使 所述 UE根据所述激活集更新信令,在第一区域进行业务传输时将所述微基站 加入第一激活集中,和 /或,在第二区域进行业务传输时将所述宏基站加入第 三激活集中。
29、 根据权利要求 28所述的无线网络控制器, 其特征在于, 还包括: 第一接收模块, 用于在所述发送模块向所述 UE发送激活集更新信令之 前, 接收所述 UE发送的第一测量报告,所述第一测量报告是所述 UE处于非 软切换区域时,当所述 UE测量到所述微基站的公共导频信道质量超过预先设 定的加入第一激活集的第一门限值且小于加入所述第二激活集的第一条件阈 值时向所述 RNC发送的, 或者, 所述第一测量报告是所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所述微基站的公共导频信道质量小于所述微基站从所述第 二激活集删除的第三条件阈值且大于预先设定的第二门限值时向所述 RNC发 送的。
30、根据权利要求 28所述的无线网络控制器, 其特征在于, 所述第一接 收模块还用于:在所述发送模块向所述 UE发送所述指示信息之后,接收所述 UE发送的第二测量报告,所述第二测量报告是当所述微基站的公共导频信道 质量大于加入第二激活集的第一条件阈值时, 所述 UE向所述 RNC发送的; 所述发送模块还用于: 向所述 UE发送第一控制信息, 以使所述 UE根据 所述第一控制信息指示将所述微基站加入第二激活集中;
或者,
所述第一接收模块还用于:在所述发送模块向所述 UE发送所述指示信息 之后,接收所述 UE发送的第二测量报告,所述第二测量报告是当所述微基站 的公共导频信道质量小于所述第二门限值时, 所述 UE向所述 RNC发送的; 所述发送模块还用于: 向所述 UE发送第二控制信息, 以使所述 UE根据 所述第二控制信息将所述微基站从所述第一激活集中删除。
31、 根据权利要求 28所述的无线网络控制器, 其特征在于, 还包括: 第二接收模块, 用于在所述发送模块向所述 UE发送激活集更新信令之 前, 接收所述 UE发送的第三测量报告, 所述第三测量报告是所述 UE处于非 软切换区域时,当所述 UE测量到所述宏基站的公共导频信道质量超过预先设 定的第三门限值且小于加入所述第二激活集的第二条件阈值时,所述 UE向所 述 RNC发送的; 或者,
所述第三测量报告是所述 UE处于所述第二激活集对应的软切换区域时, 当所述 UE测量到所述宏基站的公共导频信道质量低于所述宏基站从所述第 二激活集删除的第四条件阈值且大于预先设定的第四门限值时,所述 UE向所 述 RNC发送的。
32、根据权利要求 31所述的无线网络控制器, 其特征在于, 所述第二接 收模块还用于:在所述发送模块向所述 UE发送所述指示信息之后,接收所述 UE发送的第四测量报告,所述第四测量报告是当所述宏基站的公共导频信道 质量大于加入所述第二激活集的第二条件阈值时,所述 UE向所述 RNC发送的; 所述发送模块还用于: 向所述 UE发送第三控制信息, 以使所述 UE根据 所述第三控制信息将所述宏基站加入第二激活集中;
或者,
所述第二接收模块还用于:在所述发送模块向所述 UE发送所述指示信息 之后,接收所述 UE发送的第四测量报告,所述第四测量报告是当所述宏基站 的公共导频信道质量小于所述第四门限值时, 所述 UE向所述 RNC发送的; 所述发送模块还用于: 向所述 UE发送第四控制信息, 以使所述 UE根据 所述第四控制信息将所述宏基站从所述第三激活集中删除。
33、 一种微基站, 其特征在于, 包括:
接收模块, 用于接收接入网中无线网络控制器 RNC发送的配置信息, 所 述配置信息用于指示所述微基站接收用户设备 UE发送的上行专用信道 DCH 和 /或上行增强专用信道 E-DCH业务;
处理模块,用于在所述微基站被所述 UE在第一区域进行业务传输时加入 第一激活集之后,根据所述配置信息在所述第一激活集中接收所述 UE发送的 上行 DCH和 /或上行 E-DCH业务,所述第一区域为所述微基站的公共导频信道 质量达到加入所述第一激活集的第一门限值与所述微基站的公共导频信道质 量达到加入第二激活集的第一条件阈值之间的区域, 所述微基站的公共导频 信道质量是由处于所述第一区域的所述 UE测量得到;
其中, 所述第一激活集包括:
扩展 DCH激活集和 /或扩展 E-DCH激活集,所述扩展 DCH激活集支持所述 UE发送上行 DCH业务, 且所述扩展 DCH激活集中的微基站接收所述 UE发送 的所述上行 DCH业务, 所述扩展 E-DCH激活集支持所述 UE发送 E-DCH业务, 且所述扩展 E-DCH激活集中的微基站接收所述 UE发送的所述 E-DCH业务; 在所述第一激活集中, 所述 UE可接收并求取所述第一激活集中宏基站 DCH业务的对数似然比 LLR ,并将所述 LLR作为维特比译码器输入进行维特比 译码。
34、 根据权利要求 33所述的微基站, 其特征在于, 还包括:
发送模块, 若所述微基站接收的业务为 DCH业务, 所述发送模块用于向 所述 UE发送功率控制命令 TPC,所述 TPC用于调整所述 UE的上行发送功率; 若所述微基站接收的业务为 E-DCH业务, 所述发送模块用于向所述 UE 发送 TPC、增强专用信道相对授权信道 E-RGCH和增强专用信道混合自动重传 请求指示信道 E-HICH; 其中, 所述 TPC用于调整所述 UE的上行发送功率, 所述 E-RGCH用于调整所述 UE获得的调度授权值, 所述 E-HICH用于向所述
UE反馈所述微基站是否正确接收所述 UE的数据; 或者
所述发送模块用于向所述 UE发送所述 E-HICH,所述 E-HICH用于向所述
UE反馈所述微基站是否正确接收所述 UE的数据; 并关闭向所述 UE发送 TPC 的功能。
35、 一种宏基站, 其特征在于, 包括:
接收模块, 用于接收接入网中无线网络控制器 RNC发送的配置信息, 所 述配置信息用于指示所述宏基站向用户设备 UE发送下行专用信道 DCH业务; 发送模块,用于在所述宏基站被所述 UE在第二区域进行业务传输时加入 第三激活集之后,根据所述配置信息在所述第三激活集中向所述 UE发送下行 专用信道 DCH业务, 所述第二区域为所述宏基站的公共导频信道质量达到加 入所述第三激活集的第三门限值与所述宏基站的公共导频信道质量达到加入 第二激活集的第二条件阈值之间的区域, 所述宏基站的公共导频信道质量是 由处于所述第二区域的所述 UE测量得到;
其中, 所述第三激活集包括: 扩展 DCH激活集, 所述扩展 DCH激活集支 持所述第三激活集中的宏基站发送下行 DCH业务,且所述 UE接收所述第三激 活集中的宏基站发送的下行 DCH业务;
在所述第三激活集中,所述 UE可接收所述第三激活集中微基站发送的增 强专用信道混合自动重传请求指示信道 E-HICH, 若所述 E-HICH指示确认应 答 ACK, 所述 UE传输新 E-DCH业务, 若所述 E-HICH指示非确认应答 NACK并 且未到达最大重传次数, 所述 UE重传 E-DCH业务。
36、根据权利要求 35所述的宏基站,其特征在于,所述接收模块还用于: 在所述发送模块根据所述配置信息在所述第三激活集中向所述 UE发送 下行专用信道 DCH业务之后, 接收所述 UE发送的上行功率控制命令 TPC, 所 述 TPC用于控制所述下行 DCH业务的发送功率。
37、 一种接入网系统, 其特征在于, 包括如权利要求 2CT26任一所述的 用户设备和如权利要求 27〜32任一所述的无线网络控制器, 以及如权利要求 33或 34所述的微基站和如权利要求 35或 36所述的宏基站。
38、 一种网络通信方法, 其特征在于, 包括:
用户设备 UE接收接入网中的第一基站发送的第一增强专用信道混合自 动重传请求指示信道 E-HICH, 所述第一基站位于所述 UE的检测范围内且不 处于所述 UE的增强专用信道 E-DCH激活集内;
当所述第一 E-HICH指示为确认应答 ACK时,所述 UE发送新 E-DCH数据。
39、根据权利要求 38所述的方法, 其特征在于, 所述第一基站位于所述 UE的检测范围内, 包括:
所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。
40、 根据权利要求 38或 39所述的方法, 其特征在于, 还包括: 所述 UE 接收所述第一基站发送的传输功率控制命令 TPC。
41、根据权利要求 39或 40所述的方法, 其特征在于, 所述 UE接收接入 网中的第一基站发送的第一增强专用信道混合自动重传请求指示信道
E-HICH之前, 还包括:
所述 UE接收无线网络控制器 RNC发送的第一指示信令,所述第一指示信 令用于指示所述 UE接收所述第一基站发送的第一 E-HICH, 所述第一指示信 令包括所述第一 E-HICH的信道化码和签名序列,所述信道化码用以指示所述 UE译码所述第一 E-HICH占用的信道应使用的扩频码, 所述签名序列用以指 示所述 UE译码每个 E-HICH子帧应使用的正交序列。
42、根据权利要求 41所述的方法, 其特征在于, 所述第一指示信令还包 括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示所 述 UE接收所述第一 E-HICH的每个子帧的起始时间位置。
43、 根据权利要求 42所述的方法, 其特征在于, 所述第一 E-HICH的定 时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 和/或 符号位置;
或者,所述第一 E-HICH的定时信息为所述第一基站的专用物理信道 DPCH 的定时偏置 rDP^„。
44、 根据权利要求 4广 43任一项所述的方法, 其特征在于, 所述第一指 示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
45、 根据权利要求 44所述的方法, 其特征在于, 所述 E-RGCH的定时信 息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 τ—,η和 /或符号 位置;
或者, 所述 F-DPCH的定时信息为所述第一基站的专用物理信道 DPCH的 定时偏置 ^^„。
46、根据权利要求 4广 45任一项所述的方法, 其特征在于, 所述 UE接收 无线网络控制器 RNC发送的第一指示信令之前, 还包括:
所述 UE测量各个服务小区的公共导频信道质量;
所述 UE测量到所述第一基站的公共导频信道质量超过预设的第一门限 时,所述 UE向所述 RNC发送测量报告, 以使所述 RNC根据所述测量报告向所 述 UE发送所述第一指示信令。
47、 一种网络通信方法, 其特征在于, 包括:
接入网中的第一基站接收用户设备 UE发送的 E-DCH业务,所述第一基站 位于所述 UE的检测范围内且不处于所述 UE的增强专用信道 E-DCH激活集内; 所述第一基站向所述 UE发送第一增强专用信道混合自动重传请求指示 信道 Ε- HICH;
所述第一基站接收所述 UE在所述第一 E-HICH指示为确认应答 ACK时发 送的新 E-DCH数据。
48、根据权利要求 47所述的方法, 其特征在于, 所述第一基站位于所述 UE的检测范围内, 包括:
所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。
49、 根据权利要求 47或 48所述的方法, 其特征在于, 还包括: 所述第 一基站向所述 UE发送传输功率控制命令 TPC。
50、 根据权利要求 48或 49所述的方法, 其特征在于, 所述接入网中的 第一基站接收用户设备 UE发送的 E-DCH业务之前, 还包括:
所述第一基站接收无线网络控制器 RNC发送的第二指示信令, 所述第二 指示信令用于指示所述第一基站接收所述 UE发送的 E-DCH业务,所述第二指 示信令包括:所述 UE的上行扰码、所述第一 E-HICH的信道化码和签名序列, 所述信道化码用以指示所述 UE译码所述第一 E-HICH占用的信道应使用的扩 频码, 所述签名序列用以指示所述 UE译码每个 E-HICH子帧应使用的正交序 列。
51、根据权利要求 50所述的方法, 其特征在于, 所述第二指示信令还包 括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示发 送所述第一 E-HICH的每个子帧的起始时间位置。
52、 根据权利要求 51所述的方法, 其特征在于, 所述第一 E-HICH的定 时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 τ—,η和 /或 符号位置;
或者,所述第一 E-HICH的定时信息为所述第一基站的专用物理信道 DPCH 的定时偏置 rDP^„。
53、 根据权利要求 5(Γ52任一项所述的方法, 其特征在于, 所述第二指 示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
54、 根据权利要求 53所述的方法, 其特征在于, 所述 E-RGCH的定时信 息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 TFDPCH„和 /或符号 位置;
或者, 所述 E-RGCH的定时信息为所述第一基站的专用物理信道 DPCH的 定时偏置 peff,„。
55、 根据权利要求 5(T54任一项所述的方法, 其特征在于, 所述第一基 站接收无线网络控制器 RNC发送的第二指示信令之前, 还包括:
所述第一基站向所述 RNC发送接收能力消息, 所述接收能力消息用于指 示所述第一基站可以接收所述 UE发送的 E-DCH业务。
56、 一种网络通信方法, 其特征在于, 包括:
接入网中的无线网络控制器 RNC生成第一指示信令和第二指示信令, 所 述第一指示信令用于指示用户设备 UE接收第一基站发送的第一增强专用信 道混合自动重传请求指示信道 E-HICH,所述第二指示信令用于指示所述第一 基站接收所述 UE发送的 E-DCH业务, 所述第一基站位于所述 UE的检测范围 内且不处于所述 UE的增强专用信道 E-DCH激活集内;
所述 RNC向所述第一基站发送所述第二指示信令, 所述第二指示信令包 括: 所述 UE的上行扰码、 所述第一 E-HICH的信道化码和签名序列, 所述信 道化码用以指示所述 UE译码所述第一 E-HICH占用的信道应使用的扩频码, 所述签名序列用以指示所述 UE译码每个 E-HICH子帧应使用的正交序列; 所述 RNC向所述 UE发送所述第一指示信令,所述第一指示信令包括所述 第一 E-HICH的信道化码和签名序列。
57、 根据权利要求 56所述的方法, 其特征在于, 所述第一基站位于所述 UE的检测范围内, 包括:
所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。
58、 根据权利要求 56或 57所述的方法, 其特征在于, 所述第一指示信令还 包括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示所 述 UE接收所述第一 E-HICH的每个子帧的起始时间位置;
所述第二指示信令还包括: 所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示发送所述第一 E-HICH的每个子帧的起始时间位 置。
59、 根据权利要求 58所述的方法, 其特征在于, 所述第一 E-HICH的定 时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 TFDPCH„和 /或 符号位置; 的定时偏置 rDP^„。
〜59任
Figure imgf000105_0001
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
61、 根据权利要求 60所述的方法, 其特征在于:
所述 E-RGCH的定时信息为所述第一基站的专用物理信道 DPCH的定时偏 置¾,^„, 或者,
所述 E-RGCH的定时信息为所述第一基站的部分下行物理信道 F-DPCH的 定时偏置 和 /或符号位置。
62、 根据权利要求 56〜61所述的方法, 其特征在于, 所述 RNC生成第一 指示信令和第二指示信令之前, 还包括:
所述 RNC接收所述 UE发送的测量报告, 所述测量报告是所述 UE测量到 所述第一基站的公共导频信道质量超过预设的第一门限时发送的。
63、 根据权利要求 56〜62任一项所述的方法, 其特征在于, 所述 RNC向 所述第一基站发送所述第二指示信令之前, 还包括:
所述 RNC接收所述第一基站发送的接收能力消息, 所述接收能力消息用 于指示所述第一基站可以接收所述 UE发送的 E-DCH业务。
64、 一种用户设备, 其特征在于, 包括:
接收模块, 用于接收接入网中的第一基站发送的第一增强专用信道混合 自动重传请求指示信道 E-HICH, 所述第一基站位于所述 UE的检测范围内且 不处于所述 UE的增强专用信道 E-DCH激活集内;
发送模块,用于当所述第一 E-HICH指示为确认应答 ACK时,发送新 E-DCH 数据。
65、 根据权利要求 64所述的用户设备, 其特征在于, 所述第一基站位于 所述 UE的检测范围内, 包括: 所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。
66、 根据权利要求 64或 65所述的用户设备, 其特征在于, 还包括: TPC 模块, 用于接收所述第一基站发送的传输功率控制命令 TPC。
67、根据权利要求 66所述的用户设备, 其特征在于, 所述接收模块还用 于:
接收所述第一基站发送的第一增强专用信道混合自动重传请求指示信道 E-HICH之前, 接收无线网络控制器 RNC发送的第一指示信令, 所述第一指示 信令用于指示所述 UE接收所述第一基站发送的第一 E-HICH, 所述第一指示 信令包括所述第一 E-HICH的信道化码和签名序列,所述信道化码用以指示所 述 UE译码所述第一 E-HICH占用的信道应使用的扩频码, 所述签名序列用以 指示所述 UE译码每个 E-HICH子帧应使用的正交序列。
68、根据权利要求 67所述的用户设备, 其特征在于, 所述第一指示信令 还包括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示所 述 UE接收所述第一 E-HICH的每个子帧的起始时间位置。
69、 根据权利要求 68所述的用户设备, 其特征在于, 所述第一 E-HICH 的定时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 rFDPeff,„ 和 /或符号位置;
或者,所述第一 E-HICH的定时信息为所述第一基站的专用物理信道 DPCH 的定时偏置 rDP^„。
70、 根据权利要求 67〜69任一项所述的用户设备, 其特征在于, 所述第 一指示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
71、 根据权利要求 70所述的用户设备, 其特征在于, 所述 E-RGCH的定 时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 TFDPCH„和 /或 符号位置; 或者, 所述 F-DPCH的定时信息为所述第一基站的专用物理信道 DPCH的 定时偏置 ^^„。
72、 根据权利要求 67〜71任一项所述的用户设备, 其特征在于, 所述用 户设备还包括:
处理模块, 用于在所述接收模块接收无线网络控制器 RNC发送的第一指 示信令之前, 测量各个服务小区的公共导频信道质量;
所述发送模块还用于在所述处理模块测量到所述第一基站的公共导频信 道质量超过预设的第一门限时,所述 UE向所述 RNC发送测量报告, 以使所述 RNC根据所述测量报告向所述 UE发送所述第一指示信令。
73、 一种基站, 其特征在于, 包括:
接收模块,用于接收用户设备 UE发送的 E-DCH业务,所述基站位于所述 UE的检测范围内且不处于所述 UE的增强专用信道 E-DCH激活集内;
发送模块,用于向所述 UE发送第一增强专用信道混合自动重传请求指示 信道 E- HICH;
所述接收模块还用于: 接收所述 UE在所述第一 E-HICH指示为确认应答 ACK时发送的新 E-DCH数据。
74、 根据权利要求 73所述的基站, 其特征在于, 所述基站位于所述 UE 的检测范围内, 包括:
所述 UE测量到的所述基站的下行导频质量超过预设的第一阈值。
75、 根据权利要求 73或 74所述的基站, 其特征在于, 还包括: TPC模 块, 用于向所述 UE发送传输功率控制命令 TPC。
76、 根据权利要求 75所述的基站, 其特征在于, 所述接收模块还用于: 接收所述 UE发送的 E-DCH业务之前,接收无线网络控制器 RNC发送的第 二指示信令, 所述第二指示信令用于指示所述第一基站接收所述 UE发送的 E-DCH业务, 所述第二指示信令包括: 所述 UE的上行扰码、所述第一 E-HICH 的信道化码和签名序列,所述信道化码用以指示所述 UE译码所述第一 E-HICH 占用的信道应使用的扩频码,所述签名序列用以指示所述 UE译码每个 E-HICH 子帧应使用的正交序列。
77、根据权利要求 76所述的基站, 其特征在于, 所述第二指示信令还包 括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示发 送所述第一 E-HICH的每个子帧的起始时间位置。
78、 根据权利要求 77所述的基站, 其特征在于, 所述第一 E-HICH的定 时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 τ—,η和 /或 符号位置;
或者,所述第一 E-HICH的定时信息为所述第一基站的专用物理信道 DPCH 的定时偏置 rDP^„。
79、 根据权利要求 76〜78任一项所述的基站, 其特征在于, 所述第二指 示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
80、 根据权利要求 79所述的基站, 其特征在于, 所述 E-RGCH的定时信 息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 τ—,η和 /或符号 位置;
或者, 所述 E-RGCH的定时信息为所述第一基站的专用物理信道 DPCH的 定时偏置 peff„。
81、 根据权利要求 76〜80任一项所述的基站, 其特征在于, 所述发送模 块还用于:
在所述接收模块接收无线网络控制器 RNC发送的第二指示信令之前, 向 所述 RNC发送接收能力消息, 所述接收能力消息用于指示所述第一基站可以 接收所述 UE发送的 E-DCH业务。
82、 一种 RNC , 其特征在于, 包括:
处理模块, 用于生成第一指示信令和第二指示信令, 所述第一指示信令 用于指示用户设备 UE接收第一基站发送的第一增强专用信道混合自动重传 请求指示信道 E-HICH,所述第二指示信令用于指示所述第一基站接收所述 UE 发送的 E-DCH业务, 所述第一基站位于所述 UE的检测范围内且不处于所述 UE的增强专用信道 E-DCH激活集内;
发送模块, 用于向所述第一基站发送所述第二指示信令, 所述第二指示 信令包括: 所述 UE的上行扰码、 所述第一 E-HICH的信道化码和签名序列, 所述信道化码用以指示所述 UE译码所述第一 E-HICH占用的信道应使用的扩 频码, 所述签名序列用以指示所述 UE译码每个 E-HICH子帧应使用的正交序 列;
所述发送模块还用于: 向所述 UE发送所述第一指示信令,所述第一指示 信令包括所述第一 E-HICH的信道化码和签名序列。
83、 根据权利要求 82所述的 RNC, 其特征在于, 所述第一基站位于所述 UE的检测范围内, 包括:
所述 UE测量到的所述第一基站的下行导频质量超过预设的第一阈值。
84、 根据权利要求 82或 83所述的 RNC , 其特征在于, 所述第一指示信 令还包括:
所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示所 述 UE接收所述第一 E-HICH的每个子帧的起始时间位置;
所述第二指示信令还包括: 所述第一 E-HICH的定时信息, 所述第一 E-HICH的定时信息用于指示发送所述第一 E-HICH的每个子帧的起始时间位 置。
85、 根据权利要求 84所述的 RNC, 其特征在于, 所述第一 E-HICH的定 时信息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 TFDPCH„和 /或 符号位置;
或者,所述第一 E-HICH的定时信息为所述第一基站的专用物理信道 DPCH 的定时偏置 rDP^„。
86、 根据权利要求 82〜85任一项所述的 RNC, 其特征在于, 所述第一指 示信令和第二指示信令还包括:
增强专用信道相对授权信道 E-RGCH的码道和签名序列, 所述 E-RGCH用 于控制所述 UE的 E-DCH发送功率; 或者,
E-RGCH的码道、签名序列和所述 E-RGCH的定时信息, 所述 E-RGCH的定 时信息用于指示所述 UE接收所述 E-RGCH的时间。
87、 根据权利要求 86所述的 RNC, 其特征在于, 所述 E-RGCH的定时信 息为所述第一基站的部分下行物理信道 F-DPCH的定时偏置 τ—,η和 /或符号 位置, 或者,
所述 E-RGCH的定时信息为所述第一基站的专用物理信道 DPCH的定时偏 置 TDPCH ,η
88、 根据权利要求 8广 87所述的 RNC, 其特征在于, 还包括:
接收模块,用于在所述处理模块生成第一指示信令和第二指示信令之前, 接收所述 UE发送的测量报告, 所述测量报告是所述 UE测量到所述第一基站 的公共导频信道质量超过预设的第一门限时发送的。
89、 根据权利要求 8广 87任一项所述的 RNC , 其特征在于, 所述接收模 块还用于:
在所述发送模块向所述第一基站发送所述第二指示信令之前, 接收所述 第一基站发送的接收能力消息, 所述接收能力消息用于指示所述第一基站可 以接收所述 UE发送的 E-DCH业务。
90、 一种网络通信方法, 其特征在于, 包括:
接入网中的用户设备 UE接收无线网络控制器 RNC的第一无线网络控制 RRC信令, 根据所述第一 RRC信令的指示, 所述 UE将所述第一基站加入所述 UE的扩展增强专用信道 E-DCH激活集中; 所述 UE接收所述第一基站的增强 专用信道混合自动重传请求指示信道 E-HICH , 当所述 E-HICH指示为确认应 答 ACK时, 所述 UE发送新 E-DCH数据;
当所述 UE没有从所述接入网接收专用信道 DCH数据时, 所述 UE根据所 述第一 RRC信令的指示,关闭接收所述第一基站的部分专用物理信道 F-DPCH 的功能; 其中, 所述 RNC通过删除第一 RRC信令中的 F-DPCH配置信息或通 过在第一 RRC信令中的预设指示字段完成所述指示;
当所述 UE从所述接入网接收 DCH数据时, 所述 UE根据所述第一 RRC信 令的指示, 关闭接收所述第一基站的下行专用物理数据信道 DPDCH的功能; 其中,所述 RNC通过删除第一 RRC信令中的 DPCH配置信息或通过在第一 RRC 信令中的预设指示字段完成所述指示。
91、 根据权利要求 90所述的方法, 其特征在于, 所述 UE从所述接入网 接收 DCH数据时, 还包括:
所述 UE根据所述第一 RRC信令的指示, 接收所述第一基站的 F-DPCH , 所述 F-DPCH用以对所述 UE进行传输功率控制。
92、根据权利要求 90或 91所述的方法, 其特征在于, 所述 UE从所述接 入网接收 DCH数据时, 还包括:
所述 UE关闭接收所述第一基站发送的下行专用物理控制信道 DPCCH的功 能。
93、 根据权利要求 90所述的方法, 其特征在于, 所述 UE将所述第一基 站加入所述 UE的 E-DCH激活集之后, 还包括:
所述 UE接收网络发送的第一控制信令;
根据所述第一控制信令的指示, 接收所述第一基站的 F-DPCH; 或者, 接收所述第一基站发送的下行 DPDCH, 所述下行 DPDCH用于承载所述 UE 从所述第一基站接收的 DCH数据。
94、 根据权利要求 93所述的方法, 其特征在于, 所述 UE接收所述第一 基站发送的下行 DPDCH, 还包括:
所述 UE接收所述第一基站的下行 DPCCH ,所述下行 DPCCH用于所述第一 基站向所述 UE发送物理层控制信令。
95、 根据权利要求 93或 94所述的方法, 其特征在于, 所述网络发送的 第一控制信令包括:
所述 RNC发送的第二 RRC信令;
或者, 接入网中的第二基站发送的第一物理层信令, 所述第二基站位于 所述 UE的 E-DCH激活集或 DCH激活集内。
96、 根据权利要求 95所述的方法, 其特征在于, 所述 UE接收所述网络 发送的第一控制信令之前, 还包括:
所述 UE测量各个小区的公共导频信道质量;
当所述 UE测量到所述第一基站的公共导频信道质量超过预设的第一门 限时,所述 UE向所述 RNC发送测量报告, 以使所述 RNC根据所述测量报告向 所述 UE发送所述第二 RRC信令;或者, 以使所述 RNC指示所述第二基站向所 述 UE发送所述第一物理层信令。
97、 根据权益要求 93〜96所述的方法, 其特征在于, 所述 UE接收所述 第一基站的 F-DPCH之前, 还包括:
所述 UE接收所述第一基站的 F-DPCH的配置信息, 所述配置信息包括所 述 F-DPCH的信道化码、 帧偏移和时隙格式中至少一个。
98、 根据权利要求 97所述的方法, 其特征在于, 还包括:
所述第一基站的 F-DPCH配置信息承载于所述第一控制信令中。
99、 根据权利要求 93〜96所述的方法, 其特征在于, 所述 UE接收所述 第一基站的下行 DPDCH之前, 还包括:
所述 UE接收所述第一基站的下行 DPCH的配置信息,所述下行 DPCH的配 置信息包括所述 DPCH的信道化码或帧偏移信息。
100、 根据权利要求 99所述的方法, 其特征在于,
所述下行 DPCH的配置信息承载于所述第一控制信令中。
101、 一种网络通信方法, 其特征在于, 包括: 接入网中的 RNC生成第一 RRC信令或第一网络信令,所述 RNC向 UE发送 所述第一 RRC信令或向接入网中的第一基站发送第一网络信令,所述第一 RRC 信令用以指示所述 UE将所述第一基站加入所述 UE的 E-DCH激活集中, 并且 指示所述 UE接收所述第一基站的 E-HICH; 所述第一网络信令用以指示所述 第一基站接收所述 UE发送的 E-DCH数据, 并且指示所述第一基站向所述 UE 发送 E-HICH;
当所述 UE没有从所述接入网接收 DCH数据时,所述第一 RRC信令指示所 述 UE关闭接收所述第一基站的 F-DPCH的功能, 其中, 所述 RNC通过删除第 一 RRC信令中的 F-DPCH配置信息或通过在第一 RRC信令中设置预设指示字段 完成所述指示; 或者所述第一网络信令指示所述第一基站关闭发送 F-DPCH 的功能,其中,所述 RNC通过删除所述第一网络信令中 F-DPCH配置信息或通 过在第一网络信令中设置预设指示字段完成所述指示;
当所述 UE从所述接入网接收 DCH数据时, 所述第一 RRC信令指示所述 UE关闭接收所述第一基站的下行 DPDCH的功能, 其中, 所述 RNC通过删除第 一 RRC信令中的 DPCH配置信息或通过在第一 RRC信令中的预设指示字段完成 所述指示; 或者所述第一网络信令指示所述第一基站关闭发送下行 DPDCH的 功能;其中,所述 RNC通过删除所述第一网络信令中 DPCH配置信息或通过在 第一网络信令中设置预设指示字段完成所述指示。
102、 根据权利要求 101所述的方法, 其特征在于, 当所述 UE从所述接 入网接收 DCH数据时,所述 RNC通过删除第一 RRC信令中的 DPCH配置信息完 成所述指示, 还包括:
所述第一 RRC信令指示所述 UE接收所述第一基站的 F-DPCH,所述 F-DPCH 用以对所述 UE进行上行传输功率控制;
所述第一网络信令指示所述第一基站向所述 UE发送 F-DPCH。
103、根据权利要求 101所述的方法, 其特征在于, 所述第一 RRC信令指 示所述 UE关闭接收所述第一基站的下行 DPDCH的功能, 还包括:
所述第一网络信令指示所述第一基站关闭向所述 UE发送 DPCCH的功能; 或所述第一 RRC信令还指示所述 UE关闭接收所述第一基站的下行 DPCCH的功 能。
104、 根据权利要求 101-103中任一项所述的方法, 其特征在于, 所述 RNC向所述 UE发送第一 RRC信令并且向所述第一基站发送第一网络信令之 后, 还包括:
所述 RNC生成第二 RRC信令,所述 RNC向所述 UE发送所述第二 RRC信令; 当所述 UE没有从所述接入网接收 DCH数据时,所述第二 RRC信令用以指 示所述 UE接收所述第一基站发送的 F-DPCH;
当所述 UE从所述接入网中接收 DCH数据时,所述第二 RRC信令用以指示 所述 UE接收所述第一基站发送的下行 DPDCH。
105、 根据权利要求 104所述的方法, 其特征在于, 当所述 UE从所述接 入网中接收 DCH数据时,所述第二 RRC信令用以指示所述 UE接收所述第一基 站发送的下行 DPDCH, 还包括:
所述第二 RRC信令指示所述 UE接收所述第一基站发送的下行 DPCCH。
106、 根据权利要求 104或 105所述的方法, 其特征在于, 还包括: 当所述 UE没有从所述接入网接收 DCH数据时,所述第二 RRC信令包含有 所述 F-DPCH的配置信息;
当所述 UE从所述接入网中接收 DCH数据时,所述第二 RRC信令包含有所 述第一基站的下行 DPCH配置信息。
107、 根据权利要求 104〜106所述的方法, 其特征在于, 还包括: 所述 RCN生成第二网络信令, 所述 RNC向所述第一基站发送所述第二网 络信令;
当所述 UE没有从所述接入网接收 DCH数据时,所述第二网络信令用以指 示所述第一基站向所述 UE发送 F-DPCH;
当所述 UE从所述接入网中接收 DCH数据时,所述第二网络信令用以指示 所述第一基站向所述 UE发送 DPDCH。
108、 根据权利要求 107所述的方法, 其特征在于, 当所述 UE从所述接 入网中接收 DCH数据时,所述第二网络信令用以指示所述第一基站向所述 UE 发送 DPDCH, 还包括:
所述第二网路信令指示所述第一基站向所述 UE发送下行 DPCCH。
109、 根据权利要求 107或 108所述的方法, 其特征在于, 还包括: 当所述 UE没有从所述接入网接收 DCH数据时,所述第二网络信令包含有 所述 F-DPCH的配置信息;
当所述 UE从所述接入网中接收 DCH数据时,所述第二网络信令包含有所 述第一基站的下行 DPCH配置信息。
110、 根据权利要求 104〜109所述的方法, 其特征在于, 所述 RNC生成 所述第二 RRC信令前, 还包括:
所述 RNC接收所述 UE发送的测量报告,所述测量包括用以指示所述 RNC 向所述 UE发送第二 RRC信令。
111、 一种网络的通信方法, 其特征在于, 包括:
接入网中的第一基站接收无线网络控制器 RNC发送的第一网络信令, 根 据所述第一网络信令的指示, 接收接入网中用户设备 UE发送的 E-DCH数据, 并且向所述 UE发送 E-HICH;
当所述 UE没有从所述接入网中接收 DCH数据时,所述第一基站根据所述 第一网络信令的指示关闭向所述 UE发送 F-DPCH的功能;
当所述 UE从所述接入网接收 DCH数据时,所述第一基站根据所述第一网 络信令的指示关闭向所述 UE发送下行 DPDCH的功能。
112、根据权利要求 111所述的方法, 其特征在于, 所述 RNC通过删除所 述第一网络信令中 F-DPCH配置信息或通过在第一网络信令中设置预设指示 字段完成所述指示。
113、 根据权利要求 111或 112所述的方法, 其特征在于, 当所述 UE从 所述接入网接收 DCH数据时, 所述第一基站关闭向所述 UE发送下行 DPDCH 的功能, 还包括:
所述第一基站向所述 UE发送 F-DPCH,所述 F-DPCH用以所述第一基站对 所述 UE进行上行传输功率控制。
114、根据权利要求 111-113中任一项所述的方法, 其特征在于, 当所述 UE从所述接入网接收 DCH数据时, 所述第一基站关闭向所述 UE发送下行 DPDCH的功能, 还包括:
所述第一基站关闭向所述 UE发送下行 DPCCH的功能。
115、 根据权利要求 111〜114所述的方法, 其特征在于, 所述第一基站 接收所述第一 RRC信令后, 还包括:
所述第一基站接收所述 RNC发送的第二 RRC信令;
当所述 UE没有从所述接入网中接收 DCH数据时,根据所述第二 RRC信令 的指示所述第一基站向所述 UE发送 F-DPCH;
当所述 UE从所述接入网接收 DCH数据时,根据所述第二 RRC信令的指示 所述第一基站向所述 UE发送下行 DPDCH。
116、 根据权利要求 115所述的方法, 其特征在于, 还包括:
当所述 UE没有从所述接入网中接收 DCH数据时,所述第一基站接收的第 一网络信令中包含有 F-DPCH配置信息;
当所述 UE从所述接入网接收 DCH数据时,所述第一基站接收的第一网络 信令中包含有下行 DPCH配置信息。
117、 根据权利要求 115或 116所述的方法, 其特征在于, 当所述 UE从 所述接入网接收 DCH数据时, 所述第一基站向所述 UE发送下行 DPDCH, 还包 括:
所述第一基站向所述 UE发送下行 DPCCH。
118、 一种接入网中的用户设备 UE, 其特征在于, 包括: 无线收发单元, 用于接收无线网络控制器 RNC的第一无线网络控制 RRC 信令,根据所述第一 RRC信令的指示,将所述第一基站加入所述 UE的扩展增 强专用信道 E-DCH激活集中; 接收所述第一基站的增强专用信道混合自动重 传请求指示信道 E-HICH,当所述 E-HICH指示为确认应答 ACK时,发送新 E-DCH 数据;
处理单元, 用于:
当所述 UE没有从所述接入网接收专用信道 DCH数据时, 根据所述第一 RRC信令的指示,关闭接收所述第一基站的部分专用物理信道 F-DPCH的功能; 其中, 所述 RNC通过删除第一 RRC信令中的 F-DPCH配置信息或通过在第一 RRC信令中的预设指示字段完成所述指示;
当所述 UE从所述接入网接收 DCH数据时,根据所述第一 RRC信令的指示, 关闭接收所述第一基站的下行专用物理数据信道 DPDCH的功能; 其中, 所述 RNC通过删除第一 RRC信令中的 DPCH配置信息或通过在第一 RRC信令中的预 设指示字段完成所述指示。
119、 根据权利要求 118所述的 UE, 其特征在于, 所述 UE从所述接入网 接收 DCH数据时,所述无线收发单元,还用于根据所述第一 RRC信令的指示, 接收所述第一基站的 F-DPCH,所述 F-DPCH用以对所述 UE进行传输功率控制。
120、 根据权利要求 118或 119所述的 UE, 其特征在于, 所述 UE从所述 接入网接收 DCH数据时, 所述处理单元, 还用于关闭接收所述第一基站发送 的下行专用物理控制信道 DPCCH的功能。
121、 根据权利要求 118所述的 UE, 其特征在于, 在将所述第一基站加 入所述 UE的 E-DCH激活集之后,所述无线收发单元,还用于接收网络发送的 第一控制信令;根据所述第一控制信令的指示,接收所述第一基站的 F-DPCH; 或者, 接收所述第一基站发送的下行 DPDCH, 所述下行 DPDCH用于承载所述 UE从所述第一基站接收的 DCH数据。
122、 根据权利要求 121所述的 UE, 其特征在于, 所述无线收发单元, 还用于接收所述第一基站的下行 DPCCH, 所述下行 DPCCH用于所述第一基站 向所述 UE发送物理层控制信令。
123、 根据权利要求 120或 121所述的 UE, 其特征在于, 所述网络发送 的第一控制信令包括:
所述 RNC发送的第二 RRC信令;
或者, 接入网中的第二基站发送的第一物理层信令, 所述第二基站位于 所述 UE的 E-DCH激活集或 DCH激活集内。
124、 根据权利要求 123所述的 UE, 其特征在于, 在接收所述网络发送 的第一控制信令之前, 所述无线收发单元, 还用于测量各个小区的公共导频 信道质量;
当测量到所述第一基站的公共导频信道质量超过预设的第一门限时, 向 所述 RNC发送测量报告,以使所述 RNC根据所述测量报告向所述 UE发送所述 第二 RRC信令,或者, 以使所述 RNC指示所述第二基站向所述 UE发送所述第 一物理层信令。
125、 根据权益要求 121〜124所述的 UE, 其特征在于, 在接收所述第一 基站的 F-DPCH之前,所述无线收发单元,还用于接收所述第一基站的 F-DPCH 的配置信息,所述配置信息包括所述 F-DPCH的信道化码、帧偏移和时隙格式 中至少一个。
126、根据权利要求 125所述的 UE,其特征在于,所述第一基站的 F-DPCH 配置信息承载于所述第一控制信令中。
127、 根据权利要求 121〜124所述的 UE, 其特征在于, 在接收所述第一 基站的下行 DPDCH之前, 所述无线收发单元, 还用于接收所述第一基站的下 行 DPCH的配置信息,所述下行 DPCH的配置信息包括所述 DPCH的信道化码或 帧偏移信息。
128、 根据权利要求 127所述的 UE, 其特征在于, 所述下行 DPCH的配置 信息承载于所述第一控制信令中。
129、 一种接入网中的 RNC, 其特征在于, 包括: 处理单元, 用于生成第一 RRC信令或第一网络信令;
无线收发单元,用于向 UE发送所述第一 RRC信令或向接入网中的第一基 站发送第一网络信令,所述第一 RRC信令用以指示所述 UE将所述第一基站加 入所述 UE的 E-DCH激活集中,并且指示所述 UE接收所述第一基站的 E-HICH; 所述第一网络信令用以指示所述第一基站接收所述 UE发送的 E-DCH数据,并 且指示所述第一基站向所述 UE发送 E-HICH;
当所述 UE没有从所述接入网接收 DCH数据时,所述第一 RRC信令指示所 述 UE关闭接收所述第一基站的 F-DPCH的功能, 其中, 所述处理单元通过删 除第一 RRC信令中的 F-DPCH配置信息或通过在第一 RRC信令中设置预设指示 字段完成所述指示; 或者所述第一网络信令指示所述第一基站关闭发送 F-DPCH的功能, 其中, 所述处理单元通过删除所述第一网络信令中 F-DPCH 配置信息或通过在第一网络信令中设置预设指示字段完成所述指示;
当所述 UE从所述接入网接收 DCH数据时, 所述第一 RRC信令指示所述 UE关闭接收所述第一基站的下行 DPDCH的功能, 其中, 所述处理单元通过删 除第一 RRC信令中的 DPCH配置信息或通过在第一 RRC信令中的预设指示字段 完成所述指示; 或者所述第一网络信令指示所述第一基站关闭发送下行 DPDCH的功能; 其中, 所述处理单元通过删除所述第一网络信令中 DPCH配置 信息或通过在第一网络信令中设置预设指示字段完成所述指示。
130、 根据权利要求 129所述的 RNC , 其特征在于, 当所述 UE从所述接 入网接收 DCH数据时, 所述第一 RRC信令指示所述 UE接收所述第一基站的 F-DPCH, 所述 F-DPCH用以对所述 UE进行上行传输功率控制;
所述第一网络信令指示所述第一基站向所述 UE发送 F-DPCH。
131、 根据权利要求 129所述的 RNC , 其特征在于, 所述第一网络信令指 示所述第一基站关闭向所述 UE发送 DPCCH的功能;或所述第一 RRC信令还指 示所述 UE关闭接收所述第一基站的下行 DPCCH的功能。
132、 根据权利要求 129-131中任一项所述的 RNC , 其特征在于, 所述无 线收发单元向所述 UE发送第一 RRC信令并且向所述第一基站发送第一网络信 令之后, 所述处理单元还用于生成第二 RRC信令, 所述无线收发单元, 还用 于向所述 UE发送所述第二 RRC信令;
当所述 UE没有从所述接入网接收 DCH数据时,所述第二 RRC信令用以指 示所述 UE接收所述第一基站发送的 F-DPCH;
当所述 UE从所述接入网中接收 DCH数据时,所述第二 RRC信令用以指示 所述 UE接收所述第一基站发送的下行 DPDCH。
133、 根据权利要求 132所述的 RNC , 其特征在于, 当所述 UE从所述接 入网中接收 DCH数据时,所述第二 RRC信令还指示所述 UE接收所述第一基站 发送的下行 DPCCH。
134、 根据权利要求 132或 133所述的 RNC , 其特征在于, 当所述 UE没 有从所述接入网接收 DCH数据时,所述第二 RRC信令包含有所述 F-DPCH的配 置信息;
当所述 UE从所述接入网中接收 DCH数据时,所述第二 RRC信令包含有所 述第一基站的下行 DPCH配置信息。
135、 根据权利要求 132〜134所述的 RNC , 其特征在于, 所述处理单元 还用于生成第二网络信令, 所述无线收发单元, 还用于向所述第一基站发送 所述第二网络信令;
当所述 UE没有从所述接入网接收 DCH数据时,所述第二网络信令用以指 示所述第一基站向所述 UE发送 F-DPCH;
当所述 UE从所述接入网中接收 DCH数据时,所述第二网络信令用以指示 所述第一基站向所述 UE发送 DPDCH。
136、 根据权利要求 135所述的 RNC , 其特征在于, 当所述 UE从所述接 入网中接收 DCH数据时, 所述第二网路信令还指示所述第一基站向所述 UE 发送下行 DPCCH。
137、 根据权利要求 135或 136所述的 RNC , 其特征在于, 当所述 UE没 有从所述接入网接收 DCH数据时,所述第二网络信令包含有所述 F-DPCH的配 置信息;
当所述 UE从所述接入网中接收 DCH数据时,所述第二网络信令包含有所 述第一基站的下行 DPCH配置信息。
138、 根据权利要求 132〜137所述的 RNC , 其特征在于, 所述处理单元 生成所述第二 RRC信令前,所述无线收发单元,还用于接收所述 UE发送的测 量报告, 所述测量包括用以指示所述 RNC向所述 UE发送第二 RRC信令。
139、 一种接入网中的第一基站, 其特征在于, 包括:
无线收发单元, 用于接收无线网络控制器 RNC发送的第一网络信令, 根 据所述第一网络信令的指示, 接收接入网中用户设备 UE发送的 E-DCH数据, 并且向所述 UE发送 E-HICH; 处理单元, 用于:
当所述 UE没有从所述接入网中接收 DCH数据时,根据所述第一网络信令 的指示关闭向所述 UE发送 F-DPCH的功能;
当所述 UE从所述接入网接收 DCH数据时,根据所述第一网络信令的指示 关闭向所述 UE发送下行 DPDCH的功能。
140、根据权利要求 139所述的第一基站, 其特征在于, 所述 RNC通过删 除所述第一网络信令中 F-DPCH配置信息或通过在第一网络信令中设置预设 指示字段完成所述指示。
141、 根据权利要求 139或 140所述的第一基站, 其特征在于, 当所述 UE从所述接入网接收 DCH数据时, 所述无线收发单元, 还用于向所述 UE发 送 F-DPCH,所述 F-DPCH用以所述第一基站对所述 UE进行上行传输功率控制。
142、根据权利要求 139-141中任一项所述的第一基站, 其特征在于, 当 所述 UE从所述接入网接收 DCH数据时,所述无线收发单元,还用于关闭向所 述 UE发送下行 DPCCH的功能。
143、 根据权利要求 139〜142所述的第一基站, 其特征在于, 所述无线 收发单元在接收所述第一 RRC信令后, 还用于接收所述 RNC发送的第二 RRC 信令;
所述处理单元, 还用于:
当所述 UE没有从所述接入网中接收 DCH数据时,根据所述第二 RRC信令 的指示向所述 UE发送 F-DPCH;
当所述 UE从所述接入网接收 DCH数据时,根据所述第二 RRC信令的指示 向所述 UE发送下行 DPDCH。
144、根据权利要求 143所述的第一基站, 其特征在于, 所述无线收发单 元, 还用于:
当所述 UE没有从所述接入网中接收 DCH数据时,接收的第一网络信令中 包含有 F-DPCH配置信息;
当所述 UE从所述接入网接收 DCH数据时,接收的第一网络信令中包含有 下行 DPCH配置信息。
145、 根据权利要求 143或 144所述的第一基站, 其特征在于, 当所述 UE从所述接入网接收 DCH数据时, 所述无线收发单元, 还用于向所述 UE发 送下行 DPCCH。
PCT/CN2014/081072 2013-06-29 2014-06-28 网络通信方法、装置和系统 WO2014206357A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14818014.4A EP3001730B1 (en) 2013-06-29 2014-06-28 Network communication devices
KR1020167001254A KR101688450B1 (ko) 2013-06-29 2014-06-28 네트워크 통신 방법, 장치, 및 시스템
CA2916416A CA2916416A1 (en) 2013-06-29 2014-06-28 Network communications method, apparatus, and system
JP2016522237A JP6218157B2 (ja) 2013-06-29 2014-06-28 ネットワーク通信方法、装置、およびシステム
US14/981,231 US10028286B2 (en) 2013-06-29 2015-12-28 Flexibly disabling particular uplink or downlink channels when in a state of power imbalance

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201310270843.9 2013-06-29
CN201310270843 2013-06-29
CN201410103869 2014-03-19
CN201410103869.9 2014-03-19
CN201410192727.4A CN104254112B (zh) 2013-06-29 2014-05-08 网络通信方法、装置和系统
CN201410192727.4 2014-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/981,231 Continuation US10028286B2 (en) 2013-06-29 2015-12-28 Flexibly disabling particular uplink or downlink channels when in a state of power imbalance

Publications (1)

Publication Number Publication Date
WO2014206357A1 true WO2014206357A1 (zh) 2014-12-31

Family

ID=52141113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081072 WO2014206357A1 (zh) 2013-06-29 2014-06-28 网络通信方法、装置和系统

Country Status (7)

Country Link
US (1) US10028286B2 (zh)
EP (1) EP3001730B1 (zh)
JP (1) JP6218157B2 (zh)
KR (1) KR101688450B1 (zh)
CN (1) CN104254112B (zh)
CA (1) CA2916416A1 (zh)
WO (1) WO2014206357A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108293196A (zh) * 2015-11-24 2018-07-17 IPCom两合公司 控制由多个基站接收的上行链路业务

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106411372B (zh) * 2015-07-31 2020-02-14 华为技术有限公司 无线通信方法、宏基站和微基站
US10764807B2 (en) * 2016-06-23 2020-09-01 Lg Electronics Inc. Communication method for high-speed moving vehicle in wireless communication system, and apparatus for same
US11234170B2 (en) * 2017-03-24 2022-01-25 Convida Wireless, Llc Early handover preparation and early handover command
EP3621211A4 (en) * 2017-05-01 2020-10-21 NTT DoCoMo, Inc. USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
KR102482095B1 (ko) * 2017-08-14 2022-12-28 한국전자통신연구원 통신 시스템에서 슬롯 설정 정보의 송수신 방법
CN109819523B (zh) * 2017-11-20 2022-03-29 中国电信股份有限公司 通信方法以及通信系统
US11100796B2 (en) 2018-05-07 2021-08-24 ENK Wireless, Inc. Systems/methods of improving vehicular safety
US10681716B2 (en) 2018-05-07 2020-06-09 ENK Wireless, Inc. Systems/methods of providing increased wireless capacity, vehicular safety, electrical power wirelessly, and device control responsive to geographic position
US11075740B2 (en) 2018-05-07 2021-07-27 ENK Wireless, Inc. Systems/methods of communications using a plurality of cooperative devices
CN110876185B (zh) * 2018-08-31 2021-07-09 中国移动通信有限公司研究院 指示信令的传输、接收方法、装置、网络侧设备及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547477A (zh) * 2008-03-25 2009-09-30 华为技术有限公司 一种多载波/小区系统中的载频控制方法和装置
CN102413573A (zh) * 2010-09-21 2012-04-11 英特尔移动通信技术有限公司 基站和无线电设备
CN102932836A (zh) * 2011-08-12 2013-02-13 中兴通讯股份有限公司 一种切换处理方法及系统
WO2013020209A1 (en) * 2011-08-10 2013-02-14 Research In Motion Limited Method and system for random access interference mitigation in heterogeneous cellular networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897234B2 (en) 2005-09-07 2014-11-25 Huawei Technologies Co., Ltd. Method and apparatus for controlling carrier frequency in multi-carrier/cell system
CN100401796C (zh) * 2006-01-19 2008-07-09 华为技术有限公司 基站节点资源分配方法
US9554338B2 (en) * 2011-02-18 2017-01-24 Qualcomm Incorporated Apparatus, method, and system for uplink control channel reception in a heterogeneous wireless communication network
WO2014161601A1 (en) * 2013-04-05 2014-10-09 Nokia Solutions And Networks Oy Ul serving link's role change in heterogeneous network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547477A (zh) * 2008-03-25 2009-09-30 华为技术有限公司 一种多载波/小区系统中的载频控制方法和装置
CN102413573A (zh) * 2010-09-21 2012-04-11 英特尔移动通信技术有限公司 基站和无线电设备
WO2013020209A1 (en) * 2011-08-10 2013-02-14 Research In Motion Limited Method and system for random access interference mitigation in heterogeneous cellular networks
CN102932836A (zh) * 2011-08-12 2013-02-13 中兴通讯股份有限公司 一种切换处理方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3001730A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108293196A (zh) * 2015-11-24 2018-07-17 IPCom两合公司 控制由多个基站接收的上行链路业务
CN108293196B (zh) * 2015-11-24 2021-07-30 IPCom两合公司 控制由多个基站接收的上行链路业务

Also Published As

Publication number Publication date
EP3001730A1 (en) 2016-03-30
EP3001730A4 (en) 2016-06-15
US10028286B2 (en) 2018-07-17
CA2916416A1 (en) 2014-12-31
EP3001730B1 (en) 2017-08-02
CN104254112B (zh) 2018-04-27
JP6218157B2 (ja) 2017-10-25
KR101688450B1 (ko) 2016-12-22
KR20160019961A (ko) 2016-02-22
CN104254112A (zh) 2014-12-31
US20160113023A1 (en) 2016-04-21
JP2016527775A (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
WO2014206357A1 (zh) 网络通信方法、装置和系统
TWI668969B (zh) 用於可靠的低時延通訊的噴泉(fountain)harq
JP5706006B2 (ja) 異種ワイヤレス通信ネットワーク内のアップリンク制御チャネル受信のための装置、方法、およびシステム
JP5190143B2 (ja) 非サービング基地局へのttiバンドル表示
JP5833773B2 (ja) リンクの不均衡の電力調整のための装置および方法
JP6184598B2 (ja) アップリンクデータ送信における電力スケーリングを回避するための方法および装置
US20050237932A1 (en) Method and system for rate-controlled mode wireless communications
WO2016070423A1 (zh) 无线网络覆盖增强的方法、装置和系统
WO2020211856A1 (en) Systems and methods for multiple redundant transmissions for user equipment cooperation
BRPI0712247A2 (pt) equipamento de usuário; método para comunicação de um pacote de dados pelo menos um equipamento de usuário; e programa de computador quando carregado em um computador disposto para executar o método de comunicação de um primeiro pacote de dados através de um canal de dados de comunicações para, ao menos, um equipamento de usuário
JP2014027682A (ja) 無線通信システムにおいてアップリンク上のエンハンスト・データ・チャネルの容量を増大させる方法
JP2006101503A (ja) 高速アップリングパケットアクセス用ダウンリンクシグナリングシステムおよび方法
JPWO2006013630A1 (ja) 基地局、移動通信端末装置およびプライマリセル選択方法
JP6644850B2 (ja) 二次上りリンクパイロットチャネルによる送信電力制御のためのシステムおよび方法
WO2008110104A1 (fr) Procédé, station de base et système de réseau d'accès radio permettant de configurer une valeur de décalage de puissance e-hich
JP5209779B2 (ja) サービングhs−dschセル変更確認応答の提供
WO2010083646A1 (zh) 提高用户设备上行覆盖能力的方法、系统和装置
US9414407B2 (en) Enhanced scheduling information transmission in a heterogeneous network
US10149316B2 (en) Methods and devices for granting DPCCH bursts for enhanced uplink
JP2009260990A (ja) 基地局、移動通信端末装置およびプライマリセル選択方法
KR20050094691A (ko) 이동통신 시스템의 상향링크 스케줄링방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2916416

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014818014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014818014

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016522237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167001254

Country of ref document: KR

Kind code of ref document: A