WO2014205815A1 - 远距离覆盖方法及基站 - Google Patents

远距离覆盖方法及基站 Download PDF

Info

Publication number
WO2014205815A1
WO2014205815A1 PCT/CN2013/078457 CN2013078457W WO2014205815A1 WO 2014205815 A1 WO2014205815 A1 WO 2014205815A1 CN 2013078457 W CN2013078457 W CN 2013078457W WO 2014205815 A1 WO2014205815 A1 WO 2014205815A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
time
long
distance
loopback delay
Prior art date
Application number
PCT/CN2013/078457
Other languages
English (en)
French (fr)
Inventor
何建平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016522169A priority Critical patent/JP6172552B2/ja
Priority to PCT/CN2013/078457 priority patent/WO2014205815A1/zh
Priority to EP13888219.6A priority patent/EP3002978B1/en
Priority to RU2016102406A priority patent/RU2627305C2/ru
Priority to CN201380001814.0A priority patent/CN103843383B/zh
Priority to NO13888219A priority patent/NO3002978T3/no
Publication of WO2014205815A1 publication Critical patent/WO2014205815A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to communication technologies, and in particular, to a remote coverage method and a base station. Background technique
  • Embodiments of the present invention provide a remote coverage method and a base station to solve the problem of low coverage in remote areas, so as to improve coverage in remote areas without increasing a large amount of cost.
  • an embodiment of the present invention provides a remote coverage method, including:
  • the base station determines a loopback delay according to an initial radius, where the initial radius is a cell radius of an initial coverage range of the base station;
  • the base station adjusts a downlink sending time and an uplink receiving time between the long-distance user equipment UE according to the loopback delay;
  • the base station communicates with the remote UE based on the adjusted downlink transmission time and uplink reception time.
  • the base station before the base station communicates with the remote UE based on the adjusted downlink sending time and the uplink receiving time, the base station further includes:
  • the base station determines that the UE is a remote UE according to its own transmission capability and the network plan of the operator.
  • C is the speed of light
  • any one of the first to second possible implementations of the first aspect in a third possible implementation:
  • the uplink reception time lag time amount is equal to the loopback delay
  • the uplink receiving time lag time amount is equal to zero, the amount of advance time of the downlink sending time is equal to the loopback delay.
  • any one of the first to the third possible implementation manners of the first aspect in a fourth possible implementation manner, the base station is based on the adjusted sending time and receiving time,
  • the communication by the remote UE includes:
  • the base station sends a downlink signal to the remote UE at the adjusted downlink transmission time; the base station receives the uplink signal sent by the remote UE at the adjusted uplink reception time.
  • an embodiment of the present invention provides a base station, including:
  • a calculation module configured to determine a loopback delay according to an initial radius, where the initial radius is a cell radius of an initial coverage area of the base station;
  • an adjusting module configured to adjust, according to the loopback delay, a downlink sending moment and an uplink receiving moment between the remote user equipment UE;
  • a communication module configured to communicate with the remote UE based on the adjusted downlink transmission time and the uplink reception time.
  • the communications module is specifically configured to: according to the transmit capability and operation of the remote downlink UE, based on the adjusted downlink sending time and the uplink receiving time, The network plan of the quotient determines that the UE is a remote UE.
  • the adjusting module is specifically configured to:
  • C is the speed of light.
  • any one of the first to second possible implementations of the second aspect In a third possible implementation:
  • the uplink reception time lag time amount is equal to the loopback delay
  • the uplink receiving time lag time amount is equal to zero, the amount of advance time of the downlink sending time is equal to the loopback delay.
  • the communications module is specifically configured to: The transmission time advances the TA value, and the downlink signal is transmitted to the remote UE at the adjusted downlink transmission time, and the uplink signal transmitted by the remote transmission is received at the adjusted uplink reception time.
  • an embodiment of the present invention provides a base station, including: a transmitter, a receiver, a memory, and a processor respectively connected to the transmitter, the receiver, and the memory, where the memory is stored A set of program code, and the processor is configured to invoke program code stored in the memory to perform a remote coverage method provided by any embodiment of the present invention.
  • a long-distance coverage method and a base station can eliminate the transmission delay caused by long-distance communication by adjusting the downlink transmission time and/or the uplink reception time of the base station, and realize long-distance coverage of the base station without changing the existing network protocol. . DRAWINGS
  • FIG. 1 is a flow chart of an embodiment of a remote coverage method according to the present invention.
  • FIG. 2 is a simplified schematic diagram of a coverage area of a base station in the embodiment shown in FIG. 1;
  • FIG. 3 is a simplified schematic diagram of a coverage area extension of a base station in the embodiment shown in FIG. 1;
  • FIG. 4 is a signal timing diagram of the embodiment shown in FIG. 1;
  • FIG. 5 is another signal timing diagram of the embodiment shown in Figure 1;
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to another embodiment of the present invention. detailed description
  • the method is applicable to improve coverage of a base station without changing a terminal and maintaining an existing network protocol, and the method can be implemented by various types of mobile communication networks.
  • the base station performs, in particular, a Frequency Division Duplex (FDD) base station of a Long Term Evolution (LTE) network.
  • FDD Frequency Division Duplex
  • LTE Long Term Evolution
  • the following example uses the eNodeB as an example. As shown in Figure 1, the method can be performed as follows:
  • the base station determines a loopback delay according to an initial radius, where the initial radius is a cell radius of an initial coverage area of the base station.
  • FIG. 2 is a simplified schematic diagram of a coverage area of a base station in the embodiment shown in FIG. 1.
  • an eNodeB is generally provided with a coverage area of the cell, where the coverage is determined based on the transmission capability of the base station and the network plan of the operator.
  • the network plan may include factors such as a working frequency point set on the base station and a transmit power of the antenna.
  • the initial coverage the coverage area before the eNodeB is referred to as the initial coverage, and accordingly, the initial radius is the cell radius of the initial coverage.
  • the initial radius R of the eNodeB can be used.
  • the inner ring radius of the ring-shaped area cell1 is set on the basis of the initial coverage area of the eNodeB, and the outer ring radius is formed to cover the ring-shaped area celll, thereby increasing the coverage of the eNodeB.
  • the location of the base station is considered to be the center of these circular areas.
  • the network protocol specifies the value range of the Timing Advance (TA) value, that is, the advance time that the UE's uplink synchronization signal reaches the eNodeB to meet the time alignment allowable time, as in LTE.
  • TA Timing Advance
  • GSM Global System for Mobile Communications
  • the UEs For UEs located outside the initial coverage area of the eNodeB, since the transmission delay exceeds the allowable adjusted advance time range, the UEs cannot maintain synchronization at the base station antenna port. In order to achieve long-distance coverage of the eNodeB, it is necessary to eliminate the transmission delay of the interaction between the remote UE and the eNodeB.
  • the present invention considers the transmission delay in two segments, and the transmission delay of the first segment is the initial radius R of the eNodeB.
  • the transmission delay within the second segment is from the actual position of the remote UE to the initial radius R.
  • the transmission delay at the location The transmission delay of the second segment can be solved by setting the TA value according to the existing protocol by the eNodeB, and the transmission delay of the first segment is a problem to be solved by the present invention.
  • the loopback delay is generated, and the loopback delay is a transmission delay that the UE sends a signal from the eNodeB to the eNodeB and then returns from the eNodeB to the UE.
  • the loopback delay is calculated using equation (1):
  • is the loopback delay
  • R Q is the initial radius
  • C is the speed of light.
  • the spatial transmission delay can be shared by the TA value and the loopback delay ⁇ .
  • the base station adjusts a downlink sending time and an uplink receiving time between the remote UE and the remote UE according to the loopback delay.
  • the uplink and downlink frame synchronization of the eNodeB at the antenna port of the eNodeB can be implemented by adjusting the uplink receiving time and the downlink sending time of the eNodeB.
  • the downlink transmission timing of the eNodeB may be advanced by ⁇ based on the previously unadjusted downlink transmission timing, or the uplink reception timing of the eNodeB may be delayed by ⁇ based on the previously unadjusted uplink reception timing.
  • the downlink transmission time and the uplink reception time of the eNodeB are simultaneously adjusted, as long as the sum of the advance time amount and the lag time amount is equal to ⁇ .
  • the uplink reception time lag time amount is equal to the loopback delay; or if the uplink reception time lag time amount is equal to zero, the downlink transmission time advance time amount is equal to The loopback delay. That is, it is preferable to adjust only the downlink transmission time or the uplink reception time of the eNodeB, which has the advantage that the complexity of the base station setting can be reduced.
  • the base station communicates with the remote UE according to the adjusted downlink transmission time and uplink reception time. Specifically, this step can be performed as follows:
  • the base station sends a downlink signal to the remote UE at the adjusted downlink transmission time; the base station receives the uplink signal sent by the remote UE at the adjusted uplink reception time.
  • the base station may further include: determining, by the base station, the UE as a long-distance UE according to its own transmission capability and a network plan of the operator.
  • the remote UE is a UE in the ring area cell1
  • the UE capable of supporting long-distance communication supported by the eNodeB needs to consider the transmission capability of the own and the network planning of the operator, that is, the upper boundary of the ring area cell1 needs to be considered. These factors are determined.
  • the distance ⁇ from the base station of the long distance must satisfy ⁇ ⁇ ⁇ + ⁇ , which corresponds to the theoretically determined maximum coverage according to the operator's network plan. Radius, and this is less than or equal to the maximum cell radius specified by the protocol, as in LTE networks, ⁇ ⁇ 100km.
  • FIG. 3 is a simplified schematic diagram of the coverage coverage of the base station in the embodiment shown in FIG. 1.
  • the remote coverage method of the present invention can be implemented on the basis of the long-distance coverage adjustment performed by the base station.
  • the eNodeB adjusts the coverage. After the range, the coverage area has become celll.
  • an initial radius can be set.
  • the radius is equal to Ri, that is, the coverage area cell2 is formed.
  • the radius R 2 is determined similarly to the radius, and the downlink transmission time and the uplink reception time are adjusted. The process is consistent with the above process and will not be described here.
  • the transmission delay caused by the long-distance communication is eliminated, and the long-distance coverage of the base station is realized without changing the existing network protocol.
  • the base station implements long-distance coverage by laging the uplink reception time.
  • the uplink receiving time of the eNodeB is delayed by ⁇ , that is, the adjusted eNodeB uplink antenna port is delayed by ⁇ from the eNodeB uplink antenna port before the adjustment.
  • FIG. 5 is another signal timing diagram of the embodiment shown in FIG. 1. As shown in FIG. 5, the downlink transmission time of the eNodeB is advanced by ⁇ , that is, the adjusted eNodeB downlink antenna port in the figure is compared with the eNodeB downlink antenna before adjustment. The mouth is ahead of ⁇ .
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station may include: a calculation module 61, an adjustment module 62, and a communication module 63.
  • the calculation module 61 may be configured to determine a loopback delay according to an initial radius, where the initial radius is a cell radius of an initial coverage of the base station; and the adjusting module 62 may be configured to adjust and remotely according to the loopback delay.
  • the downlink transmission time and the uplink reception time between the user equipments UE; the communication module 63 may be configured to perform communication with the remote UE based on the adjusted downlink transmission time and the uplink reception time.
  • the communication module 63 is specifically configured to: determine, according to the transmit capability of the UE and the network plan of the operator, the UE to be a long distance, before performing the communication between the adjusted downlink transmission time and the uplink receiving time. UE.
  • the adjusting module 62 is specifically configured to: calculate, by the base station, the loopback delay according to the foregoing formula (1).
  • the uplink receiving time lag time amount is equal to the loopback delay; or if the uplink receiving time lag time amount is equal to zero, the downlink sending time advance time amount Equal to the loopback delay.
  • the communication module 62 is specifically configured to: send a TA value to the remote UE, send a downlink signal to the remote UE at the adjusted downlink sending moment, and receive the long distance at the adjusted uplink receiving moment.
  • the device in this embodiment can be used in the technical solution of any of the foregoing method embodiments.
  • FIG. 7 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • the base station may include: a transmitter 71, a receiver 72, a memory 73, and the transmitter 71, the receiver 72, and the memory, respectively.
  • a processor 74 is connected to the processor 74, wherein the memory 73 stores a set of program codes, and the processor 74 is configured to invoke the program code stored in the memory 73, and the technical solution of the foregoing method embodiment can be executed.
  • the memory 73 stores a set of program codes
  • the processor 74 is configured to invoke the program code stored in the memory 73, and the technical solution of the foregoing method embodiment can be executed.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium, including several fingers
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种远距离覆盖方法及基站,本发明远距离覆盖方法,包括:基站根据初始半径确定环回时延,所述初始半径为所述基站的初始覆盖范围的小区半径;所述基站根据所述环回时延调整与远距离用户设备UE之间的下行发送时刻和上行接收时刻;所述基站基于调整后的下行发送时刻和上行接收时刻与所述远距离UE进行通信。本发明实施例通过调整基站的下行发送时刻和/或上行接收时刻,来消除由于远距离通信带来的传输延迟,在不改变现有网络协议的基础上实现基站的远距离覆盖。

Description

远距离覆盖方法及基站 技术领域
本发明涉及通信技术, 尤其涉及一种远距离覆盖方法及基站。 背景技术
随着移动通信网的不断发展, 内陆陆地覆盖已初步形成完善的网络, 但 一些海面、 岛屿、 沙漠、 草原、 偏远乡村等边远地区的覆盖率却很低。 为了 提高覆盖率, 提供更加完善的通信网络, 就需要在这些边远地区按照常规站 点布局设置大量基站, 但这样又会导致投资过大。
因此, 现急需一种解决方案, 既可以减少站点布局, 又可以解决边远地 区覆盖率低的问题。 发明内容 本发明实施例提供一种远距离覆盖方法及基站, 以解决边远地区覆盖率 低的问题, 以实现在不增加大量成本的前提下提高边远地区的覆盖率。
第一方面, 本发明实施例提供一种远距离覆盖方法, 包括:
基站根据初始半径确定环回时延, 所述初始半径为所述基站的初始覆 盖范围的小区半径;
所述基站根据所述环回时延调整与远距离用户设备 UE之间的下行发 送时刻和上行接收时刻;
所述基站基于调整后的下行发送时刻和上行接收时刻与所述远距离 UE进行通信。
在第一方面的第一种可能的实现方式中, 所述基站基于调整后的下行 发送时刻和上行接收时刻与所述远距离 UE进行通信之前, 还包括:
所述基站根据自身的发射能力和运营商的网络规划确定所述 UE为远距 离 UE。
根据第一方面或第一方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述基站根据初始半径确定环回时延, 包括: 所述基站根据公式 ΔΓ = ^计算所述环回时延,其中, ΔΓ为环回时延,
R。为初始半径, C为光速。
根据第一方面、 第一方面的第一种至第二种可能的实现方式的任意一 种, 在第三种可能的实现方式中:
若所述下行发送时刻的提前时间量等于零, 则所述上行接收时刻滞后 时间量等于所述环回时延; 或
若所述上行接收时刻滞后时间量等于零, 则所述下行发送时刻的提前 时间量等于所述环回时延。
根据第一方面、 第一方面的第一种至第三种可能的实现方式的任意一 种, 在第四种可能的实现方式中, 所述基站基于调整后的发送时刻和接收 时刻与所述远距离 UE进行通信包括:
所述基站向所述远距离 UE下发时间提前 TA值;
所述基站在调整后的下行发送时刻向所述远距离 UE发送下行信号; 所述基站在调整后的上行接收时刻接收所述远距离 UE发送的上行信 号。
第二方面, 本发明实施例提供一种基站, 包括:
计算模块, 用于根据初始半径确定环回时延, 其中所述初始半径为所 述基站的初始覆盖范围的小区半径;
调整模块, 用于根据所述环回时延调整与远距离用户设备 UE之间的 下行发送时刻和上行接收时刻;
通信模块, 用于基于调整后的下行发送时刻和上行接收时刻与所述远 距离 UE进行通信。
在第二方面的第一种可能的实现方式中, 所述通信模块具体用于: 基 于调整后的下行发送时刻和上行接收时刻与所述远距离 UE 进行通信之 前, 根据自身的发射能力和运营商的网络规划确定所述 UE为远距离 UE。
根据第二方面或第二方面的第一种可能的实现方式, 在第二种可能的 实现方式中, 所述调整模块具体用于:
根据公式 ΔΓ = 计算所述环回时延, 其中, ΔΓ为环回时延, R。为初 始半径, C为光速。
根据第二方面、 第二方面的第一种至第二种可能的实现方式的任意一 种, 在第三种可能的实现方式中:
若所述下行发送时刻的提前时间量等于零, 则所述上行接收时刻滞后 时间量等于所述环回时延; 或
若所述上行接收时刻滞后时间量等于零, 则所述下行发送时刻的提前 时间量等于所述环回时延。
根据第二方面、 第二方面的第一种至第三种可能的实现方式的任意一 种, 在第四种可能的实现方式中, 所述通信模块具体用于: 向所述远距离 UE下发时间提前 TA值,在调整后的下行发送时刻向所述远距离 UE发送 下行信号, 在调整后的上行接收时刻接收所述远距离发送的上行信号。
第三方面, 本发明实施例提供一种基站, 包括: 发射机、 接收机、 存 储器以及分别与所述发射机、 所述接收机和所述存储器连接的处理器, 其 中, 所述存储器中存储一组程序代码, 且所述处理器用于调用所述存储器 中存储的程序代码, 执行本发明任意实施例所提供的远距离覆盖方法。
一种远距离覆盖方法及基站通过调整基站的下行发送时刻和 /或上行接 收时刻, 来消除由于远距离通信带来的传输延迟, 在不改变现有网络协议 的基础上实现基站的远距离覆盖。 附图说明
图 1为本发明远距离覆盖方法实施例的流程图;
图 2为图 1所示实施例的基站覆盖区域简化示意图;
图 3为图 1所示实施例的基站覆盖区域扩展简化示意图;
图 4为图 1所示实施例的一信号时序图;
图 5为图 1所示实施例的另一信号时序图;
图 6为本发明一实施例基站的结构示意图;
图 7为本发明另一实施例基站的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明远距离覆盖方法实施例的流程图, 该方法适用于在不改动 终端并维持现有网络协议不变的前提下提高基站的覆盖范围, 同时该方法可 以由各类移动通信网络的基站执行, 尤其是长期演进 (Long Term Evolution, 简称 LTE) 网络的频分双工(Frequency Division Duplex, 简称: FDD )基站。 以下实施例均以 eNodeB为例进行说明, 如图 1所示, 该方法可以按照如下 流程进行:
S101、 基站根据初始半径确定环回时延, 该初始半径为该基站初始覆盖 范围的小区半径。
具体地, 图 2为图 1所示实施例的基站覆盖区域简化示意图, 参照图 2, eNodeB通常设置有其小区的覆盖范围,该覆盖范围是基于基站的发射能力和 运营商的网络规划确定的最佳地理覆盖范围, 本发明从理论上认为该覆盖范 围是圆形区域。 其中, 该网络规划可以包括如对基站设置的工作频点、 天线 的发射功率等因素。 为了说明本发明的远距离覆盖, 将 eNodeB之前的覆盖 范围称之为初始覆盖范围, 相应地, 初始半径为该初始覆盖范围的小区半径。 为了实现 eNodeB的远距离覆盖, 可以将 eNodeB的初始半径 R。作为基站设 置的远距离覆盖范围的下界, 即在 eNodeB初始覆盖范围 cellO的基础上设置 环形区域 celll的内环半径,并与外环半径 构成远距离覆盖环形区域 celll , 从而增大 eNodeB 的覆盖范围。 其中, 将基站所在位置认为是这些圆形区域 的圆心。
另一方面, 对于移动通信网络, 网络协议规定了时间提前 (Timing Advance, 简称 TA) 值的取值范围, 即 UE的上行同步信号到达 eNodeB时 为满足时间对齐可允许的提前时间, 如在 LTE的网络协议中, FDD eNodeB 可以设置的 TA值范围为: 0≤7¾≤205127¾, 其中 Ts=l/30720000秒, 也相当 于限定了基站的小区半径, 如, 对于全球移动通信系统 (Global System for Mobile Communications, 简称: GSM) , 基站理论最大小区半径为 35km, 对 于 LTE, eNodeB理论最大半径为 100km。对于位于 eNodeB初始覆盖区域之 外的 UE, 由于传输延迟超过了可允许调整的提前时间范围, 从而导致这些 UE在基站天线口处上下帧无法保持同步。 为了实现 eNodeB的远距离覆盖, 就需要消除远距离 UE与 eNodeB之间 交互的传输延迟。 本发明将该传输延迟分两段进行考虑, 第一段的传输延迟 为位于 eNodeB的初始半径 R。之内的传输延迟, 第二段的传输延迟为从远距 离 UE的实际位置到初始半径 R。处的传输延迟。 其中, 第二段的传输延迟可 以通过 eNodeB按照现有协议设置 TA值来解决,第一段的传输延迟就是本发 明需要解决的问题。
为了消除该第一段的传输延迟, 首先需要知道 eNodeB 设置好的初始半 径 R。产生的环回时延, 该环回时延为 UE从距 eNodeB距离为 RQ处发送的信 号到达该 eNodeB, 再从该 eNodeB返回到该 UE的传输延迟。优选地, 采用公 式 (1 ) 计算环回时延:
ΔΓ = ( 1 )
C
其中, ΔΓ为环回时延, RQ为初始半径, C为光速。 此时, 空间传输延迟 就可以由 TA值和环回时延 ΔΓ共同承担。
5102、 该基站根据该环回时延调整与远距离 UE之间的下行发送时刻和 上行接收时刻。
具体地, 确定该环回时延 ΔΓ后, 为了实现远距离 UE在 eNodeB天线口 处的上下帧同步, 可以通过调整 eNodeB 的上行接收时刻和下行发送时刻来 实现。
例如, 为了消除环回时延 ΔΓ , 基于之前未调整的下行发送时刻可以将 eNodeB 的下行发送时刻提前 ΔΓ, 或者基于之前未调整的上行接收时刻可以 将 eNodeB的上行接收时刻滞后 ΔΓ, 也可以将 eNodeB的下行发送时刻和上 行接收时刻同时调整, 只要满足该提前时间量和该滞后时间量之和等于 ΔΓ即 可。
优选地, 若该下行发送时刻的提前时间量等于零, 则该上行接收时刻 滞后时间量等于该环回时延; 或若该上行接收时刻滞后时间量等于零, 则 该下行发送时刻的提前时间量等于该环回时延。即优选采用只调整 eNodeB 的下行发送时刻或上行接收时刻, 这样做的好处在于, 可以减小基站设置的 复杂度。
5103、该基站基于调整后的下行发送时刻和上行接收时刻与该远距离 UE 进行通信。 具体地, 本步骤可以按照如下流程进行:
该基站向该远距离 UE下发 TA值;
该基站在调整后的下行发送时刻向该远距离 UE发送下行信号; 该基站在调整后的上行接收时刻接收该远距离 UE发送的上行信号。 可选地, 在本步骤之前, 还可以包括: 该基站根据自身的发射能力和运 营商的网络规划确定该 UE为远距离 UE。 参照图 2, 远距离 UE为处于环形 区域 celll的 UE, eNodeB能够支持的远距离通信的 UE需要通过考虑该自身 的发射能力和运营商的网络规划, 也即, 环形区域 celll 的上界 需要考虑 这些因素来确定。 进一步, 仅从理论的 eNodeB远距离覆盖范围来说, 远距 离 1^距基站的距离^必须满足 ≤^≤^ +^ , 其中 为根据运营商的网 络规划从理论上确定的最大覆盖范围所对应的半径, 且该 小于等于协议规 定的最大小区半径, 如在 LTE网络中, Δ ?≤ 100km。
进一步, 图 3为图 1所示实施例的基站覆盖区域扩展简化示意图, 本发 明远距离覆盖方法可以在基站已做远距离覆盖调整基础上继续实施, 如图 3 所示, 该 eNodeB在调整覆盖范围后, 覆盖区域已变成 celll, 此时可以再设 置一个初始半径, 该半径等于 Ri, 即形成覆盖区域 cell2, 其半径 R2的确 定与半径 类似, 同时下行发送时刻和上行接收时刻的调整过程与上述 过程一致, 此处不再赘述。
本实施例,通过调整基站的下行发送时刻和 /或上行接收时刻, 来消除 由于远距离通信带来的传输延迟, 在不改变现有网络协议的基础上实现基 站的远距离覆盖。
下面从不同场景对本发明进行举例说明:
场景一, 基站通过滞后上行接收时刻来实现远距离覆盖。
图 4为图 1所示实施例的一信号时序图, 如图 4所示, eNodeB可以根 据初始半径 R。确定环回时延 ΔΓ,远距离 UE与 eNodeB传输延迟为下行延迟 tDL和上行延迟 之和, 此时远距离 UE所在位置到初始半径 RQ处的传输延 迟由 TA值来补偿, 即此时 tDL+tuL= ΔΓ +TA。
在本场景下, 是将 eNodeB 的上行接收时刻滞后了 ΔΓ , 即图中调整后 的 eNodeB上行天线口较调整前的 eNodeB上行天线口滞后了 ΔΓ。
场景二, 基站通过提前下行发送时刻来实现远距离覆盖。 图 5为图 1所示实施例的另一信号时序图, 如图 5所示, 是将 eNodeB 的下行发送时刻提前了 ΔΓ, 即图中调整后的 eNodeB下行天线口较调整前 的 eNodeB下行天线口提前了 ΔΓ。
图 6为本发明一实施例基站的结构示意图, 如图 6所示, 该基站可以包 括: 计算模块 61、 调整模块 62和通信模块 63。 其中, 该计算模块 61可 以用于根据初始半径确定环回时延, 其中该初始半径为该基站的初始覆盖 范围的小区半径; 该调整模块 62可以用于根据该环回时延调整与远距离 用户设备 UE之间的下行发送时刻和上行接收时刻;该通信模块 63可以用 于基于调整后的下行发送时刻和上行接收时刻与该远距离 UE进行通信。
可选地, 该通信模块 63 具体可以用于: 基于调整后的下行发送时刻 和上行接收时刻与该远距离 UE 进行通信之前, 根据自身的发射能力和运 营商的网络规划确定该 UE为远距离 UE。
可选地, 该调整模块 62具体可以用于: 该基站根据上述公式 (1 ) 计算该 环回时延。
可选地, 若该下行发送时刻的提前时间量等于零, 则该上行接收时刻 滞后时间量等于该环回时延; 或若该上行接收时刻滞后时间量等于零, 则 该下行发送时刻的提前时间量等于该环回时延。
可选地, 该通信模块 62具体可以用于: 向该远距离 UE下发 TA值, 在调整后的下行发送时刻向该远距离 UE发送下行信号, 在调整后的上行 接收时刻接收该远距离发送的上行信号。
本实施例的装置, 可以用于上述任意方法实施例的技术方案, 其具体 功能详见上述方法实施例, 此处不再赘述。
图 7为本发明另一实施例基站的结构示意图, 如图 7所示, 该基站可以 包括: 发射机 71、 接收机 72、 存储器 73以及分别与该发射机 71、 该接收 机 72和该存储器 73连接的处理器 74, 其中, 该存储器 73中存储一组程 序代码, 且该处理器 74用于调用该存储器 73中存储的程序代码, 可以执 行上述的方法实施例的技术方案, 其具体功能详见上述方法实施例, 此处 不再赘述。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor) 执行本发明各个实施例所述方法的部分步骤。 而前述 的存储介质包括: U盘、移动硬盘、只读存储器(Read-Only Memory, ROM)、 随机存取存储器(Random Access Memory, RAM) 、 磁碟或者光盘等各种可 以存储程序代码的介质。
本领域技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上述各 功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分 配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以 完成以上描述的全部或者部分功能。 上述描述的装置的具体工作过程, 可以 参考前述方法实施例中的对应过程, 在此不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种远距离覆盖方法, 其特征在于, 包括:
基站根据初始半径确定环回时延, 所述初始半径为所述基站的初始覆 盖范围的小区半径;
所述基站根据所述环回时延调整与远距离用户设备 UE之间的下行发 送时刻和上行接收时刻;
所述基站基于调整后的下行发送时刻和上行接收时刻与所述远距离 UE进行通信。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述基站基于调整后 的下行发送时刻和上行接收时刻与所述远距离 UE进行通信之前,还包括: 所述基站根据自身的发射能力和运营商的网络规划确定所述 UE为远距 离 UE。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述基站根据初 始半径确定环回时延, 包括:
所述基站根据公式 ΔΓ = 计算所述环回时延,其中, ΔΓ为环回时延,
R。为初始半径, C为光速。
4、 根据权利要求 1~3任一项所述的方法, 其特征在于:
若所述下行发送时刻的提前时间量等于零, 则所述上行接收时刻滞后 时间量等于所述环回时延; 或
若所述上行接收时刻滞后时间量等于零, 则所述下行发送时刻的提前 时间量等于所述环回时延。
5、 根据权利要求 1~4任一所述的方法, 其特征在于, 所述基站基于 调整后的发送时刻和接收时刻与所述远距离 UE进行通信包括:
所述基站向所述远距离 UE下发时间提前 TA值;
所述基站在调整后的下行发送时刻向所述远距离 UE发送下行信号; 所述基站在调整后的上行接收时刻接收所述远距离 UE发送的上行信 号。
6、 一种基站, 其特征在于, 包括:
计算模块, 用于根据初始半径确定环回时延, 其中所述初始半径为所 述基站的初始覆盖范围的小区半径; 调整模块, 用于根据所述环回时延调整与远距离用户设备 UE之间的 下行发送时刻和上行接收时刻;
通信模块, 用于基于调整后的下行发送时刻和上行接收时刻与所述远 距离 UE进行通信。
7、 根据权利要求 6所述的基站, 其特征在于, 所述通信模块具体用 于: 基于调整后的下行发送时刻和上行接收时刻与所述远距离 UE进行通 信之前, 根据自身的发射能力和运营商的网络规划确定所述 UE 为远距离 UE。
8、 根据权利要求 6或 7所述的基站, 所述调整模块具体用于: 根据公式 ΔΓ = 计算所述环回时延, 其中, ΔΓ为环回时延, R。为初 始半径, C为光速。
9、 根据权利要求 6~8任一项所述的基站, 其特征在于:
若所述下行发送时刻的提前时间量等于零, 则所述上行接收时刻滞后 时间量等于所述环回时延; 或
若所述上行接收时刻滞后时间量等于零, 则所述下行发送时刻的提前 时间量等于所述环回时延。
10、 根据权利要求 6~9任一项所述的基站, 其特征在于, 所述通信模 块具体用于: 向所述远距离 UE下发时间提前 ΤΑ值, 在调整后的下行发 送时刻向所述远距离 UE发送下行信号, 在调整后的上行接收时刻接收所 述远距离发送的上行信号。
11、 一种基站, 其特征在于, 包括: 发射机、 接收机、 存储器以及分 别与所述发射机、 所述接收机和所述存储器连接的处理器, 其中, 所述存 储器中存储一组程序代码, 且所述处理器用于调用所述存储器中存储的程 序代码, 执行如权利要求 1~5任一项所述的方法。
PCT/CN2013/078457 2013-06-28 2013-06-28 远距离覆盖方法及基站 WO2014205815A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016522169A JP6172552B2 (ja) 2013-06-28 2013-06-28 長距離カバレッジ方法および基地局
PCT/CN2013/078457 WO2014205815A1 (zh) 2013-06-28 2013-06-28 远距离覆盖方法及基站
EP13888219.6A EP3002978B1 (en) 2013-06-28 2013-06-28 Method for remote coverage and base station
RU2016102406A RU2627305C2 (ru) 2013-06-28 2013-06-28 Способ покрытия дальней связи и базовая станция
CN201380001814.0A CN103843383B (zh) 2013-06-28 2013-06-28 远距离覆盖方法及基站
NO13888219A NO3002978T3 (zh) 2013-06-28 2013-06-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078457 WO2014205815A1 (zh) 2013-06-28 2013-06-28 远距离覆盖方法及基站

Publications (1)

Publication Number Publication Date
WO2014205815A1 true WO2014205815A1 (zh) 2014-12-31

Family

ID=50804817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078457 WO2014205815A1 (zh) 2013-06-28 2013-06-28 远距离覆盖方法及基站

Country Status (6)

Country Link
EP (1) EP3002978B1 (zh)
JP (1) JP6172552B2 (zh)
CN (1) CN103843383B (zh)
NO (1) NO3002978T3 (zh)
RU (1) RU2627305C2 (zh)
WO (1) WO2014205815A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472629A (zh) * 2015-11-20 2016-04-06 上海华为技术有限公司 基站及蜂窝网络组网方法
CN108430064A (zh) * 2017-02-15 2018-08-21 中兴通讯股份有限公司 一种动态小区覆盖的方法、装置和系统
CN109982335B (zh) * 2017-12-28 2022-04-08 中国移动通信集团山东有限公司 Tdd-lte小区覆盖范围扩展方法及装置
EP4084526A4 (en) * 2020-01-21 2023-01-11 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD, DEVICE AND SYSTEM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160787A1 (en) * 2001-03-13 2002-10-31 Lucent Technologies Inc. Communications system and related method for determining a position of a mobile station
CN102273284A (zh) * 2009-11-20 2011-12-07 高通股份有限公司 用于促进上行链路同步的方法和装置
CN102469445A (zh) * 2010-11-16 2012-05-23 中兴通讯股份有限公司 一种调整终端定时器时长的方法及装置、系统
CN103002569A (zh) * 2011-09-08 2013-03-27 华为技术有限公司 终端定位方法及设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970467B2 (ja) * 1999-03-18 2007-09-05 富士通株式会社 無線通信システム
US7113790B2 (en) * 2003-02-18 2006-09-26 Qualcomm Incorporated Method and apparatus for using a traffic channel for communications of control data in a wireless communication system
US8457076B2 (en) * 2006-01-20 2013-06-04 Lg-Ericsson Co., Ltd. Apparatus and method for transmitting and receiving a RACH signal in SC-FDMA system
WO2008117346A1 (ja) * 2007-03-22 2008-10-02 Fujitsu Limited 基地局、移動局、通信システム及びそのリオーダリング方法
MY152443A (en) * 2007-10-30 2014-09-30 Ericsson Telefon Ab L M Methods and arrangements in a wireless communication system
JP5147476B2 (ja) * 2008-03-17 2013-02-20 株式会社日立製作所 無線通信システム、基地局およびデータ送信タイミング制御方法
CN101754398B (zh) * 2008-12-16 2012-07-25 中兴通讯股份有限公司 长期演进系统中基站获取用户设备无线能力信息的方法
CN101511130B (zh) * 2009-02-25 2011-10-26 中兴通讯股份有限公司 一种高速覆盖场景下的频偏获取方法和系统
EP2761944A4 (en) * 2011-09-30 2015-04-15 Ericsson Telefon Ab L M DETERMINING A POINT IN TIME FOR TRANSMISSIONS
CN102523589A (zh) * 2011-12-23 2012-06-27 电信科学技术研究院 一种基带拉远的处理方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160787A1 (en) * 2001-03-13 2002-10-31 Lucent Technologies Inc. Communications system and related method for determining a position of a mobile station
CN102273284A (zh) * 2009-11-20 2011-12-07 高通股份有限公司 用于促进上行链路同步的方法和装置
CN102469445A (zh) * 2010-11-16 2012-05-23 中兴通讯股份有限公司 一种调整终端定时器时长的方法及装置、系统
CN103002569A (zh) * 2011-09-08 2013-03-27 华为技术有限公司 终端定位方法及设备

Also Published As

Publication number Publication date
JP6172552B2 (ja) 2017-08-02
EP3002978B1 (en) 2018-02-14
CN103843383A (zh) 2014-06-04
RU2016102406A (ru) 2017-08-02
EP3002978A4 (en) 2016-06-22
CN103843383B (zh) 2018-11-30
EP3002978A1 (en) 2016-04-06
JP2016523488A (ja) 2016-08-08
RU2627305C2 (ru) 2017-08-07
NO3002978T3 (zh) 2018-07-14

Similar Documents

Publication Publication Date Title
RU2752694C1 (ru) Указание луча для управления мощностью восходящей линии связи
CN111615186B (zh) 一种更新定时提前的方法、终端及网络设备
WO2020169048A1 (zh) 一种更新定时提前的方法、终端及基站
US10334542B2 (en) Wireless device, a first access node and methods therein
EP3700286B1 (en) Data sending method, base station, and terminal device
US20230010343A1 (en) Ta determination method and apparatus, and terminal device
US10447414B2 (en) Device obfuscation of position tracking
EP3820229A1 (en) Resource configuration method and device, terminal device and network device
US20220272648A1 (en) Integrated access backhaul node downlink timing adjustment in presence of frequency offset
US20220070808A1 (en) UE Initiated Propagation Delay Compensation Mechanism
US9345056B2 (en) Frequency selection for device to device wireless communication
WO2017028049A1 (zh) 一种站间同步方法、基站及控制网元
WO2014205815A1 (zh) 远距离覆盖方法及基站
US20220124652A1 (en) IAB Timing Delta MAC CE Enhancement For Case #6 Timing Support
WO2015017977A1 (zh) 一种umts到lte的网络切换方法、设备及系统
EP3958592B1 (en) Random access method and apparatus
US20230224843A1 (en) Timing offset parameter update method, device, and system
WO2015027476A1 (zh) 网络切换方法、接入点、控制器和基站
CN114586422B (zh) 定时提前量的阈值调整方法及装置
CA3066672C (en) Method for wireless communication, terminal device, network device, and network node
WO2024031590A1 (zh) 用于定位的无线通信方法、装置、设备、系统及存储介质
CN114501558B (zh) 一种信息传输、获取方法及装置
EP4152813A1 (en) Wireless communication method, terminal device and network device
US20230403662A1 (en) IAB Timing Delta MAC CE Enhancement for Case #6 Timing Support
EP4271037A1 (en) Quality of service (qos) control method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016522169

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013888219

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016102406

Country of ref document: RU

Kind code of ref document: A