WO2014206114A1 - 不间断供电的方法和不间断电源 - Google Patents

不间断供电的方法和不间断电源 Download PDF

Info

Publication number
WO2014206114A1
WO2014206114A1 PCT/CN2014/073203 CN2014073203W WO2014206114A1 WO 2014206114 A1 WO2014206114 A1 WO 2014206114A1 CN 2014073203 W CN2014073203 W CN 2014073203W WO 2014206114 A1 WO2014206114 A1 WO 2014206114A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
threshold
circuit
uninterruptible power
bypass
Prior art date
Application number
PCT/CN2014/073203
Other languages
English (en)
French (fr)
Inventor
程洋
刘培国
蔡米塔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14787085.1A priority Critical patent/EP2846437B1/en
Priority to EP18156750.4A priority patent/EP3402037B1/en
Priority to US14/549,389 priority patent/US9729007B2/en
Publication of WO2014206114A1 publication Critical patent/WO2014206114A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/005Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting using a power saving mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to the field of power supply technologies, and more particularly to a method for uninterrupted power supply and an uninterruptible power supply. Background technique
  • UPS Uninterrupted Power Supply
  • UPS In addition to the function of providing uninterrupted power supply to users, also has the function of purifying the power supply and providing high power quality.
  • UPS generally adopts a dual-change working mode. When working, it needs to consume power. The greater the output power, the more power it consumes.
  • ECO-mode Economic Operation mode
  • the power grid directly passes through the UPS bypass line (also called static bypass) to the user.
  • the load provides commercial power.
  • the main part of the UPS is in standby (standby) state. Its output power is zero, and the consumed power is also low, which makes the whole machine more efficient.
  • Embodiments of the present invention provide an uninterruptible power supply method and an uninterruptible power supply, which can effectively improve the efficiency of an uninterruptible power supply when the power grid directly supplies power to the load through the UPS bypass.
  • a method for uninterrupted power supply comprising: switching an uninterruptible power supply from a primary loop operating mode to a bypass operating mode to enable a utility to supply power through a bypass; determining an operating mode of the uninterruptible power supply When the uninterruptible power supply is in the bypass working mode, the operating frequency of the at least one switching tube in the main circuit of the uninterruptible power supply is adjusted from the first frequency to the second frequency, wherein the second frequency is smaller than the first frequency, so as not to decrease The power loss of the discontinuous power supply in bypass mode.
  • the above-mentioned main circuit of the uninterruptible power supply Adjusting the operating frequency of the at least one switching transistor in the circuit from the first frequency to the second frequency, comprising: in the one or more circuits of the rectifier circuit, the discharging circuit, the auxiliary power source, the charging circuit, and the inverter circuit in the main circuit
  • the operating frequency of any one or more of the switching tubes is adjusted from a first frequency to a second frequency.
  • the method of the first aspect further includes: switching the uninterruptible power supply from the main loop working mode to the bypass working mode and the bus voltage of the uninterruptible power supply is high At the first threshold, the rectifier circuit is stopped, and when the bus voltage is lower than the second threshold, the rectifier circuit is operated, wherein the rectifier circuit supplies power to the busbar of the uninterruptible power supply, and the inverter circuit extracts power from the busbar, first The threshold is greater than the second threshold, the first threshold and the second threshold are respectively an upper limit value and a lower limit value of the working voltage of the bus bar, or the first threshold value and the second threshold value are in a range of the working voltage of the bus bar, or When the power supply is switched from the main circuit operation mode to the bypass operation mode and the bus voltage of the uninterruptible power supply is higher than the first threshold, the discharge circuit is stopped, and when the bus voltage is lower than the second threshold, the discharge circuit is operated, wherein the discharge is performed.
  • the circuit supplies power to the busbar of the uninterruptible power supply, and the inverter circuit extracts power from the busbar, and the first threshold is greater than the first Threshold, the first threshold and the second threshold value, respectively, the operating voltage is the upper limit and the lower limit of the bus, or the range of a first threshold value and is located in a second bus operating voltage threshold.
  • the method of the first aspect further includes: determining an output voltage of the charger in the main loop; operating the uninterruptible power supply from the main loop When switching to the bypass mode and the output voltage of the charger in the main circuit is higher than the third threshold, the charger is interrupted to supply power to the auxiliary power supply, and when the output voltage of the charger is lower than the fourth threshold, the auxiliary power supply is re-powered.
  • the auxiliary power source is powered by the charger, the third threshold is greater than a fourth threshold, and the third threshold and the fourth threshold are respectively an upper limit value and a lower limit value of the working voltage of the auxiliary power source, or the third threshold value and the fourth threshold value are located in the auxiliary
  • the operating voltage of the power supply is within the range.
  • the method of the first aspect further includes: when the uninterruptible power supply is switched from the main loop working mode to the bypass working mode, At least one of the plurality of rectifying branches stops operating, or at least one of the plurality of discharge branches in the main circuit stops operating.
  • the method of the first aspect further includes: when the uninterruptible power supply is switched from the main loop working mode to the bypass working mode, The driving signal is stopped for the switching tube of the inverter circuit to stop the inverter circuit, and the inverter circuit is operated by supplying a driving signal to the switching tube of the inverter circuit when the bypass is abnormal.
  • a method for uninterrupted power supply including: switching an uninterruptible power supply from a primary loop operating mode to a bypass operating mode to enable a utility to supply power to the load through a bypass; determining an operating mode of the uninterruptible power supply When the uninterruptible power supply is switched from the main circuit operation mode to the bypass operation mode and the bus voltage of the uninterruptible power supply is higher than the first threshold, the rectifier circuit and/or the discharge circuit in the main circuit are stopped, and in the determination of the main circuit When the voltage of the busbar is lower than the second threshold, the rectifier circuit and/or the discharge circuit are operated, the first threshold is greater than the second threshold, and the first threshold and the second threshold are respectively the upper and lower limits of the operating voltage of the busbar. Or the first threshold and the second threshold are within a range of operating voltages of the bus.
  • the method of the second aspect further includes: determining an output voltage of the charger in the main loop; switching the uninterruptible power supply from the main loop operating mode to the bypass working mode and the charger in the main loop
  • the charger is interrupted to supply power to the auxiliary power source
  • the auxiliary power source is re-powered, wherein the auxiliary power source is powered by the charger, and the third threshold is greater than
  • the fourth threshold, the third threshold and the fourth threshold are respectively an upper limit value and a lower limit value of the operating voltage of the auxiliary power source, or the third threshold value and the fourth threshold value are within a range of the operating voltage of the auxiliary power source.
  • a method for uninterrupted power supply comprising: switching an uninterruptible power supply from a primary loop operating mode to a bypass working mode, so that the utility power supplies power to the load through the bypass; determining an operating mode of the uninterruptible power supply When the uninterruptible power supply is switched from the main circuit operation mode to the bypass operation mode, at least one of the plurality of rectification branches in the main circuit is stopped, or a plurality of discharge branches in the main circuit are At least one of the discharge branches stops working.
  • the method of the third aspect further includes: when the uninterruptible power supply is switched from the main circuit operating mode to the bypass working mode, by applying a driving signal to the switching tube of the inverter circuit to reverse The variable circuit stops working, and the inverter circuit is operated by supplying a drive signal to the switch tube of the inverter circuit when the bypass is abnormal.
  • an uninterruptible power supply including: a main circuit including a rectifying circuit, an inverter circuit, an auxiliary power supply and a charging circuit; a bypass for supplying the mains directly to the load; and a control module for The uninterruptible power supply is switched from the main circuit operation mode to the bypass operation mode, so that the utility power supplies the load through the bypass, determines the operating mode of the uninterruptible power supply, and the uninterruptible power supply is provided when the uninterruptible power supply is in the bypass operation mode.
  • the operating frequency of at least one of the switching circuits is adjusted from a first frequency to a second frequency, wherein the second frequency is less than the first frequency to reduce power loss of the uninterruptible power supply in the bypass mode of operation.
  • the control module works on any one or more of the ones of the rectifier circuit, the discharge circuit, the auxiliary power source, the charging circuit, and the inverter circuit The frequency is adjusted from the first frequency to the second frequency.
  • the main circuit further includes a bus bar, and the control module switches from the main circuit working mode to the bypass working mode in the uninterruptible power supply and the bus voltage of the uninterruptible power supply is high.
  • the rectifier circuit is stopped, and when the bus voltage is lower than the second threshold, the rectifier circuit is operated, wherein the rectifier circuit supplies power to the busbar of the uninterruptible power supply, and the inverter circuit extracts power from the busbar, first The threshold is greater than the second threshold, the first threshold and the second threshold are respectively an upper limit value and a lower limit value of the working voltage of the bus bar, or the first threshold value and the second threshold value are in a range of the working voltage of the bus bar, or the control module is When the uninterruptible power supply is switched from the main circuit operation mode to the bypass operation mode and the bus voltage of the uninterruptible power supply is higher than the first threshold, the discharge circuit is stopped, and when the bus voltage is lower than the second threshold, the discharge circuit is operated.
  • the discharge circuit supplies power to the busbar of the uninterruptible power supply, and the inverter circuit extracts electric energy from the busbar,
  • a threshold is greater than the second threshold.
  • the first threshold and the second threshold are respectively an upper limit and a lower limit of the operating voltage of the bus, or the first threshold and the second threshold are within a range of the operating voltage of the bus.
  • the main circuit further includes a charger, the control module determines the output voltage of the charger in the main circuit; and the uninterruptible power supply works from the main circuit
  • the charger is interrupted to supply power to the auxiliary power source, and when the output voltage of the charger is lower than the fourth threshold, the auxiliary power source is re-energized.
  • the third threshold is greater than a fourth threshold
  • the third threshold and the fourth threshold are respectively an upper limit value and a lower limit value of the working voltage of the auxiliary power source, or the third threshold value and the fourth threshold value are located
  • the range of operating voltage of the auxiliary power supply wherein the auxiliary power source is powered by the charger, the third threshold is greater than a fourth threshold, and the third threshold and the fourth threshold are respectively an upper limit value and a lower limit value of the working voltage of the auxiliary power source, or the third threshold value and the fourth threshold value are located The range of operating voltage of the auxiliary power supply.
  • the main circuit includes multiple rectifying branches and multiple discharging branches
  • the control module also works from the main circuit of the uninterruptible power supply When the mode is switched to the bypass mode, at least one of the plurality of rectifier branches in the main circuit is stopped, or at least one of the plurality of discharge branches in the main circuit is stopped.
  • the control module stops the inverter circuit when the uninterruptible power supply is switched from the main loop working mode to the bypass working mode.
  • the switch tube applies a drive signal to stop the inverter circuit, and operates the inverter circuit by providing a drive signal to the switch tube of the inverter circuit when the bypass is abnormal.
  • an uninterruptible power supply including: a main circuit including a rectifying circuit, a discharging circuit, a bus bar and an inverter circuit, wherein the rectifying circuit supplies electric energy to the bus bar, and the inverter circuit extracts electric energy from the bus bar;
  • the utility model is configured to directly supply the utility power to the load;
  • the control module is configured to switch the uninterruptible power supply from the main circuit working mode to the bypass working mode, so that the utility power supplies the load through the bypass; and determine the working mode of the uninterruptible power supply;
  • the main circuit further includes a charger and an output voltage supplemented by the charger in the determining main circuit, and the uninterruptible power supply is switched from the main circuit working mode to the bypass working mode. And when the output voltage of the charger in the main loop is higher than the third threshold, the charger is interrupted to supply power to the auxiliary power supply, and when the output voltage of the charger is lower than the fourth threshold, the auxiliary power supply is re-powered, wherein the auxiliary power supply is charged.
  • the third threshold is greater than a fourth threshold, the third threshold and the fourth threshold are respectively an upper limit value and a lower limit value of the working voltage of the auxiliary power source, or the third threshold value and the fourth threshold value are in a range of the working voltage of the auxiliary power source Inside.
  • an uninterruptible power supply comprising: a main circuit including a plurality of rectification branches and a plurality of discharge branches; a bypass for supplying the mains directly to the load; and a control module, Used to switch the uninterruptible power supply from the main circuit operating mode to the bypass working mode, so that the mains supply power to the load through the bypass; determine the operating mode of the uninterruptible power supply; switch the uninterruptible power supply from the main circuit operating mode to the bypass In the operating mode, at least one of the plurality of rectifier branches in the main circuit is stopped, or at least one of the plurality of discharge branches in the main circuit is stopped.
  • the main circuit further includes an inverter circuit
  • the control module stops the inverter circuit by stopping the uninterruptible power supply from the main circuit operation mode to the bypass operation mode.
  • the switch tube applies a drive signal to stop the inverter circuit, and operates the inverter circuit by providing a drive signal to the switch tube of the inverter circuit when the bypass is abnormal.
  • the operating frequency of the switching tube of the main circuit of the uninterruptible power supply can be reduced when the uninterruptible power supply is switched to the bypass operation, thereby reducing the operating loss of the uninterruptible power supply, and effectively Improve the efficiency of uninterruptible power supplies.
  • FIG. 1 is a schematic structural view of an uninterruptible power supply.
  • FIG. 2 is a schematic flow chart of a method of uninterrupted power supply according to an embodiment of the present invention.
  • 3 is a schematic flow chart of a method of uninterrupted power supply according to another embodiment of the present invention.
  • 4 is a schematic diagram of a voltage hysteresis method in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a method of uninterruptible power supply according to another embodiment of the present invention.
  • 6 is a schematic circuit diagram of a rectifier circuit of an uninterruptible power supply in accordance with an embodiment of the present invention.
  • Figure 7 is a schematic block diagram of an uninterruptible power supply in accordance with one embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an uninterruptible power supply according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural view of an uninterruptible power supply according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural view of an uninterruptible power supply according to another embodiment of the present invention.
  • Figure 11 is a schematic structural view of an uninterruptible power supply according to another embodiment of the present invention.
  • Figure 12 is a schematic structural view of an uninterruptible power supply according to another embodiment of the present invention. detailed description
  • the UPS can provide power to the load in online mode and ECO mode based on the quality of the mains.
  • the online mode is adopted when the quality of the commercial power is not good
  • the ECO mode is adopted when the commercial power quality is good.
  • the ECO mode is also called the energy-saving operation mode, the bypass mode, or the power-saving mode.
  • the UPS can power the load with two paths: the online main circuit (also known as the double conversion circuit) and the bypass.
  • the online main circuit also known as the double conversion circuit
  • the bypass the bypass.
  • the UPS's online main loop is in standby or standby mode, the bypass is active, and the load is powered by the mains.
  • the UPS can continuously monitor the mains input, switch to bypass operation when the mains quality is good, and switch to the UPS inverter to supply power to the load when the mains quality drops to a certain level.
  • the commercial power may refer to the alternating current provided by the power grid, and the embodiment of the present invention is not limited thereto, and the commercial power may refer to a power source having the same or similar voltage, waveform, frequency, grounding system, and electrical impedance of the alternating current supplied from the online main loop.
  • the uninterruptible power supply 100 includes: a main circuit 110 and a bypass 120.
  • the main circuit 120 includes: a rectifying circuit 111, a bus bar 112, an inverter circuit 113, a direct current to direct current (DC/DC) 114, a battery 115, a charger 116, and an auxiliary power source 117.
  • DC/DC direct current to direct current
  • the rectifying circuit 111 can convert the input mains into a direct current and apply it to the bus 112, and then inverter-convert the voltage of the bus 112 into an alternating current to supply power to the load.
  • the bypass 120 is used to bypass the uninterruptible power supply, so that the uninterruptible power supply is switched to the bypass operation, that is, the mains supplies the load directly.
  • Charger 116 is used to charge battery 115 and can be powered by bus 112 or utility power.
  • the auxiliary power source 117 is used to supply operating power to various portions of the uninterruptible power supply 100 and may be powered by the bus 112, mains, and/or charger 116.
  • the uninterruptible power supply 100 is in the online mode, if the mains fails, the output of the battery 115 can be applied to the bus 112 via a DC-to-DC (DC/DC) circuit 114 (discharge circuit) to ensure uninterrupted power supply.
  • DC/DC DC-to-DC
  • the charger 116 stops working.
  • the energy of bus 112 is provided by battery 115. If the charger is operating, energy is passed from bus 112 through charger 116 to battery 115 and from battery 115 through DC/DC circuit 114 to bus 112.
  • the bus 112 can be powered from the bypass 120 via the inverter 113 so that the charger 116 can operate to charge the battery 115.
  • the uninterruptible power supply of Figure 1 is only one embodiment of the present invention, and those skilled in the art will appreciate that an uninterruptible power supply may include only a portion of the above components.
  • the uninterruptible power supply may not include the rectifier circuit 111 or the DC/DC circuit 114.
  • FIG. 2 is a schematic flow chart of a method of uninterrupted power supply according to an embodiment of the present invention.
  • 210. Switch the uninterruptible power supply from the main circuit working mode to the bypass working mode, so that the mains supplies power to the load through the bypass.
  • Uninterruptible power supplies are usually in the main circuit mode of operation when working, and in some cases can be cut Switch to bypass mode.
  • the uninterruptible power supply can be manually switched to the bypass operation.
  • the uninterruptible power supply can be manually switched to the bypass by the manual button on the uninterruptible power supply. run.
  • the quality of the mains may be detected first, and then the uninterruptible power supply is switched to the bypass operation according to the detection result.
  • a special detection module may be set on the uninterruptible power supply to detect the mains.
  • the control module switches the uninterruptible power supply from the main circuit to the bypass operation, that is, it runs in the ECO mode, and when the mains quality is not good, the uninterruptible power supply is switched from the bypass.
  • the uninterruptible power supply is switched to supply power from the inverter to the load, ie in online mode.
  • the uninterruptible power supply can determine whether the uninterruptible power supply is in the bypass mode or the main circuit mode according to the user's manual input or based on the above detection results.
  • the controller or control module of the uninterruptible power supply can change the operating frequency of the switching tubes on the main circuit of the uninterruptible power supply.
  • the operating frequency of the switching circuit of the main circuit of the uninterruptible power supply can be reduced, thereby reducing the operating loss of the uninterruptible power supply, and effectively improving the working efficiency of the uninterruptible power supply.
  • the operating frequency of one or more of the one or more of the rectifier circuit, the discharge circuit, the auxiliary power source, the charging circuit, and the inverter circuit in the main circuit may be adjusted from the first frequency to the first frequency. Two frequencies.
  • the switching transistor of any one or more of the rectifier circuit, the discharge circuit, the auxiliary power source, and the inverter circuit of the uninterruptible power supply can be reduced (for example, the main The operating frequency of the switching tube) reduces the loss of the rectifier circuit, the inverter circuit, the auxiliary power supply or the discharge circuit of the uninterruptible power supply, and improves the overall efficiency of the uninterruptible power supply.
  • the rectifier circuit can convert the input mains energy into DC power to the bus.
  • the rectifier circuit needs to provide little energy to the bus, so the rectifier circuit can be reduced.
  • the operating frequency of the switching tube ensures that the bus voltage fluctuates within a reliable range, thereby reducing the operating loss of the rectifier circuit.
  • the charger is taken from the bus When the battery is charged by the electric power and the auxiliary power is extracted from the bus, the energy demand of the charger and the auxiliary power is much smaller than the output power of the whole machine. Therefore, even if the operating frequency of the rectifier circuit is lowered, the whole machine can be satisfied. Power supply requirements.
  • the inverter circuit In ECO mode, the inverter circuit is on standby and has no power output. Since the inverter circuit has no power output, the operating frequency of the switching tube of the inverter circuit can also be reduced, and the operating loss of the inverter circuit can be reduced while ensuring the quality of the output power.
  • ECO mode multiple parts of the uninterruptible power supply are on standby, or low-speed operation, especially fans, which are usually at low speed or stop, so the output power of the auxiliary power supply (auxiliary source) can be reduced.
  • the operating frequency of the switching tube of the auxiliary power supply can also be reduced, thereby reducing the operating loss of the auxiliary power supply. Since the current of the whole machine is small, the influence of the working frequency reduction on the noise and the waveform quality is small, so it will not affect the work of the whole machine.
  • the method of FIG. 1 further includes: stopping the rectifier circuit when the uninterruptible power supply is switched from the main loop operation mode to the bypass operation mode and the bus voltage of the uninterruptible power supply is higher than the first threshold Working, and when the bus voltage is lower than the second threshold, the rectifier circuit is operated, wherein the rectifier circuit supplies power to the busbar of the uninterruptible power supply, and the inverter circuit extracts power from the busbar, the first threshold is greater than the second threshold, the first threshold and The second threshold is an upper limit value and a lower limit value of the operating voltage of the bus bar, respectively, or the first threshold value and the second threshold value are within a range of the operating voltage of the bus bar.
  • the method of FIG. 1 further includes: stopping the discharge circuit when the uninterruptible power supply is switched from the main circuit operation mode to the bypass operation mode and the bus voltage of the uninterruptible power supply is higher than the first threshold Working, and when the bus voltage is lower than the second threshold, the discharge circuit is operated, wherein the discharge circuit supplies power to the busbar of the uninterruptible power supply, and the inverter circuit extracts electric energy from the busbar, the first threshold is greater than the second threshold, the first threshold and The second threshold is an upper limit value and a lower limit value of the operating voltage of the bus bar, respectively, or the first threshold value and the second threshold value are within a range of the operating voltage of the bus bar.
  • Embodiments of the present invention provide a voltage hysteresis method in which a rectifier circuit first raises bus energy (or voltage) to a set threshold (eg, a first threshold) for a period of time, and then the rectifier circuit stops operating. At this time, the energy stored on the busbar provides energy to each part.
  • a set threshold eg, a first threshold
  • the bus voltage drops slowly, and when the voltage on the bus drops to a set threshold (eg, a second threshold), the rectifier circuit resumes operation, energizing the bus, and boosting the bus voltage to a first threshold.
  • a set threshold eg, a second threshold
  • This reciprocating can ensure the normal operation of the whole machine. In this mode of operation, the rectifier circuit works intermittently and for a long time. Does not work, so it can reduce losses.
  • the method of FIG. 1 further includes: determining an output voltage of the charger in the main loop; switching the uninterruptible power supply from the main loop operating mode to the bypass working mode and outputting the charger in the main loop
  • the charger is interrupted to supply power to the auxiliary power source
  • the auxiliary power source is re-powered, wherein the auxiliary power source is powered by the charger, and the third threshold is greater than the third threshold.
  • the fourth threshold, the third threshold and the fourth threshold are respectively an upper limit value and a lower limit value of the operating voltage of the auxiliary power source, or the third threshold value and the fourth threshold value are within a range of the operating voltage of the auxiliary power source.
  • the auxiliary power source energy requirement is also relatively small, so the charger can also work in the voltage hysteresis mode to supply power to the auxiliary power source, thereby reducing the loss of the charger.
  • the method of FIG. 1 further includes: causing at least one of the plurality of rectification branches in the main circuit to rectify when the uninterruptible power supply is switched from the main circuit operation mode to the bypass operation mode The road stops working, or at least one of the plurality of discharge branches in the main circuit stops working.
  • the rectification branch/discharge branch operation can be stopped by stopping the operation of the switching tube on the rectifying branch/discharge branch, or the rectification/discharge branch operation can be stopped by stopping the input of electric energy to the rectifying/discharging branch.
  • the rectifier circuit of the uninterruptible power supply includes more than two rectification branches
  • the partial rectification branch can be turned off, and a part of the rectification branch is reserved.
  • only one rectifier branch is reserved to provide energy to the bus. Since a part of the rectifier branch stops working, the loss of the uninterruptible power supply can be reduced.
  • the bus requires less energy in the ECO mode, it is possible to turn off the partial discharge branch and reserve a part of the discharge branch operation. For example, only one discharge branch is reserved to supply energy to the bus. Since a part of the discharge branch stops working, the loss of the uninterruptible power supply can be reduced.
  • the method of FIG. 2 further includes: when the uninterruptible power supply is switched from the main circuit operation mode to the bypass operation mode, the inverter is applied by stopping the application of the drive signal to the switch circuit of the inverter circuit.
  • the drive signal of the inverter circuit can be turned off, or the drive signal of the inverter circuit can be kept low.
  • the inverter circuit If the inverter circuit is started from the off state to the time that the power can be supplied to the user to meet the requirement of reliable power supply to the load, that is, the inverter circuit can start to supply power to the load in time if the bypass is abnormal and the power cannot be continuously supplied to the load reliably.
  • the inverter can be turned off in ECO mode to reduce losses.
  • FIG. 3 is a schematic flow chart of a method of uninterrupted power supply according to another embodiment of the present invention.
  • step 310 Switch the uninterruptible power supply from the main circuit operating mode to the bypass working mode to enable the mains to supply power to the load through the bypass; determine the operating mode of the uninterruptible power supply. Similar to step 210 of the embodiment of FIG. 2, details are not described herein again.
  • step 320 determining the working mode of the uninterruptible power supply. Similar to step 220 of the embodiment of FIG. 2, details are not described herein again.
  • the rectifier circuit and/or the discharging circuit in the main circuit are stopped, and the main circuit is determined.
  • the voltage of the middle busbar is lower than the second threshold, the rectifier circuit and/or the discharge circuit are operated, the first threshold is greater than the second threshold, and the first threshold and the second threshold are respectively the upper limit and the lower limit of the working voltage of the busbar.
  • the value, or the first threshold and the second threshold are within a range of operating voltages of the bus.
  • Embodiments of the present invention provide a voltage hysteresis method in which a rectifier circuit first raises bus energy (or voltage) to a set threshold (eg, a first threshold) for a period of time, and then the rectifier circuit stops operating. At this time, the energy stored on the busbar provides energy to each part.
  • a set threshold eg, a first threshold
  • the bus voltage drops slowly, and when the voltage on the bus drops to a set threshold (e.g., the second threshold), the rectifier circuit resumes operation, energizing the bus, and boosting the bus voltage to a first threshold.
  • a set threshold e.g., the second threshold
  • This reciprocating can ensure the normal operation of the whole machine. In this mode of operation, the rectifier circuit operates intermittently and does not work for a considerable period of time, thus reducing losses.
  • the rectifier circuit and/or the discharge circuit are stopped, and the determination is made in the case where it is determined that the voltage of the bus of the uninterruptible power supply is higher than the first threshold.
  • the rectifier circuit and/or the discharge circuit are operated, thereby reducing the operation loss of the uninterruptible power supply, and effectively improving the operating efficiency of the uninterruptible power supply.
  • 3 further includes: determining an output voltage of the charger in the main loop; switching the uninterruptible power supply from the main loop operating mode to the bypass working mode and outputting the charger in the main loop
  • the charger is interrupted to supply power to the auxiliary power source
  • the auxiliary power source is re-powered, wherein the auxiliary power source is powered by the charger, and the third threshold is greater than the third threshold.
  • the fourth threshold, the third threshold and the fourth threshold are respectively an upper limit value and a lower limit value of the operating voltage of the auxiliary power source, or the third threshold value and the fourth threshold value are within a range of the operating voltage of the auxiliary power source.
  • the auxiliary power source energy requirement is also relatively small, so the charger can also work in the voltage hysteresis mode to supply power to the auxiliary power source, thereby reducing the loss of the charger.
  • FIG. 4 is a schematic diagram of a voltage hysteresis method in accordance with an embodiment of the present invention.
  • the driving circuit of the rectifier circuit generates a driving signal when the voltage of the bus bar is lower than the second threshold (as shown in the driving waveform of FIG. 4), so that the rectifier circuit works to supply power to the busbar, thereby increasing the voltage of the busbar.
  • the driving circuit of the rectifier circuit stops generating the driving signal, so that the rectifier circuit stops working, and no power is supplied to the busbar, so that the voltage of the busbar decreases due to the electric energy extracted by the inverter circuit.
  • the drive circuit of the rectifier circuit again generates a drive signal to maintain the voltage of the busbar between the first threshold and the second threshold.
  • the first threshold and the second threshold may be set as desired by one of ordinary skill in the art as long as the bus voltage can be maintained in a normal operation to ensure that the various portions of the power drawn from the bus are operating normally.
  • a driving signal is generated when the voltage of the outlet of the charger is lower than the fourth threshold, so that the charger supplies power to the auxiliary power source, thereby increasing the voltage of the outlet of the charger.
  • the charger stops supplying power to the auxiliary power source when the voltage of the outlet of the charger is higher than the first threshold, thereby causing the voltage of the charger outlet to decrease, and generating the drive again when the voltage of the charger outlet drops to the second threshold
  • the signal causes the charger to again provide power to the auxiliary power source to maintain the voltage provided by the charger for the auxiliary power source between a third threshold and a fourth threshold.
  • the third threshold and the fourth threshold may be set as desired by those skilled in the art as long as the voltage supplied to the auxiliary power source can be maintained in a normal operation to ensure that the respective portions of the auxiliary power source are extracted.
  • FIG. 5 is a schematic flow chart of a method of uninterruptible power supply according to another embodiment of the present invention.
  • the uninterruptible power supply is switched from the main circuit working mode to the bypass working mode to enable the mains Power is supplied to the load by bypass. Similar to step 210 of FIG. 2, details are not described herein again.
  • step 520 determining an operating mode of the uninterruptible power supply. Similar to step 220 of FIG. 2, it will not be described again here.
  • the rectifier circuit of the uninterruptible power supply includes more than two rectification branches
  • the partial rectification branch can be turned off, and a part of the rectification branch is reserved.
  • only one rectifier branch is reserved to provide energy to the bus. Since a part of the rectifier branch stops working, the loss of the uninterruptible power supply can be reduced.
  • the bus requires less energy in the ECO mode, it is possible to turn off the partial discharge branch and reserve a part of the discharge branch operation. For example, only one discharge branch is reserved to supply energy to the bus. Since a part of the discharge branch stops working, the loss of the uninterruptible power supply can be reduced.
  • the plurality of rectification branches or discharge branches of the uninterruptible power supply are made to determine that the voltage of the bus of the uninterruptible power supply is higher than the first threshold. At least one of the rectifier branch or the discharge branch stops working, thereby reducing the operating loss of the uninterruptible power supply, and effectively improving the working efficiency of the uninterruptible power supply. For example, it is possible to turn off the drive signal of the rectified or branch discharge branch or keep the drive signal low.
  • the method of FIG. 4 further includes: when the uninterruptible power supply is switched from the main circuit operation mode to the bypass operation mode, the inverter is applied by stopping the application of the drive signal to the switch circuit of the inverter circuit. The circuit stops working and the inverter circuit is operated by providing a drive signal to the switching circuit of the inverter circuit when the bypass is abnormal.
  • the inverter circuit If the inverter circuit is started from the off state to the time that the power can be supplied to the user to meet the requirement of reliable power supply to the load, that is, the inverter circuit can start to supply power to the load in time if the bypass is abnormal and the power cannot be continuously supplied to the load reliably.
  • the inverter can be turned off in ECO mode to reduce losses.
  • FIG. 6 is a schematic circuit diagram of a rectifier circuit of an uninterruptible power supply in accordance with an embodiment of the present invention.
  • the main circuit of the uninterruptible power supply of Figure 6 comprises three rectifying branches: a rectifying branch 1, a rectifying branch 2 and a rectifying branch 3.
  • the rectifier branch 1 includes: diodes D11 to D18, inductor lines 11L11 and L12, switching transistors Q11 and Q12, and capacitors C11 and C12.
  • the rectifier branch includes: a diode D21 to D28, inductors ⁇ L21 and L22, switching transistors Q21 and Q22, capacitors C21 and C22.
  • the rectifier branch 3 includes: diodes D31 to D38, inductors ⁇ L31 and L32, switching transistors Q31 and Q32, and capacitors C31 and C32.
  • the three-phase rectifier branch receives the input of the three-phase AC point and applies the rectified DC power to the bus BUS.
  • FIG. 7 is a schematic block diagram of an uninterruptible power supply 700 in accordance with one embodiment of the present invention.
  • the uninterruptible power supply 700 includes a main loop 710, a bypass 720, and a control module 730.
  • the main loop 710 includes a rectifier circuit, an inverter circuit, an auxiliary power source, and a charging circuit.
  • Bypass 720 used to supply utility power directly to the load.
  • the control module 730 is configured to switch the uninterruptible power supply 700 from the main loop operation mode to the bypass operation mode, so that the mains supply power to the load through the bypass 720; determine the operating mode of the uninterruptible power supply 700; and the uninterruptible power supply 700 from the main
  • the loop operation mode is switched to the bypass operation mode and the bus voltage of the uninterruptible power supply 700 is higher than the first threshold, the rectifier circuit and/or the discharge circuit in the main circuit 710 is stopped, and the voltage of the bus bar in the main circuit 710 is determined to be low.
  • the rectifier circuit and/or the discharge circuit are operated, the first threshold is greater than the second threshold, and the first threshold and the second threshold are respectively an upper limit and a lower limit of the operating voltage of the bus, or the first The threshold and the second threshold are within a range of operating voltages of the bus.
  • control module 730 adjusts an operating frequency of any one or more of the ones of the rectifier circuit, the discharge circuit, the auxiliary power source, the charging circuit, and the inverter circuit from the first frequency to Second frequency.
  • the operating frequency of the switching circuit of the main circuit of the uninterruptible power supply can be reduced, thereby reducing the operating loss of the uninterruptible power supply, and effectively improving the working efficiency of the uninterruptible power supply.
  • the main loop 710 further includes a bus bar
  • the control module 730 switches the uninterruptible power supply 700 from the main circuit 710 operating mode to the bypass working mode and the bus voltage of the uninterruptible power supply 700 is higher than the first threshold.
  • the rectifier circuit is stopped, and the bus voltage is lower than the second threshold, the rectifier circuit is operated, wherein the rectifier circuit supplies power to the busbar of the uninterruptible power supply 700, and the inverter circuit extracts power from the busbar, and the first threshold is greater than the first threshold.
  • the second threshold, the first threshold and the second threshold are respectively an upper limit value and a lower limit value of the operating voltage of the bus bar, or the first threshold value and the second threshold value are within a range of the working voltage of the bus bar.
  • the control module 730 is in the uninterruptible power supply 700 from the main loop 710.
  • the discharging circuit is stopped, and when the bus voltage is lower than the second threshold, the discharging circuit is operated, wherein the discharging circuit is The busbar of the uninterruptible power supply 700 supplies power, and the inverter circuit extracts electric energy from the busbar.
  • the first threshold is greater than a second threshold.
  • the first threshold and the second threshold are respectively an upper limit and a lower limit of the working voltage of the bus, or the first The threshold and the second threshold are within a range of operating voltages of the bus.
  • the main loop 710 further includes a charger
  • the control module 730 determines an output voltage of the charger in the main loop 710; the uninterruptible power supply 700 is switched from the main loop operating mode to the bypass working mode and the main
  • the charger is interrupted to supply power to the auxiliary power source, and when the output voltage of the charger is lower than the fourth threshold, the auxiliary power source is re-powered, wherein the auxiliary power source is powered by the charger.
  • the third threshold is greater than a fourth threshold
  • the third threshold and the fourth threshold are respectively an upper limit value and a lower limit value of the working voltage of the auxiliary power source, or the third threshold value and the fourth threshold value are within a range of the working voltage of the auxiliary power source .
  • the main loop 710 includes a plurality of rectification branches and a plurality of discharge branches
  • the control module 730 further enables the main system when the uninterruptible power supply 700 is switched from the main loop operation mode to the bypass operation mode. At least one of the plurality of rectifying branches in the loop 710 is deactivated, or at least one of the plurality of discharge branches in the main circuit 710 is deactivated.
  • the control module 730 stops the inverter circuit by stopping the application of the drive signal to the switch tube of the inverter circuit.
  • the bypass 720 is abnormal, the inverter circuit is operated by supplying a driving signal to the switching tube of the inverter circuit.
  • each unit of the uninterruptible power supply 700 can be referred to the method of Fig. 2 above. In order to avoid repetition, it will not be repeated here.
  • FIG. 8 is a schematic structural diagram of an uninterruptible power supply 800 according to another embodiment of the present invention.
  • the uninterruptible power supply 800 includes a main loop 810, a bypass 820, and a control module 830.
  • the main circuit 820 includes a rectifier circuit, a discharge circuit, a bus bar, and an inverter circuit, wherein the rectifier circuit supplies power to the bus bar, and the inverter circuit extracts power from the bus bar.
  • the control module 830 is configured to switch the uninterruptible power supply 800 from the main circuit operation mode to the bypass operation mode, so that the mains supply power to the load through the bypass 820; determine the operation mode of the uninterruptible power supply 800; and the uninterruptible power supply 800 from the main When the loop operation mode is switched to the bypass operation mode and the bus voltage of the uninterruptible power supply 800 is higher than the first threshold, the rectifier circuit and/or the discharge circuit in the main circuit 810 are stopped, and the main circuit 810 is determined.
  • the rectifier circuit and/or the discharge circuit are operated, the first threshold is greater than the second threshold, and the first threshold and the second threshold are respectively the upper limit and the lower limit of the working voltage of the busbar.
  • the value, or the first threshold and the second threshold are within a range of operating voltages of the bus.
  • the rectifier circuit and/or the discharge circuit are stopped, and the determination is made in the case where it is determined that the voltage of the bus of the uninterruptible power supply is higher than the first threshold.
  • the rectifier circuit and/or the discharge circuit are operated, thereby reducing the operation loss of the uninterruptible power supply, and effectively improving the operating efficiency of the uninterruptible power supply.
  • the main circuit 810 further includes a charger and an auxiliary power source.
  • the auxiliary power of the uninterruptible power supply 800 is powered by the charger of the uninterruptible power supply 800.
  • the control module 830 is further configured to determine the charging in the main circuit 810.
  • Output voltage of the device and when the uninterruptible power supply 800 is switched from the main circuit operation mode to the bypass operation mode and the output voltage of the charger in the main circuit 810 is higher than the third threshold, the charger is interrupted to supply power to the auxiliary power supply, and When the output voltage of the charger is lower than the fourth threshold, the auxiliary power source is re-powered, wherein the auxiliary power source is powered by the charger, the third threshold is greater than the fourth threshold, and the third threshold and the fourth threshold are respectively the working voltage of the auxiliary power source.
  • the limit value and the lower limit value, or the third threshold value and the fourth threshold value are within a range of the operating voltage of the auxiliary power source.
  • each unit of the uninterruptible power supply 800 can be referred to the method of Fig. 4 above. In order to avoid repetition, it will not be repeated here.
  • FIG. 9 is a schematic structural diagram of an uninterruptible power supply 900 according to another embodiment of the present invention.
  • the uninterruptible power supply 900 includes: a main loop 910, a bypass 920, and a control module 930.
  • Main circuit 910 includes a plurality of rectification branches and a plurality of discharge branches.
  • Bypass 920 is used to provide utility power directly to the load.
  • the control module 930 is configured to switch the uninterruptible power supply 900 from the main loop operation mode to the bypass operation mode to enable the mains to supply power to the load through the bypass 920; determine the operating mode of the uninterruptible power supply 900; and the uninterruptible power supply 900 from the main
  • the loop operation mode is switched to the bypass operation mode, at least one of the plurality of rectifier branches in the main circuit 910 is stopped, or at least one of the plurality of discharge branches in the main circuit 910 is discharged. The road stopped working.
  • the main loop 910 further includes an inverter circuit
  • the control module 930 stops the switch tube of the inverter circuit when the uninterruptible power supply 900 is switched from the main loop operation mode to the bypass operation mode.
  • a drive signal is applied to stop the inverter circuit, and the inverter circuit is operated by providing a drive signal to the switch tube of the inverter circuit when the bypass 920 is abnormal.
  • the operation and function of the various units of the uninterruptible power supply 900 can be referred to the method of FIG. 5 described above. For To avoid repetition, we will not repeat them here.
  • FIG. 10 is a schematic structural diagram of an uninterruptible power supply 1000 according to another embodiment of the present invention.
  • the uninterruptible power supply 1000 includes a processor 1010, a memory 1020, a main loop 1030, a communication bus 1040, and a bypass 1050.
  • the processor 1010 calls the code stored in the memory 1020 via the communication bus 1040 to switch the uninterruptible power supply 1000 from the main loop operation mode to the bypass operation mode, so that the utility power supplies the load through the bypass 1050, and determines the uninterruptible power supply 1000.
  • the operating frequency of the switching circuit of the main circuit of the uninterruptible power supply can be reduced, thereby reducing the operating loss of the uninterruptible power supply, and effectively improving the working efficiency of the uninterruptible power supply.
  • the main circuit 1030 includes a rectifier circuit, a discharge circuit, an auxiliary power source, and an inverter circuit
  • the processor 1010 includes one of a rectifier circuit, a discharge circuit, an auxiliary power source, a charging circuit, and an inverter circuit.
  • the operating frequency of any one or more of the switching tubes is adjusted from the first frequency to the second frequency.
  • the main circuit 1030 further includes a bus bar, the rectifying circuit and the discharging circuit provide power for the busbar of the uninterruptible power supply 1000, the inverter circuit extracts electric energy from the busbar, and the processor 1010 is still in the uninterruptible power supply 1000.
  • the rectifier circuit When the main circuit operation mode is switched to the bypass operation mode and the bus voltage of the uninterruptible power supply 1000 is higher than the first threshold, the rectifier circuit is stopped, and when the bus voltage is lower than the second threshold, the rectifier circuit is operated, wherein the rectifier circuit Providing power for the busbar of the uninterruptible power supply 1000, the inverter circuit extracts electric energy from the busbar, the first threshold is greater than the second threshold, and the first threshold and the second threshold are respectively the upper and lower limits of the working voltage of the busbar, or A threshold and a second threshold are within a range of operating voltages of the bus.
  • the processor 1010 switches from the primary loop mode of operation to the bypass mode of operation and the bus voltage of the uninterruptible power supply 1000 is above a first threshold.
  • the discharge circuit is operated, wherein
  • the circuit provides power for the busbar of the uninterruptible power supply 1000, the inverter circuit extracts electric energy from the busbar, the first threshold is greater than the second threshold, and the first threshold and the second threshold are respectively the upper and lower limits of the working voltage of the busbar, or The first threshold and the second threshold are within a range of operating voltages of the bus.
  • the main loop 1030 further includes a charger
  • the processor 1010 further determines an output voltage of the charger in the main loop 1030; the uninterruptible power supply 1000 is switched from the main loop operation mode to the bypass operation mode and When the output voltage of the charger in the main circuit 1030 is higher than the third threshold, the charger is interrupted to supply power to the auxiliary power supply, and when the output voltage of the charger is lower than the fourth threshold, the auxiliary power supply is re-powered, wherein the auxiliary power supply is charged.
  • the third threshold is greater than a fourth threshold, the third threshold and the fourth threshold are respectively an upper limit value and a lower limit value of the working voltage of the auxiliary power source, or the third threshold value and the fourth threshold value are in a range of the working voltage of the auxiliary power source Inside.
  • the main circuit 1030 includes a plurality of rectification branches and a plurality of discharge branches
  • the processor 1010 further causes the main circuit 1010 to switch from the main circuit operation mode to the bypass operation mode. At least one of the plurality of rectifying branches in the circuit 1030 is deactivated or at least one of the plurality of discharge branches in the main circuit 1030 is deactivated.
  • the processor 1010 stops the inverter circuit by stopping the application of the drive signal to the switch tube of the inverter circuit.
  • each unit of the uninterruptible power supply 1000 can be referred to the method of Fig. 2 above. In order to avoid repetition, it will not be described here.
  • FIG 11 is a schematic block diagram of an uninterruptible power supply 1100 in accordance with another embodiment of the present invention.
  • the uninterruptible power supply 1100 includes a processor 1110, a memory 1120, a main loop 1130, a communication bus 1140, and a bypass 1150.
  • the main circuit 1130 includes a rectifier circuit, a discharge circuit, a bus bar and an inverter circuit, wherein the rectifier circuit supplies power to the bus bar, the inverter circuit extracts power from the bus bar, and the bypass 1150 is configured to directly supply the utility power to the load.
  • the processor 1110 calls the code stored in the memory 1120 via the communication bus 1140 to switch the uninterruptible power supply 1100 from the main loop operation mode to the bypass operation mode, so that the mains supplies power to the load through the bypass 1150; determining the uninterruptible power supply 1100 Working mode; when the uninterruptible power supply 1100 is switched from the main circuit operating mode to the bypass operating mode and the bus voltage of the uninterruptible power supply 1100 is higher than the first threshold, the rectifier circuit and/or the discharging circuit in the main circuit 1130 is stopped.
  • the rectifier circuit and/or the discharge circuit are operated, the first threshold is greater than the second threshold, and the first threshold and the second threshold are respectively the working voltage of the busbar.
  • the upper limit value and the lower limit value, or the first threshold value and the second threshold value are within a range of the operating voltage of the bus bar.
  • the rectifier circuit and/or the discharge circuit are stopped, and the determination is made in the case where it is determined that the voltage of the bus of the uninterruptible power supply is higher than the first threshold.
  • the rectifier circuit and/or the discharge circuit are operated, thereby reducing the operation loss of the uninterruptible power supply, and effectively improving the operating efficiency of the uninterruptible power supply.
  • the main circuit 1130 further includes a charger and an auxiliary power source.
  • the auxiliary power of the uninterruptible power supply 1100 is powered by the charger of the uninterruptible power supply 1100, and the processor 1110 is further configured to determine the charging in the main circuit 1130.
  • Output voltage of the device and when the uninterruptible power supply 1100 is switched from the main circuit operation mode to the bypass operation mode and the output voltage of the charger in the main circuit 1130 is higher than the third threshold, the charger is interrupted to supply power to the auxiliary power supply, and When the output voltage of the charger is lower than the fourth threshold, the auxiliary power source is re-powered, wherein the auxiliary power source is powered by the charger, the third threshold is greater than the fourth threshold, and the third threshold and the fourth threshold are respectively the working voltage of the auxiliary power source.
  • the limit value and the lower limit value, or the third threshold value and the fourth threshold value are within a range of the operating voltage of the auxiliary power source.
  • each unit of the uninterruptible power supply 1100 can be referred to the method of Fig. 4 above. In order to avoid repetition, it will not be described here.
  • FIG. 12 is a schematic block diagram of an uninterruptible power supply 1200 in accordance with another embodiment of the present invention.
  • the uninterruptible power supply 1200 includes a processor 1210, a memory 1220, a main loop 1230, a communication bus 1240, and a bypass 1250.
  • the main circuit 1230 includes a plurality of rectification branches and a plurality of discharge branches; and a bypass 1250 for supplying the mains directly to the load.
  • the processor 1210 calls the code stored in the memory 1220 via the communication bus 1240 to switch the uninterruptible power supply 1200 from the primary loop mode of operation to the bypass mode of operation to enable the utility to power the load through the bypass 1250; determining the uninterruptible power supply 1200 The working mode; when the uninterruptible power supply 1200 is switched from the main circuit operating mode to the bypass working mode, at least one of the plurality of rectifying branches in the main circuit 1230 is stopped, or the main circuit 1230 is At least one of the plurality of discharge branches stops operating.
  • the plurality of rectification branches or discharge branches of the uninterruptible power supply are made to determine that the voltage of the bus of the uninterruptible power supply is higher than the first threshold. At least one of the rectifier branch or the discharge branch stops working, thereby reducing the operating loss of the uninterruptible power supply, and effectively improving the working efficiency of the uninterruptible power supply.
  • the main circuit 1230 further includes an inverter circuit
  • the processor 1210 stops by stopping the uninterruptible power supply 1200 from the main circuit operation mode to the bypass operation mode.
  • a drive signal is applied to the switch tube of the inverter circuit to stop the inverter circuit, and the inverter circuit is operated by supplying a drive signal to the switch tube of the inverter circuit when the bypass 1250 is abnormal.
  • each unit of the uninterruptible power supply 1200 can be referred to the method of Fig. 5 above. In order to avoid repetition, it will not be described here.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present invention that contributes in essence or to the prior art or a portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including a number of instructions to make a computer device (which can be a personal computer, a server, Or a network device or the like) performing all or part of the steps of the method of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

本发明是供了一种不间断供电的方法和不间断电源。该方法包括:将不间断电源由主回路工作模式切换到旁路工作模式,以使市电通过旁路对负载供电;确定不间断电源的工作模式:在不间断电源处于旁路工作模式时,将不间断电源的主回路中的至少一个开关管的工作频率从第一频率调整为第二频率,其中第二频率小于第一频率,以降低不间断电源处于旁路工作模式下的功率损耗。根据本发明的实施例可以在不间断电源切换至旁路运行时,降低不间断电源的主回路的开关管的工作频率,从而降低不间断电源的工作损耗,有效提高不间断电源的工作效率。

Description

不间断供电的方法和不间断电源 本申请要求于 2013 年 6 月 28 日提交中国专利局、 申请号为 201310269839.0、 发明名称为"不间断供电的方法和不间断电源"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及电源技术领域, 尤其是涉及一种不间断供电的方法和不间断 电源。 背景技术
不间断电源 (Uninterrupted Power Supply, UPS )在满足为用户不间断 供电的功能外, 还有净化电源, 提供高电能质量的作用。 UPS—般采用双变 换工作模式, 在工作的时候, 需要消耗电能, 其输出功率越大, 消耗的电能 也越多。为了节能,在电网质量比较好的时候,提出了经济运行(Economical Operation, ECO )模式( ECO-mode )工作的概念, 即: 电网直接通过 UPS 的旁路线(也称静态旁路)给用户的负载提供市电, UPS内的主要部分处于 待命(待机)状态, 其输出功率为零, 消耗的电能也比较低, 使整机的效率 较高。
在 ECO模式下, 虽然 UPS主要部分处于待命状态, 但还是会消耗一定 的能量, 这样也使得 ECO模式下的整机效率不能得到有效提高。 发明内容
本发明的实施例提出了一种不间断供电的方法和不间断电源, 能够有效 提高不间断电源在电网直接通过 UPS旁路给负载供电时的效率。
第一方面, 提供了一种不间断供电的方法, 包括: 将不间断电源由主回 路工作模式切换到旁路工作模式, 以使市电通过旁路对负载供电; 确定不间 断电源的工作模式; 在不间断电源处于旁路工作模式时, 将不间断电源的主 回路中的至少一个开关管的工作频率从第一频率调整为第二频率, 其中第二 频率小于第一频率, 以降低不间断电源处于旁路工作模式下的功率损耗。
结合第一方面, 在第一种可能的实现方式下, 上述将不间断电源的主回 路中的至少一个开关管的工作频率从第一频率调整为第二频率, 包括: 将主 回路中的整流电路、 放电电路、 辅助电源、 充电电路和逆变电路中一个或多 个电路中的任一个或多个开关管的工作频率从第一频率调整为第二频率。
结合第一种可能的实现方式, 在第二种可能的实现方式下, 第一方面的 方法还包括: 在不间断电源从主回路工作模式切换至旁路工作模式并且不间 断电源的母线电压高于第一阈值时, 使整流电路停止工作, 而在母线电压低 于第二阈值时, 使整流电路工作, 其中整流电路为不间断电源的母线提供电 能, 逆变电路从母线抽取电能, 第一阈值大于第二阈值, 第一阈值和第二阈 值分别为母线的工作电压的上限值和下限值,或者第一阈值和第二阈值位于 母线的工作电压的范围内, 或者, 在不间断电源从主回路工作模式切换至旁 路工作模式并且不间断电源的母线电压高于第一阈值时,使放电电路停止工 作, 而在母线电压低于第二阈值时, 使放电电路工作, 其中放电电路为不间 断电源的母线提供电能,逆变电路从母线抽取电能,第一阈值大于第二阈值, 第一阈值和第二阈值分别为母线的工作电压的上限值和下限值,或者第一阈 值和第二阈值位于母线的工作电压的范围内。
结合第一种或第二种可能的实现方式, 在第三种可能的实现方式下, 第 一方面的方法还包括: 确定主回路中充电器的输出电压; 在不间断电源从主 回路工作模式切换至旁路工作模式并且主回路中充电器的输出电压高于第 三阈值时, 使充电器中断给辅助电源供电, 并且在充电器的输出电压低于第 四阈值时, 重新给辅助电源供电, 其中辅助电源由充电器供电, 第三阈值大 于第四阈值, 第三阈值和第四阈值分别为辅助电源的工作电压的上限值和下 限值, 或者第三阈值和第四阈值位于辅助电源的工作电压的范围内。
结合上述任一种可能的实现方式, 在第四种可能的实现方式下, 第一方 面的方法还包括: 在不间断电源从主回路工作模式切换至旁路工作模式时, 使主回路中的多个整流支路中的至少一条整流支路停止工作, 或者使主回路 中的多个放电支路中的至少一条放电支路停止工作。
结合第一方面或上述任一种可能的实现方式,在第五种可能的实现方式 下, 第一方面的方法还包括: 在不间断电源从主回路工作模式切换至旁路工 作模式时,通过停止为逆变电路的开关管施加驱动信号来使逆变电路停止工 作, 并在旁路异常时通过为逆变电路的开关管提供驱动信号来使逆变电路工 作。 第二方面, 提供了一种不间断供电的方法, 包括: 将不间断电源由主回 路工作模式切换到旁路工作模式, 以使市电通过旁路对负载供电; 确定不间 断电源的工作模式; 在不间断电源从主回路工作模式切换至旁路工作模式并 且不间断电源的母线电压高于第一阈值时,使主回路中整流电路和 /或放电电 路停止工作, 并且在确定主回路中母线的电压低于第二阈值的时, 使整流电 路和 /或放电电路工作,第一阈值大于第二阈值,第一阈值和第二阈值分别为 母线的工作电压的上限值和下限值,或者第一阈值和第二阈值位于母线的工 作电压的范围内。
在第一种可能的实现方式中, 第二方面的方法还包括: 确定主回路中充 电器的输出电压; 在不间断电源从主回路工作模式切换至旁路工作模式并且 主回路中充电器的输出电压高于第三阈值时, 使充电器中断给辅助电源供 电, 并且在充电器的输出电压低于第四阈值时, 重新给辅助电源供电, 其中 辅助电源由充电器供电, 第三阈值大于第四阈值, 第三阈值和第四阈值分别 为辅助电源的工作电压的上限值和下限值, 或者第三阈值和第四阈值位于辅 助电源的工作电压的范围内。
第三方面, 提供了一种不间断供电的方法, 包括: 将不间断电源由主回 路工作模式切换到旁路工作模式, 以使市电通过旁路对负载供电; 确定不间 断电源的工作模式; 在不间断电源从主回路工作模式切换至旁路工作模式 时, 使主回路中的多个整流支路中的至少一条整流支路停止工作, 或者使主 回路中的多个放电支路中的至少一条放电支路停止工作。
在第一种可能的实现方式中, 第三方面的方法还包括: 在不间断电源从 主回路工作模式切换至旁路工作模式时,通过停止为逆变电路的开关管施加 驱动信号来使逆变电路停止工作, 并在旁路异常时通过为逆变电路的开关管 提供驱动信号来使逆变电路工作。
第四方面, 提供了一种不间断电源, 包括: 主回路, 包括整流电路、 逆 变电路、 辅助电源和充电电路; 旁路, 用于将市电直接提供给负载; 控制模 块, 用于将不间断电源由主回路工作模式切换到旁路工作模式, 以使市电通 过旁路对负载供电, 确定不间断电源的工作模式, 并且在不间断电源处于旁 路工作模式时,将不间断电源的主回路中的至少一个开关管的工作频率从第 一频率调整为第二频率, 其中第二频率小于第一频率, 以降低不间断电源处 于旁路工作模式下的功率损耗。 结合第四方面, 在第一种可能的实现方式中, 控制模块将整流电路、 放 电电路、 辅助电源、 充电电路和逆变电路中一个或多个电路中的任一个或多 个开关管的工作频率从第一频率调整为第二频率。
结合第一种可能的实现方式, 在第二种可能的实现方式中, 主回路还包 括母线,控制模块在不间断电源从主回路工作模式切换至旁路工作模式并且 不间断电源的母线电压高于第一阈值时, 使整流电路停止工作, 而在母线电 压低于第二阈值时, 使整流电路工作, 其中整流电路为不间断电源的母线提 供电能, 逆变电路从母线抽取电能, 第一阈值大于第二阈值, 第一阈值和第 二阈值分别为母线的工作电压的上限值和下限值,或者第一阈值和第二阈值 位于母线的工作电压的范围内, 或者, 控制模块在不间断电源从主回路工作 模式切换至旁路工作模式并且不间断电源的母线电压高于第一阈值时,使放 电电路停止工作, 而在母线电压低于第二阈值时, 使放电电路工作, 其中放 电电路为不间断电源的母线提供电能, 逆变电路从母线抽取电能, 第一阈值 大于第二阈值, 第一阈值和第二阈值分别为母线的工作电压的上限值和下限 值, 或者第一阈值和第二阈值位于母线的工作电压的范围内。
结合第一种或第二种可能的实现方式, 在第三种可能的实现方式中, 主 回路还包括充电器, 控制模块确定主回路中充电器的输出电压; 在不间断电 源从主回路工作模式切换至旁路工作模式并且主回路中充电器的输出电压 高于第三阈值时, 使充电器中断给辅助电源供电, 并且在充电器的输出电压 低于第四阈值时, 重新给辅助电源供电, 其中辅助电源由充电器供电, 第三 阈值大于第四阈值, 第三阈值和第四阈值分别为辅助电源的工作电压的上限 值和下限值, 或者第三阈值和第四阈值位于辅助电源的工作电压的范围内。
结合第四方面的上述任何一种可能的实现方式,在第四种可能的实现方 式中, 主回路包括多个整流支路和多个放电支路, 控制模块还在不间断电源 从主回路工作模式切换至旁路工作模式时,使主回路中的多个整流支路中的 至少一条整流支路停止工作, 或者使主回路中的多个放电支路中的至少一条 放电支路停止工作。
结合第四方面的上述任何一种可能的实现方式,在第五种可能的实现方 式中, 控制模块还在不间断电源从主回路工作模式切换至旁路工作模式时, 通过停止为逆变电路的开关管施加驱动信号来使逆变电路停止工作, 并在旁 路异常时通过为逆变电路的开关管提供驱动信号来使逆变电路工作。 结合第五方面, 提供了一种不间断电源, 包括: 主回路, 包括整流电路、 放电电路、 母线和逆变电路, 其中整流电路为母线提供电能, 逆变电路从母 线抽取电能; 旁路, 用于将市电直接提供给负载; 控制模块, 用于将不间断 电源由主回路工作模式切换到旁路工作模式, 以使市电通过旁路对负载供 电; 确定不间断电源的工作模式; 在不间断电源从主回路工作模式切换至旁 路工作模式并且不间断电源的母线电压高于第一阈值时,使主回路中整流电 路和 /或放电电路停止工作,并且在确定主回路中母线的电压低于第二阈值的 时, 使整流电路和 /或放电电路工作, 第一阈值大于第二阈值, 第一阈值和第 二阈值分别为母线的工作电压的上限值和下限值,或者第一阈值和第二阈值 位于母线的工作电压的范围内。
结合第五方面, 在第一种可能的实现方式中, 主回路还包括充电器和辅 于确定主回路中充电器的输出电压, 并且在不间断电源从主回路工作模式切 换至旁路工作模式并且主回路中充电器的输出电压高于第三阈值时,使充电 器中断给辅助电源供电, 并且在充电器的输出电压低于第四阈值时, 重新给 辅助电源供电, 其中辅助电源由充电器供电, 第三阈值大于第四阈值, 第三 阈值和第四阈值分别为辅助电源的工作电压的上限值和下限值,或者第三阈 值和第四阈值位于辅助电源的工作电压的范围内。
第六方面, 提供了一种不间断电源, 其特征在于, 包括: 主回路, 包括 多个整流支路和多个放电支路; 旁路, 用于将市电直接提供给负载; 控制模 块, 用于将不间断电源由主回路工作模式切换到旁路工作模式, 以使市电通 过旁路对负载供电; 确定不间断电源的工作模式; 在不间断电源从主回路工 作模式切换至旁路工作模式时,使主回路中的多个整流支路中的至少一条整 流支路停止工作, 或者使主回路中的多个放电支路中的至少一条放电支路停 止工作。
结合第六方面, 在第一种可能的实现方式下, 主回路还包括逆变电路, 控制模块还在不间断电源从主回路工作模式切换至旁路工作模式时,通过停 止为逆变电路的开关管施加驱动信号来使逆变电路停止工作, 并在旁路异常 时通过为逆变电路的开关管提供驱动信号来使逆变电路工作。
根据本发明的实施例可以在不间断电源切换至旁路运行时, 降低不间断 电源的主回路的开关管的工作频率, 从而降低不间断电源的工作损耗, 有效 提高不间断电源的工作效率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是不间断电源的示意性结构图。
图 2是根据本发明一个实施例的不间断供电的方法的示意性流程图。 图 3是根据本发明另一实施例的不间断供电的方法的示意性流程图。 图 4是根据本发明的实施例的电压滞回法的示意图。
图 5是根据本发明另一实施例的不间断供电的方法的示意性流程图。 图 6是根据本发明的实施例的不间断电源的整流电路的示意性电路图。 图 7是根据本发明一个实施例的不间断电源的示意性结构图。
图 8是根据本发明另一实施例的不间断电源的示意性结构图。
图 9是根据本发明另一实施例的不间断电源的示意性结构图。
图 10是根据本发明另一实施例的不间断电源的示意性结构图。
图 11是根据本发明另一实施例的不间断电源的示意性结构图。
图 12是根据本发明另一实施例的不间断电源的示意性结构图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
UPS可以根据市电质量采用在线模式和 ECO模式为负载提供电能。 例 如, 在市电质量不好的情况下采用在线模式, 在市电质量好的情况下采用 ECO模式。 ECO模式也称节能运行模式、 旁路模式或节电模式。 UPS可以 用两条通路为负载供电: 在线主回路(也称双转换回路)和旁路。 在采用在 线模式时,如果市电正常,则整流器和逆变器组成的在线主回路给负载供电, 如果市电故障, 则由 UPS 的电池和逆变器组成的放电回路为负载供电。 在 采用 ECO模式时, UPS的在线主回路处于备用或待机状态, 旁路处于激活 状态, 负载由市电供电。 UPS可以不断监控市电输入, 在市电质量好的情况 下切换到旁路运行, 并在市电质量下降到一定程度时切换到由 UPS 的逆变 器为负载提供电能。 这里, 市电可以指电网提供的交流电, 本发明的实施例 并不限于此, 市电可以指与在线主回路提供的交流电的电压、 波形、 频率、 接地系统和电阻抗相同或相似的电源。
为了方便说明本发明实施例的不间断供电的方法, 下面首先描述一个具 体的 UPS的结构和工作原理。
图 1是不间断电源 100的示意性结构图。 不间断电源 100包括: 主回路 110和旁路 120。 主回路 120包括: 整流电路 111、 母线 112、 逆变电路 113、 直流转直流(DC/DC ) 114、 电池 115、 充电器 116和辅助电源 117。
在不间断电源 100采用在线模式时, 整流电路 111可以将输入的市电经 过整流转变成直流电施加到母线 112上, 然后经逆变器 113将母线 112的电 压经过逆变变换成交流电给负载供电。在不间断电源 100采用 ECO模式时, 旁路 120用于将不间断电源旁路, 使得不间断电源切换至旁路运行, 即由市 电直接给负载供电。 充电器 116用于给电池 115充电, 并且可以由母线 112 或市电供电。辅助电源 117用于给不间断电源 100的各个部分提供工作电源, 并且可以由母线 112、 市电和 /或充电器 116供电。 在不间断电源 100采用在 线模式时, 如果市电故障, 电池 115的输出可以经过直流转直流(DC/DC ) 电路 114 (放电电路)施加到母线 112上, 从而保证负载不间断供电。 一般 情况下, 充电器 116停止工作。 母线 112的能量由电池 115提供。 如果充电 器工作, 能量从母线 112通过充电器 116到电池 115 , 又从电池 115通过 DC/DC电路 114到母线 112。 特殊情况下, 母线 112可以通过逆变器 113从 旁路 120取电, 这样充电器 116可以工作, 给电池 115充电。
图 1的不间断电源只是本发明的一个具体实施例, 本领域技术人员应理 解的是, 不间断电源可以只包括上述元件中的一部分。 例如, 在本发明的另 一实施例中, 不间断电源可以不包括整流电路 111或 DC/DC电路 114。
图 2是根据本发明一个实施例的不间断供电的方法的示意性流程图。 210, 将不间断电源由主回路工作模式切换到旁路工作模式, 以使市电 通过旁路对负载供电。
不间断电源在工作时通常处于主回路工作模式, 在某些情况下, 可以切 换到旁路工作模式。 根据本发明的实施例, 可以手动将不间断电源切换至旁 路运行, 例如, 当用户希望不间断电源采用 ECO模式时, 可以通过不间断 电源上的手动按钮将不间断电源手动切换至旁路运行。 可选地, 作为另一施 例, 也可以先检测市电的质量, 再根据检测结果将不间断电源切换至旁路运 行, 例如, 可以在不间断电源上设置专门的检测模块来检测市电的质量, 并 且市电的质量好时, 由控制模块将不间断电源从主回路切换至旁路运行, 即 运行在 ECO模式, 而在市电质量不好时, 将不间断电源从旁路切换至主回 路, 从而将不间断电源切换至由逆变器向负载供电, 即运行在在线模式。
220, 确定不间断电源的工作模式。
例如, 不间断电源可以根据用户的手动输入或者根据上述检测结果确定 不间断电源处于旁路工作模式还是主回路工作模式。
230, 在不间断电源处于旁路工作模式时, 将不间断电源的主回路中的 至少一个开关管的工作频率从第一频率调整为第二频率, 其中第二频率小于 第一频率, 以降低不间断电源处于旁路工作模式下的功率损耗。
例如, 在不间断电源切换至旁路运行, 进入 ECO模式时, 不间断电源 的控制器或控制模块可以改变不间断电源的主要电路上的开关管的工作频 率。
根据本发明的实施例可以在不间断电源切换至旁路运行时, 降低不间断 电源的主回路的开关管的工作频率, 从而降低不间断电源的工作损耗, 有效 提高不间断电源的工作效率。
在 220中, 可以将主回路中的整流电路、 放电电路、 辅助电源、 充电电 路和逆变电路中一个或多个电路中的任一个或多个开关管的工作频率从第 一频率调整为第二频率。
根据本发明的实施例, 当不间断电源切换至旁路运行时, 可以降低不间 断电源的整流电路、 放电电路、 辅助电源和逆变电路中的任一个或多个的开 关管(例如, 主开关管)的工作频率, 从而降低减小不间断电源的整流电路、 逆变电路、 辅助电源或放电电路的损耗, 提高不间断电源的整机效率。
例如, 整流电路可以将输入的市电的能量转变为直流电送给母线, 而在 ECO模式下, 由于逆变电路没有功率输出,整流电路需要给母线提供的能量 很少, 因此可以降低整流电路的开关管的工作频率, 同时保证母线电压在可 靠的范围内波动, 从而降低整流电路的工作损耗。 另外, 在充电器从母线取 电给电池充电以及辅助电源从母线抽取电能的情况下, 由于充电器和辅助电 源的能量需求与整机的输出功率相比小很多, 因此, 即使降低整流电路的工 作频率, 也可以满足整机的供电需求。 在 ECO模式下, 逆变电路处于待命 状态, 无功率输出。 由于逆变电路无功率输出, 也可以降低逆变电路的开关 管的工作频率, 并在保证输出电能的质量的同时降低逆变电路的工作损耗。
在 ECO模式下, 不间断电源的多个部分处于待命状态, 或者低速运转 状态, 特别是风扇, 一般会处于低速转或者停转, 因此辅助电源 (辅源)的 输出功率可以降低。 在这种情况下, 也可以降低辅助电源的开关管的工作频 率, 从而降低辅助电源的工作损耗。 由于此时整机工作的电流 ^艮小, 工作频 率降低对噪声以及波形质量的影响都是 4艮小的, 因此不会影响整机的工作。
可选地, 作为另一实施例, 图 1的方法还包括: 在不间断电源从主回路 工作模式切换至旁路工作模式并且不间断电源的母线电压高于第一阈值时, 使整流电路停止工作, 而在母线电压低于第二阈值时, 使整流电路工作, 其 中整流电路为不间断电源的母线提供电能, 逆变电路从母线抽取电能, 第一 阈值大于第二阈值, 第一阈值和第二阈值分别为母线的工作电压的上限值和 下限值, 或者第一阈值和第二阈值位于母线的工作电压的范围内。
可选地, 作为另一实施例, 图 1的方法还包括: 在不间断电源从主回路 工作模式切换至旁路工作模式并且不间断电源的母线电压高于第一阈值时, 使放电电路停止工作, 而在母线电压低于第二阈值时, 使放电电路工作, 其 中放电电路为不间断电源的母线提供电能, 逆变电路从母线抽取电能, 第一 阈值大于第二阈值, 第一阈值和第二阈值分别为母线的工作电压的上限值和 下限值, 或者第一阈值和第二阈值位于母线的工作电压的范围内。
对于整流电路, 在 ECO模式下, 由于不间断电源的各个部分从母线抽 取的能量很少, 即使整流电路不给母线补充能量, 母线上存储的能量也能在 相当长的时间内保证从母线抽取电能的各个部分正常工作。本发明的实施例 提出了一种电压滞回法, 即整流电路先在一个时段内将母线能量(或电压) 升高到一个设定的阈值(例如, 第一阈值), 然后整流电路停止工作, 此时 由母线上存储的能量给各个部分提供能量。 母线电压緩慢下降, 并且当母线 上的电压下降至一个设定的阈值(例如, 第二阈值), 整流电路重新开始工 作, 给母线提供能量, 提升母线的电压至第一阈值。 如此往复, 可以保证整 机的正常运行。 在这种工作方式下, 整流电路间歇性工作, 并且较长的时间 不工作, 因此能够降低损耗。
可选地, 作为另一实施例, 图 1的方法还包括: 确定主回路中充电器的 输出电压; 在不间断电源从主回路工作模式切换至旁路工作模式并且主回路 中充电器的输出电压高于第三阈值时, 使充电器中断给辅助电源供电, 并且 在充电器的输出电压低于第四阈值时, 重新给辅助电源供电, 其中辅助电源 由充电器供电, 第三阈值大于第四阈值, 第三阈值和第四阈值分别为辅助电 源的工作电压的上限值和下限值, 或者第三阈值和第四阈值位于辅助电源的 工作电压的范围内。
对于辅助电源从充电器抽取电能的电路结构, 在 ECO模式下, 辅助电 源能量需求也比较小,所以充电器也可以工作在电压滞回方式下给辅助电源 供电, 从而降低了充电器的损耗。
可选地, 作为另一实施例, 图 1的方法还包括: 在不间断电源从主回路 工作模式切换至旁路工作模式时,使主回路中的多个整流支路中的至少一条 整流支路停止工作, 或者使主回路中的多个放电支路中的至少一条放电支路 停止工作。
具体而言,可以通过停止整流支路 /放电支路上的开关管的工作来停止整 流支路 /放电支路工作, 或者通过停止给整流 /放电支路输入电能来停止整流 / 放电支路工作。
对于整流电路,在不间断电源的整流电路包括两条以上的整流支路的情 况下, 由于母线在 ECO模式下需要的能量较少, 因此可以关闭部分整流支 路, 并保留一部分整流支路工作, 例如, 只保留一条整流支路工作给母线提 供能量。 由于一部分整流支路停止工作, 因此,可以降低不间断电源的损耗。 况下, 由于母线在 ECO模式下需要的能量较少, 因此可以关闭部分放电支 路, 并保留一部分放电支路工作, 例如, 只保留一条放电支路工作给母线提 供能量。 由于一部分放电支路停止工作, 因此,可以降低不间断电源的损耗。
可选地, 作为另一实施例, 图 2的方法还包括: 在不间断电源从主回路 工作模式切换至旁路工作模式时,通过停止为逆变电路的开关管施加驱动信 号来使逆变电路停止工作, 并在旁路异常时通过为逆变电路的开关管提供驱 动信号来使逆变电路工作。 例如, 可以关断逆变电路的驱动信号, 或使逆变 电路的驱动信号保持为低电平。 如果逆变电路从关闭状态启动至能够为用户提供电能的时间满足可靠 给负载供电的要求, 即逆变电路能够在旁路异常且不能继续给负载可靠提供 电能的情况下及时启动为负载供电, 则可以在 ECO模式下将逆变器关闭, 从而降低损耗。
图 3是根据本发明另一实施例的不间断供电的方法的示意性流程图。
310, 将不间断电源由主回路工作模式切换到旁路工作模式, 以使市电 通过旁路对负载供电; 确定不间断电源的工作模式。 与图 2的实施例的步骤 210类似, 在此不再赘述。
320, 确定不间断电源的工作模式。 与图 2的实施例的步骤 220类似, 在此不再赘述。
330, 在不间断电源从主回路工作模式切换至旁路工作模式并且不间断 电源的母线电压高于第一阈值时,使主回路中整流电路和 /或放电电路停止工 作,并且在确定主回路中母线的电压低于第二阈值的时,使整流电路和 /或放 电电路工作, 第一阈值大于第二阈值, 第一阈值和第二阈值分别为母线的工 作电压的上限值和下限值, 或者第一阈值和第二阈值位于母线的工作电压的 范围内。
对于整流电路, 在 ECO模式下, 由于不间断电源的各个部分从母线抽 取的能量很少, 即使整流电路不给母线补充能量, 母线上存储的能量也能在 相当长的时间内保证从母线抽取电能的各个部分正常工作。本发明的实施例 提出了一种电压滞回法, 即整流电路先在一个时段内将母线能量(或电压) 升高到一个设定的阈值(例如, 第一阈值), 然后整流电路停止工作, 此时 由母线上存储的能量给各个部分提供能量。 母线电压緩慢下降, 并且当母线 上的电压下降至一个设定的阈值(例如, 第二阈值), 整流电路重新开始工 作, 给母线提供能量, 提升母线的电压至第一阈值。 如此往复, 可以保证整 机的正常运行。 在这种工作方式下, 整流电路间歇性工作, 有相当的时间不 工作, 因此能够降低损耗。
根据本发明的实施例可以在不间断电源切换至旁路运行时,在确定不间 断电源的母线的电压高于第一阈值的情况下,使整流电路和 /或放电电路停止 工作,并且在确定母线的电压低于第二阈值的情况下,使整流电路和 /或放电 电路工作, 从而降低不间断电源的工作损耗, 有效提高不间断电源的工作效 率。 可选地, 作为另一实施例, 图 3的方法还包括: 确定主回路中充电器的 输出电压; 在不间断电源从主回路工作模式切换至旁路工作模式并且主回路 中充电器的输出电压高于第三阈值时, 使充电器中断给辅助电源供电, 并且 在充电器的输出电压低于第四阈值时, 重新给辅助电源供电, 其中辅助电源 由充电器供电, 第三阈值大于第四阈值, 第三阈值和第四阈值分别为辅助电 源的工作电压的上限值和下限值, 或者第三阈值和第四阈值位于辅助电源的 工作电压的范围内。
对于辅助电源从充电器抽取电能的电路结构, 在 ECO模式下, 辅助电 源能量需求也比较小,所以充电器也可以工作在电压滞回方式下给辅助电源 供电, 从而降低了充电器的损耗。
图 4是根据本发明的实施例的电压滞回法的示意图。
参见图 4, 整流电路的驱动电路在母线的电压低于第二阈值时产生驱动 信号 (如图 4的驱动波形所示), 使得整流电路工作, 为母线提供电能, 从 而使母线的电压上升, 并且在母线的电压高于第一阈值时整流电路的驱动电 路停止产生驱动信号, 从而使得整流电路停止工作, 不再为母线提供电能, 从而使得母线的电压由于被逆变电路抽取电能而下降, 并且当母线的电压下 降到第二阈值时, 整流电路的驱动电路再次产生驱动信号, 从而将母线的电 压维持在第一阈值和第二阈值之间。 应理解, 第一阈值和第二阈值可以由本 领域普通技术人员根据需要设定, 只要能够将母线电压维持在保证从母线抽 取电能的各个部分正常工作即可。
类似地, 对于充电器的电压滞回法而言, 在充电器的出口的电压低于第 四阈值时产生驱动信号, 使得充电器为辅助电源提供电能, 从而使充电器的 出口的电压升高, 并且在充电器的出口的电压高于第一阈值时充电器停止为 辅助电源提供电能, 从而使得充电器出口的电压降低, 并且当充电器出口的 电压下降到第二阈值时, 再次产生驱动信号, 使得充电器再次为辅助电源提 供电能,从而将充电器为辅助电源提供的电压维持在第三阈值和第四阈值之 间。应理解,第三阈值和第四阈值可以由本领域普通技术人员根据需要设定, 只要能够将提供给辅助电源的电压维持在保证从辅助电源抽取电能的各个 部分正常工作即可。
图 5是根据本发明另一实施例的不间断供电的方法的示意性流程图。
510, 将不间断电源由主回路工作模式切换到旁路工作模式, 以使市电 通过旁路对负载供电。 与图 2的步骤 210类似, 在此不再赘述。
520, 确定不间断电源的工作模式。 与图 2的步骤 220类似, 在此不再 赘述。
520, 在不间断电源从主回路工作模式切换至旁路工作模式时, 使主回 路中的多个整流支路中的至少一条整流支路停止工作, 或者使主回路中的多 个放电支路中的至少一条放电支路停止工作。
对于整流电路,在不间断电源的整流电路包括两条以上的整流支路的情 况下, 由于母线在 ECO模式下需要的能量较少, 因此可以关闭部分整流支 路, 并保留一部分整流支路工作, 例如, 只保留一条整流支路工作给母线提 供能量。 由于一部分整流支路停止工作, 因此,可以降低不间断电源的损耗。 况下, 由于母线在 ECO模式下需要的能量较少, 因此可以关闭部分放电支 路, 并保留一部分放电支路工作, 例如, 只保留一条放电支路工作给母线提 供能量。 由于一部分放电支路停止工作, 因此,可以降低不间断电源的损耗。
根据本发明的实施例可以在不间断电源切换至旁路运行时,在确定不间 断电源的母线的电压高于第一阈值的情况下,使不间断电源的多个整流支路 或放电支路中的至少一条整流支路或放电支路停止工作,从而降低不间断电 源的工作损耗, 有效提高不间断电源的工作效率。 例如, 可以通过关断整流 或支路放电支路的驱动信号, 或者使驱动信号保持低电平。
可选地, 作为另一实施例, 图 4的方法还包括: 在不间断电源从主回路 工作模式切换至旁路工作模式时,通过停止为逆变电路的开关管施加驱动信 号来使逆变电路停止工作, 并在旁路异常时通过为逆变电路的开关管提供驱 动信号来使逆变电路工作。
如果逆变电路从关闭状态启动至能够为用户提供电能的时间满足可靠 给负载供电的要求, 即逆变电路能够在旁路异常且不能继续给负载可靠提供 电能的情况下及时启动为负载供电, 则可以在 ECO模式下将逆变器关闭, 从而降低损耗。
图 6是根据本发明的实施例的不间断电源的整流电路的示意性电路图。 图 6的不间断电源的主回路包括三个整流支路: 整流支路 1、 整流支路 2和整流支路 3。 其中整流支路 1 包括: 二极管 D11至 D18、 电感线圏 L11 和 L12、 开关管 Q11和 Q12、 电容 C11和 C12。 整流支路 包括: 二极管 D21至 D28、 电感线圏 L21和 L22、 开关管 Q21和 Q22、 电容 C21和 C22。 整流支路 3包括: 二极管 D31至 D38、 电感线圏 L31和 L32、 开关管 Q31和 Q32、 电容 C31和 C32。 三相整流支路接受三相交流点的输入, 并且将整流 后的直流电施加到母线 BUS上。
上面描述了根据本发明实施例的不间断供电的方法, 下面分别结合图 7 至图 12描述根据本发明实施例的不间断电源。
图 7是根据本发明一个实施例的不间断电源 700的示意性结构图。 不间 断电源 700包括主回路 710、 旁路 720和控制模块 730。
主回路 710包括整流电路、 逆变电路、辅助电源和充电电路。 旁路 720, 用于将市电直接提供给负载。控制模块 730用于将不间断电源 700由主回路 工作模式切换到旁路工作模式, 以使市电通过旁路 720对负载供电; 确定不 间断电源 700的工作模式; 在不间断电源 700从主回路工作模式切换至旁路 工作模式并且不间断电源 700的母线电压高于第一阈值时,使主回路 710中 整流电路和 /或放电电路停止工作,并且在确定主回路 710中母线的电压低于 第二阈值的时, 使整流电路和 /或放电电路工作, 第一阈值大于第二阈值, 第 一阈值和第二阈值分别为母线的工作电压的上限值和下限值, 或者第一阈值 和第二阈值位于母线的工作电压的范围内。
根据本发明的实施例,控制模块 730将整流电路、放电电路、辅助电源、 充电电路和逆变电路中一个或多个电路中的任一个或多个开关管的工作频 率从第一频率调整为第二频率。
根据本发明的实施例可以在不间断电源切换至旁路运行时, 降低不间断 电源的主回路的开关管的工作频率, 从而降低不间断电源的工作损耗, 有效 提高不间断电源的工作效率。
可选地, 作为另一实施例, 主回路 710还包括母线, 控制模块 730在不 间断电源 700从主回路 710工作模式切换至旁路工作模式并且不间断电源 700的母线电压高于第一阈值时, 使整流电路停止工作, 而在母线电压低于 第二阈值时, 使整流电路工作, 其中整流电路为不间断电源 700的母线提供 电能, 逆变电路从母线抽取电能, 第一阈值大于第二阈值, 第一阈值和第二 阈值分别为母线的工作电压的上限值和下限值, 或者第一阈值和第二阈值位 于母线的工作电压的范围内。
可选地,作为另一实施例,控制模块 730在不间断电源 700从主回路 710 工作模式切换至旁路 720工作模式并且不间断电源 700的母线电压高于第一 阈值时, 使放电电路停止工作, 而在母线电压低于第二阈值时, 使放电电路 工作, 其中放电电路为不间断电源 700的母线提供电能, 逆变电路从母线抽 取电能, 第一阈值大于第二阈值, 第一阈值和第二阈值分别为母线的工作电 压的上限值和下限值,或者第一阈值和第二阈值位于母线的工作电压的范围 内。
可选地, 作为另一实施例, 主回路 710还包括充电器, 控制模块 730确 定主回路 710中充电器的输出电压; 在不间断电源 700从主回路工作模式切 换至旁路工作模式并且主回路 710中充电器的输出电压高于第三阈值时,使 充电器中断给辅助电源供电, 并且在充电器的输出电压低于第四阈值时, 重 新给辅助电源供电, 其中辅助电源由充电器供电, 第三阈值大于第四阈值, 第三阈值和第四阈值分别为辅助电源的工作电压的上限值和下限值, 或者第 三阈值和第四阈值位于辅助电源的工作电压的范围内。
可选地, 作为另一实施例, 主回路 710包括多个整流支路和多个放电支 路,控制模块 730还在不间断电源 700从主回路工作模式切换至旁路工作模 式时, 使主回路 710中的多个整流支路中的至少一条整流支路停止工作, 或 者使主回路 710中的多个放电支路中的至少一条放电支路停止工作。
可选地, 作为另一实施例, 控制模块 730还在不间断电源 700从主回路 工作模式切换至旁路工作模式时,通过停止为逆变电路的开关管施加驱动信 号来使逆变电路停止工作, 并在旁路 720异常时通过为逆变电路的开关管提 供驱动信号来使逆变电路工作。
不间断电源 700的各个单元的操作和功能可以参考上述图 2的方法。 为 了避免重复, 在此不再赘述。
图 8是根据本发明另一实施例的不间断电源 800的示意性结构图。 不间 断电源 800包括主回路 810、 旁路 820和控制模块 830。
主回路 820包括整流电路、 放电电路、 母线和逆变电路, 其中整流电路 为母线提供电能, 逆变电路从母线抽取电能。 控制模块 830用于将不间断电 源 800由主回路工作模式切换到旁路工作模式, 以使市电通过旁路 820对负 载供电; 确定不间断电源 800的工作模式; 在不间断电源 800从主回路工作 模式切换至旁路工作模式并且不间断电源 800的母线电压高于第一阈值时, 使主回路 810 中整流电路和 /或放电电路停止工作, 并且在确定主回路 810 中母线的电压低于第二阈值的时,使整流电路和 /或放电电路工作,第一阈值 大于第二阈值, 第一阈值和第二阈值分别为母线的工作电压的上限值和下限 值, 或者第一阈值和第二阈值位于母线的工作电压的范围内。
根据本发明的实施例可以在不间断电源切换至旁路运行时,在确定不间 断电源的母线的电压高于第一阈值的情况下,使整流电路和 /或放电电路停止 工作,并且在确定母线的电压低于第二阈值的情况下,使整流电路和 /或放电 电路工作, 从而降低不间断电源的工作损耗, 有效提高不间断电源的工作效 率。
可选地, 作为另一实施例, 主回路 810还包括充电器和辅助电源, 不间 断电源 800的辅助电源由不间断电源 800的充电器供电,控制模块 830还用 于确定主回路 810中充电器的输出电压, 并且在不间断电源 800从主回路工 作模式切换至旁路工作模式并且主回路 810中充电器的输出电压高于第三阈 值时, 使充电器中断给辅助电源供电, 并且在充电器的输出电压低于第四阈 值时, 重新给辅助电源供电, 其中辅助电源由充电器供电, 第三阈值大于第 四阈值, 第三阈值和第四阈值分别为辅助电源的工作电压的上限值和下限 值, 或者第三阈值和第四阈值位于辅助电源的工作电压的范围内。
不间断电源 800的各个单元的操作和功能可以参考上述图 4的方法。 为 了避免重复, 在此不再赘述。
图 9是根据本发明另一实施例的不间断电源 900的示意性结构图。 不间 断电源 900包括: 主回路 910、 旁路 920和控制模块 930。
主回路 910包括多个整流支路和多个放电支路。 旁路 920用于将市电直 接提供给负载。控制模块 930用于将不间断电源 900由主回路工作模式切换 到旁路工作模式, 以使市电通过旁路 920对负载供电; 确定不间断电源 900 的工作模式; 在不间断电源 900从主回路工作模式切换至旁路工作模式时, 使主回路 910中的多个整流支路中的至少一条整流支路停止工作, 或者使主 回路 910中的多个放电支路中的至少一条放电支路停止工作。
可选地, 作为另一实施例, 主回路 910还包括逆变电路, 控制模块 930 还在不间断电源 900从主回路工作模式切换至旁路工作模式时,通过停止为 逆变电路的开关管施加驱动信号来使逆变电路停止工作, 并在旁路 920异常 时通过为逆变电路的开关管提供驱动信号来使逆变电路工作。
不间断电源 900的各个单元的操作和功能可以参考上述图 5的方法。 为 了避免重复, 在此不再赘述。
图 10是根据本发明另一实施例的不间断电源 1000的示意性结构图。 不 间断电源 1000包括处理器 1010、存储器 1020、主回路 1030、通信总线 1040 和旁路 1050。
处理器 1010通过通信总线 1040调用存储器 1020存储的代码, 用以将 不间断电源 1000 由主回路工作模式切换到旁路工作模式, 以使市电通过旁 路 1050对负载供电, 确定不间断电源 1000的工作模式, 并且在不间断电源 1000处于旁路工作模式时,将不间断电源 1000的主回路 1030中的至少一个 开关管的工作频率从第一频率调整为第二频率, 其中第二频率小于第一频 率, 以降低不间断电源 1000处于旁路工作模式下的功率损耗。
根据本发明的实施例可以在不间断电源切换至旁路运行时, 降低不间断 电源的主回路的开关管的工作频率, 从而降低不间断电源的工作损耗, 有效 提高不间断电源的工作效率。
根据本发明的实施例, 主回路 1030 包括整流电路、 放电电路、 辅助电 源和逆变电路, 处理器 1010将整流电路、 放电电路、 辅助电源、 充电电路 和逆变电路中一个或多个电路中的任一个或多个开关管的工作频率从第一 频率调整为第二频率。
可选地, 作为另一实施例, 主回路 1030还包括母线, 整流电路和放电 电路为不间断电源 1000的母线提供电能, 逆变电路从母线抽取电能, 处理 器 1010还在不间断电源 1000从主回路工作模式切换至旁路工作模式并且不 间断电源 1000的母线电压高于第一阈值时, 使整流电路停止工作, 而在母 线电压低于第二阈值时,使整流电路工作,其中整流电路为不间断电源 1000 的母线提供电能, 逆变电路从母线抽取电能, 第一阈值大于第二阈值, 第一 阈值和第二阈值分别为母线的工作电压的上限值和下限值, 或者第一阈值和 第二阈值位于母线的工作电压的范围内, 或者, 处理器 1010在不间断电源 1000从主回路工作模式切换至旁路工作模式并且不间断电源 1000的母线电 压高于第一阈值时, 使放电电路停止工作, 而在母线电压低于第二阈值时, 使放电电路工作, 其中放电电路为不间断电源 1000的母线提供电能, 逆变 电路从母线抽取电能, 第一阈值大于第二阈值, 第一阈值和第二阈值分别为 母线的工作电压的上限值和下限值,或者第一阈值和第二阈值位于母线的工 作电压的范围内。 可选地, 作为另一实施例, 主回路 1030还包括充电器, 处理器 1010还 确定主回路 1030中充电器的输出电压; 在不间断电源 1000从主回路工作模 式切换至旁路工作模式并且主回路 1030 中充电器的输出电压高于第三阈值 时, 使充电器中断给辅助电源供电, 并且在充电器的输出电压低于第四阈值 时, 重新给辅助电源供电, 其中辅助电源由充电器供电, 第三阈值大于第四 阈值, 第三阈值和第四阈值分别为辅助电源的工作电压的上限值和下限值, 或者第三阈值和第四阈值位于辅助电源的工作电压的范围内。
可选地, 作为另一实施例, 主回路 1030 包括多个整流支路和多个放电 支路,处理器 1010还在不间断电源 1000从主回路工作模式切换至旁路工作 模式时,使主回路 1030中的多个整流支路中的至少一条整流支路停止工作, 或者使主回路 1030中的多个放电支路中的至少一条放电支路停止工作。
可选地, 作为另一实施例, 处理器 1010还在不间断电源 1000从主回路 工作模式切换至旁路工作模式时,通过停止为逆变电路的开关管施加驱动信 号来使逆变电路停止工作, 并在旁路 1050异常时通过为逆变电路的开关管 提供驱动信号来使逆变电路工作。
不间断电源 1000的各个单元的操作和功能可以参考上述图 2的方法。 为了避免重复, 在此不再赘述。
图 11是根据本发明另一实施例的不间断电源 1100的示意性结构图。 不 间断电源 1100包括处理器 1110、存储器 1120、 主回路 1130、通信总线 1140 和旁路 1150。
主回路 1130, 包括整流电路、 放电电路、 母线和逆变电路, 其中整流电 路为母线提供电能, 逆变电路从母线抽取电能; 旁路 1150, 用于将市电直接 提供给负载。 处理器 1110通过通信总线 1140调用存储器 1120存储的代码, 用以将不间断电源 1100 由主回路工作模式切换到旁路工作模式, 以使市电 通过旁路 1150对负载供电; 确定不间断电源 1100的工作模式; 在不间断电 源 1100从主回路工作模式切换至旁路工作模式并且不间断电源 1100的母线 电压高于第一阈值时, 使主回路 1130中整流电路和 /或放电电路停止工作, 并且在确定主回路 1130中母线的电压低于第二阈值的时, 使整流电路和 /或 放电电路工作, 第一阈值大于第二阈值, 第一阈值和第二阈值分别为母线的 工作电压的上限值和下限值, 或者第一阈值和第二阈值位于母线的工作电压 的范围内。 根据本发明的实施例可以在不间断电源切换至旁路运行时,在确定不间 断电源的母线的电压高于第一阈值的情况下,使整流电路和 /或放电电路停止 工作,并且在确定母线的电压低于第二阈值的情况下,使整流电路和 /或放电 电路工作, 从而降低不间断电源的工作损耗, 有效提高不间断电源的工作效 率。
可选地, 作为另一实施例, 主回路 1130还包括充电器和辅助电源, 不 间断电源 1100的辅助电源由不间断电源 1100的充电器供电, 处理器 1110 还用于确定主回路 1130中充电器的输出电压, 并且在不间断电源 1100从主 回路工作模式切换至旁路工作模式并且主回路 1130 中充电器的输出电压高 于第三阈值时, 使充电器中断给辅助电源供电, 并且在充电器的输出电压低 于第四阈值时, 重新给辅助电源供电, 其中辅助电源由充电器供电, 第三阈 值大于第四阈值, 第三阈值和第四阈值分别为辅助电源的工作电压的上限值 和下限值, 或者第三阈值和第四阈值位于辅助电源的工作电压的范围内。
不间断电源 1100的各个单元的操作和功能可以参考上述图 4的方法。 为了避免重复, 在此不再赘述。
图 12是根据本发明另一实施例的不间断电源 1200的示意性结构图。 不 间断电源 1200包括处理器 1210、存储器 1220、主回路 1230、通信总线 1240 和旁路 1250。
主回路 1230, 包括多个整流支路和多个放电支路; 旁路 1250, 用于将 市电直接提供给负载。 处理器 1210通过通信总线 1240调用存储器 1220存 储的代码, 用以将不间断电源 1200由主回路工作模式切换到旁路工作模式, 以使市电通过旁路 1250对负载供电; 确定不间断电源 1200的工作模式; 在 不间断电源 1200从主回路工作模式切换至旁路工作模式时, 使主回路 1230 中的多个整流支路中的至少一条整流支路停止工作, 或者使主回路 1230 中 的多个放电支路中的至少一条放电支路停止工作。
根据本发明的实施例可以在不间断电源切换至旁路运行时,在确定不间 断电源的母线的电压高于第一阈值的情况下,使不间断电源的多个整流支路 或放电支路中的至少一条整流支路或放电支路停止工作,从而降低不间断电 源的工作损耗, 有效提高不间断电源的工作效率。
可选地, 作为另一实施例, 主回路 1230还包括逆变电路, 处理器 1210 还在不间断电源 1200从主回路工作模式切换至旁路工作模式时, 通过停止 为逆变电路的开关管施加驱动信号来使逆变电路停止工作, 并在旁路 1250 异常时通过为逆变电路的开关管提供驱动信号来使逆变电路工作。
不间断电源 1200的各个单元的操作和功能可以参考上述图 5的方法。 为了避免重复, 在此不再赘述。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM , Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求的保护范围为准。

Claims

权利要求
1、 一种不间断供电的方法, 其特征在于, 包括:
将不间断电源由主回路工作模式切换到旁路工作模式, 以使市电通过所 述旁路对负载供电;
确定所述不间断电源的工作模式;
在所述不间断电源处于旁路工作模式时,将所述不间断电源的主回路中 的至少一个开关管的工作频率从第一频率调整为第二频率, 其中所述第二频 率小于第一频率。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将所述不间断电源 的主回路中的至少一个开关管的工作频率从第一频率调整为第二频率, 包 括:
将所述主回路中的整流电路、 放电电路、 辅助电源、 充电电路和逆变电 路中一个或多个电路中的任一个或多个开关管的工作频率从所述第一频率 调整为所述第二频率, 其中所述整流电路用于为逆变电路提供直流电, 所述 充电电路用于为所述不间断电源的充电池充电, 所述放电电路用于对所述充 电池进行放电以为所述逆变电路提供直流电,所述逆变电路用于将直流电转 变为交流电以为负载提供交流电, 所述辅助电源用于给所述不间断电源提供 工作电源。
3、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 在所述不间断电源从主回路工作模式切换至旁路工作模式并且所述不 间断电源的母线电压高于或等于第一阈值时, 使所述整流电路停止工作, 而 在所述母线电压低于或等于第二阈值时, 使所述整流电路工作, 其中所述整 流电路为所述不间断电源的母线提供电能, 所述逆变电路从所述母线获取电 能, 所述第一阈值大于所述第二阈值, 所述第一阈值和所述第二阈值位于所 述母线的工作电压的范围内,
或者,
在所述不间断电源从主回路工作模式切换至旁路工作模式并且所述不 间断电源的母线电压高于或等于所述第一阈值时, 使所述放电电路停止工 作, 而在所述母线电压低于或等于所述第二阈值时, 使所述放电电路工作, 母线获取电能, 所述第一阈值大于所述第二阈值, 所述第一阈值和所述第二 阈值位于所述母线的工作电压的范围内。
4、 根据权利要求 3所述的方法, 其特征在于, 所述第一阈值和所述第 二阈值分别为所述母线的工作电压的上限值和下限值。
5、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 确定所述主回路中充电器的输出电压;
在所述不间断电源从主回路工作模式切换至旁路工作模式并且所述主 回路中充电器的输出电压高于或等于第三阈值时,使所述充电器中断给所述 辅助电源供电, 并且在所述充电器的输出电压低于或等于第四阈值时, 使所 述充电器给所述辅助电源供电, 所述第三阈值大于所述第四阈值, 所述第三 阈值和所述第四阈值位于所述辅助电源的工作电压的范围内。
6、 根据权利要求 5所述的方法, 其特征在于, 所述第三阈值和所述第 四阈值分别为所述母线的工作电压的上限值和下限值。
7、 根据权利要求 2中所述的方法, 其特征在于, 还包括:
在所述不间断电源从主回路工作模式切换至旁路工作模式时,使所述主 回路中的多个整流支路中的至少一条整流支路停止工作, 或者使所述主回路 中的多个放电支路中的至少一条放电支路停止工作, 其中所述主回路包括与 旁路并联的所述多个整流支路和所述多个放电支路, 所述多个整流支路和多 个放电支路用于提供不间断电源。
8、 根据权利要求 2至 7中的任一项所述的方法, 其特征在于, 还包括: 在所述不间断电源从主回路工作模式切换至旁路工作模式时,通过停止为所 述逆变电路的开关管施加驱动信号来使所述逆变电路停止工作, 并在所述旁 作。
9、 一种不间断电源, 其特征在于, 包括:
主回路, 包括整流电路、 放电电路、 逆变电路、 辅助电源和充电电路, 其中所述整流电路用于为逆变电路提供直流电, 所述充电电路用于为所述不 间断电源的充电池充电, 所述放电电路用于对所述充电池进行放电以为所述 逆变电路提供直流电,所述逆变电路用于将直流电转变为交流电以为负载提 供交流电, 所述辅助电源用于给所述不间断电源提供工作电源;
旁路,用于在所述不间断电源处于旁路工作模式时,将市电提供给负载; 控制模块, 用于确定所述不间断电源的工作模式, 并且在所述不间断电 源处于旁路工作模式时,将所述不间断电源的主回路中的至少一个开关管的 工作频率从第一频率调整为第二频率, 其中所述第二频率小于第一频率。
10、 根据权利要求 9所述的不间断电源, 其特征在于, 所述控制模块将 所述整流电路、 所述放电电路、 所述辅助电源、 所述充电电路和所述逆变电 路中一个或多个电路中的任一个或多个开关管的工作频率从所述第一频率 调整为所述第二频率。
11、 根据权利要求 10所述的不间断电源, 其特征在于, 所述主回路还 包括母线, 其中所述母线接所述整流电路的输出端、 所述放电电路的输出端 和所述逆变电路的输入端, 所述控制模块还用于在所述不间断电源从主回路 工作模式切换至旁路工作模式并且所述母线电压高于或等于第一阈值时,使 所述整流电路停止工作, 而在所述母线电压低于或等于第二阈值时, 使所述 整流电路工作, 其中所述整流电路为所述母线提供电能, 所述逆变电路从所 述母线获取电能, 所述第一阈值大于所述第二阈值, 所述第一阈值和所述第 二阈值位于所述母线的工作电压的范围内,
或者,
所述控制模块还用于在所述不间断电源从主回路工作模式切换至旁路 工作模式并且所述母线电压高于或等于所述第一阈值时,使所述放电电路停 止工作, 而在所述母线电压低于或等于所述第二阈值时, 使所述放电电路工 所述母线获取电能, 所述第一阈值大于所述第二阈值, 所述第一阈值和所述 第二阈值位于所述母线的工作电压的范围内。
12、 根据权利要求 11所述的不间断电源, 其特征在于, 所述第一阈值 和所述第二阈值分别为所述母线的工作电压的上限值和下限值。
13、 根据权利要求 9所述的不间断电源, 其特征在于, 所述主回路还包 括充电器, 其中所述充电器用于在旁路工作模式下通过市电对所述充电池进 行充电, 所述控制模块还用于确定所述主回路中充电器的输出电压; 在所述 不间断电源从主回路工作模式切换至旁路工作模式并且所述主回路中充电 器的输出电压高于或等于第三阈值时,使所述充电器中断给所述辅助电源供 电, 并且在所述充电器的输出电压低于或等于第四阈值时, 使所述充电器给 所述辅助电源供电, 所述第三阈值大于所述第四阈值, 所述第三阈值和所述 第四阈值位于所述辅助电源的工作电压的范围内。
14、 根据权利要求 13所述的不间断电源, 其特征在于, 所述第三阈值 和所述第四阈值分别为所述母线的工作电压的上限值和下限值。
15、 根据权利要求 9中所述的不间断电源, 所述主回路包括与旁路并联 的多个整流支路和多个放电支路, 所述多个整流支路和多个放电支路用于提 供不间断电源,所述控制模块还用于在所述不间断电源从主回路工作模式切 换至旁路工作模式时,使所述主回路中的多个整流支路中的至少一条整流支 路停止工作, 或者使所述主回路中的多个放电支路中的至少一条放电支路停 止工作。
16、 根据权利要求 9至 15中的任一项所述的不间断电源, 其特征在于, 所述控制模块还用于在所述不间断电源从主回路工作模式切换至旁路工作 模式时,通过停止为所述逆变电路的开关管施加驱动信号来使所述逆变电路 来使所述逆变电路工作。
PCT/CN2014/073203 2013-06-28 2014-03-11 不间断供电的方法和不间断电源 WO2014206114A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14787085.1A EP2846437B1 (en) 2013-06-28 2014-03-11 Uninterrupted power supply method and uninterrupted power supply
EP18156750.4A EP3402037B1 (en) 2013-06-28 2014-03-11 Uninterruptible power supplying method and uninterruptible power supply
US14/549,389 US9729007B2 (en) 2013-06-28 2014-11-20 Uninterruptible power supplying method and uninterruptible power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310269839.0 2013-06-28
CN201310269839.0A CN103337901B (zh) 2013-06-28 2013-06-28 不间断供电的方法和不间断电源

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/549,389 Continuation US9729007B2 (en) 2013-06-28 2014-11-20 Uninterruptible power supplying method and uninterruptible power supply

Publications (1)

Publication Number Publication Date
WO2014206114A1 true WO2014206114A1 (zh) 2014-12-31

Family

ID=49246019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073203 WO2014206114A1 (zh) 2013-06-28 2014-03-11 不间断供电的方法和不间断电源

Country Status (4)

Country Link
US (1) US9729007B2 (zh)
EP (2) EP2846437B1 (zh)
CN (1) CN103337901B (zh)
WO (1) WO2014206114A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10826322B2 (en) * 2013-06-14 2020-11-03 Abb Schweiz Ag Systems and methods for grid interactive UPS
CN103337901B (zh) * 2013-06-28 2016-03-30 华为技术有限公司 不间断供电的方法和不间断电源
JP6523262B2 (ja) 2013-10-07 2019-05-29 ライオン セミコンダクター インク. ハイブリッド電圧レギュレータにおけるフィードバック制御
CN103683485A (zh) * 2014-01-02 2014-03-26 南京飓能电控自动化设备制造有限公司 基于可调速驱动装置的不间断电源
CN104836326B (zh) * 2014-02-12 2017-10-27 艾默生网络能源有限公司 一种不间断电源的切换控制方法、装置和不间断电源系统
CN104868764B (zh) * 2014-02-26 2017-08-04 全汉企业股份有限公司 逆变装置及其电源转换方法
US10476299B2 (en) 2014-05-02 2019-11-12 Schneider Electric It Corporation DC link voltage control
CN105450058B (zh) 2014-06-20 2018-03-16 华为技术有限公司 一种逆变器及其控制装置、控制方法及逆变器系统
CN105162233B (zh) * 2015-08-25 2017-09-19 深圳市商宇电子科技有限公司 Ups电池检测方法
CN105226809A (zh) * 2015-09-02 2016-01-06 湖南理工学院 一种ups系统eco运行模式告警及显示逻辑
CN107025195A (zh) * 2016-01-30 2017-08-08 鸿富锦精密电子(重庆)有限公司 电子装置供电系统
US10554164B2 (en) * 2016-11-01 2020-02-04 Sungrow Power Supply Co., Ltd. Modular extra low voltage electric vehicle power system
US11368100B2 (en) * 2017-07-13 2022-06-21 Kohler Co. Generator and battery backup with conversion device
CN108599362A (zh) * 2018-05-22 2018-09-28 郑州云海信息技术有限公司 一种不间断电源测试设备的无缝切换方法及其装置
CN108847805A (zh) * 2018-06-27 2018-11-20 佛山市诺行科技有限公司 一种单车位停车设备的蓄电池切换驱动装置
CN112015093B (zh) * 2019-05-31 2022-02-11 广东美的制冷设备有限公司 驱动控制方法、装置、家电设备和计算机可读存储介质
CN110311465B (zh) * 2019-06-28 2021-07-30 深圳市九洲电器有限公司 一种不间断供电的系统及网络附属存储设备
JP2022011203A (ja) * 2020-06-29 2022-01-17 Fdk株式会社 バックアップ電源装置及びバックアップ電源装置の制御方法
CN114069817A (zh) * 2020-07-31 2022-02-18 华为数字能源技术有限公司 一种不间断电源、通断控制模块、控制方法及系统
CN112366807B (zh) * 2020-11-06 2023-03-21 中云数据科技发展(深圳)有限公司 一种不间断电源的输入限流控制方法及装置
CN115733233A (zh) * 2021-08-25 2023-03-03 台达电子工业股份有限公司 电能转换系统
TWI830091B (zh) * 2021-11-22 2024-01-21 威剛科技股份有限公司 備用電源供應系統及其控制方法
CN114448062B (zh) * 2022-04-11 2022-07-22 深圳市思远半导体有限公司 一种便携设备的充电电路、充电芯片及充电控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928081A2 (en) * 2006-11-30 2008-06-04 Eaton Power Quality Corporation Power supply apparatus, methods and computer program products using D-Q domain based synchronization techniques
CN101222148A (zh) * 2008-01-25 2008-07-16 华为技术有限公司 一种不间断电源的供电方法和装置
CN101699702A (zh) * 2009-11-04 2010-04-28 佛山市柏克电力设备有限公司 多模式工作ups电源
CN201541145U (zh) * 2009-11-04 2010-08-04 佛山市柏克电力设备有限公司 多模式工作ups电源
CN102157980A (zh) * 2011-03-31 2011-08-17 昆山弗尔赛能源有限公司 基于燃料电池的不间断电源供电系统及其供电方法
CN202221906U (zh) * 2011-08-29 2012-05-16 贺学林 多模式工作ups电源
CN103337901A (zh) * 2013-06-28 2013-10-02 华为技术有限公司 不间断供电的方法和不间断电源

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295215B1 (en) * 2000-04-06 2001-09-25 Powerware Corporation AC power supply apparatus with economy mode and methods of operation thereof
US7456520B2 (en) * 2005-03-31 2008-11-25 General Electric Company Control system, method and product for uninterruptible power supply
TWI315118B (en) * 2006-07-12 2009-09-21 Delta Electronics Inc Method for controlling uninterruptible power supply apparatus
TWI349407B (en) * 2007-04-13 2011-09-21 Delta Electronics Inc Uninterruptible power supply and method for controlling same
US7893650B2 (en) 2008-01-29 2011-02-22 Azure Dynamics, Inc. Method and system for multiphase current sensing
CN201369680Y (zh) 2009-03-12 2009-12-23 河北实华科技有限公司 高效不间断电源电路
CN102751874B (zh) * 2012-06-27 2015-01-07 电子科技大学 自适应恒定导通时间控制电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928081A2 (en) * 2006-11-30 2008-06-04 Eaton Power Quality Corporation Power supply apparatus, methods and computer program products using D-Q domain based synchronization techniques
CN101222148A (zh) * 2008-01-25 2008-07-16 华为技术有限公司 一种不间断电源的供电方法和装置
CN101699702A (zh) * 2009-11-04 2010-04-28 佛山市柏克电力设备有限公司 多模式工作ups电源
CN201541145U (zh) * 2009-11-04 2010-08-04 佛山市柏克电力设备有限公司 多模式工作ups电源
CN102157980A (zh) * 2011-03-31 2011-08-17 昆山弗尔赛能源有限公司 基于燃料电池的不间断电源供电系统及其供电方法
CN202221906U (zh) * 2011-08-29 2012-05-16 贺学林 多模式工作ups电源
CN103337901A (zh) * 2013-06-28 2013-10-02 华为技术有限公司 不间断供电的方法和不间断电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2846437A4 *

Also Published As

Publication number Publication date
EP2846437A4 (en) 2015-08-05
EP3402037B1 (en) 2020-08-26
US20150076916A1 (en) 2015-03-19
EP3402037A1 (en) 2018-11-14
CN103337901A (zh) 2013-10-02
EP2846437B1 (en) 2018-05-09
US9729007B2 (en) 2017-08-08
CN103337901B (zh) 2016-03-30
EP2846437A1 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2014206114A1 (zh) 不间断供电的方法和不间断电源
CN102104277B (zh) 冗余电源控制方法、装置及系统
CN103828187A (zh) 具有正输出降压-升压转换器和在输入电源处的pfc的非隔离ac-dc转换器
US8314593B2 (en) Power-saving line interactive uninterruptible power system
TW201004112A (en) A power converter system that operates efficiently over a range of load conditions
US11575276B2 (en) Systems and methods for operating a power device
US8896152B2 (en) Systems and methods for operating an uninterruptible power supply
JPWO2007108185A1 (ja) 電動機駆動装置及び圧縮機駆動装置
KR101238946B1 (ko) 펌프 시스템 및 그 운전 방법
EP2608381B1 (en) AC-DC converter
WO2015018199A1 (zh) 光伏逆变器辅助电源的启动电路
US11859840B2 (en) Photovoltaic air conditioning system startup method, controller and photovoltaic air conditioning system
JP2001119956A (ja) 力率調整装置及び力率調整方法
US9742338B2 (en) Dual power mode drive
JP2015050913A (ja) 電源制御システム
TW201347388A (zh) 用於電子裝置之省電方法以及相關省電電路
CN113701306B (zh) 空调器中压缩机的保护控制方法和装置、电机控制器
CN115940654A (zh) 一种电源及计算设备
US9317097B2 (en) Efficiency adjustments in power supply system
JP2006014570A (ja) 電力回生方法およびそれを用いたコンバータ装置
JP2010176390A (ja) 電源装置、電源供給システム、該システムに用いられる電源供給方法及び電源供給制御プログラム
JP2000278948A (ja) 電源装置および電気機器
JP2008104250A (ja) 直流電源装置
CN115498685A (zh) 供电终端、供电控制方法、控制装置及存储介质
JP2022535007A (ja) 駆動制御方法、駆動制御装置、家電機器及びコンピュータ読み取り可能な記憶媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014787085

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE