WO2014205911A1 - 一种可见光通信mimo系统及其实现数据收发的方法 - Google Patents

一种可见光通信mimo系统及其实现数据收发的方法 Download PDF

Info

Publication number
WO2014205911A1
WO2014205911A1 PCT/CN2013/082648 CN2013082648W WO2014205911A1 WO 2014205911 A1 WO2014205911 A1 WO 2014205911A1 CN 2013082648 W CN2013082648 W CN 2013082648W WO 2014205911 A1 WO2014205911 A1 WO 2014205911A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional code
image
module
positioning
mimo system
Prior art date
Application number
PCT/CN2013/082648
Other languages
English (en)
French (fr)
Inventor
支周
洪文昕
韦玮
禹忠
陈晓红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13888256.8A priority Critical patent/EP3007370A4/en
Priority to US14/392,183 priority patent/US9967029B2/en
Publication of WO2014205911A1 publication Critical patent/WO2014205911A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • Visible light communication MIMO system and method for realizing data transmission and reception
  • the present invention relates to a visible light communication technology, and more particularly to a visible light communication multiple input multiple output (MIMO) system and a method for implementing data transmission and reception.
  • MIMO multiple input multiple output
  • Visible light communication is an emerging short-distance high-speed wireless optical communication technology based on light-emitting diode (LED) technology.
  • LED light-emitting diode
  • the biggest feature of visible light communication is that it supports communication while meeting the needs of normal lighting, and it is environmentally friendly and has no electromagnetic interference.
  • visible light communication MIMO system has become one of the hot technologies.
  • the basic structural requirements for visible light communication MIMO systems are to design the transmitter as an LEDs array structure and to require illumination intensity to meet indoor lighting requirements (5001x); the receiver is designed as a two-dimensional array multi-point detection structure.
  • the visible light communication MIMO system converts the disadvantage of "multipath effect" caused by multiple reflections of light in space into advantages, and utilizes spatial multiplexing technology to double the system throughput and data transmission rate.
  • through array transmission technology Effectively reduces the effects of inter-symbol interference. It can be seen that the MIMO system is very suitable for the diffuse channel of visible light communication, which reduces the sensitivity of the mobile terminal to the optical channel jitter, and can enhance the signal receiving capability and improve the channel utilization in the case of position change, channel abruptness, jitter, etc. of the terminal. rate.
  • Spatial multiplexing that is, at the transmitting end, using layered space-time multiplexing (BLAST) to transmit data, can double the system throughput and data transmission rate;
  • beamforming that is, through The field of view of the source is reduced to provide accurate channel directivity, thereby reducing channel interference (ICI) between adjacent sources.
  • ICI channel interference
  • the invention provides a visible light communication MIMO system and a method for realizing data transmission and reception, which can ensure synchronization of transmission and reception frames, thereby improving data transmission efficiency.
  • the present invention discloses a visible light communication multiple input multiple output.
  • the method for transmitting and receiving data by the MIMO system comprises: the data of the transmitting end is modulated and compiled by the light intensity, converted into the two-dimensional code information containing the positioning information, and then sent;
  • the receiving end scans the received two-dimensional code information, and corrects the received two-dimensional code information according to the positioning information
  • the corrected two-dimensional code information is demodulated to obtain data.
  • the compiling is: compiling the data into a two-dimensional code pattern by using a two-dimensional code compiler.
  • the positioning information is a positioning pattern formed by a specific ratio of the scale-invariant features in the two-dimensional code pattern.
  • the positioning patterns are three.
  • the scanning the received two-dimensional code information comprises: performing horizontal and vertical scanning on the planar image including the two-dimensional code graphic;
  • Image binarization is performed on a planar image that removes redundant light interference.
  • the removing the redundant optical interference in the planar image comprises: recording the brightness of each pixel in the planar image, comparing with a preset light intensity value range (E mm , E max ), removing the excess or A light intensity value less than (E mm , E max ).
  • performing image binarization processing on the planar image for removing redundant optical interference comprises: separately finding a maximum lightness value E max and a minimum light brightness value E mm in the planar image, and calculating a maximum light brightness value.
  • the brightness value in the image is divided into two types: greater than the average value E average and less than the average value E average , wherein the brightness value greater than the average value E average is a black image, denoted as 1; A bright spot smaller than the average value E average is a white image, expressed as 0.
  • the correcting the received two-dimensional code information according to the positioning information comprises: performing horizontal and vertical scanning on the two-dimensional code graphic until acquiring three positioning images thereof; respectively determining a center point of each positioning graphic , calculating the length of each side of the triangle composed of three center points;
  • the two-dimensional code pattern is rotated according to the obtained slope, and the oblique two-dimensional code pattern is restored; the boundary contour of the plane image is determined, and the corrected coordinates are calculated according to the bilinear interpolation method.
  • the obtained slope rate is obtained according to the following formula:
  • S' is the scan area, and S is the actual area
  • a represents the length of the side length of the short side a of each side length of the triangle
  • b represents the length of the side length of the short side b of each side length of the triangle
  • is the inclination angle
  • the present application further provides a visible light communication system, including a transmitting end and a receiving end, wherein the transmitting end is configured to: modulate and compile the data to be transmitted by light intensity, and convert the data into two-dimensional code information including positioning information.
  • a visible light communication system including a transmitting end and a receiving end, wherein the transmitting end is configured to: modulate and compile the data to be transmitted by light intensity, and convert the data into two-dimensional code information including positioning information.
  • the receiving end is configured to: scan the received two-dimensional code information, and correct the received two-dimensional code information according to the positioning information; and demodulate the corrected two-dimensional code information to obtain data.
  • the transmitting end comprises at least a two-dimensional code compiling module and a sending module, wherein the two-dimensional code compiling module is configured to: compile the data to be sent into a two-dimensional code graphic; and send a module, set to: pass light intensity Modulation, the compiled two-dimensional code pattern is modulated onto the point source and transmitted as a planar image.
  • the two-dimensional code compiling module is configured to: compile the data to be sent into a two-dimensional code graphic; and send a module, set to: pass light intensity Modulation, the compiled two-dimensional code pattern is modulated onto the point source and transmitted as a planar image.
  • the transmitting module is an array of LEDs, and the transmitting array uses multiplexing technology.
  • the two-dimensional code pattern includes a positioning graphic; The specific proportion of the variable features.
  • the positioning pattern comprises three, which are respectively located at three vertex angles of the two-dimensional code pattern.
  • the receiving end includes at least a receiving module, a preprocessing module, a correction module, and a demodulation module, where
  • the receiving module is configured to: receive a planar image containing the two-dimensional code information from the transmitting end; and the pre-processing module is configured to: scan the received planar image containing the two-dimensional code information, remove redundant optical interference and perform Binary processing, outputting the processed two-dimensional code image to the correction module;
  • the correction module is configured to: scan a two-dimensional code graphic from the pre-processing module to obtain a positioning image; locate a boundary contour of the two-dimensional code graphic according to the positioning image, and correct the two-dimensional code graphic, and output the same to the demodulation module;
  • the demodulation module is configured to: demodulate the processed two-dimensional code pattern from the correction module to obtain original data.
  • the receiving module is a two-dimensional array multi-point photodetector.
  • an imaging lens is disposed above the two-dimensional array multi-point photodetector for mirroring a planar image transmitted over a long distance into the receiver array.
  • the receiving module collects a planar image from the transmitting end by using a predetermined frame rate synchronized with the frame rate of the LEDs of the transmitting end.
  • the technical solution of the present application provides that the data including the transmitting end is modulated by light intensity and compiled, and converted into two-dimensional code information including positioning information, and then transmitted; the receiving end scans the received two-dimensional code information, and receives the received two according to the positioning information. The dimension code information is corrected; and the corrected two-dimensional code information is demodulated to obtain data.
  • 1 is a flowchart of a method for implementing data transmission and reception in a visible light communication MIMO system according to the present invention
  • 2 is a schematic diagram of a "frame" plane image transmitted by an LEDs array at a transmitting end of a visible light communication MIMO system according to the present invention
  • FIG. 3 is a schematic diagram of a positioning pattern in a planar image transmitted by the present invention.
  • FIG. 4(a) is a schematic diagram showing a triangular shape in which three central points of a positioning pattern in a planar image transmitted by the present invention are connected;
  • 4(b) is a schematic diagram of a triangle in which three central points of a positioning pattern are distorted after the planar image transmitted by the present invention is connected;
  • Figure 5 (a) is a schematic view showing the boundary of a corrected planar image in the present invention.
  • Figure 5 (b) is a schematic view showing the boundary of an uncorrected planar image in the present invention.
  • FIG. 6 is a schematic structural diagram of a visible light communication MIMO system according to the present invention.
  • a two-dimensional code is a kind of graphic code for recording data symbol information in a certain geometric pattern, a black and white array pattern distributed in a plane (two-dimensional direction) according to a certain rule; using several codes in coding
  • the binary corresponding geometry represents the text and numerical information, and is automatically recognized by the image input device or the photoelectric scanning device to realize automatic information processing.
  • the QR code can express information simultaneously in both the horizontal and vertical directions. Therefore, the two-dimensional code can express a large amount of information in a small area.
  • the QR code also has the ability to resist geometric distortion of the graphic. It can scan the distortion pattern at the angles of rotation and tilt, and can also recover the pixel values at various points in the graph without error and extract information.
  • the invention combines the two-dimensional code with the array structure characteristics of the visible light communication MIMO system, realizes the visible light communication MIMO system and its data transmission and reception, so as to ensure the transmission and reception frame synchronization, thereby improving the data transmission efficiency.
  • the transmitter located at the transmitting end of the visible light communication MIMO system can use the LEDs array as the signal transmitting system.
  • the transmission array uses multiplexing technology, each point light source is independent of each other, and sends different signals to each other.
  • the transmitted signals are distinguished by light intensity and correspond to binary 0 and 1 values (for example, "light intensity” represents 1, "light intensity” Represents 0).
  • the "flat image” signal transmitted once is recorded as one frame.
  • the frame structure is composed of a plurality of dot pixels having different brightness and darkness, corresponding to the array structure of the two-dimensional code.
  • the present invention is based on the existing three points.
  • the positioning graphic has a "back" shape, and the ratio from the outer to the inner is divided into strong-weak-strong-weak-strong according to the light intensity.
  • the ratio is 1:1: 2:1:1 appears in sequence.
  • This 1 : 1 : 2 : 1 : 1 width scale feature is less likely to appear at other locations in the planar image and is therefore considered a scanning feature of the positioning graphic.
  • a computer scan line as shown in Figure 3, Ll, L2, L3, L4
  • the positioning pattern when the plane image detected by the receiver is distorted, the positioning pattern also has the same distortion, and the size of each point in the positioning pattern also changes the same, the only constant is the 1:1:2:1:1 Proportional characteristics. Because this proportional feature does not change due to the size, rotation, and tilt of the entire planar image, the positioning pattern can be found based on this proportional feature. When the positioning pattern is found, the center point of the graphic is the plane image positioning point, as shown in the center point of FIG.
  • the shape of the positioning pattern is not limited to the above-mentioned "back" font shape, and depends on the size and data amount of the LEDs array, such as a large-sized small-sized LEDs array, which can use symmetric polygons (hexagons, etc.) as Position the graphic as long as it matches the scale-invariant feature.
  • the receiver located at the receiving end of the visible light communication MIMO system is a two-dimensional array multi-point photodetector.
  • a concentrating component such as a convex lens
  • each (or a group of) pixels of the image It will be mapped into a two-dimensional array multi-point photodetector to improve channel reception efficiency. , improve channel reception efficiency.
  • the receiver can be controlled by the embedded computer. According to the two-dimensional code scanning technology, pixels of each point (including horizontal and vertical) are scanned row by row.
  • the planar pattern received by the two-dimensional array multi-point photodetector corresponds to the two-dimensional code pattern, and the distortion data of the jitter is recovered by calculation to extract an independent data signal.
  • the receiver continuously scans the received image until a specific shape of the positioning pattern is detected to identify the beginning of the frame. And play the anti-distortion advantage of the two-dimensional code graphic.
  • the correction of the plane image can also ensure that the corrected receiving plane image is consistent with the plane image sent by the LEDs, thereby ensuring one frame.
  • each pixel in the pixel can be recovered and detected without error at the same time, so as to achieve the purpose of transmitting and receiving frame synchronization.
  • the present invention can also reduce the influence of inter-code interference in one frame of data while ensuring frame synchronization.
  • the transmitting end of the visible light communication MIMO system of the present invention uses a multiplexing technique to transmit data in parallel, which improves the transmission gain and also improves the illumination intensity.
  • the two-dimensional array multi-point photodetector array at the receiving end is a two-dimensional multi-point structure corresponding to the transmitting array, and the parallel data can be better mapped to the two-dimensional array multi-point photoelectric detection after passing through the imaging lens. In the array of arrays, the receiving efficiency is improved.
  • Step 100 The data at the transmitting end is modulated and compiled by light intensity, and converted into positioning information.
  • the QR code information is sent afterwards.
  • the LEDs array of the transmitting end of the visible light communication MIMO system uses a frame image transmitted by the multiplexing technology, that is, a plane image (N represents the number of pixels) emitted by the N*N LEDs array. ⁇ Using the light intensity modulation method, the information of 1 and 0 is distinguished by "bright” and "dark". In Fig.
  • one frame plane can be transmitted (N *N)bits information.
  • the data is serially converted and converted into a two-dimensional code pattern by a two-dimensional code compiler, and then modulated and transmitted to a point source. Among them, each point light source carries different information and is multiplexed and transmitted.
  • the QR code compiler can use the existing QR code compiler.
  • set the positioning information of (3*n*n) bits (n indicates the side length of the positioning pattern), and (3*n*n in (N*N) bits. ) bits are treated as positioning overhead and are frame start markers.
  • the positioning pattern is composed of a specific scale pattern conforming to the proportional invariant feature. The positioning graphic does not carry any valid data information.
  • This step emphasizes that, at the transmitting end of the visible light communication MIMO system of the present invention, the data to be transmitted is compiled and processed by the two-dimensional code method.
  • the specific implementation of the present invention is not to be construed as limiting the scope of the present invention.
  • Step 101 The receiving end scans the received two-dimensional code information, and corrects the received two-dimensional code information according to the positioning information.
  • the receiving end collects the planar image from the transmitting end according to a predetermined frame rate synchronized with the transmitting frame rate of the LEDs of the transmitting end, and performs horizontal and vertical scanning.
  • the image scanning process first, the brightness of each pixel in the plane image is recorded, and compared with a predetermined range of light intensity values (E mm , E max ) of the transmitted data information after attenuation, when the receiver detects When the light intensity exceeds or is less than (E mm , E max ), it is regarded as the interference of the background light intensity.
  • the light intensity value is removed, and only the light intensity in the range of (E mm , E max ) is detected. Value to remove redundant light interference;
  • performing image binarization processing on the planar image from which the redundant optical interference is removed including: respectively finding the maximum lightness value E max and the minimum light brightness value E mm in the planar image, and calculating the maximum lightness value E max and the minimum The average value of the brightness value E mm E average ;
  • the luminance value in the image is divided into two types according to the average value E average , which are larger than the average value E average and smaller than the average value E average , and respectively subjected to binarization processing.
  • the brightness value greater than the average value E average is a black image, which is represented as 1; the light point smaller than the average value E average is a white image, which is represented as 0.
  • the processed black and white image is a two-dimensional code graphic.
  • the two-dimensional code pattern obtained after the image scanning of the receiver may be geometrically distorted due to terminal jitter.
  • it is necessary to further correct it to recover the geometrically distortiond received image including:
  • the two-dimensional code pattern is scanned horizontally and vertically until a standard scale is used, that is, a specific scale of the positioning image that conforms to the scale-invariant feature. As shown in Fig. 3, even if distortion occurs, the scale feature does not change. Record the four straight lines L1, L2, L3, and L4 in the horizontal and vertical directions and the last to the standard ratio. The four lines surrounded by the four lines are connected to the diagonal line to obtain the center point of the positioning pattern. The above process is repeated until the three center points of the three positioning patterns in Fig. 4(a) are found, wherein the method of determining the center point belongs to the conventional technical means of those skilled in the art, and is a simple operation process, and is no longer here. Narrative
  • the boundary of the plane image is determined by the straight line approximation method. Specifically, it includes: moving along the two sides of the short side a and the short side b of the triangle, respectively, moving away from the other vertex (as shown in Fig.
  • the corrected coordinates are calculated according to the bilinear interpolation method. As shown in Fig. 5(a), Pl, P2, P3, and P4 are the four vertices of the corrected planar image, as shown in Fig. 5(b).
  • Pi', P2', P3', P4' are the four vertices of the uncorrected planar image.
  • f(x, y) denote the corrected planar image pixel value
  • f(x, y) denotes the uncorrected planar image pixel value
  • the two-line interpolation calculation is the calculation method in the existing two-dimensional code decoding software.
  • the specific implementation is not intended to limit the scope of the present invention, and the specific implementation method is not within the scope of the present invention.
  • the corrected coordinates (x, y) may be floating point coordinates
  • the nearest neighbor point may be used, that is, interpolation is used, and f is calculated according to the coordinates of the four vertices of the unit where the uncorrected coordinates (x, y) are located.
  • the pixel value f(x, y) of the coordinates (x, y) can be calculated. That is to say, by calculating the coordinates of each point, plane coordinate transformation is performed, and the image is turned to the horizontal level, and a standard image with the pixel module of 1 *1 is obtained.
  • the geometric distortion pattern is corrected by using the two-dimensional code technology, and the planar image transmitted by the LEDs array in the visible light communication MIMO system is corrected, and the pixels of each point in the image are simultaneously detected without errors.
  • the purpose of sending and receiving frame synchronization is achieved.
  • Step 102 Demodulate the corrected two-dimensional code information to obtain data.
  • the planar pattern processed in step 101 is subjected to two-dimensional code demodulation to obtain original data.
  • the method of the invention it is ensured that pixels in a "frame" plane can be demodulated simultaneously without errors, and are not affected by terminal jitter or the like.
  • frame synchronization of the transceiver is implemented.
  • inter-code interference is effectively suppressed.
  • the transmitting end of the visible light communication MIMO system of the present invention uses the multiplexing technique to transmit data in parallel, thereby improving the transmission gain and improving the illumination intensity.
  • the two-dimensional array multi-point photodetector array at the receiving end is a two-dimensional multi-point structure corresponding to the transmitting array, and the parallel data can be better mapped to the two-dimensional array multi-point after passing through, for example, a condensing convex lens.
  • the photodetector array the receiving efficiency is improved.
  • the present invention also provides a visible light communication MIMO system, as shown in FIG. 6, including a transmitting end and a receiving end, where
  • a transmitting end configured to: modulate and compile the data to be sent by light intensity, convert it into two-dimensional code information including positioning information, and send the data;
  • the receiving end is configured to scan the received two-dimensional code information, and correct the received two-dimensional code information according to the positioning information; and demodulate the corrected two-dimensional code information to obtain data.
  • the transmitting end of the present invention includes at least a two-dimensional code compiling module and a transmitting module, wherein the two-dimensional code compiling module is configured to compile the data to be sent into a two-dimensional code graphic; and the transmitting module is configured to pass the light.
  • Intensity modulation which modulates the compiled two-dimensional code pattern onto a point source and transmits it in the form of a planar image.
  • the transmitting module is an array of LEDs, and the transmitting array can use multiplexing technology.
  • the two-dimensional code pattern includes a positioning pattern; the positioning pattern includes three, respectively located at three vertices of the two-dimensional code pattern; and the positioning pattern is formed by a specific proportion that conforms to the proportional invariant feature.
  • the receiving end of the present invention includes at least a receiving module, a preprocessing module, a correcting module, and a demodulating module, where
  • the receiving module is configured to receive a planar image from the transmitting end that includes the two-dimensional code information.
  • the receiving module may be a two-dimensional array multi-point photodetector, and the receiving module uses a predetermined frame rate synchronized with the transmitting frame rate of the LEDs of the transmitting end to collect a planar image from the transmitting end.
  • An imaging lens is further disposed above the two-dimensional array multi-point photodetector for mirroring a planar image transmitted over a long distance into the receiver array.
  • the pre-processing module is configured to scan the received planar image containing the two-dimensional code information, remove redundant optical interference and perform binarization processing, and output the processed two-dimensional code image to the correction module.
  • a correction module configured to scan a two-dimensional code pattern from the pre-processing module to obtain a positioning image; locate a boundary contour of the two-dimensional code pattern according to the positioning image, and correct the two-dimensional code pattern and output the same to the demodulation module;
  • the demodulation module is configured to perform two-dimensional code demodulation on the processed two-dimensional code pattern from the correction module to obtain original data.
  • the geometric distortion pattern is corrected by using the two-dimensional code technology, and the planar image transmitted by the LEDs array in the visible light communication MIMO system is corrected, and the pixels in each frame of the image are simultaneously ensured. Detection, the purpose of receiving and transmitting frame synchronization is achieved, thereby improving data transmission efficiency.
  • the transmitting end of the visible light communication MIMO system uses the multiplexing technique to transmit data in parallel, which improves the transmission gain and also improves the illumination intensity.
  • the two-dimensional array multi-point photodetector array at the receiving end is a two-dimensional multi-point structure corresponding to the transmitting array, and the parallel data can be better mapped to the two-dimensional array multi-point photoelectric detection after passing through the imaging lens. In the array of arrays, the receiving efficiency is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

一种可见光通信MIMO系统及其实现数据收发的方法,包括发送端的数据经光强度调制并编译,转换为包含有定位信息的二维码信息后发送;接收端扫描接收到的二维码信息,并根据定位信息对接收到的二维码信息进行矫正;并对矫正后的二维码信息进行解调获得数据。本发明实施例中,通过采用二维码技术实现几何失真图形的矫正,实现了对可见光通信MIMO系统中LEDs阵列发送的平面图像的矫正,保证了一帧图像内各点像素被同时无误的检测,达到了收发帧同步的目的,从而提高了数据发送效率。

Description

一种可见光通信 MIMO系统及其实现数据收发的方法
技术领域
本发明涉及可见光通信技术,尤指一种可见光通信多输入多输出( MIMO ) 系统及其实现数据收发的方法。 背景技术
可见光通信是一种基于发光二极管 (LED )技术发展起来的、 新兴短距 离高速无线光通信技术。 可见光通信最大的特点是, 其在支持通信的同时还 满足正常照明的需求,而且绿色环保、无电磁干扰。随着可见光通信的发展, 可见光通信 MIMO系统也已成为热点技术之一。
对可见光通信 MIMO系统的基本结构要求是, 将发射机设计为 LEDs阵 列结构, 并要求发光强度满足室内照明要求( 5001x ); 接收机设计为二维阵 列多点检测结构。 可见光通信 MIMO 系统将光线在空间中多次反射导致的 "多径效应" 这一弊端转换成优势, 利用空间复用技术成倍地提高了系统吞 吐量及数据传输速率, 此外, 通过阵列发送技术有效地降低了码间窜扰的影 响。 可见, MIMO系统非常适合于可见光通信的漫射信道, 它降低了移动终 端对光信道抖动的敏感性,在终端发生位置变化、信道突变、抖动等情况下, 能够增强信号接收能力, 提高信道利用率。
MIMO系统应用在可见光通信中主要有三个热点技术:一个是空间分集, 也就是在收发端, 均分别釆用阵列形式传输数据, 以减少时延造成的误码, 提高信道可靠性; 另一个是空间复用, 也就是在发送端, 釆用分层空-时复用 ( BLAST )方式发送数据, 可以成倍提高系统的吞吐量和数据传输速率; 还 有一个是波束赋型, 也就是通过减小光源的视场角以精确信道指向性, 从而 降低相邻光源之间的信道干扰(ICI ) 。
目前, 在可见光通信 MIMO系统中, 当移动终端发生抖动时, 发送端的 数据会出现失真, 从而造成收发帧不同步; 而接收机接收的光信道会被迫中 断, 无法继续通信。 这样, 当连续发送长串定位信息时, 也会因发生的抖动 而导致信息丟失, 降低了数据发送效率。 发明内容
本发明提供一种可见光通信 MIMO系统及其实现数据收发的方法,能够 保证收发帧同步, 从而提高数据发送效率。 为了解决上述技术问题, 本发明公开了一种可见光通信多输入多输出
MIMO系统实现数据收发的方法,包括:发送端的数据经光强度调制并编译, 转换为包含有定位信息的二维码信息后发送;
接收端扫描接收到的二维码信息, 并根据定位信息对接收到的二维码信 息进行矫正;
对矫正后的二维码信息进行解调获得数据。
优选地, 所述编译为: 利用二维码编译器对所述数据进行编译, 转换为 二维码图形。
优选地, 所述定位信息为位于所述二维码图形中的符合比例不变特征的 特定比例构成的定位图形。
优选地, 所述定位图形为三个。
优选地, 所述扫描接收到的二维码信息包括: 对包含所述二维码图形的 平面图像进行横向、 纵向扫描;
去除所述平面图像中的冗余光干扰;
对去除冗余光干扰的平面图像进行图像二值化处理。
优选地, 所述去除平面图像中的冗余光干扰包括: 记录所述平面图像中 各像素点的光亮度 , 与预先设置的光强度值范围 (Emm,Emax )进行比较, 去除超过或小于 (Emm,Emax ) 范围的光强度值。
优选地, 所述对去除冗余光干扰的平面图像进行图像二值化处理包括: 分别找出所述平面图像中的最大光亮度值 Emax和最小光亮度值 Emm, 计 算最大光亮度值 Ema>^最小光亮度值 Emm的平均值 Eaverage;
按照平均值 Eaverage将图像中的亮度值分为大于平均值 Eaverage, 及小于平 均值 Eaverage两类,其中, 大于平均值 Eaverage的光亮值为黑色图像,表示为 1 ; 小于平均值 Eaverage的光亮点为白色图像, 表示为 0。
优选地, 所述根据定位信息对接收到的二维码信息进行矫正包括: 对所述二维码图形进行横向、纵向扫描 ,直到获取其中的三个定位图像; 分别确定各定位图形的中心点, 计算由三个中心点构成的三角形的各边 长长度;
根据所述三角形的两个短边边长及倾斜角 α计算扫描面积 并与实际 面积 S相比得到斜率;
根据得到的斜率对所述二维码图形进行旋转, 恢复倾斜的二维码图形; 确定所述平面图像的边界轮廓, 根据双线性插值法计算矫正后的坐标。 优 选 地 , 所 述 获 取 斜 率 根 据 下 面 的 公 式 获 得 :
Ratio =—— 2 > ^ 1 ^ = ; 其中,
S ^x(a + bx sm a)xb α + α Χ 8ΐη α 1 + sin a
S'为扫描面积, S为实际面积;
a表示所述三角形的各边长中短边 a的边长长度, b表示所述三角形的各 边长中短边 b的边长长度; α为倾斜角。
本申请还提供一种可见光通信 ΜΙΜΟ系统,包括发送端和接收端,其中, 发送端, 设置为: 将待发送的数据经光强度调制并编译, 转换为包含有 定位信息的二维码信息后发送;
接收端, 设置为: 扫描接收到的二维码信息, 并根据定位信息对接收到 的二维码信息进行矫正; 对矫正后的二维码信息进行解调获得数据。
优选地, 所述发送端至少包括二维码编译模块和发送模块, 其中, 二维码编译模块, 设置为: 将待发送的数据编译成二维码图形; 发送模块, 设置为: 通过光强度调制, 将编译后的二维码图形调制到点 光源上以平面图像的形式进行发送。
优选地, 所述发送模块为 LEDs阵列, 发射阵列釆用复用技术。
优选地, 所述二维码图形中包括定位图形; 所述定位图形由符合比例不 变特征的特定比例构成。
优选地, 所述定位图形包括三个, 分别位于二维码图形的三个顶角处。 优选地, 所述接收端至少包括接收模块、 预处理模块、 矫正模块, 以及 解调模块, 其中,
接收模块, 设置为: 接收来自发送端的包含有二维码信息的平面图像; 预处理模块, 设置为: 对接收到的包含有二维码信息的平面图像进行扫 描, 去除冗余光干扰并进行二值化处理, 将处理后的二维码图像输出给矫正 模块;
矫正模块, 设置为: 对来自预处理模块的二维码图形进行扫描, 获取定 位图像; 根据定位图像定位二维码图形的边界轮廓并对二维码图形进行矫正 后输出给解调模块;
解调模块, 设置为: 对来自矫正模块的处理后的二维码图形进行二维码 解调, 获得原始数据。
优选地, 所述接收模块是二维阵列多点式光电检测器。
优选地, 所述二维阵列多点式光电检测器上方设置有成像透镜, 用于将 远距离发送的平面图像镜像到接收机阵列中。
优选地, 所述接收模块釆用与所述发送端的 LEDs阵列发射帧率同步的 预定帧率, 釆集来自发送端的平面图像。
本申请技术方案提供包括发送端的数据经光强度调制并编译, 转换为包 含有定位信息的二维码信息后发送; 接收端扫描接收到的二维码信息, 并根 据定位信息对接收到的二维码信息进行矫正; 并对矫正后的二维码信息进行 解调获得数据。
附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1为本发明可见光通信 MIMO系统实现数据收发的方法的流程图; 图 2为本发明可见光通信 MIMO系统的发射端的 LEDs阵列釆用复用技 术发送的一 "帧" 平面图像的示意图;
图 3为本发明发送的平面图像中的定位图形的示意图;
图 4(a)为本发明发送的平面图像中的三个定位图形中心点连接成的三角 形的示意图;
图 4(b)为本发明发送的平面图像发生畸变后的三个定位图形中心点连接 成的三角形的示意图;
图 5(a)为本发明中矫正后的平面图像的边界示意图;
图 5(b)为本发明中未矫正的平面图像的边界的示意图;
图 6为本发明可见光通信 MIMO系统的组成结构示意图。
本发明的较佳实施方式
二维码是以某种特定的几何图形、 按一定规律在平面 (二维方向上)分 布的、 黑白相间的阵列图形来记录数据符号信息的一种图形码; 在代码编制 上使用若干个与二进制相对应的几何图形来表示文字、 数值信息, 并通过图 像输入设备或光电扫描设备自动识别, 实现信息自动处理。 二维码能够在横 向和纵向两个方位同时表达信息, 因此, 二维码能在很小的面积内表达大量 的信息。 此外, 二维码还具备抗图形几何失真的能力, 在旋转、 倾斜等角度 下扫描畸变图形, 也能通过软件计算无误地恢复图形内各点处像素值, 提取 信息。 本发明将二维码与可见光通信 MIMO系统的阵列结构特点相结合, 实 现可见光通信 MIMO系统及其数据收发, 以保证收发帧同步, 从而提高数据 发送效率。
本发明中, 位于可见光通信 MIMO系统发送端的发射机可以以 LEDs阵 列作为信号发射系统。 发射阵列釆用复用技术, 各点光源相互独立, 彼此发 送不同的信号, 发送的信号以光强度区分, 并对应二进制 0、 1值(比如 "光 强强"代表 1、 "光强弱"代表 0 )。一次发送的 "平面图像"信号记为一帧, 那么, 该帧结构由数个明暗强度不同的点像素构成, 与二维码的阵列结构相 应。 为了充分利用二维码矫正几何失真图形的优势, 本发明基于现有三点确 定平面原理, 在 LEDs阵列的三个顶角处设置三块定位图形区域, 比如该定 位图形呈 "回" 字形, 自外向里比例按光照强度分为强-弱-强强-弱 -强, 比值 为 1:1 :2:1 :1依次出现。这种 1 :1 :2:1 :1的宽度比例特征在平面图像的其他位置 出现的可能性很小, 因此被视为定位图形的扫描特征。 基于此特征, 当一条 计算机的扫描直线上(如图 3所示, Ll、 L2、 L3、 L4 )被光强度强、 弱相间 地截为 1 :1 :2:1 :1时, 可认为该扫描直线穿过了定位图形。 并且, 当接收机检 测到的平面图像发生畸变时, 该定位图形也呈相同畸变, 定位图形中各点的 大小也发生相同改变, 唯一不变的就是该 1:1 :2:1 :1的比例特征。 正因为这种 比例特征不因整个平面图像的大小、 旋转、 倾斜而改变的特点, 因此, 可以 根据这种比例特征找到定位图形。 当找到定位图形后, 该图形的中心点即为 平面图像定位点, 如图 3所示的中心点。
需要说明的是, 定位图形的形状不局限于上述 "回" 字形, 根据 LEDs 阵列的尺寸、 数据量而定, 如大尺寸小数据量的 LEDs阵列可釆用对称多边 形 (六边形等)作为定位图形, 只要符合比例不变特征即可。
本发明中,位于可见光通信 MIMO系统接收端的接收机是二维阵列多点 式光电检测器。 在二维阵列多点式光电检测器上方安置聚光元器件(如凸透 镜) , 用于将远距离发送的平面图像镜像到接收机阵列中, 此时, 图像的每 一个(或一组)像素都会映射到二维阵列多点式光电检测器中, 提高信道接 收效率。 , 提高信道接收效率。 同时, 接收机可以由嵌入式计算机控制, 根 据二维码扫描技术, 逐排扫描各点像素 (包括横向、 纵向) , 光强度强的像 素由黑色图形表示, 光强度弱的像素由白色图形表示。 最终, 二维阵列多点 式光电检测器接收到的平面图形与二维码图形相应, 并通过计算恢复抖动的 失真图形, 提取独立的数据信号。 本发明中, 接收机不断扫描接收的图像, 直到检测出特定形状的定位图 形, 来识别帧的开始。 并发挥二维码图形的抗失真优势, 在发生抖动, 收到 几何失真图形时, 也能通过对平面图像的矫正, 保证矫正后的接收平面图像 与 LEDs发送的平面图像一致, 从而保证一帧内的各像素可同时无误的恢复 并检测, 以实现收发帧同步的目的。 并且, 本发明在保证帧同步的同时, 也 能降低一帧数据内码间窜扰的影响。 综上,本发明可见光通信 MIMO系统的发送端釆用复用技术并行发送数 据, 提高了发送增益, 同时也提高了照明强度。 而且, 接收端二维阵列多点 式光电检测器阵列为二维多点式结构, 与发送阵列相对应, 该并行数据通过 成像透镜后, 能够更好的映射到二维阵列多点式光电检测器阵列中, 提高了 接收效率。
图 1为本发明可见光通信 MIMO系统实现数据收发的方法的流程图,如 图 1所示, 本发明方法包括以下步骤: 步骤 100: 发送端的数据经光强度调制并编译, 转换为包含有定位信息 的二维码信息后发送。 如图 2所示, 本步骤中, 可见光通信 MIMO系统的发射端的 LEDs阵列 釆用复用技术发送的一帧平面图像,即 N*N的 LEDs阵列发射的平面图像 ( N 表示像素点数) 。 釆用光强度调制方式, 以 "明" 、 "暗" 区分 1、 0信息, 图 2中, 黑色代表 "明" 即 1信息, 白色代表 "暗" 即 0信息, 一帧平面可 发送 (N*N)bits信息。数据经过串并转换, 并通过二维码编译器编译成二维码 图形后, 调制到点光源上发送。 其中, 各点光源携带不同信息, 复用发送。 二维码编译器可以釆用现有的二维码编译器。 在发送的 (N*N)bits信息中, 设置出(3*n*n)bits的定位信息 (n表示定位 图形的边长),在 (N*N)bits中的 (3*n*n)bits视为定位开销,为帧开始标记符。 如图 2中 3个顶角处的定位图形, 定位图形由符合比例不变特征的特定比例 的图形构成。 定位图形中不携带任何有效数据信息。
本步骤强调的是, 在本发明可见光通信 MIMO系统的发送端,待发送的 数据是釆用二维码方式进行编译处理的。 而具体如何实现编译是本领域技术 人员的公知技术, 并不是本发明所要保护的, 其具体实现方式也不用于限定 本发明的保护范围。
步骤 101 : 接收端扫描接收到的二维码信息, 并根据定位信息对接收到 的二维码信息进行矫正。 接收端按照与发送端的 LEDs阵列发射帧率同步的预定帧率, 釆集来自 发送端的平面图像, 并对其进行横向、 纵向扫描。 在图像扫描过程中, 首先, 记录平面图像中各像素点的光亮度 , 与预 先设置的经一定衰减后的传输数据信息的光强度值范围 (Emm,Emax )进行比 较, 当接收机检测到超过或小于 (Emm,Emax ) 范围的光强度时, 均视为背景 光光强的干扰, 去除这部分光强度值, 仅保留检测到 (Emm,Emax ) 范围内的 光强度值, 以去除冗余光干扰;
然后, 对去除冗余光干扰的平面图像进行图像二值化处理, 包括: 分别找出平面图像中的最大光亮度值 Emax和最小光亮度值 Emm, 计算最 大光亮度值 Emax和最小光亮度值 Emm的平均值 Eaverage;
按照平均值 Eaverage将图像中的亮度值分为大于平均值 Eaverage, 及小于平 均值 Eaverage两类, 并分别进行二值化处理。 其中, 大于平均值 Eaverage的光亮 值为黑色图像, 表示为 1 ; 小于平均值 Eaverage的光亮点为白色图像, 表示为 0。 处理后的黑、 白图像即为二维码图形。
但是, 经过接收机图像扫描后得到的二维码图形, 可能由于终端抖动而 发生几何失真, 此时, 需要进一步对其进行矫正, 以恢复几何失真的接收图 像, 具体包括:
对二维码图形进行横向、 纵向扫描, 直到寻找到标准比例即符合比例不 变特征的特定比例的定位图像。 如图 3示, 即使发生扭曲时, 该比例特征也 不发生改变。记录横向、纵向最先与最后扫描到呈标准比例的四直线 L1、L2、 L3、 L4 ,将这四条直线围成的四边形后连接其对角线得到定位图形的中心点。 重复上述过程, 直至找到图 4(a)中的三个定位图形的三个中心点, 其中, 中 心点的确定方法属于本领域技术人员的惯用技术手段, 是一个简单的运算过 程, 这里不再赘述;
在三个中心点确定后, 计算由三个中心点构成的三角形的各边长长度, 根据三角形的短边 a和短边 b , 倾斜角 计算扫描面积 并与实际面积 S (即标准比例下不失真的面积)相比,按照公式 (1)得到扫描直线的斜率 Ratio 下:
0, —xaxb
π . ύ 9 、 a 1 ί λ
Ratio =— = - ≥ = (1)
S 1、,, , 7„ . ^ w ?_ α + axsin 1 + sin α 当平面图像的倾斜角 α在 0。〜10。之间变化时, 斜率 Ratio值在 0.85至 1 之间变化。 通过扫描直线的斜率 Ratio 可以得到平面图像的倾斜角 再根 据 α恢复图像的倾斜, 如图 4(b)所示, 恢复倾斜至虚线处。 将最长边长 c之 外的顶点 (如图 4(b)中的定点 Μ )作为平面图像的左上角, 旋转图像至正, 如图 4(a)所示。
当恢复图像的旋转、 倾斜后如图 4(a)所示, 再釆用直线逼近法确定平面 图像的边界。 具体包括: 沿着三角形的短边 a和短边 b两条边, 分别向远离 另一个顶点 (如图 4 ( a )所示, 定点 N、 定点 P ) 的方向移动扫描, 每次向 外偏移 1个像素, 偏移量 ( = ±1 ) , 并获取各条直线扫描所得的图形; 在 到达边界时反复来回扫描,并微调扫描直线斜率,以得到两条最佳逼近直线; 再做过第三点且分别平行于上述两条最佳逼近直线的直线, 向远离上述两条 最佳逼近直线的方向进行扫描, 以得到剩余两条边界直线。 最终得到四条直 线围成的一个闭合四边形的轮廓;
在确定平面图像的边界轮廓后, 根据双线性插值法计算矫正后的坐标。 如图 5(a)中的 Pl、 P2、 P3、 P4为矫正后的平面图像的 4个顶点, 图 5(b)中的
Pi' 、 P2' 、 P3' 、 P4'为未矫正的平面图像的 4个顶点。 假设 f(x,y)表示矫正 后的平面图像像素值, f(x ,y )表示未矫正的平面图像像素值, 那么, f(x,y)与 f(x ,y )之间的关系可表示为如公式 (2)所示:
/0, y) = klx + k2y + k^xy+ k
f(x y) = k5x + k6y + k7xy+ ks
公式 (2)中的 8个映射系数, 可以通过代入 8个顶点 Pl、 P2、 P3、 P4、
ΡΓ、 P2'、 P3'、 Ρ4'得到 8个方程组, 联立这 8个方程组即可求得 8个映射 系数(该双线插值计算就是现有二维码解码软件中的计算方法, 具体实现并 不用于限定本发明的保护范围,其具体实现方法也不属于本发明的保护范围)。 进一步地, 由于矫正后的坐标 (x,y)可能为浮点坐标, 可以釆用最邻近点即利 用插值法, 根据未矫正的坐标 (x ,y )所在单元的 4个顶点坐标计算出 f(x,y): 假设坐标 (x ,y )的 4个相邻点坐标分别为 (x。',y。')、 (x。',y 、 (xi',y。')、 (χι',γι'), 像素值为 f(0,0)、 f(0,l)、 f(l,0)、 f(l,l), 则按照双线性插值公式 (3):
/(χ, = [/(1,0) - /(0,0)]χ(χ' -χ0) + [ (0,1) -
Figure imgf000011_0001
+ [ (1,1) + (0,0) - (0,1)— /(1,0)]χ(χ' _ x0)xCy -y0) + mO) 可以计算出坐标 (x,y)的像素值 f(x,y)。也就是说通过计算每点坐标,进行 平面坐标变换, 使图像转至水平, 获得像素模块为 1 *1的标准图像。
本发明中, 通过釆用二维码技术实现几何失真图形的矫正, 实现了对可 见光通信 MIMO系统中 LEDs阵列发送的平面图像的矫正, 保证了一帧图像 内各点像素被同时无误的检测, 达到了收发帧同步的目的。
步骤 102: 对矫正后的二维码信息进行解调获得数据。
对经过步骤 101处理后的平面图形进行二维码解调, 获得原始数据。 通过本发明方法, 保证了一 "帧" 平面内的像素能同时无误的解调, 而 且不受终端抖动等的影响。 在可见光通信中, 实现了收发端帧同步。 此外, 由于一 "帧"平面内的像素被准确的检测到了,也就有效地抑制了码间窜扰。 本发明可见光通信 MIMO系统的发送端釆用复用技术并行发送数据,提高了 发送增益, 同时也提高了照明强度。 而且, 接收端二维阵列多点式光电检测 器阵列为二维多点式结构, 与发送阵列相对应, 该并行数据通过如聚光凸透 镜后, 能够更好的映射到二维阵列多点式光电检测器阵列中, 提高了接收效 率。
本发明还提供一种可见光通信 MIMO系统, 如图 6所示, 包括发送端和 接收端, 其中,
发送端, 用于将待发送的数据经光强度调制并编译, 转换为包含有定位 信息的二维码信息后发送;
接收端, 用于扫描接收到的二维码信息, 并根据定位信息对接收到的二 维码信息进行矫正; 对矫正后的二维码信息进行解调获得数据。
如图 6所示,本发明发送端至少包括二维码编译模块和发送模块,其中, 二维码编译模块, 用于将待发送的数据编译成二维码图形; 发送模块, 用于通过光强度调制, 将编译后的二维码图形调制到点光源 上以平面图像的形式进行发送。 发送模块为 LEDs阵列, 发射阵列可以釆用 复用技术。
所述二维码图形中包括定位图形; 所述定位图形包括三个, 分别位于二 维码图形的三个顶角处;所述定位图形由符合比例不变特征的特定比例构成。 本发明接收端至少包括接收模块、 预处理模块、 矫正模块, 以及解调模 块, 其中,
接收模块, 用于接收来自发送端的包含有二维码信息的平面图像。 接收 模块可以是二维阵列多点式光电检测器, 接收模块釆用与发送端的 LEDs阵 列发射帧率同步的预定帧率, 釆集来自发送端的平面图像。 在二维阵列多点 式光电检测器上方进一步设置有成像透镜, 用于将远距离发送的平面图像镜 像到接收机阵列中。
预处理模块, 用于对接收到的包含有二维码信息的平面图像进行扫描, 去除冗余光干扰并进行二值化处理,将处理后的二维码图像输出给矫正模块。
矫正模块, 用于对来自预处理模块的二维码图形进行扫描, 获取定位图 像; 根据定位图像定位二维码图形的边界轮廓并对二维码图形进行矫正后输 出给解调模块;
解调模块,用于对来自矫正模块的处理后的二维码图形进行二维码解调, 获得原始数据。
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性
本发明实施例中, 通过釆用二维码技术实现几何失真图形的矫正, 实现 了对可见光通信 MIMO系统中 LEDs阵列发送的平面图像的矫正, 保证了一 帧图像内各点像素被同时无误的检测, 达到了收发帧同步的目的, 从而提高 了数据发送效率。
本发明实施例可见光通信 MIMO 系统的发送端釆用复用技术并行发送 数据, 提高了发送增益, 同时也提高了照明强度。 而且, 接收端二维阵列多 点式光电检测器阵列为二维多点式结构, 与发送阵列相对应, 该并行数据通 过成像透镜后, 能够更好的映射到二维阵列多点式光电检测器阵列中, 提高 了接收效率。

Claims

权 利 要 求 书
1、 一种可见光通信多输入多输出 MIMO系统实现数据收发的方法, 包 括: 发送端的数据经光强度调制并编译, 转换为包含有定位信息的二维码信 息后发送;
接收端扫描接收到的二维码信息, 并根据定位信息对接收到的二维码信 息进行矫正;
对矫正后的二维码信息进行解调获得数据。
2、 根据权利要求 1所述的方法, 其中, 所述编译为: 利用二维码编译器 对所述数据进行编译, 转换为二维码图形。
3、根据权利要求 2所述的方法, 其中, 所述定位信息为位于所述二维码
4、 根据权利要求 3所述的方法, 其中, 所述定位图形为三个。
5、根据权利要求 3所述的方法, 其中, 所述扫描接收到的二维码信息包 括: 对包含所述二维码图形的平面图像进行横向、 纵向扫描;
去除所述平面图像中的冗余光干扰;
对去除冗余光干扰的平面图像进行图像二值化处理。
6、根据权利要求 5所述的方法, 其中, 所述去除平面图像中的冗余光干 扰包括: 记录所述平面图像中各像素点的光亮度 , 与预先设置的光强度值 范围 (Emm,Emax )进行比较, 去除超过或小于 (Emm,Emax ) 范围的光强度值。
7、根据权利要求 5所述的方法, 其中, 所述对去除冗余光干扰的平面图 像进行图像二值化处理包括:
分别找出所述平面图像中的最大光亮度值 Emax和最小光亮度值 Emm, 计 算最大光亮度值 Emax和最小光亮度值 Emm的平均值 Eaverage;
按照平均值 Eaverage将图像中的亮度值分为大于平均值 Eaverage, 及小于平 均值 Eaverage两类,其中, 大于平均值 Eaverage的光亮值为黑色图像,表示为 1 ; 小于平均值 Eaverage的光亮点为白色图像, 表示为 0。
8、根据权利要求 3或 5所述的方法, 其中, 所述根据定位信息对接收到 的二维码信息进行矫正包括:
对所述二维码图形进行横向、纵向扫描 ,直到获取其中的三个定位图像; 分别确定各定位图形的中心点, 计算由三个中心点构成的三角形的各边 长长度;
根据所述三角形的两个短边边长及倾斜角 计算扫描面积 并与实际 面积 S相比得到斜率;
根据得到的斜率对所述二维码图形进行旋转, 恢复倾斜的二维码图形; 确定所述平面图像的边界轮廓, 根据双线性插值法计算矫正后的坐标。
9、根据 斜率根据下面的公式获 得: Ratio =―
Figure imgf000015_0001
S'为扫描面积, S为实际面积;
a表示所述三角形的各边长中短边 a的边长长度, b表示所述三角形的各 边长中短边 b的边长长度; "为倾斜角。
10、 一种可见光通信 MIMO系统, 包括发送端和接收端, 其中, 发送端, 设置为: 将待发送的数据经光强度调制并编译, 转换为包含有 定位信息的二维码信息后发送;
接收端, 设置为: 扫描接收到的二维码信息, 并根据定位信息对接收到 的二维码信息进行矫正; 对矫正后的二维码信息进行解调获得数据。
11、 根据权利要求 10所述的可见光通信 MIMO系统, 其中, 所述发送 端至少包括二维码编译模块和发送模块, 其中,
所述二维码编译模块, 设置为: 将待发送的数据编译成二维码图形; 所述发送模块, 设置为: 通过光强度调制, 将编译后的二维码图形调制 到点光源上以平面图像的形式进行发送。
12、 根据权利要求 11所述的可见光通信 MIMO系统, 其中, 所述发送 模块为 LEDs阵列, 发射阵列釆用复用技术。
13、 根据权利要求 11或 12所述的可见光通信 MIMO系统, 其中, 所述 二维码图形中包括定位图形; 所述定位图形由符合比例不变特征的特定比例 构成。
14、 根据权利要求 13所述的可见光通信 MIMO系统, 其中, 所述定位 图形包括三个, 分别位于二维码图形的三个顶角处。
15、 根据权利要求 10或 11所述的可见光通信 MIMO系统, 其中, 所述 接收端至少包括接收模块、 预处理模块、 矫正模块, 以及解调模块, 其中, 所述接收模块, 设置为: 接收来自发送端的包含有二维码信息的平面图 像;
所述预处理模块, 设置为: 对接收到的包含有二维码信息的平面图像进 行扫描, 去除冗余光干扰并进行二值化处理, 将处理后的二维码图像输出给 矫正模块;
所述矫正模块, 设置为: 对来自预处理模块的二维码图形进行扫描, 获 取定位图像; 根据定位图像定位二维码图形的边界轮廓并对二维码图形进行 矫正后输出给解调模块;
所述解调模块, 设置为: 对来自矫正模块的处理后的二维码图形进行二 维码解调, 获得原始数据。
16、 根据权利要求 15所述的可见光通信 MIMO系统, 其中, 所述接收 模块是二维阵列多点式光电检测器。
17、 根据权利要求 16所述的可见光通信 MIMO系统, 其中, 所述二维 阵列多点式光电检测器上方设置有成像透镜, 用于将远距离发送的平面图像 镜像到接收机阵列中。
18、 根据权利要求 17所述的可见光通信 MIMO系统, 其中, 所述接收 模块设置为: 釆用与所述发送端的 LEDs阵列发射帧率同步的预定帧率, 釆 集来自发送端的平面图像。
PCT/CN2013/082648 2013-06-26 2013-08-30 一种可见光通信mimo系统及其实现数据收发的方法 WO2014205911A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13888256.8A EP3007370A4 (en) 2013-06-26 2013-08-30 VISIBLE LIGHT COMMUNICATION MIMO SYSTEM AND ASSOCIATED METHOD FOR IMPLEMENTING DATA TRANSMITTING-RECEIVING
US14/392,183 US9967029B2 (en) 2013-06-26 2013-08-30 Visible-light communication MIMO system and method for realizing data transceiving therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310260167.7 2013-06-26
CN201310260167.7A CN104253646B (zh) 2013-06-26 2013-06-26 一种可见光通信mimo系统及其实现数据收发的方法

Publications (1)

Publication Number Publication Date
WO2014205911A1 true WO2014205911A1 (zh) 2014-12-31

Family

ID=52140925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082648 WO2014205911A1 (zh) 2013-06-26 2013-08-30 一种可见光通信mimo系统及其实现数据收发的方法

Country Status (4)

Country Link
US (1) US9967029B2 (zh)
EP (1) EP3007370A4 (zh)
CN (1) CN104253646B (zh)
WO (1) WO2014205911A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533523A (zh) * 2016-10-26 2017-03-22 南方科技大学 利用可见光定位进行mimo波束选择的控制方法及控制装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301557B (zh) * 2015-04-30 2019-02-12 北京智谷睿拓技术服务有限公司 可见光通信控制方法及控制器
CN105512596B (zh) * 2015-11-27 2018-01-19 深圳Tcl数字技术有限公司 去除二维码扫描干扰的处理方法及系统
CN107196704A (zh) * 2016-03-15 2017-09-22 中兴通讯股份有限公司 终端定位方法、装置和电子设备
JP2017187988A (ja) 2016-04-07 2017-10-12 東芝テック株式会社 コード認識装置
CN106056028B (zh) * 2016-06-29 2018-09-28 浙江速狐科技有限公司 一种快速扫描录单的方法及其装置
CN106209247B (zh) * 2016-07-10 2019-01-15 山东大学(威海) 光码生成器及其应用
CN106375022A (zh) * 2016-08-30 2017-02-01 中国科学院半导体研究所 带有聚光性能的探测器阵列接收系统
CN106452523B (zh) * 2016-10-11 2023-05-26 广东省科技基础条件平台中心 基于图像传感器的可见光mimo时钟同步通信系统
CN106570834B (zh) * 2016-10-26 2019-11-12 东南大学 一种用于像素调制可见光通信系统的图像矫正方法
CN106788722B (zh) * 2016-11-30 2019-10-15 东南大学 一种像素调制可见光通信系统的符号间干扰消除方法
WO2018132984A1 (zh) * 2017-01-18 2018-07-26 华为技术有限公司 通信方法及装置
US10164709B2 (en) 2017-04-07 2018-12-25 Seagate Technology Llc Optical data communication over variable distances
CN106953690B (zh) * 2017-04-19 2019-10-22 浙江工业大学 基于可见光的智能设备近场通信系统
CA3062892A1 (en) * 2017-05-09 2018-11-15 Visa International Service Association Video matrix barcode system
EP3416307B1 (en) * 2017-06-12 2022-07-27 STMicroelectronics (Research & Development) Limited Vehicle communications using visible light communications
CN108155941A (zh) * 2017-11-29 2018-06-12 东南大学 一种可见光i-mimo系统信号识别与合并方法
CN109147227B (zh) * 2018-07-17 2021-12-28 武汉云易虹科技有限公司 一种证芯码信息采集系统及方法
CN108736968B (zh) * 2018-08-29 2021-11-12 河南工程学院 一种控照型光信号并行通信系统及通信方法
WO2020077516A1 (zh) * 2018-10-16 2020-04-23 华北电力大学扬中智能电气研究中心 一种led阵列信号检测方法及装置
CN110033070A (zh) * 2019-04-19 2019-07-19 重庆三峡学院 一种二维多帧调制解调系统
CN110730345B (zh) * 2019-10-11 2022-09-02 京东方科技集团股份有限公司 图像显示方法、图像识别方法、装置、介质、设备及系统
CN113452442B (zh) * 2020-12-17 2022-07-08 芯创通(南京)半导体科技有限公司 一种点对多点可见光通信解调方式
CN113055090B (zh) * 2021-05-11 2022-03-22 吉林大学 与拍摄方位无关的多光源光学成像通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102171707A (zh) * 2008-10-03 2011-08-31 微软公司 用于基于照相机的设备的二维条形码定位
US20120155889A1 (en) * 2010-12-15 2012-06-21 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data using visible light communication
US20120275796A1 (en) * 2009-11-27 2012-11-01 Samsung Electronics Co. Ltd. System and method for visible light communication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100739284B1 (ko) 2006-05-16 2007-07-12 삼성에스디아이 주식회사 유기전계발광 표시장치 및 그의 구동방법
US9111186B2 (en) * 2011-10-12 2015-08-18 University Of Rochester Color barcodes for mobile applications: a per channel framework

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102171707A (zh) * 2008-10-03 2011-08-31 微软公司 用于基于照相机的设备的二维条形码定位
US20120275796A1 (en) * 2009-11-27 2012-11-01 Samsung Electronics Co. Ltd. System and method for visible light communication
US20120155889A1 (en) * 2010-12-15 2012-06-21 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data using visible light communication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533523A (zh) * 2016-10-26 2017-03-22 南方科技大学 利用可见光定位进行mimo波束选择的控制方法及控制装置
CN106533523B (zh) * 2016-10-26 2019-10-15 南方科技大学 利用可见光定位进行mimo波束选择的控制方法及控制装置

Also Published As

Publication number Publication date
EP3007370A1 (en) 2016-04-13
EP3007370A4 (en) 2016-07-06
US20160218803A1 (en) 2016-07-28
CN104253646A (zh) 2014-12-31
US9967029B2 (en) 2018-05-08
CN104253646B (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2014205911A1 (zh) 一种可见光通信mimo系统及其实现数据收发的方法
Le et al. A survey of design and implementation for optical camera communication
US8047447B2 (en) Method for encoding and decoding data in a color barcode pattern
EP2856077B1 (en) Reception of affine-invariant spatial mask for active depth sensing
US8515162B2 (en) QR code processing method and apparatus thereof
Yang et al. Reflexcode: Coding with superposed reflection light for led-camera communication
US20100282851A1 (en) Method for encoding and decoding data in a color barcode pattern
US8594453B2 (en) Method of robust alignment and payload recovery for data-bearing images
EP3271893A1 (en) Systems and methods for enhanced depth map retrieval for moving objects using active sensing technology
JP2008252466A (ja) 光通信システム、送信装置および受信装置
BR112018002739B1 (pt) Correção de erro de luz codificada eficiente em termos de memória
JP7010209B2 (ja) 画像処理装置および方法
Zhou et al. Enabling online robust barcode-based visible light communication with realtime feedback
KR20150114362A (ko) 색 공간 기반 영상 처리를 이용한 색상에 무관한 비주얼-mimo 통신 시스템 및 그 동작 방법
KR20170085953A (ko) 2d 컬러 코드 광학 무선 통신 방법 및 장치
CN114285472B (zh) 一种基于手机摄像头具有前向纠错的upsook调制方法
JP6466684B2 (ja) 可視光送信装置、可視光受信装置、可視光通信システム、可視光通信方法及びプログラム
CN111953417A (zh) 室内可见光通信自动对准系统及方法
US20230267628A1 (en) Decoding an image for active depth sensing to account for optical distortions
Chen et al. Hierarchical scheme for detecting the rotating MIMO transmission of the in-door RGB-LED visible light wireless communications using mobile-phone camera
CN112671999A (zh) 一种支持接收器晃动和用户移动的光学相机通信解调方法
Ye et al. When VLC Meets Under-Screen Camera
Sasaki et al. Light source tracking system for A-QL based display-camera communication
US8769362B2 (en) Debugging system using optical transmission
KR102568717B1 (ko) 하이브리드 기반의 occ 신호 수신 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14392183

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013888256

Country of ref document: EP