WO2014206309A1 - 新型发动机 - Google Patents

新型发动机 Download PDF

Info

Publication number
WO2014206309A1
WO2014206309A1 PCT/CN2014/080805 CN2014080805W WO2014206309A1 WO 2014206309 A1 WO2014206309 A1 WO 2014206309A1 CN 2014080805 W CN2014080805 W CN 2014080805W WO 2014206309 A1 WO2014206309 A1 WO 2014206309A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
annular
duct
rotor
ducted
Prior art date
Application number
PCT/CN2014/080805
Other languages
English (en)
French (fr)
Inventor
刘勇
Original Assignee
袁丽君
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310262588.3A external-priority patent/CN103511123A/zh
Application filed by 袁丽君 filed Critical 袁丽君
Publication of WO2014206309A1 publication Critical patent/WO2014206309A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C3/00Rotary-piston machines or engines with non-parallel axes of movement of co-operating members
    • F01C3/02Rotary-piston machines or engines with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/14Shapes or constructions of combustion chambers

Definitions

  • the invention relates to a novel engine. Background technique
  • the existing universal engine has a linear reciprocating piston engine and a gas turbine, and the linear reciprocating piston type is generally a linear reciprocating two-stroke or four-stroke working mode. Only one of the strokes is the power output state, and the other strokes are the power loss state.
  • the pressure-applying zone that generates power for the combustion chamber and the pressure relief zones that are the three power losses of the intake air, the compressed air, and the exhaust steam are alternately present in the same cylinder.
  • the piston and its push rod are in an intermittent cycle of constant acceleration, deceleration, stop, re-acceleration, deceleration, and stop. Therefore, in high-power applications, huge noise and strong vibration are generated, and the power density is small, making it large. Power applications are limited.
  • gas turbines are small and light, high power density, which can save space when used in transportation machinery such as ships. It can also be equipped with more powerful gas turbines to increase the speed of the ship, but its disadvantage is that the efficiency is not high enough. The efficiency decreases rapidly under load, and the fuel consumption is high at no load. In small and medium power applications, such as trucks and cars, fuel consumption is high. Summary of the invention
  • the invention relates to a novel engine, the structure of which is mainly composed of a plurality of coaxial annular cylinders, and the structure of each annular cylinder comprises: a ring culvert cylinder (GT), a spiral rib (LJ), a ducted disc (P), a coupled rotor (C), an injection device, an ignition device, an exhaust device, etc.; wherein the annular ducted cylinder (GT) is a cylinder having a circular annular cavity (K), The axial section of the annular cavity (K) is circular in shape; the spiral rib (LJ) is located in the circular cavity (K), distributed along the circular arc surface of the circular cavity (K), and the annular culvert
  • the cylinder block (GT) is integrated into one, the cylinder (GT) has a cylinder ring groove, the ducted disc (P) is located in the cylinder ring groove; the coupled rotor (C) is mounted on the duct disk (P) Above, in the circular cavity, the outer diameter edge of
  • the rotor (C) rotates at a uniform rotational speed about its own axis of rotation (R) due to the sliding engagement of the coupling groove with the spiral rib (LJ).
  • the starting end of the spiral rib is located on one side of the duct disc and starts to slidingly engage with the coupling groove of the coupling rotor.
  • the coupled rotor With the relative rotation between the duct disc and the annular duct cylinder, the coupled rotor is in the spiral rib After the thrust of the plate rotates, reaching the end of the spiral rib on the other side of the duct disk, the spiral rib is disengaged from the coupling groove and continues to rotate, returning to the side of the starting end of the spiral rib, The next sliding engagement is started; the coupled rotor separates the space between the circular arc surface of the annular culvert cylinder, the ducted disk, and the spiral rib into a high pressure zone and a low pressure zone.
  • the engine is composed of at least two coaxial annular duct rotating cylinders, wherein at least one annular duct rotating cylinder is a compressor, wherein at least one annular duct rotating cylinder is a power generating cylinder; the compressor culvert The low pressure zone on one side of the track disc draws in air, and the high pressure zone on the other side compresses and delivers air to the power generating cylinder; the annular duct of the power generating cylinder rotates the cylinder to form a high pressure from one side of the ducted disc In the high and annular duct cylinders, the coupled rotor and the annular duct cylinder are rotated relative to each other and output power.
  • the engine is in continuous combustion mode, the injection device continuously injects combustion medium into the compressed air generated by the compressor, the ignition device is located near the injection device and is used for ignition starting of the engine, and the exhaust device is located near the duct disk of the power generation cylinder a rear side of the low pressure zone; a combustion chamber is provided between the compressor and the power generating cylinder, and the injection device and the ignition device are located in the combustion chamber region; when the annular duct cylinder is a fixed cylinder, the ducted disk is a rotating disk The torque is transmitted; the ducted disc is fixed on the engine body when the fixed disc is fixed, and the annular ducted cylinder is used to transmit torque to the rotating cylinder; the single annular ducted cylinder can be equipped with a plurality of spiral ribs and a plurality of coupled rotors; a plurality of spiral ribs may be arranged in parallel or in series; the volume occupied by the ducted disc in the rotating cylinder of the annular duct may exceed the rotating cylinder of the annular duct Half
  • a compressor composed of a plurality of coaxial annular cylinders, the annular cylinders being arranged from a low pressure zone to a high pressure zone in a direction in which the pressure of the air rises, so that the engine receives continuous high-pressure air;
  • a plurality of power generating cylinders one or more power generating cylinders are integrated with the compressor to supply the compressor with the power required to compress the air, and the remaining one or more power generating cylinders are the power cylinders. And output power.
  • the pressure generated by the expansion of the combustion medium of the cylinder directly becomes the torque of the transmission shaft, and the pressure and temperature of the cylinder are relatively balanced, and the output power is increased due to the long stroke of the work; Crankshaft, piston and push rod, therefore, under high speed conditions, the mechanism has low noise, slight vibration, good working stability and high reliability, and has high efficiency compared with existing gas turbines.
  • the invention provides a novel technical solution, has the characteristics of simple structure, reliable operation and high efficiency, and also has the characteristics of high rotation speed, high torque and high power of continuous combustion of a combustion medium of a gas turbine, and also has high characteristics. Pressure input, no pressure or low pressure discharge also provides high efficiency conversion at low pressure inputs.
  • the invention proposes a novel steam turbine design scheme, which has the characteristics of simple structure, reliable operation and high efficiency, and has the characteristics of high pressure input and low pressure discharge, and the pressure energy of the expansion medium is converted into all or most of Output torque.
  • the invention relates to a novel engine, which can be widely applied to the economic fields such as transportation industry, engineering machinery, generator set, large ship, aircraft, speed racing and the like.
  • Figure 1 is a cross-sectional view of one embodiment of a single cylinder of the present invention
  • Figure 2 is a schematic view showing the combination of the rotor and the ducted disc of the embodiment shown in Figure 1;
  • FIG 3 is a schematic diagram of the working principle of the embodiment shown in Figure 1;
  • Figure 4 is a cross-sectional view showing the second embodiment of the single cylinder of the present invention.
  • Figure 5 is a cross-sectional view of the third embodiment of the single cylinder of the present invention.
  • Figure 6 is a view of the rotor of the embodiment shown in Figure 5;
  • Figure 7 is a schematic diagram of the working principle of the embodiment shown in Figure 5;
  • Figure 8 is a schematic view of one of the arrangement of the spiral ribs
  • Figure 9 is a cross-sectional view of the fourth embodiment of the single cylinder of the present invention.
  • Figure 10 is a cross-sectional view of one of the embodiments of the multi-cylinder combination
  • Figure 11 is a cross-sectional view of the second embodiment of the multi-cylinder combination
  • Figure 12 is a cross-sectional view of the third embodiment of the multi-cylinder combination
  • Figure 1 is a cross-sectional view of the fourth embodiment of the multi-cylinder combination
  • Figure 14 is a cross-sectional view of the fifth embodiment of the multi-cylinder combination.
  • Axis of rotation the axis of rotation of the rotating body or rotating space, as shown in Figures 1 and 4 of the axis of rotation 0.
  • Axial cross-sectional view A view cut from a plane coincident with the axis of rotation, as shown in Figures 1 and 4.
  • Ring axis The axial section is a circular three-dimensional ring with the surrounding axis of the ring, as shown in Figures 1, 4 and 5 of the axis Q. detailed description
  • FIG. 1 shows a cross-sectional view of one of the embodiments of a single cylinder of the present invention
  • FIG. 2 shows a three-dimensional view of the ducted disc and coupled rotor assembly of the present embodiment
  • the structure comprises an annular ducted cylinder GT, a spiral rib LJ, a ducted disc P, a coupled rotor C, and the annular duct cylinder GT is a circular annular cavity
  • the cylinder block of K has a circular cross-sectional view of the circular cavity shape in a circular shape.
  • the annular ducted cylinder GT has a cylinder ring groove formed along the circular cavity, and the ducted disk is located in the cylinder ring groove.
  • the spiral rib LJ is located in the circular cavity ⁇ , distributed along the circular arc surface of the cymbal, and is integrated with the annular culvert cylinder GT.
  • the coupled rotor C is mounted on the ducted disk , and is located in the circular cavity ,.
  • the outer circumferential edge of the coupled rotor C forms a mechanical fit with the inner surface of the circular cavity ,, that is, the cooperation between them can be It is a large clearance fit, or a small clearance fit.
  • the rotational axis R of the coupled rotor C is perpendicular or nearly perpendicular to the rotational axis 0 of the ducted disc ,, and the coupled rotor C has a coupling slot along the radial direction (as shown in the figure).
  • the spiral rib LJ can pass through the coupling groove, and the coupled rotor C rotates with the coupling groove as the ducted disk ⁇ rotates, and pushes the coupled rotor C to rotate around its own rotation axis R. .
  • the spiral rib LJ is distributed along the circular arc surface of the circular cavity ,, so that when the coupled rotor C revolves at a uniform speed with the duct disk ,, the coupled rotor C rotates around itself due to the sliding engagement of the coupling groove and the spiral rib LJ.
  • the axis R rotates at a uniform speed.
  • the coupling rotor is set to rotate in the direction shown in Figure 1, the coupling rotor C and the starting end of the spiral rib LJ start to mesh from the left side of the duct disc ,, with the ducted disc ⁇ and the ring duct
  • the relative rotation of the cylinder GT, the coupling rotor C rotates one revolution to the end of the spiral rib LJ on the right side of the duct disc ⁇ under the urging force of the spiral rib LJ, and the coupling groove is disengaged from the spiral rib LJ .
  • the coupling groove returns to the left side of the duct disk ⁇ with the rotation of the coupling rotor C, and starts the next engagement process with the starting end of the spiral rib LJ.
  • the coupled rotor C separates the space between the circular arc surface of the annular duct cylinder GT, the ducted disk ⁇ and the spiral rib U into a high pressure zone and a low pressure zone. If the cylinder is generated as a power, the cylinder GT starts to form a high pressure zone on the left side of the duct disc harrow, and the high pressure zone is filled with the compressed air and the combustion medium, and the combustion expansion enters from the opening V on the left side of the duct disc.
  • the pressure acts on the coupled rotor C and the cylinder GT, and the coupled rotor C and the cylinder GT are relatively rotated about the rotational axis 0 to output power; in the low pressure region on the right side of the duct disc, the coupled rotor C has been driven after combustion.
  • the gas which is rotated by the cylinder GT is discharged from the opening ⁇ . If it is used as a compressor, the cylinder GT starts to take in air at the opening V on the left side of the duct disc harrow, and compresses the air on the right side of the duct disc to form a high pressure zone, and the high pressure zone is filled with compressed air.
  • the crushing force of the cylinder GT and the rotor C is sent from the right opening hole to the power generating cylinder.
  • the rotating disk before and after the combination shown in Fig. 2 is cutaway. In the present embodiment, when the annular ducted cylinder GT is a fixed cylinder, the ducted disk ⁇ transmits torque to the rotating disk.
  • the starting end of the spiral rib LJ is located at 31 o'clock at the small diameter.
  • the coupling rotor C starts to rotate clockwise around the axis 0, and its coupling groove starts to mesh with the spiral rib LJ from the 31 o'clock position.
  • the coupling groove turns to the 33 o'clock position with the coupled rotor C. If the cylinder is generated as power, the high pressure zone is 31-32-33 three points.
  • the 32-33 arc is about 1 ⁇ 4 of the length of the arc of 1 ⁇ n; the coupled rotor C rotates for 1 ⁇ 2 week, and when the coupling slot reaches 35 o'clock, the high-pressure zone increases by 32-33-35-34.
  • the coupled rotor C rotates for 3 ⁇ 4 weeks, when the coupling slot reaches the 37-point position, the high-voltage region increases the r-region between four points of 34-35-37-36; the coupled rotor C rotates for one week, and its coupling When the trough reaches 38 o'clock, the high pressure zone increases the s zone between four points of 36-37-38-31.
  • the lengths of the 34-35, 36-37, and 31-38 arcs are approximately 1 ⁇ 2, and the length of the arc is 1 ⁇ 2, 3 ⁇ 4, and the total length. If the gap between 31-32 and 38-41 is set as the opening area, the pressure of the inflation gas will start when the coupling rotor C turns to the 32-33 position, which will be 31-38-39-33, 33-39-40-35
  • the areas between the 35-40-41-37 and 37-41-38 points are called t, u, v, w areas, respectively, and the p area is removed, the partial region of q through which the rotor C passes, and r , s, t, u, v are the areas of the power output position.
  • the area of the coupled rotor C increases rapidly. From the t zone to the w zone, as the expansion of the medium continues, the area of the coupled rotor C is gradually reduced, from the q zone to the s zone. In the range of more than 180°, the continuity of the output of the torque becomes large.
  • the coupled rotor C is turned to the t-zone, the coupled rotor C has been rotated through the stroke from the starting position for one week.
  • the coupling groove of the coupling rotor C is disengaged from the terminating end of the spiral rib LJ, and starts to enter the starting end side of the duct disk P, and once again enters the meshing state with the starting end of the spiral rib LJ, and enters the lower state.
  • each work stroke has 11 ⁇ 4 weeks to 11 ⁇ 2 weeks, that is, 450° to 540°.
  • Work area In the 2-week 720° rotation stroke, approximately 360° of the stroke is performed simultaneously with two expansion work. While working on one side of the high-pressure zone of the coupled rotor C, the other side gradually becomes a low-pressure zone, while gas is being exhausted without a dedicated exhaust stroke, so that compared with a linear reciprocating piston engine and an existing gas turbine, This embodiment has high efficiency and output torque, which is an important reason why the present invention can save combustion medium as compared with the prior art.
  • the front region of the rotor with respect to the forward direction of the cylinder GT is a high pressure region of the compressed air
  • the rear region of the rotor with respect to the forward direction of the cylinder GT is a low pressure region for suction
  • the coupled rotor C is from the point 31_33_35_37.
  • the gas sucked in the previous stroke is compressed, from 39-40 to 41 o'clock, C squeezes the gas in the above d, r, s, t areas to the high pressure zone, and the gas sucked in the previous stroke. While the cylinder is pushed out from the opening area of 41-38, air is continuously sucked from the opening area of 31-32, so that as a compressor, the process of suctioning and pressing is simultaneously performed.
  • Figure 4 is a cross-sectional view showing the second embodiment of the single cylinder of the present invention, the structure including the annular ducted cylinder GTo, the spiral rib LJo, the ducted disc Po, the coupled rotor Co, the annular duct cylinder
  • the figure, the engagement of the spiral rib LJo with the coupling groove, the rotation mode of the coupled rotor Co, the high pressure zone and the low pressure zone, and the like are the same as those of the embodiment shown in Fig. 1, and the difference from the embodiment shown in Fig. 1 is the ducted disk ⁇ .
  • the ring ducting cylinder GT 0 is a rotating cylinder output torque.
  • Figure 5 is a cross-sectional view showing the third embodiment of the single cylinder of the present invention, which is the same as the above embodiment, and includes a ring-shaped culvert cylinder GT, a spiral rib plate, and a ducted disk P (this embodiment) To rotate the disk), the three-dimensional image of the rotor as shown in Fig. 6, and the cylinder openings V and E, and the positions of these openings.
  • the installation of the ducted disc P, the manner of revolving and rotating the coupled rotor, and the operation of the annular ducted cylinder GT are the same as those of the embodiment shown in Fig. 1.
  • the circular arc surface of the ring culvert cylinder GT is distributed with four spiral ribs LJ, LJ 2 , LJ 3 and LJ 4 which are symmetric with the ring axis Q, respectively corresponding to the coupled rotor shown in Fig. 6.
  • the four coupling grooves, in the upper half cut position shown in Fig. 5, the spiral rib LJ 4 is just at the position of the open slot of the spiral duct cylinder between the start end and the end end, and thus the duct is covered by the duct P occupies, for convenience of explanation, the position of LJ 4 is still indicated in Fig. 5, and Fig. 7 shows the working principle diagram of the embodiment shown in Fig.
  • Fig. 7 shows a plan view of the four-way spiral ribs LJ, LJ 2 , LJ 3 , and LJ 4 in the circumferential direction on the circular arc surface 1 mn (shown in Fig. 5) of the circular cavity K.
  • the inner circle 1-2-3-4 indicates the arc 1 at the beginning of the spiral rib adjacent to the side of the rotating disk P
  • the outer circle 8-12-16-20 indicates the other with the rotating disk P
  • the arc n of the end of the adjacent spiral rib on one side, the four spiral ribs, LJ 2 , LJ 3 , LJ 4 start from the points 1, 1, 3, 4, respectively, and terminate at the points 8, 12, 16, 20, the angle between each two adjacent spiral ribs occupies a circular arc space of 90 degrees, that is, the radial angle between two adjacent coupling grooves on the coupled rotor is 90 degrees (Fig.
  • 1 ⁇ 17, 17 ⁇ 14, 14 ⁇ 11, 11 ⁇ 8 respectively occupy 1 / 8 line length 1 / 4, other such as 2 ⁇ 12, 3 ⁇ 16, 4 ⁇ 20 .
  • the cylinder openings V and E on both sides of the ducted disc are opened one turn along the circumferential direction of the cylinder (as shown in Fig. 5), as shown in Fig. 7, as the intake port and the outlet when the coupled rotor rotates.
  • the ports V and E are at least separated by a coupling rotor, which is necessary for both the compressor and the power generating cylinder.
  • the figure shows the installation position and working state of the three coupled rotors Ci, C2, C3.
  • the three coupled rotors Ci, C2, C3 are symmetric with each other with an arc axis Q of 120 degrees.
  • Figure 8 is a schematic view showing one of the arrangement of the spiral ribs of the present invention, the working principle of which is the same as that of the above embodiment, the difference is: among the four spiral ribs, the spiral rib LJ" and the spiral rib LJ 21 In series, the spiral rib LJ 12 and the spiral rib LJ 22 are connected in series, that is, the spiral rib and the spiral rib
  • the starting end or the ending end of 1_" 12 corresponds to the terminating end or the starting end of the spiral rib LJ 21 and the spiral rib LJ 22 on the other side of the duct disc P, respectively, and each coupled rotor revolves around the rotating shaft 0 for one revolution.
  • the same coupling groove of the coupled rotor is in sliding engagement with the front and rear two spiral ribs, that is, the coupled rotor is rotated for 2 weeks; and the spiral rib LJ" and the spiral rib 1_" 12 are connected in parallel, and the spiral rib LJ 21 and the spiral
  • the ribs LJ 22 are connected in parallel, that is, the 2-parallel 2 series spiral rib structure in the present embodiment, and there are several coupling rotors, but each coupling rotor has only two coupling grooves, and each time the ducted disc rotates, the spiral culvert
  • the channel block draws in and removes 2 times the volume of the cylinder.
  • Figure 9 is a cross-sectional view showing the fourth embodiment of the single cylinder embodiment of the present invention, which is the same as the embodiment shown in Figure 5, and includes a ring-shaped ducted cylinder GT, a spiral rib LJ, LJ 2 , LJ 3 , LJ 4 , the ducted disc P (the rotating disc in this embodiment), one of the coupled rotors C, the shape of which is shown in Fig. 6 as a three-dimensional image, and the cylinder openings V and E, the manner in which the rotor is rotated and rotated
  • the working mode of the annular ducted cylinder GT is the same as that of the embodiment shown in FIG.
  • the position of the opening groove of the cylinder block is thus occupied by P.
  • the position of LJi is still indicated in Fig. 7.
  • this embodiment can mount three coupled rotors and have an arc axis Q. The angle between the symmetry is 120 degrees. Of course, four coupled rotors or more coupled rotors can be used. If three coupled rotors are used, the three rotors can be placed in different stress states. It is advantageous for the ducted disc as a compressor to receive the torque of the hook for compressing the air, or as a power to generate a relatively uniform torque of the cylinder output.
  • Figure 10 shows a cross-sectional view of an embodiment of one of the four-cylinder combined engines (gas turbines), the illustrated gas turbine consisting of spiral-ducted cylinders GT11, GT12, GT1 3, GT14, their respective ducts Disc (rotating disc) Pl l, P12, P1 3, P14 are coupled with the drive shaft X, wherein GT1 1, GT12, GT1 3 form a compressor, flame tube F is located inside the annular combustion chamber, and GT14 is a power generating cylinder.
  • gas turbines consisting of spiral-ducted cylinders GT11, GT12, GT1 3, GT14, their respective ducts Disc (rotating disc) Pl l, P12, P1 3, P14 are coupled with the drive shaft X, wherein GT1 1, GT12, GT1 3 form a compressor, flame tube F is located inside the annular combustion chamber, and GT14 is a power generating cylinder.
  • the cylinders GT11 and GT12 are multi-channel spiral ribs parallel multi-channel spiral rib plate series structure, such as 4 parallel 5 series spiral rib structure; ⁇ multiple coupled rotor structures, such as 10 or 15 rotors; GT1 3 4
  • the isolation cylinder of the parallel spiral rib plate has two or three coupled rotors, which serves as the output cylinder of the compressor and isolates the high pressure and high temperature gas of the combustion chamber from the compression cylinders GT11 and GT12 of the compressor.
  • the compression cylinders GT11 and GT12 respectively have intake ports VI and V2, and the air outlets communicate with the intake ports of the GT1 3, the injection device is located on the flame cylinder F and the combustion medium is sprayed toward the inside of the flame cylinder F, and the ignition device is located in the flame cylinder F Internal and in At the beginning of the startup, the combustion medium is ignited in the compressed air, and the outlet of the flame tube is opposite to the intake port of the power generating cylinder GT14, and at the same time, the compressed air sent from the compressor surrounds the flame tube F to cool the flame tube, and the power is generated.
  • the cylinder block GT14 is a 4-parallel spiral rib structure with two or three coupled rotors. The function of the heated high-temperature gas is significantly improved.
  • the force-receiving area and force radius of the rotor of the power-generating cylinder GT14 are greater than the isolation.
  • the force receiving area and the force receiving radius of the rotor of the cylinder GT1 3 so that the power generating cylinder drives the compressor, and there is still surplus power as the output mechanical work of the gas turbine, after the work
  • the gas is exhausted from the exhaust port E4 and sent to the exhaust device.
  • the gas turbine When the gas turbine is started from a standstill, it needs to be rotated with the starter. After the engine is accelerated to be able to operate independently, the starter is disengaged, and the starting work can be performed with the existing one.
  • the gas turbines are the same, no longer - repeat.
  • Figure 11 is a cross-sectional view showing an embodiment of a five-cylinder combined gas turbine, the illustrated gas turbine being composed of spiral-ducted cylinders GT11, GT12, GT13, GT14, GT15, that is, the embodiment shown in Figure 10
  • a power cylinder GT15 is added, and the exhaust port E4 of the cylinder GT14 is connected to the air inlet K5 of the cylinder GT15. Since the power cylinder GT15 is in the form of a rotating disk as shown in Fig. 9, the rotating disk is ventilated by a turbine. Structure, the pressure gas discharged from the GT14 passes through the turbine piece PW5 of the rotating disk P15 and the air inlet K5 enters the power cylinder GT15 to push the rotor to rotate.
  • the output shaft of the power cylinder and the cylinders GT11, GT12, GT13, GT14 are shown.
  • the transmission shaft of the composed gas generator is phase-separated, and its characteristics are the same as those of the prior art gas turbine, and will not be described herein.
  • Figure 12 is a cross-sectional view showing an embodiment of a third engine of a multi-cylinder combination
  • the illustrated gas turbine is composed of a spiral ducting cylinder GT31, GT32, GT33, GT34, GT35, GT36 (this embodiment is a rotating cylinder) Body composition, wherein the cylinders GT31, GT32, GT33, GT34, GT35 and the transmission shaft X3 are coupled together with the annular combustion chamber to form a gas generator, the cylinder GT36 and the transmission shaft X4 are connected together, their respective duct discs
  • the fixed plates P31, P32, P33, P34, P35, P36 are coupled with the engine casing, wherein the GT31, GT32, GT33, GT34 form a compressor, the flame tube F is located inside the annular combustion chamber, and the GT35 and GT36 are power generating cylinders.
  • the air outlets E31, E32, and E33 of the GT31, GT32, and GT33 are connected to the air inlets V32, V33, and V34 of the GT32, GT33, and GT34, respectively. Therefore, the air inlet of the compressor is the air inlet V31 of the GT 31.
  • the air outlet of the compressor is the air outlet E34 of the GT34. It can be seen that the cylinder diameter and volume of the GT31, GT32, GT33 and GT34 are sequentially reduced.
  • the cylinder GT31, GT32, GT33 and GT34 are multi-channel spiral ribs.
  • Parallel connection Spiral rib plate series structure such as GT31 4 4 parallel 4 series structure, GT32 4 4 parallel 3 series structure, GT33 4 4 parallel 2 series structure; at the same time use multiple coupled rotor structures, such as GT31, GT32, GT33,
  • the GT34 adopts the structure of 8, 6, 4, and 2 rotors respectively; thus, the GT31, GT32, GT33, and GT34 of the drive shaft XI rotates by 4 times, 3 times, 2 times, 1 of their own volume.
  • Double the gas if the working volume of the ring culvert cylinder of the GT31 is 10 times that of the GT34, the volume of the air is compressed about 40 times from the inlet V31 to the outlet E34; the injection device is located in the flame tube F is sprayed on the inside of the flame tube F, the ignition device is located in the flame tube region and ignites the combustion medium in the compressed air at the initial stage of startup, and the outlet of the flame tube is opposite to the air inlet V35 of the power generating cylinder GT35, The combustion cylinder is cooled by the compressed air sent from the compressor around the flame tube F.
  • the power generation cylinder GT35 can be a 4-parallel spiral rib structure, and there are two or three coupled rotors, and the heated high-temperature gas is used.
  • the power generation area of the force and the force bearing area radius and the force-receiving radius of the cylinder is greater than the compressor cylinder GT35 GT34, thereby generating power to drive the compressor cylinder is rotated up and constant compressed gas.
  • the air inlet V36 of the power generation cylinder GT36 communicates with the air outlet E35 of the GT35 and receives the high-temperature gas discharged by the GT35.
  • the GT36 can be used in 4 parallel 4 series or 4 parallel.
  • GT36 is connected with the drive shaft X4 and outputs torque.
  • the cylinder GT3 is cancelled.
  • the starter When the vehicle is stationary, it needs to be rotated by the starter. After it can be accelerated until it can run independently, the starter will be disengaged.
  • the starting work can be the same as the existing gas turbine, no longer.
  • Figure 13 is a cross-sectional view showing the fourth embodiment of the multi-cylinder combination, the illustrated gas turbine is composed of spiral ducted rotating cylinders GT21, GT22, GT23, GT24, GT26, GT27, wherein the cylinders GT21, GT22, GT23, GT24
  • the GT26 is coupled with the drive shaft X6 and forms a gas generator with the annular combustion chamber P25.
  • the cylinder GT27 is coupled with the drive shaft X7, and their respective fixed plates P21, P22, P23, P24, P26, P27 are coupled to the engine casing.
  • GT21, GT22, GT23, GT24 form a compressor
  • flame tube F is located inside the annular combustion chamber P25, GT26 and GT27 are power generating cylinders; cylinders GT2 GT22, GT23 outlets E21, E22, E23 respectively
  • the intake ports V22, V23 and V24 of the GT22, GT23 and GT24 are connected, so the air inlet of the compressor is the air inlet V21 of the GT21, and the air outlet of the compressor is the air outlet E24 of the GT24.
  • the diameters of the ring axes of the cylinders GT21, GT22, GT23, and GT24 and the cylinder volume are sequentially reduced, which is the same as the embodiment shown in Fig.
  • each cylinder is multi-channel ribbed plate
  • the multi-channel spiral rib plate series structure and the multi-coupled rotor structure, the volume of air is compressed by about 40 times from the inlet V21 to the outlet E24; the position and operation of the injection device, the flame tube F and the ignition device
  • the operation modes of the power generating cylinders GT26 and GT27, the starting mode of the gas turbine, and the like are also the same as those of the above embodiment, and will not be described again.
  • Figure 14 is a cross-sectional view showing the fifth embodiment of the multi-cylinder combination, the illustrated gas turbine is composed of spiral ducted rotating cylinders GT21, GT22, GT23, GT24, GT26, GT7, wherein the cylinders GT21, GT22, GT23, GT24
  • the gas generator composed of the GT 26, the transmission shaft X6, the flame tube F and the annular combustion chamber P25 is the same as the gas generator shown in Fig. 13, and the power generating cylinder GT7 is in the form of the embodiment shown in Fig. 9,
  • the disc is mounted on the engine casing of the fixed plate P7, and the cylinder GT7 can be connected with the transmission shaft X7 to output power integrally.
  • the gas outlet E26 of the gas generator is connected to the air inlet V7 through the ventilation grille of the power cylinder.
  • the gas after work is discharged from the exhaust port E7 and sent to the exhaust device.
  • the power output efficiency of the present embodiment is further improved as compared with the embodiment shown in FIG.
  • the invention can be adjusted by different combinations of several cylinders, such as cylinder volume, rotor diameter, cylinder diameter, form of ducted disc, number and arrangement of spiral ribs, number of rotors, etc., and finally Maximize the energy of the fuel into the output torque of the drive shaft.
  • an injection device an ignition device, an exhaust device, an air suction device, a safety device, a combustion chamber, a flame tube, and a sealing device, a lubrication system, a supply system of a combustion medium, a cooling system, a starting system, and the like
  • techniques in the field Personnel are known and widely used in the field, no longer here - repeat.
  • the invention can be applied to the gas turbine of the prior art and can be used as the combustion of the existing gas turbine.
  • the gas generator either as a compressor or as part of a compressor, can also replace the power turbine of an existing gas turbine, or convert the residual pressure of the gas after the power turbine into rotational power, such as Figure 5, Figure 9, Figure 10, etc.
  • the illustrated embodiment can be used as a compressor or as part of a compressor.
  • the embodiment shown in Figures 5, 9, and 10 can also be used to replace the residual pressure of the gas after the power turbine or power turbine of the existing gas turbine into rotational power. This allows the maximum use of the energy of the combustion medium.
  • the engine according to the present invention can be manufactured by using various materials such as various metal materials, high-strength alloy materials, ceramic materials, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明涉及一种新型发动机,其结构主要包括若干个共轴的圆环缸体组成,每个圆环缸体的结构包括:圆环涵道缸体、螺旋筋板、涵道圆盘、耦合转子、喷射装置、点火装置、排气装置,其中圆环涵道缸体是一个有圆环形空腔的缸体,空腔的轴面剖视图为圆形,螺旋筋板位于空腔内,沿空腔的圆弧面分布,并与圆环涵道缸体联结为一体,空腔的缸体开有缸体环槽,涵道圆盘位于缸体环槽中;耦合转子安装在涵道圆盘上,位于空腔内,其外径边缘与空腔的内表面形成机械配合,其转动轴线与涵道圆盘的转动轴线垂直或接近垂直,耦合转子沿半径方向开有耦合槽,螺旋筋板可以穿过耦合槽并与耦合槽产生滑动啮合。

Description

新型发动机 技术领域
本发明涉及一种新型发动机。 背景技术
现有普遍釆用发动机有直线往复活塞式发动机和燃气轮机, 而直线往复活 塞式一般是直线往复二冲程或四冲程工作形式。 其中只有一个冲程是动力输出 状态, 其它冲程均为动力损耗状态。 作为燃烧室产生动力的施压区和作为吸入 空气、 压缩空气、 排出废汽的三个动力损耗的卸压区, 都在同一个缸体内交替 出现。 活塞及其推杆处于不断加速、 减速、 停止、 再加速、 减速、 停止的间歇 性循环中, 因此在大功率应用场合, 会产生巨大的噪音和强烈的震动, 其功率 密度小, 使得在大功率应用领域受到限制。
燃气轮机的主要优点是小而轻, 功率密度大, 用于船等运输机械时, 既可 节省空间, 也可装备功率更大的燃气轮机以提高船的速度, 但是其缺点是效率 不够高, 在部分负荷下效率下降快, 空载时的燃料消耗量高, 在中小功率应用 领域, 例如卡车、 轿车等燃油消耗率高。 发明内容
本发明涉及一种新型发动机, 其结构主要由若干个共轴的圓环缸体组成, 每个圓环缸体的结构包括: 圓环涵道缸体(GT)、螺旋筋板(LJ)、 涵道圓盘(P)、 耦合转子 (C), 喷射装置、 点火装置、 排气装置等; 其中圓环涵道缸体(GT) 是一个有圓环形空腔(K)的缸体, 圓环形空腔(K)的轴面剖视图形状为圓形; 螺 旋筋板(LJ )位于圓环形空腔(K)内, 沿圓环形空腔(K)的圓弧面分布, 并与圓 环涵道缸体(GT)联结为一体, 缸体(GT)开有缸体环槽, 涵道圓盘(P)位于 缸体环槽中; 耦合转子 (C)安装在涵道圓盘 (P)上, 位于圓环形空腔内, 耦 合转子 (C) 的外径边缘与圓环形空腔的内表面形成机械配合, 其转动轴线(R) 与涵道圓盘(P) 的转动轴线(0)垂直或接近垂直; 耦合转子(C) 沿半径方向开 有耦合槽, 螺旋筋板(LJ ) 可以穿过耦合槽, 当耦合转子(C)和涵道圓盘(P) 与圓环涵道缸体(GT)发生相对转动时, 螺旋筋板(LJ ) 与耦合槽的滑动啮合 推动耦合转子(C) 围绕自身转动轴线自转; 螺旋筋板(LJ) 沿圓环形空腔的圓 弧表面分布, 使得耦合转子 (C) 随涵道圓盘 (P) 与圓环涵道缸体(GT)产生 相对转动, 并以均勾转速转动时, 耦合转子(C) 因耦合槽与螺旋筋板(LJ) 的 滑动啮合而围绕自身转动轴线(R)以均匀转速自转。 螺旋筋板的起始端位于涵道圓盘的一侧, 并与耦合转子的耦合槽开始滑动 啮合, 随着涵道圓盘与圓环涵道缸体之间的相对转动, 耦合转子在螺旋筋板的 推力作用下自转, 到达涵道圓盘的另一侧的螺旋筋板的终止端, 则螺旋筋板与 耦合槽脱离啮合, 并继续转动, 回到螺旋筋板起始端的一侧, 又开始下一次的 滑动啮合; 耦合转子将圓环涵道缸体的圓弧面、 涵道圓盘、 螺旋筋板三者之间 的空间分隔为高压区和低压区。
发动机由至少二个共轴的圓环涵道转动缸体组成, 其中至少一个圓环涵道 转动缸体为压气机, 其中至少一个圓环涵道转动缸体为动力产生缸体; 压气机 涵道圓盘一侧的低压区吸入空气, 另一侧的高压区将空气压缩并输向动力产生 缸体; 动力产生缸体的圓环涵道转动缸体由涵道圓盘的一侧形成高压区, 在高 以及圓环涵道缸^ ί上, 使?耦合转子与圓环涵道缸体发生相对转动并输出动力。
发动机为连续燃烧工作方式, 喷射装置向压气机产生的压缩空气中连续地 喷射燃烧介质, 点火装置位于喷射装置附近并用于发动机的点火启动, 排气装 置位于动力产生缸体的涵道圓盘附近的低压区后侧; 在压气机和动力产生缸体 之间设有燃烧室, 喷射装置和点火装置位于燃烧室区域; 圓环涵道缸体为固定 缸体时, 涵道圓盘为转动盘传递扭矩; 涵道圓盘为固定盘时被固定在发动机机 体上, 圓环涵道缸体为转动缸体传递扭矩; 单个的圓环涵道缸体内, 可以装有 多个螺旋筋板和多个耦合转子; 多个螺旋筋板可以并联排布也可以串联排布; 涵道圓盘在圓环涵道转动缸体内所占的体积, 最大可以超过所述圓环涵道转动 缸体容积的一半。
多个共轴圓环缸体组成的所述压气机, 其圓环缸体按照空气的压力升高的 方向从低气压区排列到高气压区, 使得所述发动机得到持续的高压空气; 发动 机拥有多个动力产生缸体时, 其中一个或多个动力产生缸体与压气机联为一体, 向压气机提供压缩空气所需的动力, 而其余的一个或多个动力产生缸体为动力 缸体并输出动力。 这样设计的发动机, 缸体受燃烧介质的膨胀产生的压力直接 变成传动轴的扭力, 缸体所承受的压力及温度都比较均衡, 其输出功率因作功 行程长而增大; 整个系统没有曲轴、 活塞及推杆, 因此在高转速条件下, 机构 噪音小、 震动轻微, 工作稳定性好, 可靠性高, 与现有燃气轮机相比有高的效 率。
本发明提供了一种全新的技术方案, 具有结构简单、 运行可靠、 效率高的 特点, 也具有燃汽轮机的燃烧介质连续燃烧所具有的高转速、 高扭矩和大功率 的特点, 同时还具有高压力输入、 无压力或低压力排放的特点, 在低压力输入 时同样提供高的效率转换。 本发明提出了一种全新的汽轮机的设计方案, 具有结构简单、 运行可靠、 效率高的特点, 同时还具有高压力输入、 低压力排放的特点, 膨胀介质的压力 能量被全部或大部分转换为输出转矩。
本发明涉及一种新型发动机, 可广泛应用于交通运输行业、 工程机械、 发 电机组、 大型轮船、 飞机、 极速赛车等经济领域。 附图说明
图 1 本发明单个缸体实施例之一的剖视图;
图 2 图 1所示实施例转子和涵道圓盘组合示意图;
图 3 图 1所示实施例的工作原理简图;
图 4 本发明单个缸体实施例之二的剖视图;
图 5 本发明单个缸体实施例之三的剖视图;
图 6 图 5所示实施例的转子视图;
图 7 图 5所示实施例的工作原理简图;
图 8螺旋筋板的排列方式之一的示意图;
图 9本发明单个缸体实施例之四的剖视图;
图 10多缸体组合的实施例之一的剖视图;
图 11 多缸体组合的实施例之二的剖视图;
图 12多缸体组合的实施例之三的剖视图;
图 1 3多缸体组合的实施例之四的剖视图;
图 14 多缸体组合的实施例之五的剖视图。
在本发明专利的附图说明中, 图示的零部件的结构、 尺寸及形状并不代表 实际的零部件的结构、 尺寸及形状, 也不代表零部件之间的实际大小比例关系, 图示只是用简明的方式对本发明实施例予以说明。
关于本发明专利叙述中的名词解释:
1.转动轴线:转动体或旋转空间的转动轴线,如图 1和图 4中的转动轴线 0。
2.轴面剖视图: 与转动轴线相重合的平面上剖切所得的视图, 如图 1和图 4 所示。
3.圓环轴线:轴面剖视图为圓形的三维体圓环,其圓环的环绕轴线,如图 1、 图 4和图 5中的轴线 Q。 具体实施方式
图 1显示了本发明单个缸体实施例之一的轴面剖视图, 图 2显示了本实施 例的涵道圓盘和耦合转子组合体的三维视图。 其结构包括圓环涵道缸体 GT、 螺 旋筋板 LJ 、 涵道圓盘 P 、 耦合转子 C , 圓环涵道缸体 GT是一个有圓环形空腔 K的缸体, 其圓环形空腔的轴面剖视图形状为圓形。 圓环涵道缸体 GT 沿圓环形 空腔 Κ开有缸体环槽, 涵道圓盘 Ρ 位于缸体环槽内。 螺旋筋板 LJ 位于圓环形 空腔 Κ 中, 沿 Κ的圓弧面分布, 并与圓环涵道缸体 GT联结成一体。 耦合转子 C 安装在涵道圓盘 Ρ 上, 并位于圓环形空腔 Κ 内,耦合转子 C 的外圓边缘与圓环 形空腔 Κ 的内表面形成机械配合, 也就是说它们之间的配合可以是大的间隙配 合, 也可以是小的间隙配合, 耦合转子 C 的转动轴线 R与涵道圓盘 Ρ 的转动轴 线 0相垂直或接近垂直, 耦合转子 C 沿半径方向开有耦合槽(如图 2所示), 螺 旋筋板 LJ 可以穿过耦合槽, 耦合转子 C 随着涵道圓盘 Ρ 转动时, 螺旋筋板 LJ 与耦合槽发生滑动啮合, 并推动耦合转子 C 围绕自身转动轴线 R 自转。 螺旋筋 板 LJ 沿圓环形空腔 Κ 的圓弧面分布, 使得耦合转子 C 随涵道圓盘 Ρ 以均匀速 度公转时, 耦合转子 C 因耦合槽与螺旋筋板 LJ 的滑动啮合而围绕自身转动轴 线 R以均勾转速自转。
如果设定耦合转子按图 1所示的方向旋转,则耦合转子 C 与螺旋筋板 LJ 的 起始端从涵道圓盘 Ρ 的左侧开始啮合,随着涵道圓盘 Ρ与圓环涵道缸体 GT的相 对转动,耦合转子 C 在螺旋筋板 LJ 的推动力作用下自转一周到达涵道圓盘 Ρ 的 右侧的螺旋筋板 LJ 的终止端, 则耦合槽与螺旋筋板 LJ 脱离啮合。 耦合槽随耦 合转子 C 的自转又回到涵道圓盘 Ρ 的左侧, 与螺旋筋板 LJ 的起始端开始下一 个啮合过程。 耦合转子 C 将圓环涵道缸体 GT 的圓弧面、 涵道圓盘 Ρ 和螺旋筋 板 U 三者之间的空间分隔为高压区和低压区。 如果作为动力产生缸体, 则缸体 GT 在涵道圓盘 Ρ 的左侧开始形成高压区,高压区充满压缩空气和燃烧介质混合 后燃烧膨胀从涵道圓盘左侧的开孔 V进入,压力作用在耦合转子 C和缸体 GT 上, 推动耦合转子 C和缸体 GT围绕转动轴线 0发生相对旋转, 从而输出动力; 在涵 道圓盘右侧的低压区, 燃烧之后已经推动耦合转子 C和缸体 GT旋转做功的气体 从开孔 Ε挤压排出。 如果作为压气机, 则缸体 GT 在涵道圓盘 Ρ 的左侧开孔 V 开始吸入空气, 并将涵道圓盘 Ρ右侧的空气进行压缩, 从而形成高压区, 高压 区充满压缩空气在缸体 GT和转子 C的挤压力作用下从右侧开孔 Ε送向动力产生 缸体。 为了便于理解, 图 2所示的组合之前后的转动盘 Ρ釆用剖视方式。 在本 实施例中圓环涵道缸体 GT为固定缸体时, 涵道圓盘 Ρ为转动盘传递扭矩。
为了说明上述过程,用图 3显示了螺旋筋板 LJ 在圓环形空腔 Κ的圓弧面 1- m-n上沿周向展开一周的平面图。尽管空间的圓弧面展开为一个圓形的平面会失 去精确性, 但可简明地显示其工作原理。
图 3所示, 为螺旋筋板 LJ 的展开曲线 G , 螺旋筋板 LJ 的起始端位于小直 径处的 31点位。 耦合转子 C 围绕轴线 0顺时针方向开始旋转, 其耦合槽从 31 点位起与螺旋筋板 LJ 开始啮合, 当耦合转子 C 转过 ¼周, 其耦合槽随耦合转 子 C 转到 33点位时, 如果作为动力产生缸体, 则高压区为 31-32-33三个点之 间的 p区, 32-33弧线约是 1 ~ n圓弧长度的 ¼; 耦合转子 C 自转½周, 其耦合 槽到达 35点位时, 高压区增加 32-33-35-34四点之间的 q区; 耦合转子 C 自转 过¾周,其耦合槽到达 37点位时, 高压区再增加 34-35-37-36四点之间的 r区; 耦合转子 C 自转过一周, 其耦合槽到达 38点位时, 高压区增加 36-37-38-31四 点之间的 s区。 34-35、 36-37、 31-38弧线长度分别约为 1 ~ n圓弧长的 ½、 ¾ 及全长。 如果将 31-32以及 38-41之间设为开孔区域, 耦合转子 C 转到 32-33 位置时开始受膨胀气体的压力, 将 31-38-39-33、 33-39-40-35、 35-40-41-37、 37-41-38点位之间的区域分别称为 t、 u、 v、 w区, 则除去 p区域, 耦合转子 C 所经过的 q的部分区域, 以及 r、 s、 t、 u、 v均为动力输出位置的区域。 从 ρ 区到 s区, 耦合转子 C 的受力面积迅速增大, 从 t区到 w区, 随着介质膨胀的 继续, 耦合转子 C 的受力面积又逐步减少, 从 q区到 s区的超过 180°范围内, 扭矩的输出的连续性变大。 当耦合转子 C 转到 t区时, 耦合转子 C从起始位置 已转过一周的行程。 这时, 耦合转子 C 的耦合槽与螺旋筋板 LJ 的终止端脱离 啮合, 并开始进入涵道圓盘 P 的起始端一侧, 与螺旋筋板 LJ 的起始端再一次 进入啮合状态, 进入下一个作功周期。 与本次循环相同, 从 31→33→35开始下 一个做功行程。 因此, 当耦合转子 C 转至 38点位到 39点位进入 u区时, 下一 个膨胀作功状态同时进行。 前面提到耦合转子 C 从 31点位开始循环之时, 本次 的上一个工作循环已进入到了 t区, 因此, 每一次作功行程都有 1¼周至 1½周, 也就是 450° ~ 540°的作功范围。 在 2周 720°的旋转行程中, 约有 360°的行程是 两个膨胀做功同时进行。 在耦合转子 C 的高压区一侧作功的同时, 另一侧逐步 变为低压区, 同时正在排出气体, 而无需专门的排气行程, 因此与直线往复式 活塞发动机和现有燃气轮机相比, 本实施例具有很高的效率和输出扭矩, 这也 是本发明与现有技术相比, 能够节约燃烧介质的一个重要原因。
同样的如果作为压气机, 转子相对于缸体 GT前进方向的前方区域为压气的 高压区, 转子相对于缸体 GT前进方向的后方区域为吸气的低压区, 耦合转子 C 自点位 31_33_35_37再转至点位 38时, 缸体 GT吸入 p、 q、 r、 s区的空气, 再 到达 32-39位置, 则开始将 d、 r、 s、 t区的气体进行压缩, 在上述过程中也同 时对上一次行程所吸入的气体予以压缩,从 39-40再到 41点位, C将上述 d、 r、 s、 t的区域的气体向高压区挤压, 将上一次行程所吸入的气体从 41-38的开孔 区压出缸体的同时, 又继续从 31-32 的开口区吸入空气, 因此作为压气机, 其 吸气和压气的过程在同时进行。
图 4 所示为本发明单个缸体实施例之二的轴面剖视图, 其结构包括圓环涵 道缸体 GTo、 螺旋筋板 LJo 、 涵道圓盘 Po 、 耦合转子 Co, 圓环涵道缸体 GTo的 圓环形空腔 K的的轴面剖视图形状、 螺旋筋板 LJo的分布、 耦合转子 Co与圓环 形空腔 K 的配合、 螺旋筋板 LJo 在圓环形空腔 K的圓弧面 1-m-n上展开的平面 图、 螺旋筋板 LJo 与耦合槽的啮合、 耦合转子 Co的转动方式、 高压区和低压区 等等与图 1所示实施例相同,与图 1所示实施例不同的是涵道圓盘 Ρο为固定盘, 圓环涵道缸体 GT 0为转动缸体输出扭矩。
图 5所示,为本发明单个缸体实施例之三的轴面剖视图,与上述实施例相同, 其结构包括圓环涵道缸体 GT 、 螺旋筋板 、 涵道圓盘 P (本实施例为转动盘)、 耦合转子如图 6所示的三维图像, 以及缸体开孔 V和 E , 和这些开口的位置。 涵道圓盘 P 的安装、 耦合转子的公转及自转的方式, 圓环涵道缸体 GT 的工作 方式等与上述图 1所示实施例相同。 所不同的是: 圓环涵道缸体 GT的圓弧表面 分布着以圓环轴线 Q为对称的 4道螺旋筋板 LJ 、 LJ2 、 LJ3 、 LJ4, 分别对应 图 6所示耦合转子的 4道耦合槽, 在图 5所示的上半部剖切位置, 螺旋筋板 LJ4 刚好处于起始端和终止端之间的螺旋涵道缸体开口槽的位置,因此被涵道圓盘 P 占据, 为了方便说明, 依然在图 5中指出了 LJ4的位置, 图 7显示了图 5所述实 施例的工作原理图, 在图中显示了 3个耦合转子 Ci、 C2、 C3的安装位置及工作 状态, 3个耦合转子以圓弧轴线 Q为对称相互之间成同平面状态, 图 5所示的涵 道圓盘 P和传动轴 X联为一体, 实际联结的细节本行业技术人员均已知晓多种 方式, 在这里不再赘述。
与图 3相同, 图 7显示了 4道螺旋筋板 LJ 、 LJ2 、 LJ3 、 LJ4在圓环形空 腔 K的圓弧面 1 m n (图 5所示)上沿周向展开一周的平面图, 图 7所示, 内 圓 1-2-3-4 表示与转动盘 P —侧相邻的螺旋筋板起始端的圓弧 1 , 外圓 8-12-16-20表示与转动盘 P另一侧相邻的螺旋筋板的终止端的圓弧 n, 4条螺旋 筋板 、 LJ2 、 LJ3 、 LJ4分别从点位 1、 1、 3、 4开始, 终止于点位 8、 12、 16、 20 , 每两条相邻的螺旋筋板之间的角度分别占有 90度的圓弧空间, 也就是 耦合转子上的两个相邻的耦合槽的径向夹角为 90度(图 5所示), 例如 1 ~ 17、 17 ~ 14、 14 ~ 11、 11 ~ 8分别占有 1 ~ 8线段的长度 1 /4 , 其它如 2 ~ 12、 3 ~ 16、 4 ~ 20之间依此相同。 在涵道圓盘两侧的缸体开口 V 、 E均沿着缸体的周向 开口一圈 (如图 5所示), 在图 7中显示, 在耦合转子旋转时作为进气口和出气 口的 V和 E至少被一个耦合转子隔开, 这对压气机和动力产生缸体都是必要的。 图中显示了 3个耦合转子 Ci、 C2、 C3的安装位置及工作状态, 3个耦合转子 Ci、 C2、 C3以圓弧轴线 Q为对称相互之间的夹角为 120度, 当然, 可以釆用二个或 四个耦合转子或者更多耦合转子的方案, 釆用三个耦合转子, 可以使得三个转 子处于不同的受力状态, 这样有利于作为发动机的涵道圓盘输出相对均匀的扭 力。
图 8 显示了本发明的螺旋筋板的排列方式之一的示意图, 其工作原理与上 述实施例相同, 不同的是: 4个螺旋筋板之中, 螺旋筋板 LJ" 和螺旋筋板 LJ21 为串联,螺旋筋板 LJ12与螺旋筋板 LJ22为串联,也就是螺旋筋板 和螺旋筋板 1_」12的起始端或终止端分别与涵道圓盘 P另一侧的螺旋筋板 LJ21和螺旋筋板 LJ22 的终止端或起始端相对应, 每个耦合转子围绕转动轴 0公转一周, 耦合转子的 同一个耦合槽与前后两个螺旋筋板滑动啮合, 也就是耦合转子要自转 2 周; 而 螺旋筋板 LJ"和螺旋筋板 1_」12为并联,螺旋筋板 LJ21与螺旋筋板 LJ22并联,也就 是本实施例中的 2并联 2 串联螺旋筋板结构, 并有若干个耦合转子, 但每个耦 合转子只有两个耦合槽, 涵道圓盘每转动一周, 螺旋涵道缸体则吸入及排除 2 倍的缸体容积的气体。
图 9显示了本发明单个缸体实施例之四的轴面剖视图, 与图 5所示实施例 相同, 其结构包括圓环涵道缸体 GT 、 螺旋筋板 LJ 、 LJ2 、 LJ3 、 LJ4、 涵道 圓盘 P (本实施例为转动盘)、 耦合转子之一 C , 其形状如图 6所示的三维图像, 以及缸体开孔 V和 E , 耦合转子的公转及自转的方式, 圓环涵道缸体 GT 的工作 方式等与图 5 所示实施例相同。 所不同的是: 转动盘 P 的结构和安装方式、 V 和 E开口的位置, 在图 9所示的上半部剖切位置, 螺旋筋板 LJi刚好处于起始端 和终止端之间的螺旋涵道缸体开口槽的位置, 因此被 P 占据, 为了方便说明, 依然在图 7中指出了 LJi 的位置, 与上述实施例相同, 本实施例可以安装 3个 耦合转子, 并以圓弧轴线 Q为对称相互之间的夹角为 120度, 当然, 可以釆用 四个耦合转子或者更多耦合转子的方案, 如果釆用三个耦合转子, 可以使得三 个转子处于不同的受力状态, 这样有利于作为压气机的涵道圓盘接受均勾的转 矩用于压缩空气, 或者作为动力产生缸体输出相对均匀的扭力。
图 10显示了一种 4缸体组合的发动机(燃气轮机)之一的实施例的剖示图, 图示的燃气轮机由螺旋涵道缸体 GT11、 GT12、 GT1 3、 GT14组成, 它们各自的涵 道圓盘(转动盘) Pl l、 P12、 P1 3、 P14与传动轴 X联结在一起,其中 GT1 1、 GT12、 GT1 3 组成压气机, 火焰筒 F位于环形燃烧室内部, GT14为动力产生缸体; 缸体 GT11和 GT12为多道螺旋筋板并联多道螺旋筋板串联结构,例如 4并联 5串联螺 旋筋板结构; 釆用多个耦合转子结构, 例如 10个或者 15 个转子; GT1 3为 4并 联螺旋筋板的隔离缸体, 有 2个或者 3个耦合转子, 作为压气机的输出缸体并 将燃烧室的高压高温气体与压气机压缩缸体 GT11、 GT12隔离开来, 压气机的压 缩缸体 GT11、 GT12分别有进气口 VI、 V2 , 出气口与 GT1 3的进气口相通, 喷射 装置位于火焰筒 F上并将燃烧介质喷向火焰筒 F 内部, 点火装置位于火焰筒 F 内部并在启动初期将燃烧介质在压缩空气中点燃, 火焰筒的出口对向动力产生 缸体 GT14的进气口, 同时在火焰筒 F的周围有压气机送来的压缩空气对火焰筒 进行冷却,动力产生缸体 GT14为 4并联螺旋筋板结构,有 2个或 3个耦合转子, 加热后的高温燃气的作功能力显著提高, 动力产生缸体 GT14的转子的受力面积 和受力半径均大于隔离缸体 GT1 3的转子的受力面积和受力半径, 因而动力产生 缸体在带动压气机的同时, 尚有余功作为燃气轮机的输出机械功, 做功之后的 气体从排气口 E4排出并输向排气装置, 燃气轮机由静止起动时, 需用起动机带 着旋转, 待加速到能独立运行后, 起动机才脱开, 启动的工作过程可以与现有 的燃气轮机相同, 不再——赘述。
图 11显示了一种 5缸体组合的燃气轮机的实施例的剖示图, 图示的燃气轮 机由螺旋涵道缸体 GT11、 GT12、 GT13、 GT14、 GT15组成, 也就是在图 10所示 实施例上增加一个动力缸体 GT15 ,缸体 GT14的排气口 E4与缸体 GT15的进气口 K5相连, 因为动力缸体 GT15釆用图 9所示的转动盘形式, 因此转动盘釆用涡轮 通气结构, GT14排出的压力燃气经过转动盘 P15的涡轮片 PW5、 进气口 K5进入 动力缸体 GT15 推动转子旋转做功, 图中可见动力缸体的输出轴与缸体 GT11、 GT12、 GT13、 GT14 所组成的燃气发生器的传动轴相分离, 其特点与现有技术的 燃气轮机一样, 在此不再赘述。
图 12显示了一种多缸体组合的发动机之三的实施例的剖示图, 图示的燃气 轮机由螺旋涵道缸体 GT31、 GT32、 GT33、 GT34、 GT35、 GT36 (本实施例为转动 缸体)组成, 其中缸体 GT31、 GT32、 GT33、 GT34、 GT35与传动轴 X3联结在一起 与环形燃烧室组成燃气发生器, 缸体 GT36与传动轴 X4连接在一起, 它们各自的 涵道圓盘为固定盘 P31、 P32、 P33、 P34、 P35、 P36与发动机外壳联结在一起, 其中 GT31、 GT32、 GT33、 GT34 组成压气机, 火焰筒 F位于环形燃烧室内部, GT35 和 GT36为动力产生缸体; 缸体 GT31、 GT32、 GT33的出气口 E31、 E32、 E33分别与 GT32、 GT33、 GT34的进气口 V32、 V33、 V34连通, 因此压气机的进气口就是 GT 31 的进气口 V31 ,压气机的出气口就是 GT34的出气口 E34 ,图示可以看出 GT31、 GT32、 GT33、 GT34的缸体直径和体积依次减小, 缸体 GT31、 GT32、 GT33、 GT34釆用多 道螺旋筋板并联多道螺旋筋板串联结构, 例如 GT31釆用 4并联 4串联结构, GT32 釆用 4并联 3串联结构, GT33釆用 4并联 2串联结构; 同时釆用多个耦合转子结构, 例如 GT31、 GT32、 GT33、 GT34分别釆用 8个、 6个、 4个、 2个转子的结构; 这样 传动轴 XI每转动一周缸体 GT31、 GT32、 GT33、 GT34分别通过自身体积的 4倍、 3 倍、 2倍、 1倍的气体, 如果 GT31的圓环涵道缸体的工作容积是 GT34的 10倍, 贝' J 从进气口 V31到出气口 E34 , 空气的体积被压缩了约 40倍; 喷射装置位于火焰筒 F 上并将燃烧介质喷向火焰筒 F内部, 点火装置位于火焰筒区域并在启动初期将燃 烧介质在压缩空气中点燃, 火焰筒的出口对向动力产生缸体 GT35的进气口 V35 , 同时在火焰筒 F的周围有压气机送来的压缩空气对火焰筒进行冷却, 动力产生缸 体 GT35可以为 4并联螺旋筋板结构, 有 2个或 3个耦合转子, 加热后的高温燃气的 作功能力显著提高, 动力产生缸体 GT35的受力面积和受力半径均大于压气机缸 体 GT34的受力面积和受力半径, 因而动力产生缸体带动压气机转动并产生持续 的压缩气体。 动力产生缸体 GT36的进气口 V36与 GT35的出气口 E35连通并接收 GT35排出的还有做功能量的高温燃气, GT36可以釆用 4并联 4串联结构或者 4并联 3串联结构, 釆用 12个、 8个或 6个转子的结构; 同时 GT36与传动轴 X4连接为一体 并输出扭矩, 实施例中, 取消缸体 GT3
Figure imgf000011_0001
静止 ^动 时, 需用起动机带着旋转, 待加速到能独立运行后, 起动机才脱开, 启动的工 作过程可以与现有的燃气轮机相同, 不再——赘述。
图 13显示了多缸体组合的实施例之四的剖视图, 图示的燃气轮机由螺旋涵 道转动缸体 GT21、 GT22、 GT23、 GT24、 GT26、 GT27组成, 其中缸体 GT21、 GT22、 GT23、 GT24、 GT26与传动轴 X6联结在一起与环形燃烧室 P25组成燃气发生器, 缸体 GT27与传动轴 X7连接在一起, 它们各自的固定盘 P21、 P22、 P23、 P24、 P26、 P27 与发动机外壳联结在一起, 其中 GT21、 GT22、 GT23、 GT24 组成压气 机, 火焰筒 F位于环形燃烧室 P25 内部, GT26和 GT27为动力产生缸体; 缸体 GT2 GT22、 GT23的出气口 E21、 E22、 E23分别与 GT22、 GT23、 GT24的进气口 V22、 V23、 V24连通, 因此压气机的进气口就是 GT21 的进气口 V21 , 压气机的 出气口就是 GT24的出气口 E24 , 图示可以看出圓环缸体 GT21、 GT22、 GT23、 GT24 的圓环轴线的直径和缸体容积依次减小, 与图 12所示实施例相同, 每个缸体釆 用多道螺旋筋板并联多道螺旋筋板串联结构和釆用多个耦合转子结构, 从进气 口 V21到出气口 E24 , 空气的体积被压缩了 40约倍; 喷射装置、 火焰筒 F以及 点火装置的位置和工作方式与上述实施例相同, 动力产生缸体 GT26、 GT27的工 作方式、 燃气轮机的启动方式等也与上述实施例相同, 不再——赘述。
图 14显示了多缸体组合的实施例之五的剖视图, 图示的燃气轮机由螺旋涵 道转动缸体 GT21、 GT22、 GT23、 GT24、 GT26、 GT7组成, 其中缸体 GT21、 GT22、 GT23、 GT24、 GT26、 传动轴 X6与火焰筒 F和环形燃烧室 P25组成的燃气发生器 与图 13所示的燃气发生器相同, 而动力产生缸体 GT7则釆用图 9所示实施例的 形式, 涵道圓盘为固定盘 P7安装在发动机的壳体上,缸体 GT7可以与传动轴 X7 连接为一体输出动力, 燃气发生器的出气口 E26 通过动力缸体的通气栅与进气 口 V7连通, 做功之后的气体从排气口 E7排出并输向排气装置。 与图 13所示实 施例相比, 本实施例的动力输出效率进一步提高。
本发明可以通过若干个缸体的不同组合, 例如缸体容积、 转子直径、 缸体 的直径、 涵道圓盘的形式、 螺旋筋板的数量和排列方式、 转子的数量等等的调 整, 最终将燃料的能量最大限度地转换成传动轴的输出扭矩。 关于喷射装置、 点火装置、 排汽装置、 吸空气装置、 安全装置、 燃烧室、 火焰筒、 还有密封装 置、 润滑系统、 燃烧介质的供应系统、 冷却系统、 起动系统等等, 本领域的技 术人员均已知晓, 并在本领域广泛应用, 不再在此——赘述。
本发明可以应用于现有技术的燃气轮机当中, 可以作为现有燃气轮机的燃 气发生器, 或者作为压气机, 或者作为压气机的一部分, 也可以替代现有燃气 轮机的动力涡轮, 或者动力涡轮之后的燃气余压转换成旋转动力, 例如图 5、 图 9、 图 1 0等所示实施例作为压气机或者作为压气机的一部分, 图 5、 图 9、 图 1 0 等所示实施例也可以替代现有燃气轮机的动力涡轮或者动力涡轮之后的燃气余 压转换成旋转动力, 这样可以使得燃烧介质的能量得到最大程度的利用。
本发明所涉及的发动机, 可以釆用多种材料制造, 例如各种金属材料、 高 强度合金材料以及陶瓷材料等等。
上述实施例以图示的方式说明了本发明, 但是以图示方式说明的上述实施 例不是对本发明的限制, 本发明由权利要求限定。

Claims

权利要求书
1.本发明涉及一种新型发动机, 其结构包括若干个共轴的圓环缸体组成, 每个圓环缸体的结构包括: 圓环涵道缸体、 螺旋筋板、 涵道圓盘、 耦合转子、 喷射装置、 点火装置、 排气装置, 其特征在于: 所述圓环涵道缸体是一个有圓 环形空腔的缸体, 所述圓环形空腔的轴面剖视图形状为圓形, 所述螺旋筋板位 于所述圓环形空腔内, 沿圓环形空腔的圓弧面分布, 并与所述圓环涵道缸体联 结为一体, 所述圓环形空腔的缸体开有缸体环槽, 所述涵道圓盘位于缸体环槽 中;
所述耦合转子安装在涵道圓盘上, 位于所述圓环形空腔内, 耦合转子的 外径边缘与圓环形空腔的内表面形成机械配合, 其转动轴线与涵道圓盘转动轴 线垂直或接近垂直, 所述耦合转子沿半径方向开有耦合槽, 螺旋筋板可以穿过 耦合槽, 当耦合转子和涵道圓盘与圓环涵道缸体发生相对转动时, 螺旋筋板与 耦合槽的滑动啮合推动耦合转子围绕自身转动轴线自转;
所述螺旋筋板沿所述圓环形空腔的圓弧表面分布, 使得耦合转子随涵道 圓盘与圓环涵道缸体产生相对转动并以均勾转速转动时, 耦合转子因耦合槽与 螺旋筋板的滑动啮合而围绕自身转动轴线以均匀转速自转;
所述螺旋筋板的起始端位于涵道圓盘的一侧, 并与耦合转子的耦合槽开 始滑动啮合, 随着涵道圓盘与圓环涵道缸体之间的相对转动, 耦合转子在螺旋 筋板的推力作用下自转, 耦合槽到达涵道圓盘的另一侧的螺旋筋板的终止端, 则螺旋筋板与耦合槽脱离啮合, 并继续转动, 回到螺旋筋板起始端的一侧, 又 开始下一次的滑动啮合;
所述耦合转子将圓环涵道缸体的圓弧面、 涵道圓盘、 螺旋筋板三者之间 的空间分隔成高压区和低压区;
所述发动机由至少二个共轴的圓环涵道缸体组成, 其中至少一个圓环涵道 缸体为压气机, 其中至少一个圓环涵道缸体为动力产生缸体, 所述压气机涵道 圓盘一侧的低压区吸入空气, 另一侧的高压区将空气压缩并输向动力产生缸体, 所述动力产生缸体的圓环涵道缸体由涵道圓盘的一侧形成高压区, 在高压区压 环涵道缸^上, 使^耦合转子与所述圓环涵道缸体发生相对转动并输出动力。
2.根据权利要求 1所述的新型发动机, 其特征在于: 所述发动机为连续燃 烧工作方式, 所述喷射装置向压气机产生的压缩空气中连续地喷射燃烧介质, 所述点火装置位于喷射装置附近并用于所述发动机的点火启动, 所述排气装置 位于动力产生缸体的涵道圓盘附近的低压区后侧。
3.根据权利要求 1 所述的新型发动机, 其特征在于: 在所述压气机和所述 动力产生缸体之间设有燃烧室, 所述喷射装置和点火装置位于燃烧室内。
4.根据权利要求 1所述的新型发动机, 其特征在于: 所述圓环涵道缸体为 固定缸体时, 所述涵道圓盘为转动盘并传递扭矩。
5.根据权利要求 1 所述的新型发动机, 其特征在于: 所述涵道圓盘为固定 盘时, 其固定在发动机机体上, 所述圓环涵道缸体为转动缸体并传递扭矩。
6.根据权利要求 1所述的新型发动机, 其特征在于: 所述单个的圓环涵道 缸体内, 装有多个螺旋筋板和多个耦合转子。
7.根据权利要求 6 所述的新型发动机, 其特征在于: 所述单个的圓环涵道 缸体内的多个螺旋筋板, 并联排布或串联排布。
8.根据权利要求 1所述的新型发动机, 其特征在于: 所述涵道圓盘在圓环 涵道转动缸体内所占的体积, 最大超过所述圓环涵道转动缸体容积的一半。
9.根据权利要求 1 所述的新型发动机, 其特征在于: 由多个共轴圓环缸体 组成的所述压气机, 其圓环缸体按照空气的压力升高的方向从低气压区排列到 高气压区, 使得所述发动机得到持续的高压空气。
10.根据权利要求 1所述的新型发动机, 所述发动机拥有多个动力产生缸体 时, 其中一个或多个动力产生缸体与压气机联为一体, 向压气机提供压缩空气 所需的动力, 而其余的一个或多个动力产生缸体为动力缸体并输出动力。
PCT/CN2014/080805 2013-06-27 2014-06-26 新型发动机 WO2014206309A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310262588.3A CN103511123A (zh) 2012-06-28 2013-06-27 新型发动机
CN201310262588.3 2013-06-27
CN201310362155.5A CN104373205A (zh) 2013-08-16 2013-08-16 新型发动机
CN201310362155.5 2013-08-16

Publications (1)

Publication Number Publication Date
WO2014206309A1 true WO2014206309A1 (zh) 2014-12-31

Family

ID=52141086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080805 WO2014206309A1 (zh) 2013-06-27 2014-06-26 新型发动机

Country Status (2)

Country Link
CN (1) CN104373205A (zh)
WO (1) WO2014206309A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716861A (en) * 1948-05-19 1955-09-06 Goodyear James Wallis Pressure energy translating and like devices
US20050123429A1 (en) * 2003-12-09 2005-06-09 Dresser-Rand Company Compressor and a method for compressing fluid
WO2007078206A1 (en) * 2006-01-06 2007-07-12 Terje Scheen Rotary machine and combustion engine
CN102661195A (zh) * 2012-04-20 2012-09-12 袁丽君 圆周旋转式活塞发动机
CN103511123A (zh) * 2012-06-28 2014-01-15 袁丽君 新型发动机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2387274Y (zh) * 1999-09-22 2000-07-12 蔡盛龙 旋转喷气轴发动机
CN101205812A (zh) * 2006-12-22 2008-06-25 蔡丕勇 四活塞缸体旋转发动机
EP2322760A4 (en) * 2008-08-01 2012-03-21 Da Vinci Co Ltd WANKEL MOTOR
CN102345506A (zh) * 2010-07-26 2012-02-08 任涛 新型螺杆转子发动机
CN102434280A (zh) * 2011-12-22 2012-05-02 周觉明 转轮曲线侧滑式发动机
CN103195484A (zh) * 2012-11-22 2013-07-10 袁丽君 新型汽轮机
CN103195483A (zh) * 2012-11-22 2013-07-10 袁丽君 新型汽轮机
CN103195612B (zh) * 2013-04-08 2015-02-11 魏汉章 一种多功能涡轮风扇喷气发动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716861A (en) * 1948-05-19 1955-09-06 Goodyear James Wallis Pressure energy translating and like devices
US20050123429A1 (en) * 2003-12-09 2005-06-09 Dresser-Rand Company Compressor and a method for compressing fluid
WO2007078206A1 (en) * 2006-01-06 2007-07-12 Terje Scheen Rotary machine and combustion engine
CN102661195A (zh) * 2012-04-20 2012-09-12 袁丽君 圆周旋转式活塞发动机
CN103511123A (zh) * 2012-06-28 2014-01-15 袁丽君 新型发动机

Also Published As

Publication number Publication date
CN104373205A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
US10920662B2 (en) Compound cycle engine
US9856789B2 (en) Compound cycle engine
EP2011962B1 (en) Compound cycle rotary engine
US9027345B2 (en) Compound engine system with rotary engine
EP0890721A1 (en) Rotary vane engine
JP2003521611A (ja) 回転揺動式ピストンを利用した装置
WO2012057838A2 (en) Rotary valve continuous flow expansible chamber dynamic and positive displacement rotary devices
CN105756714A (zh) 一种滑片式汽动转子发动机
CA2933112A1 (en) Compound cycle engine
CN109139234B (zh) 带有中间冷却器的发动机组件
CN105443242A (zh) 喷压转子发动机
WO2014206309A1 (zh) 新型发动机
CN105464710A (zh) 一种滑片式汽动转子发动机
US20120160209A1 (en) Turbine having cooperating and counter-rotating rotors in a same plane
RU2729311C1 (ru) Гибридная турбовентиляторная установка со встроенным роторным ДВС
RU2723266C1 (ru) Роторный двигатель внутреннего сгорания
RU2220308C2 (ru) Роторный двигатель (ргк)
WO2009008743A1 (en) Circular run gear-piston engine
RU2334886C1 (ru) Комбинированная силовая установка с охлаждаемой турбиной и регенерацией тепла
RU2659905C2 (ru) Прямоточный роторно-компрессорный двигатель внутреннего сгорания
CN103511123A (zh) 新型发动机
KR101290528B1 (ko) 연소장치가 분리된 내연기관
CN205445684U (zh) 一种滑片式汽动转子发动机
CN205638567U (zh) 一种滑片式汽动转子发动机
KR200249791Y1 (ko) 베인 회전체를 이용한 엔진

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818335

Country of ref document: EP

Kind code of ref document: A1